
ECON 1630 (Hull) Chapter 9: Two-Stage Least Squares Fall 2021

Introducing Two-Stage Least Squares

In the previous chapter we defined the IV regression estimand as

β = E[ΠZiX
′
i]−1E[ΠZiYi]. (1)

Here Yi is a (scalar) outcome; Xi = [X ′i,W ′
i]′ is a (J+K)×1 vector stacking the J×1 vector of endogenous

variablesXi and the K×1 vector of controlsW i; Zi = [Z ′i,W ′
i]′ is an (L+K)×1 vector stacking the L×1

vector of exogenous instruments and the controls, and Π = E[XiZ
′
i]E[ZiZ

′
i]−1 is an (J+K)×(L+K) matrix

collecting the first-stage coefficients from regressing each element of Xi on Zi. We previously discussed how
such estimands may be used to overcome different endogeneity challenges and identify parameters of interest
under two key assumptions: instrument validity and relevance.

As with linear (non-instrumented) regression, the IV regression estimand is a relatively simple function of
simple moments: in particular, E[ZiZ

′
i], E[XiZ

′
i], and E[ZiYi]. Just as our ordinary least squares estimator

“plugged in” sample analogs of population moments into the regression formula, so too can we estimate IV
regressions as

β̂ =
(

1
N

∑
i

Π̂ZiX
′
i

)−1
1
N

∑
i

Π̂ZiYi (2)

where Π̂ = 1
N

∑
i

XiZ
′
i

(
1
N

∑
i

ZiZ
′
i

)−1

. (3)

We call β̂ the two-stage least squares (2SLS) estimator of β.

As with OLS, we can use matrix notation to more compactly write β̂. Let Z = [Z1, . . . ,ZN ]′ be the
N × (L+K) matrix of instrument (and control) observations, let X = [X1, . . . ,XN ]′ be the N × (J +K)
matrix of endogenous variable (and control) observations, and as before let Y = [Y 1, . . . ,Y N ]′ be the N ×1
vector of outcome observations. Then, similar to before, we can write

Π̂ = X ′Z
(
Z ′Z

)−1
. (4)

and β̂ =
(
Π̂Z ′X

)−1
Π̂Z ′Y . (5)

To see where the 2SLS estimator gets its name, let’s multiply and divide inside the parentheses of β̂ by Z ′Z:

β̂ =
(
Π̂Z ′Z

(
Z ′Z

)−1
Z ′X

)−1
Π̂Z ′Y

=
(
Π̂Z ′ZΠ̂

′)−1
Π̂Z ′Y

=
(
X̂
′
X̂
)−1

X̂
′
Y (6)

where we define X̂ = ZΠ̂
′
as the first stage fitted values. This shows that the 2SLS estimator can be written

in terms of two OLS estimators. The first-stage OLS regresses Xi on Zi in the sample and takes its fitted
values. The second-stage OLS regresses Y i on these fitted values in the sample. This parallels how we first
encountered the population IV regression, as a series of two population regressions. Intuitively, 2SLS isolates
exogenous variation in X by projecting it on the exogenous Z and using only this component of variation.

Another way to look at 2SLS is via the estimated reduced-form and first-stage regressions. Note that by
multiplying both pieces of β̂ by Z ′Z(Z ′Z)−1 = I we can also write

β̂ =
(
Π̂Z ′Z(Z ′Z)−1Z ′X

)−1
Π̂Z ′Z(Z ′Z)−1Z ′Y

=
(
Π̂Z ′ZΠ̂

′)−1
Π̂Z ′Zρ̂, (7)
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where ρ̂ = (Z ′Z)−1Z ′Y is an OLS estimate of the reduced form regression, of Yi on Z. This way of
writing β̂ shows that 2SLS can also be seen as a Z ′Z-weighted OLS regression, of ρ̂ on Π̂

′
. Make sure you

understand what I mean by that: note ρ̂ and Π̂
′
are not matrices of N observations running along the rows,

but instead they have L rows (one for each instrument). What 2SLS is doing is projecting the reduced-form
relationship between Yi and Z ′, across different instruments, on the first-stage relationship between X and
Z ′. The simplest version of this is when Π̂ is square (and invertible), as in the just-identified case. Then
equation (8) reduces to

β̂ =
(
Π̂Z ′ZΠ̂

′)−1
Π̂Z ′Zρ̂

= Π̂
′−1 (

Π̂Z ′Z
)−1

Π̂Z ′Zρ̂

= Π̂
′−1
ρ̂. (8)

Loosly, this is “reduced form over first stage” — it is exactly this in the just-identified case with only one
instrument/endogenous variable. If, for example, we regress a Yi on a scalar Xi and instrument with a binary
Zi, we obtain the so-called Wald IV estimator

β̂ = Ĉov(Zi, Yi)/V̂ ar(Zi)
Ĉov(Zi, Xi)/V̂ ar(Zi)

= Ê[Yi | Zi = 1]− Ê[Yi | Zi = 0]
Ê[Xi | Zi = 1]− Ê[Xi | Zi = 0]

, (9)

where we use the fact that Zi is binary to arrive at the second equality.1

As with OLS, the Frisch-Waugh-Lovell theorem can help us make sense of “big” 2SLS regressions, with many
controls. Typically the most useful way to apply FWL is via the reduced-form and first-stage regressions. If
we estimate

Yi = Z ′iρ̂+W ′
iκ̂+ ν̂i (10)

Xi = Π̂Zi + µ̂W i + η̂i (11)

then ρ̂ = [ρ̂′, κ̂′]′ and

Π̂ =
[
Π̂ µ̂
0 I

]
, (12)

using the definition of Π̂ and the fact that the first-stage OLS regressions of W i on Zi and W i will put a
zero coefficient on the former and the identity matrix on the latter. When we are just-identified, such that
β̂ = Π̂

−1
ρ̂, it follows from the partitioned inverse formula that β̂ (the 2SLS coefficient on Xi alone) equals

Π̂−1ρ̂; thus, we can study β̂ just from the reduced-form OLS coefficient on Zi while controlling for W i (ρ̂)
and the first-stage OLS coefficient on Zi while controlling forW i (Π̂). It follows by the Frisch-Waugh-Lovell
theorem that we can study the partialled-out reduced form and first stage to learn about the IV estimate;
you’ll see an example of this on the last question of PS #4.

2SLS Asymptotics

As with OLS, it is straightforward to show that 2SLS is
√
N -consistent under fairly weak conditions. By

substituting in the population regression Yi = X ′iβ + Ui we have, in matrix form,

β̂ =
(
Π̂Z ′X

)−1
Π̂Z ′Y

=
(
Π̂Z ′X

)−1
Π̂Z ′

(
Xβ +U

)
= β +

(
Π̂Z ′X

)−1
Π̂Z ′U . (13)

1The Wald IV estimator is due to Abraham Wald, who also gave us the Wald test studied in Chapter 6. It was originally
developed (in 1940) to address measurement error concerns, but has since taken on a broader role in modern IV methods.
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It thus remains for us to characterize the asymptotic distribution of
√
N
(
β̂ − β

)
=
√
N
(
Π̂Z ′X

)−1
Π̂Z ′U

=
(

Π̂
(

1
N

∑
i

ZiX
′
i

))−1

Π̂
(
√
N

1
N

∑
i

ZiUi

)
, (14)

where again Π̂ = 1
N

∑
iXiZ

′
i

( 1
N

∑
iZiZ

′
i

)−1. In iid data, assuming finite V ar(ZijZik) and V ar(XijZik)
for all (j, k) we know that 1

N

∑
iZiZ

′
i

p−→ E[ZiZ
′
i] and 1

N

∑
iXiZ

′
i

p−→ E[XiZ
′
i] by the law of large numbers.

We further know that Π̂ p−→ Π = E[XiZ
′
i]E[ZiZ

′
i]−1 by the continuous mapping theorem. Moreover, so long

as V ar(ZikUi) is finite for all k we have by the central limit theorem that
√
N 1

N

∑
iZiUi ⇒ N(0, V ar(ZiUi))

since, by definition, E[ZiUi] = 0. It follows by Slutsky’s theorem that
√
N
(
β̂ − β

)
⇒ N(0,Σ)

where Σ =
(
ΠE[ZiX

′
i]
)−1ΠV ar(ZiUi)Π′

(
ΠE[ZiX

′
i]
)−1

, (15)

similar to how we derived the asymptotic variance of OLS. Paralleling our Eicker-Hubert-White “robust”
standard error calculation, we can moreover consistently estimate the asymptotic variance by

Σ̂ =
(

Π̂
(

1
N

∑
i

ZiX
′
i

))−1

Π̂
(

1
N

∑
i

ZiZ
′
iÛ

2
i

)
Π̂
′
(

Π̂
(

1
N

∑
i

ZiX
′
i

))−1

, (16)

where Ûi = Yi − X ′β̂ consistently estimate the IV residual Ui. Notice how this gives the OLS formula
as a special case, where Xi = Zi and so Π̂ = I. As before we can extend this derivation and variance
estimator to non-iid (e.g. clustered) data, and can derive a homoskedastic special case that applies when
V ar(Ui | Zi) = σ2. In this case V ar(ZiUi) = σ2E[ZiZ

′
i] so we can simplify

Σ=
(
ΠE[ZiX

′
i]
)−1 Πσ2E[ZiZ

′
i]Π′

(
ΠE[ZiX

′
i]
)−1

,

=
(
ΠE[ZiX

′
i]
)−1

σ2 (17)

and estimate this accordingly. As with OLS, the homoskedastic estimator is not “robust” to heteroskedastic-
ity and is thus not to be used in most applications, though it can be useful for building intuition. A different
special case is one in which we are just identified (L = K), in which case

Σ =E[ZiX
′
i]−1V ar(ZiUi)E[ZiX

′
i]−1 (18)

does not depend on Π.

As with OLS, it can be useful to refer to the “simple” IV case with one instrument, one endogenous variable,
and controls. As you’d expect, we get by solving out the general 2SLS formula a slope coefficient estimate
of

β̂ = Ĉov(Zi, Yi)
Ĉov(Zi, Xi)

(19)

and by working through the general algebra on the asymptotic variance you can show
√
N(β̂−β)⇒ N(0,Σ)

where

Σ = V ar((Zi − E[Zi])Ui)
Cov(Zi, Xi)2 (20)

which we estimate by

Σ̂ =
1
N

∑
i(Zi − Z̄)2Û2

i( 1
N

∑
i(Zi − Z̄)(Xi − X̄)

)2 . (21)
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Again, it is useful to see how this nests the bivariate OLS estimator and variance we saw before, when
Xi = Zi.

Although it’s temping to run 2SLS regressions in two steps (given the name) you shouldn’t actually do this
in practice. The coefficient you get from first regressing (say) Xi on Zi and then regressing Yi on the fitted
values Π̂Xi will be numerically equivalent to the 2SLS coefficient, but the standard errors that Stata or
R give you from this second-stage regression will generally be incorrect. This is because the fitted values
regression has an “extra” residual term:

Yi = α+ βXi + Ui

= α+ βΠXi + (βηi + Ui) (22)

where ηi denotes the first-stage residual as before. Stata will compute a standard error on β that uses both
βηi and Ui in the residual, but the correct IV residual is just Ui. Thus you should never run 2SLS regressions
“by hand” but instead use built-in commands that uses the correct second-stage residual: in Stata, this is
the ivregress 2sls command, but you can also use the user-written (and somewhat more flexible) ivreg2
command. Don’t forget when you do to specify heteroskedastic-robust or clustered standard errors, since
again Stata will by default use the (non-robust) variance estimator. For estimating IV regressions with
high dimensional fixed effects, such as those involve difference-in-difference-type arguments, you can use the
ivreghdfe command.

Weak and Many Instruments

Recall that in our Chapter 5 discussion of OLS we touched on the issue of multicollinearity: effectively,
that the standard errors we get on a given coefficient Xi can be large when the residual variation X̃i after
partialling out some control vector W i is small. I said then that this was not necessarily a “problem,” per
se, just a reflection of the fact that we didn’t have enough (conditional) explanatory power in Xi to make
precise inferences. So long as nothing else went wrong in the OLS regression (such as perfect collinearity),
it would remain consistent and asymptotically normal despite moderate multicollinearity.

It turns out there is an analogous, but more pernicious problem in 2SLS called weak instruments. In the
case of a single instrument and treatment, the weak instrument problem arises when Cov(Z̃i, X̃i) is small
where again Z̃i and X̃i denote the residuals from regressing Zi or Xi respectively on the included control
vector. We can see from the previous section (and an extension of the Frisch-Waugh-Lovell theorem) that
a small Cov(Z̃i, X̃i) will generally lead to a large asymptotic variance of the 2SLS estimator—just as how a
small V ar(X̃i) led to a large asymptotic variance of OLS in Chapter 5. But it turns out that in 2SLS the
problem is worse: a small Cov(Z̃i, X̃i) can cause 2SLS to be biased.

The claim that “weak instruments” (formally, a small Π = Cov(Zi, Xi)/V ar(Zi) in the simple IV case, where
we drop the controls for notational convenience) can cause bias might come as a surprise initially. After all,
didn’t we just prove above that 2SLS is consistent under weak conditions? The way to reconcile these two
things is to recall why we use asymptotics in the first place. In reality we never have an increasing sample
size N and wait until we’ve collected “enough” observations to conduct inference. In any given study we
only have the data we have, and we use asymptotics to approximate the distribution of our estimator in this
(finite) sample. The point is that when Π is small we may not be able to estimate it well in the sample, and in
this case the 2SLS estimator which uses an estimate of Π to scale the reduced-form regression may be badly
behaved. So-called weak instrument asymptotics are designed to capture this scenario and approximate the
bias that results from such bad behavior, in contrast to the strong instrument asymptotics used above to
characterize the asymptotic distribution of 2SLS when we can estimate Π arbitrarily well.

To formalize the weak IV problem, we thus need an alternative asymptotic “sequence” which allows us to
isolate the problem of not being able to estimate a small Π reliably. Such a sequence will generally involve
Π → 0 as N → ∞, such that even in a large sample size we have difficulty precisely estimating Π. It is
important to recognize that the “assumption” of Π → 0 in such sequences is just a mathematical trick to
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achieve a good finite-sample approximation to the data at hand. Just as we never actually see an increase
in our sample size N , we never actually have a decrease in the first-stage coefficient Π. Instead, we use this
mathematical sequence to figure out how our estimator is behaving when N is moderately large and Π is
moderately small.

Concretely, let’s consider a simple 2SLS regression of Yi on Xi instrumenting by Zi where in the population
regression the slope coefficient is β = 0. Let’s further normalize the sample variance of Zi to one to keep
things simple. The 2SLS estimator of β is then

β̂ = Ĉov(Zi, Yi)
Ĉov(Zi, Xi)

= Ĉov(Zi, Ui)
Π + Ĉov(Zi, ηi)

=
√
NĈov(Zi, Ui)√

NΠ +
√
NĈov(Zi, ηi)

, (23)

where in the first equality we substitute in the population second stage of Yi = α+βXi +Ui (recalling β = 0)
and the population first stage of Xi = γ + ΠZi + ηi, and in the second equality we multiply the top and
bottom of the expression by

√
N. By the central limit theorem, under our usual conditions,

√
NĈov(Zi, Ui)

and
√
NĈov(Zi, ηi) will have approximately normal distributions in large samplesN that are centered around

zero. Under “strong” instrument asymptotics (where Π is a fixed number)
√
NΠ→∞ as N →∞ such that

the denominator tends to infinity and β̂ tends to zero as we’d expect. But what if we consider a model where
Π is “small relative to sampling variation”? In particular let’s model Π = π/

√
N for some fixed π. This

ensures Π→ 0 as N →∞, and per equation (23) we now have β̂ converging not to zero but to the ratio of
two normal random variables! This distribution has a particular name: a Cauchy distribution. It turns out
it’s a gnarly one, with very thick tails and no finite moments; interestingly, you can show that in this case
the Cauchy distribution that (24) becomes is centered around the OLS estimand, Cov(Xi, Yi)/V ar(Xi). In
the course slides, I illustrate this distribution and “bias” towards OLS.

What do we learn from this example? Again, we never literally have a scenario where
√
NΠ→ π as N →∞.

But we may have a scenario where the first stage coefficient Π is small and thus difficult to estimate even
though the sample size N is large. What this example tells us is that in those scenarios our IV coefficient
may be biased, and perhaps badly so, in the direction of OLS. In practice, to guard against this possibility,
is it thus important to worry about instrument “strength” – you want to show that the relationship between
the instruments and the endogenous variables is large enough that the kind of bias illustrated in the above
example is negligible. Typically, such strength is gauged by the first stage F-statistic: i.e., the Wald test
statistic for the joint null hypothesis that all of the elements of Π are zero. This is straightforward enough to
do by hand, though most built-in IV procedures have an option to report first-stage F-statistics automatically
(and ivreg2 does it without asking).

You might be wondering: how big of a first-stage F-statistic do I need to not worry about weak IV? The
conventional advice, due to a now fairly old paper by Staiger and Stock (1997), is a F-statistic cutoff of 10.
This comes from a particular setting and series of monte carlo simulations on weak instrument bias in a
homoskedastic setting, and is now a bit out of date.2 Still, it remains in many cases the practical “rule of
thumb.”

What to do if your first-stage F-statistic is below 10? There aren’t many simple solutions, besides changing
your estimator or estimation procedure. You could of course try to find a stronger instrument (though this
is clearly easier said than done!). You might also think about what controls you’re including and whether
including more or fewer may help with instrument strength. Just as in the OLS/multicollinearity case,
including controls that are correlated with Zi tend to reduce first-stage strength (all else equal) though this
can increase the plausibility of instrument validity to the extent they account for systematic relationships
between the instruments and observables. There are of course more complicated ways to address weak
instruments bias without changing the instrument or control set, which you’ll encounter in future classes.

A conceptually related (but distinct) issue with 2SLS estimation is the problem of many instruments, some
(but not all) of which are weak. This issue was first pointed out by Bound et al. (1995) in the context

2For more recent analyses, see Montiel-Olea and Pflugger (2013) and Andrews, Stock, and Sun (2019).
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of Angrist and Krueger (1991), who in some specifications used a ton of instruments based on interactions
of quarter of birth and other observables (specifically an individual’s year and state of birth). Bound et
al. (1995) showed by simulating a bunch of “placebo” instruments that had no relationship to the years-
of-schooling treatment that they could achieve very similar 2SLS estimates as were printed in Angrist and
Krueger (1991), which turned out to be in turn very close to the OLS estimates from regressing earnings
on years of schooling. They then showed formally that this is not a surprise: 2SLS with many random
instruments tends to also be biased towards OLS in finite samples.

To gain some intuition on the many instruments problem, consider an extreme case in which every observation
in the data gets its own instrument Zii. In this scenario with L = N instruments, the first stage regression of
Xi on Zi1, . . . , ZiN will generally fit perfectly; in a sense this regression is “saturated” in individual indicators.
Consequently, the first stage fitted values Z ′iΠ̂ will coincide with the endogenous treatment Xi such that
2SLS coincides with OLS numerically. Such “overfitting” of Xi will generally occur whenever we have a large
number of instruments which by chance track the endogenous variation in Xi, and this will generally lead
to bias (in finite samples) towards the OLS estimand.

The many-instruments problem will again manifest with a low (i.e. below 10) first-stage F-statistic, giv-
ing more justification to always check this statistic when running an IV regression. In most cases many
instruments is less of a concern than weak instruments, since we typically do not have a large number of
independent Zij arising naturally and we now (since Bound et al. (1995), anyway) know not to interact an
instrument with controls to generate many instruments without cause. But there are some empirical set-
tings where many instruments are common, and the solution in such cases is again not always clear. As with
many topics in this class, you should expect a more sophisticated and thorough treatment of the problem
and possible solutions in your future econometrics courses.

Overidentification Tests

Our final IV topic concerns the scenario where you are lucky enough to have more instruments than endoge-
nous variables, L = dim(Zi) > dim(Xi) = K, and are interested in testing the identifying assumption of
E[Ziεi] = 0. Recall that we said in this overidentified setting any full-rank combination of the instruments
MZi can be used for identification and estimation, though we typically restricted ourselves to M = Π
matrix coming from the first-stage regression. Intuitively, the fact that we have multiple possible ways to
estimate β in this case gives us grounds to test the validity of our instruments: if we use different M com-
binations and get (statistically) different answers, then we know that E[Ziεi] = 0 does not hold: at least
some (and perhaps all) of the instruments in Zi are invalid.

Before formalizing this logic, it is important to be clear on what such overidentification tests can and can’t
be useful for. At first glance, they appear to answer what I’ve previously said is a fundamentally untestable
assumption of instrument validity. Alas, they do not quite tell us what instruments are and are not valid:
when we reject the joint null of E[Ziεi] = 0 we don’t know which elements of Zi are correlated with εi,and
in fact all could be. Furthermore, as it turns out the overidentification tests we are about to derive are
not especially powerful when the instruments do not induce sufficiently different variation in Xi in the first
stage—which is more common than you might think. Still, overidentification tests can be useful diagnostics
or summaries of the underlying IV variation and, perhaps more importantly, they are often deployed in
papers you might read.

The most common overidentification test statistic is due to an econometrician named Lars Hansen, and can
be written in matrix form as

Ĵ = (Y −Xβ̂)′ZΣ̂
−1
Z ′(Y −Xβ̂), (24)

where β̂ is an IV estimate, Σ̂ consistently estimates the asymptotic variance of
√
N
( 1

N

∑
iZiεi

)
, and we

collect observations of the outcome, endogenous variables, instruments, and controls in Y , X, and Z as
you would expect. Hansen showed that this test statistic has, under the null of E[Ziεi] = 0, an asymptotic
χ2(L−J) distribution and this can be used to test the joint null of instrument validity. To build intuition for

6



this, note that under this null Σ̂
−1/2 1√

N
Z ′(Y −Xβ) = Σ̂

−1/2√
N
( 1

N

∑
iZiεi

)
is asymptotically normal with

mean zero and variance I. Thus, as we saw before with the Wald statistic, the inner product of this vector
given in (25) is asymptotically chi-squared with degrees of freedom of dim(Zi)+dim(W i) = L+K. It turns
out that using an estimate of β in place of the true coefficient in (25) “uses up” J +K degrees of freedom in
this calculation, such that the feasible version has degrees of freedom of L+K−(J−K) = L−J . Intuitively,
this means T̂ 6= 0 (such that the test has power) only when L > J (i.e., when we are overidentified). In
Stata, the ivreg2 command automatically computes the Hansen “J-statistic” whenever this is the case.
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