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 Econometrica, Vol. 65, No. 3 (May, 1997), 557-586

 INSTRUMENTAL VARIABLES REGRESSION WITH

 WEAK INSTRUMENTS

 BY DOUGLAS STAIGER AND JAMES H. STOCK'

 This paper develops asymptotic distribution theory for single-equation instrumental
 variables regression when the partial correlations between the instruments and the
 endogenous variables are weak, here modeled as local to zero. Asymptotic representations
 are provided for various statistics, including two-stage least squares (TSLS) and limited
 information maximum likelihood (LIML) estimators, Wald statistics, and statistics testing
 overidentification and endogeneity. The asymptotic distributions are found to provide
 good approximations to sampling distributions with 10-20 observations per instrument.
 The theory suggests concrete guidelines for applied work, including using nonstandard
 methods for construction of confidence regions. These results are used to interpret
 Angrist and Krueger's (1991) estimates of the returns to education: whereas TSLS
 estimates with many instruments approach the OLS estimate of 6%, the more reliable
 LIML estimates with fewer instruments fall between 8% and 10%, with a typical 95%
 confidence interval of (5%,15%).

 KEYWORDS: Two stage least squares, LIML, overidentification tests, endogeneity tests.

 1. INTRODUCTION

 IN EMPIRICAL WORK using instrumental variables (IV) regression, often the
 partial correlation between the instruments and the included endogenous vari-
 able is low, that is, the instruments are weak. It is our impression that, in
 applications of two-stage least squares (TSLS), it is common for the first stage F
 statistic, which tests the hypothesis that the instruments do not enter the first
 stage regression, to take on a value less than 10.2 Unfortunately, it is well known
 that standard asymptotic approximations to the distributions of the main instru-
 mental variables statistics break down when the mean of this F statistic is small.
 Recently this has been highlighted for TSLS in quite different settings by Nelson
 and Startz (1990a,b) using a short sample and a single instrument and by Bound,
 Jaeger, and Baker (1995) using up to 180 instruments and over 329,000 observa-
 tions. Both Nelson and Startz and Bound, Jaeger, and Baker find that the TSLS
 estimator is biased in the direction of the ordinary least squares (OLS) estima-
 tor, and that the TSLS standard error is small relative to the bias. While a large
 literature on finite-sample distribution theory has tackled these departures from

 1 The authors thank Joshua Angrist, John Bound, Adolph Buse, Gary Chamberlain, Jean-Marie
 Dufour, Jerry Hausman, Guido Imbens, Tom Kane, Alan Krueger, Tom Rothenberg, Richard Startz,
 and three anonymous referees for helpful discussions and/or comments on earlier drafts, and
 Matthew Eichner and Jonathan Wright for research assistance. The research was supported in part
 by National Science Foundation Grant No. SES-91-22463.

 2 It is difficult to provide systematic evidence on this because first stage F statistics are often not
 reported. For examples, our review of articles published in the American Economic Review between
 1988 and 1992 found 18 which used TSLS but none reported first-stage F's or partial R2's. In each
 of the 18 articles, econometric inference was performed using the standard normal approximations.
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 558 D. STAIGER AND J. H. STOCK

 conventional asymptotics, the finite-sample approach has several drawbacks

 which impede its use in practice, including the restrictive assumptions of fixed

 instruments and Gaussian errors, unwieldy expressions for distributions which

 can be computationally intractable, a focus on estimators rather than tests or

 confidence intervals, and the failure to produce clear quantitative guidelines

 which empirical researchers can follow.

 This paper develops an alternative asymptotic framework for approximating

 distributions of statistics in single-equation IV regression with n endogenous
 regressors. Conventional asymptotics, both first-order and higher-order such as

 Edgeworth expansions (cf. Anderson and Sawa (1973, 1979), Morimune (1983,
 1989), and Rothenberg (1984)), treat the coefficients on the instruments in the
 first stage as nonzero and fixed, an assumption which implies that each first

 stage F statistic increases to infinity with the sample size. Not surprisingly, when

 the means of these F statistics are small, these asymptotic approximations break

 down. We therefore adopt a device which, loosely speaking, holds the F

 statistics constant in expectation as the sample size increases. More precisely,
 the coefficients on the instruments in the first stage equation are modeled as
 being in a T-172 neighborhood of zero; this will be referred to as the "weakly
 correlated" case. Based on this alternative framework, we derive the asymptotic
 representations for a number of IV estimators and test statistics, including tests

 of overidentifying restrictions and tests of exogeneity.

 This paper makes three main contributions to the econometric theory of IV

 regression. First, the finite sample distribution of the TSLS estimator and of the

 LIMLK approximation to the LIML estimator (cf. Anderson (1977)), previously
 derived assuming fixed exogenous regressors and normal errors, is shown to

 apply asymptotically to the TSLS and LIML estimators, respectively, under

 general conditions (stochastic regressors and nonnormal errors) when instru-

 ments are weak. This extends the finite sample results to a much broader set of
 applications. Second, joint asymptotic representations, for which there are no

 counterparts in the finite sample literature, are obtained for many IV test
 statistics. Third, these representations facilitate summarizing in a few figures the
 relationship of estimator bias and test size to population parameters in a wide

 range of cases.

 The paper makes three further contributions relevant to empirical work. First,

 the forms of exogeneity tests and overidentification tests which are asymptoti-
 cally equivalent under conventional asymptotics are not equivalent with weak
 instruments, and the asymptotic results provide concrete guidance about which

 tests have greatest power and'least size distortions in this case. Second, whereas
 conventional confidence intervals can be unreliable in the weakly correlated
 case, we provide several alternative methods of forming confidence intervals that
 are asymptotically valid with weak instruments. Finally, we provide justification

 for a readily computed estimator of the maximal bias of TSLS relative to OLS.
 These results are used to reexamine Angrist and Krueger's (1991) important

 study of the returns to education. Using quarter of birth and its interactions with
 other covariates as instruments for education in an earnings equation, they
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 INSTRUMENTAL VARIABLES REGRESSION 559

 concluded that OLS estimates are unbiased or perhaps understate the returns to

 education. However, in several of their specifications, the first stage F statistic is

 less than 5. Our asymptotic results suggest that TSLS estimates and confidence

 intervals are unreliable with F's this small even with more than 329,000

 observations, and instead Anderson-Rubin (1949) and Bonferroni regions are

 more reliable. Based on our preferred statistics, we estimate returns to educa-

 tion which are higher, and confidence intervals which are wider, than suggested

 by Angrist and Krueger.

 The literature on the distribution of instrumental variables estimators is large;

 recent contributions include Bekker (1994), Buse (1992), Choi and Phillips
 (1992), Hillier (1990), Magdalinos (1990, 1994), Morimune (1989), and Phillips

 (1989). Mariano (1982) and Phillips (1983) survey earlier contributions. The
 relationship of our theoretical results to this literature is discussed in Section 3.

 Our central innovation is the introduction and study of the weakly correlated
 case. The work most closely related to ours is Bekker (1994), Phillips (1989), and
 Choi and Phillips (1992). Bekker (1994) develops asymptotics for TSLS and
 LIML estimators (but not test statistics) in the fixed instruments/Gaussian case
 where, following Anderson (1976) and Morimune (1983), the number of instru-

 ments grows in proportion to the number of observations, whereas we keep the
 number of instruments fixed; Bekker's (1994) limiting approximations are nor-

 mal, whereas ours are in general nonstandard. Phillips (1989) and Choi and
 Phillips (1992) study TSLS asymptotics with fixed parameters in the partially
 identified case (some linear combinations of the instruments are exactly uncor-
 related while others are highly correlated; cf. Sargan (1983) for related work on
 nonlinear models); in contrast we consider the case that the instruments are
 weakly correlated, in which exactly uncorrelated instruments are a special case.

 The paper is organized as follows. In Section 2, the basic ideas are set out and

 applied to the TSLS estimator with n = 1 and no other regressors. Results for
 estimators and tests for general n are developed in Section 3. Nonstandard

 interval estimators are studied in Section 4. Monte Carlo experiments which

 check the quality of the asymptotic approximation to the finite sample distribu-
 tions are summarized in Section 5. Section 6 presents the main numerical

 results, including plots of asymptotic bias and coverage rates. Angrist and

 Krueger's (1991) data are used in Section 7 to study the returns to education.
 Section 8 concludes with some lessons for empirical practice.

 2. THE MODEL AND AN EXAMPLE

 A. The Model, Assumptions, and Notation

 In matrix notation, the model considered is

 (2.1) y=Yf3+X y+u,

 (2.2) Y=ZH?+XP+V,
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 560 D. STAIGER AND J. H. STOCK

 where (2.1) is the structural equation of interest, y and Y are respectively a

 T x 1 vector and a T x n matrix of T observations on the endogenous variables,

 (2.2) is the reduced form equation for Y, X is the T X K1 matrix of K1

 exogenous regressors, Z is the T x K2 matrix of K2 instruments, u and V are

 respectively a T x 1 vector and a T x n matrix of error terms, and /3, y, H, and

 (P are unknown parameters. The errors (u, V,')', where u, denotes the tth
 observation on u, etc., are assumed to have mean zero, to be serially uncorre-
 lated, and to be homoskedastic with covariance matrix ., partitioned so that

 Eu2 = ouu, EVIu = t=Vu, and EVtVt'= Lvv_ Let Z = [X Z] and let Q = EZtZ;,
 partitioned so that EXt Xt' = Qxx, EXtZ' = Qxz, and EZtZ= Qzz. Also let
 P = XV~121XVU - 1/2. It is assumed throughout that EZt(ut Vt') = 0 and that n,
 K1, and K2 are fixed. With the sole exception of the local power analysis of tests
 of overidentifying restrictions in Section 3C, (2.1) and (2.2) are assumed to hold
 throughout.

 We ,are interested in inferences about ,B and -y when the instrument Z is
 weakly correlated with Y, specifically when the mean of the first stage F statistic
 testing H = 0 in (2.2) is small or moderate even if T is large. If H is modeled as
 fixed, this F statistic tends to infinity with T, which suggests why conventional
 fixed-H asymptotics provide poor approximations with weak instruments. In

 contrast, if H is modeled as local to zero, this F statistic is Op(1). We therefore
 make the following assumption.

 ASSUMPTION Ln: H = HIT = C/ FT, where C is a fixed K2 x n matrix.

 Rather than make primitive assumptions on the errors and exogenous vari-
 ables, we instead assume moment conditions which they must satisfy. This
 permits the subsequent application of the results in either time series or cross
 sectional settings, where the primitive assumptions typically differ. Let "-"
 denote convergence in distribution.

 ASSUMPTION M: The following limits hold jointly:

 (a) (u'u/T, V'u/T, V'V/T) (ouu, LVu' Xvv);
 (b) Z'ZIT -4Q;
 (c) (T -2Xu T-1/Zu T- /XV, T-1/ZV Z Vtt ),

 where T-- (u, tzu, vec(Txv Y, vec(Tzv)')' is distributed N(O, X 0 Q).

 These conditions hold under various weak primitive assumptions. For exam-

 ple, if (ut Vt')' is a homoskedastic vector martingale difference sequence with
 respect to the filtration based on {u_1, 1> V , 1, XZ1, j < t}, if ut and Vt have four
 moments, and if Xt and Zt are integrated of order zero with four moments and
 satisfy weak conditions limiting dependence, then (a) and (b) follow from the
 weak law of large numbers and (c) follows from the central limit theorem for
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 INSTRUMENTAL VARIABLES REGRESSION 561

 martingale difference sequences. These conditions arguably apply to linear
 rational expectations models such as the consumption Euler equation estimated
 using TSLS by Campbell and Mankiw (1989).3

 Before proceeding we provide some additional definitions and notation.

 Let Pw = W(W'W) W' and Mw = I - Pw where W is a general a x b matrix
 with a > b, and let " denote the residuals from the projection on X, so Z=
 MxZ, Y'=MxY, etc. Let X=[YX] and Y=[y Y], and let Ik denote the
 k-dimensional identity matrix. Define A = 1/'C2C34/2, where = Qzz-

 QZXQ-1 QXZ; Zu = Q-U12'('zu - QzxQxllr)o-1h/2; and z I = 2
 QzxQAX V) _Vi1/2 The random variable [z' vec(zv)']' is distributed N(0, 2 0
 'K2), where 1 is the_(n + 1) X (n + 1) matrix with 3 = 1, 322=Inn 3l2P'
 and ]21 = p, where . is partitioned conformably with .. Finally, let

 (2.3a) v1 = (A +zv) (A +zv),

 (2.3b) v2 = (A + zv) zu.

 If 2vu is nonzero, then Y is endogenous and the OLS estimator Of /3, /3OLS'
 is inconsistent. Let 80 denote the true value of /8 and let 0 = 2v4vu. Then,
 under Assumptions LH and M,

 (2.4) L /3OLS -->18 +O?O

 Note that 0 can alternatively be expressed in terms of the vector of correlations

 between the first and second stage errors, 0= aull"2,vv12p, so that if p 0 0 then
 OLS is inconsistent.

 Most of the theorems in Section 3 are developed for the general k-class
 estimator, ,8(k), and associated tests. However, for clarity we will often use
 familiar subscripts, e.g. PTSLS for 8(1).

 B. An Example: The TSLS Estimator with n = 1 and no X's

 Consider the special case of PTSLS when n = 1 and K1 = 0. By Assumptions
 LH and M,

 T- 1'2Z y- T- 1'2Z' (ZH + V)

 =(T-'Z'Z)C + T-1/2Z'V QZzC + V.
 Thus

 Y'Pz Y (T- '/2Y'Z)(T- 'Z'Z) (T- 1'2Z'y)

 ; (QZZC + tz O QZZ(QZZC + lTz V)

 = 12f (A + ZV/) ((A + ZV) '(z 1/2.

 3These conditions could be extended to deterministic trends (by adopting a diagonal scaling
 matrix of the form diag(T1/2,T)) and to autocorrelated errors. Both extensions are conceptually
 straightforward but would complicate notation and thereby obscure the main results.
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 562 D. STAIGER AND J. H. STOCK

 Similarly, Y'Pzu ; (QZZC + uv'Qz-f = j24{v'(A + z)'zv. These ex-
 pressions and the definitions (2.3) yield

 (2 .5) /TSLS - ( = (YP Y1( Y'PU) =, ,7 1V2V1 V2TSLS)
 Equation (2.5) expresses /8TSLS - 80 as, asymptotically, the ratio of quadratic

 forms in the two K2 x 1 jointly normal random variables, zu and zv. This
 limiting distribution can be expressed as the random mixture of normals,

 fN(f30 +0m(zv),var(zv))dF(zv), where m(zv) = (A +zv)'zv/(A +zv)'(A +
 zv), var(zv) = r2/(A +zv)Y(A +zv), and = [(1 - V12 (this follows
 by rewriting /3TSLS in terms of the orthogonalized variable, - = (zu -zvp)
 /1- p'p ). In particular, the asymptotic bias of /3TSLS' relative to the asymptotic
 bias of OLS, is

 (2.6) E38TSLS/ 0 = EM(ZV).

 Because the distribution of m(zv) depends only on 'A/K2 and K2 ,4 the

 asymptotic bias of TSLS, relative to OLS, depends on 'A/K2 and K2 but not
 on 0 or p.

 3. ASYMPTOTIC RESULTS IN THE GENERAL CASE

 A. k-Class Estimators and Wald Statistics

 We now consider general n, K1, and K2. The k-class estimator of [/38 -y']' is

 (3.1) [ 8(k)' 7(k)'] = [X'(I - kMz)X] X [X'(I-kMz)y].

 By standard projection arguments, the k-class estimator of /3 is

 (3.2) ,8(k) = [Y '(I - kMz)Y] [Y "(I -kMz)y'].

 Two leading cases of interest are the TSLS estimator, for which k = 1, and the
 LIML estimator. The LIML estimator is given by (3.1) (equivalently for /3, (3.2))
 with k = kLIML, where kLIML is the smallest root of the determinantal equation

 IY'MxY - kY'MzYI =0.
 A standard formula for the Wald statistic testing q linear restrictions R /3 = r,

 where R is q x n, is

 (3.3) W(k) = [R,B(k) - r] R[Y1(I- kMz,)YI 'R'}
 r A ,1\ 1 ,

 4This and subsequent statements about dependence of distributions on only K2, A'A/K2, and p
 follow from noting that these asymptotic representations are continuous functions of the random

 variable _o* = [z, (A + zv)]'[zU (A + Zv)], which has the noncentral Wishart distribution
 W'J+ 1(K2, 1, A) (Muirhead (1982, pp. 441-442)), where A = L-1 A, where A11 = A12 = 21 = 0 and
 A22 = A'A, where A is partitioned conformably with L. In particular (A + zv)'(A + Zv) - W'(K2, In,
 A'A).
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 INSTRUMENTAL VARIABLES REGRESSION 563

 where 6jUu(k) = u(k'u(k)/(T - K1 - n), where u(k) =y - Y/3(k) - X5(k) =y'

 -Y I (k). Similarly, a standard formula for the t ratio testing the hypothesis
 that a single coefficient, 3, takes on the value ,Pio is, ti(k) = [ f3i(k) -Pio]I
 {[Y `(I-kMz,)Y ]ii&uu(k)} / where BiJ denotes the (i,j) element of B'
 for general square nonsingular matrix B (cf. Hall, Cummins, and Schake (1992,

 p. 145-146)).
 Tests of the hypothesis that HI= 0 play an important role in this development.

 Accordingly, let

 (3.4) G = y ZV/2' Y1P Y 1-I/2

 where Yvv = Y'MZY/(T - K1 - K2). Note that tr(GT)/nK2 is the Wald statistic
 testing H = 0.

 The limiting distributions of these statistics are given in Theorem 1.

 THEOREM 1: Suppose that (2.1), (2.2), and Assumptions LH and M hold. Also

 suppose that T(k - 1) K jointly with the limits in Appendix Lemma Al, where
 K = Op(l) (possibly a constant). Then the following limits hold iointly:

 (a) /3(k) -/30 /3(/)= 7272,A* (K), where A* (K) =(v1-KIn(v2 -
 Kp).

 (b) Auu(k) ; oUeU(K) = ffuuS1(JAo(K)), where S1(b) = 1 - 2p'b + b'b.
 (c) Under the null hypothesis R3 = r,

 W(k) ==' (K/)R' RRv/2(vi - KIN) - R_/2,R, -1

 XRf*(K)/[qa*(u(K)]

 1 v/2 1 V/2(V-I)- 1 3_ 1/2/R -1 ,A() vffRY-( - KI,,) j'2Rf

 XR,,V-12,A*(K)1[qS1(,A*(K))].

 (d) Under the null hypothesis P3i = /3io0

 t~(k) {[X-I/2( ~ )-I S 1/2 ]iS( *(K))- 1/2*

 (e) GT = V1

 Proofs of all theorems are given in the Appendix.
 A

 Theorem 2 provides the limiting behavior of kLIML which, when combined
 with Theorem 1, gives the asymptotic distribution of the LIML estimator and

 test statistics.

 THEOREM 2: Suppose that (2.1), (2.2), and Assumptions LH and M hold. Then
 T(kLIML - 1) KLIML, where KLIML is the smallest root of the determinantal

 equation, K - IEI = 0, where EO = [Zu (A +zv)]'[zu (A +zv)], where the con-
 vergence is joint with the limits in Appendix Lemma Al.

This content downloaded from 
������������192.91.235.240 on Sun, 06 Mar 2022 20:00:40 UTC������������� 

All use subject to https://about.jstor.org/terms



 564 D. STAIGER AND J. H. STOCK

 When the instruments are weak, in general .(k) is not consistent and has a
 nonstandard asymptotic distribution. Moreover, T(kLIML - 1) has a nondegener-

 ate asymptotic distribution so PTSLS and I3LIML are not equivalent under weak
 instrument asymptotics. The asymptotic distributions of the test statistics and

 A J0 )are also nonstandard. The limiting representations in Theorems 1 and 2
 depend on auu, lvv, p, and A'A/K2, K2, and n. However, K2 and n are known
 and lvv and, given p, auu are consistently estimable, so A'A/K2 and p are the
 only asymptotically unknown parameters entering the distributions.5 In some

 cases, the dependence on lvv and auu disappears, for example, when n = 1,
 the distributions of ( A -TSLS - )/0 and ( A oLIML-)/0 depend only on A'A/K2,
 K2, and I pl, and the distributions of tTSLS and tLIML depend only on A'A/K2,
 K2, and p and their pdf's are antisymmetric in p. The parameter A'A/K2 has a

 simple interpretation: when n = 1, the first stage F statistic GT/K2 converges to

 a noncentral XK2, divided by the number of instruments K2, with noncentrality

 parameter A'A, and when n > 1, A'A is the matrix of noncentrality parameters of

 the limiting noncentral Wishart random variable v1. Although A'A/K2 is identi-
 fied, it is not consistently estimable under these asymptotics.

 The results for 1(k) extend some known results in the exact distribution
 literature for the fixed instrument/Gaussian model. The distribution of the

 limiting representation of I3TSLS' p, (0), is the same as the exact distribution of
 ITSLS in the fixed instrument/Gaussian case, obtained by Richardson (1968)
 and Sawa (1969) for n = 1 and by Phillips (1980) for general n. (This is most
 easily seen by noting that ITSLS depends only on the moments in Assumptions
 M(b) and M(c) and that, with fixed instruments and Gaussian errors, those
 assumptions hold as equalities). Also, the asymptotic distribution of ILIML is the
 same as the exact distribution of the so-called LIMLK estimator (an infeasible
 estimator which requires the reduced form error covariance matrix to be known)
 in the fixed instrument/Gaussian case (cf. Anderson (1977)). Thus Theorems 1
 and 2 extend the finite sample result for estimators previously derived under the

 highly restrictive fixed instrument/Gaussian assumptions to the more general

 conditions which lead to Assumption M. While existing formulas for estimator

 distributions typically involve multiple infinite series expansions, the representa-

 tions given here provide a simple framework for numerical evaluation of joint

 asymptotic distributions by Monte Carlo simulation. Finally, although LIML and

 LIMLK differ when the concentration parameter, of which A'A is the probability
 limit in our notation, and T are finite, Anderson (1977) showed that for n = 1
 the exact fixed instrument/Gaussian LIML and LIMLK distributions converge

 as the concentration parameter increases to infinity (with K2 and T fixed).
 Theorem 2 extends this result by implying that the LIML and LIMLK distribu-

 tions converge as T --> o for fixed A'A/K2 and general n under Assumption LH .
 The representations of the Wald and t statistics have no counterpart in the

 exact distribution literature, since these statistics have not yielded to finite-

 Given p, o-uu can be estimated consistently by (UU,OLS/(1 - pp), where O'Uu,OLS = (JUU(?)
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 INSTRUMENTAL VARIABLES REGRESSION 565

 sample analysis (cf. Mariano (1982)), so these approximations are new even in

 the fixed instrument/Gaussian case. Because the t statistic does not have a

 normal asymptotic distribution, confidence intervals constructed as + 1.96 stan-

 dard errors will not in general have a 95% coverage rate, even asymptotically.

 Rather, the limiting representation of t(k) indicates that the distribution de-

 pends on p in a complicated way, not just as a mean or scale shift. Thus

 confidence belts will depend nonlinearly on p. Worse, this distribution also

 depends on A'A/K2, so that the confidence belts must be indexed by A'A/K2.

 Because A'A/K2 is not consistently estimable, W(k) and t(k) cannot be inverted
 directly to construct asymptotic confidence regions for .3*

 The limiting distributions in Theorem 1 simplify to the conventional asymp-

 totic results when A'A is large and K2 is fixed. Consider the TSLS estimator for

 general n and p. If A'A is large, then v1 = A + O(IA'AII'/2) +0(1) (where

 iB ii = maxi jIBi j ) and v2 = A'zU + Op(1), so the distribution of f3* (1) is approxi-

 mately N(O, v'A'A4v/)- 9), which is the standard fixed-H asymptotic

 normal approximation for J3TSLS* Similarly, &TU(1) = o-JU[1 + Op(II A'AIK12) +
 OP(llA'AI' )], so the limit of W(1) in Theorem l(c) is well approximated by a
 Xq,/qn the usual result.6

 B. Measures of Bias of the TSLS Estimator

 Sargan (1958) reported that the bias of TSLS was of the order of the inverse
 of the minimum population canonical correlation between Y and Z. The sample
 minimum canonical correlation has also been discussed in the context of
 identification and testing for instrument relevance (Sargan (1958), Bowden and
 Turkington (1984)). Bekker (1994) interpreted it as a measure of TSLS relative
 bias in the fixed instrument/Gaussian model with K2 >) oc. This section provides

 an asymptotic interpretation of this statistic as a measure of the bias resulting
 from weak instruments.

 Consider the squared bias of J3TSLS relative to J3OLS in OLS standard error
 units,

 (3.5) B = (EJ3TSLS - 0) )'Y l Y (E#ITSLS - 0)/
 (E~iL - 3 I~' (EIiL - 3) -> p'h'hp/p'
 ( O3LS - 30) 'Y1Y' 1 POLS - ,80 t /'

 where h = E[ v- 1 (A + zv)'zv] and .y l y l = plim(Y l " Y ' /T) (under Assump-
 tion L. but not in general, EYIy 1 = ). An advantage of this measure is

 6Another special case of interest is when A'A = 0. Then the results in Theorem 1 simplify to those
 obtained using fixed-H asymptotics with H= 0 by Phillips (1989) and Choi and Phillips (1992). With

 many irrelevant instruments and/or I pl nearly one, 13TSLS tends to fall in a tight neighborhood of
 ,-0 + 0, and its estimated standard error is typically "too small," so tests based on tTSLS incorrectly
 reject the null too often. Also, Theorem 2 is readily extended to modified LIML estimators. For

 example, Fuller (1977) proposed using kF = kLIML - I/(T - K1 - K2) (cf. Morimune (1983)); for
 fixed K1 and K2, T(kF - 1) KLIML 1.
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 566 D. STAIGER AND J. H. STOCK

 that it is invariant to the transformation (Y, /, H, (P, V) = (YA, A-1 3, HA,

 OA, VA), a special case of which is a change in the units of Y. For n > 1,

 numerical evaluation of B requires knowledge of p. Typically a candidate value

 of p is unavailable, so it is desirable to have a measure of the total relative bias

 which does not depend on p. This can be done by considering the worst case

 squared relative bias. Because numerical evaluation of h is somewhat cumber-

 some, we make the approximation that, for K2 and/or A'A/K2 large, h-

 (Evj)-1E[(zv + A)'zv] = (I + A'A/K2)-1. Then B2 < maxpB2 = [maxEval(h'h)]2
 {minEval(I + A'A/K2)}2 Bmax. Although A'A/K2 cannot be consistently es-

 timated, ,2YIYPz,Y ? y'/V? VY and Evj/K2 =+AA/K2. This sug-
 gests the statistic

 (3.6) Bmax = minEval [Y Pz lY (Y y/T) /K2I}

 which is K2/T times the inverse of the minimum squared sample canonical

 correlation between Y' and Z'. Note that a statistic which is asymptotically
 equivalent under these assumptions (but not if H is fixed) is

 (3.7) Bmax = {minEval(GT/K2 )}1

 When n = 1, Bmax =Bmax = (GT/K2)1, where GT/K2 is the first stage F
 statistic testing H1= 0. Under our assumptions, the statistics (3.6) and (3.7) are
 asymptotically distributed as the inverse of the minimum of n noncentral
 independent x2 random variables with noncentrality parameters eig( NA/K2)
 (cf. Anderson (1984)).

 The statistics Bmax and Bmax provide a data based measure of the worst case
 bias of TSLS over all p, relative to OLS, after the coefficients have been

 transformed by Vj 1/2L . An advantage of these statistics is that they are
 relatively simple to compute and have a straightforward interpretation, which is

 simplest if n = 1 in which case the statistics simply measure relative bias directly
 (i.e. not worst case bias). For all n, it should be recognized that these are only
 sample measures and that bias is related to their population counterpart.
 Nonetheless, large values of this bias measure should alert the researcher to
 potential problems with instrument endogeneity.

 C. Tests of Overidentifying Restrtictions

 This section studies the limiting behavior of two common tests of overidentify-
 ing restrictions, which are available when K2 > n, under the null and under a
 local alternative. The test statistics are TR2 from a regression of the IV
 regression residuals on the instruments and exogenous variables (here denoted

 4>reg), and Basmann's (1960) test statistics (4Bas). The tests are analyzed for
 residuals from a general k-class regression, although TSLS is used most com-

 monly in applications. Expressed in x2 form, the two statistics differ only in
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 INSTRUMENTAL VARIABLES REGRESSION 567

 their denominators and are

 (3.8a) kreg(k) = [EP(k)zP u (k)]/[U(k)'U(k)/T],

 (3.8b) 4)Bas(k) = [U(k)'Pz U(k)]/[U(k)'Mz U(k)/(T - K1- K2)].
 Even with normal errors these statistics (divided by K2) do not have exact F
 null distributions.

 The power of these tests against violations of the orthogonality conditions are

 investigated by deriving their asymptotic representations under the local alterna-
 tive:

 ASSUMPTION Lo) y = Y/3 + Xy + Z w + u, where w = WT= T- 1 /2d, where d is a
 K2-vector of constants.

 (This assumption is used only in this subsection.) The null hypothesis is that

 w = 0. The local alternative in Assumption L. is the natural one under standard
 fixed-H asymptotics, and it also delivers a nontrivial representation for the

 statistics (3.8) under Assumption L,,:

 THEOREM 3: Suppose that (2.2) and Assumptions M, L,, and L,, hold. Let
 6= f21/2d - 1/2

 (a) Further suppose that T(k - 1) =*K jointly with the limits in Appendix Lemma

 A1, where K = Op(l) (possibly a constant). Then (i) /3(k) - =30 /3(* (K), where
 *(K) = fulu/2 V/ (K), where A*(K) = (vl - KIn) [(Zv+A)(z + )- Kp];
 and (ii) 4Bas' 4>reg => S2(ZA*(K), 6)/S1(ZA*(K)) and 4Bas - 4reg 0, where
 S2(b, c) =[zu - (A + zv)b + c]'[ZU - (A + zv)b + c].

 (b) T(kLIML - 1) => K IML, , where K4ML is the smallest root of the determi-

 nantal equation, j -KI| I= 0, where -= [(zu + 6)(A +zv)]'[(zu + 6)(A +
 zV)] where the convergence is joint with the limits in Appendix Lemma Al.

 Theorem 3(a)(i) elucidates the bias of the TSLS estimator when there are
 small violations of the orthogonality restrictions. If A'A is large and A'X is small,
 then these small violations impart negligible bias. In the completely unidentified
 case, the presence of nonzero d increases the spread of the distribution but does
 not affect the bias.

 The Basmann and regression tests are asymptotically equivalent under the
 null and the local alternative. Inspection of the expression for S2 reveals that for

 general A'A/K2 neither test has a x2 asymptotic null distribution under LH:

 although zu is normally distributed, /8TSLS is Op(1) which makes the asymptotic
 distribution nonstandard.

 D. Tests of Exogeneity

 The Durbin-Wu-Hausman (DWH) test examines the null hypothesis that Y is
 exogenous (that p = 0) by checking for a statistically significant difference
 between the OLS and TSLS estimates of ,B. There are various versions of this
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 568 D. STAIGER AND J. H. STOCK

 test, three of which are

 (3.9) F /3 (i= 1,2,3), (39 DWH,i (:TSLS OLS)V I OTSLS 8OLS) (=vv)

 where

 1 =(Y PI 1Y ) aUUTSLSu(YYS) AUu,OLS

 V = [(y"p ) I 1 - (Y Ityl)I Uu,TSLS, and

 V3= [IY"!P ?Y'1 -(Y IY )1l ]OLS

 (where 5uu,TSLS= 6& (1) in the notation of (3.3)). FDWH2 was proposed by Wu
 (1973; his T3 statistic) and by Hausman (1978). FDWH,3 was proposed by Durbin
 (1954) and will be referred to as the Durbin form of the test.

 From Theorem 1 and Lemma Al, these statistics have the limiting representa-
 tions

 (3.10a) FDWH,i >['A0(?) P]fVl1[j0(?) P]/S1('A0( )) (i = 1, 2),

 (3. 1Ob) F WH,3[,A*(0) P I'V1[,A* () p I/Si( P)

 Because the limits apply for general p, (3.10) yields asymptotic null distributions
 and power functions. When A'A = 0, the limits in (3.10) do not depend on p so

 their asymptotic power equals their size. Because the tests are Op(1) for finite
 KA/K2, they are not consistent.

 Under the null hypothesis p = 0, (3.10a) simplifies to FDWHi =* ;'/(1 +
 ;"-'v7'), i = 1, 2, where V - 1/2'(A +zvY)'q N(0, In) (where q = (zu -
 zV p)/ 1-p'p) and ; and v, are independent. Because +' /(1+ 'vj 1; ) <
 X ' , x2, applying xV2 critical values to FDWH1 and FDWH2 results in asymptoti-
 cally conservative tests. Size adjustment of FDWH,1 and FDWH,2 is infeasible
 because their size depends on A'A/K2. In contrast, from (3.10b), FDWH3 has an
 asymptotic distribution which is a mixture of noncentral x2's with random

 noncentrality parameter p zA'Pzv?AAp7(l - p'p). Thus, under the null p = 0,
 FDWH,3 * Xn2, and when A'A > 0 the test has power that increases with AA/K2
 and with I p1. Under the alternative I p + 0, S1( zA (0)) - S1( p) is a nonnegative

 Op(1) random variable, so FDWH 3 has greater asymptotic power than FDWH, 1 or
 FDWH2 (cf. Wu (1974)). This suggests using FDWH3 when instruments are weak.

 E. Distribution of k-Class Estimator of the Coefficients on
 Exogenous Variables

 The asymptotic representation of the k-class estimator of y, 5(k), is exam-
 ined in the case that X weakly enters (2.2). Specifically, it is assumed that dP in
 (2.2) is local to zero:

 ASSUMPTION L4,: ( = PT = T- 1/2H, where H is a fixed K1 X n matrix.
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 INSTRUMENTAL VARIABLES REGRESSION 569

 One motivation for this assumption is that if P is fixed but H is local to zero,
 then asymptotically Y and X are multicollinear and y is nearly unidentified. In

 the fixed-? case, the regressor moment matrix is asymptotically singular and the
 identified and weakly correlated linear combinations need to be treated sepa-

 rately, as done by Phillips (1989) in the partially identified case. In contrast,
 letting ' be local to zero permits the unified treatment in the next theorem.

 THEOREM 4: Suppose that (2.1), (2.2), and Assumptions M, LI,, and Lq, hold,
 and that T(k - 1) = K jointly with the limits in Appendix Lemma Al, where
 K = Op(1) (possibly a constant). Then,

 T /2('(k) - u (1J,+ZXv) A*(K)], where

 y = QX1/2'QXZCyVl12 + Q112H-1/2

 ZXU = QA-12"'xu ou-1/2, and ZXV =Q12 1/2

 where [z>' ZU vec(zx 0' vec(zv)']' is distributed N(O, 3 & IK? +K)

 The representation in Theorem 4 combined with the previous results provides
 A A

 joint representations of I3TSLS AYTSLS' I3LIML, and YLIMLA * Athough the expres-
 sion in Theorem 4 is complicated, some general observations can be made. Most
 importantly, under these assumptions both the TSLS and LIML estimators of y
 are consistent but their asymptotic distributions are nonstandard. In particular,

 T1/2(jA(k) - yo) has an asymptotic mixture of normals distribution which de-
 pends on the local parameters H and C. This poses an additional problem for
 inference: the distribution of A depends on the extent to which both Z and X
 enter the reduced form equation for Y, and although H and C are identified,
 neither is consistently estimable.

 4. NONSTANDARD CONFIDENCE REGIONS FOR ,B

 A central difficulty for inference is the asymptotic dependence of the estima-
 tor and Wald statistic distributions on AA/K2. Because AA/K2 is not consis-
 tently estimable, asymptotically valid confidence regions cannot be constructed

 by directly inverting t statistics using the distributions from Theorem 1. This

 section investigates two solutions to this problem, Anderson-Rubin (1949) (AR)
 confidence regions and confidence regions based on Bonferroni's inequality.

 A. Anderson-Rubin Confidence Regions

 Anderson and Rubin (1949) suggested testing the null hypothesis /3 = 0
 using the statistic

 (4.1) AT(f30) = {(y' -y' 80Y)'P(yI -Y1 1 30)/K2}/

 {(y' -Y180)'Mz?(y'-Y'00)/(T-K1 -K2)}.
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 570 D. STAIGER AND J. H. STOCK

 If (u, V1')' are i.i.d. N(0, 12) and X and Z are strictly exogenous, then under the
 null AT( /30) has an exact FK2,T-K1 -K, distribution, which has a XK2/K2 limit as
 T gets large. This result obtains asymptotically under the more general condi-
 tions of Assumption M:

 THEOREM 5: Suppose that (2.1), (2.2), and Assumptions L_I and M hold.
 (a) Under the null hypothesis /3 = 0, AT( 3) /K2
 (b) Under the fixed alternative hypothesis /3 = /1, AT(130) =* S2(A, 0)/

 [K2 1 A)], which is distributed as K-1 times a noncentral XK2 with noncentrality
 parameter 'A'A/S1( ) where A = ouu-1/2i/V2( 0 - /31) 2

 Theorem 5(a) shows that, as discussed in the fixed instrument/Gaussian case

 by Anderson and Rubin (1949), joint confidence regions for /3 can be con-

 structed as the set of 030 for which AT( /30) fails to reject using the asymptotic
 XK2/K2 critical values.
 Theorem 5(b) implies that the probability that AT( /30) rejects distant alterna-

 tives asymptotes to a value which is typically less than one. For example, for

 alternatives of the form 030 - 131 = boull 2,j1/2t where b is a scalar and t is the
 n-vector of l's, the noncentrality parameter tends to t'A'At/n as b - oc. Thus
 tests based on the AR statistic are not consistent under weak instrument

 asymptotics. This accords with the failure of /3(k) to concentrate in a decreasing
 region.

 Variations on this approach are readily analyzed using these techniques. For

 example, when the number of instruments is large, the AR statistic involves

 projections onto a high-dimensional subspace which could result in reduced

 power and thus wide confidence regions. One approach to this problem is to

 construct a "split-sample" AR statistic: run the first stage regression using the

 first subsample to obtain H (1), say, then construct (4.1) using the second
 subsample, where Z ' is replaced by Z l (2)fI (1) (where z 1(2) iS Z' constructed
 using the second subsample).7 If the subsamples are randomly selected, if the
 two subsample sizes are proportional to T, and if the data are independently

 distributed, then the resulting statistic has a X72n limiting distribution under
 the null that /3 = 03g. Like the full-sample AR statistic, the split-sample AR
 statistic can be inverted to construct asymptotically valid confidence regions.

 The AR statistic has power against both /3 = 030 and failure of the overidenti-
 fying restrictions. Thus if the overidentifying restrictions are false, the intervals

 could be tight and could lead a researcher to believe that /3 is precisely
 estimated, when in fact the tight interval reflects the endogeneity of an instru-

 ment. Indeed, the AR intervals can be null, as is the case in several specifica-
 tions in the empirical application in Section 7.

 7We thank Jean-Marie Dufour for suggesting to us the split-sample Anderson-Rubin test.
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 INSTRUMENTAL VARIABLES REGRESSION 571

 B. Bonferroni Confidence Regions

 The preceding remarks suggest a role for an asymptotically valid interval

 estimator of /3 that, in contrast to the AR interval estimator, imposes instru-

 ment validity as is done in the conventional application of tests based on t(k).
 This is pursued here using an approach based on Bonferroni's inequality. Let

 CAXA/K2(a1) denote a 100(1 - a1)% confidence region for A'A/K2, and let
 C, IA'A/K2( a2) denote a 100(1 - a2)% confidence region for /3, constructed given
 AA/K2. The region CA'A/K2f(a,) can be constructed by inverting the noncentral
 Wishart distribution of GT. The conditional region C, JA'A/K2( a2) can be com-
 puted by inverting the Wald statistic W(k) in (3.3), given AA/K2. Then a

 confidence region for /3 which does not depend on A'A/K2 is

 (4.2) C(-, ) = UA'A/K2 ECA'A/K2(a,) C3IAA/K2(a2)

 where a = a1 + a2. By Bonferroni's inequality, the region C: (a) has confidence

 level of at least 100(1 - a)%. Although this approach is theoretically valid for

 general n, computational requirements increase sharply with n so we focus on
 the case n= 1 henceforth.

 When n = 1, CAXA/K2(a,) can be constructed by inverting the noncentral
 chi-squared statistic GT. The construction of C,8lA'A/K2(a2) requires obtaining
 asymptotic critical values of W(k) or, since n = 1, the k-class t statistic, which

 depend on A'A/K2 and p. Because 0= aJl1U/2l-1/2P and U/2vv/2 is consis-
 tently estimable given 80, this requires using a data-dependent mapping from /3

 to p to obtain critical values. The relations AuuOLS -* o(l - P2) and

 /8oLS -10 + 0 suggest using

 (4.3) P( /) = ('VV/&uu,OLS) 1/2 LS 0)1

 [1|+ ( VV/auu,OLS)( OLS - /0)]

 Because p( /30) -p( /,30) = (YVV/oaUu)1120( /30) uniformly in /305C,CA'A/K2(a 22)
 constructed as the acceptance region of tTSLS given A'A/K2, has asymptotic
 confidence level 100(1 - a2)%. Thus the Bonferroni region (4.2) will have
 coverage rate of at least 100(1 - a)%.

 In the numerical work below, we consider two alternative methods for

 constructing (4.2), in which C, IA'A/K2( a2) is alternatively based on the TSLS and
 LIML t statistics; the resulting confidence regions are respectively called TSLS
 and LIML Bonferroni regions. For both, the first stage confidence interval for

 A'A/K2 and the second stage confidence interval for 030 are equal-tailed, and
 a1 = a2. Using unequal-tailed intervals or letting a1 and a2 differ might
 improve performance, but these extensions are left to future work.
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 572 D. STAIGER AND J. H. STOCK

 5. MONTE CARLO COMPARISON OF ASYMPTOTIC AND FINITE-SAMPLE

 DISTRIBUTIONS WHEN n = 1

 Monte Carlo experiments were performed to examine the quality of the

 preceding asymptotic approximations to the finite-sample distributions Of TSLS

 tTSLS, I3LIML, and tLIML when n = 1. Because our asymptotic distributions are
 exact for /TSLS in the fixed instrument/Gaussian case, two designs that focus
 on stochastic instruments and nonnormal errors were considered. The first
 (design I) reflects time series applications where the number of instruments is
 small and the instruments are stochastic. The errors and instruments were

 drawn according to Zt i.i.d. N(O,IK2) and (ut Vt)' i.i.d. N(O, 3). The second
 design (design II) is motivated by cross-sectional applications with a large
 number of fixed binary instruments, as in Angrist and Krueger (1991), and

 nonnormal errors. In this design, the instruments are Zt= ljt, where ljt is an
 indicator variable which equals one if observation t is in cell j, where j
 1, .. ., K2 + 1 and the final cell was omitted, and (ut, 1K)' = (( 2 - 1)/ V, ( s2Q -
 1 2 )', w h e r e ( 1 t 2 t)

 N(O, X), where 11 = 22 = 1, and X12 = X21 = Cp, p ? 0. Thus in design II,
 (ut,Vt)' are scaled centered diagonal elements of a Wishart random variable. An
 equal number of observations were drawn from each cell (up to integer con-
 straints). In both designs, the true value of /3 is taken to be zero, which is done

 without loss of generality by interpreting the results as pertaining to / - ,80 The
 data are generated according to (2.1) and (2.2) with >uu = Xvv= 1 and with
 Xt= 1. Finite sample distributions were computed using 20,000 Monte Carlo
 replications. Asymptotic distributions were computed using 100,000 draws of the
 random variates appearing in the limiting representations.

 Selected asymptotic and finite-sample pdf's of ILIML (top panel) and tLIML
 (bottom panel) are plotted in Figure 1 for two cases of interest. The finite
 sample results are for T = 20K2. The design I case (Figure 1(a), (c)) is similar to
 one of the cases examined by Nelson and Startz (1990a,b) and Maddala and
 Jeong (1992) and both the asymptotic and finite-sample estimator pdf s are
 bimodal; because K2 = 1 in this case, TSLS and LIML are equivalent. The
 design II case (Figure l(b), (d)) is similar to a case simulated by Bound et al.
 (1995) and estimated by Angrist and Krueger (1991), except that T/K2 is much
 larger in their cases. In each case the asymptotics provide a good approximation
 to the finite-sample distributions, with the differences often nearly indistinguish-
 able at the scale of the plot.

 The maximum absolute difference between the finite sample and asymptotic
 AA

 cumulative distributions of /3TSLS, tTSLS, vLIML, and tLIML are given in Table I
 for various parameter values. Even for as few as 5 observations per instrument,
 the asymptotic distributions provide good approximations to the sampling distri-

 butions for /8TSLS and /3LIML: over all cases in Table I, the largest differences
 between the two estimator cdf's are .111 for T/K2 = 5, .050 for T/K2 = 10, and
 .042 for T/K2 = 20. The asymptotic approximations to the distribution of the t
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 o 0 o0 00 (0 (0 o 0

 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 0 1 2 3 (a) LIML (= TSLS): Design I, p =.99,K2=, (b) LIML: Design II, p=.5, K2=100, A'A/K2=O.

 A'A/K2 = .25.

 ?0 -0 o0

 C') o

 o 0

 0 4 -2 0 2 4 6 8 10 0 4 -2 0 2 4 6 8 10 (C) tLIML (= tTSLS): Design I, p = .99, K2 = 1, (d) tLIML: Design II, p=.5, K2= 100, A'A/K2=0.

 A'A/K2= .25.

 FIGURE 1-Asymptotic (solid line) and finite-sample (dashed line) pdf's of the LIML estimator and t

 statistic. True I30 = 0; plim( 1OLS) =P

This content downloaded from 
������������192.91.235.240 on Sun, 06 Mar 2022 20:00:40 UTC������������� 

All use subject to https://about.jstor.org/terms
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 TABLE I

 MAXIMUM ABSOLUTE DIFFERENCE BETWEEN FINITE SAMPLE CDF AND ASYMPTOTIC CDFa

 Parameters T/K2 = 5 T/K2 = 10 T/K2 = 20

 K2 p AA/K2 PTSLS tTSLS [3LIML tLIML [3TSLS tTSLS PLIML tLIML[3TSLS tTSLS [3LIML tLIML

 A. Design I

 1 .99 0 0.007 0.075 0.007 0.075 0.008 0.029 0.008 0.029 0.004 0.012 0.004 0.012

 1 .99 .25 0.089 0.093 0.089 0.093 0.047 0.046 0.047 0.046 0.025 0.022 0.025 0.022

 1 .99 1 0.111 0.087 0.111 0.087 0.050 0.038 0.050 0.038 0.026 0.026 0.026 0.026

 1 .99 10 0.081 0.090 0.081 0.090 0.037 0.059 0.037 0.059 0.021 0.045 0.021 0.045

 4 .99 0 0.007 0.052 0.008 0.025 0.006 0.024 0.005 0.013 0.005 0.008 0.005 0.006

 4 .99 .25 0.041 0.135 0.032 0.027 0.023 0.085 0.016 0.016 0.012 0.048 0.015 0.015

 4 .99 1 0.063 0.058 0.030 0.051 0.031 0.041 0.012 0.034 0.021 0.024 0.009 0.024

 4 .99 10 0.033 0.015 0.015 0.012 0.022 0.010 0.010 0.008 0.010 0.006 0.011 0.009

 B. Design II

 4 .5 0 0.041 0.080 0.028 0.038 0.027 0.044 0.017 0.021 0.014 0.023 0.007 0.014

 4 .5 .25 0.051 0.061 0.038 0.046 0.025 0.039 0.020 0.024 0.015 0.018 0.013 0.018

 4 .5 1 0.059 0.039 0.037 0.038 0.034 0.024 0.024 0.023 0.015 0.014 0.013 0.016

 4 .5 10 0.067 0.051 0.058 0.060 0.041 0.031 0.041 0.043 0.025 0.019 0.025 0.026

 100 .5 0 0.050 0.048 0.011 0.019 0.029 0.026 0.012 0.011 0.020 0.015 0.004 0.009

 100 .5 .25 0.052 0.045 0.021 0.020 0.031 0.028 0.012 0.013 0.016 0.016 0.013 0.013

 100 .5 1 0.037 0.034 0.034 0.034 0.027 0.028 0.025 0.026 0.021 0.020 0.022 0.022

 100 .5 10 0.067 0.069 0.077 0.077 0.048 0.047 0.050 0.050 0.037 0.038 0.042 0.042

 a Entries are the Kolmogorov-Smirnov statistics testing the equality of the two distributions; specifically, supxlFasy(x) -
 F,xact(x)j, where Fasy and F,xact are the Monte Carlo estimates of the asymptotic and exact finite sample distributions.
 Quantiles of this statistic, under the hypothesis that the two population distributions are identical, are: 50%, .0064; 95%,
 .0105. Asymptotic distributions were computed using 100,000 replications of the representation in Theorems 1 and 2. Finite
 sample distributions were computed using 20,000 replications.

 statistic for TSLS and LIML are somewhat less good, but for T/K2 = 10 they
 are typically within .03 in both designs.

 Finite-sample coverage rates of 95% Bonferroni (both TSLS and LIML, with

 al = =2= .025) and AR confidence intervals were checked for the models in
 Table I. For Bonferroni intervals, the lowest coverage rate for T/K2 = 10 is

 93.4%; for T/K2 = 20 coverage is at least 95% and typically is between 96% and
 99%. The AR interval coverage rates are between 93% and 95% for T/K2 = 20.8

 These results suggest that the weak instrument asymptotics provide good

 approximations to the finite sample distributions of the estimators and t statis-

 tics when exogenous regressors are stochastic and errors are nonnormal, for a

 wide range of parameter values including cases previously studied by Nelson and

 Startz (1990a,b) and Bound, Jaeger, and Baker (1995). The approximations are

 8 Details of these and other unreported results are available from the authors upon request.
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 INSTRUMENTAL VARIABLES REGRESSION 575

 typically good with only ten observations per instrument, and improve as this
 ratio increases.

 6. NUMERICAL EVALUATION OF ASYMPTOTIC DISTRIBUTIONS AND TEST

 POWER FUNCTIONS WHEN n = 1

 The asymptotic representations can be used to study numerically the proper-

 ties of various, inferential procedures. This section focuses on four issues: bias of
 TSLS and LIML point estimates; coverage rates of conventional TSLS and
 LIML confidence intervals; size distortions of tests of overidentifying restric-

 tions; and the power of the AR and Bonferroni tests of f = =,0. As in Section 5,
 attention is restricted to the case of a single included endogenous variable
 (n= 1).

 A. Estimator Bias

 The ratio of the asymptotic TSLS bias to the OLS bias (EI3TSLS/0) and the
 ratio of the median LIML bias to the OLS bias (median[lA* (K ML)/0]) are
 plotted in Figure 2 for 2 < K2 < 100 and 0 < A'A/K2 < 20 for I p1 = .2, .5, and .99.
 The relative bias of TSLS does not depend on p and evidently depends more

 strongly on XA/K2 than on K2. The population counterpart of Bmax is (1 +
 A'A/K2)-', and this provides a good approximation to the TSLS bias for all but
 very small values of K2: if K2 2 5, max0 < A'A/K2 c 20I E3SLS/0- (1 + AA/K2) I
 =.07, while if K2> 10, this maximal approximation error drops to .03. In

 A

 contrast to TSLS, ,BLIML rapidly becomes median unbiased as A'A/K2 increases,
 particularly for large values of 1 pl. For the cases in Figure 2 with A'A/K2 2 2,
 the maximal relative median bias of LIML is 10% for K2 2 2 and is 1% for
 K2 2 8. Anderson (1982), Hillier (1990) and others have noted the relative lack
 of bias of LIML in the fixed instrument/Gaussian model; the results here
 extend their conclusions to more general conditions on the instruments and
 errors and to a more comprehensive set of cases.

 B. TSLS and LIML Confidence Interval Coverage Rates

 Coverage rates for conventional 95% TSLS and LIML confidence intervals
 are plotted in Figure 3 for the same parameter values as in Figure 2. The TSLS
 coverage rate is quite sensitive to K2 and I pI and generally falls as K2
 increases, A'A/K2 decreases, and I pI increases. For example, when I pI = .2,
 coverage rates are near 95% for all K2 once A'A/K2 is greater than 10, but

 when I p I= .99, coverage rates exceed 90% only if both A'A/K2 is large and K2
 is small. Thus TSLS confidence intervals can fail dramatically for moderate and,
 depending on K2 and p, large A'A/K2. In contrast, coverage rates for LIML
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 All p, TSLS lpl=.2, LIML p1=.5, LIML Ipl=.99, LIML

 FIGURE 2.-Asymptotic bias of 13TSLS and asymptotic median bias of J3LIML, as a fraction of the bias of I3OLS
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 lpl=.2, TSLS Ipl=.5, TSLS Ipl-=99, TSLS

 4;03

 Q C) Qr3(tC

 1l=.2, LIML lpl=.5, LIML Ipl=.99, LIML

 Z~~~~~~~~~~~~~C - o N

 FIGURE 3.-Asymptotic coverage rates of conventional 95% TSLS and LIML confidence intervals.
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 578 D. STAIGER AND J. H. STOCK

 confidence intervals are less sensitive to K2 and I PI and in an absolute sense
 they can be considered fairly good, as long as A'A/K2 ? 1: for 1 < K2 < 100,

 A'A/K2 ? 1, and I pI = .2, .5, and .99, the asymptotic coverage rates lie between
 81.6% and 99.8%. For A'A/K2 ? 10, the asymptotic coverage rates lie between
 91.6% and 98.1%.9

 C. Size of Tests of Overidentifying Restrictions

 The asymptotic size (the rejection rate under the null of instrument exogene-

 ity) of the 5% Basmann test of the overidentifying restrictions based on TSLS

 (kBas(1) in (3.8b)) were computed using the representations in Theorem 3; to
 save space, no figures or tables are provided but the findings are summarized.

 Rejection rates under the null are generally close to 5% for I pi small, but for
 large I pl and large K2 the size distortions can be dramatic. For example, with
 K2 = 100 and AVA/K2 = 1, the rejection rate is 47% when I pl= .75 and is 97%
 when I pi = .99. The 5% test based on LIML, 4Bas(kLIML), has much better size
 than its TSLS counterpart. Over the parameter values I pl = (.2,.5,.75,.99),
 0 < A[A/K2 < 20, 2 < K2 < 100, the size is between .001 and .052; if 1 < AA/K2 <
 20, the size is between .012 and .052. Thus the Basmann TSLS overrejections
 under the null are essentially absent for its LIML counterpart, although

 4kBas(kLIML) is asymptotically conservative for A'A/K2 small and K2 small. This
 suggests using 4BaS(kLIML) in practice.

 D. Power of AR and Bonferroni Tests

 One way to compare the accuracy of the AR and Bonferroni confidence
 regions is to compare the asymptotic power of AR and Bonferroni tests of the

 hypothesis I = 80 against the alternative /3 = 3 + 2 A. When K2 =
 1, because the Bonferroni tests are conservative the AR test is uniformly (in A\)

 more powerful for all p and A'A/K2. When K2 > 1, no test dominates the other

 so the asymptotic power of the three tests were compared numerically and are
 briefly summarized. When K2 and/or A'A/K2 is large, AR has the lowest power

 against most alternatives and LIML Bonferroni tends to be more powerful than

 TSLS Bonferroni, particularly for large I pi and when K2 is large and A'A/K2 is
 small. When both K2 and A'A/K2 are small, AR is more powerful than either

 Bonferroni test. This suggests using the LIML Bonferroni confidence regions if

 K2 is large and/or A'A/K2 is suspected to be large, and using the AR regions
 otherwise.

 9These results accord with Morimune's (1989, Sec. 3) Monte Carlo finding of greater size
 distortions for tTSLS than tLIML in selected models in the fixed instrument/Gaussian case. In

 Morimune's (1989) designs, K2 < 11, A'A/K2 ? 2.6, and p < .9, so Morimune's results understate the

 distortions found here for more instruments and smaller A'A/K2.
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 INSTRUMENTAL VARIABLES REGRESSION 579

 7. APPLICATIONS TO THE RETURNS TO EDUCATION

 This section reexamines Angrist and Krueger's (1991) estimates of the returns

 to education in light of the foregoing results. Angrist and Krueger's insight was

 that quarter of birth, and quarter of birth interacted with other covariates, can

 serve as instruments for education in an earnings equation: quarter of birth is

 arguably randomly distributed across the population, yet it affects educational

 attainment through a combination of the age at which a person begins school

 and the compulsory schooling laws in a person's state. However, in many cases

 their first stage F statistics are low, raising the possibility that inference based

 on standard asymptotics might be unreliable here. We use Angrist and Krueger's

 (1991) data, which is drawn from the 5% Public Use Micro Sample of the 1980

 U.S. Census.10 The sample includes men born between 1930 and 1949 with

 positive earnings in 1979 and no missing data on any of the relevant variables.

 As in Angrist and Krueger, the sample is split into two ten year birth cohorts.

 Table II summarizes the results of regressions of log weekly earnings onto

 years of education and additional control variables (listed at the bottom of the

 table). The top panel contains results for men born in 1930-39, and the bottom

 panel contains results for the 1940-49 cohort. The first rows of each panel

 contain the estimated return to education, that is, the coefficient on years of

 education, estimated by OLS, TSLS, and LIML in four basic specifications.

 Subsequent rows report 95% Bonferroni and AR confidence intervals for the

 returns to education, the first stage F statistic, the Durbin endogeneity test

 statistic (FDWH 3), and Basmann's over-identification test statistic based on the
 LIML estimator (0Bas(kLIML)). The regression specifications are taken from
 Angrist and Krueger (1991, Tables 5-7) and Bound, Jaeger, and Baker (1995,
 Tables 1 and 2). Three quarter-of-birth dummies are used as instruments in

 column I. Columns II and III add quarter-of-birth x year-of-birth interactions to

 the instrument list, for a total of 30 instruments in column II and 28 instruments

 in column III (due to the inclusion of age and age2). Column IV adds quarter-
 of-birth x state-of-birth interactions to the instrument list for a total of 178

 instruments.

 The asymptotic theory helps to interpret these empirical results. In order to

 apply some of the asymptotic results, a-priori reasoning is used to obtain a range

 in which p might plausibly fall. To do this we posit that the return to education

 lies between 0 and .18. In specification I of Table II, I8OLS =.063 and

 (EVV/ UU)l/2 u 5.05; using (4.3), this'yields -.51 ? 3 i80) < .30. Because cover-
 age rates decrease and bias increases as i pi increases, it therefore suffices to

 consider I PI = .5. (The other specifications in Table II yield similar ranges for
 p.)

 10 For details of construction, see Appendix 1 of Angrist and Krueger (1991). We thank David
 Jaeger for providing these data.
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 TABLE II

 ESTIMATED EFFECTS OF YEARS OF EDUCATION ON LOG WEEKLY EARNINGS IN THE 1980 CENSUS

 I II III IV

 A. Men Born 1930-39 (n = 329, 509)
 OLS .0632 .0632 .0632 .0628
 (S.E.) (.0003) (.0003) (.0003) (.0003)
 TSLS .0990 .0806 .0600 .0811
 (S.E.) (.0207) (.0164) (.0290) (.0109)
 LIML .0999 .0838 .0574 .0982
 (S.E.) (.0210) (.0179) (.0385) (.0153)
 A-R Confidence [.052,.153] [-.003,.179] [-.441,.490] [-.015,.240]
 Interval

 TSLS Bonferroni [.052,.152] [.038,.137] [- oo, + x] [.048,.172]
 Confidence Interval
 LIML Bonferroni [.052,.153] [.036,.134] [- oo, + ox] [.043,.158]
 Confidence Interval

 F (first stage) 30.53 4.747 1.613 1.869
 {p-value} (.000} {.000} {.021} {.000}
 Durbin test, TSLS 3.087 1.126 0.013 2.853
 {p-value} {0.079} {.289} {.910} {.091}
 Basmann test, LIML 2.318 22.45 19.55 161.1
 {p-value} {.314} {.801} {.849} {.800}

 B. Men Born 1940-49 (n = 486,926)
 OLS .0520 .0520 .0520 .0516
 (S.E.) (.0003) (.0003) (.0003) (.0003)
 TSLS -.0734 .0393 .0779 .0666
 (S.E.) (.0273) (.0145) (.0239) (.0113)
 LIML -.0902 .0286 .1243 .0878
 (S.E.) (.0301) (.0197) (.0420) (.0178)
 A-R Confidence [0] [0] [0] [.033,.148]
 Interval

 TSLS Bonferroni [-.155, -.018] [-.004,.076] [.000,.219] [.027,.150]
 Confidence Interval
 LIML Bonferroni [-.174, -.028] [-.023,.079] [-.009,.290] [.023,.156]
 Confidence Interval

 F (first stage) 26.32 6.849 2.736 1.929
 {p-value} (.000} {.000} {.000} {.000}
 Durbin test, TSLS 28.90 0.780 1.188 1.780
 {p-value} {.000} {.377} {.276} {.182}
 Basmann test, LIML 9.356 93.29 49.22 200.36
 {p-value} {.009} {.000} {.006} {.110}

 Controls

 Race, Standard yes yes yes yes
 Metropolitan

 Statistical Area,

 Married, Region,

 Year of Birth

 Dummies

 Age, Age2 no no yes yes
 State of Birth no no no yes

 Instruments

 Quarter of birth yes yes yes yes
 Quarter of birth no yes yes yes
 *(year of birth)
 Quarter of birth no no no yes
 *(state of birth)
 # Instruments 3 30 28 178
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 INSTRUMENTAL VARIABLES REGRESSION 581

 First consider the results for the 1930-39 cohort. In specification I the first

 stage F statistic is large, implying that the expected bias of the TSLS estimator

 is negligible. Inverting the first stage F statistic yields a 97.5% conference
 interval for AA/K2 of (17.3,45.8). Over this range of AA/K2 with K2 = 3 and

 I p I < < .5, the asymptotic theory suggests that standard TSLS and LIML statistics
 are reliable. However, in specifications II-IV the first stage F statistic falls into
 a range in which some of the TSLS and LIML results become unreliable. In

 specification lI the relative bias measure Bmax = .21, and the 97.5% confidence
 interval for AA/K2 is (2.26,5.64). Based on Figures 2 and 3, for AA/K2? 2,

 K2 = 30, and I pI < .5, LIML is approximately median unbiased but the TSLS
 relative bias is as high as 33%; coverage rates for LIML and TSLS confidence

 intervals may be as low as 90% and 60%, respectively. Also, Bonferroni
 intervals, particularly LIML Bonferroni, are generally more accurate than AR
 confidence intervals for K2 large as discussed in Section 6D. For specification II,

 this suggests focusing on the LIML estimates and either conventional or
 Bonferroni LIML confidence intervals. In specification III the 97.5% interval for
 AA/K2 includes AA/K2 = 0, so none of the the TSLS or LIML estimates or
 confidence intervals are reliable. Bonferroni and AR tests and the Durbin

 endogeneity test have correct size for this specification but could have negligible

 power. Finally, for specification IV the 97.5% confidence interval for AA/K2 is
 (0.53,1.32). Figures 2 and 3 do not go as high as K2 = 178, but for K2 = 100,

 AA/K2 ? .5, and I pI = .5, LIML remains approximately median unbiased but
 TSLS relative bias is as high as 67%; coverage rates for LIML and TSLS
 confidence intervals could be as low as 77% and 1%; and Bonferroni confidence
 intervals are generally tighter than AR confidence intervals. This suggests
 focusing on the LIML point estimates and LIML Bonferroni confidence inter-
 vals for specification IV.

 For the 1940-49 cohort, rejection of the over-identifying restrictions using the

 Basmann-LIML test suggests that the results from specifications I-III are
 unreliable, particularly since the asymptotics imply that if anything this test is
 undersized. Note that AR confidence intervals are empty for these specifications
 as a result of rejecting the overidentifying restrictions. The Basmann test does
 not reject in specification IV but the first stage F statistic is 1.9. Using reasoning
 similar to that given for specification IV of the 1930-39 cohort, this suggests
 focussing on the LIML point estimate and LIML Bonferroni confidence inter-
 vals for this specification.

 Using the estimators supported by the asymptotics, the point estimates are
 reasonably stable across specifications and cohorts, ranging from .084 to .100.

 The shortest AR interval is (.05,.15) in specification I (1930-39 cohort), and
 Bonferroni intervals from specifications II (1930-39 cohort) and IV (both
 cohorts) are similarly short. Among the TSLS and LIML confidence intervals
 which we suspect to have at least 90% coverage rates, the tightest is (.05,.12) for
 LIML in specification 11 (1930-39 cohort). Importantly, the Durbin endogeneity
 test rejects the hypothesis that OLS and TSLS estimands are the same at the
 10% level in specifications I and IV for the 1930-39 cohort. Overall, this

 analysis confirms the main conclusion of Angrist and Krueger that OLS esti-
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 582 D. STAIGER AND J. H. STOCK

 mates are if anything biased downward. However, our preferred estimates of the

 returns to education are higher than theirs, implying roughly twice as much

 downward bias in OLS estimates, and our preferred confidence intervals are

 much wider than the unreliable TSLS intervals.

 8. CONCLUSIONS AND LESSONS FOR EMPIRICAL PRACTICE

 When the instruments are weakly correlated with the endogenous regressors,

 conventional asymptotic results fail even if the sample size is large. In particular,

 TSLS can be badly biased and can produce confidence intervals with severely

 distorted coverage rates even if AA/K2 is moderate or, if K2 is large, if AA/K2

 is large. More generally, Figures 2 and 3 summarize the circumstances in which

 TSLS and LIML will be unbiased and will form reliable confidence intervals.

 Using conventional asymptotics after pretesting for instrument significance is an
 unsatisfactory solution because the pretest will have power against small values
 of AA/K2, for which TSLS and LIML statistics can be ill behaved. For example,
 if AA/K2 = 3 and K2 = 10, the power of a 5% pretest using the first stage F
 statistic exceeds 99%, but the TSLS bias is fully one-fourth the OLS bias.

 The results have some constructive implications for empirical practice. At a

 minimum, first stage F statistics (or, when n > 1, GT and/or the bias measures
 in Section 3b) should be reported. Although some forms of the DWH test are

 conservative, the Durbin form (FDWH 3) was found to have correct asymptotic
 size and to have power against differences between the TSLS and OLS esti-

 mands, even for small AA/K2, recommending its use. While tests of overidenti-
 fying restrictions have size distortions, under the null the TSLS version of the

 Basmann test tends to overreject while the LIML version tends to underreject.
 This suggests relying on the Basmann-LIML test but recognizing that, for some
 parameter values, it will have low power against small violations of instrument

 orthogonality.

 When n = 1, these results have two additional constructive implications. First,
 estimator bias is less of a problem for LIML than TSLS, particularly when

 AA/K2 ? 2, which suggests using LIML rather than TSLS point estimates.
 Second, given the difficulties with conventional IV confidence intervals, these
 results strongly suggest using nonstandard methods for interval estimation. Of

 the asymptotically valid methods analyzed here, none is uniformly more accu-

 rate than the others: LIML Bonferroni tests tend to have greatest power for

 large AA/K2 and/or large K2, but AR tests are relatively more powerful for
 AA/K2 and K2 both small. In the empirical application to the returns to
 education, both procedures produce plausible and comparable confidence inter-
 vals in the cases in which the overidentifying restrictions were not rejected, even

 when the first stage F statistic is quite small (less than two).

 John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy
 St., Cambridge, MA 02138, U.S.A.

 Manuscript received October, 1993; final revision received May, 1996.
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 INSTRUMENTAL VARIABLES REGRESSION 583

 APPENDIX

 Before proving the theorems we state a lemma which collects various results about sample

 moments. The proof makes repeated use of Assumptions Ln and M and is omitted. Adopt the
 notational conventions, B = BI/2'B'/2 and B-' =B-B1/2B-1/2' where B is a nonsingular symmetric
 matrix, and let P1'2 = (W'W)-1/2'W' for general a X b matrix W with a 2 b.

 LEMMA Al: Suppose that (2.1), (2.2), and Assumptions Ln and M hold. Then the following hold

 jointly:

 (a) (u"u'/T,Y"u'/T,Y"Y'/T)((ruu SvUU U 'vv)
 p

 (b) Z " 'Z ' /T-> , where D = Qzz - Qzx Qxx Qxz
 (C) {P9l2U , l {z1/2, ZVlVl}/2, where (zU vec(zv))' is distributed N(O, I
 ()pZ/l2 y ,( A + ZV v ) 1 /2 ( ) (~~~~~~~~~~YV 1/2 'P1Y PY1U1PZlu )(E/t2 (7lu/ 1/2 /, 0-zau

 PROOF OF THEOREM 1: (a) Define KT = T(k - 1) and write /3(k) -/30 = LT(KT) - 1NT(KT), where
 LT(K) = Y "[ I- (1 + K/T)Mz I]Y ' and NT(K) = Y "[ I- (1 + K/T)Mz ]u ' . Using Lemma Al
 (a) and (e), LT and NT can be shown to have the limits {LT(K), NT(K)} =' {f V42'(Vl -KIn)fVV2,

 1/ 2yV/V2?(A + ZV)'Zu - K VU}, where the convergence is uniform in K over compact sets. By
 assumption the convergence of the moments in Lemma Al, and thus the convergence of

 fL ~ ~ ~ KT~K. Recall that p =2 ~ Vu so fter some algebr n NT(K),NT(K)}, is joint with KT ./2'SVAu1/2 SO a bra one
 has /3(k) - /30 u/2 V2(v (V1 - Kp) (-= 1/2y/ _V2/ (K)-/3*(K).
 (b) Note that i(k)=y' -Y' 3(k)=u' -Y'3(u(k)-/30), so by Lemma Al and part (a),

 &uu(k) LT>ou -2 13*(K) + 13*(K)'.VV/3*(K)= o-USl((A*(K)).
 (c) Using R/3(k) - r = R( /3(k) - /30), the definition of LT(K), and the previous results, we have

 W(k) => /3o*(KYR'[R ' /2(vl - KIn) V EV/2'R'] R /3 *(K)/[qou S1(A*(K))].

 The representation in the theorem follows using 13*(K) - _ 2v/*(K)

 (d) The result follows from the definition of t,(k) and calculations similar to those in part (c).
 (e) Write vv = V'MzV/(T -K1 -K2). The result follows from Assumption M and Lemma
 Al(e). Q.E.D.

 PROOF OF THEOREM 2: Note that for any nonsingular (n + 1) x (n + 1) matrix J, the roots of
 IY'MxY - kY'MZYI = 0 are the same as the roots of IJ'Y'MxYJ - kJ'Y'MZYJI = 0. In particular
 choose J, partitioned conformably with Y, to be Jll = 1, J21 = - /3 J12 = 0, and J22 = In. Let
 DT(K) = J'Y'MXYJ-(1 + K/T)J'Y'Mz YJ. Now use Mz = MxMz Mx to rewrite DT(K) as DT(K)
 =J'Py"Pz y'J- KJ'Yf"MZY'J/T. Because y' =Y' /3+u, Y'J=[u' Y'l], by Lemma

 Al(e), J'Y 'Pz1 Y 'J 0 EO'T, where T = diag(oj"72, Y4v2) and 0* is defined in the statement
 p

 of the theorem. Also, J'Y "'Mz Y 'J/T -> -T'Y. Thus DT(K) T'(0* - K.)T uniformly
 in K over compact sets. The solutions to IDT(K)I = 0 therefore converge to those of JEI0* - KI I = -0
 Thus KLIML = T(kLIML - 1) KKIML, where KIML is the smallest root of JEI* -
 K1= 0. Q.E.D.

 PROOF OF THEOREM 3: (a)(i) Use the definition of LT and NT in Theorem 1 to write /3(k) -/30
 under L. as

 ,8(k)-,o =LT(KT) NT(KT) +LT(KT [y (I-KTMZI)Z' G)].

 The limits in Theorem 1 for LT(KT) and NT(KT) continue to apply under L,,,. Also, Y"(I-
 KTMZI)Z' w = y ltl oGY=>o-,124/2'(A +Zv)'-. Thus p3(k)-1 /30*/3(K) + d2. V2(Vl-
 KIn) (ZV + A)' = 0l/2$y, / V2AA*( K).
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 (ii) Assumption L, implies u = u' +Z w - Y' (/3(k) - /3), so by Lemma Al and part (a)(i),

 pl/2?I => + /2d-(A Zv3/ K)- = 1/2[Zu + (-(A +zv)t (K)].

 Thus a'PZ u => nuu S2(A (K), ). Under Assumption L., similar calculations show that ui'd/T =
 [u' -Y'(13(k)-13Y1[u' -Y'(13'(k)-/3)]/T+oo(l)=> rUUS1(A*(K)). Combining these results

 p
 we have 4reg(k)=:>S2(A*(K), )/SI(A1*(K)). The result 1reg- 4Bas 0 (and consequently the

 p
 limiting distribution of 4Bas) follows from u'Mz 1/(T - K1 - K2) - u -u/T 0.

 (b) The proof is a modification of the proof of Theorem 2. Under Assumption L.,

 plsy2p I =pl/2(U I +Z I )pz/12yl]a2(u( IZv A 2].

 Thus J' y"Pz ?Y yJ=> rk* T and JT y"Mz , y ? J/T = JT y y J/T + o(l). Under L
 - p p
 JT 'Y'J/ * . I T J /T because, for example, a/,"z " P Z w = 1d'(Z "Z ' /T) d -O 0.
 Thus DT(K) in the proof of Theorem 2 has the limit, DT(K) -TI(* + K:YDT uniformly in K on
 compact sets. The result follows using the arguments in the proof of Theorem 2. Q.E.D.

 PROOF OF THEOREM 4: Note that 5'(k) = (X'X) -X'[y - Y13(k)], so T'/2(5(k) - yo)=
 (T-1X'X)- [T 1-2X'u - (T- 1/2XY)( 83(k) - ,BQ)]. The result follows from calculations which

 invoke Assumption Lp and Lemma Al. Q.E.D.

 PROOF OF THEOREM 5: (a) Under the null , = 83o, from the definition of AT and Lemma Al,

 AT(,0) =(U"PzIu' /K2)/[(uIu 'I-u" IPzIu' )/(T-Kl-K2)I

 2 => ZuIuK2 XK2/K2
 (b) When /3 =/30 y ' - Y go= u - Y ' (/30 - /31), so by Lemma Al,

 (y - Y 1 /30 Pz l(y 1 y 1 PO) o-uu [zu -(A + zv) Jt]' [zu- + z,) 2i]

 -Cu uS2 (:, O).-

 Also, (y' -Y' o)'(y' -Y' 0)/(T-K1 -K -K - u Sj(d). Substitution of these limits into the
 definition of AT( /30) yields the expression in the theorem. The fact that the distribution is
 noncentral yK2 follows by some algebra after observing that the K2-vector zu - zA is distributed
 N(O, S1( A)), where S1( A) is nonrandom. Q.E.D.
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