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 Bootstrap Tests for Distributional Treatment
 Effects in Instrumental Variable Models

 Alberto ABADIE

 This article considers the problem of assessing the distributional consequences of a treatment on some outcome variable of interest when
 treatment intake is (possibly) nonrandomized, but there is a binary instrument available for the researcher. Such a scenario is common in
 observational studies and in randomized experiments with imperfect compliance. One possible approach to this problem is to compare
 the counterfactual cumulative distribution functions of the outcome with and without the treatment. This article shows how to estimate

 these distributions using instrumental variable methods and a simple bootstrap procedure is proposed to test distributional hypotheses,
 such as equality of distributions, first-order and second-order stochastic dominance. These tests and estimators are applied to the study
 of the effects of veteran status on the distribution of civilian earnings. The results show a negative effect of military service during the
 Vietnam era that appears to be concentrated on the lower tail of the distribution of earnings. First-order stochastic dominance cannot be
 rejected by the data.

 KEY WORDS: Compliers; Empirical processes; Kolmogorov-Smirnov test; Stochastic dominance.

 1. INTRODUCTION

 Although most empirical research on treatment effects focus
 on the estimation of differences in mean outcomes, analysts
 have long been interested in methods for estimating the impact
 of a treatment on the entire distribution of outcomes. This is

 especially true in economics, where social welfare compar-
 isons may require integration of utility functions under alter-
 native distributions of income. Following Atkinson (1970),
 consider the class of symmetric utilitarian social welfare
 functions:

 W(P, u)= f u(y) dP(y),
 where P is an income distribution and u: lR ~- R is a twice

 continuously differentiable individual utility function. Let P(1)
 and P(0) denote the (potential) distributions that income would
 follow if the population were exposed to the treatment in one
 case, and excluded from the treatment in the other case. If u

 is completely specified (u = u) we rank P(1) and P(0) by com-
 paring W(P(l), u) and W(P(o), u). Note that affine transforma-
 tions of u do not affect the ranking of any two distributions.

 Typically, u is not fixed by the analyst but is restricted to
 have some desirable properties. In particular, social welfare
 (W(P, u)) is usually assumed to increase with the income
 of any subset of individuals in the population (u' > 0). If
 u is affine, then W(P, u) ranks income distributions solely
 on the basis of average income. However, distributional con-
 siderations often motivate social welfare functions that favor

 income redistribution to the poorer (u' > 0 and u" < 0). Under
 these assumptions, stochastic dominance can be used to estab-
 lish a partial ordering on the distributions of income. If two
 income distributions can be ranked by first-order stochastic
 dominance,

 Jx J Vx>0 (1)x

 dP() (y) < dP(o)(y) Vx > 0 (1)
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 (for P(l) dominating P(0)), then these distributions will be
 ranked in the same way by any monotonic utilitarian social
 welfare function (u' > 0). If two income distributions can be
 ranked by second-order stochastic dominance,

 (fdr ())dP y fz (f dP()fy(o))) dz Vx > (2)

 (for P(M) dominating P(0)), then these distributions will be
 ranked in the same way by any concave monotonic utilitar-
 ian social welfare function (u' > O, u" < 0) (see Foster and
 Shorrocks 1988 for details). Therefore, stochastic dominance
 can be used to evaluate the distributional consequences of
 treatments under mild assumptions about social preferences.
 Another possible question is whether the treatment has any
 effect on the distribution of the outcome, that is, whether or

 not the two distributions P(1) and P(0) are the same.
 In general, the assessment of the distributional conse-

 quences of treatments may be carried on by estimating
 P() and P(0). Estimation of the potential income distribu-
 tions, P(M) and P(0), is straightforward when the treatment
 is randomly assigned in the population. However, this type
 of analysis becomes difficult in observational studies (or in
 randomized experiments with imperfect compliance) when
 treatment intake is not randomly determined. Recently, Imbens
 and Rubin (1997) have shown that, when there is a binary
 instrumental variable available for the researcher, the poten-
 tial distributions of the outcome variable are identified for the

 subpopulation potentially affected in their treatment status by
 variation in the instrument (the so-called compliers). In addi-
 tion, Abadie, Angrist and Imbens (in press) have studied dis-
 tributional effects of treatments for compliers in instrumental
 variable models using quantile regression techniques. How-
 ever, up to date, no testing procedure has been proposed to
 compare entire potential outcome distributions for compliers.
 This article proposes a bootstrap strategy to perform this kind
 of comparison. In particular, equality of distributions, first-
 order and second-order stochastic dominance hypotheses, all
 important for social welfare comparisons, are considered.
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 The proposed method is applied to the study of the
 effects of Vietnam veteran status on the distribution of civil-

 ian earnings. Following Angrist (1990), random variation in
 enrollment induced by the Vietnam era draft lottery is used
 to identify the effects of veteran status on civilian earnings.
 However, the focus of the present article is not restricted to
 the average treatment effect for compliers. The entire marginal
 distributions of potential earnings for veterans and nonveter-
 ans are described for this subgroup of the population. These
 distributions differ in a notable way from the correspond-
 ing distributions of realized earnings. Veteran status appears
 to reduce lower quantiles of the earnings distribution, leav-
 ing higher quantiles unaffected. Although the data show a fair
 amount of evidence against equality in potential income dis-
 tributions for veterans and nonveterans, statistical testing falls
 short of rejecting this hypothesis at conventional significance
 levels. First- and second-order stochastic dominance of the

 potential income distribution for nonveterans are not rejected
 by the data.

 The rest of the article is structured as follows. In Section 2,
 a framework for identification of treatment effects in instru-

 mental variable models is briefly reviewed. It also shows how
 to estimate the distributions of potential outcomes for compli-
 ers. In contrast with Imbens and Rubin (1997) who report his-
 togram estimates of these distributions, here a simple method
 is shown to estimate the cumulative distribution functions (cdf)
 of the same variables. An approach based on cdfs rather than
 histograms is often convenient. First, the problem of choos-
 ing adequate binwidths for histograms is avoided. The cdf,
 estimated by instrumental variable methods, can be evaluated
 at each observation in our sample, just as for the conven-
 tional empirical distribution function. Moreover, as inspec-
 tion of equations (1) and (2) reveals, first- and second-order
 stochastic dominance can be easily defined in terms of cdfs.
 Estimated cdfs may therefore suggest stochastic dominance
 between estimated distributions in a way that would be hard
 to visualize from histograms. In addition, tests for stochastic
 dominance can be easily constructed within the well-known
 family of tests which are based on differences in cdfs (see Dar-
 ling 1957 for a review of this class of tests). In summary, an
 approach to estimation of distributions of potential outcomes
 based on cdfs is important because it is often easier to define,
 visualize, and test some distributional hypotheses of inter-
 est, such as first- or second-order stochastic dominance, using
 cdfs rather than histograms (see, however, Anderson 1996 for
 an approach to test for stochastic dominance based on his-
 tograms; approaches based on nonparametric density estima-
 tion can also be conceived for the case in which the outcome

 variable of interest has a continuous distribution). A com-
 plete description of the bootstrap strategy is also provided in
 Section 2, along with a proposition which states the asymp-
 totic validity of the bootstrap for the tests proposed in this
 article. Section 3 describes the data and presents the empirical
 results. Section 4 concludes.

 2. STATISTICAL METHODS

 Let Yi(0) be the potential outcome for individual i without
 treatment, and Y,(l) be the potential outcome for the same

 individual with treatment. Define Di to be the treatment partic-
 ipation indicator (that is, Di equals one when individual i has
 been exposed to the treatment, Di equals zero otherwise). Let
 Zi be a binary variable that is independent of the responses
 Y,(0) and Yi(l) but that is correlated with Di in the popula-
 tion (an instrument). Denote Di(0) the value that Di would
 have taken if Zi = 0; Di(l) has the same meaning for Zi = 1.
 In practice, for any particular individual the analyst does not
 observe both potential treatment indicators Di(0) and Di(l).
 Instead the realized treatment Di = Di (1) . Zi + Di (0) (1 - Zi)
 is observed. In the same fashion, the analyst does not observe
 both Yi(0) and Y,(1) for any individual i, one of these poten-
 tial outcomes is counterfactual. Only the realized outcome,
 Yi = Yi(l) - Di + Y,(0) - (1 - Di), is observed. In the analysis of
 randomized experiments with imperfect compliance, Zi usu-
 ally represents treatment assignment (randomized) whereas Di
 represents treatment intake (nonrandomized). In observational
 studies, instruments are often provided by the so-called natu-
 ral experiments or quasiexperiments. For the rest of the article
 use the following identifying assumption:

 Assumption 2.1.

 (i) Independence of the Instrument: (Yi(0), Yi(1), Di(0),
 Di ()) is independent of Zi.

 (ii) First Stage: 0 < P(Zi = 1) < 1 and P(Di(1) = 1) >
 P(Di(O) = 1).

 (iii) Monotonicity: P(Di,() > Di(0)) = 1.

 Assumption 2.1 contains a set of nonparametric restrictions
 under which instrumental variable models identify the causal
 effect of the treatment for the subpopulation potentially
 affected in their treatment status by variation in the instru-
 ment: Di(l) = 1 and Di(0) = 0 (see Imbens and Angrist 1994;
 Angrist, Imbens, and Rubin 1996). This subpopulation is
 sometimes called compliers. When the treatment intake, Di,
 is itself randomized, Assumption 2.1 holds for Zi = Di and
 every individual is a complier.

 Notice that there are some important exclusion restrictions
 implicit in the notation. First, for each individual i, potential
 treatment indicators (Di(0), Di(l)) are not affected by the val-
 ues taken by the instrument for other individuals Z1, j : i;
 in the same fashion, potential outcomes (Yi(0), Y,(1)) are not
 affected by the values taken by the treatment and instrument

 for other individuals (Zj, Dj), j - i. This restriction is called
 stable-unit-treatment-value-assumption (SUTVA) and is fre-
 quently used in statistical models of causal inference (see
 Rubin 1990). In addition, potential outcomes (Yi(0), Yi(l)) do
 not depend on Zi. This last restriction, commonly invoked in
 instrumental variable models, allows us to attribute correlation
 between the instrument and the outcome variables to the effect

 of the treatment alone (see Angrist et al. 1996 for a more elab-
 orate discussion of the restrictions in Assumption 2.1).

 In this article, distributional effects of possibly nonrandom-
 ized treatments are studied by comparing the distributions
 of potential outcomes Y,(1) and Y,(0) with and without the
 treatment. The first step is to show that the identification con-
 ditions in Assumption 2.1 allow us to estimate these distribu-
 tions for the subpopulation of compliers. To estimate the cdfs
 of potential outcomes for compliers, the following lemma will
 be useful.

 285

This content downloaded from 
������������192.91.235.240 on Sun, 06 Mar 2022 00:47:23 UTC������������� 

All use subject to https://about.jstor.org/terms



 Journal of the American Statistical Association, March 2002

 Lemma 2.1. Let h(.) be a measurable function on the real
 line such that EIh(Yi)I < oo. If Assumption 2.1 holds, then

 E[h(Yi)DilZi = 1] - E[h(Y)DilZi = 0]
 E[Di Zi = 1]- E[Di Zi = 0]

 = E[h(Y(l))IDi(O) = 0, Di(l) = 1], (3)

 and

 E[h(Yi)(1 - i)lZi = 1] - E[h(Yi)(l - Di)lZ = 0]
 E[(1-Di)|Z = 1] - E[(1 -Di)IZi = 0]

 = E[h(Yi(0))D,(0) = 0, Di(l) = 1]. (4)

 Proof. Note that h(Yi)Di is equal to h(Yi(l)) if Di = 1 and
 equal to 0 if Di = 0. By Lemma 4.2 in Dawid (1979), we have
 that (h(Yi(1)), 0, Di(0), Di(1)) is independent of Zi. Then by
 Theorem 1 in Imbens and Angrist (1994), we have that

 E[h(Y(l))lDi(0) = 0, D(1l) = 1]

 E[h(Yi) . DilZi = 1] - E[h(Y,) . DiiZi = 0]
 E[D,lZi = 1]-E[DilZi = 0]

 The second part of the lemma follows from an analogous argu-
 ment.

 Lemma 2.1 provides a simple way to estimate the cumula-
 tive distribution functions of the potential outcomes for com-
 pliers. Define Fc)(y) = E[l{Y(1) < y}lD(l) = 1, Di(0) =0]
 and F(o)(y) = E[l{Yi(0) < y}]Di(l) = 1, Di(0) = 0]. Apply
 Lemma 2.1 with h(Y) = 1 {Yi < y} to get

 F((y) = {E[1{Yi < y}DilZi = 1]-E[I{Yi < y}DilZi = 0]}

 /{E[Di Z, = 1]- E[D IZi = 0]}, (5)
 and

 F(o)(y) = {E[l{Yi < y}(l - Di)jZi = 1]

 -E[l{Yi < y}(l - D)Zi = 0]}

 /{E[( -Di)|Zi = 1]-E[(1 - Di)Zi = 0]}. (6)

 Suppose that we have a random sample, {(Yi, Di, Zi)}l,
 drawn from the studied population. The sample counterparts
 of equations (5) and (6) can be used to estimate FC()(y) and

 F(o)(y) for y = {Y..., . ., . We can compare the distribu-
 tions of potential outcomes by plotting the estimates of Fc)
 and F(). This comparison tells us how the treatment affects
 different parts of the distribution of the outcome variable, at
 least for the subpopulation of compliers.

 Researchers often want to formalize this type of comparison
 using statistical hypothesis testing. In particular, a researcher
 may want to compare Fc) and F() by testing the hypotheses
 of equality in distributions, first-order or second-order stochas-
 tic dominance. For two distribution functions FA and FB, the
 hypotheses of interest can be formulated as follows.

 Equality of distributions:

 First-order stochastic dominance: FA dominates FB if

 FA(Y) < FB() Vy E  (H.2)

 Second-order stochastic dominance: FA dominates F. if

 FA(x) dx < FB(x) dx VyE R
 -x -O0

 (H.3)

 One possible way to carry out these tests for the distribu-
 tions of potential outcomes for compliers is to use statistics
 directly based on the comparison between the estimates for

 F) and Fc. However, it is easier to test the implications of
 these hypotheses on the two conditional distributions of the
 outcome variable, given Zi = 1 and Zi = 0. Denote F, the cdf
 of the outcome variable conditional on Zi = 1, and define Fo in
 the same way for Zi = 0. That is, F (y) = E[l {Yi < y}lIZ = I]
 and Fo(y) = E[{Yi < y}lZ, = 0].

 Proposition 2.1. Under Assumption 2.1, hypotheses
 (H.1)-(H.3) hold for (FA, FB) = (F), FC)) if and only if they
 hold for (FA, F) = (F, Fo).

 Proof. From equations (5) and (6), we have

 F) (y) - F() (y)

 E[{Yi < y}Zi= 1]-E[l{Yi < y}Zi = 0]
 E[D, IZ = 1]- E[D,IZi = 0]

 Therefore, Fc()- F() = K (F1 - Fo) for K = 1/(E[D lZi =
 1] - E[Di[Zi = 0]) < oo, and the result of the proposition
 holds.

 Of course F1 and Fo can easily be estimated by the empir-
 ical distribution of Yi for Zi = 1 and Z_ = 0, respectively.
 Divide (Y, ..., Yn) into two subsamples given by different val-
 ues for the instrument, (Y ,l ..., Y I ) are those observations

 with Zi = 1 (n1 = Ei Zi) and (Y ..., Y ,,o) are those with
 Zi = 0 (no = Ei 1 - Zi). Consider the empirical distribution
 functions

 1 n'

 F,,n,(y)= E { Yi < y

 F0.no(Y)= - y l{Yj _y}.
 no j=lI

 Then, the Kolmogorov-Smirnov statistic provides a nat-
 ural way to measure the discrepancy in the data from
 the hypothesis of equality of distributions. A two-sample
 Kolmogorov-Smirnov statistic can be defined as

 Teq _ n=no)  sup IF,., (y)-F O) nO(y)
 e[R

 (7)

 Following McFadden (1989), the Kolmogorov-Smirnov
 statistic can be modified to test the hypotheses of first-order
 stochastic dominance (for Fl dominating Fo)

 rfsd (nl no )/2 sup(F (Y)F-n o (y/)) T= sup , (y) - , ,0 (Y)),
 n vER

 and second-order stochastic dominance

 T (Sd = (nUt0) / sup (F,ln(x)-Fo,, ())dx.
 \---- yER oc

 (8)

 (9)
 FA(y)=(y) FB() Y R.
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 Kolmogorov-Smirnov type nonparametric distance tests
 generally have good power properties. Unfortunately, the
 asymptotic distributions of the test statistics under the null
 hypotheses are generally unknown, because they depend
 on the underlying distribution of the data (see e.g.,
 Romano 1988). In this article, a bootstrap strategy is used
 to overcome this problem. This strategy is described by the
 following 4 steps:

 Step 1: In what follows, let Tn be a generic notation for
 Teq Tfsd or TSSd. Compute the statistic Tn for the original

 samples (Y,,, .... Yln, ) and (Y0o,, ... Yo,no)'

 Step 2: Resample n observations (Y ...,) from
 (Y, . . ., Y with replacement. Divide (Y1 .. ., Y) into two
 samples: (Yl1, ...Y, ,n) given by the nl first elements
 of (Y ..., Yn), and (Y0,1 ..., Y,no) given by the no last ele-
 ments of (Yl, ..., Y). Use these two generated samples to
 compute the test statistic Tn,b.

 Step 3: Repeat Step 2, B times. Note that no and n1 are
 constant across bootstrap repetitions.

 Step 4: Calculate the p-values of the tests with p-value =
 E= 1 {Tn,b > Tn}/B. Reject the null hypotheses if the p-value
 is smaller than some significance level a, 0 < a < 0.5.

 By resampling from the pooled data set (Y1 ..., Yn) we
 approximate the distribution of our test statistics when F1 =
 Fo. Note that for (H.2) and (H.3), F, = Fo represents the least
 favorable case for the null hypotheses. This strategy allows us
 to estimate the supremum of the probability of rejection under
 the composite null hypotheses, which is the conventional def-
 inition of test size. The proof of next proposition shows that,
 under a nondegeneracy condition, the asymptotic distributions
 of Tfsd and Tssd are continuous, perhaps except for an atom at
 zero that must have probability mass less than 0.5. Therefore,
 the restriction that a < 0.5 is necessary to establish asymptotic
 size a. This restriction is, however, consistent with conven-
 tional test levels.

 Assumption 2.2. The distribution of the outcome variable
 is nondegenerate with bounded support.

 Justification of the asymptotic validity of this procedure is
 provided by the following proposition.

 Proposition 2.2. Under Assumption 2.2, the procedure
 described in Steps 1-4, for Tn equal to the test statistics in
 equations (7)-(9) and hypotheses (H.1)-(H.3), (i) provides
 correct asymptotic size, a, (ii) is consistent against any fixed
 alternative, (iii) has power (greater or equal to size) against
 contiguous alternatives.

 This proposition is proven in Appendix A. Note that the dis-
 tribution of Yi is not assumed to be continuous. This is impor-
 tant because outcome variables of interest in economics typi-
 cally have probability atoms (for example, earnings variables
 typically have probability mass at zero; wage variables typi-
 cally have probability mass at the minimum wage.) If the out-

 come variable is absolutely continuous, then exact asymptotic
 results can be obtained (as in Dudley 1989, chap. 12). The
 bounded support assumption is stronger than necessary, but

 simplifies the asymptotic analysis considerably and is hardly
 restrictive for empirical applications.

 The results of a simulation study to assess the small sample
 performance of the tests proposed in this article are reported in
 Appendix B. This simulation study suggests that the bootstrap
 distribution of the tests provides a good approximation to the
 nominal level even in fairly small samples.

 The idea of using resampling techniques to obtain criti-
 cal values for Kolmogorov-Smimov type statistics probably
 originated with Bickel (1969) and has also been used by
 Romano (1988), McFadden (1989), Klecan, McFadden, and
 McFadden (1991), Praestgaard (1995) and Andrews (1997)
 among others. A related approach based on simulation of p-
 values can be found in Barrett and Donald (1999).

 Note that Proposition 2.2 naturally applies to tests based
 on perfectly randomized experiments (in which Zi = Di for
 all i). In such case, the entire population is madeup of com-
 pliers. Another interesting special case arises when Di(0) = 0
 for all i. This happens, for example, in randomized trials if
 individuals in the control group are perfectly excluded from
 treatment intake (not ruling out noncompliance in the treat-
 ment group). Then, the distribution of (Yi(0), Yi(1)) for the
 treated is the distribution for compliers (see, e.g., Abadie et al.
 in press).

 3. EMPIRICAL EXAMPLE

 The data used in this study consist of a sample of 11,637
 white men, born in 1950-1953, from the March Current Pop-
 ulation Surveys of 1979 and 1981-1985. Annual labor earn-
 ings, weekly wages, Vietnam veteran status and an indi-
 cator of draft-eligibility based on the Vietnam draft lot-
 tery outcome are provided for each individual in the sam-
 ple. Additional information about the data can be found in
 Appendix C.

 Figure 1 shows the empirical distribution of realized annual
 labor earnings (from now on, annual earnings) for veterans and
 nonveterans. We can observe that the distribution of earnings
 for veterans has higher low quantiles and lower high quantiles
 than that for nonveterans. Naive reasoning would lead us to
 conclude that military service during the Vietnam era reduced
 the probability of extreme earnings without a strong effect
 on average earnings. The difference in means is indeed quite
 small. On average, veterans earn only $264 less than nonvet-
 erans and this difference is not significant at conventional test
 levels. However, this analysis does not take into account that
 veteran status was not randomly assigned in the population. In
 fact, there was a strong selection process in the military dur-
 ing the Vietnam era. Some individuals volunteered, and oth-
 ers avoided enrollment using different methods, like student
 or occupational deferments. In addition, there was a screening
 process in the military prior to enrollment which disqualified
 some individuals for service for a variety of reasons such as
 having health problems or for having committed a felony (see
 Baskir and Strauss 1978 for an account of the issues involved

 in military enrollment during the Vietnam era). Thus, enroll-
 ment for military service during the Vietnam era was influ-
 enced by variables associated with future potential earnings.
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 Figure 1. Empirical Distributions of Earnings for Veterans and Nonveterans.

 Therefore, we cannot draw causal inferences by simply com-
 paring the distributions of realized earnings between veterans
 and nonveterans.

 If draft eligibility is a valid instrument, then the marginal
 distributions of potential outcomes for compliers are consis-
 tently estimated by using sample analogs of equations (5) and
 (6). Figure 2 is the result of applying our data to those equa-
 tions. Note that in finite samples, the instrumental variables
 estimates of the potential cdfs for compliers may not be non-
 decreasing functions (see Imbens and Rubin 1997 for a related
 discussion). The most remarkable feature of Figure 2 is the
 change in the estimated distributional effect of veteran status
 on earnings with respect to the naive analysis. The average
 effect of military service for compliers can be easily estimated
 using the techniques in Imbens and Angrist (1994). On aver-
 age, veteran status is estimated to have a negative impact of
 $1,278 on earnings for compliers, although this effect is far
 from being statistically different from zero. Now, veteran sta-
 tus seems to reduce low quantiles of the income distribution,
 leaving high quantiles unaffected. If this characterization is
 true, the potential outcome for nonveterans would dominate
 that for veterans in the first-order stochastic sense.

 Following the strategy described in Section 2, hypothe-
 ses testing is performed. First, the test statistics in
 equations (7)-(9) are computed for the draft-eligible/draft-
 ineligible samples. Then, the distributions of the test statis-
 tics under the least favorable null hypothesis are approximated
 by resampling from the pooled sample and recomputing the
 test statistics. In this way, we are able to make inference

 about hypotheses (H. )-(H.3) for the subpopulation of com-
 pliers. (The computer code used for these calculations is avail-
 able from the author on request.) Table 1 reports p-values for
 the tests of equality of distributions, first-order and second-
 order stochastic dominance. Notice that, for this example, the
 stochastic dominance tests are for earnings for nonveterans
 dominating earnings for veterans. The first row of Table 1
 contains the results for annual earnings as the outcome vari-
 able. In the second row the analysis is repeated for weekly
 wages. Bootstrap resampling was performed 2,000 times
 (B =2,000).

 First, consider the results for annual earnings. The
 Kolmogorov-Smirov statistic for equality of distributions is
 revealed to take an unlikely high value under the null hypoth-
 esis. However, we cannot reject equality of distributions at
 conventional test levels. The lack of evidence against the null
 hypothesis increases as we go from equality of distributions
 to first-order stochastic dominance, and from first-order to

 second-order stochastic dominance. The results for weekly
 wages are slightly different. For weekly wages we fall far from
 rejecting equality of distributions at conventional test levels.

 This example illustrates how useful it can be to think in
 terms of distributional effects, and not merely average effects,
 when formulating the null hypothesis. Once we consider dis-
 tributional effects, the belief that military service in Vietnam
 had a negative effect on civilian earnings can naturally be
 incorporated in the null hypothesis by first- or second-order
 stochastic dominance.
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 10,000 20,000 30,000 40,000 50,000 60,000
 Annual earnings

 Figure 2. Estimated Distributions of Potential Earnings for Compliers.

 4. SUMMARY AND DISCUSSION OF
 POSSIBLE EXTENSIONS

 When treatment intake is not randomized, instrumental vari-

 able models allow us to identify the effects of a treatment on
 some outcome variable, for the subpopulation whose treatment
 status is determined by variation in the instrument. For this
 group of the population, called compliers, the entire marginal
 distribution of the outcome under different treatments can be

 estimated. In this article, a strategy to test for distributional
 effects of treatments within the population of compliers is
 developed. In particular, the focus is on the equality of dis-
 tributions, first-order and second-order stochastic dominance

 hypotheses. First, how to estimate the distributions of poten-
 tial outcomes for compliers is explained. Then, bootstrap sam-
 pling is used to approximate the null distribution of the test
 statistics.

 I illustrate this method with an application to the study of
 the effects of veteran status on civilian earnings. Following
 Angrist (1990), use variation in veteran status induced by ran-
 domly assigned draft eligibility to identify the effects of inter-

 Table 1. Tests on Distributional Effects of Veteran Status on Civilian

 Earnings, p-values

 First-order Second-order

 Outcome Equality in stochastic stochastic
 variable distributions dominance dominance

 Annual earnings .1245 .6260 .7415
 Weekly wages .2330 .6490 .7530

 est. Estimates of cumulative distribution functions of poten-
 tial outcomes for compliers show an adverse effect of mili-
 tary experience on the lower tail of the distribution of annual
 earnings. However, equality of distributions cannot be rejected
 at conventional confidence levels. First- and second-order

 stochastic dominance are not rejected by the data. Results are
 more favorable to the hypothesis of equality of distributions
 when using weekly wages as the outcome variable.

 Equality of distributions and first- and second-order stochas-
 tic dominance are not the only hypotheses that can be tested
 using the bootstrap to compare the distribution of the outcome
 variable for different values of the instrument. For example,
 a test for a constant treatment effect, a = Y(1)- Y(0), can
 be implemented by applying the test of equality of distribu-
 tions to Wi = Yi- a . Di. If a is unknown and needs to be
 estimated, the asymptotic distribution of the test statistic will
 be affected. Nuisance parameters may also arise if parametric
 models are used to adjust for the effect of covariates. Although
 estimation of nuisance parameters is not explicitly addressed
 in the present article, modifications along the lines of Romano
 (1988) or theorem 19.23 in van der Vaart (1998) look like
 promising starting points to obtain results analogous to those
 in Proposition 2.2.

 Another interesting question is how to make the cdf esti-
 mators proposed in this article nondecreasing. One possi-
 ble approach is to choose the nondecreasing function that
 minimizes a weighted average quadratic distance to the esti-
 mated cdf. This can be accomplished using well-known
 isotonic regression methods as in Robertson, Wright, and
 Dykstra (1988).
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 Finally, using techniques similar to those in Appendix A, it
 can be seen that the results in Proposition 2.2 also hold for the
 permutation versions of the tests proposed in this article (for
 permutation tests resampling is done without replacement). An
 appealing feature of permutation tests is that, by construction,
 they provide exact level in finite samples (see, e.g., Efron and
 Tibshirani 1993).

 APPENDIX A: ASYMPTOTIC VALIDITY

 OF THE BOOTSTRAP

 Proof of Proposition 2.2.

 Part (i) can be proven by extending the argument in van der Vaart
 and Wellner (1996) chap. 3.7 to tests for first- and second-order
 stochastic dominance. Let PI, PO, be the probability laws of Y con-
 ditional on Z = 1 and Z = 0, respectively. Let Q be the probability
 law of Z which is Bernoulli with parameter 7r. Define the empirical
 measures

 1 nI 1 n

 pI , ,, =no - Y l, *n =Y1,i nO j= / /= 1 0 j=1

 where 5r indicates a probability mass point at Y. Let ' =
 {l(-oo, y]} : y E lR}, that is, the class of indicators of all lower half
 lines in 1R. Because Y is known to be universally Donsker, by theo-
 rem 3.5.1 in van der Vaart and Wellner (1996) we have

 define the pooled empirical measure

 H = ,,
 /i=

 then Pl,,, - , = (1 - 7rn)(Pl,,l - Po,,n). Let (Y,,..., Y,) be a ran-
 dom sample from the pooled empirical measure. Define the bootstrap
 empirical measures:

 1 nl

 n1 i=l

 j1 1
 P0o,no= - E .

 nO j=n,l ,+1

 By theorem 3.7.7 in van der Vaart and Wellner (1996), if
 n -- oo, then n /2(P1, - l-H) =? GH given almost every sequence
 (Yl, ... Y,1,,1), (Yo,, ..., Yo,n), where H = rr.P, +(1 - 7r) Po.
 The same result holds for no2(P ,0o - H,). Let

 Dn= (I? (P1 I 11)-Fho, I ).

 Note that T(D,,) = T( - 17 ,,)' /2nl / ,, - H) - l /2nl (P
 H,)). Therefore, T(D,) converges in distribution to T((1-
 7r) 1/2GH - 7/2GH) almost surely, where GH and G' are indepen-
 dent H-Brownian bridges. Because (1- 7r)1/2GH- 7Tr/2GH is also an
 H-Brownian bridge, we have that, if P1 = Po = P, then T(D,) con-
 verges in distribution to T(Gp) almost surely. Let P be the bootstrap
 probability measure for the sample, and let

 c, = inf{c: P(T(D,) > c) < a}.

 in 1 (Y), where "=" denotes weak convergence, 1? (oY) is the set of
 all uniformly bounded real functions on Y and Gp is a P-Brownian
 bridge. Let

 n I no 1/2
 Dn = (npi,h,-PO,no)

 As n -> oo, rnT = nl/n -->. E (0, 1) almost surely. Then, if PI =
 Po = P, D,n = (1 - 7r)1/2 Gp - G T1/2 G'p, where Gp and G' are
 independent versions of a P-Brownian bridge. Because (1- r) 1/2
 Gp - T1/2 * Gp is also a P-Brownian bridge, we have that Dn => Gp.

 For f E ., let a(f) = sup{t E R: f(t) = 1} and A be the
 Lebesgue measure on R. For z E 1'(Y), define the following
 maps: Teq(z) = supfE Iz(f)J, Tfsd(z) = supfEY z(f) and T"Sd(z) =
 SUpfE fSgE:a(g)a(g)(f)} z(g) dt(g) where = = A o a. Our test statis-
 tics are Teq(Dn), Tfsd(D,) and Tsd(Dn). Let T be a generic nota-
 tion for Teq, Tfsd or Tssd. Notice that, for z1, z2 E 1X(F), T(z2) <
 T(zl)+T(z2-z1). Because Teq is equal to the norm in Io(S), triv-
 ially Teq is continuous. Tfsd is also continuous because Tfd(z2 -
 zl) < Teq(z2- z). Finally, the bounded support condition allows us
 to restrict ourselves to functions z2, z E {x E 10(.F) : x(a-~(t)) =
 0 for t E (-0o, 1) U (u, oo)}, for some real 1, u (I < u) such that the
 support of P is contained in the interval [1, u]. Then, it is easy to
 see that Tssd(z2 - Zl) < (U - I) - Tfsd(z2 - ), hence Tsd, is continu-
 ous. For the stochastic dominance tests we will use the least favor-

 able case (P1 = P0) to derive the null asymptotic distribution. Under
 the least favorable null hypotheses, by continuity, the tests statistics
 converge in distribution to Teq(Gp), Tfsd(Gp), and Tssd(Gp), respec-
 tively. Note that, in general, the asymptotic distribution of our test
 statistics under the least favorable null hypotheses depends on the
 underlying probability P. It can easily be seen that our test statistics
 tend to infinity under any fixed alternative.

 Let Cp(a) = inf{c : P(T(Gp) > c) < a}. Consider a test that rejects
 the null hypothesis if T(D,) > c,,. Because cp(a) depends on P, the
 sequence {c,} is determined by a resampling method. Consider the
 pooled- sample (Y,, ... Y, ,) = (Y1, . .., Yl,, , Y, , *.... Y, ,o), and

 To obtain the result of asymptotic size equal to a note that Teq, Tfsd,
 and Tssd are convex continuous functionals. Note also that if P is

 nondegenerate, T(Gp) has support equal to [0, oo). By theorem 11.1
 in Davydov, Lifshits, and Smorodina (1998), T(Gp) has continuous
 and strictly increasing cdf everywhere except possibly at zero. If P
 is nondegenerate, Pr(supf IGp(f)l = 0) = 0 so Teq(Gp) has abso-
 lutely continuous distribution. It is left to be shown that TfSd(Gp)
 and Tssd(Gp) cannot have probability mass greater than 0.5 at zero.
 Because the variance of Gp(f) is zero outside the support of P, we
 have that Pr(supf0: Gp(f) = 0) = Pr(A f E F : Gp(f) > 0). By
 symmetry of Gaussian measures, Pr(3f E F : Gp(f) > 0) = Pr(i,
 f E t : Gp(f) < 0). By Assumption 2.2, P is nondegenerate, hence
 Pr(/f E Y : Gp(f) > 0n ]f E . : Gp(f) < 0)= 0. Therefore,
 1 > Pr(,f E . : Gp(f) > 0 U Af E G : Gp(f) < 0) = 2 Pr(sup,f
 Gp(f) = 0). The same reasoning applies to Tssd(Gp) once we sub-
 stitute f{gEa(g)<a()f)) Gp(g) dlt(g) for Gp(f). Therefore, for a < .5,
 we have cn -> Cp(a) almost surely. Then, the first result of the the-
 orem holds by continuity of T(Gp) - cp(a) at zero.

 By tightness of the limiting process, c,, is bounded in probability
 and the tests are consistent against any fixed alternative. This proves
 (i) and (ii).

 To prove (iii), let M = Q P. Under M,

 ( n?nl )1/2

 DI'(f) =( (P,l I/(f)-P0n(f))

 [( 1- 12 ) 1/2 Zi -)]. ((Y) - Pf(Y))
 /1/2 '/2 n1

 = I E[(1 ) Z-( )i- (1 -Z] n1/2 i=l 71' 1 - rc~, ~",12,

 (f(Yi) - Pf(Yi)) + o().

 Local alternatives are given by M, = Q P,, where P, is a sequence
 of conditional probability measures equal to P:, for Z = z. P(,,) and
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 Table 2. True Test Size in Small Samples, Monte Carlo Simulation

 Distribution
 Nominal test level

 Empirical
 example N(0, 1) U(0, 1) b(.5, 10)

 Sample
 size .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

 Equality 25 .119 .062 .017 .121 .063 .011 .130 .063 .014 .107 .053 .010
 of distributions 50 .114 .059 .015 .127 .072 .017 .148 .085 .020 .108 .061 .013

 100 .114 .055 .012 .114 .058 .011 .127 .069 .016 .115 .060 .016
 250 .106 .051 .011 .119 .058 .011 .111 .053 .011 .121 .058 .013
 500 .099 .047 .010 .107 .052 .010 .112 .055 .010 .106 .053 .012

 First-order 25 .122 .059 .015 .125 .060 .012 .134 .070 .014 .101 .050 .011
 stochastic dominance 50 .109 .055 .012 .135 .068 .018 .131 .072 .016 .118 .051 .013

 100 .106 .056 .012 .115 .058 .011 .123 .067 .016 .112 .056 .015
 250 .105 .053 .011 .120 .061 .013 .119 .056 .010 .110 .062 .014
 500 .091 .049 .010 .106 .055 .011 .114 .057 .011 .093 .046 .009

 Second-order 25 .110 .058 .011 .106 .052 .006 .107 .050 .011 .101 .049 .009
 stochastic dominance 50 .101 .050 .012 .110 .059 .010 .103 .054 .011 .103 .052 .009

 100 .104 .051 .009 .100 .047 .007 .105 .052 .011 .105 .053 .012
 250 .098 .049 .011 .095 .048 .010 .100 .045 .007 .105 .051 .011
 500 .100 .048 .011 .102 .053 .009 .101 .051 .009 .092 .045 .011

 s.e. .005 .003 .002 .005 .003 .002 .005 .003 .002 .005 .003 .002

 Pl, approach a common limit P in the following sense:

 j[nld2(dP 1- 2xdP/2) -x dPj] 0 for z =0, 1, (A.)

 where xI, xo are measurable real functions. Therefore,

 S ^ /^(n/2 - dM'I/2) -- xdM'/I -O0, If l/2(dmi/2 2 J

 for x(Zi, Yi) = (1 - Zi) xo(Y) + Zi X (Yi).
 It can be shown (van der Vaart and Wellner (1996), lemma

 3.10.11) that the sequences of product measures Mn and M" are con-
 tiguous, Mx = 0, Mx2 < oo, and

 dMn no dMn I n 1 2
 log d-= E log ( Zi, Yi ) -= I Z, Y-Mx2 + op(l), dlMn i= dM n1/2 2

 under M. Therefore

 (D"(f)l?og ? dM -n 0 (P(f-Pf)2T(f ) DJ l}ogdMn" N -Mx/j2'\ r'(f) Mx2

 where r(f) = T/2(1 /2( - T2(vl(f)- Vo(f)) and v,(f) = Pxzf.
 Applying LeCam's third lemma

 DO(f) : N(0, P(f - Pf)2) + 7/2( - )/2(I (f) - vo(f)).

 Using the Donsker property of F, we obtain the uniform version of
 last result (see van der Vaart and Wellner 1996, theorem 3.10.12.)

 D, =$ Gp + irT/2(1- _ - )1/2 ' (VI -_o0).

 In addition, suPfy I nl/2(Pz, - P)f - v,(f)I -* 0 for z = 0, 1, and
 therefore suPf,E In'/2(P,, - P0,,)f - (v (f) - v0(f))l - 0.

 Mn

 By contiguity arguments cn - cp(a). Then, using a version of
 Anderson's lemma for general Banach spaces (see, e.g., van der Vaart
 and Wellner 1996, lemma 3.11.4), we obtain the desired result for
 the test of equality of distributions.

 The same result holds for first- and second-order dominance tests

 (note that for these tests the sequence of contiguous alternatives

 should be specified such that Tfsd(vl - v0) > 0 and Tssd(vl - v0) > 0,
 respectively.)

 APPENDIX B: SMALL SAMPLE BEHAVIOR

 To assess the small sample performance of the tests proposed in
 this article a Monte Carlo study was conducted. To mimic as closely
 as possible the actual small sample behavior of these tests in real
 applications, one of the distributions used for the simulation study
 is the empirical distribution of annual earnings from the data used
 in Section 3. The other three distributions are a standard normal,
 a uniform on (0,1), and a binomial with parameters (.5, 10). (Note
 that the simulation considers a distribution, the standard normal, that

 belongs to a larger family than permitted by the regularity conditions,
 because it does not have bounded support.) For each distribution and
 each Monte Carlo iteration, a sample of size n was drawn (n equal
 to 25, 50, 100, 250, and 500). Each sample was divided into two
 subsamples following the proportion of draft eligibles/noneligibles
 in the original data for the first distribution, and a 1/1 proportion
 (approximate for n odd) for the other three distributions. Then, the
 test statistics in equations (7)-(9) were computed and the bootstrap
 tests were performed using 2,000 bootstrap iterations. This process
 was repeated for 4,000 Monte Carlo iterations. Table 2 shows the
 results of this simulation study for samples sizes equal to 25, 50, 100,
 250, and 500 and nominal test levels equal to 0.10, 0.05, and 0.01.
 Asymptotic standard errors (as the number of Monte Carlo iterations
 tends to infinity) are reported in the last row of the table. The table
 shows highly satisfactory performance of the tests, even in fairly
 small samples (n = 25).

 APPENDIX C: DATA DESCRIPTION

 The data set was especially prepared for Angrist and Krueger
 (1995). Both annual earnings and weekly wages are in real terms.
 Weekly wages are imputed by dividing annual labor earnings by the
 number of weeks worked. The Vietnam era draft lottery is carefully
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 described in Angrist (1990), where the validity of draft eligibility as
 an instrument for veteran status is also discussed. This lottery was
 conducted every year between 1970 and 1974 and it used to assign
 numbers (from 1 to 365) to dates of birth in the cohorts being drafted.
 Men with lowest numbers were called to serve up to a ceiling deter-
 mined every year by the Department of Defense. The value of that
 ceiling varied from 95 to 195 depending on the year. Here, an indi-
 cator for lottery numbers lower than 100 is used as an instrument
 for veteran status. The fact that draft eligibility affected the probabil-

 ity of enrollment along with its random nature makes this variable a
 good candidate to instrument veteran status.

 [Received March 2000. Revised May 2001.]
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