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Abstract

This article introduces a new class of instrumental variable (IV) estimators for linear and
nonlinear treatment response models with covariates. The rationale for focusing on nonlinear
models is that, if the dependent variable is binary or limited, or if the e(ect of the treatment
varies with covariates, a nonlinear model is appropriate. In the spirit of Roehrig (Econometrica
56 (1988) 433), identi.cation is attained nonparametrically and does not depend on the choice
of the parametric speci.cation for the response function of interest. One virtue of this approach
is that it allows the researcher to construct estimators that can be interpreted as the parameters
of a well-de.ned approximation to a treatment response function under functional form misspec-
i.cation. In contrast to some usual IV models, heterogeneity of treatment e(ects is not restricted
by the identi.cation conditions. The ideas and estimators in this article are illustrated using IV
to estimate the e(ects of 401(k) retirement programs on savings.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Economists have long been concerned with the problem of how to estimate the e(ect
of a treatment on some outcome of interest, possibly after conditioning on a vector of
covariates. The main empirical challenge in studies of this type arises from the fact
that selection for treatment is usually related to the potential outcomes that individuals
would attain with and without the treatment. Therefore, systematic di(erences in the
distribution of the outcome variable between treated and non-treated may re7ect not
only the e(ect of the treatment, but also di(erences generated by the selection process.
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A variety of methods have been proposed to overcome the selection problem (for
a review see Heckman and Robb, 1985). The traditional approach relies on distribu-
tional assumptions and functional form restrictions to identify average treatment e(ects
and other treatment parameters of interest. Unfortunately, estimators based on this ap-
proach can be seriously biased by modest departures from the parametric assumptions
(Goldberger, 1983). In addition, a number of researchers have noted that strong para-
metric assumptions are not necessary to identify treatment parameters of interest (see
e.g., Heckman, 1990; Imbens and Angrist, 1994; Manski, 1997). Consequently, it is
desirable to develop robust estimators of treatment parameters based on nonparametric
or semiparametric identi.cation procedures.
Motivated by these considerations, this article introduces a new class of instrumental

variable (IV) estimators of linear and nonlinear average treatment response models with
covariates. In the spirit of Roehrig (1988), identi.cation is attained nonparametrically
and does not depend on the choice of the parametric speci.cation for the response func-
tion of interest. The main advantage of this approach is that it allows the researcher to
construct estimators that can be interpreted as the parameters of a well-de.ned approx-
imation to a treatment response function under functional form misspeci.cation. On the
other hand, if required, functional form restrictions and distributional assumptions can
be accommodated in the analysis. As in the IV model of Imbens and Angrist (1994)
and Angrist et al. (1996), identi.cation comes from a binary instrument that induces
exogenous selection into treatment for some subset of the population. In contrast with
Imbens and Angrist (1994) and Angrist et al. (1996), the approach taken here easily
accommodates covariates and can be used to estimate nonlinear models with a binary
endogenous regressor.
The ability to control for covariates is important because instruments may require

conditioning on a set of covariates to be valid. Covariates can also be used to re7ect
observable di(erences in the composition of populations, making extrapolation more
credible. Another feature of the approach taken here, the ability to estimate nonlin-
ear models, is important because in some cases, such as evaluation problems with
limited dependent variables, the underlying response function of interest is inherently
nonlinear. As a by-product of the general framework introduced here, I develop an
IV estimator that provides a linear least squares approximation to an average treat-
ment response function, just as Ordinary Least Squares (OLS) provides a linear least
squares approximation to a conditional expectation. It is shown that Two Stage Least
Squares (2SLS) typically does not have this property. The interpretation of alterna-
tive IV estimators as average treatment response estimators is brie7y studied. In con-
trast to some usual IV models, the identi.cation conditions adopted in this article do
not restrict treatment e(ects to be constant or to be a deterministic function of the
covariates.
Previous e(orts to introduce covariates in the IV model of Imbens and Angrist

(1994) include Little and Yau (1998), Hirano et al., (2000) and Angrist and Imbens
(1995). Little and Yau (1998) and Hirano et al. (2000) use distributional assumptions
and functional form restrictions to accommodate covariates. The approach in Angrist
and Imbens (1995) is only valid for fully saturated speci.cations involving discrete co-
variates. In contrast, the identi.cation procedure introduced here requires no
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parametric assumptions for identi.cation, while allowing the estimation of a parsi-
monious parameterization for the response function of interest.
The rest of the article is organized as follows. Section 2 reviews an IV approach

to identi.cation of treatment parameters, introducing the concepts and notation used
throughout the article. Section 3 presents the main identi.cation theorem. Section 4
uses the results from the previous section to develop estimators of treatment response
functions. Asymptotic distribution theory is also provided. Section 5 studies the in-
terpretation of alternative IV estimators as treatment parameters under the identifying
conditions used in this article. Section 6 uses the approach introduced in this article
to estimate the e(ects of 401(k) programs on savings, a question originally explored
in a series of articles by Engen et al. (1994, 1996) and Poterba et al. (1994, 1995,
1996) among others. Section 7 summarizes and suggests directions for future research.
Proofs are provided in Appendix A.

2. The framework

2.1. The identi&cation problem

Suppose that we are interested in the e(ect of some treatment, say college graduation,
which is represented by the binary variable D, on some outcome of interest Y , such as
earnings. As in Rubin (1974, 1977), we de.ne Y1 and Y0 as the potential outcomes that
an individual would attain with and without being exposed to the treatment. Treatment
parameters are de.ned as characteristics of the distribution of (Y1; Y0) for well-de.ned
subpopulations.
In the example, Y1 represents potential earnings as a college graduate while Y0 rep-

resents potential earnings as a non-graduate. The treatment e(ect of college graduation
on earnings is then naturally de.ned as Y1− Y0. Now, an identi.cation problem arises
from the fact that we cannot observe both potential outcomes Y1 and Y0 for the same
individual, we only observe Y =Y1D+Y0(1−D). Since one of the potential outcomes
is always missing we cannot compute the treatment e(ect, Y1− Y0, for any individual.
We may still want to estimate the average treatment e(ect E[Y1 − Y0], or the aver-
age e(ect of the treatment on the treated E[Y1 − Y0|D = 1]. However, comparisons of
average earnings for treated and non-treated do not usually give the right answer:

E[Y |D = 1]− E[Y |D = 0] = E[Y1|D = 1]− E[Y0|D = 0]
= E[Y1 − Y0|D = 1] + {E[Y0|D = 1]
−E[Y0|D = 0]}: (1)

The .rst term of the right-hand side of Eq. (1) gives the average e(ect of the treatment
on the treated. The second term represents the bias caused by endogenous selection
into treatment. In general, this bias is di(erent from zero because anticipated potential
outcomes may a(ect selection into treatment.
Of course, treatment e(ects are not the only treatment parameters of interest. In

particular, optimal treatment choice may require forecasting average responses under
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the treatment/no treatment regimes, Y1 and Y0, for di(erent groups of the popula-
tion (as in Manski, 2000). In such cases, averages of Y1 and Y0 are to be estimated
separately.

2.2. Identi&cation by instrumental variables

IV methods have been proposed to recover treatment parameters in Heckman and
Robb (1985), Imbens and Angrist (1994), Heckman and Vytlacil (1999), and Manski
and Pepper (2000) among others. This article follows the approach of Imbens and
Angrist (1994).
Suppose that there is a binary instrument Z available to the researcher. The formal

requisites for an instrument to be valid are stated below. Informally speaking, the role
of an instrument is to induce exogenous variation in the treatment variable. The for-
mulation of the IV model of Imbens and Angrist (1994) recognizes the dependence
between the treatment and the instrument by using potential treatment indicators. The
binary variable Dz represents potential treatment status given Z=z. Suppose, for exam-
ple, that Z is an indicator of college proximity (see Card, 1993). Then D0=0 and D1=1
for a particular individual means that such individual would graduate from college if
living nearby a college at the end of high school, but would not graduate otherwise.
The treatment status indicator variable can then be expressed as D= ZD1 + (1− Z)D0.
In practice, we observe Z and D (and therefore Dz for individuals with Z = z), but
we do not observe both potential treatment indicators. Following the terminology of
Angrist et al. (1996), the population is divided in groups de.ned by the potential treat-
ment indicators D1 and D0. Compliers are those individuals who have D1¿D0 (or
equivalently, D0 = 0 and D1 = 1). In the same fashion, always-takers are de.ned by
D1 =D0 = 1 and never-takers by D1 =D0 = 0. Finally, de&ers are de.ned by D1¡D0
(or D0=1 and D1=0). Notice that, since only one of the potential treatment indicators
(D0; D1) is observed, we cannot identify which one of these four groups any particular
individual belongs to.
In order to state the properties that a valid instrument should have, we need to include

Z in the de.nition of potential outcomes. For a particular individual, the variable Yzd

represents the potential outcome that this individual would obtain if Z = z and D= d.
In the schooling example, Y01 represents the potential earnings that some individual
would obtain if not living near a college at the end of high school but being college
graduate. Clearly, if D0 = 0 for some individual, we will not be able to observe Y01
for such individual.
The following identifying assumption is used in most of the article. It contains a

set of nonparametric conditions under which IV techniques can be used to identify
meaningful treatment parameters. X represents a vector of predetermined variables.

Assumption 2.1.

(i) Independence of the instrument: Conditional on X , the random vector (Y00; Y01;
Y10; Y11; D0; D1) is independent of Z .

(ii) Exclusion of the instrument: P(Y1d = Y0d|X ) = 1 for d∈{0; 1}.
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(iii) First stage: 0¡P(Z = 1|X )¡ 1 and P(D1 = 1|X )¿P(D0 = 1|X ).
(iv) Monotonicity: P(D1¿D0|X ) = 1.

These assumptions are essentially the conditional versions of those used in Angrist
et al. (1996). Vytlacil (2002) has shown the equivalence between these assumptions
and those imposed by a nonparametric selection model. Assumption 2.1(i) is sometimes
called ignorability and it means that Z is “as good as randomly assigned” once we
condition on X . Assumption 2.1(ii) means that variation in the instrument does not
change potential outcomes other than through D. This assumption allows us to de.ne
potential outcomes in terms of D alone so we have Y0 = Y00 = Y10 and Y1 = Y01 = Y11.
Together, Assumptions 2.1(i) and (ii) guarantee that the only e(ect of the instrument
on the outcome is through variation in treatment status. Assumption 2.1(iii) is related to
the .rst stage, it guarantees that Z and D are correlated conditional on X . In addition,
Assumption 2.1(iii) implies that the support of X conditional on Z = 1 coincides with
the support of X conditional on Z = 0. Assumption 2.1(iv) rules out the existence
of de.ers and de.nes a partition of the population into always-takers, compliers, and
never-takers. Monotonicity is usually easy to assess from the institutional knowledge
of the problem. For the schooling example monotonicity means that those who would
graduate from college if not living nearby a college would also graduate from college if
living nearby one, holding everything else equal. In this setting, a possible instrument,
Z , is said to be valid if Assumption 2.1 holds. In what follows, it is enough that
Assumption 2.1 holds almost surely with respect to the probability law of X .
Imbens and Angrist (1994) show that if Assumption 2.1 holds in absence of covari-

ates, then a simple IV estimand identi.es the average treatment e(ect for compliers
(which they call Local Average Treatment E(ect or LATE):

�IV =
cov(Y; Z)
cov(D; Z)

=
E[Y |Z = 1]− E[Y |Z = 0]
E[D|Z = 1]− E[D|Z = 0] = E[Y1 − Y0|D1¿D0]: (2)

Moreover, it has been shown that, under the same assumptions, the entire marginal
distributions of potential outcomes are identi.ed for compliers (see Imbens and Rubin,
1997; Abadie, 2002). In particular, Abadie (2002) shows that if Assumption 2.1 holds
in absence of covariates:

E[Y1|D1¿D0] =
E[YD|Z = 1]− E[YD|Z = 0]
E[D|Z = 1]− E[D|Z = 0] ; (3)

E[Y0|D1¿D0] =
E[Y (1− D)|Z = 1]− E[Y (1− D)|Z = 0]
E[(1− D)|Z = 1]− E[(1− D)|Z = 0] : (4)

Eqs. (3) and (4) identify average treatment responses for compliers. Although the
results in Eqs. (2)–(4) do not incorporate covariates, they can easily be extended in
that direction. Note that under Assumption 2.1, Eqs. (2)–(4) must hold conditional
on X . If X is discrete with .nite support, it is straightforward to produce estimators
of E[Y1|X;D1¿D0] and E[Y0|X;D1¿D0]. If X is continuous, the estimation process
can be based on nonparametric smoothing techniques. The main advantage of this
strategy resides in the 7exibility of functional form. However, nonparametric methods
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have disadvantages related to the interpretation of the results and the precision of
the estimators. 1 Furthermore, nonparametric methods are not suitable for extrapolation
outside the observed support of the covariates. On the other hand, parameterization of
the four expectations in the conditional versions of Eqs. (3) and (4) will in general
produce undesirable speci.cations for the treatment response function. 2 The method
proposed in this article allows us to estimate parsimonious parameterizations for the
average response functions for compliers.

3. Identi�cation of statistical characteristics for compliers

This section presents an identi.cation theorem that includes previous results on IV
models for treatment e(ects as special cases, and provides the basis for new identi.-
cation results. To study identi.cation we proceed as if we knew the joint distribution
of (Y; D; X; Z). In practice, we can use a random sample from (Y; D; X; Z) to construct
estimators based on sample analogs of the population results.

Lemma 2.1. Under Assumption 2.1,

P(D1¿D0|X ) = E[D|Z = 1; X ]− E[D|Z = 0; X ]¿ 0:

This lemma says that, under Assumption 2.1, the proportion of compliers in the pop-
ulation is identi.ed given X and this proportion is greater than zero. This preliminary
result is important for establishing the following theorem.

Theorem 3.1. Let g(·) be any measurable real function of (Y; D; X ) such that
E|g(Y; D; X )|¡∞. De&ne

�(0) = (1− D)
(1− Z)− P(Z = 0|X )
P(Z = 0|X )P(Z = 1|X ) ;

�(1) = D
Z − P(Z = 1|X )

P(Z = 0|X )P(Z = 1|X ) ;

� = �(0)P(Z = 0|X ) + �(1)P(Z = 1|X ) = 1− D(1− Z)
P(Z = 0|X ) −

(1− D)Z
P(Z = 1|X ) :

Under Assumption 2.1,

(a) E[g(Y; D; X )|D1¿D0] =
1

P(D1¿D0)
E[� g(Y; D; X )]. Also,

1 For fully nonparametric estimators, the number of observations required to attain an acceptable preci-
sion increases very rapidly with the number of covariates. This problem is sometimes called the curse of
dimensionality and makes precision of nonparametric estimators be typically low.
2 For example, linear speci.cations for the conditional versions of the four averages in Eq. (3) do not

produce a linear speci.cation for E[Y1|X; D1¿D0]. Moreover, if Y is binary and the four expectations are
parameterized as Probits, the range for the resulting speci.cation for E[Y1|X; D1¿D0] is not restricted to
lie in between 0 and 1.
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(b) E[g(Y0; X )|D1¿D0] =
1

P(D1¿D0)
E[�(0)g(Y; X )], and

(c) E[g(Y1; X )|D1¿D0] =
1

P(D1¿D0)
E[�(1)g(Y; X )].

Moreover, (a–c) also hold conditional on X .

Note that setting g(Y; D; X ) = 1 we obtain E[�] = P(D1¿D0), so we can think
about � as a weighting scheme that allows us to identify expectations for compliers.
However, � does not produce proper weights since when D di(ers from Z , � takes
negative values.
Theorem 3.1 is a powerful identi.cation result; it says that any statistical character-

istic that can be de.ned in terms of moments of the joint distribution of (Y; D; X ) is
identi.ed for compliers. Since D is exogenous given X for compliers, Theorem 3.1 can
be used to identify meaningful treatment parameters for this group of the population.
The next section applies Theorem 3.1 to the estimation of average treatment response
functions for compliers.

4. Estimation of average response functions

4.1. Local average response functions

Consider the function of (D; X ) that is equal to E[Y0|X;D1¿D0] if D = 0, and is
equal to E[Y1|X;D1¿D0] if D=1. This function describes average treatment responses
for any group of compliers de.ned by some value for the covariates. Borrowing from
the terminology in Imbens and Angrist (1994), I will refer to this function as the Local
Average Response Function (LARF).
Since Z = D for compliers, under Assumptions 2.1(i) and (ii) Z is ignorable for

compliers given X . It follows that:

E[Y |X;D = 0; D1¿D0] = E[Y0|X; Z = 0; D1¿D0] = E[Y0|X;D1¿D0]

and

E[Y |X;D = 1; D1¿D0] = E[Y1|X; Z = 1; D1¿D0] = E[Y1|X;D1¿D0]:

Also,

E[Y |X;D = 1; D1¿D0]− E[Y |X;D = 0; D1¿D0] = E[Y1 − Y0|X;D1¿D0];

therefore, E[Y |X;D;D1¿D0] is the LARF.
An important special case arises when P(D0 = 0|X ) = 1. This happens, for example,

in randomized experiments when there is perfect exclusion of the control group from
the treatment. In such cases,

E[Y |X;D = 0; D1¿D0] = E[Y0|X; Z = 0; D1 = 1]
= E[Y0|X; Z = 1; D1 = 1] = E[Y0|X;D = 1]
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and similarly E[Y |X;D=1; D1¿D0]=E[Y1|X;D=1], so the LARF describes the e(ect
of the treatment for the treated given X . Note also that when P(D0 =0|X )=1 or, more
generally, when P(D0 = 0 ∪ D1 = 1|X ) = 1, then monotonicity holds trivially.
The fact that the conditional expectation of Y given D and X for compliers has

an interpretation as an average treatment response function would not be very useful
in the absence of Theorem 3.1. Since only one potential treatment status is observed,
compliers are not individually identi.ed. Therefore, the LARF cannot be estimated
directly because we cannot construct a sample of compliers. Theorem 3.1 provides a
solution to this identi.cation problem by expressing expectations for compliers in terms
of expectations for the whole population. 3

4.2. Estimation

This section describes two ways to learn about the LARF: (i) estimate a parameter-
ization of the LARF by Least Squares (LS), (ii) specify a parametric distribution for
P(Y |X;D;D1¿D0) and estimate the parameters of the LARF by Maximum Likelihood
(ML). Identi.cation of the conditional distribution of Y given D and X for compliers
does not depend, however, on the particular parametric speci.cation adopted for LS
or ML. As a result, the estimators proposed here have appealing interpretations under
misspeci.cation of the parameterization in (i) or (ii).
Throughout, W = (Y; D; X; Z) and {wi}ni=1 is a sample of realizations of W .

4.2.1. Least squares
Suppose that the LARF belongs to some class of parametric functions H =

{h(D; X ; �): �∈� ⊂ Rm} in the Lebesgue space of square-integrable functions. 4 Let
�0 be the vector of parameters such that E[Y |X;D;D1¿D0] = h(D; X ; �0). Then

�0 = argmin
�∈�

E[{Y − h(D; X ; �)}2|D1¿D0]:

Since we do not observe both D0 and D1 the equation above cannot be directly applied
to the estimation of �0. However, by Theorem 3.1 we have

�0 = argmin
�∈�

E[�(Y − h(D; X ; �))2]: (5)

Under functional form misspeci.cation (i.e., if the LARF does not belong to H), �0 are
the parameters of the best least squares approximation from H to E[Y |D; X; D1¿D0]
(White, 1981):

�0 = argmin
�∈�

E[{E[Y |D; X; D1¿D0]− h(D; X ; �)}2|D1¿D0]:

For expositional purposes, suppose that we know the function �0(x)=P(Z=1|X =x).
Then, we can construct {�i}ni=1 and apply Eq. (5) to estimate �0. The study of the

3 The average response is not necessarily the only treatment response function of interest. Abadie et al.
(2002) apply Theorem 3.1 to the estimation of quantile response functions for compliers.
4 To avoid existence problems, H can be restricted such that � �→ h(·; ·; �) is a continuous mapping on

� compact.
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more empirically relevant case in which the function �0(·) has to be estimated in a
.rst step is postponed until Section 4.3. Following the Analogy Principle (see Manski,
1988), a natural estimator of �0 is given by the sample counterpart of Eq. (5):

�̂= argmin
�∈�

1
n

n∑
i=1

�i(yi − h(di; xi; �))2;

where �i = 1− di(1− zi)=(1− �0(xi))− (1− di)zi=�0(xi).
For example, suppose that we want to estimate a linear parameterization for the

LARF. In this case h(D; X ; �)= �D+X ′� and �=(�; �). The parameters of the LARF
can be expressed as

(�0; �0) = argmin
(�;�)∈�

E[{Y − (�D + X ′�)}2|D1¿D0]: (6)

Theorem 3.1 and the Analogy Principle lead to the the following estimator:

(�̂; �̂) = argmin
(�;�)∈�

1
n

n∑
i=1

�i(yi − �di − x′i�)
2: (7)

Linear speci.cations are very popular because they summarize the e(ect of each co-
variate on the outcome in a single parameter. However, in many situations we are
actually interested in how the e(ect of the treatment varies with the covariates. Also,
when the dependent variable is limited, nonlinear response functions may provide a
more accurate description of the LARF.
Probit transformations of linear functions are often used when the dependent variable

is binary. In such cases, the objects of interest are conditional probabilities and the
Probit function restricts the approximation to lie in between zero and one. Another
appealing feature of the Probit speci.cation is that the estimated e(ect of the treatment
is allowed to change with covariates. As usual, let �(·) be the cumulative distribution
function of a standard normal. The parameters of a Probit speci.cation for the LARF
are given by

(�0; �0) = argmin
(�;�)∈�

E[{Y − �(�D + X ′�)}2|D1¿D0]:

Again, Theorem 3.1 along with the Analogy Principle, suggest the following estimator
for �0 = (�0; �0):

(�̂; �̂) = argmin
(�;�)∈�

1
n

n∑
i=1

�i(yi − �(�di + x′i�))
2: (8)

4.2.2. Maximum likelihood
In some cases, the researcher may be willing to specify a parametric distribu-

tion for P(Y |X;D;D1¿D0) (with density f(Y; D; X ; �0) for �0 ∈� and expectation
E[Y |D; X; D1¿D0] = h(D; X ; �0)), and estimate �0 by ML. Under this kind of distri-
butional assumption we have

�0 = argmax
�∈�

E[lnf(Y; D; X ; �)|D1¿D0]: (9)



240 A. Abadie / Journal of Econometrics 113 (2003) 231–263

As before, in order to express the problem in Eq. (9) in terms of moments for the
whole population we apply Theorem 3.1 to get

�0 = argmax
�∈�

E[� lnf(Y; D; X ; �)]:

Under misspeci.cation of P(Y |X;D;D1¿D0), �0 can be interpreted as the parameters
which minimize the Kullback–Leibler Information Criterion for compliers (see White,
1982).
An analog estimator for the last equation exploits the ML principle after weighting

with �i:

�̂= argmax
�∈�

1
n

n∑
i=1

�i lnf(yi; di; xi; �):

Following with the Probit example of Section 4.2.1, suppose that we consider
E[Y |D; X; D1¿D0] = �(�0D + X ′�0). Since Y is binary, E[Y |D; X; D1¿D0] provides
a complete speci.cation of the conditional distribution P(Y |D; X; D1¿D0). Under this
assumption, for � containing (�0; �0), we have

(�0; �0) = argmax
(�;�)∈�

E[Y ln�(�D + X ′�) + (1− Y ) ln�(−�D − X ′�)|D1¿D0]

= argmax
(�;�)∈�

E[�{Y ln�(�D + X ′�) + (1− Y ) ln�(−�D − X ′�)}]:

Therefore, an analog estimator of (�0; �0) is given by

(�̂; �̂) = argmax
(�;�)∈�

1
n

n∑
i=1

�i(yi ln�(�di + x′i�)

+ (1− yi) ln�(−�di − x′i�)): (10)

In addition to the approaches adopted for LS and ML, there is a broad range of
models that impose di(erent restrictions on P(Y |D; X; D1¿D0). Median independence
and symmetry are examples of possible restrictions that allow identi.cation of interest-
ing features of P(Y |D; X; D1¿D0). For the sake of brevity, these kinds of models are
not explicitly considered in this article. However, the basic framework of identi.cation
and estimation presented here also applies to them. Note also that although this section
(and the rest of the article) only exploits part (a) of Theorem 3.1, parts (b) and (c)
of Theorem 3.1 can also be used in a similar way to identify and estimate treatment
parameters.

4.3. Distribution theory

For any measurable real function q(·; !), let q(!) = q(W ; !) and qi(!) = q(wi; !)
where ! represents a (possibly in.nite-dimensional) parameter. Also, ‖ · ‖ denotes the
Euclidean norm. The next assumption is the usual identi.cation condition invoked for
extremum estimators.
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Assumption 4.1. The expectation E[g(�)|D1¿D0] has a unique minimum at �0 over
�∈�.

The speci.c form of g(�) depends on the model and the identi.cation strategy, and
it will be left unrestricted except for regularity conditions. For LS, the function g(�)
is a quadratic loss, for ML it is minus the logarithm of a density for W .
If we know the nuisance function �0, then � is observable and the estimation of �0

is carried out in a single step:

�̂= argmin
�∈�

1
n

n∑
i=1

�i(�0)gi(�): (11)

The asymptotic distribution for such an estimator can be easily derived from the
standard asymptotic theory for extremum estimators (see e.g., Newey and McFadden,
1994).
If �0 is unknown, which is often the case, we can estimate �0 in a .rst step and

then plug the estimates of �0(xi) in Eq. (11) to solve for �̂ in a second step. If �0
has a known parametric form (or if the researcher is willing to assume one), �0 can
be estimated using conventional parametric methods. If the form of �0 is unrestricted
(except for regularity conditions), we can construct a semiparametric two-step estimator
that uses a nonparametric .rst step estimator of �0. Asymptotic theory for �̂ in each case
is provided below. Section 4.3.1 focuses on the parametric case, when �0 = �(X; "0) for
some known function � and "0 ∈R l. Section 4.3.2 derives the asymptotic distribution
for �̂ when �0 is estimated nonparametrically in a .rst step using power series. As
explained below, one advantage of .rst step series estimation over kernel methods is
that undersmoothing is not necessary to achieve

√
n-consistency for �̂. This is important

because the estimate of �0 can sometimes be an interesting by-product of the estimation
process.
The asymptotic distributions are derived under general misspeci.cation. As a conse-

quence, the resulting standard errors are robust to misspeci.cation.

4.3.1. Parametric &rst step
This section studies two-step estimation procedures for �0 that are based on Eq. (11)

and that use a parametric estimator in the .rst step. 5 First, we establish the consistency
of such estimators.

Theorem 4.1. Suppose that Assumptions 2.1 and 4.1 hold and that (i) the data are
i.i.d.; (ii) � is compact; (iii) �0(·) belongs to some (known) parametric class of
functions �(·; ") such that for some "0 ∈Rl, �0(X ) = �(X; "0); there exists $¿ 0 such
that for ‖"− "0‖¡$, �(X; ") is bounded away from zero and one and is continuous
at each " on the support of X ; (iv) "̂

p→"0; (v) g(�) is continuous at each �∈�

5 Note that in some cases we may know a parametric form for �0. The main example is when X is discrete
with .nite support. Then, �0 is linear in a saturated model that includes indicators for all possible values of
X . For other cases, nonlinear models such as Probit or Logit can be used in the .rst step to guarantee that
the estimate of �0 lies in between zero and one.
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with probability one; there exists b(W ) such that ‖g(�)‖6 b(W ) for all �∈� and
E[b(W )]¡∞. Then �̂

p→�0.

We say that an estimator ’̂ of some parameter ’0 is asymptotically linear with
in:uence function  (W ) when

√
n(’̂−’0)=

1√
n

n∑
i=1

 (wi)+op(1) and E[ (W )] = 0; E[‖ (W )‖2]¡∞:

The next theorem provides suPcient conditions for asymptotic normality of �̂ when
the .rst step estimator of "0 is asymptotically linear. This requirement is very weak
because most estimators used in econometrics fall in this class.

Theorem 4.2. If the assumptions of Theorem 4.1 hold and (i) �0 ∈ interior(�); (ii)
there exist $¿ 0 and b(W ) such that for ‖� − �0‖¡$, g(�) is twice continuously
di;erentiable and E[sup�:‖�−�0‖¡$‖@2g(�)=@�@�′‖]¡∞, and for ‖"−"0‖¡$, �(X; ") is
continuously di;erentiable at each ", ‖@�(X; ")=@"‖6 b(W ) and E[b(W )2]¡∞; (iii)
"̂ is asymptotically linear with in:uence function  (W ); (iv) E[‖@g(�0)=@�‖2]¡∞
and M� = E[�(@2g(�0)=@�@�′)] is non-singular. Then,

√
n(�̂− �0)

d→N(0; V ) where

V =M−1
� E

[{
�
@g(�0)
@�

+M" 
}{

�
@g(�0)
@�

+M" 
}′]

M−1
� ;

and M" = E[(@g(�0)=@�)(@�("0)=@"′)].

In order to make inference operational, we need a consistent estimator of the asymp-
totic variance matrix V . Consider

V̂ = M̂−1
�

(
1
n

n∑
i=1

{
�i("̂)

@gi(�̂)
@�

+ M̂ " ̂ i

}{
�i("̂)

@gi(�̂)
@�

+ M̂ " ̂ i

}′)
M̂−1

� ;

where M̂ � and M̂ " are the sample analogs of M� and M" evaluated at the estimates.
Typically,  ̂ is also some sample counterpart of  where "0 has been substituted
by "̂.

Theorem 4.3. If the conditions of Theorem 4.2 hold and (i) there is b(W ) such that
for " close enough to "0, ‖�(")@g(�)=@�−�("0)@g(�0)=@�‖6 b(W )(‖"−"0‖+‖�−�0‖)
and E[b(W )2]¡∞; (ii) n−1

∑n
i=1 ‖ ̂ i −  i‖2 p→0, then V̂

p→V .

4.3.2. Semiparametric estimation using power series
First step parametric estimation procedures are easy to implement. However, consis-

tency of �̂ depends on the correct speci.cation of the .rst step. Therefore, nonpara-
metric procedures in the .rst step are often advisable when we have little knowledge
about the functional form of �0.
This section considers two-step estimators of �0 that use power series in a .rst step

to estimate �0. The main advantage of this type of semiparametric estimators over those
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which use kernel methods is that undersmoothing in the .rst step may not be necessary
to attain

√
n-consistency of �̂ (see e.g., Newey and McFadden, 1994). Other advantages

of series estimation are that it easily accommodates dimension-reducing nonparametric
restrictions to �0 (e.g., additive separability) and that it requires low computational
e(ort. The motivation for focusing on a particular type of approximating functions
(power series) is to provide primitive regularity conditions. For brevity, other types of
approximating series such as splines are not considered here, but the results can be
easily generalized to include them.
Theory for semiparametric estimators that use .rst step series has been developed

in Andrews (1991) and Newey (1994a,b) among others. This section applies results
from Newey (1994b) to derive regularity conditions for semiparametric estimators of
treatment response functions.
Let . = (.1; : : : ; .r)′ be a vector of non-negative integers where r is the dimen-

sion of X , and let |.| = ∑r
j=1 .j. 6 Consider a sequence {.(k)}∞k=1 containing all

distinct such vectors, with |.| non-decreasing. For a positive integer K , let pK (X ) =
(p1(X ); : : : ; pK (X ))′ where pk(X ) =

∏r
j=1 X .(k)j

j . Then, for K = K(n) → ∞ a power
series nonparametric estimator of �0 is given by

�̂(X ) = pK (X )′3̂; (12)

where 3̂=(
∑n

i=1 pK (xi)pK (xi)′)−(
∑n

i=1 pK (xi)zi) and A− denotes any symmetric gen-
eralized inverse of A.
The next three theorems present results on the asymptotic distribution of �̂ when Eq.

(12) is used in a .rst step to estimate �0. 7

Theorem 4.4. If Assumptions 2.1 and 4.1 hold and (i) the data are i.i.d.; (ii) � is
compact; (iii) X is continuously distributed with support equal to a Cartesian product
of compact intervals and density bounded away from zero on its support; (iv) �0(X )
is bounded away from zero and one and is continuously di;erentiable of order s; (v)
g(�) is continuous at each �∈� with probability one; (vi) there is b(W ) such that
for �∈�, ‖g(�)‖6 b(W ), E[b(W )]¡∞ and K[(K=n)1=2 + K−s=r]→ 0. Then �̂

p→�0.

Let 6(X ) = E[(@g(�0)=@�)7|X ] where 7 = @�(�0(X ))=@� = Z(1 − D)=(�0(X ))2 −
D(1−Z)=(1−�0(X ))2. The function 6(X ) is used in the following theorem that provides
suPcient conditions for asymptotic normality of �̂.

Theorem 4.5. Under the assumptions of Theorem 4.4 and (i) �0 ∈ interior(�); (ii)
there is $¿ 0 such that for ‖�−�0‖¡$, g(�) is twice continuously di;erentiable and
E[sup�:‖�−�0‖¡$ ‖@2g(�)=@�@�′‖]¡∞; (iii) √nK2[(K=n)+K−2s=r]→ 0 and for each K

6 If �0 depends only on a subset of the covariates considered in the LARF, then r is the number of
covariates that enter �0.
7 Typically, we may want to trim the .tted values from Eq. (12) so that �̂ lies between zero and one. All

the results in this section still apply when the trimming function converges uniformly to the identity in the
open interval between zero and one.
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there is 8K such that nE[‖6(X )− 8KpK (X )‖2]K−2s=r → 0; (iv) E[‖@g(�0)=@�‖2]¡∞
and M� = E[�(@2g(�0)=@�@�′)] is non-singular. Then,

√
n(�̂− �0)

d→N(0; V ) where

V =M−1
� E

[{
�
@g(�0)
@�

+6(X )(Z−�0(X ))
}{

�
@g(�0)
@�

+6(X )(Z−�0(X ))
}′]

M−1
� :

The second part of condition (iii) in Theorem 4.5 deserves some comment. To min-
imize the order of magnitude of the mean square error in the .rst step we need that
K−2s=r goes to zero at the same rate as K=n (see Newey, 1997). This means that, as
long as 6(X ) is smooth enough, E[‖6(X )−8KpK (X )‖2] converges to zero fast enough,
and undersmoothing in the .rst step is not necessary to achieve

√
n-consistency in the

second step. In practice, this property allows us to use cross-validation techniques to se-
lect K for the .rst step. This feature is not shared by semiparametric estimators that use
kernel regression in a .rst step; those estimators usually require some undersmoothing
(see Newey, 1994a; Newey and McFadden, 1994).
An estimator of V can be constructed by using the sample counterparts of its com-

ponents evaluated at the estimates

V̂ = M̂−1
�

(
1
n

n∑
i=1

{
�i(�̂)

@gi(�̂)
@�

+ 6̂(xi)(zi − �̂(xi))

}

× �i(�̂)
@gi(�̂)
@�

+ 6̂(xi)(zi − �̂(xi))

}′)
M̂−1

� ;

where M̂ �=n−1
∑n

i=1 �i(�̂)(@2gi(�̂)=@�@�′). Following the ideas in Newey (1994b), an
estimator of 6(X ) can be constructed by projecting {(@gi(�̂)=@�)7i(�̂)}ni=1 on the space
spanned by {pK (xi)}ni=1:

6̂(xi) =

(
n∑

i=1

@gi(�̂)
@�

7i(�̂)pK (xi)′
)(

n∑
i=1

pK (xi)pK (xi)′
)−

pK (xi):

The next theorem provides suPcient conditions for consistency of V̂ constructed as
above.

Theorem 4.6. If the assumptions of Theorem 4.5 hold and there is $¿ 0 such that
E[sup�:‖�−�0‖¡$ ‖@2g(�)=@�@�′‖2]¡∞, then V̂

p→V .

Institutional knowledge about the nature of the instrument can often be used to
restrict the number of covariates from X that enter the function �0. This dimension
reduction can be very important to overcome the curse of dimensionality when X
is highly dimensional. For example, the techniques proposed in this article can be
applied to randomized experiments in which individuals do not necessarily comply
with the randomized assignment for treatment, so the treatment is not ignorable, but
the assignment can be used as a plausible instrument. In such case, no covariate enters
�0, which is constant. However, randomization is not informative about the conditional
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response function estimated in the second step. Therefore, a nonparametric approach
based directly on conditional versions of Eqs. (3) and (4) may be highly dimensional
relative to the alternative approach suggested in this section. Occasionally, we may want
to reduce the dimensionality of the .rst step estimation by restricting some subset
of the covariates in X to enter �0 parametrically. When �0 is correctly speci.ed in
that way, the results of this section will still apply under a conditional version of the
assumptions, and for r equal to the number of covariates that enter �0 nonparametrically
(see Hausman and Newey, 1995).

5. Comparison with other IV methods

In this article, I propose a new class of IV estimators for treatment response mod-
els with covariates when a binary instrument is available. In the same context, linear
2SLS has been used to estimate treatment responses. Identi.cation of treatment re-
sponses in linear 2SLS is often justi.ed by restricting treatment e(ects to be constant
among individuals (see, e.g., Heckman and Robb, 1985; Angrist, 2001). In contrast,
the identi.cation method in this article does not require such a restriction. Imbens and
Angrist (1994) have shown, however that, when treatment e(ects are not constant, if
Assumption 2.1 holds in absence of covariates, then the treatment coePcient of 2SLS
in a model without covariates recovers the average treatment e(ect for compliers. This
section studies whether 2SLS has a similar interpretation in models with covariates
under the conditions of Assumption 2.1 (which are silently assumed to hold for the
rest of this section). Linear 2SLS (with OLS as a special case), as well as the more
recent nonparametric versions in Newey and Powell (1989) and Darolles et al. (2000)
are discussed.

5.1. Linear models (OLS and 2SLS)

In econometrics, linear models are often used to describe the e(ect of a set of
covariates on some outcome of interest. The parameters of a linear speci.cation for
the LARF are(

�0

�0

)
=

(
E

[(
D

X

)
�

(
D

X

)′])−1
E

[(
D

X

)
�Y

]
: (13)

Under misspeci.cation, (�0; �0) de.nes the best linear least squares approximation to
the LARF.
For some random sample, let �̂ be a .rst-step estimator of �0, and (�̂; �̂) the analog

estimator of the parameters in Eq. (13). That is,(
�̂

�̂

)
=

(
1
n

n∑
i=1

(
di

xi

)
�i(�̂)

(
di

xi

)′)−1(
1
n

n∑
i=1

(
di

xi

)
�i(�̂)yi

)
: (14)

Clearly, when Z=D, then �i(�̂)=1 for all i, and the equation above collapses to OLS.
The conditions in Section 2.2 for Z = D imply that D is ignorable given X . In that
case, E[Y |D; X ] describes average potential responses and is estimable by OLS.
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The 2SLS estimator is widely used in linear models with endogenous regressors. In
the context studied in this article, the 2SLS estimator is given by(

�̂2SLS

�̂2SLS

)
=

(
1
n

n∑
i=1

(
zi

xi

)(
di

xi

)′)−1(
1
n

n∑
i=1

(
zi

xi

)
yi

)
(15)

with probability limit(
�2SLS

�2SLS

)
=

(
E

[(
Z

X

)(
D

X

)′])−1
E

[(
Z

X

)
Y

]
: (16)

If X includes only a constant variable the LARF is linear, since it only depends
on the binary treatment. Hence, the treatment coePcient in the LARF is �0 = E[Y1 −
Y0|D1¿D0]. In addition, if X includes only a constant variable, then �2SLS=cov(Y; Z)=
cov(D; Z). Therefore, Eq. (2) implies that �2SLS = �0, so the 2SLS estimator of the
treatment coePcient in a model without covariates has an interpretation as an estimator
of the average treatment e(ect for compliers. This is the LATE result of Imbens and
Angrist (1994). The 2SLS estimator without covariates uses variation in D induced by Z
to explain Y , and only compliers contribute to this variation. However, the comparison
of Eqs. (13) and (16) shows that �2SLS is not necessarily equal to �0 in models with
covariates. In 2SLS estimators with covariates, the whole population contributes to the
variation in X . So the estimands do not only respond to the distribution of (Y; D; X )
for compliers. This raises the question of whether it is possible interpret linear 2SLS
estimators with covariates as treatment response estimators under the assumptions used
in this article. The next proposition extends the LATE result to linear models with
covariates.

Proposition 5.1. Suppose that (
∑n

i=1 xi x′i) is non-singular and that �̂ in Eq. (14) is
given by the OLS estimator, that is, �̂(xi) = x′i 3̂ with

3̂=

(
1
n

n∑
i=1

xix′i

)−1(
1
n

n∑
i=1

xizi

)
:

Suppose also that (
∑n

i=1 xi�̂ix′i) is positive de&nite and that
∑n

i=1(zi − x′i 3̂)di �= 0.
Then, �̂2SLS = �̂. Consequently, if there exists 3∈Rl such that �0(x)= x′3 for almost
all x in the support of X, and �2SLS and �0 exist, then �2SLS = �0.

That is, when �0(X ) is linear in X , then �2SLS = �0. 8 In general, however, the co-
variate coePcients (�2SLS) do not have a similar interpretation. The reason is that the
e(ect of the treatment for always-takers may di(er from the e(ect of the treatment
for compliers. Once, we subtract the e(ect of the treatment using �2SLS, we expect the
covariate coePcients to re7ect the conditional distribution of Y0 given X . Although the
conditional distribution of Y0 is identi.ed for never-takers and for compliers, this is not
the case for always-takers. On the other hand, if the e(ect of the treatment is constant

8 The LATE result (Eq. (2)) is a special case of Proposition 5.1, because if X includes only a constant
variable, then �0(X ) is constant and, therefore, linear.
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across units, the conditional distribution of Y0 for always-takers is also identi.ed (as
Y0 = Y1 − �, and � can be identi.ed through compliers). As a result, under constant
treatment e(ects, the conditional distribution of Y0 given X is identi.ed for the whole
population. The next proposition is a direct consequence of this fact.

Proposition 5.2. Under constant treatment e;ects (that is, Y1 − Y0 is constant), if
there exists 3∈Rl such that �0(x) = x′ 3 for almost all x in the support of X , then
�2SLS and �2SLS are given by �2SLS=Y1−Y0 and �2SLS=argmin� E[{E[Y0|X ]−X ′�}2].

Note that monotonicity is not needed here. When the e(ect of the treatment is constant,
the usual IV identi.cation argument applies, and monotonicity does not play any role
in identi.cation. 9

5.2. Nonlinear models (nonparametric and semiparametric)

Newey and Powell (1989), and Darolles et al. (2000) consider a nonparametric
generalization of the 2SLS estimator; Das (2001) analyzes this estimator for the case
of discrete endogenous regressors. In the context of estimation of binary treatment re-
sponses, the nonparametric model of Newey and Powell (1989), Darolles et al. (2000),
and Das (2001) becomes

Y = 9(X ) + �(X )D + :; (17)

where E[:|X; Z] = 0. It is easy to show that

�(X ) =
E[Y |X; Z = 1]− E[Y |X; Z = 0]
E[D|X; Z = 1]− E[D|X; Z = 0] ; (18)

9(X ) =
E[Y |X; Z = 0]E[D|X; Z = 1]− E[Y |X; Z = 1]E[D|X; Z = 0]

E[D|X; Z = 1]− E[D|X; Z = 0] : (19)

Under the identifying conditions of Assumption 2.1, �(X ) identi.es a conditional av-
erage treatment e(ect for compliers. The interpretation of 9(X ) is, however, more
complicated.

Proposition 5.3. The functions �(X ) and 9(X ) in Eqs. (18) and (19) are equal to

�(X ) = E[Y1 − Y0|X;D1¿D0];

9(X ) = E[Y0|X ] + [E[Y1 − Y0|X;D0 = D1 = 1]

−E[Y1 − Y0|X;D1¿D0]]P(D0 = D1 = 1|X ):

9 It is well known that the result of Proposition 5.2 also holds when �0 is nonlinear as long as E[Y0|X ]
is linear. See, e.g., Heckman and Robb (1985) and Angrist (2001). In that case, however, variation in X is
enough to identify the parameters of interest, since nonlinear functions of X are also valid instruments.
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If there are no always-takers or if average treatment e(ects (conditional on X ) coin-
cide for compliers and always-takers, then 9(X ) recovers E[Y0|X ], and �(X ) recovers
E[Y1 − Y0|X;D= 1]. One special case of these conditions is when the treatment e(ect,
Y1 − Y0, is a deterministic function of the covariates, X . In general, however, if there
is heterogeneity in treatment e(ects that is not explained by the covariates, 9(X ) is
di(erent from E[Y0|X ].
If Eq. (17) is taken to be a structural model (that is, a model describing potential

outcomes), then homogeneity of the treatment e(ect given covariates is implied by
additive separability of the error term :. In that case, Y0=9(X )+:, Y1=9(X )+�(X )+:,
9(X ) = E[Y0|X ] and �(X ) = Y1 − Y0. In contrast, the identi.cation conditions adopted
in this article do not restrict treatment e(ects to be deterministic functions of the
covariates.
Heterogeneity of treatment e(ects among individuals with the same values for the

covariates can be represented by structural models with a common nonadditive error
term, or with di(erent error terms for di(erent potential outcomes. Nonparametric and
semiparametric IV methods for these models can be found in Heckman (1990), Vytlacil
(2000), and Lewbel (2001), among others. These articles exploit continuity and, in
some cases, large support conditions for the distribution of the instruments, which do
not apply to the binary IV case studied here.

6. Empirical application: the e'ects of 401(k) retirement programs on savings

Since the early 1980s, tax-deferred retirement plans have become increasingly popu-
lar in the US. The aim of these programs is to increase savings for retirement through
tax deductibility of the contributions to retirement accounts and tax-free accrual of
interest. Taxes are paid upon withdrawal and there are penalties for early withdrawal.
The most popular tax-deferred programs are Individual Retirement Accounts (IRAs)
and 401(k) plans. Unlike IRAs, 401(k) plans are provided by employers. Therefore,
only workers in .rms that o(er such programs are eligible. The other important di(er-
ence between IRA and 401(k) plans is that employers may match some percentage of
employees’ 401(k) contributions. 10

Whether contributions to tax-deferred retirement plans represent additional savings
or simply crowd out other types of savings is a central issue for the evaluation of this
type of programs. This question has generated considerable research in recent years. 11

The main problem when trying to evaluate the e(ects of tax-deferred retirement plans
on savings is caused by individual heterogeneity. It seems likely that individuals who
participate in such programs have stronger preferences for savings, so that even in the
absence of the programs they would have saved more than those who do not participate.
Therefore, simple comparisons of personal savings between those who participate in
tax-deferred retirement plans and those who do not participate are likely to generate

10 See Employee Bene.t Research Institute (1997) for a detailed description of tax-deferred retirement
programs’ history and regulations.
11 See the reviews Engen et al. (1996) and Poterba et al. (1996) for opposing interpretations of the empirical
evidence on this matter.
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estimates of the e(ects of tax-deferred retirement programs that are biased upwards.
Even after controlling for the e(ect of observed determinants of savings (such as age
or income), unobserved preferences for savings may still contaminate comparisons
between participants and non-participants.
In order to overcome the individual heterogeneity problem, Poterba et al. (1994,

1995) used comparisons between those eligible and not eligible for 401(k) programs,
instead of comparisons between participants and non-participants. The idea is that since
401(k) eligibility is decided by employers, unobserved preferences for savings may
play a minor role in the determination of eligibility, once, we control for the e(ects
of observables. To support this view, Poterba et al. present evidence that eligibles and
non-eligibles that fall in the same income brackets held similar amounts of assets at the
outset of the program in 1984. This fact suggests that, given income, 401(k) eligibility
could be unrelated to individual preferences for savings. Di(erences in savings in 1991
between eligibles and non-eligibles that fall in the same income brackets are therefore
interpreted as being caused by participation in 401(k) plans. Poterba et al. results show
a positive e(ect of participation in 401(k) programs on savings. However, since not
all eligibles participate in 401(k) plans, the magnitude of the e(ect is left unidenti.ed.
This section applies the methodology developed above to the study of the e(ects

of participation in 401(k) programs on saving behavior. As suggested by Poterba
et al. (1994, 1995), eligibility is assumed to be ignorable given some observables
(most importantly, income) so it can be used as an instrument for participation in
401(k) programs. 12

Note that since only eligible individuals can open a 401(k) account, monotonicity
holds trivially and, as explained in Section 4.1, the estimators proposed here approx-
imate the average treatment response function for the treated (i.e., for 401(k) partici-
pants).
The data consist of 9275 observations from the Survey of Income and Program

Participation (SIPP) of 1991. These data were prepared for Poterba et al. (1996). The
observational units are household reference persons aged 25–64 and spouse if present.
The sample is restricted to families with at least one member employed and where
no member has income from self-employment. In addition to the restrictions used in
Poterba et al. (1996), here annual family income is required to fall in the $10; 000–
$200; 000 interval. The reason is that outside this interval, 401(k) eligibility in the
sample is rare.
Table 1 presents descriptive statistics for the analysis sample. The treatment variable

is an indicator of participation in a 401(k) plan and the instrument is an indicator
of 401(k) eligibility. To study whether participation in 401(k) crowds out other types
of saving, net .nancial assets and a binary indicator for participation in IRAs are
used as outcome variables. The covariates are family income, age, marital status and
family size, which are thought to be associated with unobserved preferences for savings.
Table 1 also reports means and standard deviations of the variables in the sample by
401(k) participation and 401(k) eligibility status. The proportion of 401(k) eligibles in

12 The possible exogeneity of 401(k) eligibility is the subject of an exchange between Poterba et al. (1995)
and Engen et al. (1994).



250 A. Abadie / Journal of Econometrics 113 (2003) 231–263

Table 1
Means and standard deviations

Entire sample By 401(k) participation By 401(k) eligibility

Participants Non-participants Eligibles Non-eligibles

Treatment
Participation in 401(k) 0.28 0.70 0.00

(0.45) (0.46) (0.00)
Instrument
Eligibility for 401(k) 0.39 1.00 0.16

(0.49) (0.00) (0.37)

Outcome variables
Family net .nancial assets 19,071.68 38,472.96 11,667.22 30,535.09 11,676.77

(63,963.84) (79,271.08) (55,289.23) (75,018.98) (54,420.17)

Participation in IRA 0.25 0.36 0.21 0.32 0.21
(0.44) (0.48) (0.41) (0.47) (0.41)

Covariates
Family income 39,254.64 49,815.14 35,224.25 47,297.81 34,066.10

(24,090.00) (26,814.24) (21,649.17) (25,620.00) (21,510.64)

Age 41.08 41.51 40.91 41.48 40.82
(10.30) (9.65) (10.53) (9.61) (10.72)

Married 0.63 0.70 0.60 0.68 0.60
(0.48) (0.46) (0.49) (0.47) (0.49)

Family size 2.89 2.92 2.87 2.91 2.87
(1.53) (1.47) (1.55) (1.48) (1.56)

Note: The sample includes 9275 observations from the SIPP of 1991. The observational units are household
reference persons aged 25–64, and spouse if present, with Family Income in the $10; 000–$200; 000 interval.
Other sample restrictions are the same as in Poterba et al. (1995).

the sample is 39% and the proportion of 401(k) participants is 28%. The proportion
of eligibles who hold 401(k) accounts is 70%. Relative to non-participants, 401(k)
participants have larger holdings of .nancial assets and are more likely to have an
IRA account. On average, 401(k) participation is associated with larger family income
and a higher probability of being married. Average age and family size are similar for
participants and non-participants.
Table 1 allows us to compute some simple estimators that are often used when

either the treatment or the instrument can be assumed to be “as good as randomly
assigned”. For example, if 401(k) participation were independent of potential outcomes,
we could use the simple comparison of means in Eq. (1) to estimate the average e(ect
of the treatment. This comparison gives $38; 473− $11; 667 = $26; 806 for family net
.nancial assets and 0:36 − 0:21 = 0:15 for average IRA participation. Since 401(k)
participation is thought to be a(ected by individual preferences for savings, these simple
comparisons of means between participants and non-participants are likely to be biased
upwards. If 401(k) participation was not “as good as randomly assigned” but 401(k)
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eligibility was a valid instrument in absence of covariates, then we could use Eq. (2)
to identify the average e(ect of 401(k) participation on participants. Eq. (2) suggests
a Wald estimator which gives ($30; 535 − $11; 677) ÷ 0:70 = $26; 940 for family net
.nancial assets and (0:32 − 0:21) ÷ 0:70 = 0:16 for average IRA participation. These
simple IV estimates are similar to those which use comparisons of means between
participants and non-participants. This fact suggests that, without controlling for the
e(ect of covariates, 401(k) eligibility may not be a valid instrument. Indeed, the last
two columns of Table 1 show systematic di(erences in the averages of the covariates
between 401(k) eligibles and non-eligibles. In fact, the comparison of averages for the
covariates between eligibles and non-eligibles gives similar numbers to that between
participants and non-participants. Eligibles have higher average income and they are
more likely to be married.
To control for these di(erences, the procedure proposed in this article estimates the

probability of 401(k) eligibility conditional on the covariates in a .rst step. This .rst
step is carried out here by using nonparametric series regression of 401(k) eligibility on
income, as explained in Section 4.3.2. Another two covariates, age and marital status,
are also strongly associated with eligibility. To control for the e(ect of these discrete
covariates I adopt an approach similar to that in Hausman and Newey (1995), including
in the .rst step regression 80 indicator variables that control for all the combinations of
age and marital status. Family size and interactions between covariates were excluded
from the regression since they did not seem to explain much variation in eligibility.
Fig. 1 shows the estimated conditional probability of eligibility given income (with the
age–marital status variables evaluated at their means). The probability of being eligible
for 401(k) is mostly increasing with income up to $170; 000 and decreasing beyond
that point.
Table 2 reports the estimates of a linear model for the e(ect of 401(k) participation

on net .nancial assets. In order to describe a more accurate age pro.le for the accu-
mulation of .nancial assets, the age variable enters the equation quadratically. Three
di(erent estimators are considered. The OLS estimates in column (1) show a strong
positive association between participation in 401(k) and net .nancial assets given the
covariates. As said above, this association may be due not only to the e(ect of the
treatment, but also to di(erences in unexplained preferences for asset accumulation.
Financial assets also appear to increase rapidly with age and income and to be lower
for married couples and large families. Columns (3) and (4) in Table 2 control for the
endogeneity of the treatment in two di(erent ways: the conventional 2SLS estimates
are shown in column (3) (with .rst stage results in column (2)), while column (4)
shows the estimates of a linear speci.cation for the treatment response function for
the treated (which is the estimator described in Eq. (7)). In both cases, the treatment
coePcient is attenuated but remains positive, suggesting that participation in 401(k)
plans may increase net .nancial assets. The magnitude of this e(ect for the treated is
estimated to be $10; 800 in 1991. Note also that the coePcients of the covariates for
OLS and 2SLS are similar, but that they di(er from those in column (4) which are
estimated for the treated. These di(erences suggest that the conditional distribution of
net .nancial assets given the covariates would still di(er between 401(k) participants
and non-participants in the absence of 401(k) plans.
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Fig. 1. Conditional probability of eligibility for 401(k) plan given income.

The positive e(ect of 401(k) participation on net .nancial assets is not consistent
with the view that IRAs and 401(k) plans are close substitutes. To assess the degree
of substitution between these two types of saving plans, the rest of this section studies
the e(ect of 401(k) participation on the probability of holding an IRA account. 13

The .rst three columns of Table 3 report the coePcients of linear probability models
for IRA participation on 401(k) participation and the covariates. The OLS estimates
in column (1) show that 401(k) participation is associated with an increase of 5.7%
in the probability of holding an IRA account, once we control for the e(ect of the
covariates in a linear fashion. The estimated e(ect of 401(k) participation decreases
when we instrument this variable with 401(k) eligibility. The 2SLS estimates in column
(2) show a 2.7% increase in the probability of IRA participation due to participation
in a 401(k) plan. Column (3) uses the methodology proposed in this article to estimate
a linear speci.cation for the treatment response function of participants. The e(ect of
401(k) participation on the probability of holding an IRA account is further reduced
and it is no longer signi.cant. 14

13 Note that substitution between 401(k) and IRA cannot be fully explained through participation in these
programs. Even if 401(k) participants hold IRA accounts, 401(k) participation may reduce IRA contributions.
Unfortunately, the SIPP only reports participation in IRA and not contributions.
14 Inference throughout this section uses the conventional 5% level of signi.cance.
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Table 2
Linear response functions for family net .nancial assets (dependent variable: family net .nancial assets
(in $))

Endogenous treatment

Two stage least squares

Ordinary Least squares
least squares First stage Second stage treated
(1) (2) (3) (4)

Participation in 401(k) 13,527.05 9,418.83 10,800.25
(1,810.27) (2,152.89) (2,261.55)

Constant −23; 549:00 −0:0306 −23; 298:74 −27; 133:56
(2,178.08) (0.0087) (2,167.39) (3,212.35)

Family income (in thousand $) 976.93 0.0013 997.19 982.37
(83.37) (0.0001) (83.86) (106.65)

Age (minus 25) −376.17 −0:0022 −345:95 312.30
(236.98) (0.0010) (238.10) (371.76)

Age (minus 25) squared 38.70 0.0001 37.85 24.44
(7.67) (0.0000) (7.70) (11.40)

Married −8; 369:47 −0:0005 −8; 355:87 −6; 646:69
(1,829.93) (0.0079) (1,829.67) (2,742.77)

Family size −785:65 0.0001 −818:96 −1; 234:25
(410.78) (0.0024) (410.54) (647.42)

Eligibility for 401(k) 0.6883
(0.0080)

Note: The dependent variable in column (2) is Participation in 401(k). The sample includes 9275
observations from the SIPP of 1991. The observational units are household reference persons aged 25–64,
and spouse if present, with Family Income in the $10; 000–$200; 000 interval. Other sample restrictions are
the same as in Poterba et al. (1995). Robust standard errors are reported in parentheses.

Linear speci.cations are often criticized when the dependent variable is binary. The
reason is that linear response functions may take values outside the [0; 1] range of a
conditional probability function. Nonlinear response functions into [0; 1], such as the
Probit response function, are customarily adopted for binary choice models. Columns
(4)–(9) in Table 3 report marginal e(ect coePcients (partial derivatives) of a Probit
response function for an indicator of having an IRA account on 401(k) participation
and the covariates. Marginal e(ects are evaluated at the mean of the covariates for the
treated. 15 Columns (4) and (5) present the results obtained using simple Probit and

15 For binary explanatory variables (Participation in 401(k) and Married) the table reports the change in
the response function due to a change in the binary variable, with other the explanatory variables evaluated
at the mean for the treated.
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Nonlinear Least Squares estimators (i.e., treating 401(k) participation as exogenous).
These results show that, after controlling for the e(ect of the covariates with a Probit
speci.cation, participation in 401(k) is associated with an increase of 7% in the prob-
ability of holding an IRA account. However, this association cannot be interpreted as
re7ecting only the e(ect of the treatment, because simple Probit and Nonlinear Least
Squares estimators do not correct for endogeneity of 401(k) participation.
The Bivariate Probit model provides a simple way to deal with an endogenous binary

regressor in a dichotomous response equation. This model is based on a simultaneous
equations system which completely speci.es a joint conditional distribution for the
endogenous variables. 16 The results from applying the Bivariate Probit model to the
present empirical example are contained in column (6) of Table 3; they show an
important attenuation of the treatment coePcient even though it remains signi.cant.
However, the validity of these estimates depends on the parametric assumptions on
which the Bivariate Probit model is based.
The last three columns of Table 3 use the techniques introduced in this article to

estimate a Probit functional form for the treatment response function for the treated.
Column (7) uses the Probit function as a literal speci.cation and estimates the model by
Maximum Likelihood, as described in Eq. (10). The estimated e(ect of the treatment
is smaller than the Bivariate Probit estimate in column (6), even though it remains
signi.cant.
Column (8) reports least squares estimates of the Probit speci.cation for the average

treatment response for the treated using a Probit function; this is the estimator described
in Eq. (8). In this case, the estimated e(ect of participation in 401(k) on the probability
of holding an IRA account vanishes.
Column (9) reports marginal e(ects for a model with interactions. Consider the

following model for compliers:

Y = 1{$D + X ′� − U ¿ 0};
where U is normally distributed with zero mean and variance equal to <2U and is
independent of D and X , and $ is normally distributed with mean equal to T� and
variance equal to <2$ and is independent of U , D and X . Then, it can be easily seen
that

E[Y |D; X; D1¿D0] = �(�0D + (1 + "0D)X ′�0); (20)

where �0 = T�=<, �0 = �=<U , "0 = (<U =<− 1) and <=
√

<2U + <2$. Column (9) is based

on least squares estimation of the model in Eq. (20). Under misspeci.cation of Eq.
(20), the estimates in column (9) can still be interpreted as those produced by the best
least squares approximation to the treatment response function for 401(k) participants
that use the speci.cation in Eq. (20). This alternative speci.cation of the functional
form is more 7exible than the speci.cation in previous columns since it includes an
interaction term between the treatment indicator and the covariates. The results do

16 For the problem studied in this article, the Bivariate Probit model speci.es Y =1{�0D+X ′�0−UY ¿ 0}
and D = 1{.0Z + X ′30 − UD ¿ 0}, where 1{A} denotes the indicator function for the event A and the
error terms UY and UD have a joint normal distribution. See Maddala (1983, p. 122) for details.
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not vary much with respect to column (8), suggesting that this particular structure
of random coePcients is not very informative of the treatment response of 401(k)
participants relative to the more basic Probit speci.cation.
On the whole, Table 3 shows that IV methods attenuate the estimated e(ect of 401(k)

participation on the probability of holding an IRA account. This is consistent with the
view that estimators which do not control for endogeneity of 401(k) participation are
biased upwards. However, Table 3 does not o(er evidence of displacement of IRA
accounts.
Finally, it is worth noticing that the simple estimates produced by using the uncon-

ditional means in Table 1 are much bigger than those in Tables 2 and 3, which control
for the e(ect of observed covariates. This suggests that much of the heterogeneity in
saving preferences which a(ects our estimators can be explained by observed individ-
ual characteristics. This example illustrates the important e(ect that conditioning on
covariates may have on IV estimates of treatment parameters.

7. Conclusions

This article introduces a new class of instrumental variable estimators of treatment
e(ects for linear and nonlinear models with covariates. The most distinctive feature of
the approach proposed in this article is that, while identi.cation is based on nonpara-
metric assumptions, it can be used to estimate parsimonious parameterizations of an
average treatment response function of interest. In the context of the previous litera-
ture on IV models for treatment e(ects, this article generalizes existing identi.cation
results to situations where the ignorability of the instrument is confounded by observed
covariates. The estimators proposed in this article are demonstrated by using eligibility
for 401(k) plans as an instrumental variable to estimate the e(ect of participation in
401(k) programs on saving behavior. The results suggest that participation in 401(k)
does not crowd out savings in .nancial assets. On the contrary, participation in 401(k)
seems to have a positive e(ect on .nancial assets accumulation and a small or null
e(ect on the probability of holding an IRA account.
In principle, it is straightforward to generalize the results of this article to non-binary

and non-scalar treatments and instruments by considering separately quadruples of two
treatment levels and two instrument levels: {d; d′; z; z′}. However, the composition of
compliers may change with changes of any of the components in {d; d′; z; z′}, creating
an aggregation problem. This constitutes an interesting topic for future research.
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Appendix A.

Proof of Lemma 3.1. Under Assumption 2.1

P(D1¿D0|X ) = 1− P(D1 = D0 = 0|X )− P(D1 = D0 = 1|X )
= 1− P(D1 = D0 = 0|X; Z = 1)− P(D1 = D0 = 1|X; Z = 0)
= 1− P(D = 0|X; Z = 1)− P(D = 1|X; Z = 0)
= P(D = 1|X; Z = 1)− P(D = 1|X; Z = 0)
= E[D|X; Z = 1]− E[D|X; Z = 0]:

The .rst and third equalities hold by monotonicity. The second equality holds by
independence of Z . The last two equalities hold because D is binary. By monotonicity
(D1 − D0) is binary. So, the second part of Assumption 2.1(iii) can be expressed as
P(D1 − D0 = 1|X )¿ 0 or P(D1¿D0|X )¿ 0.

Proof of Theorem 3.1. Monotonicity implies

E[g(Y; D; X )|X;D1¿D0] =
1

P(D1¿D0|X ){E[g(Y; D; X )|X ]

−E[g(Y; D; X )|X;D1 = D0 = 1]P(D1 = D0 = 1|X )
−E[g(Y; D; X )|X;D1 = D0 = 0]P(D1 = D0 = 0|X )}:

Since Z is ignorable and independent of the potential outcomes given X , and since we
assume monotonicity, the above equation can be written as

E[g(Y; D; X )|X;D1¿D0] =
1

P(D1¿D0|X ){E[g(Y; D; X )|X ]

−E[g(Y; D; X )|X;D = 1; Z = 0]P(D = 1|X; Z = 0)
−E[g(Y; D; X )|X;D = 0; Z = 1]P(D = 0|X; Z = 1)}:

Consider also

E[D(1− Z)g(Y; D; X )|X ] = E[g(Y; D; X )|X;D = 1; Z = 0]P(D = 1; Z = 0|X )
= E[g(Y; D; X )|X;D = 1; Z = 0]

×P(D = 1|X; Z = 0)P(Z = 0|X )
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and

E[Z(1− D)g(Y; D; X )|X ] = E[g(Y; D; X )|X;D = 0; Z = 1]P(D = 0; Z = 1|X )
= E[g(Y; D; X )|X;D = 0; Z = 1]

×P(D = 0|X; Z = 1)P(Z = 1|X ):
Under Assumption 2.1(iii), we can combine the last three equations in

E[g(Y; D; X )|X;D1¿D0]

=
1

P(D1¿D0|X )E
[
g(Y; D; X )

(
1− D(1− Z)

P(Z = 0|X ) −
Z(1− D)
P(Z = 1|X )

)∣∣∣∣X
]
:

Applying Bayes’ theorem and integrating yields∫
E[g(Y; D; X )|X;D1¿D0]dP(X |D1¿D0)

=
1

P(D1¿D0)

∫
E
[
g(Y; D; X )

(
1− D(1− Z)

P(Z = 0|X ) −
Z(1− D)
P(Z = 1|X )

)∣∣∣∣X
]
dP(X )

or

E[g(Y; D; X )|D1¿D0] =
1

P(D1¿D0)
E[�g(Y; D; X )]:

This proves part (a) f the theorem. To prove part (b) note that

E[g(Y; X )(1−D)|X;D1¿D0] = E[g(Y0; X )|D=0; X; D1¿D0]P(D=0|X;D1¿D0)

= E[g(Y0; X )|Z=0; X; D1¿D0]P(Z=0|X;D1¿D0)

= E[g(Y0; X )|X;D1¿D0]P(Z = 0|X ):
Where the second equality holds because for compliers D= Z . The last equality holds
by independence of Z . The proof of parts (b) and (c) of the theorem follows now
easily. For part (b), note that,

E[g(Y0; X )|X;D1¿D0] = E
[
g(Y; X )

(1− D)
P(Z = 0|X )

∣∣∣∣X;D1¿D0

]

=
1

P(D1¿D0|X )E
[
�

(1− D)
P(Z = 0|X )g(Y; X )

∣∣∣∣X
]

=
1

P(D1¿D0|X )E[�0g(Y; X )|X ]:

Integration of this equation yields the desired result. The proof of part (c) of the
theorem is analogous to that of part (b). By construction, the theorem also holds
conditioning on X.

Proof of Theorem 4.1. Theorem 3.1 implies that

�0 = argmin
�∈�

E[�(D; Z; �0(X ))g(Y; D; X ; �)]
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and that the minimum is unique. Denote g(�)=g(Y; D; X ; �) and �(")=�(D; Z; �(X; ")).
By (iii) and (v), for " close enough to "0, the absolute value of �(") is bounded by
some constant and �(")g(�) is continuous with probability one; by (iv) this happens
with probability approaching one (w.p.a.1). This, along with the second part of (v)
and Lemma 2.4 in Newey and McFadden (1994), implies

sup
(�;")∈�×=̃

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

�i(")gi(�)− E[�(")g(�)]
∣∣∣∣∣
∣∣∣∣∣ p→0; (A.1)

where =̃ is any compact neighborhood of "0 contained in {"∈Rl: ‖"−"0‖¡$} for $ in
(iii), �i(")=�(di; zi; �(xi; ")) and gi(�)=g(yi; di; xi; �). Also, E[�(")g(�)] is continuous
at each (�; ") in �× =̃. By the Triangle Inequality,

sup
�∈�

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

�i("̂)gi(�)− E[�("0)g(�)]
∣∣∣∣∣
∣∣∣∣∣6 sup

�∈�

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

�i("̂)gi(�)− E[�("̂)g(�)]
∣∣∣∣∣
∣∣∣∣∣

+ sup
�∈�

||E[�("̂)g(�)]− E[�("0)g(�)]|| : (A.2)

The .rst term of the right-hand side of (A.2) is op(1) by (A.1); the second term is
op(1) by (iv) and uniform continuity of E[�(")g(�)] on � × =̃ compact. This result,
along with (i) and (ii) and Theorem 2.1 in Newey and McFadden (1994), implies
consistency of �̂.

Proof of Theorem 4.2. By (i), (ii) and consistency of �̂, with probability approaching
one

0=
1√
n

n∑
i=1

�i("̂)
@gi(�̂)
@�

=
1√
n

n∑
i=1

�i("̂)
@gi(�0)

@�
+

(
1
n

n∑
i=1

�i("̂)
@2gi(�̃)
@�@�′

)
√
n(�̂−�0);

where ‖�̃ − �0‖6 ‖�̂ − �0‖ and �̃ possibly di(ers between rows of @2gi(·)=@�@�′. As
�("̂) is bounded w.p.a.1, then by (ii) and Lemma 4.3 in Newey and McFadden (1994),
we have that n−1

∑n
i=1 �i("̂)(@2gi(�̃)=@�@�′)

p→M�, which is non-singular by (iv). Now,
the second part of (ii) implies that w.p.a.1

√
n(�̂− �0) =−(M−1

� + op(1))

{
1√
n

n∑
i=1

�i("0)
@gi(�0)

@�

+

(
1
n

n∑
i=1

@gi(�0)
@�

@�i("̃)
@"′

)
√
n("̂− "0)

}
:

From (ii), (iv) and HXolder’s Inequality, it follows that E[sup"∈=̃‖(@g(�0)=@�)
(@�("0)=@"′)‖]¡∞. So, by using the same argument as for M�, n−1

∑n
i=1(@gi(�0)=@�)

(@�("̃)=@"′)
p→M". Then, by (iii) and the .rst part of (iv), �̂ is asymptotically linear

with in7uence function equal to −M−1
� {�(@g(�0)=@�) + M" }, and the result of the

theorem follows.
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Proof of Theorem 4.3. From (i) it is easy to show that n−1
∑n

i=1 ‖�("̂) @g(�̂)=@� −
�("0) @g(�0)=@�‖2 p→0. The result now follows from the application of the Triangle and
HXolder’s Inequalities.

Proof of Theorem 4.4. By the Triangle Inequality,

sup
�∈�

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

�i(�̂)gi(�)− E[�(�0)g(�)]
∣∣∣∣∣
∣∣∣∣∣6 sup

�∈�

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

(�i(�̂)− �i(�0))gi(�)

∣∣∣∣∣
∣∣∣∣∣

+ sup
�∈�

∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

�i(�0)gi(�)− E[�(�0)g(�)]
∣∣∣∣∣
∣∣∣∣∣ : (A.3)

By (iv), (v), (vi) and Lemma 2.4 in Newey and McFadden (1994), the second term
in Eq. (A.3) is op(1) and E[�(�0)g(�)] is continuous. It can be easily seen that for
� close enough to �0, |�(�)− �(�0)|6C|�− �0| (where | · | stands for the supremum
norm) for some constant C. By Theorem 4 of Newey (1997), |�̂− �0| p→0. From (vi),
sup�∈� ‖n−1∑n

i=1(�i(�̂) − �i(�0))gi(�)‖6C|�̂ − �0|n−1
∑n

i=1 b(wi) = op(1). Then, the
result follows easily from Theorem 2.1 in Newey and McFadden (1994).

Proof of Theorem 4.5. From (i), (ii) and consistency of �̂, w.p.a.1 we have

0=
1√
n

n∑
i=1

�i(�̂)
@gi(�̂)
@�

=
1√
n

n∑
i=1

�i(�̂)
@gi(�0)

@�
+

(
1
n

n∑
i=1

�i(�̂)
@2gi(�̃)
@�@�′

)
√
n(�̂−�0):

Using an argument similar to that of the proof of Theorem 6.1 in Newey (1994b), it
can be shown that (iii) implies

1√
n

n∑
i=1

�i(�̂)
@gi(�0)

@�
=

1√
n

n∑
i=1

{
�i(�0)

@gi(�0)
@�

+ 6(xi)(zi − �0(xi))
}
+ op(1):

To show consistency of the Hessian, note that

1
n

n∑
i=1

�i(�̂)
@2gi(�̃)
@�@�′

=
1
n

n∑
i=1

�i(�0)
@2gi(�̃)
@�@�′

+
1
n

n∑
i=1

(�i(�̂)− �i(�0))
@2gi(�̃)
@�@�′

: (A.4)

By (ii) and Lemma 4.3 in Newey and McFadden (1994), we have that n−1
∑n

i=1 �i(�0)

(@2gi(�̃)=@�@�′)
p→M� which is non-singular by (iv). Also, with probability approaching

one, we have∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

(�i(�̂)− �i(�0))
@2gi(�̃)
@�@�′

∣∣∣∣∣
∣∣∣∣∣6C|�̂− �0|1n

n∑
i=1

sup
�:‖�−�0‖¡$

∣∣∣∣
∣∣∣∣@2gi(�)
@�@�′

∣∣∣∣
∣∣∣∣ ;

so the second term of Eq. (A.4) is op(1). Then, from (iv), �̂ is asymptotically linear
with in7uence function −M−1

� {�(@g(�0)=@�)+6(Z−�0)} and the result of the theorem
holds.
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Proof of Theorem 4.6. Using E[sup�:‖�−�0‖¡$ ‖@2g(�)=@�@�′‖2]¡∞ and conditions of

Theorem 4.5, it is easy to show that n−1
∑n

i=1 ‖�i(�̂)@gi(�̂)=@�−�i(�0)@gi(�0)=@�‖2 p→ 0.

To show n−1
∑n

i=1 ‖6̂i(xi)(zi − �̂(xi))− 6i(xi)(zi − �0(xi))‖2 p→0 an argument similar to
that of the proof of Theorem 6.1 in Newey (1994) applies. However, for the class
of estimators introduced in this article we have that ‖D(W; �̃; �; �)−D(W; �̃; �0; �0)‖6
C‖@2g(�̃)=@�@�′‖ ‖� − �0‖ |�̃| for � close enough to �0, �̃∈G (where G is the set of
all square-integrable functions of X ) and ‖�̃ − �0‖6 ‖� − �0‖. The fact that there is
a function dominating ‖D(W; �̃; �; �)−D(W; �̃; �0; �0)‖ that does not depend on |�− �0|
allows us to specify conditions on the rate of growth of K that are weaker than those
in Assumption 6.7 of Newey (1994b). These conditions are implied by the assumptions
of Theorem 4.5.

Proof of Proposition 5.1. It can be easily seen that �̂i(di − x′i 3̂) = (zi − x′i 3̂). Then,

0 =
n∑

i=0

xi(zi − x′i 3̂) =
n∑

i=0

xi�̂i(di − x′i 3̂):

So,

3̂=

(
n∑

i=1

xi�̂ix′i

)−1 n∑
i=1

xi�̂idi:

Using this result along with Eq. (14) we have

�̂=
(
∑

di�̂iyi)− (
∑

di�̂ix′i)(
∑

xi�̂ix′i)
−1(
∑

xi�̂iyi)
(
∑

di�̂idi)− (
∑

di�̂ix′i)(
∑

xi�̂ix′i)−1(
∑

xi�̂idi)

=
∑
(di − x′i 3̂)�̂iyi∑
(di − x′i 3̂)�̂idi

=
∑
(zi − x′i 3̂)yi∑
(zi − x′i 3̂)di

= �̂2SLS:

The last results follows from a Weak Law of Large Numbers for the estimators in
equations (14) and (15).

Proof of Proposition 5.2. Consider (�0; �0) given in the proposition, that is �0=Y1−Y0
and �0 = argmin� E[(E[Y0|X ]− X ′�)2]. Then, E[X (Y0 − X ′�0)] = 0. Let us show that
the orthogonality conditions of 2SLS hold for (�0; �0). Note that

Y − �0D − X ′�0 = Y0 + (Y1 − Y0 − �0)D − X ′�0 = Y0 − X ′�0:

By Assumption 2.1, Z is independent of Y0 given X . Then, if �0 is linear

E[Z(Y − �0D − X ′�0)] = E[Z(Y0 − X ′�0)] = 3′E[X (Y0 − X ′�0)] = 0

and

E[X (Y − �0D − X ′�0)] = E[X (Y0 − X ′�0)] = 0:

So, the result of the proposition holds.
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Proof of Proposition 5.3. The result for �(X ) comes from Eq. (2). The result for 9(X )
can be derived as follows:

9(X ) =
E[Y1D0 + Y0(1− D0)|X ]E[D1|X ]− E[Y1D1 + Y0(1− D1)|X ]E[D0|X ]

E[D1|X ]− E[D0|X ]

= E[Y0|X ] + E[(Y1 − Y0)D0|X ]E[D1|X ]− E[(Y1 − Y0)D1|X ]E[D0|X ]
E[D1|X ]− E[D0|X ]

= E[Y0|X ] + E[(Y1 − Y0)D0|X ]− E[(Y1 − Y0)(D1 − D0)|X ]E[D0|X ]
E[D1 − D0|X ]

= E[Y0|X ] + {E[Y1 − Y0|X;D0 = 1]− E[Y1 − Y0|X;D1¿D0]}P(D0 = 1|X ):
And the result holds by monotonicity.
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