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INSTRUMENTAL VARIABLES ESTIMATES OF THE EFFECT OF
SUBSIDIZED TRAINING ON THE QUANTILES OF

TRAINEE EARNINGS

By Alberto Abadie, Joshua Angrist, and Guido Imbens1

This paper reports estimates of the effects of JTPA training programs on the distribution
of earnings. The estimation uses a new instrumental variable (IV) method that measures
program impacts on quantiles. The quantile treatment effects (QTE) estimator reduces to
quantile regression when selection for treatment is exogenously determined. QTE can be
computed as the solution to a convex linear programming problem, although this requires
first-step estimation of a nuisance function. We develop distribution theory for the case
where the first step is estimated nonparametrically. For women, the empirical results show
that the JTPA program had the largest proportional impact at low quantiles. Perhaps
surprisingly, however, JTPA training raised the quantiles of earnings for men only in the
upper half of the trainee earnings distribution.

Keywords: Quantile regression, treatment effects, dummy endogenous variables.

1� introduction

The effects of policy variables on distributional outcomes beyond sim-
ple averages are of fundamental interest in many areas of empirical economic
research. Examples where distributional consequences are of central interest
for welfare analysis include subsidized training programs (e.g., Lalonde (1995)),
union status (e.g., Freeman (1980), Card (1996)), and minimum wages (DiNardo,
Fortin, and Lemieux (1996)). Distribution effects also matter in policy discus-
sions relating to transfer programs and education. The importance of distribution
effects notwithstanding, most evaluation research focuses on average outcomes,
partly because most statistical techniques focus on mean effects.2 Many econo-
metric models also restrict treatment effects to operate in the form of a simple
“location shift,” in which case the mean effect captures the impact of treatment
on the entire distribution. Instrumental variables (IV) estimation provides a pow-
erful and flexible method for estimating causal effects in such models. The prob-
lem of using IV to learn about distribution effects is more difficult, however, and
has received less attention.

1 We benefited from comments by Moshe Buchinsky, Gary Chamberlain, Jinyong Hahn, Jerry
Hausman, Whitney Newey, Shlomo Yitzhaki, seminar participants at Berkeley, MIT-Harvard, Penn,
Econometric Society meetings, and the editor and referees. Thanks also go to Erik Beecroft at Abt
Associates for providing us with the National JTPA Study data and for helpful discussions. Abadie
acknowledges financial support from the Bank of Spain. Imbens acknowledges financial support from
the Sloan Foundation.

2 See, e.g., Rubin (1977), Rosenbaum and Rubin (1983), and Heckman and Robb (1985).
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In this paper, we show how to use IV to estimate the effect of treatment on
the quantiles of an outcome distribution. This Quantile Treatment Effects (QTE)
estimator is then applied to estimate the effect of training provided under the
Job Training Partnership Act (JTPA), a large publicly-funded training program.
Individuals in the randomly assigned JTPA treatment group were offered train-
ing, while those in the control group were excluded for a period of 18 months.
Only 60 percent of the treatment group actually received training, but the ran-
domized treatment assignment provides an instrument for treatment status. Since
almost no one in the control group received JTPA training, the resulting IV esti-
mates can be interpreted as effects on the earnings distribution in the population
of trainees, a group likely to be of general interest. Although our results also
apply in more general settings with partial compliance in both treatment and
control groups, one-sided noncompliance is of special importance in social exper-
iments, and the JTPA example is not particularly unusual in this regard (see, e.g.,
Bloom (1984)).3

Our approach to IV is based on a framework developed by Imbens and
Angrist (1994) and Angrist, Imbens, and Rubin (1996). In related work, Imbens
and Rubin (1997) show how to use this framework to identify the effect of treat-
ment on distributions, and Abadie (2002) shows how to test global hypotheses
about distribution impacts such as stochastic dominance. But previous work has
not developed methods for estimating the effect of treatment on quantiles. We
focus here on conditional quantiles because they provide useful summary statis-
tics for distributions, as evidenced by the importance of quantile comparisons
in recent discussions of changing wage inequality (see, e.g., Chamberlain (1991),
Katz and Murphy (1992), and Buchinsky (1994)).
The paper is organized as follows. Section 2 introduces assumptions and nota-

tion, and discusses the QTE identification problem. Section 3 presents the esti-
mator, which allows for a binary endogenous regressor (indicating exposure
to treatment) and reduces to Koenker and Bassett (1978) quantile regression
when selection for treatment is taken to be exogenous. Like quantile regres-
sion, the estimator developed here can be written as the solution to a convex
linear programming (LP) problem, although implementation of the QTE estima-
tor requires estimation of a nuisance function in a first step. Finally, Section 4
discusses estimates of effects of training on the quantiles of trainee earnings.
Estimates for women show a larger proportional increase at lower quantiles, but
estimates for men suggest the training impact was largest in the upper half of
the distribution, with no significant effect on lower quantiles.

2� notation and framework

The data consist of n observations on a continuously distributed scalar outcome
variable, Y , a binary treatment indicator, D, a binary instrument, Z, and an r×1

3 Angrist and Imbens (1991) discuss the relationship between IV and effects on the treated. Orr
et al. (1996) and Heckman, Smith, and Taber (1994) report average effects on the treated in the
JTPA. Heckman, Smith, and Clements (1997) estimate the distribution of JTPA treatment effects
using a non-IV framework.
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vector of covariates, X. In the case of subsidized JTPA training, Y is earnings,
D indicates program participation, and Z is an indicator of the randomized offer
of training. Z and D are not equal in the JTPA because not everyone who was
offered training received it and because a few people who were not offered
training received services anyway. The covariates consist of demographic and
other information collected before randomization.
The causal effects of interest are defined using potential outcomes and poten-

tial treatment status to describe counterfactual states of the world. Potential out-
comes are indexed against D, and denoted Yd, while potential treatment status
is indexed against Z, and denoted Dz. Thus, Y1 is the value an individual’s out-
come would be if D = 1 and Y0 is the value the outcome would be if D = 0.
Similarly, D1 tells us what an individual’s treatment status would be if Z = 1,
while D0 tells us what treatment status would be if Z = 0. The object of causal
inference is to learn about features of the distribution of Y1 and Y0, possibly in
certain subpopulations.
The assumptions underlying the potential outcomes framework for IV are

given below:

Assumption 2.1: For almost all values of X:
(i) Independence: 
Y1�Y0�D1�D0� is jointly independent of Z given X.
(ii) Nontrivial Assignment: P
Z = 1�X� ∈ 
0�1�.
(iii) First-Stage: E�D1�X� �= E�D0�X�.
(iv) Monotonicity: P
D1 ≥D0�X�= 1.

Assumption 2.1(i) subsumes two related requirements discussed in detail in
Angrist, Imbens, and Rubin (1996). First, comparisons by instrument status iden-
tify the causal effect of the instrument. This is equivalent to instrument-error
independence in traditional simultaneous equations models. Second, potential
outcomes are not directly affected by the instrument. This is an exclusion restric-
tion. These assumptions are plausible in the case of the JTPA because of the
randomly assigned offer of treatment. Assumptions 2.1(ii) and (iii) are unlikely
to be controversial, while Assumption 2.1(iv) is plausible in many applications
and is automatically satisfied by latent-index models for treatment assignment. It
is particularly appropriate for the JTPA, where D0 = 0 for (almost) everyone.4

An implication of Assumption 2.1(i) is that treatment intake is independent of
potential outcomes for those individuals with D1 >D0 (the group of compliers):

Lemma 2.1: Given Assumption 2.1(i) and conditional on X and D1 >D0, treat-
ment status, D, is independent of potential outcomes: 
Y1�Y0��D�X�D1 >D0.

4 A constant-coefficient latent-index model for participation is D = 1��0 +Z ·�1 −� > 0�, where
�0 and �1 are parameters and � is an error term independent of Z. Here D0 = 1��0 > ���D1 =
1��0+�1 >��, and either D1 ≥D0 for everyone or D0 ≥D1 for everyone. So latent-index assignment
with constant coefficients and independent errors implies Assumption 2.1. Vytlacil (2002) shows that,
provided the probability of treatment is strictly between zero and one, the converse is also true in
the sense that, given Assumption 2.1, it is possible to construct a latent-index model that generates
D0 and D1.
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Proof: By Assumption 2.1(i), 
Y1�Y0�D1�D0��Z�X, so 
Y1�Y0��Z�X,
D1 = 1�D0 = 0. When D1 = 1 and D0 = 0�D can be substituted for Z. Q.E.D.

The lemma establishes an important general result: in the population of com-
pliers, comparisons by D conditional on X have a causal interpretation. The
compliers group is of interest because it is composed of individuals whose treat-
ment status can be manipulated by the experiment (instrument) at hand. More-
over, because Z = 0 implies that D = 0 in the JTPA (approximately), results for
the population of compliers are also valid for the treated population. Of course,
as it stands, Lemma 2.1 is of no practical use because the subpopulation of com-
pliers is not identified (i.e., we do not observe D1 and D0 for the same individ-
ual). Nevertheless, the next section shows how this general result can be used to
estimate quantile treatment effects.

3� quantile treatment effects

3�1� The QTE Model

Our discussion of the QTE estimator is based on a linear model for conditional
quantiles, so that a single treatment effect is estimated. The analysis can be
easily extended to nonlinear models and models with interaction terms, since
identification does not depend on the particular specification adopted for the
conditional quantile functions. The rationale for using a linear model is that
the notation is simpler and the resulting estimator simplifies to Koenker and
Bassett (1978) linear quantile regression when there is no instrumenting. The
relationship between QTE and quantile regression is therefore analogous to that
between conventional two-stage least squares (2SLS) and ordinary least squares
(OLS). In the same fashion, QTE estimators based on a nonlinear specification
would also collapse to nonlinear quantile regression if there is no instrumenting.
The parameters of interest are defined as follows:

Assumption 3.1: For � ∈ 
0�1�, there exist �� ∈ � and �� ∈ �r such that

Q�
Y �X�D�D1 >D0�= ��D+X ′���

where Q�
Y �X�D�D1 >D0� denotes the �-quantile of Y given X and D for com-
pliers.

The parameter of primary interest in this model, ��, gives the difference in
the conditional �-quantiles of Y1 and Y0 for compliers. This tells us, for exam-
ple, whether JTPA training changed the median earnings of participants. Note
that although average differences equal differences in averages, �� is not the
�-quantile of the difference 
Y1−Y0�. The latter may also be of interest, but
we focus on the marginal distributions of potential outcomes because identifi-
cation of the distribution of Y1 −Y0 requires much stronger assumptions and
because economists making social welfare comparisons typically use differences
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in distributions and not the distribution of differences for this purpose (see, e.g.,
Atkinson (1970)).5

The model above differs in a number of ways from the model in the seminal
papers by Amemiya (1982) and Powell (1983), who used least absolute devia-
tions to estimate the reduced form for a simultaneous equations system. Their
approach begins with a traditional simultaneous equations model, and is not
motivated by an attempt to characterize effects on distributions. Rather, the
idea is to improve on the efficiency of 2SLS when the distributions of the error
terms are long-tailed. Identification in the Amemiya-Powell model comes from
assuming the reduced-form errors are continuously distributed independent of
the instrument, and therefore have conditional median zero. This is not true in
our setting since the endogenous regressor is binary.
The parameters of the conditional quantile function in Assumption 3.1 can be

expressed as (see Bassett and Koenker (1982)):


������= argmin
����∈�r+1E���
Y −�D−X ′���D1 >D0��

where ��
�� is the check function, defined as ��
�� = 
�− 1�� < 0�� ·� for any
real �. By virtue of Lemma 2.1, the solution to this problem has a causal inter-
pretation. Because the set of compliers is not identified, however, this problem
cannot be solved directly. To convert this into a problem involving observed
quantities only, we define the following function of D�Z, and X:

�
D�Z�X�= 1− D · 
1−Z�
1−�0
X�

− 
1−D� ·Z
�0
X�

�(1)

where �0
X� = P
Z = 1�X�. Note that � equals one when D = Z; otherwise
� is negative. This function is useful because weighting moments by � “finds
compliers” in the following average sense:

Lemma 3.1 (Abadie (2000)): Let h
Y �D�X� be any real function of

Y �D�X� such that E�h
Y �D�X��<�. Given Assumption 2.1,

E�h
Y �D�X��D1 >D0�=
1

P
D1 >D0�
·E�� ·h
Y �D�X���

Note that if Z = 0 implies D = 0, as would happen if individuals not
offered training are perfectly excluded from training participation, � simplifies to
�
D�Z�X�= 1− 
1−D� ·Z/�0
X�.6

5 Heckman, Smith, and Clements (1997) discuss models where features of the distribution of the
difference, 
Y1−Y0�, are identified. They note that this may be of interest for questions regarding the
political economy of social programs. If the ranking of individuals in the distribution of the outcome is
preserved under the treatment, then the estimator in this paper is informative about the distribution
of treatment impacts. King (1983) discusses horizontal equity concerns that require welfare analyses
involving the joint distribution of outcomes.

6 An implication of Lemma 3.1 is that any parameter defined as the solution to a moment condition
involving 
Y �D�X� is identified for compliers. Abadie (2000) shows how this fact can be used to
estimate conditional mean functions for compliers.
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Lemma 3.1 implies that the parameters of interest solve the following problem:


������= argmin
����∈�r+1E�� ·��
Y −�D−X ′����(2)

This population objective function is globally convex in 
������ since it is equal
to the check-function minimand for compliers times P
D1 >D0�. Following the
analogy principle (Manski (1988)), a natural estimator of 
������ is the sample
counterpart of (2). But � is negative when D is not equal to Z, so the sam-
ple objective function is typically nonconvex. Algorithms exist for minimization
problems of this type (piecewise linear and nonconvex objective functions), but
they do not ensure a global optimum (see, e.g., Charnes and Cooper (1957),
or Fitzenberger (1997a, 1997b) for a discussion of a related censored quantile
regression problem). Unlike the conventional quantile regression minimand, the
sample analog of (2) does not have an LP representation.
To resolve this difficulty, we modify the objective function by taking the condi-

tional expectation given U = 
Y �D�X�. This amounts to replacing � by �! where

�! = E���U�= 1− D · 
1−!0
U��
1−�0
X�

− 
1−D� ·!0
U�
�0
X�

�

for !0
U� = E�Z�U� = P
Z = 1�Y �D�X� and U = 
Y �D�X�. Although simple
to derive, this representation is of signal importance because, as the following
lemma shows, �! is a conditional probability and therefore nonnegative.

Lemma 3.2: Under Assumption 2.1, �!
U�= P
D1 >D0�U�.

Proof: First consider the product D · 
1−Z�. This differs from zero only if
Z = 0 and D0 = 1. By monotonicity, D0 = 1 implies D1 = 1. Hence:

E�D · 
1−Z��U�= P
D
1−Z�= 1�U�
= P
D1 =D0 = 1�U� ·P
Z = 0�D1 =D0 = 1�U�

= P
D1 =D0 = 1�U� ·P
Z = 0�D1 =D0 = 1�Y1�X�

= P
D1 =D0 = 1�U� ·P
Z = 0�X��
Similarly, E�
1−D� ·Z�U�= P
D1 =D0 = 0�U� ·P
Z = 1�X�. Therefore,

�!
U�= E
[
1− D
1−Z�

P
Z = 0�X� −

1−D�Z
P
Z = 1�X�

∣∣∣∣U]
= 1−P
D1 =D0 = 1�U�−P
D1 =D0 = 0�U�
= P
D1 >D0�U�� Q�E�D�

Lemma 3.2 can be used to develop an estimator of 
������ with an LP repre-
sentation. The resulting convex QTE estimator minimizes a positively-weighted
check-function minimand, with a global minimum that can be obtained as the
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solution to an LP problem in a finite number of simplex iterations. This estima-
tion strategy is similar in spirit to Buchinsky and Hahn’s (1998) LP-type estimator
for censored quantile regression.
It is worth noting that there is no asymptotic efficiency cost to using an estima-

tor based on an estimate of �!
U� instead of the sample analog of (2). These two
strategies produce estimators with the same asymptotic distribution since they
nonparametrically estimate the same functional (Newey (1994)). We therefore
focus on the computationally more attractive convex QTE problem. This requires
first-step estimation of �0
X� and !0
U� to construct an estimate of �!
U�. The
distribution theory is developed assuming that X is discrete, so a saturated linear
model estimates �0
X� consistently, while !0
U� is estimated nonparametrically
in 
X�D� cells. In many applications, including ours, the covariates are discrete
or can be represented using a discrete approximation. The distribution theory is
not fundamentally different for continuous regressors, however; regularity condi-
tions and the limiting distribution for models with continuous regressors appear
in Appendix A.

3�2� Estimation and Inference

Assume we have a random sample �Yi�Di�Xi�Zi�
n
i=1. Let W = 
D�X ′�′� $� =


����
′
��

′, and %� = Y −W ′$�. With known �! , the estimation problem becomes a
weighted quantile regression of the type discussed by Newey and Powell (1990).
Since �! is unknown, we estimate this function nonparametrically in a first step
and use the fitted values �̂!
Ui� in a second step to estimate $�:

$̂� = argmin$∈�r+1
1
n

n∑
i=1
1��̂!
Ui�≥ 0� · �̂!
Ui� ·��
Yi−W ′

i $��(3)

The distribution theory developed below takes account of the sampling variation
induced by the estimation of �̂!
Ui�.
As noted above, our first-step estimator of �! uses a nonparametric series

approximation. For an increasing sequence of positive integers ��
k���k=1 and a
positive integer K, let pK
Y � = 
Y �
1�� ) ) ) �Y �
K��. Assume that X takes on a
finite number of values (so that W ∈ �w1� ) ) ) �wJ �). Then, any random sample
�Vi�

n
i=1 = �
Zi�Ui��ni=1 from V = 
Z�U� can be indexed as ��Vij �

nj
ij=1�

J
j=1, where

�Vij �
nj
ij=1 are subsequences for distinct values of 
X�D�. Similarly, the sample can

be indexed by ��Vil�
nl
il=1�

L
l=1, where �Vil�

nl
il=1 are subsequences for distinct values

of X. A nonparametric power series estimator !̂
U� of !0
U� is given by the
least squares projection of �Zij �

nj
ij=1 on �p

K
Yij ��
nj
ij=1. Let !̂
Ui� be the resulting

fitted values and let �̂
X� be the estimator of �0
X� obtained by averaging Z
within each of the L cells of X. Putting the pieces together, the resulting first
step estimator of �! is given by

�̂!
Ui�= 1− Di · 
1− !̂
Ui��
1− �̂
Xi�

− 
1−Di� · !̂
Ui�
�̂
Xi�

�(4)
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The asymptotic distribution of the estimator using this first step is given by the
following theorem.

Theorem 3.1: Under Assumptions 2.1 and 3.1 and if:
(i) the data are i.i.d.;
(ii) conditional onW�Y is continuously distributed with support equal to a com-

pact interval and density bounded away from zero and infinity on the support;
(iii) �0
X� is bounded away from zero and one, and X takes on a finite number

of values;
(iv) the distribution function of %� conditional onW and D1>D0 is continuously

differentiable at zero with density f%� �W�D1>D0

0� that is bounded away from zero;

E�WW ′�D1 >D0� is positive semidefinite;
(v) �! is bounded away from zero;
(vi) for s equal to the number of continuous derivatives in Y of !0�n ·K−2s → 0

and K5/n→ 02
then, n1/2
$̂� − $��

d−→ N
0�4�, where 4 = J−15J−1� J = E�f%� �W�D1>D0

0�·

WW ′�D1 > D0� · P
D1 > D0�, and 5 = E�66′� with 6 = � ·m
U�+H
X�·
�Z−�0
X���m
U�= 
�−1�Y −W ′$� < 0��· W,

H
X�= E
[
m
U� ·

(
− D · 
1−Z�

1−�0
X��2

+ 
1−D� ·Z

�0
X��

2

)∣∣∣∣X]�
Theorems are proved in Appendix A.
The asymptotic variance formula provided by this theorem is robust to mis-

specification of the functional form in Assumption 3.1. Under mis-specification,
quantile regression estimates the best linear predictor under asymmetric loss.7

To produce an estimator of the asymptotic variance matrix, let

9h
$�=
1
h
9

(
Y −W ′$

h

)
and 9h� i
$�=

1
h
9

(
Yi−W ′

i $

h

)
where 9
·� is a kernel function. Consider the following estimator of J :

Ĵ = 1
n

n∑
i=1
�̂!
Ui� ·9h� i
$̂�� ·WiW

′
i �

7 Most of the literature on quantile regression treats the linear model as a literal specification
for conditional quantiles. Alternately, the linear model can be viewed as an approximation. This
interpretation is discussed by Buchinsky (1991), Chamberlain (1991), Fitzenberger (1997b), and Port-
noy (1991).
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For i in the l-cell of X, let

Ĥi =
1
nl

nl∑
i1=1

(
�−1�Yil −W ′

il
$̂� < 0�

) ·Wil

·
(

1−Dil

� ·Zil

�̂
Xi��

2
− Dil

· 
1−Zil�

1− �̂
Xi��

2

)
�

�̂
Vi�= 1− Di · 
1−Zi�
1− �̂
Xi�

− 
1−Di� ·Zi
�̂
Xi�

�

6̂i = �̂
Vi� ·
(
�−1�Yi−W ′

i $̂� < 0�
) ·Wi+ Ĥi ·�Zi− �̂
Xi���

An estimator of 5 can then be constructed as

5̂= 1
n

n∑
i=1
6̂i6̂

′
i �

The following theorem establishes the consistency of an asymptotic covariance
matrix estimator.

Theorem 3.2: Under the assumptions of Theorem 3.1 and if:
(i) h→ 0, nh4 →�;
(ii) f%� �W1�D1>D0


·� has bounded and continuous first derivative;
(iii) 9
z�≥ 0�

∫
9
z�dz= 1�

∫ �z ·9
z��dz <�;
(iv) there exists C > 0 such that �9
z�−9
z0�� ≤ C · �z−z0�;

then 4̂= Ĵ−15̂Ĵ−1 p−→4.

4� effects of subsidized training

4�1� Background

The JTPA began funding training in October 1983, and continued to fund
federal training programs into the late 1990’s. The largest JTPA component is
Title II, which supports training for the economically disadvantaged. At the time
of the National JTPA Study in the early 1990’s, Title II programs were serving
about 1 million participants a year, at an annual cost of roughly 1.6 billion dollars.
JTPA services were delivered at 649 sites, also called Service Delivery Areas
(SDAs), located throughout the country.8

Title II of the JTPA included a mandate for the largest randomized train-
ing evaluation ever undertaken in the US. The JTPA evaluation study collected
data on about 20,000 participants at 16 SDAs. These sites were not a random
sample of all SDAs; rather, they were chosen for diversity, willingness and abil-
ity to implement the experimental design, and the size and composition of the

8 This section draws on Orr et al. (1996), Bloom et al. (1997), and the US Department of
Labor (1999) web site.
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experimental sample they could provide. Although the nonrandom selection of
sites raises issues of external validity (as in many clinical trials), within sites,
applicants were randomly selected for JTPA treatment. The evaluation sample
includes applicants who applied between November 1987 and September 1989.
The original study of the labor-market impact of Title II services was based

on 15,981 persons for whom continuous data on earnings (from either State
unemployment insurance (UI) records or two follow-up surveys) were available
for at least 30 months after random assignment. Although data are available
on a range of labor market outcomes for this sample, we focus on the sum of
earnings in this 30-month period since this is probably the best measure of the
program’s lasting economic impact on participants. Individuals who were not
offered treatment were generally excluded from receiving JTPA services for 18
months (though they could participate in other programs).
The JTPA offered services through community colleges, State employment

services, community organizations, and private-sector training agencies. Service
strategies included (i) classroom training in occupational skills, basic educa-
tion, or both; (ii) on-the-job training and/or job search assistance (OJT/JSA);
(iii) other services that may have included probationary employment and/or a
combination of the first two. For the National JTPA Study, service strategies
were recommended as part of the JTPA intake process, before random assign-
ment. Although applicants were assigned to treatment with different probabilities
depending on their SDA, the data in the analysis sample were artificially bal-
anced by the evaluation contractor to maintain a 2/1 treatment-control ratio at
each location.
The JTPA offered services to a number of different groups. Title II applicants

were generally deemed eligible for training if they faced one of a number of
“barriers to employment.” These included long-term use of welfare, being a high
school dropout, 15 or more recent weeks of unemployment, limited English pro-
ficiency, physical or mental disability, reading proficiency below 7th grade level,
or an arrest record. The most common barriers were unemployment spells and
high-school dropout status. Applicants were categorized as being in one of five
groups: adult men, adult women, female youth, male youth non-arrestees, and
male youth arrestees. In this study we focus on adult men and women because
the samples are largest for these two groups. There are 6,102 adult women with
30-month earnings data and 5,102 adult men with 30-month earnings data.
Using our earlier notation, Y is 30-month earnings, D indicates enrollment

for JTPA services, and Z indicates the offer of services. Although the offer of
treatment was randomly assigned, only about 60 percent of those offered training
actually received JTPA services. This is a consequence of the JTPA evaluation
design, which randomized the offer of services early in the application process,
but did not compel those offered services to participate in training. Treatment
status is therefore self-selected and likely to be correlated with potential out-
comes. On the other hand, the randomized offer of training provides a plausible
instrument for actual training. Moreover, because of the very low percentage of
individuals receiving JTPA services in the control group (less than 2 percent),
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effects for compliers in this case can be interpreted as effects on those who were
treated.
Since training offers were randomized in the National JTPA Study, covariates


X� are not required to identify training effects. Even in experiments like this,
however, it is customary to control for covariates to correct for chance associ-
ations between D and X (as in Orr et al. (1996)). Covariates can also be used
to describe the quantiles of potential earnings for compliers in population sub-
groups, since we estimate Q�
Y �X�D�D1 > D0�. The covariates used here are
baseline measures from the JTPA intake process. They include dummies for black
and Hispanic applicants, a dummy for high-school graduates (including GED
holders), dummies for married applicants, 5 age-group dummies, and dummies
for AFDC receipt (for women) and whether the applicant worked at least 12
weeks in the 12 months preceding random assignment. Also included are dum-
mies for the original recommended service strategy (classroom, OJT/JSA, other)
and a dummy for whether earnings data are from the second follow-up survey.
Descriptive statistics are reported in Table I. As noted above, about 2/3 of the

treatment group received JTPA training, while only 1–2 percent of the control
group did. There are more minority applicants than in the general population
and, consistent with the program rules, a relatively low proportion of high school
graduates. The applicants also have low previous employment rates. Average 30-
month earnings in the sample are about $19,000 for men and $13,000 for women.
Not surprisingly, the baseline covariates are roughly, though not perfectly, bal-
anced by assignment status. On the other hand, there are clear differences in
background variables by treatment status. In particular, trainees are significantly
more likely to have completed high school, and male trainees are significantly
more likely to have been married.
As a benchmark, OLS and conventional instrumental variables (2SLS) esti-

mates of the impact of training are reported in the first columns of Tables II
and III. The OLS training coefficient is $3,754 for men and $2,215 for women.
The 2SLS estimates in Table III use the randomized offer of treatment, Z, as
an instrument for D. The 2SLS estimate for men is $1,593 with a standard error
of $895, less than half the size of the corresponding OLS estimate. For women,
however, the 2SLS estimate is $1,780 with a standard error of $532, not very
much lower than the corresponding OLS estimate. The 2SLS estimates amount
to a 9 percent earnings increase for men and a 15 percent earnings increase for
women.9 These results are similar to those reported in Orr et al. (1996, Table 4.6).
The simple differences in earnings by training status in Table I are simi-

lar to the OLS estimates of training effects from models with covariates in
Table II. This suggests that, in this case, not much of the selection bias can be
explained by observed factors. Not surprisingly, since the instrument was ran-
domly assigned, 2SLS (or IV) estimates from a model without covariates are
also similar to the 2SLS estimates with covariates reported in Table III. The
IV estimates from a model without covariates can be derived directly from the

9 Percentage effects were computed as the coefficient on training, divided by fitted values with the
training dummy set to zero and other covariates set to means for the treated.
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reduced-form contrasts by assignment status in Table I. The simple IV esti-
mate for men is $1�830 
= 1116/�61�, and the simple IV estimate for women is
$1�940 
= 1242/�64�. The reduced-form assignment effects, $1,116 for men and
$1,242 for women, capture the average effects of offering the program; these may
be of interest in their own right.

4�2� QTE Estimates of Training Effects

Quantile regression estimates show that the gap in quantiles by trainee status
is much larger (in proportionate terms) below the median than above it. This can
be seen in the right-hand columns of Table II, which reports quantile regression
estimates for the .15, .25, .5, .75, and .85 quantiles. For men, the .85 quantile of
trainee earnings is about 13 percent higher than the corresponding quantile for
nontrainees, while the .15 quantile is 136 percent higher. For women the differ-
ence in impact across quantiles is less dramatic, but still marked. Like the OLS
estimates shown in the table, the quantile regression coefficients do not neces-
sarily have a causal interpretation. Rather they provide a descriptive comparison
of earnings distributions for trainees and nontrainees.

TABLE I
Means and Standard Deviations

Assignment Treatment

Entire Diff. Diff.
Sample Treatment Control (t-stat.) Trainees Non-trainees (t-stat.)

A. Men
Number of 5,102 3,399 1,703 2,136 2,966
observations

Treatment
Training �42 �62 �01 �61

��49� ��48� ��11� 
70�34�
Outcome variable
30 month 19,147 19,520 18,404 1,116 21,455 17,485 3,970
earnings [19,540] [19,912] [18,760] 
1�96� [19,864] [19,135] 
7�15�

Baseline
Characteristics
Age 32�91 32�85 33�04 −�19 32�76 33�02 −�26

�9�46� �9�46� �9�45� 
−�67� �9�64� �9�32� 
−�95�
High school or �69 �69 �69 −�00 �71 �68 �03
GED ��45� ��45� ��45� 
−�12� ��44� ��45� 
2�46�

Married �35 �36 �34 �02 �37 �34 �03
��47� ��47� ��46� 
1�64� ��47� ��46� 
2�82�

Black �25 �25 �25 �00 �26 �25 �01
��44� ��44� ��44� 
�04� ��44� ��43� 
�48�

Hispanic �10 �10 �09 �01 �10 �09 �01
��30� ��30� ��29� 
�70� ��31� ��29� 
1�60�

Worked less than �40 �40 �40 �00 �40 �40 −�00
13 weeks in ��47� ��47� ��47� 
�56� ��47� ��47� 
−�32�
past year
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TABLE I—Continued

Assignment Treatment

Entire Diff. Diff.
Sample Treatment Control (t-stat.) Trainees Non-Trainees (t-stat.)

B. Women
Number of 6,102 4,088 2,014 2,722 3,380
observations

Treatment
Training �45 �66 �02 �64

��50� ��47� ��13� 
80�24�
Outcome Variable
30 month 13,029 13,439 12,197 1,242 14,211 12,078 2,133
earnings [13,415] [13,614] [12,964] 
3�46� [13,550] [13,230] 
6�18�

Baseline
Characteristics
Age 33�33 33�33 33�35 −�02 33�11 33�52 −�41

�9�78� �9�77� �9�81� 
−�09� �9�71� �9�84� 
−1�62�
High school or �72 �73 �70 �03 �75 �70 �05
GED ��43� ��43� ��44� 
2�01� ��42� ��45� 
5�07�

Married �22 �22 �21 �01 �22 �21 �01
��40� ��40� ��39� 
1�55� ��40� ��39� 
1�35�

Black �26 �27 �26 �01 �26 �27 −�01
��44� ��44� ��44� 
�95� ��44� ��44� 
−�97�

Hispanic �12 �12 �12 −�00 �12 �11 �01
��32� ��32� ��33� 
−�89� ��33� ��32� 
1�29�

Worked less than
13 weeks in �52 �52 �52 −�00 �51 �53 −�02
past year ��47� ��47� ��47� 
−�08� ��47� ��47� 
−1�52�

AFDC �31 �30 �31 −�01 �32 �30 �02
��46� ��46� ��46� 
−1�03� ��47� ��46� 
1�92�

Note: The table reports means and standard deviations (in brackets) for the National JTPA Study 30-month earnings sample. The
columns showing differences in means (by assignment or treatment status) report the t-statistic (in parentheses) for the null hypothesis
of equality in means.

QTE corrects for possible selection bias in conventional quantile regression.
Implementation of the QTE estimator requires first step estimation of �! . The
theoretical results in the previous section are based on nonparametric series
estimation of the conditional expectations in �! . Since the elements of X are
discrete, nonparametric estimation of E�Z�X� is in principle straightforward.
In practice, however, a fully saturated model leads to small or missing covari-
ate cells. We therefore estimated E�Z�X� using the fact that because of ran-
dom assignment, Z and X are independent. The resulting estimate is simply the
empirical E�Z�. As explained in the previous section, !0
U�=E�Z�Y �D�X� was
estimated using power series, with separate models for D = 0�1. Most of the
remaining interaction terms (e.g., interactions between Y and X) were dropped
because they had little explanatory power. Selection of the order for the polyno-
mial was guided by cross-validation.10

10 See Appendix B for details. Hausman and Newey (1995) used a similar approach to dimension-
reduction for nonparametric estimation of consumer demand equations. Given estimates of �! ,
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TABLE II
Quantile Regression and OLS Estimates

Dependent Variable: 30-month Earnings

Quantile

OLS 0.15 0.25 0.50 0.75 0.85

A. Men
Training 3,754 1,187 2,510 4,420 4,678 4,806

(536) (205) (356) (651) (937) (1,055)
% Impact of Training 21.2 135.6 75.2 34.5 17.2 13.4

High school or GED 4,015 339 1,280 3,665 6,045 6,224
(571) (186) (305) (618) (1,029) (1,170)

Black −2�354 −134 −500 −2�084 −3�576 −3�609
(626) (194) (324) (684) (1,087) (1,331)

Hispanic 251 91 278 925 −877 −85
(883) (315) (512) (1,066) (1,769) (2,047)

Married 6,546 587 1,964 7,113 10,073 11,062
(629) (222) (427) (839) (1,046) (1,093)

Worked less than 13 −6�582 −1�090 −3�097 −7�610 −9�834 −9�951
weeks in past year (566) (190) (339) (665) (1,000) (1,099)

Constant 9,811 −216 365 6,110 14,874 21,527
(1,541) (468) (765) (1,403) (2,134) (3,896)

B. Women
Training 2,215 367 1,013 2,707 2,729 2,058

(334) (105) (170) (425) (578) (657)
% Impact of Training 18.5 60.8 44.4 32.3 14.5 8.09

High school or GED 3,442 166 681 2,514 5,778 6,373
(341) (99) (156) (396) (606) (762)

Black −544 22 −60 −129 −866 −1�446
(397) (115) (188) (451) (679) (869)

Hispanic −1�151 −31 −222 −995 −1�620 −1�503
(488) (130) (194) (546) (911) (992)

Married −667 −213 −392 −758 −1�048 −902
(436) (127) (209) (522) (785) (970)

Worked less than 13 −5�313 −1�050 −3�240 −6�872 −7�670 −6�470
weeks in past year (370) (137) (289) (522) (672) (787)

AFDC −3�009 −398 −1�047 −3�389 −4�334 −3�875
(378) (107) (174) (468) (737) (834)

Constant 10,361 649 2,633 8,417 16,498 20,689
(815) (255) (490) (966) (1,554) (1,232)

Note: The table reports OLS and quantile regression estimates of the effect of training on earnings. The specification also includes
indicators for service strategy recommended, age group, and second follow-up survey. Robust standard errors are reported in paren-
theses.

QTE estimates of the effect of training on median earnings, reported in
Table III, are similar in magnitude though less precise than the benchmark 2SLS
estimates. For men, the QTE estimates show a pattern very different from the
quantile regression estimates, with no evidence of an impact on the .15 or .25

we computed QTE coefficient estimates by weighted quantile regression using the Barrodale-
Roberts (1973) linear programming algorithm for quantile regression (see, e.g., Koenker and
D’Orey (1987)). A biweight kernel was used for the estimation of standard errors.
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TABLE III
Quantile Treatment Effects and 2SLS Estimates

Dependent Variable: 30-month Earnings

Quantile

2SLS 0.15 0.25 0.50 0.75 0.85

A. Men
Training 1,593 121 702 1,544 3,131 3,378

(895) (475) (670) (1,073) (1,376) (1,811)
% Impact of Training 8.55 5.19 12.0 9.64 10.7 9.02

High school or GED 4,075 714 1,752 4,024 5,392 5,954
(573) (429) (644) (940) (1,441) (1,783)

Black −2�349 −171 −377 −2�656 −4�182 −3�523
(625) (439) (626) (1,136) (1,587) (1,867)

Hispanic 335 328 1,476 1,499 379 1,023
(888) (757) (1,128) (1,390) (2,294) (2,427)

Married 6,647 1,564 3,190 7,683 9,509 10,185
(627) (596) (865) (1,202) (1,430) (1,525)

Worked less than 13 −6�575 −1�932 −4�195 −7�009 −9�289 −9�078
weeks in past year (567) (442) (664) (1,040) (1,420) (1,596)

Constant 10,641 −134 1,049 7,689 14,901 22,412
(1,569) (1,116) (1,655) (2,361) (3,292) (7,655)

B. Women
Training 1,780 324 680 1,742 1,984 1,900

(532) (175) (282) (645) (945) (997)
% Impact of Training 14.6 35.5 23.1 18.4 10.1 7.39

High school or GED 3,470 262 768 2,955 5,518 5,905
(342) (178) (274) (643) (930) (1026)

Black −554 0 −123 −401 −1�423 −2�119
(397) (204) (318) (724) (949) (1,196)

Hispanic −1�145 −73 −138 −1�256 −1�762 −1�707
(488) (217) (315) (854) (1,188) (1,172)

Married −652 −233 −532 −796 38 −109
(437) (221) (352) (846) (1,069) (1,147)

Worked less than 13 −5�329 −1�320 −3�516 −6�524 −6�608 −5�698
weeks in past year (370) (254) (430) (781) (931) (969)

AFDC −2�997 −406 −1�240 −3�298 −3�790 −2�888
(378) (189) (301) (743) (1,014) (1,083)

Constant 10,538 984 3,541 9,928 15,345 20,520
(828) (547) (837) (1,696) (2,387) (1,687)

Note: The table reports 2SLS and QTE estimates of the effect of training on earnings. Assignment status is used as an instrument
for training. The specification also includes indicators for service strategy recommended, age group, and second follow-up survey.
Robust standard errors are reported in parentheses.

quantile. The estimates at low quantiles are substantially smaller than the corre-
sponding quantile regression estimates, and they are small in absolute terms. For
example, the QTE estimate (standard error) of the effect on the .15 quantile for
men is $121 (475), while the corresponding quantile regression estimate is $1,187
(205). Similarly, the QTE estimate (standard error) of the effect on the .25 quan-
tile for men is $702 (670), while the corresponding quantile regression estimate is
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$2,510 (356). Unlike the results at low quantiles, however, the QTE estimates of
effects on male earnings above the median are large and statistically significant
(though still smaller than the corresponding quantile regression estimates).
In contrast with the QTE estimates for men, QTE estimates for women show

significant effects of training at every quantile, with the largest proportional
effects at low quantiles. For example, training is estimated to have raised the .15
quantile of earnings for women by $324 (175), an increase of 35 percent. The
estimates also suggest training raises the .85 quantile by $1,900 (997), but this is
an increase of only 7 percent. Most of the QTE estimates for women are reason-
ably close to the corresponding quantile regression estimates. Thus, whether or
not training is treated as endogenous, the estimates support the notion that for
women training had a bigger proportional impact on the lower tail of the earn-
ings distribution than the upper tail. This seems like a desirable distributional
outcome. Of course, women’s earnings are especially low in this sample, so large
proportional effects at low quantiles do not translate into large dollar amounts.
The result that training for adult men did not raise the lower quantiles of their

earnings is the most interesting finding arising from our analysis. Estimates of
the marginal distribution of Y0 for trainees suggest this may be because of self-
selection, or because of an effort by program operators to exclude men with earn-
ings in the lower tail of the Y0 distribution. This is documented in Table IV, which
reports estimates of Q�
Y0�D� and Q�
Y0�X = E�X�D = 1��D�. These statistics
describe the Y0 distribution for trainees and controls, and provide distribution-
wide measures of selection bias.11

Estimated quantiles for unconditional distributions show much higher Y0 quan-
tiles for male trainees than nontrainees at and below the median. This differ-
ence remains substantial after conditioning on X =E�X�D= 1�. Consistent with
the earlier results, there is little evidence of selection in the Y0 distribution for
women. Since the ostensible purpose of the JTPA was to aid economically dis-
advantaged workers, the positive selection of male trainees should be of concern
to policy makers. One response to this finding might be that few JTPA appli-
cants were very well off, so that distributional effects in the applicant pool are
of less concern than the fact that the program helped many applicants overall.
However, the upper quantiles of earnings were reasonably high for adults who
participated in the National JTPA Study. Increasing earnings in this upper tail is
therefore unlikely to have been a high priority.

5� summary and conclusions

This paper develops a new estimator for measuring the effect of an endoge-
nous treatment on quantiles, and uses this procedure to estimate the effect of
subsidized JTPA training on the quantiles of earnings for program participants.
The resulting estimates of the effect of training on the quantiles of the earnings

11 See also Heckman et al. (1998), who estimate the selection bias in JTPA average treatment
effects.
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TABLE IV
30-month Earnings Quantiles without Training

Quantile

0.15 0.25 0.50 0.75 0.85

A. Men
Unconditional
Trainees 1�368 4�797 15�362 29�947 39�171
Non-Trainees 142 1�623 11�449 27�855 37�524

Conditional
Trainees 2�329 5�859 16�016 29�294 37�448
Non-Trainees 876 3�337 12�814 27�137 35�778

B. Women
Unconditional
Trainees 120 1�380 8�722 20�392 26�538
Non-Trainees 0 840 7�566 20�241 26�630

Conditional
Trainees 906 2�924 9�482 19�719 25�719
Non-Trainees 605 2�281 8�394 18�856 25�444

Note: The table reports quantiles of the distribution of earnings without training 
Y0� for trainees and nontrainees. Since there
was almost perfect compliance in the control group, quantiles for trainees are given by quantiles for compliers. The rows labeled
Unconditional report unconditional quantiles. To produce the results for the rows labeled Conditional, the conditional quantile estimates
of Table III were evaluated at the mean of the covariates for the treated with the Training indicator set to zero.

distribution suggest interesting and important differences in program effects at
different quantiles, and differences in distributional impacts for men and women.
For men, the differences in effects across quantiles seem large enough to lead to
welfare comparisons different from those generated by simply looking at means.
Our results also shed some light on the nature of selection for JTPA training.
The estimates suggest that men with low potential earnings were not encouraged
or did not choose to participate.
Application of the QTE procedure is not limited to randomized trials with

one-sided noncompliance or to social experiments. More generally, the QTE
estimator captures the effect of an intervention on distributions for individuals
whose treatment status is changed by a binary instrument. Regardless of setting,
the estimator minimizes a convex piecewise-linear objective function similar to
that for conventional quantile regression, and can be computed as the solution
to a linear programming problem after first-step estimation of a nuisance func-
tion. Our paper develops distribution theory for the case where this first step is
estimated nonparametrically. Although flexible, this nonparametric approach has
some of the usual drawbacks associated with nonparametric estimation (e.g., the
need to choose smoothing parameters). In future work, we plan to explore com-
putationally attractive parametric alternatives, and hope to develop a variant of
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the estimation method that accomodates multinomial or continuous endogenous
regressors.

John F. Kennedy School of Government, Harvard University, Cam-
bridge, MA 02138, U.S.A., and NBER; alberto_abadie@harvard.edu;
http://www.ksg.harvard.edu/fs/ aabadie
Dept. of Economics, MIT E52-353, 50 Memorial Dr., Cambridge, MA 02139,

U.S.A., and NBER; angrist@mit.edu; http://web.mit.edu/angrist/www
and

Dept. of Economics, University of California, Berkeley, 649 Evans Hall, Berkeley,
CA 94720-3880, U.S.A., and NBER; imbens@econ.berkeley.edu

Manuscript received March, 1998; final revision received November, 2000.

APPENDIX A: Proofs

Proof of Theorem 3.1: This proof is similar to the proof of Theorem 1 in Buchinsky and
Hahn (1998). Consider
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Proof of Lemma A.1: Lemma A.1 shows how the estimation of �! affects the distribution of
Cn. To prove this lemma we use the assumption that �! is bounded away from zero. This assumption
is probably stronger than necessary but it allows us to ignore the trimming using 1��̂! ≥ 0�, making
the asymptotics easier. Assumption (vi) implies that K · 
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1�, where � is the support of U (see, e.g., Newey (1997,
Theorem 4)). Since �0 is bounded away from zero and one (by (iii)), then supU∈� ��̂! −�! � = op
1�.
Since �! is bounded away from zero, with probability approaching one the trimming is not binding and
we can ignore it for the asymptotics. For any function ofW�E
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Let �l
0 be the population mean of Z for the l-cell of X and �̂l its sample counterpart.

Rn =
1√
n

n∑
i=1
m
Ui� ·

(

1−Di� · !̂i
�0i · �̂i

− Di · 
1− !̂i�

1− �̂i� · 
1−�0i�

)
· 
�̂i−�0i�

=
L∑
l=1

(
1√
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nl∑
il=1
Zil −�l

0

)
·
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1
nl

nl∑
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Uil � ·
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1−Dil

� · !̂il
�l
0 · �̂l

− Dil
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1− !̂il �


1− �̂l� · 
1−�l
0�
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�

Also, note that
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Uil � ·
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1−Dil

� · !̂il
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0 · �̂l

− Dil
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0�
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− 1
nl
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il=1
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Uil � ·

(

1−Dil

� ·!0il
�l
0 · �̂l

− Dil
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1− �̂l� · 
1−�l
0�
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=
∥∥∥∥ 1nl
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il=1
m
Ui� ·
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1−Dil
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!̂il −!0il �
�l
0 · �̂l
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!̂il −!0il �
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1−�l
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1
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1−Dil

�

�l
0 · �̂l
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1−�l
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Then, applying Lemma 4.3 in Newey and McFadden (1994),
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0 · �̂l

− Dil
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0�

)
+op
1�

p−→ E

[
m
U� ·

(

1−D� ·!0
U�

�0
X��

2
− D · 
1−!0
U��

1−�0
X��

2

)∣∣∣∣X]

= E
[
m
U� ·

(

1−D� ·Z

�0
X��

2
− D · 
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1−�0
X��

2

)∣∣∣∣X]�
Therefore,

Cn
�̂!�=
1√
n

n∑
i=1
m
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(
1− Di · 
1− !̂i�

1−�0
Xi�
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�0
Xi�

)

+ 1√
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H
Xi� ·�Zi−�0
Xi��+op
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To prove

1√
n

n∑
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m
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(
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1−�0
Xi�
− 
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�0
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n∑
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(
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Xi�
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�0
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)
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notice that

1√
n

n∑
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Xi�
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�0
Xi�
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=
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ij=1

m
Uij � ·
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Dij
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Xij
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�0
Xij
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)
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So, we just have to show that for each j ∈ �1� ) ) ) � J �

1√
nj

nj∑
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m
Uij � ·
(
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This is done by checking Assumptions 6.1 to 6.6 in Newey (1994). Assumptions 6.1 and 6.2 follow
directly from the conditions of the theorem (see Newey (1994, page 1373)). Assumption 6.3 holds
with d = 0 and �d = s. Assumption 6.4 holds for b
z�= 0 and derivative equal to

m
U� ·
(

D

1−�0
X�
− 1−D
�0
X�

)

!−!0��

Assumptions 6.5 and 6.6 follow from: (i) nj ·K−2s → 0; (ii) K5/nj → 0 (almost surely). In particu-
lar, to check Assumption 6.5 note that (vi) implies that s > 5/2; therefore K ·K−s → 0 (note that
Assumption 6.5 is also valid with d = 0). To check Assumption 6.6 note that since

E

[∥∥∥∥m
U� ·( D

1−�0
X�
− 1−D
�0
X�

)∥∥∥∥2]<��

then there exists a sequence IK such that

E

[∥∥∥∥m
U� ·( D

1−�0
X�
− 1−D
�0
X�

)
−IKpK
U�

∥∥∥∥2]−→ 0

as K→� (see Newey (1994, page 1380, last paragraph)). Now, applying the results in Newey (1994),
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(
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Xi�
− 1−Di
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Xi�
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= 1√
n
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m
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(
1− Di · 
1−Zi�

1−�0
Xi�
− 
1−Di� ·Zi

�0
Xi�

)
+op
1�

and the result of the lemma holds. Q.E.D.

Proof of Lemma A.2: Note that �n
Ui�1��̂! ≥ 0� · �̂!� =�−�n
Ui��!� =�= 
1��̂! ≥ 0� · �̂!−�!� ·
Sn
Ui� =�, where

Sn
Ui� =�= � · �
%�i−n−1/2W ′
i =�

+ − %+�i�+ 
1−�� · �
%�i−n−1/2W ′
i =�

+ −%−�i�+= ′Bn
Ui��
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so �Sn
Ui� =�� ≤ n−1/21��%�i�< n−1/2�W ′
i =�� · �W ′

i =�. Also,

E�n · �Sn
Ui� =��� ≤ n−1/2E�1��%��< n−1/2�W ′=�� · �W ′=��

= E

[
F%� �W 
n

1/2�W ′=��−F%� �W 
−n1/2�W ′=��
n−1/2 ��W ′=�

]
→ 2 ·E�f%� �W 
0� · �W ′=�2� <��

Then,

∣∣∣∣ n∑
i=1
�n
Ui�1��̂! ≥ 0� · �̂!� =�−�n
Ui��!� =�

∣∣∣∣≤ n∑
i=1

�1��̂! ≥ 0� · �̂!−�! � · �Sn
Ui� =��

≤ sup
U∈�

��̂!−�! � ·
1
n

n∑
i=1
n · �Sn
Ui� =�� = op
1��

Also, by cancellation of cross-product terms,

E

[( n∑
i=1
�n
Ui��!� =�−E��n
U��!� =��

)2]
≤

n∑
i=1
E�
�n
U��!� =��

2�

≤ E�1��%�i�< n−1/2�W ′
i =�� · �W ′

i =�2�
→ 0�

and the result of the lemma holds. Q.E.D.

The next theorem provides regularity conditions for the case where X is continuous and both �0

and !0 are estimated using nonparametric power series (using the same order for the polynomial, K,
in both cases). Let �̂i and !̂i be the fitted values; �̂! is constructed as in equation (4).

Theorem A.1: Under Assumptions 2.1 and 3.1 and if:
(i) the data are i.i.d.;
(ii) conditional on D�
Y �X� is continuously distributed with support equal to a product of compact

intervals and density bounded away from zero;
(iii) �0
X� is bounded away from zero and one;
(iv) conditional on W�%� is continuously distributed with bounded density; the distribution function

of %� conditional on W and D1 > D0 is continuously differentiable at zero with density f%� �W�D1>D0 
0�
that is bounded away from zero; E�WW ′ �D1 >D0� is positive definite;

(v) �! is bounded away from zero;
(vi) for s equal to the (minimum) number of continuous derivatives of �0 and !0, n ·K−2s/
r+1� → 0

and K6/n→ 0;
then, n1/2
$̂�−$�� d−→N
0�4�.

Proof of Theorem A.1: The proof of this theorem is similar to the proof of Theorem 3.1.
Only the proof of convergence of Cn
�̂!� changes. Using the rate results in Newey (1997), it can be
shown that n ·K−2s/
r+1� → 0 and K6/n→ 0 imply that n1/4 sup ��̂−�0� and n1/4 sup �!̂−!0� are op
1�.
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Consider Rn. First we show that we can replace !̂i with !0i with a difference of order op
1�:
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because ∥∥∥∥ 1√
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The first two factors are op
1�, and the third is Op
1�, so the product is op
1�.

Second we show that we can replace in the denominator �̂i with �0i with a difference of order
op
1�:
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Under assumption (vi) in the theorem, and applying results in Newey (1994), we obtain
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and
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Therefore, Cn
�̂!�=
∑n

i=1 6i+op
1�. Q.E.D.

Proof of Theorem 3.2: Consistency of 5̂ is easy to prove, so we will focus on Ĵ . By (ii) and
(iii), for 0≤ %∗ ≤ %� :

E�9h
$���W�D1 >D0�=
∫ 1
h
9

(
y−W ′$�

h

)
fY �W�D1>D0 
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Therefore,
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0��

By equation (A.1) and condition (iv) in Theorem 3.1 E�9h
$���W�D1 > D0� is eventually bounded
(in absolute value) by a constant. Since W is also bounded, we have that
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where C is a constant that may be different in different expressions.
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Under the assumptions of Theorem 3.1, supU∈� ��̂!−�! �
p−→ 0. In addition,∣∣∣∣ 1n n∑
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As shown above,
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By (i) and (iv), for some constant C∥∥∥∥ 1n n∑
i=1
�!
Ui� ·9h� i
$̂�� ·WiW

′
i −�!
Ui� ·9h� i
$�� ·WiW
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≤ C ·n1/2�$̂�−$�� · 
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1��

Combining equations (A.2), (A.3), and (A.4), we get Ĵ
p−→ J .

APPENDIX B: Details of First Step Estimation of !0

We used nonparametric power series to estimate !0 = E�Z�Y �D�X�. An exploratory analysis
showed that interaction terms with D were highly significant, so !0 was estimated separately for
D= 0�1 (i.e., all the terms in the series were interacted with D). Further exploratory analysis showed
that most of the terms in X were not significant so they were dropped from the series. The only
regressor with explanatory power, given D and Y , was the indicator of classroom training (as service
strategy recommended) for women. Therefore, for men, the series contained a constant and terms
in Y , completely interacted with D. For women, the series contained a constant and terms in Y ,
completely interacted with D and indicators for the two possible values of the classroom training
indicator. Selection of the order for the polynomial was guided by cross-validation. The estimated
polynomials contained terms in Y up to order 5 for men. For women the estimated polynomials
contained terms up to order 3 for conditional quantiles and up to order 6 for unconditional quantiles.
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