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Abstract
We develop new quasi-experimental tools to measure disparate impact, regardless
of its source, in the context of bail decisions. We show that omitted variables
bias in pretrial release rate comparisons can be purged by using the quasi-random
assignment of judges to estimate average pretrial misconduct risk by race. We find
that two-thirds of the release rate disparity between white and Black defendants in
New York City is due to the disparate impact of release decisions. We then develop
a hierarchical marginal treatment effect model to study the drivers of disparate
impact, finding evidence of both racial bias and statistical discrimination.
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1 Introduction

Racial disparities are pervasive throughout much of the U.S. criminal justice system. Black individuals
are, for example, more likely than white individuals to be searched by the police, charged with a
serious crime, detained before trial, convicted of an offense, and incarcerated.1 Such racial disparities
are often taken as evidence of discrimination, driven by racially biased preferences or stereotypes.
But this interpretation overlooks two alternative explanations. First, the observed disparities may
reflect legally relevant differences in criminal behavior that are partially observed by police officers,
prosecutors, and judges but not by the econometrician. Second, the observed disparities may be
driven by statistical discrimination, instead of or alongside racially biased preferences and stereotypes.
Distinguishing between these different explanations for racial disparities and correctly measuring racial
discrimination remains difficult, hampering efforts to formulate appropriate policy responses.

This paper develops new quasi-experimental tools to estimate disparate impact, a broad and
legally based definition of discrimination encompassing both racial bias and statistical discrimination.
We develop these tools in the context of bail, where the sole legal objective of judges is to allow
most defendants to be released before trial while minimizing the risk of pretrial misconduct (such
as failing to appear in court or being arrested for a new crime). Bail judges thus risk violating U.S.
anti-discrimination law if they release white and Black defendants with the same objective misconduct
potential at different rates.2 Correspondingly, we measure discrimination as the difference in a judge’s
release rates between white and Black individuals with identical misconduct potential. This measure
is consistent with the legal theory of disparate impact, as well as economic notions of discrimination
that compare white and Black individuals with the same productivity (Aigner and Cain, 1977) and
notions of algorithmic discrimination that compare equally “qualified” white and Black individuals
(Berk et al., 2018). Since the measure can be understood as isolating potentially unwarranted release
rate disparities, we use the terms racial discrimination, disparate impact, and unwarranted disparity
interchangeably.

Estimating unwarranted release rate disparities among white and Black defendants is fundamen-
tally challenging. Observed disparities do not adjust for unobserved misconduct potential and can
therefore suffer from omitted variables bias (OVB) when there are unobserved racial differences in
misconduct risk.3 Observational comparisons can also suffer from included variables bias (IVB) when
they adjust for non-race characteristics, such as criminal history and crime type, that can mediate
disparate impact. Randomized audit studies (e.g., Bertrand and Mullainathan, 2004; Ewens, Tomlin
and Choon Wang, 2014) can test whether decision-makers treat fictitious white and Black individuals
with the same observable characteristics in the same way, but do not capture disparate impact that

1A large recent literature documents racial disparities in the criminal justice system. See, for example, Gelman,
Fagan and Kiss (2007), Antonovics and Knight (2009), Anwar, Bayer and Hjalmarsson (2012), Abrams, Bertrand and
Mullainathan (2012), McIntyre and Baradaran (2013), and Rehavi and Starr (2014), among many others.

2Section 2 describes how U.S. anti-discrimination laws apply in our context. As we discuss there in greater detail,
finding different release rates among white and Black individuals with identical misconduct potential would likely be
necessary, but perhaps not sufficient, to win a disparate impact case. We also compare disparate impact to disparate
treatment, which generally requires additional non-statistical evidence of discriminatory intent.

3Our analysis, and use of OVB terminology, is not premised on the view that differences in misconduct risk are
innate or unaffected by discrimination at other points of the criminal justice system (or society as a whole). Differences
in misconduct risk and subsequent OVB in observational analyses could, for example, be driven by the over-policing of
Black neighborhoods relative to white neighborhoods, discrimination in the types of crimes that are reported to and
investigated by the police, discrimination in housing and labor markets, and so on. We measure the disparate impact
of release decisions holding fixed these other potential sources of discrimination, isolating by design one particular set
of unwarranted disparities that may be reliably targeted and potentially reduced by policy.
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arises via non-race characteristics and are infeasible in high-stakes and face-to-face settings such as
bail decisions. Outcome-based tests can detect one potential driver of disparate impact—racial bias
at the margin of release decisions (e.g., Arnold, Dobbie and Yang, 2018; Marx, Forthcoming)—but
cannot detect accurate statistical discrimination or measure the overall extent of disparate impact.

Our primary methodological contribution is to show that disparate impact in bail decisions, re-
gardless of its source, can be measured by leveraging the quasi-random assignment of decision-makers
(such as bail judges) to white and Black individuals. This approach proceeds in two steps. First,
we show that to purge OVB from observational release rate comparisons we need only to measure
average white and Black misconduct risk. Intuitively, the OVB in observational comparisons comes
from the correlation between defendant race and unobserved misconduct potential in each judge’s
defendant pool. When judges are as-good-as-randomly assigned, this correlation is common to all
judges and is furthermore a simple function of misconduct risk (i.e., average misconduct potential)
by race. We can therefore use estimates of race-specific misconduct risk to rescale observational re-
lease rate comparisons in such a way that makes released white and Black defendants comparable in
terms of misconduct potential within each as-good-as-randomly assigned judge’s defendant pool. The
rescaled comparisons avoid OVB by revealing the rates at which each judge releases white and Black
defendants with the same objective misconduct potential. Our rescaling approach further avoids IVB
by conditioning on pretrial misconduct potential directly, instead of conditioning on non-race charac-
teristics that can mediate disparate impact. The key econometric challenge is then to estimate the
average misconduct risk parameters, which is difficult since misconduct outcomes are only selectively
observed among the subset of defendants who a judge endogenously releases before trial.

In the second step of our approach, we estimate the required average misconduct risk inputs from
quasi-experimental variation in pretrial release and misconduct rates. To build intuition for this
step, consider an idealized setting with an as-good-as-randomly assigned bail judge who is supremely
lenient in that she releases nearly all defendants assigned to her. The supremely lenient judge’s
release rates among white and Black defendants are close to one, meaning (by as-good-as-random
assignment) that the misconduct rates among her released white and Black defendants are close to
the average misconduct risk inputs. In practice, we do not observe such a supremely lenient judge.
Instead, we estimate average misconduct risk by extrapolating observed release misconduct rates across
observed quasi-randomly assigned judges with high release rates. Importantly, we do not require a
model of judge decision-making for either our approach to extrapolating pretrial misconduct risk or to
estimating discrimination from these extrapolations. Our model-free approach to measuring disparate
impact only requires that the statistical extrapolations and judges’ legal objective are well-specified.

We use our quasi-experimental approach to measure disparate impact in New York City (NYC),
home to one of the largest pretrial systems in the country. Our most conservative estimates show that
approximately two-thirds of the average release rate disparity between white and Black defendants is
due to racial discrimination (62 percent, or 4.2 percentage points out of 6.8 percentage points), with
the remaining one-third attributable to OVB. The average unwarranted disparity shrinks by 17 percent
(0.7 percentage points out of 4.2 percentage points) when we condition on observable characteristics
such as criminal history and crime type, additionally highlighting the importance of IVB in this setting.
Our main finding applies to most defendant subgroups and is robust to different extrapolations of
average misconduct risk, specifications of pretrial misconduct, classifications of pretrial release, and
definitions of defendant race. Judge-specific estimates further show that the vast majority of bail
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judges discriminate against Black defendants (87 percent, by our most conservative estimate), with
higher levels of discrimination among more stringent judges, judges assigned a lower share of cases
with Black defendants, and judges who are not newly appointed in our sample period.

Our second methodological contribution is to develop a hierarchical marginal treatment effect
(MTE) model that imposes additional structure on the quasi-experimental variation to investigate the
drivers of disparate impact in NYC bail decisions. The model allows us to decompose disparate impact
into components due to racial bias and statistical discrimination, two drivers that have historically
been the focus of the economics literature. The model specifies a joint distribution of judge preferences
for releasing defendants of a given race and judge skill at inferring misconduct potential by race. The
distributions of judge preferences and skill imply a distribution of judge- and race-specific MTE
curves that can be used to test for racial bias at the margin of release and measure racial differences
in average risk or signal quality that generate statistical discrimination. We estimate the distribution
of judge MTE curves using a tractable simulated minimum distance (SMD) procedure that matches
moments of the quasi-experimental variation in pretrial release and misconduct rates. Model estimates
show evidence of both racial bias and statistical discrimination in NYC, with the latter coming from
a higher level of average risk (that exacerbates discrimination) and less precise risk signals (that
alleviates discrimination) for Black defendants. The finding of statistical discrimination implies that
outcome-based tests of racial bias (as in Arnold, Dobbie and Yang (2018)) would miss important
sources of discrimination in this setting.

We conclude by using our MTE model to investigate whether disparate impact can be reliably
targeted, and potentially reduced, with existing data. We simulate counterfactuals in which judges
can be subjected to race-specific release rate quotas that eliminate unwarranted racial disparities,
as estimated by a policymaker. We find that targeting the most discriminatory NYC judges with a
quota based on our quasi-experimental estimates can reduce the average level of discrimination by
36 percent, and that targeting all judges with such a quota can essentially eliminate discrimination
despite the noise in our estimation procedure. By comparison, targeting judges with a quota based on
observational release rate disparities can lead to a small but non-zero level of discrimination against
white defendants, due to the OVB in observed release rates.

This paper complements a recent empirical literature that uses quasi-experimental variation to
test for racial bias in the criminal justice system, which is one potential driver of the disparate impact
we measure. Arnold, Dobbie and Yang (2018) use the release tendencies of quasi-randomly assigned
bail judges to test for racial bias using a conventional MTE framework, while Marx (Forthcoming)
uses a similar approach to test for racial bias at the margin of police stops under a weaker first-stage
monotonicity assumption. The outcome-based tests developed by Arnold, Dobbie and Yang (2018) and
Marx (Forthcoming) detect racial bias from taste-based discrimination or inaccurate stereotypes, but
cannot detect accurate statistical discrimination or measure the magnitude of any disparate impact.
Our primary contribution to this literature is to show how quasi-experimental judge assignment can
be used to measure these magnitudes and detect all possible violations of U.S. anti-discrimination
law, regardless of their source. Our secondary contribution is to show how to investigate the drivers
of disparate impact by imposing alternative structure on the quasi-experimental variation, providing
a way to quantify the relative importance of the racial bias detected in the outcome-based tests of
Arnold, Dobbie and Yang (2018) and Marx (Forthcoming).4

4Other recent related work includes Rose (2021) and Feigenberg and Miller (2021). Rose (2021) shows that a policy
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Methodologically, this paper builds on a recent literature on estimating average treatment effects
(ATEs) and MTEs with multiple discrete instruments (Kowalski, 2016; Brinch, Mogstad and Wiswall,
2017; Mogstad, Santos and Torgovitsky, 2018; Hull, 2020). An important feature of our approach is
that we do not impose the usual first-stage monotonicity assumption, which has received scrutiny both
in general (Mogstad, Torgovitsky and Walters, 2020) and in the specific context of so-called “judge
designs” (Mueller-Smith, 2015; Frandsen, Lefgren and Leslie, 2019; Norris, 2019). Our extrapolation-
based solution to estimating mean misconduct risk (which can be viewed as an ATE) without imposing
monotonicity is most closely related to Hull (2020), who considers non-parametric extrapolations of
quasi-experimental moments in the spirit of “identification at infinity” in sample selection models
(Chamberlain, 1986; Heckman, 1990; Andrews and Schafgans, 1998). Our hierarchical MTE frame-
work is closely related to the contemporaneous work of Chan, Gentzkow and Yu (2021), who use a
similar model to study variation in physician preferences and skill when making pneumonia diagnoses.

The remainder of the paper is organized as follows. Section 2 describes how U.S. anti-discrimination
laws motivate our approach and provides an overview of the NYC pretrial system. Section 3 outlines
the conceptual framework underlying our analysis. Section 4 describes our data and documents pretrial
release rate differences for Black and white defendants. Section 5 develops and implements our quasi-
experimental approach to measuring racial discrimination in bail decisions. Section 6 develops and
estimates our hierarchical MTE model to explore the drivers of discrimination and conduct policy
counterfactuals. Section 7 concludes.

2 Setting

2.1 Disparate Impact and U.S. Anti-Discrimination Law

The two main legal doctrines of discrimination in the United States are disparate impact and dis-
parate treatment, with each requiring distinct statistical and non-statistical evidence. We first discuss
disparate impact and motivate an idealized statistical measure, which we formalize and estimate
in this paper. We then compare disparate impact to disparate treatment, which generally requires
non-statistical evidence to establish or strongly suggest discriminatory intent under the law.

The disparate impact doctrine is concerned with the discriminatory effects of a policy or practice,
rather than a decision-maker’s intent. Under this doctrine, a policy or practice may be deemed dis-
criminatory if it leads to an adverse impact on a protected class and the decision-maker cannot offer
a substantial legitimate justification.5 A policy or practice may also be deemed discriminatory under
this doctrine if the legitimate justification can be reasonably achieved as well by less disparate means
(see, e.g., 42 U.S.C. §2000e-2(K)(1)(A)(ii) in employment contexts and the Official Staff Interpreta-

reform that sharply reduced prison punishments for technical probation violations nearly eliminated the racial disparity
in incarceration without significantly increasing the disparity in reoffending rates, suggesting that technical probation
violations may convey less precise risk signals for Black individuals on probation. Feigenberg and Miller (2021) show
that Black motorists in Texas are stopped at higher rates than white motorists without any commensurate increase in
contraband hit rates, suggesting that the racial disparity in search rates is inefficient.

5The disparate impact doctrine was formalized in the landmark U.S. Supreme Court case of Griggs v. Duke Power Co.
(1971). This case began in 1955, when the Duke Power Company instituted a policy that employees must have a high
school diploma to be considered for promotion. This policy had the effect of drastically limiting the eligibility of Black
employees. The Supreme Court found that the diploma requirement had little to no relationship to job performance
(the legitimate justification in this case), and thus deemed it to have a legally unwarranted disparate impact on Black
employees. The employer’s motivation for instituting the diploma requirement was irrelevant to the Court’s decision,
as was the fact that the policy was applied equally to white and Black employees.
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tions, Regulation B, 12 C.F.R. §202.6(a)-2 (2009) in lending contexts). A facially neutral practice may
therefore be deemed discriminatory if it has an unwarranted adverse effect on a protected group, even
in the absence of explicit categorization or animus. In our context of pretrial decisions, discussed more
below, this means that the disparate impact standard would hold bail judges accountable for both
“direct discrimination,” coming from the consideration of race, as well as “indirect discrimination”
coming from the consideration of non-race characteristics (such as criminal history or crime type) that
nevertheless lead to an adverse impact on a racial group.

Under current case law the disparate impact standard only applies in certain contexts, since it
stems from statutory rules rather than constitutional law. Examples include employment via Title
VII of the 1964 Civil Rights Act and housing via the Fair Housing Act of 1968. The disparate impact
standard also applies to all programs and activities receiving federal financial assistance via Title
VI of the 1964 Civil Rights Act, which generally includes the state and local courts considered in
our analysis of the pretrial setting. In United States v. Maricopa County (2012), for example, the
Department of Justice filed suit under Title VI of the Civil Rights Act of 1964, 42 U.S.C. §2000d,
and 34 U.S.C. §12601 alleging that the Maricopa County Sheriff’s Office and Maricopa County were
in violation of the disparate impact standard due to the failure “to develop and implement policies
and practices to ensure [limited English proficient] Latino inmates have equal access to jail services.”
There is no private right of action to enforce disparate impact regulations under Title VI, however,
meaning that it falls to the relevant federal authorities to develop and enforce the disparate impact
standard in these contexts (Alexander v. Sandoval, 2001).

An important question in interpreting the disparate impact doctrine, both in general and in our
specific context of pretrial decisions, is how to define a legitimate justification for potential disparities.
In the employment context, the U.S. Supreme Court has consistently found that an employer charged
with a disparate impact must show that their hiring practices “bear a demonstrable relationship to
successful performance of the jobs for which it was used” (Griggs v. Duke Power Co., 1971) and
“be shown to be necessary to safe and efficient job performance” (Dothard v. Rawlinson, 1977). In
the lending context, guidance issued by the banking regulators has similarly explained that legitimate
justifications are typically related to cost, profitability, soundness, or other measurable objectives (see,
e.g., the Interagency Fair Lending Examination Procedures). We interpret these decisions as saying
that the legitimate justification that defines disparate impact is based on objective potential outcomes,
such as worker productivity in an employment context, profits in a lending context, or (as we discuss
more below) pretrial misconduct in the pretrial context.6

The ideal statistical test for disparate impact would therefore compare the treatment of different
protected groups with identical potential for achieving a given relevant outcome. In the context of bail
decisions, discussed further below, this means that we would like to compare the release decisions of
white and Black defendants with identical pretrial misconduct potential. To capture both how a judge
explicitly considers race and potential indirect discrimination on non-race characteristics, the ideal
test would not condition on characteristics other than misconduct potential. The finding of disparities

6The focus on objective potential outcomes makes the disparate impact standard more in line with sociological,
psychological, and economic research on the widespread and insidious nature of unconscious/implicit biases, inaccurate
stereotypes, and systemic racism. Discrimination operating through implicit biases or inaccurate stereotypes, rather
than through explicit animus or tastes/preferences, can be captured by disparate impact but may not be captured
by disparate treatment which, as we discuss below, generally requires proof of discriminatory intent. The Supreme
Court has thus explained that disparate impact liability under various civil rights laws, “permits plaintiffs to counteract
unconscious prejudices and disguised animus that escape easy classification as disparate treatment” (Texas Department
of Housing & Community Affairs v. Inclusive Communities Project, 2015).
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conditional on misconduct potential would likely be necessary (though perhaps not sufficient) evidence
to win a disparate impact case—depending on, for example, whether or not it can be shown that there
is a decision rule yielding less of a conditional disparity while achieving similar or better outcomes.

The disparate treatment doctrine contrasts with disparate impact by prohibiting polices or prac-
tices motivated by a “discriminatory purpose” and thus requiring proof of intent.7 There are two
competing views on the ideal statistical test for disparate treatment, with broad agreement that sta-
tistical evidence alone is insufficient because of the need to show intent. The first view is that one
would still like to compare the treatment of different groups with identical potential outcomes, as
in a disparate impact case, but augment this comparison with non-statistical evidence showing or
strongly suggesting intent.8 The second view is that we would like to compare the treatment of differ-
ent groups with identical observable characteristics using, for example, a well-designed audit study or
observational analysis that controls for all observable differences between groups. Such a test would
reveal whether the decision-maker is impartial with respect to protected attributes such as race (i.e.,
is “race-blind”) and may, along with proof of intent, be enough to establish disparate treatment.

2.2 The New York City Pretrial System

We study disparate impact in the New York City pretrial system, which is one of the largest pretrial
systems in the country. U.S. pretrial systems are meant to allow most criminal defendants to be
released from legal custody while minimizing the risk of pretrial misconduct. Bail judges in both
NYC and the country as a whole are granted considerable discretion in determining which defendants
should be released before trial, but they cannot discriminate against minorities and other protected
classes even when membership in a protected class contains information about the underlying risk of
criminal misconduct (Yang and Dobbie, 2020). Judges are also not meant to assess guilt or punishment
when determining which individuals should be released from custody, nor are they meant to consider
the political consequences of their bail decisions.

In NYC, bail conditions are set by a judge at an arraignment hearing held shortly after an arrest.
These hearings usually last a few minutes and are held through a videoconference to the detention
center. The judge typically receives detailed information on the defendant’s current offense and prior
criminal record, as well as a release recommendation based on a six-item checklist developed by a local
nonprofit (New York City Criminal Justice Agency Inc., 2016). The judge then has several options
in setting bail conditions. First, she can release defendants who show minimal risk on a promise to
return for all court appearances, known broadly as release on recognizance (ROR) or release without
conditions. Second, she can require defendants to post some sort of bail to be released. The judge
can also send higher-risk defendants to a supervised release program as an alternative to cash bail.
Finally, the judge can detain defendants pending trial by denying bail altogether. Cases such as

7The disparate treatment doctrine derives its force from the Equal Protection Clause of the U.S. Constitution’s
Fourteenth Amendment. It was formalized in the landmark U.S. Supreme Court case Washington v. Davis (1976), where
the Supreme Court explained that the “basic equal protection principle that the invidious quality of a law claimed to be
racially discriminatory must ultimately be traced to a racially discriminatory purpose.” Later, in McCleskey v. Kemp
(1987), the Court similarly rejected a challenge to Georgia’s capital punishment scheme—despite statistical evidence
showing large racial disparities in death penalty rates—because the evidence was “clearly insufficient to support an
inference that any of the decisionmakers in [the defendant’s] case acted with discriminatory purpose.”

8This view is consistent with the Supreme Court’s ruling in Washington v. Davis, where the Court explained
that a law or official governmental practice must have a “discriminatory purpose,” not merely a disproportionate
effect on one race, to constitute “invidious discrimination” under the Fifth Amendment Due Process Clause or the
Fourteenth Amendment Equal Protection Clause. Of course, a disproportionate impact may be relevant as “evidence”
of a “discriminatory purpose.”

6



murder, kidnapping, arson, and high-level drug possession and sale almost always result in a denial
of bail, for example, though these cases make up only about 0.8 percent of our sample.

We exploit three features of the pretrial system in our analysis. First, the legal objective of bail
judges is both narrow and measurable among the set of released defendants for whom pretrial mis-
conduct outcomes are observed (although not among detained defendants, for whom such outcomes
are unobserved). This narrow legal objective yields a natural approach to measuring disparate impact
from the difference in a judge’s release rates between white and Black defendants with identical mis-
conduct potential. Second, bail judges can be effectively viewed as making binary decisions, releasing
low-risk defendants (generally by ROR or setting a low cash bail amount) and detaining high-risk
defendants (generally by setting a high cash bail amount). We explore alternative characterizations of
bail decisions in our analysis, such as viewing judges as deciding between release without conditions
and any cash bail amount. Third, the case assignment procedures used in most jurisdictions, including
NYC, generate quasi-random variation in judge assignment for defendants arrested at the same time
and place. The quasi-random variation in judge assignment, in turn, generates quasi-experimental
variation in the probability that a defendant is released before trial which we exploit in our analysis.

There are two differences between the NYC pretrial system and other pretrial systems around
the country that are potentially relevant for our analysis. First, New York instructs judges to only
consider the risk that defendants will not appear for a required court appearance when setting bail
conditions (a so-called failure to appear, or FTA), not the risk of new criminal activity as in most states
(§510.10 of New York Criminal Procedure Law). We explore robustness to this narrower definition of
pretrial misconduct in our analysis. Second, many defendants in NYC will never have bail set, either
because the police gave them a desk appearance ticket that does not require an arraignment hearing
or because the case was dismissed or otherwise disposed at the arraignment hearing before bail was
set. However, the decision of whether or not to issue a desk appearance ticket is made before the bail
judge is assigned, and cases should only be dismissed or otherwise disposed at arraignment if there is
a clear legal defect in the case (Leslie and Pope, 2017). We show below that there is no relationship
between the assigned bail judge and the probability that a case exits our sample due to case disposal
or dismissal at arraignment, and exclude these cases from our analysis.

3 Conceptual Framework

3.1 Formalizing Disparate Impact

We formalize the disparate impact standard in a setting where a set of decision-makers j make binary
decisions Dij ∈ {0, 1} across a population of individuals i. Each decision-maker’s goal is to align Dij

with a latent binary state Y ∗i ∈ {0, 1} which captures her legitimate justification for setting Dij = 1.9

In the context of bail decisions, Dij = 1 indicates that judge j would release defendant i if assigned
to her case (with Dij = 0 otherwise) while Y ∗i = 1 indicates that the defendant would subsequently
fail to appear in court or be rearrested for a new crime if released (with Y ∗i = 0 otherwise). Each
judge’s objective is to release individuals without misconduct potential and detain individuals with
misconduct potential, but may differ in their predictions of which individuals are which. We note
that Dij is defined as the potential decision of judge j for defendant i, setting aside for now the judge

9Appendix B.1 discusses how our approach can be extended to multi-valued or continuous Y ∗
i .
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assignment process which yields actual release decisions from these latent variables.
We measure disparate impact, both overall and for each judge, by the average release rate disparity

between white and Black defendants with identical misconduct potential. To build up to this measure,
let Ri ∈ {w, b} index the race of white and Black defendants and define:

∆j0 = E[Dij | Ri = w, Y ∗i = 0]− E[Dij | Ri = b, Y ∗i = 0] (1)

as the release rate disparity among white and Black defendants without misconduct potential and:

∆j1 = E[Dij | Ri = w, Y ∗i = 1]− E[Dij | Ri = b, Y ∗i = 1] (2)

as the release rate disparity among white and Black defendants with misconduct potential. Each ∆jy

parameter can be understood as capturing racial differences in the tendency of judge j to correctly and
incorrectly classify individuals by their misconduct potential. The average level of disparate impact
in judge j’s decisions is then given by:

∆j = ∆j0(1− µ̄) + ∆j1µ̄, (3)

with weights given by the average misconduct risk in the population, µ̄ = E[Y ∗i ]. The system-wide
level of discrimination is given by the case-weighted average of ∆j across all judges.

We say that judge j discriminates against Black defendants when ∆j > 0, that she discriminates
against white defendants when ∆j < 0, and that she does not discriminate against either Black or
white defendants when ∆j = 0, again recognizing that the Dij capture a judge’s potential release
decisions. By holding the potential defendant population fixed, estimates of ∆j can be used to
calculate both the average level of racial discrimination in a bail system as well as any variation in
the level of discrimination across judges. We choose the µ̄ weights to make ∆j capture the expected
level of discrimination in a pool of defendants where pretrial misconduct potential is unknown. We
explore robustness to other weighted averages of ∆j0 and ∆j1 below. We interchangeably refer to
the weighted average ∆j as the level of racial discrimination for judge j, the unwarranted release rate
disparity for judge j, and the disparate impact of judge j’s decisions.

Our measure of disparate impact, ∆j , captures the discriminatory effects of judge j’s release
decisions rather than the discriminatory intent behind her decisions. The disparate impact measured
by ∆j can arise from direct discrimination, via the conscious or unconscious use of defendant race,
as well as indirect discrimination through the conscious or unconscious use of non-race characteristics
that are correlated with race. Importantly, this measure is not meant to test whether judges treat
fictitious white and Black individuals with the same non-race characteristics in the same way, as
in a randomized audit study. As we discuss more below, conditioning on non-race characteristics
beyond pretrial misconduct potential can bias our measure when disparate impact arises through
these characteristics.10

10Comparing the treatment of white and Black defendants with the same objective potential for pretrial misconduct
aligns ∆j with economic notions of labor market discrimination that compare white and Black workers with the same
objective productivity (e.g., Aigner and Cain, 1977) and measures of algorithmic discrimination that compare equally
“qualified” white and Black individuals (e.g., Berk et al., 2018). By comparison, Phelps (1972) suggests measuring
labor market discrimination by comparing white and Black workers with the same subjective signal of labor market
productivity. Canay, Mogstad and Mountjoy (2020) similarly suggest measuring racial bias (one potential driver of
discrimination) by comparing marginal white and Black individuals with the same non-race characteristics, an idea
that goes back to Ayres (2010). Measures that condition on either subjective signals or non-race characteristics may
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The economics literature has historically focused on two potential drivers of racial discrimination,
though it has not always been clear on how they can manifest as disparate impact. The first driver
is racial bias, in which judges discriminate against Black defendants at the margin of pretrial release
due to either racial preferences (Becker, 1957) or some form of inaccurate racial stereotyping (Bordalo
et al., 2016). The second theoretical driver is statistical discrimination, in which judges act on accurate
risk predictions but discriminate due to racial differences in average risk or the precision of received risk
signals (Phelps, 1972; Arrow, 1973; Aigner and Cain, 1977). In Section 6, we formalize these potential
drivers of ∆j with a simple decision-making model. We then estimate this model to quantify the role
of racial bias and statistical discrimination in driving our main estimates of disparate impact.

We emphasize that our analysis of disparate impact is not premised on the idea that the differences
in misconduct potential Y ∗i which we condition on are innate or unaffected by discrimination at other
points of the criminal justice system (or society as a whole). Differences in Y ∗i could, for example, be
driven by the over-policing of Black neighborhoods relative to white neighborhoods, discrimination in
the types of crimes that are reported to and investigated by the police, discrimination in local housing
and labor markets, and so on. Thus a finding of ∆j = 0 need not suggest pretrial release decisions
are unaffected by discrimination, only that there is no disparate impact conditional on these other
potentially discriminatory systems and conditions. A finding of ∆j 6= 0 in turn isolates only one form
of discrimination in bail decisions, which may be reliably targeted and potentially reduced by policy,
holding fixed other potentially harder to quantify forms of discrimination.

3.2 Empirical Challenges

Observational disparity analyses, whether in bail decisions or another area of the criminal justice sys-
tem, often come from “benchmarking” regressions of decisions (such as pretrial release) on an indicator
for an individual’s race and potentially other controls for the observed non-race characteristics (e.g.,
Gelman, Fagan and Kiss, 2007; Abrams, Bertrand and Mullainathan, 2012). Since such analyses can-
not control for unobserved misconduct potential, they may suffer from omitted variables bias (OVB)
when viewed as a measure of disparate impact. They may further suffer from included variables bias
(IVB) when controlling for non-race characteristics through which disparate impact arises.

We formalize these empirical challenges in an idealized version of our setting with complete random
assignment of judges to defendants. Let Zij = 1 if defendant i is assigned to judge j, let Di =∑
j ZijDij indicate the defendant’s release status, and let Yi = DiY

∗
i indicate the observed pretrial

misconduct outcome. The expression for observed misconduct reflects the fact that an individual
who is detained (Di = 0) cannot fail to appear in court or be rearrested for a new crime, such that
Yi = 0 when Di = 0 regardless of individual i’s misconduct potential Y ∗i . The econometrician observes
(Ri, Zi1, . . . , ZiJ , Di, Yi) for each defendant, and records whether the defendant is white in an indicator
Wi = 1[Ri = w]. Under complete random assignment, each Zij is independent of (Ri, Dij , Y

∗
i ).

We first formalize the OVB challenge by considering a simple judge-specific benchmarking regres-
sion of release decisions on judge-by-race interactions and judge main effects:

Di =
∑
j

αjWiZij +
∑
j

φjZij + εi (4)

be helpful for estimating disparate treatment or understanding the most likely drivers of disparate impact, but as we
discuss in Section 2.1 are generally unsuitable for estimating disparate impact per se.
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We omit the constant term from this regression in order to include all judge fixed effects, and for now
abstract away from other controls. The interaction coefficients measure differences in judge release
rates for white defendants relative to Black defendants, and under random judge assignment:

αj = E[Di | Ri = w,Zij = 1]− E[Di | Ri = b, Zij = 1]

= E[Dij | Ri = w]− E[Dij | Ri = b] (5)

The difference between these regression coefficients and our disparate impact measure, ξj = αj−∆j ,
measures OVB in the simple benchmarking analysis. To unpack ξj , note first that we can write:

αj = (δjw0(1− µw) + δjw1µw)− (δjb0(1− µb) + δjb1µb) (6)

where δjry = E[Dij | Ri = r, Y ∗i = y] gives the race- and judge-specific release rate of defendants with
or without misconduct potential and µr = E[Y ∗i | Ri = r] gives the average misconduct risk among
individuals of race r. In contrast, with ∆j0 = δjw0− δjb0 and ∆j1 = δjw1− δjb1, the disparate impact
of judge j’s decisions given by Equation (3) can be written:

∆j = (δjw0(1− µ̄) + δjw1µ̄)− (δjb0(1− µ̄) + δjb1µ̄) (7)

where µ̄ = E[Y ∗i ] = pwµw + pbµb is the average misconduct risk across all defendants, with pr =
Pr(Ri = r) denoting racial shares. The difference in these expressions shows OVB can be written:

ξj = (δjw0(µ̄− µw) + δjw1(µw − µ̄))− (δjb0(µ̄− µb) + δjb1(µb − µ̄))

= [(δjw0 − δjw1) pb + (δjb0 − δjb1) pw]× (µb − µw) (8)

where the second line follows by definition of the population risk µ̄. The regression coefficient αj will
be biased upward for ∆j when ξj > 0 and biased downward when ξj < 0.

Two key insights follow from the OVB formula in Equation (8). First, the simple benchmarking
regression (4) will generally yield biased estimates of disparate impact. The exception is when either
judge release decisions are uncorrelated with misconduct potential (so δjr0 = δjr1 for each race r)
or when misconduct potential is uncorrelated with defendant race (so µb = µw). Both scenarios
are unlikely in practice.11 Second, Equation (8) suggests a potential avenue for addressing OVB
and measuring disparate impact when bail judges are as-good-as-randomly assigned, using familiar
econometric objects. One of the terms driving the bias of each αj is the difference in race-specific
misconduct risk in the population, µb − µw, which is common to all judges. With Y ∗i capturing
defendant i’s potential for pretrial misconduct when released and Yi = 0 for all detained individuals,
each µr = E[Y ∗i | Ri = r] can be understood as an average treatment effect (ATE) of pretrial release
on pretrial misconduct among individuals of race r. We show in Section 5 how such ATEs can be
estimated from quasi-experimental judge assignment and used to purge OVB from benchmarking
estimates, recovering estimates of ∆j .

We can similarly formalize the potential for IVB in observational analyses by considering a simple
11The OVB formula also shows that simple benchmarking analyses generally yield biased estimates of the relative

differences in the extent of racial discrimination across judges, even though here judges are as-good-as-randomly assigned.
This is because the extent of OVB generally varies across judges, so differences in benchmarking coefficients αj −αk =
∆j −∆k + ξj − ξk need not equal (or even have the same sign as) differences in unwarranted disparity ∆j −∆k.
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case where white and Black misconduct risk are equal, µw = µb, so there is no OVB in the simple
benchmarking regression: αj = ∆j . Appendix B.2 shows how adjusting for some binary non-race
characteristic Xi (such as an indicator for crime type) in this scenario yields an analogous formula for
bias in the “overcontrolled” disparity ∆̃j :

∆̃j −∆j = [(δjw,X=0 − δjw,X=1) pb + (δjb,X=0 − δjb,X=1) pw]× (µXb − µXw ), (9)

where δjr,X=x = E[Dij | Ri = r,Xi = x] gives the race- and X-specific release rate of judge j
and µXr = E[Xi | Ri = r] gives the race-specific average of Xi. Here, IVB arises whenever the
judge’s decisions are correlated with the included non-race characteristic (so δjw,X=0 6= δjw,X=1

and this characteristic is correlated with race (so µXb 6= µXw ). Similar IVB formulas can be derived
when µw 6= µb but the econometrician has adjusted for Y ∗i so white and Black misconduct risk are
conditionally comparable. We avoid IVB in our empirical strategy by making such an adjustment but
not conditioning on non-race characteristics like crime type or criminal history.

4 Data and Observational Comparisons

4.1 Sample and Summary Statistics

Our analysis of racial discrimination in bail decisions is based on the universe of 1,458,056 arraignments
made in NYC between November 1, 2008 and November 1, 2013. The data contain information on a
defendant’s gender, race, date of birth, and county of arrest, as well as the (anonymized) identity of
the assigned bail judge. In our primary analysis, we categorize defendants as white (including both
non-Hispanic and Hispanic white individuals), Black (including both non-Hispanic and Hispanic Black
individuals), or neither. We explore alternative categorizations of race in robustness checks below.

In addition to detailed demographics, our data contain information on each defendant’s current
offense, history of prior criminal convictions, and history of past pretrial misconduct (both rearrests
and FTA). We also observe whether the defendant was released at the time of arraignment and
whether this release was due to release without conditions or some form of money bail. We categorize
defendants as either released (including both release without conditions and with paid cash bail) or
detained (including cash bail that is not paid) at the first arraignment, though we again explore
robustness to other categorizations of the initial pretrial release decision below. Finally, we observe
whether a defendant subsequently failed to appear for a required court appearance or was subsequently
arrested for a new crime before case disposition. We take either form of pretrial misconduct as the
primary outcome of our analysis, but again explore robustness to other measures below.

We make four key restrictions to arrive at our estimation sample. First, we drop cases where the
defendant is not charged with a felony or misdemeanor (N=26,057). Second, we drop cases that were
disposed at arraignment (N=364,051) or adjourned in contemplation of dismissal (N=230,517). This
set of restrictions drops cases that are likely to be dismissed by virtually every judge: Appendix Table
A1 confirms that judge assignment is not systematically related to case disposal or case dismissal.
Third, we drop cases in which the defendant is assigned a cash bail of $1 (N=1,284). This assignment
occurs in cases in which the defendant is already serving time in jail on an unrelated charge; the $1
cash bail is set so that the defendant receives credit for served time, and does not reflect a new judge
decision. Fourth, we drop defendants who are non-white and non-Black (N=45,529). Finally, we
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drop defendants assigned to judges with fewer than 100 cases (N=3,785) and court-by-time cells with
fewer than 100 cases, only one unique judge, or only Black or only white defendants for a given judge
(N=191,647), where a court-by-time cell is defined by the assigned courtroom, shift, day-of-week,
month and year (e.g., the Wednesday night shift in Courtroom A of the Kings County courthouse in
January 2012). The final sample consists of 595,186 cases, 367,434 defendants, and 268 judges.12

Table 1 summarizes our estimation sample, both overall and by race. Panel A shows that 73.0
percent of defendants are released before trial. A defendant is defined as released before trial if either
the defendant is released without conditions (ROR) or the defendant posts the required bail amount
before disposition. The vast majority of these releases are without conditions, with only 14.4 percent
of defendants being released after being assigned money bail. White defendants are more likely to be
released before trial than Black defendants, with a 76.7 percent release rate relative to a 69.5 percent
release rate. Among released defendants, however, the distribution of release conditions (e.g., the
ROR share) is virtually identical across race.

Observed release rate disparities will generally not measure disparate impact when white and
Black defendants have different misconduct rates. Suggestive evidence of such OVB is found in Panel
B of Table 1. Black defendants are, for example, 4.9 percentage points more likely to have been
arrested for a new crime before trial in the past year compared to white defendants, as well as 3.0
percentage points more likely to have a prior FTA in the past year. Panel C further shows that
Black and white defendants tend to have different crime types. Black defendants are 1.3 percentage
points more likely to have been charged with a felony compared to white defendants, as well as 3.6
percentage points more likely to have been charged with a violent crime. Finally, Panel D shows that
Black defendants who are released are 6.6 percentage points more likely to be rearrested or have an
FTA than white defendants who are released (though the composition of such misconduct is similar).
Importantly, and in contrast to the other statistics in Table 1, the risk statistics in Panel D are
only measured among released defendants. Pretrial misconduct potential is, by definition, unobserved
among detained individuals despite being the key legal objective for bail judges.

4.2 Quasi-Experimental Judge Assignment

Our empirical strategy exploits variation in pretrial release from the quasi-random assignment of
judges who vary in the leniency of their bail decisions. There are three features of the NYC pretrial
system that make it an appropriate setting for this research design.

First, NYC uses a rotation calendar system to assign judges to arraignment shifts in each of the
five county courthouses in the city, generating quasi-random variation in bail judge assignment for
defendants arrested at the same time and in the same place. Each county courthouse employs a
supervising judge to determine the schedule that assigns bail judges to the day (9 a.m. to 5 p.m.)
and night arraignment shift (5 p.m. to 1 a.m.) in one or more courtrooms within each courthouse.
Individual judges can request to work certain days or shifts but, in practice, there is considerable
variation in judge assignments within a given arraignment shift, day-of-week, month, and year cell.

Second, there is limited scope for influencing which bail judge will hear any given case, as most
individuals are brought for arraignment shortly after their arrest. Each defendant’s arraignment is also

12Appendix Table A2 compares the full sample of NYC bail cases to our estimation sample. By construction, our
estimation sample has a somewhat lower release rate, although the ratio of release rates by race is similar. Our estimation
sample is also broadly representative in terms of defendant and charge characteristics, with a slightly higher share of
defendants with prior FTAs and rearrests, and a lower share of defendants charged with drug and property crimes.
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scheduled by a coordinator, who seeks to evenly distribute the workload to each open courtroom at an
arraignment shift. Combined with the rotating calendar system described above and the processing
time required before the arraignment, it is unlikely that police officers, prosecutors, defense attorneys,
or defendants could accurately predict which judge is presiding over any given arraignment.

Finally, the rotation schedule used to assign bail judges to cases does not align with the schedule
of any other actors in the criminal justice system. For example, different prosecutors and public
defenders handle matters at each stage of criminal proceedings and are not assigned to particular
bail judges, while both trial and sentencing judges are assigned to cases via different processes. As a
result, we can study the effects of being assigned to a given bail judge as opposed to, for example, the
effects of being assigned to a given set of bail, trial, and sentencing judges.

Appendix Table A3 verifies the quasi-random assignment of judges to bail cases in the estimation
sample. Each column reports coefficient estimates from an ordinary least squares (OLS) regression
of judge leniency on various defendant and case characteristics, with court-by-time fixed effects that
control for the level of quasi-experimental bail judge assignment. We measure leniency using the leave-
one-out average release rate among all other defendants assigned to a defendant’s judge. Following the
standard approach in the literature (e.g., Arnold, Dobbie and Yang, 2018; Dobbie, Goldin and Yang,
2018), we construct the leave-one-out measure by first regressing pretrial release on court-by-time fixed
effects and then using the residuals from this regression to construct the leave-one-out residualized
release rate. By first residualizing on court-by-time effects, the leave-one-out measure captures the
leniency of a judge relative to judges assigned to the same court-by-time cells. Most coefficients in
this balance table are small and not statistically significantly different from zero, both overall and
by defendant race. A joint F -test fails to reject the null of quasi-random assignment at conventional
levels of statistical significance, albeit only marginally in certain specifications, with a p-value equal
to 0.300 among white defendants and 0.101 among Black defendants.13

Appendix Table A4 further verifies that the assignment of different judges meaningfully affects the
probability an individual is released before trial. Each column of this table reports coefficient estimates
from an OLS regression of an indicator for pretrial release on judge leniency and court-by-time fixed
effects. A one percentage point increase in the predicted leniency of an individual’s judge leads to a
0.96 percentage point increase in the probability of release, with a somewhat smaller first-stage effect
for white defendants and a somewhat larger effect for Black defendants.

4.3 Observational Comparisons

Table 2 investigates the system-wide level of observed racial disparity in NYC pretrial release rates.
We first estimate OLS regressions of the form:

Di = φ+ αWi +X ′iβ + εi (10)

13Even with the quasi-random assignment of bail judges, the exclusion restriction in our framework could be violated
if judge assignment impacts the probability of pretrial misconduct through channels other than pretrial release. While
the assumption that judges only systematically affect defendant outcomes through pretrial release is fundamentally
untestable, we join Arnold, Dobbie and Yang (2018) in viewing it as reasonable here. Bail judges only handle one
decision, limiting the potential channels through which they could affect defendants. Pretrial misconduct is also a
relatively short-run outcome, further limiting the role of alternative channels. In a similar setting, Dobbie, Goldin
and Yang (2018) and Ouss and Stevenson (2021) find that there are no independent effects of the assigned money bail
amount on defendant outcomes. We explore the robustness of our findings to such effects below.
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where Di is an indicator equal to one if defendant i is released, Wi is an indicator for the defendant
being white, and Xi is a vector of controls. Column 1 of Table 2 omits any controls in Xi, column 2
adds court-by-time fixed effects to adjust for unobservable differences at the level of quasi-experimental
bail judge assignment to Xi, and column 3 further adds the defendant and case observables from Table
1. Such regressions generally follow the conventional benchmarking approach from the literature (e.g.,
Gelman, Fagan and Kiss, 2007; Abrams, Bertrand and Mullainathan, 2012), where we again note that
because of potential of both OVB and IVB the defendant and case observables included in column 3
can lead us to either over- or understate the true level of discrimination.

Table 2 documents both statistically and economically significant release rate disparities between
white and Black defendants in NYC. The unadjusted white-Black release rate difference α is estimated
in column 1 at 7.2 percentage points, with a standard error (SE) of 0.5 percentage points. This
release rate gap is around 10 percent of the mean release rate of 73 percent. The release rate gap
falls slightly, to 6.8 percentage points (SE: 0.5), when we control for court-by-time fixed effects. The
gap falls by an additional 24 percent, to 5.2 percentage points (SE: 0.4), when we add defendant and
case observables. These estimates are similar in magnitude to the association, reported in column 3,
between the probability of release and having an additional drug charge (-5.7 percentage points) or
pretrial arrest (-6.8 percentage points) in the past year.

Figure 1 summarizes the distribution of judge-specific release rate disparities across the 268 bail
judges in our sample. We estimate judge-specific disparities from OLS regressions of the form:

Di =
∑
j

αjWiZij +
∑
j

φjZij +X ′iβ + εi (11)

where Di is again an indicator equal to one if defendant i is released, WiZij is the interaction between
an indicator for the defendant being white and the fixed effects for each judge, Zij are the non-
interacted fixed effects for each judge, and Xi is again a control vector. We estimate Equation (11)
with Xi demeaned, such that αj captures the regression-adjusted difference in release rates for white
and Black individuals assigned to judge j. Figure 1 then plots empirical Bayes estimates of the
posterior distribution of αj across judges, using the posterior average effect approach of Bonhomme
and Weidner (2020) (see Appendix B.3 for details). We show the distribution when adjusting only
for the main judge fixed effects and court-by-time fixed effects, following column 2 of Table 2, as well
as the distribution when we add both defendant and case observables and court-by-time fixed effects,
following column 3 of Table 2. We also report estimates of the prior mean and standard deviation
of αj across judges, as well as the fraction of judges with positive αj (again following the posterior
average effect approach of Bonhomme and Weidner (2020)).

The posterior distributions of release rate disparities in Figure 1 are both located well above
zero, revealing that nearly all judges in our sample release white defendants at a higher rate than
Black defendants. We estimate that 95.9 percent (SE: 1.0) of judges in our sample release a larger
share of white defendants in the specification that adjusts for court-by-time fixed effects, while 94.1
percent (SE: 1.3) are estimated to release a larger share of white defendants when we additionally
adjust for defendant and case observables. Figure 1 nevertheless shows considerable variation in the
magnitude of the release rate disparities across judges. The standard deviation of αj is estimated at 4.0
percentage points (SE: 0.3) when we adjust for court-by-time fixed effects, and 3.3 percentage points
(SE: 0.3) when we additionally adjust for defendant and case observables. The average judge-specific
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disparities, which differ from the system-wide averages in Table 2 due to differences in weighting, are
6.6 percentage points (SE: 0.2) when we adjust for court-by-time fixed effects, and 5.0 percentage
points (SE: 0.2) when we additionally adjust for defendant and case observables.

Together, the results from Table 2 and Figure 1 confirm large and pervasive racial disparities in
NYC release decisions, both in the raw data and after accounting for observable differences between
white and Black defendants. These observational estimates suggest bail judges may be discriminat-
ing against Black defendants, but are not conclusive as we cannot directly adjust for unobserved
misconduct potential Y ∗i and could thus either over- or understate the true level and distribution of
discrimination in the NYC pretrial system. We next develop and apply a quasi-experimental approach
to adjust for unobserved misconduct potential Y ∗i directly and measure disparate impact.

5 Quasi-Experimental Estimates of Racial Discrimination

5.1 Methods

We estimate racial discrimination in NYC pretrial release decisions by rescaling the observational
release rate comparisons in Figure 1 using quasi-experimental estimates of average white and Black
misconduct risk. This quasi-experimental approach does not require a model of judge decision-making,
only that average misconduct risk among white and Black defendants can be accurately extrapolated
from the quasi-experimental data.

The first key insight underlying our approach is that when judges are as-good-as-randomly as-
signed, the problem of measuring unwarranted release rate disparities for individual judges reduces
to the problem of estimating the average misconduct risk among the full population of Black and
white defendants. The source of OVB in an observational benchmarking comparison is the corre-
lation between race and unobserved misconduct potential among a given judge’s pool of white and
Black defendants. Under quasi-random judge assignment, this correlation is common to all judges
and captured by race-specific population misconduct risk. Thus, given estimates of these race-specific
risk parameters, observed release outcomes can be appropriately rescaled to make released white and
Black defendants comparable in terms of their unobserved misconduct potential.

The rescaling that purges OVB from observational comparisons is given by expanding the condi-
tional release rates from the definition of racial discrimination in Equation (7):

δjr0 = E[Dij | Y ∗i = 0, Ri = r] = E[Dij(1− Y ∗i ) | Ri = r]
E[1− Y ∗i | Ri = r] = E[Di(1− Yi) | Ri = r, Zij = 1]

1− µr
(12)

δjr1 = E[Dij | Y ∗i = 1, Ri = r] = E[DijY
∗
i | Ri = r]

E[Y ∗i | Ri = r] = E[DiYi | Ri = r, Zij = 1]
µr

(13)

where the third equalities in both lines follow from quasi-random judge assignment and the definition
of mean risk µr = E[Y ∗i | Ri = r]. Substituting these expressions into Equation (7) yields:

∆j =E[Di(1− Yi) | Ri = w,Zij = 1] 1− µ̄
1− µw

+ E[DiYi | Ri = w,Zij = 1] µ̄
µw

− E[Di(1− Yi) | Ri = b, Zij = 1] 1− µ̄
1− µb

− E[DiYi | Ri = b, Zij = 1] µ̄
µb

=E[ΩiDi | Ri = w,Zij = 1]− E[ΩiDi | Ri = b, Zij = 1] (14)

15



where:

Ωi = (1− Yi)
1− µ̄

1− µRi

+ Yi
µ̄

µRi

> 0 (15)

The rewritten definition of discrimination in Equation (14) shows that the unwarranted disparities in
judge j’s release decisions ∆j is given by the αj coefficients in a simple benchmarking regression, where
the release decisions Di of each individual are rescaled by a positive factor Ωi. This Ωi reweights the
sample to make released white and Black defendants comparable in terms of their unobserved mis-
conduct potential. It therefore reveals the extent to which each judge discriminates against white and
Black defendants with identical misconduct potential, even though misconduct potential is unobserved
and cannot be directly conditioned on.14 Equation (15) shows that Ωi is a function of observed mis-
conduct outcomes Yi and the unobserved average race-specific misconduct risk parameters µr, where
again µ̄ = µwpw + µbpb. The key econometric challenge is therefore to estimate average misconduct
risk µr among the full population of white and Black defendants.

The second key insight underlying our approach is that the average race-specific misconduct risk
parameters that enter Equation (14) can be estimated from quasi-experimental variation in pretrial
release and misconduct rates. To build intuition for our approach, consider a setting with as-good-
as-random judge assignment and a supremely lenient bail judge j∗ who releases nearly all defendants
regardless of their race or potential for pretrial misconduct. This supremely lenient judge’s race-specific
release rate among both Black and white defendants is close to one:

E[Di | Zij∗ = 1, Ri = r] = E[Dij∗ | Ri = r] ≈ 1 (16)

making the race-specific misconduct rate among defendants she releases close to the race-specific
average misconduct risk in the full population:

E[Yi | Di = 1, Zij = 1, Ri = r] = E[Y ∗i | Dij∗ = 1, Ri = r] ≈ E[Y ∗i | Ri = r] = µr (17)

where the first equality in both expressions follows by quasi-random assignment. Without further
assumptions, the decisions of a supremely lenient and quasi-randomly assigned judge can therefore be
used to estimate the average misconduct risk parameters needed for our disparate impact measure.

In the absence of such a supremely lenient judge, the required average misconduct risk parameters
can be estimated using model-based or statistical extrapolations of release and misconduct rate vari-
ation across quasi-randomly assigned judges. This approach is conceptually similar to how average
potential outcomes at a treatment cutoff can be extrapolated from nearby observations in a regression
discontinuity (RD) design, particularly “donut RD” designs in which data in some window of the
treatment cutoff is excluded. Here, released misconduct rates are extrapolated from quasi-randomly
assigned judges with high leniency to the release rate cutoff of one given by a hypothetical supremely
lenient judge. Mean risk estimates may, for example, come from the vertical intercept, at one, of linear,
quadratic, or local linear regressions of estimated released misconduct rates E[Y ∗i | Dij = 1, Ri = r]
on estimated release rates E[Dij | Ri = r] across judges j within each race r. As we show below,
extrapolations may also come from a model of judge behavior. Absent any extrapolations, conser-

14Appendix Table A5 illustrates the rescaling solution with a simple numerical example. Appendix Table A6 illustrates
how rescaling yields our finding of significant racial discrimination in NYC bail decisions. See Appendix B.4 for details.
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vative bounds on mean risk may be obtained from the released misconduct rates of highly (but not
supremely) lenient judges. Each of these approaches build on recent advances in ATE estimation
with multiple discrete instruments (e.g., Brinch, Mogstad and Wiswall, 2017; Mogstad, Santos and
Torgovitsky, 2018; Hull, 2020) and a long literature on “identification at infinity” in sample selection
models (e.g., Chamberlain, 1986; Heckman, 1990; Andrews and Schafgans, 1998).15

A further practical complication arises in our setting, with NYC bail judges only quasi-randomly
assigned conditional on court-by-time effects. Some adjustment for these strata is generally needed
to estimate the potential judge- and race-specific release rates E[Dij | Ri = r] and released miscon-
duct rates E[Y ∗i | Dij = 1, Ri = r] that enter our mean risk estimation. We use linear regression
adjustment, which tractably incorporates the large number of court-by-time effects under an auxiliary
linearity assumption. Specifically, we estimate release rates from the earlier benchmarking regression
in Equation (11) and estimate released misconduct rates from the analogous OLS regression:

Yi =
∑
j

ρjWiZij +
∑
j

ζjZij +X ′iγ + ui (18)

among released individuals (Di = 1), where again Xi contains demeaned court-by-time fixed effects.
Here, ζj and ρj + ζj estimate E[Y ∗i | Dij = 1, Ri = w] and E[Y ∗i | Dij = 1, Ri = b], respectively,
just as φj and αj + φj estimate E[Dij | Ri = w] and E[Dij | Ri = b] in Equation (11). The linear
covariate adjustment in Equation (11) is appropriate when release rates are linear in the court-by-time
effects for each judge and race, with constant coefficients: i.e. when E[Dij | Ri = r,Xi] = φjr +X ′iβ.
Similarly, a sufficient condition for Equation (18) to consistently estimate released misconduct rates
is E[Y ∗i | Dij = 1, Ri = r,Xi] = ψjr + X ′iγ. Below we relax both linearity restrictions in robustness
checks that allow the control coefficients, β and γ, to vary flexibly by judge and race.

5.2 Results

Mean Risk by Race

Figure 2 illustrates our extrapolation-based estimation of the mean risk parameters in NYC. The
horizontal axis plots estimates of judge- and race-specific release rates. We find sizable variation across
judges within each race, with several judges releasing a high fraction of white or Black defendants.
Released misconduct rates, plotted on the vertical axis, tend to increase with judge leniency for both
races—as would be predicted by a behavioral model in which the more lenient judges release riskier
defendants at the margin. This pattern is shown by the two solid lines in Figure 2, representing the
race-specific lines-of-best-fit through the first-step estimates. The lines-of-best-fit are obtained by OLS
regressions of judge-specific released misconduct rate estimates on judge-specific release rate estimates,
with the judge-level regressions weighted inversely by the variance of misconduct rate estimation error.
We also plot curves-of-best-fit from judge-level quadratic and local linear specifications as dashed

15Our approach can be justified without a conventional monotonicity assumption, in contrast to some of the recent
literature. To see why, consider a simple model in which each judge’s release decisions are given by Dij = 1[κj ≥ υij ]
where υij | κj , λj ∼ U(0, 1) without loss and E[Y ∗

i | υij , κj , λj ] = µ + λj(υij − 1
2 ). This model violates conventional

monotonicity, since judges differ both in their orderings of individuals by the appropriateness of release (υij) and
their relative skill at predicting misconduct outcomes (λj). Nevertheless, when E[λj | κj ] is constant (linear) in κj ,
average released misconduct rates E[Y ∗

i | Dij = 1, κj ] = E[µ+ 1
2λj(κj − 1) | κj ] are linear (quadratic) in release rates

E[Dij ] = κj , so that these extrapolations identify the ATE µ. More flexible extrapolations accommodate a broader
range of judge decision-making models by leveraging richer quasi-experimental variation.
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and dotted lines, respectively, with both specifications again weighted inversely by the variance of
misconduct rate estimation error. The simple linear specification fits the local IV variation well, with
quadratic and local linear specifications yielding similar fits across much of the leniency distribution.

The vertical intercepts of the different curves-of-best-fit, at one, provide different estimates of the
race-specific mean risk parameters µr. These estimates and associated SEs are reported in Panel A
of Table 3 (all SEs in this and subsequent sections are obtained from a bootstrap procedure which
accounts for the first-step estimation of the judge- and race-specific release rates and released mis-
conduct rates). The simplest linear extrapolation, summarized in column 1, yields precise mean risk
estimates of 0.338 (SE: 0.007) for white defendants and 0.400 (SE: 0.006) for Black defendants. This
extrapolation suggests that the average misconduct risk within the population of potential Black de-
fendants is 6.2 percentage points higher than among the population of potential white defendants in
NYC. Per Section 3.2, such a racial gap in misconduct risk is likely to generate OVB in observational
release rate comparisons.

The quadratic and local linear extrapolations of the quasi-experimental variation yield similar
race-specific mean risk estimates, as can be seen from Figure 2. The quadratic fit suggests a slight
nonlinearity in the relationship between judge leniency and released misconduct rates, with a slightly
concave dashed curve for white defendants and a more linear dashed curve for Black defendants.
Column 2 of Table 3 shows that the former nonlinearity translates to a somewhat lower estimate of
white mean risk, at 0.319 (SE: 0.021), with a similar estimate of Black mean risk, at 0.394 (SE: 0.021).
Near one, the local linear fit of Figure 2 coincides with the linear fit for white defendants and is above
both the quadratic and linear fit for Black defendants, yielding mean risk estimates in column 3 of
0.346 (SE: 0.014) and 0.436 (SE: 0.016), respectively. The implied racial gap in risk—and thus the
potential for OVB—rises with these more flexible extrapolations, to 7.5 percentage points in column
2 and 9.0 percentage points in column 3. We take the most flexible (but still parametric) local linear
extrapolation as our baseline specification for analyzing racial discrimination in NYC, which we show
below gives the most conservative estimate of average discrimination. We explore robustness to a wide
range of alternative mean risk estimates below.

The extrapolations in Figure 2 yield accurate mean risk estimates when judge release rules are
accurately parameterized or when there are many highly lenient judges. Appendix Figure A1 validates
our extrapolations by plotting race-specific extrapolations of average predicted misconduct outcomes,
among released defendants, in place of actual released misconduct averages in Figure 2. We first
construct predicted misconduct outcomes Ŷ ∗i using the fitted values from an OLS regression of actual
pretrial misconduct Y ∗i on the controls in column 3 of Table 2 in the subsample of released defendants.
Appendix Figure A1 then plots estimates of E[Ŷ ∗i | Dij = 1, Ri = r] and E[Dij = 1 | Ri = r],
constructed as in Figure 2. Since Ŷ ∗i can be computed for the entire sample, we also include in this
figure the overall averages E[Ŷ ∗i |, Ri = r] that are analogous to the race-specific mean risk parameters
of interest. Figure A1 shows that each of the linear, quadratic, and local linear extrapolations of
predicted misconduct rates yields similar and accurate estimates of the overall actual averages. The
95 percent confidence intervals of the local linear extrapolations, for example, include the actual Black
average and only narrowly exclude the actual white average. These results build confidence for the
extrapolations of actual pretrial misconduct outcomes in this setting.16

16Appendix Table A7 explores the sensitivity of our extrapolations to estimation error in judge release rates, which
may attenuate their estimated relationship with released misconduct rates. We do so by first applying empirical Bayes
shrinkage to the release rate estimates, separately by race (see Appendix B.3 for details). This exercise yields very
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Racial Discrimination

Panels B and C of Table 3 summarize the estimates of unwarranted racial disparities ∆j given the
corresponding ATE estimates in Panel A. These estimates are obtained from the sample analogue of
Equation (7), noting that a judge’s release rate conditional on no misconduct potential can be written:

δjr0 = E[Dij | Y ∗i = 0, Ri = r] = (1− E[Y ∗i | Dij = 1, Ri = r])E[Dij | Ri = r]
1− µr

(19)

and similarly for her release rate condition on misconduct potential δjr1. We use the regression-
adjusted estimates of E[Dij | Ri = r] and E[Y ∗i | Dij = 1, Ri = r] from Figure 2 and the sample
share of Black defendants to complete the formula for ∆j . Case-weighted averages of the resulting ∆j

estimates, reported in Panel B, estimate system-wide discrimination. We also compute empirical Bayes
posteriors of the distribution of ∆j , again by following Bonhomme and Weidner (2020). Summary
statistics for the judge-level prior distribution (estimated as in Figure 1) are reported in Panel C.

We find that approximately two-thirds of the system-wide release rate disparity between white
and Black defendants in NYC is explained by racial discrimination, with about one-third explained
by unobserved differences in pretrial misconduct risk (i.e., OVB). The local linear extrapolations yield
the most conservative estimate of system-wide discrimination in Table 3, implying that 62 percent
(4.2 percentage points) of the case-weighted average disparity of 6.8 percentage points in Table 2 can
be explained by discrimination. By comparison, both the linear and quadratic extrapolation-based
estimates of race-specific mean risk imply that 79 percent (5.4 percentage points) of the average
benchmarking disparity can be explained by racial discrimination. We thus find that unobservable
differences in defendant risk can explain 21 to 38 percent (1.4 to 2.6 percentage points) of the average
benchmarking disparity that remains after adjusting for court-by-time fixed effects.

We also find that IVB has a meaningful role in observational comparisons that adjust for non-
race characteristics which mediate disparate impact. Panels B and C of Appendix Table A8 show
that adjusting the estimated release rates and released misconduct rates by the defendant and case
characteristics in column 3 of Table 2 leads to smaller unwarranted disparity estimates.17 With the
local linear extrapolation, for example, the average unwarranted disparity shrinks by 17 percent (0.7
percentage points, out of 4.2 percentage points) compared to our baseline specification in Table 3.
The reduction in the estimated unwarranted disparity suggests that some of the disparate impact we
find in Table 3 is mediated by these defendant or case observables. As discussed above, our rescaling
approach avoids such IVB concerns by conditioning on pretrial misconduct potential directly, rather
than conditioning on these types of non-race characteristics.

Figure 3 plots the full posterior distribution of judge-level discrimination, paralleling Figure 1,
again using the most conservative local linear estimates of mean risk and returning to the baseline
court-by-time fixed effect adjustment. For comparison, we also include the posterior distribution of
observed racial disparities from our benchmarking model that adjusts only for the court-by-time fixed
effects. The former distribution is shifted evenly to the left of the latter distribution, consistent with
nontrivial OVB across the judge-specific estimates. Around 62 percent of the judge-weighted average
benchmarking disparity (4.2 percentage points, out of 6.6 percentage points) is found to be due to

similar results, suggesting negligible bias from first-step estimation error. Negligible estimation error is consistent with
the fact that we observe many (at least 100) cases per judge.

17See Appendix Figure A2 for the corresponding covariate-adjusted version of Figure 2.
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discrimination, the same as the case-weighted decomposition from Panel B of Table 3. The standard
deviation of judge-specific unwarranted disparities remains large, at 3.7 percentage points, though it
shrinks somewhat from the 4.0 percentage point standard deviation of observed release rate disparities.
The clear majority of NYC judges have positive ∆j , at 87.3 percent, though this share is also smaller
than the 95.9 percent predicted by the benchmarking model. Panel C of Table 3 shows that these
statistics are similar across different mean risk estimates.

We explore patterns in this heterogeneity by regressing the judge-level unwarranted disparity es-
timates on judge observables. Specifically, in columns 1-5 of Appendix Table A9 we regress the ∆j

estimates on indicators for whether a judge is newly appointed during our sample period, exhibits
above-average leniency, or has an above-median share of Black defendants (as measured before the ad-
justment for court-by-time fixed effects, which makes Black defendant shares balanced across judges).
We weight all regressions by estimates of the inverse variance of the unwarranted disparity estimates,
with similar results obtained from weighting by judge caseload. We find significantly lower levels of
discrimination among newly appointed judges, more lenient judges, and judges with a higher share of
Black defendants. We also find that judges who primarily see cases in the Manhattan, Queens, and
Richmond county courtrooms tend to exhibit higher levels of discrimination, while those who primar-
ily see cases in Brooklyn (the omitted category) and the Bronx have lower levels of discrimination.
Columns 6-7 of Appendix Table A9 further investigate the persistence of our discrimination measure
over time by computing separate ∆j estimates in the first and second half of cases that each judge
sees in our sample period, recomputing the race-specific mean risk estimates in each half, and esti-
mating OLS regressions of current unwarranted disparity estimates on lagged unwarranted disparity
posteriors and judge observables. We compute posteriors via a conventional empirical Bayes “shrink-
age” procedure, detailed in Appendix B.3, and again weight by estimates of the inverse variance of
the unwarranted disparity estimates. We find that the judge-specific discrimination estimates are
highly correlated over time, with an autoregressive coefficient of 0.86. Lagged unwarranted disparities
alone explain about 29 percent of the variation in current unwarranted disparities, with the lagged
disparity and observable judge characteristics explaining about 43 percent. We note that the average
unwarranted disparity in the second half of judge cases is somewhat larger, at 6.1 percentage points,
suggesting that discrimination may increase with judge experience.

We further explore heterogeneity in racial discrimination across defendants, using a conditional
version of our baseline local linear approach that restricts to defendants with a particular criminal
record or charge. For this more fine-grained analysis we restrict attention to judges who see at
least 25 cases involving defendants with the indicated criminal record or charge in each specification.
Appendix Table A10 shows we find discrimination against Black defendants in each subgroup, with
point estimates for the extent of discrimination ranging from 1.0 percentage points for defendants
charged with a property offense and 2.4 percentage points for defendants charged with a DUI and
defendants without a prior criminal charge, to 3.0 percentage points for defendants charged with a
felony, 4.6 percentage points for defendants charged with a misdemeanor, 5.5 percentage points for
defendants charged with a drug offense, and 10.7 percentage points for defendants charged with a
violent offense. The estimates are generally precisely estimated, with the exception of felony offenses
and violent offenses where we obtain noisy estimates of the mean risk inputs.

Overall, our estimates show that there are both statistically and economically significant disparities
in the release rates of Black and white defendants with identical potential for pretrial misconduct. The
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most conservative estimate in Table 3, for example, implies that the unwarranted release rate gap could
be closed if NYC judges released roughly 2,609 more Black defendants each year (or detained roughly
2,609 more white defendants). Using an estimate from Dobbie, Goldin and Yang (2018), releasing
this many defendants would lead to around $78 million in recouped earnings and government benefits
annually. We can also compare the average unwarranted disparity to other observed determinants
of pretrial release. Table 2 shows, for example, that the most conservative 4.2 percentage point
unwarranted disparity estimate corresponds to more than half of the decreased probability in release
associated with having an additional pretrial arrest in the past year (-6.8 percentage points).

5.3 Robustness and Extensions

We verify the robustness of our main results to several deviations from the baseline specification,
exploring alternative estimates of mean risk, weighting schemes, adjustments for court-by-time strata,
definitions of pretrial misconduct, classifications of pretrial release, and definitions of defendant race.

Mean Risk Estimates: Figure 4 examines the sensitivity of our main results to different values of the
mean misconduct risk inputs, showing that our finding of pervasive disparate impact does not depend
on any particular extrapolation of the released misconduct rates in Figure 2. We first compute
the range of possible mean risk parameters given the observed misconduct and release rates in the
sample. Since Y ∗i ∈ {0, 1}, a lower bound on µr = E[Y ∗i | Ri = r] is given by race r’s unconditional
average misconduct rate E[Yi | Ri = r] = E[Y ∗i Di | Ri = r] ≤ µr. Similarly, an upper bound on
µr = 1−E[1− Y ∗i | Ri] is 1−E[(1− Y ∗i )Di | Ri = r] = 1−E[Di | Ri = r] +E[Y ∗i Di | Ri = r] ≥ µr.
Plugging the rates from Table 1 into these formulas, we obtain respective white and Black mean risk
bounds of µw ∈ [0.204, 0.437] and µb ∈ [0.231, 0.536]. We then plot in Figure 4 the range of system-
wide discrimination obtained from different pairs of white and Black mean risk in these bounds.

The estimated level of discrimination against Black defendants generally decreases as the assumed
value of Black misconduct risk increases, holding fixed the assumed value of white misconduct risk.
Racial differences in misconduct risk would have to be extremely large, however, before we could
conclude there is no discrimination against Black defendants on average. For example, at our baseline
white mean risk estimate of 0.346 (indicated by the dotted vertical line), Black misconduct risk would
need to be 0.516 for system-wide discrimination to be zero. This is near the upper bound of Black
misconduct risk computed from average misconduct and release rates, and it would imply a Black-
white misconduct risk gap of 17 percentage points—nearly twice the size of our most conservative
estimate (9 percentage points).

Tighter bounds on the mean risk parameters, and thus on disparate impact, can be obtained
from the misconduct and release rates of judges with above-average leniency. Panel A of Appendix
Table A11 reports mean risk bounds from calculations similar to the full-sample formulas, which again
exploit the fact that Y ∗i is binary (see Appendix B.5 for details). Panels B and C report corresponding
bounds on the discrimination statistics in Table 3 by finding the pair of mean risk estimates which
minimize and maximize each statistic in these ranges. The bounds on each statistic narrow as a higher
release rate is used, since a narrower range of mean risk parameters are consistent with less selected
released misconduct rates. For example, moving from a release rate of 0.80 to a release rate of 0.90
brings the possible range of system-wide discrimination from [0.02, 0.09] to [0.04, 0.07] by halving the
length of both mean risk bounds.
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Weighting Schemes: Our baseline measure of disparate impact averages the conditional release rate
disparities ∆j0 and ∆j1 by the average misconduct rate in the population. This weighting scheme
makes ∆j capture judge j’s expected level of discrimination in a pool of defendants where pretrial
misconduct potential is unknown. However, we show in Appendix Table A12 that our finding of
system-wide discrimination is not sensitive to the choice of weighting scheme. The average ∆j0 and
∆j1 estimates across judges are both positive in each of our three mean risk extrapolations, implying
any convex average of these conditional release rate disparities will be positive. While imprecise, these
estimates suggest judges set higher release rates for white defendants than Black defendants in both
the Y ∗i = 0 and Y ∗i = 1 subpopulations.

Strata Adjustment: Our baseline analysis uses linear regression to adjust for the court-by-time fixed
effects that control for the level of quasi-experimental judge assignment. Regression adjustment is
tractable given the large number of strata, but may lead to biased discrimination estimates when
the effects of court or time are heterogeneous across judges or defendant race. In Appendix Table
A13, we relax the restriction of homogeneity across courts by estimating versions of Equations (11)
and (18) separately for each NYC borough (while still adjusting linearly for time and arraignment
part effects within boroughs). We then use these separate release and released misconduct rate
estimates to separately estimate mean risk and discrimination by borough and average the resulting
unwarranted disparities by borough case share. We omit Richmond in this calculation since only a
small number of judges serve in this borough. We obtain similar (though less precise) estimates of
all the discrimination statistics from this stratified estimation procedure, suggesting minimal bias is
introduced by the baseline linear adjustment.

Similarly relaxing the homogeneity restriction across time is challenging because of the large num-
ber of time effects. We instead explore sensitivity to this restriction in Appendix Table A14 by
interacting flexible parameterizations of time with judge and race indicators and adding these inter-
actions to the borough-stratified versions of Equations (11) and (18). For example, columns 1 and 2
add a linear and quadratic function of year-month time interacted with the judge effects, respectively,
while column 3 adds separate linear interactions of year and month with the judge effects. Columns 4-6
include additional interactions of all the same functions of time with race.18 We find relatively stable
and positive levels of system-wide discrimination across all specifications, albeit with further declines
in precision due to the large number of added interactions. These results again suggest the baseline
linear adjustment of court-by-time effects introduces minimal bias to our mean risk and discrimination
estimates.

Misconduct Outcome: Our baseline measure of racial discrimination assumes that the sole legal objec-
tive of bail judges is to target pretrial misconduct, and not other objectives or outcomes. When the
legal objective of judges is misspecified, our estimates may suffer from what Kleinberg et al. (2018)
refer to as “omitted payoff bias.” Such bias may arise when, for example, bail judges consider new
crime to be more important than a failure to appear, or if they only target new violent crime. We ex-

18We demean the functions of time before interacting them in order to include all judge main effects. Interacting all
demeaned time effects with judge and race effects would yield a specification similar to one proposed by Imbens and
Wooldridge (2009) for estimating ATEs by regression. By the logic of Kline (2011), this specification would be “doubly
robust” in the sense of being consistent if either the model for judge assignment or outcomes (conditional on race) is
linear in the time effects. In practice we restrict estimation to judges handling cases across at least two years when
adding the judge-specific linear time effects and across at least three years when adding the judge-specific quadratic
effects. These restrictions cause the number of judges to vary across the columns of Appendix Table A14.
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plore the empirical relevance of omitted payoff bias in Appendix Table A15, which presents estimates
given these different definitions of the judge’s legal objective. We find similar results when using a
measure of pretrial misconduct that only includes FTA (column 2 of Appendix Table A15) or only
includes new arrests (column 3 of Appendix Table A15). We also find a slightly higher case-weighted
average unwarranted disparity, at 6.8 percentage points, when using a measure of pretrial misconduct
that only includes new arrests for a violent crime (column 4 of Appendix Table A15). These results
are consistent with Kleinberg et al. (2018) and Arnold, Dobbie and Yang (2018), who find similar
evidence of prediction errors and racial bias in bail decisions, respectively, using different measures of
the pretrial misconduct outcome.

A related concern is that measurement error in the judge’s legal objective is systematically corre-
lated with race. This could be an issue if, for example, judges seek to minimize all new crime, not
just new crime that results in an arrest, and if the police are more likely to rearrest Black defen-
dants conditional on having committed a new crime. Gelman, Fagan and Kiss (2007), for example,
find that the NYC Stop, Question, and Frisk program disproportionately targeted minority residents.
With discriminatory policing, we will tend to overestimate the misconduct risk for Black defendants
compared to white defendants and underestimate the total amount of racial discrimination in bail
decisions. It is therefore possible that our estimates reflect a lower bound on the true amount of
racial discrimination in NYC, at least under the plausible assumption that the police are more likely
to rearrest Black defendants conditional on having committed a new crime. Reassuringly, column 2
of Appendix Table A15 shows a similar level of discrimination when we measure pretrial misconduct
using just FTA, which is less subject to this measurement concern.

Release Decision: Our baseline specification abstracts away from the fact that bail judges may set
different levels of monetary bail, taking into account a defendant’s ability to pay, by specifying the
judge’s decision as a binary release indicator. One possibility is that the discrimination we find
is partly driven by judges over-predicting the relative ability of Black defendants to pay cash bail,
causing fewer Black defendants to be released than white defendants of identical misconduct risk. We
explore racial differences in the ability to pay cash bail in Appendix Table A16, which replaces our
baseline definition of the judge’s release decision with an indicator for the judge releasing a defendant
on recognizance, without setting cash bail. We find very similar results with this new specification,
with racial discrimination explaining about 55 percent (3.2 percentage points) of the court-by-time
adjusted white-Black ROR rate difference of 5.8 percentage points. These results suggest that the
racial discrimination we find in bail decisions is not driven by judges over-predicting the relative
ability of Black defendants to pay cash bail, which is consistent with the fact that the vast majority
of released white and Black defendants are released on recognizance (see Table 1).

Defendant Race: Our baseline results categorize defendants as either white (including both non-
Hispanic and Hispanic white individuals) or Black (including both non-Hispanic and Hispanic Black
individuals), but judges may also discriminate against Hispanic white defendants. We explore this
possibility in Appendix Table A17, which presents estimates with defendants categorized as either non-
Hispanic white or any racial minority (including Hispanic white individuals and both non-Hispanic
and Hispanic Black individuals). Under this alternative categorization, we find larger estimates of
case-weighted average unwarranted disparity, for example, 11.2 percentage points for the local linear
extrapolation in column 3.
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Taken together, the results from this section robustly show that there is substantial racial dis-
crimination in NYC bail decisions, both on average and for most defendants and judges, and that
judge-specific estimates of discrimination are both predicted by observable characteristics and cor-
related over time. However, these results do not speak to whether such discrimination is driven by
racial bias or statistical discrimination, nor whether we can reliably target and potentially reduce
racial discrimination using existing data. We next develop a framework to answer these questions.

6 Model Estimates of Bias and Statistical Discrimination

6.1 Judge Decisions and MTE Frontiers

We quantify the drivers of disparate impact in NYC bail decisions by fitting a hierarchical marginal
treatment effect (MTE) model to the quasi-experimental variation in judge release rates and released
misconduct rates. The model allows us to decompose disparate impact into components due to
racial bias and statistical discrimination, two drivers of discrimination that have historically been
the focus of the economics literature. The model also allows us to conduct policy counterfactuals
in which disparate impact is minimized or eliminated. We first develop a model of individual judge
release decisions and show how it equivalently parameterizes a set of judge- and race-specific MTE
frontiers, features of which capture racial bias and statistical discrimination. We then develop and
apply a simulated minimum distance (SMD) estimator to recover these features from the distribution
of quasi-experimental estimates in Figure 2.

Our model of judge decisions follows Aigner and Cain (1977) in assuming each judge j observes a
noisy signal of pretrial misconduct potential νij = Y ∗i + ηij , with conditionally normally distributed
noise: ηij | Y ∗i , (Ri = r) ∼ N(0, σ2

jr). We allow the “quality” (i.e., precision) of risk signals τjr = 1/σjr
to vary both by defendant race r and by the identity of the judge j. Judges with higher τjr can
be thought of as being more skilled at inferring pretrial misconduct potential, either by having a
richer information set or by being more adept at inferring true misconduct potential from a common
information set. We assume judges form accurate posterior risk predictions pj(νij , Ri) from the signal
and the defendant’s race, satisfying pj(νij , Ri) = Pr(Y ∗i = 1 | νij , Ri). Finally, we assume each judge
has a subjective benefit of releasing individuals of race r, given by πjr ∈ (0, 1). Judges release all
defendants whose benefit exceeds the posterior risk cost, yielding potential release decisions:

Dij = 1[πjRi
≥ pj(νij , Ri)] (20)

Appendix B.6 derives the specific form of the posterior function pj(·), and shows how equivalent models
are obtained when judges have inaccurate risk beliefs (instead of accurate pj(νij , Ri)) or minimize
race-specific costs of misconduct classification errors (instead of having explicit πjr thresholds).

Racial bias in the sense of Becker (1957) arises when a judge perceives a different benefit from
releasing Black defendants than white defendants with the same risk posterior, so that πjb < πjw. By
applying different thresholds to posterior risk, the judge generally makes different decisions for white
and Black defendants with the same misconduct potential Y ∗i , thereby leading to disparate impact
against the group with the lower benefit from release.19 Inaccurate racial stereotyping can similarly

19If, for example, πjb < πjw but mean risk µr and signal quality τjr are the same across race (implying a common
distribution of pj(νij , Ri) given Y ∗

i ), the judge will release fewer Black defendants conditional on Y ∗
i such that ∆j > 0.
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result in disparate impact and tends to be observationally equivalent to such racial animus (Arnold,
Dobbie and Yang, 2018; Hull, 2021). Inaccurate beliefs on the riskiness of white or Black defendants
can lead judges to effectively set different release standards by race despite intending to apply the same
threshold. As with disparate impact itself, racial bias can also manifest through preferences on non-
race characteristics, such as criminal history or crime type. A judge may, for example, indirectly set
race-specific thresholds by penalizing defendants charged with certain crimes (such as the possession
of crack versus powdered cocaine) which are correlated with defendant race but do not predict pretrial
misconduct potential.20

Statistical discrimination in the sense of Aigner and Cain (1977) arises when judges set race-neutral
thresholds on accurate race-specific risk predictions, but discriminate because the risk predictions are
affected by racial differences in either the average misconduct risk µr or signal quality τjr. Differences
in average misconduct risk will tend to lead to lower release rates for defendants in the group with
higher average misconduct risk, thereby resulting in disparate impact against that group.21 Statistical
discrimination due to differences in signal quality has an ambiguous effect on disparate impact. If,
for example, a judge’s release threshold πjr is higher than the average level of misconduct risk in the
population µr for each race r then noisier risk signals will lead to fewer defendants of that race being
detained given true misconduct potential, as judges place more weight on the mean risk µr which
falls below the threshold. Differences in signal quality may reflect differences in the informativeness
of non-race characteristics, such as when a defendant’s criminal record is more predictive of pretrial
misconduct potential for white defendants than for Black defendants.

To bring this model to data, we first reframe it in terms of familiar econometric objects. Note
that we can equivalently write Equation (20) as Dij = 1[ΠjRi ≥ Uij ] with conditionally uniformly
distributed Uij | Ri by applying a conditional probability integral transform to the judge’s posteriors
pj(νij , Ri). This reformulation defines a conditional MTE frontier of:

µjr(t) = E[Y ∗i | Uij = t, Ri = r] (21)

Here µjr(t) gives the effect of release on pretrial misconduct Y ∗i for race-r defendants who judge j
perceives to be at the (t×100)th percentile of risk. In this MTE representation, Πjr = E[Dij | Ri = r]
parameterizes the race-r release rate of judge j and

∫ Πjr

0 µjr(t)dt = E[Y ∗i | Dij = 1, Ri = r] is the
corresponding released misconduct rate.

Racial differences in a judge’s MTE curves, evaluated at her release thresholds Πjr, yield a marginal
outcome test for racial bias in her release decisions (Arnold, Dobbie and Yang, 2018; Hull, 2021). This
follows from the fact that misconduct effects at the margin of release capture a judge’s race-specific
release benefits:

µjr(Πjr) = E[Y ∗i | pj(νij ; r) = πjr, Ri = r]

= E[E[Y ∗i | νij , Ri = r] | pj(νij ; r) = πjr, Ri = r] = πjr (22)

20This notion of racial bias thus differs from that of Canay, Mogstad and Mountjoy (2020), who consider a judge as
biased only if she sets a higher release threshold for white defendants conditional on all non-race characteristics that
are observed by each judge. See Hull (2021) for a discussion of the difference in these definitions.

21Suppose, for example, that signal quality and release benefits are the same across race (τjb = τjw and πjb = πjw)
but mean risk is higher for Black defendants (µb > µw). The judge’s posterior pj(νij , Ri) will then be higher among
Black defendants given νij , making Black defendants less likely to be released conditional on Y ∗

i and so ∆j > 0.
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using the law of iterated expectations in the second equality and the fact that E[Y ∗i | νij , Ri = r] =
pj(νij ; r) in the third equality. The race-specific MTEs, µjr(Πjr), should therefore be equal when the
judge is racially unbiased (πjw = πjb), but marginal white defendants should have higher misconduct
outcomes if the judge is racially biased against Black defendants (πjw > πjb).

This framework makes clear that outcome-based tests of racial bias can detect only one poten-
tial driver of disparate impact, and thus cannot be used to rule out all potential violations of anti-
discrimination law. A judge who “passes” a marginal outcome test, with πjw = πjb, may still have
∆j > 0 because of statistical discrimination, and the level of such disparate impact is generally not
knowable from πjw and πjb. Once ∆j is established, however, a finding of πjw 6= πjb rejects accurate
statistical discrimination as the sole reason for disparate impact.

The framework also shows how the judge- and race-specific MTE frontiers, if known, could be used
to quantify statistical discrimination. The mean risk of each race r is given by integrating the MTE
frontier of any judge: µr =

∫ 1
0 µjr(t)dt. The slopes of these curves furthermore capture the quality

of a judge’s risk signals: a judge with τjw > τjb will, for example, have a steeper-sloping µjw(·) than
µjb(·) as we illustrate below. More generally, the judge- and race-specific MTE frontiers can be used
to calculate the extent of racial discrimination in counterfactual calculations where a judge’s release
rate Πjr is set to eliminate racial bias by equalizing the marginal released outcomes.

In using this framework to quantify racial bias and statistical discrimination in NYC, however, we
face a fundamental underidentification challenge. The parameterization of judge skill and preferences
in the model is very flexible, to the point where the equivalent MTE frontiers are not uniquely
recoverable from the quasi-experimental variation in judge release rates and released misconduct rates
absent further restrictions. The flexibility of the model is formalized in Appendix B.7, which shows
there exist judge- and race-specific parameters fitting any pair of conditional-on-Y ∗i release rates
satisfying E[Dij | Ri = r, Y ∗i = 1] < E[Dij | Ri = r, Y ∗i = 0]. This result implies the judge-level
model can be imposed without loss on the race-specific decision rule of any judge whose decisions are
better-than-random. However, with Y ∗i unobserved, this model cannot be fit directly; the observable
quasi-experimental variation in release rates and released misconduct rates only reveals a single point
on each judge-by-race MTE frontier, not the frontier itself. Formally, the underidentification challenge
can be seen from the fact that with J judges there are 1+2J race-specific model parameters (mean risk
µr and the J pairs of skill and preference parameters τjr and πjr) and only 2J race-specific moments
(the J pairs of release rates and released misconduct rates). At least one additional restriction is
needed to satisfy the order condition for identification.

We consider two approaches to overcoming the underidentification challenge. First, following
Arnold, Dobbie and Yang (2018), we consider restricting the race-specific MTE curves to be common
across judges by assuming uniformity of judge skill within race, i.e., τjr = τr for each j. This restriction
amounts to an assumption of first-stage monotonicity when viewing the as-good-as-randomly assigned
bail judges as instruments for pretrial release.22 While tractable, this restriction is potentially strong
in our setting as it implies the observed variation in judge release rates only reflects differences in
risk thresholds πjr. An implication of the restriction is that, absent estimation error, the race-specific
release rates and released misconduct rates plotted in Figure 2 will lie on a single curve determined

22Technically the τjr = τr restriction is weaker than conventional monotonicity, which would restrict judges to have
a common ordering of defendants by their appropriateness for release. Imposing τjr = τr allows random violations of
monotonicity in the sense of ηij 6= ηik for j 6= k, so long as ηij and ηik have the same variance. Similar relaxations of
conventional monotonicity have been considered in Frandsen, Lefgren and Leslie (2019) and Marx (Forthcoming).
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by the common MTE frontier. Given the relatively large sample size in NYC, the sizable dispersion
in released misconduct rates among judges with similar release rates suggests this restriction fails.

Our second, preferred approach avoids the potentially strong assumption of uniform judge skill
by instead modeling the heterogeneity in signal quality, and thus the distribution of MTE curves,
across judges. This approach leads to a hierarchical MTE model, the higher-level parameters of which
quantify the drivers of system-wide discrimination in terms of racial bias and statistical discrimination.
We next develop this estimation procedure.

6.2 SMD Estimator

Our hierarchical MTE model parameterizes the distribution of signal quality τjr and release benefits
πjr across judges, separately by race. The parameterization uses the fact, proved in Appendix B.6,
that each judge’s posterior function pj(ν, r) is strictly increasing in the risk signal ν and is therefore
invertible for each race. Applying this fact shows that judge decisions follow a probit model conditional
on defendant race and misconduct potential:

Dij = 1[πjRi
≥ pj(νij ;Ri)] = 1[κjRi

≥ Y ∗i + ηij ], (23)

where κjr = p−1
j (πjr; r) is a normalized signal threshold and ηij | Y ∗i , (Ri = r) ∼ N(0, 1/τ2

jr). We
model κjr and ln τjr as being joint-normally distributed, independently across judges conditional
on race, with the log-normality of τjr imposing the constraint of positive signal precision. This
yields a higher-level parameter vector Θ containing the mean risk parameters µr and the means
and variances/covariances of (κjr, ln τjr) across judges for each race r. Appendix B.7 shows how
this hierarchical approach can be viewed as parameterizing differences in how judges weigh different
defendant characteristics, such as demeanor or prior arrest record.

Figure 5 builds intuition for this parameterization by showing how different values of the higher-
level parameters in Θ manifest in the estimable reduced-form moments. We construct this figure by
first simulating draws of ln τjr for a given race r across a large population of judges j with widely
varying κjr, for some choice of mean risk µr, average log signal quality ln τjr, variance of ln τjr, and
correlation of ln τjr and κjr. The wide variation in signal thresholds leads to a wide variation in model-
implied judge release rates E[Dij | Ri = r], while the choice of the other higher-level parameters change
the distribution of model-implied released misconduct rates E[Y ∗i | Dij = 1, Ri = r]. We plot this
distribution as in Figure 2, abstracting away from moment estimation error. Panels A and B set the
variance of signal quality across judges to zero, satisfying the uniformity (or first-stage monotonicity)
restriction and ensuring that the judge moments fall on a common frontier. Panels C and D then
relax monotonicity by allowing signal quality to vary across judges.

Panel A of Figure 5 shows how differences in mean misconduct risk µr lead to differences in the
vertical intercept of the model-implied moment curve at one, or (per the discussion in Section 5.1) the
release rate of a hypothetical supremely lenient judge. These vertical intercepts correspond to model-
based extrapolations of the quasi-experimental data, in contrast to the data-driven extrapolation used
previously in Section 5. Panel B further shows how differences in mean signal quality lead to different
slopes of the model-implied curves, with a higher mean ln τjr resulting in a steeper relationship between
the share of defendants that a judge releases and the extent of pretrial misconduct among the released.
When we relax first-stage monotonicity in Panels C and D, the quasi-experimental variation no longer
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falls on a common frontier (even without estimation error). Panel C shows that a higher variance in
signal quality manifests as more dispersion in released misconduct rates among judges with similar
release rates. Finally, Panel D shows that the trend in this distribution of points becomes more
nonlinear when judge signal quality is more highly correlated with the signal thresholds.

We estimate the hierarchical MTE model by a minimum distance procedure based on this intuition.
Specifically, we find the values of Θ which can best match key features of the distribution of model-
implied release and released misconduct rates, simulated as in Figure 5, to the corresponding features of
estimated release and released misconduct rates in Figure 2. Following the above intuition, the features
we match are the race-specific mean and variance of judge release rates and the race-specific intercept,
slope, curvature, and residual variation from quadratic regressions of judge released misconduct rates
on judge release rates. Appendix B.8 details this SMD procedure, showing it is just-identified and
deriving the necessary correction for estimation error in the Figure 2 estimates. Appendix B.8 further
shows how SMD estimates of Θ can be combined with the Figure 2 estimates to form empirical Bayes
predictions of individual judge κjr and ln τjr, following the approach of Angrist et al. (2017). These
predictions in turn give individual judge measures of marginal released outcomes and signal quality
for each defendant race, heterogeneity in which we explore below.

As with the model-free analysis of disparate impact in Section 5, our model-based analysis of
racial bias and statistical discrimination requires adjustment for the court-by-time effects that ensure
as-good-as-random judge assignment. The adjustment allows us to model differences in average judge
decisions Dij as being due to judge preferences and skill, averaging over the court-by-time hetero-
geneity. We again adjust for court-by-time effects using linear regression, which is justified under
the linearity assumption discussed in Section 5. An alternative approach would explicitly model the
heterogeneity in defendant risk across courtrooms and time and derive appropriate adjustments from
the resulting model of judge decisions. This alternative approach would be more coherent from a
structural point of view, as heterogeneity in judge risk signals may lead to heterogeneous effects of
courtroom and time on release rates that can violate the linearity assumption underlying our pre-
ferred regression adjustment. An advantage of the regression adjustment is that it is computationally
tractable, given the large number of court-by-time effects and nonlinear decision model. The regres-
sion adjustment also aligns our analyses of disparate impact, racial bias, and statistical discrimination
as being based on the same reduced-form variation in Figure 2.

6.3 Results

Table 4 reports SMD estimates of the race-specific moments we use to investigate racial bias and
statistical discrimination in NYC bail decisions, namely the mean misconduct risk µr and the first
and second moments of marginal released outcomes µjr(Πjr) and signal quality τjr across judges.
Underlying parameter estimates are reported in Appendix Table A18.23 Columns 1-3 of Table 4
impose a conventional monotonicity assumption by restricting judge signal quality to be constant
among defendants of a given race: τjr = τr. Columns 4-6 relax this restriction, allowing judges to
differ in their skill at ranking white and Black defendants by their appropriateness for pretrial release.

23The estimates in columns 1-3 of Table 4 are derived from the parameter estimates in columns 1 and 4 of Appendix
Table A18, while columns 4-6 of Table 4 come from columns 2 and 5 of Appendix Table A18. The latter specification
assumes log signal quality and release thresholds are uncorrelated. A richer specification that allows for such correlation
is estimated in columns 3 and 6 of Appendix Table A18. This model produces estimates that are very similar to columns
2 and 5, but considerably less precise.
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Figure 6 illustrates the fit of this second preferred specification by plotting the model-implied average
released misconduct rate across races and judges of different leniencies against the reduced-form
estimates of release rates and released misconduct rates from Figure 2.

In both sets of model estimates we find higher mean marginal released outcomes among white
defendants, implying racial bias per the discussion in Section 6.1. This finding of bias is suggested
by Figure 6, where judge release rates are concentrated around a section of the model-fit released
misconduct rate curve that is steeper for white defendants than for Black defendants. Judges who
choose to release defendants at rates where the misconduct rate gradient is relatively higher are
interpreted by the model as receiving a relatively higher benefit for releasing these defendants. In
Figure 6, judges appear equally willing to marginally increase white and Black release rates, even
though white misconduct rates would increase by a larger amount. In the preferred specification this
pattern translates to a higher estimate of mean misconduct risk among marginal white defendants of
0.651 (SE: 0.033) compared to 0.576 (SE: 0.021) among marginal Black defendants. The difference in
these mean marginally released outcomes is a statistically significant 7.4 percentage points (SE: 3.8).

We also find higher mean risk and less precise risk signals for Black defendants, implying statistical
discrimination per the discussion in Section 6.1. As illustrated in Panel A of Figure 5, mean risk
differences manifest empirically as differences in the released misconduct rates of highly lenient judges.
Figure 6 shows how the model extrapolates the generally higher released misconduct rates of Black
defendants to a higher estimate of Black mean risk, as with the model-free extrapolations in Figure
2. In the preferred specification we find that Black defendants have a 5.0 percentage points higher
mean misconduct risk than white defendants (SE: 1.0), similar to the 6.0 percentage point gap from
our linear extrapolation in Table 3. As illustrated in Panel B of Figure 5, signal quality differences
manifest empirically as overall slope differences in the relationship between released misconduct rates
and release rates. Figure 6 shows how the model finds an overall steeper gradient for white defendants,
as with the model-free lines-of-best-fit in Figure 2. In the preferred specification we find an average
signal quality of 1.385 (SE: 0.104) for white defendants and 0.970 (SE: 0.073) for Black defendants,
implying the typical noise in Black risk signals is around 30 percent more dispersed. These racial
differences in mean risk and signal quality imply that outcome-based tests of racial bias (as in Arnold,
Dobbie and Yang (2018)) miss two potentially important sources of discrimination in this setting.

The SMD estimates further suggest that the first-stage monotonicity restriction is inconsistent
with judge behavior in this setting. As illustrated in Panel C of Figure 5, monotonicity violations
manifest empirically as variation in released misconduct rates across judges with similar release rates.
Figure 6 shows sizable variation for both white and Black defendants, though unlike in Figure 5 some
of this variation reflects estimation error. Columns 4 and 5 of Table 4 show that after accounting for
estimation error our preferred specification interprets the variation in released misconduct rates as
significant variation in judge signal quality, with standard deviations of 0.196 (SE: 0.038) for white
defendant signal quality and 0.163 (SE: 0.017) for Black defendant signal quality.24 This variation in
judge skill is highly correlated with variation in judge release preferences, with covariances between
judge signal quality and marginal released outcomes of 0.013 for white defendants and 0.007 for Black
defendants (implying respective correlation coefficients of 0.83 and 0.67). While point estimates of the
mean parameters with and without conventional monotonicity are qualitatively similar, the precision

24Frandsen, Lefgren and Leslie (2019) propose model-free tests of monotonicity in the context of quasi-randomly
assigned judges that also account for such error. Appendix Table A19 shows that applying these tests to our data yields
decisive rejections, in both samples of white and Black defendants, consistent with our model estimates.
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is higher without. The standard error on average racial bias, for example, falls by 17 percent from
column 3 to column 6. These precision gains also suggest that the model which allows variation in
signal quality provides a better fit to the quasi-experimental data. At the same time, the similarity
of the estimates in Table 4 suggests that imposing an invalid assumption of first-stage monotonicity
in this setting does not qualitatively affect our other findings. This finding in turn suggests prior
MTE-based tests of racial bias (as in Arnold, Dobbie and Yang (2018)) may be valid even though a
conventional monotonicity assumption is a priori unlikely to hold.

Table 5 uses the preferred model estimates to quantify the joint role of racial bias and statistical dis-
crimination in driving racial discrimination in NYC bail decisions. Column 1 summarizes the baseline
degree of discrimination, racial bias, and differences in signal quality implied by the model estimates.
We obtain these by simulating draws of the judge-level parameters (κjr, ln τjr) from the estimated
distribution, computing discrimination and bias for each judge from these draws (see Appendix B.6
for exact formulas), and averaging across simulated judges. In column 2, we counterfactually raise or
lower each simulated judge’s Black or white release rate to equalize marginal released outcomes and
thus eliminate bias. In column 3, we instead counterfactually raise or lower each simulated judge’s
Black or white signal quality. Column 4 combines these counterfactuals by eliminating both racial
bias and differences in signal quality across white and Black defendants.

Both bias and statistical discrimination drive disparate impact, with the latter due both to the
higher level of average risk (that exacerbates discrimination) and less precise signals (that alleviates
discrimination) for Black defendants. The model-based estimate of average unwarranted disparity in
column 1, at 4.7 percentage points, is similar to our most conservative estimate in Table 3. Column 2
shows that average racial discrimination significantly declines when judge leniency is counterfactually
raised or lowered to eliminate bias: the average unwarranted disparity falls from 4.7 percentage points
to -4.2 percentage points in Panel A (where Black release rates are generally raised) and -0.6 percentage
points in Panel B (where white release rates are generally lowered). This result shows that, absent
racial bias, the average unwarranted disparity is reversed, with white defendants becoming less likely to
be released than Black defendants of identical misconduct potential. Columns 3 and 4 show that this
reversal is driven by the relatively higher signal quality for white defendants: equalizing signal quality
across races for each judge, with and without racial bias, again results in average racial discrimination
against Black defendants. Intuitively, the lower precision of risk signals for Black defendants means
judges place relatively more weight on the mean risk level when forming Black posteriors. Because
this mean level of risk falls below the threshold for release, lower signal quality acts as a force to
increase Black release rates relative to white release rates. The remaining statistical discrimination
in column 4, which solely due to mean risk differences, yields a mean unwarranted disparity of 3.9
percentage points when Black release rates and signal quality are counterfactually set, and a mean
unwarranted disparity of 6.2 percentage points when adjusting the corresponding white parameters.

We conduct additional model-based analyses in Appendix Tables A20–A22 and Appendix Figure
A3. First, we confirm in Appendix Table A20 and Appendix Figure A3 that our conclusions about
the distribution and correlates of judge-level unwarranted disparity continue to hold with the model-
based estimates of mean risk. Second, we explore variation in judge-specific estimates of racial bias
and signal quality differences in Appendix Tables A21–A22, following our analysis of the unwarranted
disparity estimates in Section 5.2 and the posterior calculation detailed in Appendix B.8. We find
significantly lower levels of racial bias among newly appointed judges and less lenient judges, as well
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as lower signal quality among newly appointed judges. Variation in racial bias and signal quality are
both strongly correlated with differences in overall disparate impact across judges.

6.4 Policy Simulations

Lastly, we use our hierarchical MTE model estimates to investigate whether racial discrimination can
be reliably targeted and potentially reduced with existing data. The model-free analysis in Section
5 shows that judge-specific unwarranted disparities are relatively stable over time, suggesting that
identifying and targeting highly discriminatory judges for an appropriate intervention could help
reduce future discrimination. This analysis also shows that approximately one-third of the observed
release rate disparity between white and Black defendants is explained by unobserved differences in
misconduct risk, suggesting that observational regressions may also be useful for targeting judge-
specific discrimination even in the absence of our quasi-experimental analysis. By linking unobserved
differences in misconduct risk, racial bias, and statistical discrimination in the release decisions of
each judge, the model provides the necessary structure to simulate the effects of reducing racial
discrimination using existing observational and quasi-experimental data. We focus on the more general
question of whether discrimination can be reliably targeted using existing data, abstracting away from
the legal status of any particular policy reform.

Table 6 summarizes simulations that target both unwarranted disparity posteriors (columns 2
and 3) and observational disparities (columns 4 and 5), relative to the status quo in column 1. The
counterfactuals suppose that individual bail judges can be subjected to race-specific release rate quotas
that eliminate racial disparities, as estimated by a policymaker using either an observational or quasi-
experimental analysis. The simulation based on the unwarranted disparity posteriors gauges the
reliability of the individual predictions given the noise in our estimation procedure. The simulation
based on observational disparities further tests whether conventional benchmarking regressions may
be useful for targeting discrimination despite OVB. To simulate both sets of policies, we redraw
all judge-specific parameters for each race from the estimated hierarchical MTE model 250 times,
along with draws of appropriate estimation error. We use these to simulate 250 draws of the quasi-
experimental variation plotted in Figure 2. We then re-estimate the MTE model in each draw and
compute empirical Bayes posteriors, as in our analysis of the true data. Finally, we force all or a subset
of simulated judges to adjust their race-specific leniencies to the point where their racial disparities
are expected to be eliminated given the simulated model estimates and posteriors. Panel A simulates
closing the targeted disparities for all judges, while Panel B simulates closing the targeted disparities
only for judges in the top quintile of the estimated disparities.

The simulations suggest that racial discrimination can be reliably targeted using unwarranted
disparity posteriors, despite estimation error. Targeting the disparities of all judges using the unwar-
ranted disparity posteriors results in the virtual elimination of racial discrimination (columns 2 and 3
of Table 6, Panel A), while only targeting judges in the top quintile results in a 36 percent reduction
in the average level of discrimination (columns 2 and 3 of Panel B). These simulated reductions are
essentially unchanged when the targeted judges are forced to increase their leniency (typically for
Black defendants) in column 2 or decrease their leniency (typically for white defendants) in column 3.
The average standard deviation of unwarranted disparity across judges, reported in brackets, is also
reduced from around 3.7 percentage points to 2.0 percentage points in column 2 and 2.6 percentage
points in column 3. Observational release rate disparities still remain when eliminating discrimination,
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however, as the higher level of mean risk for Black defendants leads to OVB in the policy target.
Targeting judges with observational comparisons can also reduce discrimination, as the observed

release rate disparities are highly correlated with the unwarranted disparity posteriors. Appendix
Figure A4 shows, for example, that we obtain a high “forecast” coefficient of 0.903 (SE: 0.010) from
regressing estimated judge-specific unwarranted disparity posteriors on observational disparity poste-
riors. Consequently, we find in Table 6 that targeting all judges with simulated observational disparity
posteriors reduces average unwarranted disparity by 6.4 percentage points in column 4 and 6.6 per-
centage points in column 5. The resulting average unwarranted disparity estimates of -1.7 and -1.9
percentage points reflects the fact that the level of observed disparities is too high on average because
of OVB. When targeting just the observational disparity posteriors in the top quintile of judges, the
average unwarranted disparity is reduced by 45 percent but not reversed (columns 4 and 5 of Panel
B). This finding, that observational benchmarking regressions can be useful for monitoring and tar-
geting racial discrimination despite OVB, mirrors a result in the education and healthcare setting on
the utility of biased observational measures of school and hospital quality (e.g., Angrist et al., 2017;
Hull, 2020). There, as here, observational rankings prove to be highly predictive of policy-relevant
parameters despite non-zero OVB.25

7 Conclusion

Large racial disparities exist at every stage of the criminal justice system, but it is unclear whether
these disparities reflect racial bias, statistical discrimination, or omitted variables bias. This paper
shows that disparate impact in bail decisions can be measured, regardless of its source, using ob-
servational comparisons of white and Black release rates that are rescaled with quasi-experimental
estimates of average white and Black misconduct risk. Our most conservative estimates from NYC
show that approximately two-thirds of the observed racial disparity in release decisions is due to
disparate impact in release decisions, with around one-third due to unobserved racial differences in
misconduct risk. Using a novel hierarchical MTE model, we show that this discrimination is driven
by both racial bias and statistical discrimination, with the latter due to a higher level of average
risk (that exacerbates discrimination) and less precise risk signals (that offsets discrimination) for
Black defendants. Outcome-based tests of racial bias therefore omit an important source of racial
discrimination in NYC bail decisions, and cannot be used to rule out all possible violations of U.S.
anti-discrimination law.

We conclude by noting that the methods we develop to study disparate impact in bail decisions may
prove useful for measuring unwarranted disparities in several other high-stakes settings, both within
and outside of the criminal justice system. One key requirement is the quasi-random assignment
of decision-makers, such as judges, police officers, employers, government benefits examiners, loan
officers, or medical providers. A second requirement is that the objective of these decision-makers is
both known and well-measured among the subset of individuals that the decision-maker endogenously
selects. Mapping these settings to the quasi-experimental methods in this paper can help distinguish
between different explanations for observed racial disparities and form appropriate policy responses.

25Our simulations also highlight the impossibility of simultaneously eliminating racial discrimination (on average) and
racial bias (at the margin) when either mean misconduct risk or the risk signal quality differ for white and Black defen-
dants (Kleinberg, Mullainathan and Raghavan, 2017). The simulation based on the unwarranted disparity posteriors,
for example, results in non-zero racial bias against Black defendants of between 1.3 and 3.9 percentage points.
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Figure 1: Observational Release Rate Disparities

Strata-Adjusted Disparity (SE)_______________________
 Mean = 0.066 (0.002)
 S.D. = 0.040 (0.003)

Covariate-Adjusted Disparity (SE)

 Frac. Positive = 0.959 (0.010) 

__________________________
 Mean = 0.050 (0.002)
 S.D. = 0.033 (0.003)
 Frac. Positive = 0.941 (0.013)
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Notes. This figure plots the posterior distribution of observational release rate disparities for the 268 judges in our
sample. We estimate disparities by OLS regressions of an indicator for pretrial release on white×judge fixed effects,
controlling for judge main effects. The strata-adjusted disparity regression controls only for the main judge fixed effects
and court-by-time fixed effects. The covariate-adjusted disparity regression adds the baseline controls from Table 2. The
distribution of judge disparities, and fractions of positive disparities, are computed from these estimates as posterior
average effects; see Appendix B.3 for details. Means and standard deviations refer to the estimated prior distribution.
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Figure 2: Judge-Specific Release Rates and Conditional Misconduct Rates
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for court-by-time fixed effects. The figure also plots race-
specific linear, quadratic, and local linear curves of best fit, obtained from judge-level regressions that inverse-weight by
the variance of the estimated misconduct rate among released defendants. The local linear regressions use a Gaussian
kernel with a race-specific rule-of-thumb bandwidth.
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Figure 3: Observational and Unwarranted Release Rate Disparities
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Notes. This figure plots the posterior distribution of observational and unwarranted release rate disparities for the 268
judges in our sample. Strata-adjusted disparities are estimated by the coefficients of an OLS regression of an indicator
for pretrial release on white×judge fixed effects, controlling for judge main effects and court-by-time fixed effects.
Unwarranted disparities are estimated as described in Section 5, using the local linear extrapolations from Figure 2
to estimate the mean risk of each race. The distribution of judge disparities, and fractions of positive disparities, are
computed from these estimates as posterior average effects; see Appendix B.3 for details. Means and standard deviations
refer to the estimated prior distribution.
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Figure 4: Sensitivity Analysis
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Notes. This figure shows how our estimate of system-wide discrimination changes under different estimates of white
and Black mean risk. The mean risk estimates obtained from the linear, quadratic, and local linear extrapolations in
Figure 2 are indicated by solid, dashed, and dotted lines. The ranges of white and Black mean risk reflect the bounds
implied by average misconduct and release rates.
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Figure 5: Identification of Hierarchical MTE Model Parameters

A. Mean Misconduct Risk, With Monotonicity B. Mean Signal Quality, With Monotonicity
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Notes. This figure plots simulated race- and judge-specific release rates against rates of pretrial misconduct among
the set of released defendants under different parameterizations of the hierarchical MTE model described in the text.
Panel A plots differences in mean misconduct risk (µ = 0.4 vs. µ = 0.3) when conventional MTE monotonicity holds
(ψ = 0). Panel B plots differences in mean signal quality (α = 1 vs. α = 0) when conventional MTE monotonicity
holds (ψ = 0). Panel C plots differences in signal quality variance (ψ = 0.4 vs. ψ = 0.1). Panel D plots differences in
the covariance between judge signal quality and judge leniency (β = 2 vs. β = 0.1). The default parameterization is
µ = 0.4, α = 0.2, ψ = 0.1, β = 0, γ = 1.3, and δ = 1.
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Figure 6: Hierarchical MTE Model Fit
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for court-by-time fixed effects. The figure also plots race-
specific curves of best fit implied by our baseline hierarchical MTE model hyperparameter estimates.
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Table 1: Descriptive Statistics

All White Black
Defendants Defendants Defendants

Panel A: Pretrial Release (1) (2) (3)
Released Before Trial 0.730 0.767 0.695

Share ROR 0.852 0.852 0.851
Share Money Bail 0.144 0.144 0.145
Share Other Bail Type 0.004 0.004 0.004
Share Remanded 0.000 0.000 0.000

Panel B: Defendant Characteristics
White 0.478 1.000 0.000
Male 0.821 0.839 0.804
Age at Arrest 31.97 32.06 31.89
Prior Rearrest 0.229 0.204 0.253
Prior FTA 0.103 0.087 0.117

Panel C: Charge Characteristics
Number of Charges 1.150 1.184 1.118
Felony Charge 0.362 0.355 0.368
Misdemeanor Charge 0.638 0.645 0.632
Any Drug Charge 0.256 0.257 0.256
Any DUI Charge 0.046 0.067 0.027
Any Violent Charge 0.143 0.124 0.160
Any Property Charge 0.136 0.127 0.144

Panel D: Pretrial Misconduct, When Released
Pretrial Misconduct 0.299 0.266 0.332

Share Rearrest Only 0.499 0.498 0.499
Share FTA Only 0.281 0.296 0.269
Share Rearrest and FTA 0.220 0.205 0.232

Total Cases 595,186 284,598 310,588
Cases with Defendant Released 434,201 218,256 215,945

Notes. This table summarizes the NYC analysis sample. The sample consists of bail hearings that were quasi-
randomly assigned judges between November 1, 2008 and November 1, 2013, as described in the text. Information on
demographics and criminal outcomes is derived from court records as described in the text. Pretrial release is defined
as meeting the bail conditions set by the first assigned bail judge. ROR (released on recognizance) is defined as being
released without any conditions. FTA (failure to appear) is defined as failing to appear at a mandated court date.
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Table 2: Observational Release Rate Disparities

(1) (2) (3)
White 0.072 0.068 0.052

(0.005) (0.005) (0.004)
Male -0.092

(0.004)
Age at Arrest -0.005

(0.000)
Prior Rearrest -0.068

(0.004)
Prior FTA -0.208

(0.005)
Felony Charge -0.171

(0.005)
Any Drug Charge -0.057

(0.007)
Any DUI Charge 0.119

(0.004)
Any Violent Charge -0.146

(0.007)
Any Property Charge -0.072

(0.005)
Court x Time FE No Yes Yes
Case/Defendant Observables No No Yes
Mean Release Rate 0.730 0.730 0.730
Cases 595,186 595,186 595,186

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on defendant characteristics.
The regressions are estimated on the sample described in the notes to Table 1. Robust standard errors, two-way clustered
at the individual and the judge level, are reported in parentheses.
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Table 3: Mean Risk and Unwarranted Disparity Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.338 0.319 0.346

(0.007) (0.021) (0.014)
Black Defendants 0.400 0.394 0.436

(0.006) (0.021) (0.016)

Panel B: System-Wide Discrimination
Mean Across Cases 0.054 0.054 0.042

(0.002) (0.007) (0.006)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.054 0.054 0.042

(0.003) (0.007) (0.006)
Std. Dev. Across Judges 0.038 0.037 0.037

(0.003) (0.003) (0.003)
Fraction Positive 0.929 0.931 0.873

(0.016) (0.036) (0.036)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2. Panel A reports estimates of race-specific average misconduct risk, Panel B reports
estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of
summary statistics for the judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses
a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses
a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way
clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Table 5: Unwarranted Disparity Decompositions

Baseline No Racial Equal Signal BothBias Quality
Panel A: Change Black Parameters (1) (2) (3) (4)
Unwarranted Disparity 0.047 -0.042 0.095 0.039
Release Rates (W/B) 0.768 / 0.703 0.768 / 0.795 0.768 / 0.652 0.768 / 0.709

Racial Bias 0.074 0.000 0.074 0.000
Marginal Outcomes (W/B) 0.650 / 0.577 0.650 / 0.650 0.650 / 0.577 0.650 / 0.650

Signal Quality (W/B) 1.386 / 0.970 1.386 / 0.970 1.386 / 1.386 1.386 / 1.386

Panel B: Change White Parameters
Unwarranted Disparity -0.006 0.136 0.062
Release Rates (W/B) 0.716 / 0.703 0.853 / 0.703 0.781 / 0.703

Racial Bias 0.000 0.074 0.000
Marginal Outcomes (W/B) 0.577 / 0.577 0.650 / 0.577 0.577 / 0.577

Signal Quality (W/B) 1.386 / 0.970 0.970 / 0.970 0.970 / 0.970
Judges 268 268 268 268

Notes. Column 1 of this table reports average unwarranted disparity and racial bias across judges and 250 simulations
of the hierarchical MTE model, along with average release rates, marginal released outcomes, and signal quality of Black
and white defendants. Simulations are based on the estimates from columns 2 and 4 of Appendix Table A18. Column
2 recomputes the statistics for a counterfactual in which Black (Panel A) or white (Panel B) release rates are set to
eliminate racial bias, while column 3 adjusts Black (Panel A) or white (Panel B) signal quality to equalize signal quality
across race. Column 4 applies both counterfactuals simultaneously.
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Table 6: Policy Simulations

Baseline

Target Unwarranted Target Observational
Disparity Posteriors Disparity Posteriors
Increase Decrease Increase Decrease
Leniency Leniency Leniency Leniency

Panel A: Close All Disparities (1) (2) (3) (4) (5)
Mean Unwarranted Disparity 0.047 0.000 0.000 -0.017 -0.019

[0.037] [0.020] [0.026] [0.020] [0.026]
Mean Observational Disparity 0.065 0.017 0.019 0.000 -0.000

[0.038] [0.020] [0.026] [0.019] [0.026]
Racial Bias 0.074 0.039 0.013 0.025 -0.011

[0.078] [0.068] [0.055] [0.070] [0.053]

Panel B: Close Top-Quintile Disparities
Mean Unwarranted Disparity 0.030 0.030 0.026 0.026

[0.035] [0.037] [0.038] [0.041]
Mean Observational Disparity 0.047 0.048 0.044 0.043

[0.035] [0.037] [0.039] [0.040]
Racial Bias 0.062 0.051 0.059 0.045

[0.075] [0.076] [0.076] [0.080]
Observations 268 268 268 268 268

Notes. This table reports the results from a series of policy simulations. Column 1 reports the mean unwarranted
disparity, observational disparity, and racial bias across judges and 250 simulations of the hierarchical MTE model.
Average standard deviations across judges are included in brackets. Simulations are based on the estimates from
columns 2 and 4 of Appendix Table A18. Column 2 of Panel A recomputes the statistics for a counterfactual in which
the lower of the Black or white release rate of each judge is raised to equalize unwarranted disparity posteriors, while
column 3 of Panel A does the same by lowering one of the two release rates. Columns 4 and 5 of Panel A instead
adjust release rates to equalize observational disparity posteriors. Panel B conducts the counterfactual exercises only
on judges ranked in the top quintile of unwarranted (columns 2 and 3) or observational (columns 4 and 5) disparity
posteriors. Estimates of the model hyperparameters and empirical Bayes posteriors of all judge-specific parameters are
recomputed in each simulation draw via the SMD procedure outlined in the text, using moments simulated according
to the estimated distribution of reduced-form estimates in Figure 2.
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A Appendix Figures and Tables

Appendix Figure A1: Placebo Mean Risk Extrapolation
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of predicted pretrial
misconduct among the set of released defendants. Predicted misconduct is given by the fitted values of an OLS regression
of misconduct on the regressors in column 3 of Table 2, estimated in the set of released defendants. Average predicted
misconduct rates in the full sample of white and Black defendants are indicated with solid markers at the maximal
release rate of one. All estimates adjust for court-by-time fixed effects. The figure also plots race-specific linear,
quadratic, and local linear curves of best fit, obtained from judge-level regressions that inverse-weight by the variance
of the estimated predicted misconduct rate among released defendants. The local linear regression uses a Gaussian
kernel with a race-specific rule-of-thumb bandwidth. 95 percent confidence intervals for the local linear extrapolations’
intercept estimates at one, obtained from robust standard errors two-way clustered at the individual and judge level,
are indicated with brackets.
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Appendix Figure A2: Judge-Specific Release Rates and Conditional Misconduct Rates, With Covariate
Adjustment
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial mis-
conduct among the set of released defendants. All estimates adjust for court-by-time fixed effects and the case and
defendant observables in Table 2. The figure also plots race-specific linear, quadratic, and local linear curves of best
fit, obtained from judge-level regressions that inverse-weight by the variance of the estimated misconduct rate among
released defendants. The local linear regressions use a Gaussian kernel with a race-specific rule-of-thumb bandwidth.
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Appendix Figure A3: Unwarranted Release Rate Disparities, Model-Based Mean Risk Estimates

Strata-Adjusted Disparity (SE)________________________
 Mean = 0.066 (0.002)
 S.D. = 0.040 (0.003)
 Frac. Positive = 0.959 (0.010)

Unwarranted Disparity (SE)______________________
 Mean = 0.050 (0.002)
 S.D. = 0.037 (0.003)
 Frac. Positive = 0.912 (0.015)
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Notes. This figure plots the posterior distribution of observational and unwarranted release rate disparities for the
268 judges in our sample. Strata-adjusted disparities are estimated by the coefficients of an OLS regression of an
indicator for pretrial release on white×judge fixed effects, controlling for judge main effects and court-by-time fixed
effects. Unwarranted disparities are estimated as described in Section 5, using the hierarchical MTE model estimates of
mean risk for each race. The distribution of judge disparities, and fractions of positive disparities, are computed from
these estimates as posterior average effects; see Appendix B.3 for details. Means and standard deviations refer to the
estimated prior distribution.
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Appendix Figure A4: Predictiveness of Observational Release Rate Disparities

Forecast Regression________________
 Coefficient = 0.903
 SE = 0.010
 R2 = 0.968
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Notes. This figure plots unwarranted white-Black release rate disparity posteriors against the corresponding strata-
adjusted release rate disparity posteriors for the 268 judges in our sample. Observational disparities are estimated by
the coefficients of an OLS regression of an indicator for pretrial release on white×judge fixed effects, controlling for
judge main effects and court-by-time fixed effects. Unwarranted disparities are estimated as described in Section 5,
using the local linear extrapolation from Figure 2 to estimate the mean risk of each race. Empirical Bayes posteriors
are computed using a standard shrinkage procedure, as described in Appendix B.3. The slope of the solid line indicates
the forecast coefficient.
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Appendix Table A1: Judge Leniency and Sample Attrition

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Dropped from Sample 0.00007 0.00003 0.00012

(0.00012) (0.00013) (0.00014)
Court x Time FE Yes Yes Yes
Mean Sample Attrition 0.416 0.409 0.424
Cases 1,425,652 726,284 697,597

Notes. This table reports OLS estimates of regressions of judge leniency on an indicator for leaving the sample due
to case adjournment or case disposal and court-by-time fixed effects. The regressions are estimated on the sample of
all arraignments made in NYC between November 1, 2008 and November 1, 2013. Judge leniency is estimated using
data from other cases assigned to a given bail judge, following the procedure described in Section 4.1. Robust standard
errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A2: Descriptive Statistics by Sample

All Defendants White Defendants Black Defendants
Full Estimation Full Estimation Full Estimation

Sample Sample Sample Sample Sample Sample
Panel A: Pretrial Release (1) (2) (3) (4) (5) (6)
Released Before Trial 0.852 0.730 0.872 0.767 0.832 0.695

Share ROR 0.601 0.852 0.616 0.852 0.586 0.851
Share Disposed 0.301 0.000 0.274 0.000 0.327 0.000
Share Adjourned 0.191 0.000 0.199 0.000 0.183 0.000
Share Money Bail 0.068 0.144 0.070 0.144 0.066 0.145
Share Other Bail Type 0.332 0.004 0.314 0.004 0.348 0.004
Share Remanded 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: Defendant Characteristics
White 0.483 0.478 1.000 1.000 0.000 0.000
Male 0.822 0.821 0.831 0.839 0.813 0.804
Age at Arrest 31.819 31.969 31.540 32.055 32.080 31.890
Prior Rearrest 0.192 0.229 0.168 0.204 0.214 0.253
Prior FTA 0.085 0.103 0.071 0.087 0.099 0.117

Panel C: Charge Characteristics
Number of Charges 1.094 1.150 1.111 1.184 1.078 1.118
Felony Charge 0.184 0.362 0.181 0.355 0.188 0.368
Misdemeanor Charge 0.816 0.638 0.819 0.645 0.812 0.632
Any Drug Charge 0.347 0.256 0.342 0.257 0.352 0.256
Any DUI Charge 0.031 0.046 0.046 0.067 0.017 0.027
Any Violent Charge 0.072 0.143 0.062 0.124 0.081 0.160
Any Property Charge 0.217 0.136 0.209 0.127 0.226 0.144

Cases 1,358,278 595,186 656,711 284,598 701,567 310,588
Notes. This table summarizes the difference between the NYC analysis sample and the full sample of NYC arraign-

ments. The full sample consists of all bail hearings between November 1, 2008 and November 1, 2013. The analysis
sample consists of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and November
1, 2013, as described in the text. Information on demographics and criminal outcomes is derived from court records
as described in the text. Pretrial release is defined as meeting the bail conditions set by the first assigned bail judge.
ROR (released on recognizance) is defined as being released without any conditions. FTA (failure to appear) is defined
as failing to appear at a mandated court date.
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Appendix Table A3: Tests of Quasi-Random Judge Assignment

All White Black
Defendants Defendants Defendants

(1) (2) (3)
White 0.00013

(0.00009)
Male 0.00003 0.00003 0.00004

(0.00014) (0.00019) (0.00018)
Age at Arrest -0.00011 -0.00015 -0.00008

(0.00004) (0.00006) (0.00005)
Prior Rearrest -0.00021 0.00006 -0.00042

(0.00011) (0.00018) (0.00015)
Prior FTA 0.00016 -0.00011 0.00036

(0.00016) (0.00024) (0.00023)
Number of Charges -0.00001 -0.00001 -0.00001

(0.00001) (0.00001) (0.00003)
Felony Charge 0.00025 0.00011 0.00039

(0.00020) (0.00023) (0.00025)
Any Drug Charge -0.00022 -0.00017 -0.00027

(0.00016) (0.00021) (0.00018)
Any DUI Charge 0.00045 0.00051 0.00008

(0.00027) (0.00032) (0.00045)
Any Violent Charge -0.00008 -0.00023 0.00001

(0.00023) (0.00033) (0.00025)
Any Property Charge -0.00033 -0.00028 -0.00036

(0.00018) (0.00019) (0.00027)
Joint p-value [0.10689] [0.29792] [0.10136]
Court x Time FE Yes Yes Yes
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of judge leniency on defendant characteristics. The regressions
are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases assigned to a
given bail judge, following the procedure described in Section 4.1. All regressions control for court-by-time fixed effects.
The p-values reported at the bottom of each column are from F-tests of the joint significance of the variables listed in
the rows. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A4: First Stage Effects of Judge Leniency

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Judge Leniency 0.960 0.788 1.104

(0.025) (0.029) (0.033)
Court x Time FE Yes Yes Yes
Mean Release Rate 0.730 0.767 0.695
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on judge leniency. The
regressions are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases
assigned to a bail judge, following the procedure described in Section 4.1. All regressions control for court-by-time fixed
effects. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A5: Simple Numerical Example of Unwarranted Disparity Estimation

Number of Number Scaling Rescaled Release Release
Defendants Released Factor Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5) (6)

L Defendants Y ∗
i = 0 75 60 1 60 0.65
Y ∗

i = 1 25 5 1 5 0.30
H Defendants Y ∗

i = 0 25 20 1 20 0.35
Y ∗

i = 1 75 15 1 15

Panel B: Rescaled Estimates

L Defendants Y ∗
i = 0 75 60 2/3 40 0.50
Y ∗

i = 1 25 5 2 10 0.00
H Defendants Y ∗

i = 0 25 20 2 40 0.50
Y ∗

i = 1 75 15 2/3 10
Notes: This table uses a simple numerical example to illustrate how unwarranted disparities can be measured with

observational release rate comparisons that are rescaled using average group-specific misconduct risk. We assume there
is one type-neutral judge who releases 80 percent of defendants with Y ∗

i = 0 and 20 percent of defendants with Y ∗
i = 1.

The judge observes the type of the defendant, which is either High-risk or Low-risk. There are 100 High-risk defendants
where 75 have Y ∗

i = 1, and 100 Low-risk defendants where 25 have Y ∗
i = 1. Panel A shows that the judge has a Low-

risk release rate of 0.65 but a High-risk release rate of 0.35, meaning that an observational comparison would find that
Low-risk defendants have a 30 percentage point higher release rate than High-risk defendants despite the judge being
type-neutral. Panel B shows that the true unwarranted disparity of zero can be measured by rescaling this observational
release rate comparison with the scaling factor described in the text. Column 3 of Panel B shows the scaling factor (Ωi)
in this example, and column 6 shows the resulting unwarranted disparity estimate.
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Appendix Table A6: Unwarranted Disparity Estimation for NYC Release Decisions

Number of Number Scaling Rescaled Release Release
Defendants Released Factor Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5) (6)

White Defendants Y ∗
i = 0 186,250 159,296 1.000 159,296 0.765
Y ∗

i = 1 98,348 58,425 1.000 58,425 0.068
Black Defendants Y ∗

i = 0 175,120 145,528 1.000 145,528 0.697
Y ∗

i = 1 135,468 70,952 1.000 70,952

Panel B: Rescaled Estimates

White Defendants Y ∗
i = 0 186,250 159,296 0.928 147,788 0.753
Y ∗

i = 1 98,348 58,425 1.137 66,418 0.042
Black Defendants Y ∗

i = 0 175,120 145,528 1.077 156,709 0.710
Y ∗

i = 1 135,468 70,952 0.901 63,905
Notes: This table calculates system-wide unwarranted disparity in NYC by rescaling observational release rate

comparisons using estimates of average white and Black misconduct risk. In Panel A we use the local linear estimates
of mean risk in Table 3 to estimate the number of defendants with and without misconduct potential (column 1) as
well as the number of such defendants that are released (column 2). In Panel A, column 6 we display the observational
release rate disparity between white and Black defendants. In Panel B we use the same mean risk estimates to rescale
this observational release rate comparison with the scaling factor described in the text. Column 3 of Panel B shows the
scaling factor (Ωi) given by these estimates, and column 6 shows the resulting unwarranted disparity estimate.
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Appendix Table A7: Mean Risk and Unwarranted Disparity Estimates, Shrunk Leniency Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.342 0.368 0.358

(0.008) (0.036) (0.014)
Black Defendants 0.403 0.436 0.441

(0.007) (0.026) (0.014)

Panel B: System-Wide Discrimination
Mean Across Cases 0.054 0.046 0.042

(0.003) (0.014) (0.006)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.053 0.046 0.042

(0.003) (0.013) (0.006)
Std. Dev. Across Judges 0.029 0.029 0.029

(0.002) (0.002) (0.002)
Fraction Positive 0.963 0.938 0.920

(0.011) (0.075) (0.037)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2, after applying conventional empirical Bayes shrinkage to the judge- and race-specific leniency
estimates. Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide
(case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the
judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of
the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A8: Mean Risk and Unwarranted Disparity Estimates, With Covariate Adjustment

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.351 0.334 0.352

(0.007) (0.018) (0.013)
Black Defendants 0.394 0.412 0.423

(0.006) (0.021) (0.016)

Panel B: System-Wide Discrimination
Mean Across Cases 0.043 0.037 0.035

(0.002) (0.006) (0.005)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.043 0.036 0.035

(0.002) (0.006) (0.005)
Std. Dev. Across Judges 0.031 0.030 0.031

(0.003) (0.003) (0.003)
Fraction Positive 0.923 0.891 0.878

(0.017) (0.042) (0.036)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2, where release and misconduct rates adjust for both the court-by-time effects and the case
and defendant observables in Table 2. Panel A reports estimates of race-specific average misconduct risk, Panel B
reports estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates
of summary statistics for the judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses
a linear extrapolation, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A9: Unwarranted Disparities and Judge Characteristics

Full-Sample Disparities Split-Sample
Disparities

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.022 -0.011 -0.004

(0.007) (0.005) (0.007)
Lenient Judge -0.014 -0.018 -0.008

(0.007) (0.005) (0.006)
Above-Median Black Share -0.022 -0.007 0.003

(0.007) (0.008) (0.009)
Manhattan Courtroom 0.062 0.058 0.053

(0.008) (0.007) (0.011)
Bronx Courtroom -0.003 -0.005 0.005

(0.005) (0.009) (0.010)
Queens Courtroom 0.047 0.041 0.045

(0.008) (0.011) (0.010)
Richmond Courtroom 0.028 0.021 0.047

(0.011) (0.008) (0.017)
Lagged Disparity 0.860 0.385

(0.093) (0.132)
Mean Disparity 0.044 0.044 0.044 0.044 0.044 0.061 0.061
R2 0.059 0.027 0.066 0.452 0.508 0.294 0.428
Notes. This table reports OLS estimates of regressions of unwarranted disparity estimates on judge characteristics.

Unwarranted disparities are estimated as described in Section 5, using the benchmark local linear estimate of mean risk.
New judges are defined as judges appointed during our estimation period. Lenient judges are defined as judges with
above-average leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the location
of the modal case heard by each judge. Split-sample disparities are computed by splitting each judge’s sample of
cases at the median case and constructing two samples, a before-median case sample and an after-median case sample.
Unwarranted disparities are then re-estimated within each subsample. The estimation procedure conditions on court-
by-time effects, which causes a small number of judge effects to become collinear with the court-by-time effects and
dropped. All specifications are weighted by the inverse variance of the unwarranted disparity estimates. Columns 6 and
7 include empirical Bayes posteriors of lagged unwarranted disparity, computed using a standard shrinkage procedure
(Morris, 1983). Robust standard errors are reported in parentheses.
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Appendix Table A11: Mean Risk and Unwarranted Disparity Bounds

From 0.80 From 0.85 From 0.90
Leniency Leniency Leniency

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants [0.221,0.421] [0.248,0.398] [0.277,0.377]

(0.001,0.001) (0.002,0.002) (0.004,0.004)
Black Defendants [0.280,0.480] [0.313,0.463] [0.349,0.449]

(0.002,0.002) (0.003,0.003) (0.006,0.006)

Panel B: System-Wide Discrimination
Mean Across Cases [0.021,0.092] [0.029,0.083] [0.035,0.073]

(0.003,0.002) (0.002,0.001) (0.002,0.001)

Panel C: Judge-Level Discrimination
Mean Across Judges [0.021,0.091] [0.029,0.083] [0.035,0.073]

(0.003,0.002) (0.003,0.002) (0.002,0.002)
Std. Dev. Across Judges [0.036,0.046] [0.037,0.042] [0.037,0.039]

(0.003,0.004) (0.003,0.004) (0.003,0.005)
Fraction Positive [0.694,0.989] [0.770,0.982] [0.821,0.975]

(0.021,0.011) (0.021,0.011) (0.017,0.008)
Judges 268 268 268

Notes. This table summarizes bounds on mean risk and unwarranted racial disparities estimated from the variation
in Figure 2. Panel A reports bounds on race-specific average misconduct risk, Panel B reports bounds on system-wide
(case-weighted) unwarranted disparity, and Panel C reports bounds on empirical Bayes estimates of summary statistics
for the judge-level unwarranted disparity prior distribution. To estimate bounds on mean risk, column 1 uses a local
linear fit of released misconduct rates among judges releasing 80% of white and Black defendants. Columns 2 and 3 form
bounds from judges releasing 85% and 90% of white and Black defendants, respectively. The local linear regressions
use a Gaussian kernel and a rule-of-thumb bandwidth. Bounds are formed under the assumption that either none or
all of the detained defendants in each column have pretrial misconduct potential. Panels B and C search within these
bounds to find the combination of white and Black mean risk that minimize or maximize each unwarranted disparity
statistic. Robust standard errors on the endpoints of each set of bounds, two-way clustered at the individual and judge
level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A12: Decomposition of Racial Discrimination by Misconduct Potential

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.338 0.319 0.346

(0.007) (0.021) (0.016)
Black Defendants 0.400 0.394 0.436

(0.006) (0.022) (0.016)

Panel B: Racial Disparity in Conditional on Misconduct Potential
∆j1 0.033 0.060 0.066

(0.016) (0.054) (0.037)
∆j0 0.066 0.050 0.027

(0.011) (0.038) (0.030)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and racial disparities in true/false negative rates from different
extrapolations of the variation in Figure 2. Panel A reports estimates of race-specific average misconduct risk and Panel
B reports estimates of true/false negative rates. ∆j0 corresponds to defendants with Y ∗

i = 0 while ∆j1 corresponds to
defendants with Y ∗

i = 1. To estimate mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while
column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel and a
rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained by
a bootstrapping procedure and appear in parentheses.
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Appendix Table A13: Mean Risk and Unwarranted Disparity Estimates, Borough-Specific Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.337 0.342 0.337

(0.014) (0.037) (0.025)
Black Defendants 0.415 0.399 0.420

(0.009) (0.023) (0.021)

Panel B: System-Wide Discrimination
Mean Across Cases 0.050 0.052 0.046

(0.002) (0.008) (0.007)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.042 0.048 0.040

(0.003) (0.008) (0.007)
Std. Dev. Across Judges 0.032 0.040 0.039

(0.003) (0.008) (0.007)
Fraction Positive 0.902 0.885 0.846

(0.019) (0.047) (0.046)
Judges 267 267 267

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities. This table estimates
conditional regression models for each borough and averages the resulting estimates by borough share. Panel A reports
estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-weighted) unwarranted
disparity, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level unwarranted disparity
prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while column
2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel and a rule-of-
thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.

64



Appendix Table A14: Mean Risk and Unwarranted Disparity Estimates, Borough-Specific Estimates
with Judge-Specific Time Effects

Panel A: Mean Risk by Race (1) (2) (3) (4) (5) (6)
White Defendants 0.338 0.370 0.337 0.314 0.323 0.316

(0.033) (0.035) (0.036) (0.033) (0.033) (0.039)
Black Defendants 0.421 0.483 0.422 0.443 0.458 0.416

(0.038) (0.032) (0.044) (0.040) (0.038) (0.047)

Panel B: System-Wide Discrimination
Mean Across Cases 0.046 0.027 0.045 0.027 0.037 0.033

(0.031) (0.021) (0.045) (0.082) (0.039) (0.053)
Judges 262 159 244 262 159 244
Judge x Year-Month Yes Yes No Yes Yes No
Judge x Year-Month Squared No Yes No No Yes No
Judge x Year, Judge x Month No No Yes No No Yes
With Race Interactions No No No Yes Yes Yes

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities. This tables estimate
conditional regression models for each borough and averages the resulting estimates by borough share. The columns
add different levels of judge-specific time effects as well as judge-specific time effects interacted with race. Panel A
reports estimates of race-specific average misconduct risk, and Panel B reports estimates of system-wide (case-weighted)
unwarranted disparity. To estimate mean risk, each column uses a local linear extrapolation with a Gaussian kernel
and a rule-of-thumb bandwidth of the variation in Figure 2 which is estimated for each borough separately. Robust
standard errors, two-way clustered at the individual and judge level, are obtained by a bootstrapping procedure and
appear in parentheses.
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Appendix Table A15: Mean Risk and Unwarranted Disparity Estimates, Alternative Misconduct
Outcome

Any Case Any Violent
Misconduct FTA Rearrest Rearrest

Panel A: Mean Risk by Race (1) (2) (3) (4)
White Defendants 0.346 0.176 0.233 0.014

(0.014) (0.011) (0.019) (0.004)
Black Defendants 0.436 0.242 0.314 0.014

(0.017) (0.014) (0.019) (0.006)

Panel B: System-Wide Discrimination
Mean Across Cases 0.042 0.051 0.050 0.068

(0.006) (0.005) (0.005) (0.141)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.042 0.051 0.050 0.068

(0.006) (0.005) (0.005) (0.130)
Std. Dev. Across Judges 0.037 0.039 0.039 0.045

(0.003) (0.003) (0.004) (0.099)
Fraction Positive 0.873 0.913 0.910 0.948

(0.036) (0.025) (0.027) (0.089)
Judges 268 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities for different outcome variables.
Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-
weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level
unwarranted disparity prior distribution. Column 1 adjusts for differences by race in the mean risk of any misconduct
(either rearrest or FTA). Column 2 adjusts for differences by race in the mean risk of FTA. Column 3 adjusts for
differences by race in the mean risk of rearrest. Column 4 adjusts for differences by race in the mean risk of rearrest
for a violent crime. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.
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Appendix Table A16: Mean Risk and Unwarranted Disparity Estimates, Alternative Judge Decisions

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.343 0.341 0.345

(0.007) (0.026) (0.031)
Black Defendants 0.405 0.415 0.447

(0.006) (0.022) (0.039)

Panel B: System-Wide Discrimination
Mean Across Cases 0.045 0.042 0.032

(0.002) (0.007) (0.013)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.044 0.042 0.032

(0.003) (0.007) (0.012)
Std. Dev. Across Judges 0.043 0.043 0.043

(0.004) (0.004) (0.004)
Fraction Positive 0.855 0.838 0.769

(0.017) (0.041) (0.082)
Judges 268 268 268

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2. The judge’s decision variable in this table is release on recognizance (ROR) versus the
assignment of any monetary bail, where there is a 5.8 percentage point disparity in the assignment of ROR between
white and Black defendants after controlling for court-by-time effects. Panel A reports estimates of race-specific average
misconduct risk, Panel B reports estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports
empirical Bayes estimates of summary statistics for the judge-level unwarranted disparity prior distribution. To estimate
mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation
and column 3 uses a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard
errors, two-way clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in
parentheses.
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Appendix Table A17: Mean Risk and Unwarranted Disparity Estimates, Alternative Race Definition

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.208 0.138 0.187

(0.009) (0.018) (0.014)
Black or Hispanic Defendants 0.393 0.419 0.415

(0.006) (0.019) (0.012)

Panel B: System-Wide Discrimination
Mean Across Cases 0.089 0.213 0.112

(0.007) (0.031) (0.017)

Panel C: Judge-Level Discrimination
Mean Across Judges 0.090 0.211 0.112

(0.007) (0.030) (0.016)
Std. Dev. Across Judges 0.000 0.000 0.000

(0.007) (0.020) (0.016)
Fraction Positive 1.000 1.000 1.000

(0.018) (0.004) (0.016)
Judges 250 250 250

Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from different extrapolations
of the variation in Figure 2. The racial comparison in this table is between Black or Hispanic defendants to non-
Hispanic white defendants, where there is a 8.4 percentage point release rate disparity after adjusting for court-by-time
effects. Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide
(case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the
judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of
the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A18: Hierarchical MTE Model Hyperparameter Estimates

White Defendants Black Defendants
(1) (2) (3) (4) (5) (6)

Mean Misconduct Risk (µ) 0.346 0.391 0.371 0.423 0.441 0.437
(0.008) (0.007) (0.014) (0.009) (0.007) (0.016)

Mean ln(Signal Quality) (α) 0.538 0.316 0.523 -0.038 -0.044 -0.080
(0.128) (0.074) (0.125) (0.146) (0.075) (0.104)

Mean Release Threshold (γ) 0.912 1.055 1.144 0.893 1.072 1.089
(0.045) (0.023) (0.080) (0.051) (0.034) (0.079)

Release Threshold Std. Dev. (δ) 0.369 0.109 0.149 0.417 0.194 0.203
(0.039) (0.011) (0.037) (0.052) (0.021) (0.049)

ln(Signal Quality) Std. Dev. (ψ) 0.140 0.134 0.166 0.151
(0.019) (0.016) (0.014) (0.013)

Regression of ln(Signal Quality) -0.376 -0.007
on Release Threshold (β) (0.153) (0.212)

Judges 268 268 268 268 268 268
Notes. This table reports simulated minimum distance estimates of the MTE model described in the text. 500

simulation draws are used. Columns 3 and 6 estimate the full model with all hyperparameters. Columns 2 and 5
restrict β = 0, while columns 1 and 4 also restrict ψ = 0. The baseline model used in the text and summarized in
Table 4 comes from columns 2 and 5 of this table. Robust standard errors, two-way clustered at the individual and
the judge level, are reported in parentheses.
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Appendix Table A19: Tests of Conventional MTE Monotonicity

Number of Spline Knots
5 10 15 20

Panel A: White Defendants (1) (2) (3) (4)
Test Statistic 303.8 303.5 303.4 303.3
Deg. of Freedom 260 255 250 245
p-value [0.032] [0.020] [0.012] [0.007]

Cases 284,598 284,598 284,598 284,598

Panel B: Black Defendants
Test Statistic 403.8 402.9 402.8 402.3
Deg. of Freedom 260 255 250 245
p-value [<0.001] [<0.001] [<0.001] [<0.001]

Cases 310,588 310,588 310,588 310,588
Notes. This table reports the results of the tests of conventional MTE monotonicity proposed by Frandsen et

al. (2019), computed separately by defendant race. Test statistics are based on quadratic b-spline estimates of the
relationship between misconduct outcomes and judge leniency, with the number of knots specified in each column,
controlling for court-by-time fixed effects.
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Appendix Table A20: Unwarranted Disparities and Judge Characteristics, Model-Based Mean Risk

Full-Sample Disparities Split-Sample
Disparities

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.023 -0.011 -0.002

(0.007) (0.005) (0.007)
Lenient Judge -0.015 -0.019 -0.011

(0.008) (0.005) (0.006)
Above-Median Black Share -0.021 -0.007 0.003

(0.007) (0.008) (0.009)
Manhattan Courtroom 0.060 0.056 0.046

(0.009) (0.008) (0.011)
Bronx Courtroom -0.004 -0.005 -0.003

(0.006) (0.009) (0.011)
Queens Courtroom 0.045 0.040 0.036

(0.008) (0.011) (0.011)
Richmond Courtroom 0.025 0.018 0.039

(0.010) (0.009) (0.014)
Lagged Disparities 0.733 0.395

(0.087) (0.126)
Mean Disparity 0.050 0.050 0.050 0.050 0.050 0.050 0.050
R2 0.061 0.032 0.063 0.435 0.499 0.308 0.420
Judges 268 268 268 268 268 252 252
Notes. This table reports OLS estimates of regressions of unwarranted disparity estimates on judge characteristics.

Unwarranted disparities are estimated as described in Section 5, using the hierarchical MTE model estimate of mean
risk. New judges are defined as judges appointed during our estimation period. Lenient judges are defined as judges with
above-average leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the location
of the modal case heard by each judge. Split-sample disparities are computed by splitting each judge’s sample of
cases at the median case and constructing two samples, a before-median case sample and an after-median case sample.
Unwarranted disparities are then re-estimated within each subsample. The estimation procedure conditions on court-
by-time effects, which causes a small number of judge effects to become collinear with the court-by-time effects and
dropped. All specifications are weighted by the inverse variance of the unwarranted disparity estimates. Columns 6 and
7 include empirical Bayes posteriors of lagged unwarranted disparity, computed using a standard shrinkage procedure
(Morris, 1983). Robust standard errors are reported in parentheses.
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Appendix Table A21: Racial Bias and Judge Characteristics

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.021 -0.023 -0.007

(0.009) (0.007) (0.005)
Lenient Judge 0.023 0.017 0.033

(0.007) (0.005) (0.003)
Above-Median Black Share -0.008 -0.013 -0.002

(0.007) (0.008) (0.005)
Manhattan Courtroom 0.052 0.044 -0.006

(0.008) (0.008) (0.006)
Bronx Courtroom -0.016 -0.027 -0.015

(0.007) (0.010) (0.006)
Queens Courtroom 0.038 0.023 -0.007

(0.009) (0.011) (0.008)
Richmond Courtroom 0.037 0.019 -0.010

(0.007) (0.009) (0.014)
Unwarranted Disparities 1.369 1.403

(0.086) (0.085)
Mean Bias 0.072 0.072 0.072 0.072 0.072 0.072 0.072
R2 0.026 0.053 0.007 0.332 0.397 0.646 0.770
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of racial bias estimates on judge characteristics. Bias estimates
are obtained from the heirarchical MTE model as described in Section 6. New judges are defined as judges appointed
during our estimation period. Lenient judges are defined as judges with above-average leniency, controlling for court-
by-time fixed effects. Courtroom locations are defined using the location of the modal case heard by each judge. All
specifications are weighted by the inverse variance of the racial bias posteriors. Robust standard errors are reported in
parentheses.

72



Appendix Table A22: Signal Quality Differences and Judge Characteristics

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.092 -0.073 -0.014

(0.029) (0.022) (0.012)
Lenient Judge 0.031 0.016 0.074

(0.020) (0.016) (0.009)
Above-Median Black Share -0.031 -0.029 -0.006

(0.020) (0.024) (0.013)
Manhattan Courtroom 0.172 0.153 -0.001

(0.023) (0.025) (0.016)
Bronx Courtroom -0.042 -0.062 -0.044

(0.022) (0.030) (0.016)
Queens Courtroom 0.120 0.090 -0.018

(0.028) (0.034) (0.021)
Richmond Courtroom 0.117 0.081 -0.050

(0.023) (0.029) (0.037)
Unwarranted Disparities 4.575 4.584

(0.197) (0.215)
Mean Difference 0.412 0.412 0.412 0.412 0.412 0.412 0.412
R2 0.055 0.011 0.010 0.338 0.379 0.738 0.812
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of differences in signal quality estimates on judge character-
istics. Signal quality estimates are obtained from the heirarchical MTE model as described in Section 6. New judges
are defined as judges appointed during our estimation period. Lenient judges are defined as judges with above-average
leniency, controlling for court-by-time fixed effects. Courtroom locations are defined using the location of the modal case
heard by each judge. All specifications are weighted by the inverse variance of the signal quality difference posteriors.
Robust standard errors are reported in parentheses.
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B Econometric Appendix

B.1 Defining and Measuring Discrimination with Multi-Valued Y ∗i

This appendix first generalizes our definition of racial discrimination and derivation of OVB in obser-
vational comparisons to settings where the decision-maker’s objective is non-binary. We then discuss
how our quasi-experimental framework for measuring racial discrimination extends to this case.

Natural generalizations of Equation (3) are given by

∆j =
∑

y∈Supp(Y ∗
i

)

(
δyjw − δ

y
jb

)
py (B1)

in the multi-valued Y ∗i case, where py = Pr(Y ∗i = y), and:

∆j =
∫
Supp(Y ∗

i
)

(
δyjw − δ

y
jb

)
dF (y) (B2)

in the case of continuous Y ∗i , where F (·) is the cumulative distribution function of Y ∗i . In both cases,
δyjr = E[Dij | Y ∗i = y,Ri = r] gives conditional release rates for each race r and each y ∈ Supp(Y ∗i ).

As in Section 3.2, the bias of observational benchmarking regressions relative to these parameters,
when judges are as-good-as-randomly assigned, is given by
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in the multi-valued Y ∗i case, where pyr = Pr(Y ∗i = y | Ri = r) and again pr = Pr(Ri = r), and:
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∫
Supp(Y ∗

i
)
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)
d(Fw(y)− Fb(y)) (B4)

in the case of continuous Y ∗i , where Fr(·) is the cumulative distribution function of Y ∗i given Ri = r.
As in Section 5, discrimination is identified by the distribution of misconduct outcomes Y ∗i within

each race when judges are quasi-randomly assigned. By Bayes’ law:

δyjr = Pr(Y ∗i = y | Dij = 1, Ri = r) E[Dij | Ri = r]
Pr(Y ∗i = y | Ri = r) (B5)

for multi-valued Y ∗i and similarly for continuous Y ∗i . The first two terms, Pr(Y ∗i = y | Dij = 1, Ri = r)
and E[Dij | Ri = r], are identified by Pr(Yi = y | Di = 1, Zij = 1, Ri = r) and E[Di | Zij = 1, Ri = r]
under quasi-random judge assignment as before. In the continuous Y ∗i case, the first term is given
by the conditional density of Y ∗i given Di = 1, Zij = 1, and Ri = r. Estimates of the race-specific
misconduct distribution corresponding to the third Pr(Y ∗i = y | Ri = r) term (which might be
obtained from similar extrapolations of quasi-experimental data as in the binary Y ∗i case) thus yield
a plug-in estimator of each δyjr, which can be combined to estimate ∆j .
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B.2 Included Variables Bias

This appendix derives the included variables bias (IVB) formula (9) in a conditional release rate
comparison that adjusts for a binary characteristic Xi:

∆̃j = ∆̃j,X=0(1− µ̄X) + ∆̃j,X=1µ̄
X , (B6)

where ∆̃j,X=x = δjw,X=x − δjb,X=x and µ̄X = E[Xi] = µXb pb + µXw pw. Since we assume here that
white and Black misconduct risk are equal, µw = µb, we have no OVB, and:

∆j = αj =
(
δjw,X=0(1− µXw ) + δjw,X=1µ

X
w

)
−
(
δjb,X=0(1− µXb ) + δjb,X=1µ

X
b

)
. (B7)

It thus follows similarly to Equation (8) that:

∆̃j −∆j =
(
δjw,X=0(µ̄X − µXw ) + δjw,X=1(µXw − µ̄X)

)
−
(
δjb,X=0(µ̄X − µXb ) + δjb,X=1(µXb − µ̄X)

)
= [(δjw,X=0 − δjw,X=1) pb + (δjb,X=0 − δjb,X=1) pw]× (µXb − µXw ). (B8)

B.3 Empirical Bayes Methods

This appendix summarizes the two conventional empirical Bayes approaches used in this paper: the
posterior mean calculation of Morris (1983) and the posterior average effect calculation of Bonhomme
and Weidner (2020). We use the former to gauge sensitivity of our main extrapolations in Appendix
Table A7 (see footnote 16), and to compute the prior means and standard deviations in Figures 1, 3,
and A3. We use the latter to compute the posterior distribution and fraction of judges with positive
disparities in these figures, and to interpret the coefficient estimates in Tables A9, A20, A21, and A22.

Let θ̂j be an estimate of an unknown judge-specific parameter θj , such as an observational bench-
marking coefficient or our rescaled unwarranted disparity measure. Applying a usual asymptotic
approximation, we write θ̂j = θj + εj where εj ∼ N(0,Σj) for known Σj . Conventional empirical
Bayes methods further assume θj ∼ N(θ̄,Λ), where θ̄ and Λ are unknown hyperparameters. Given
this prior distribution, the posterior mean of θj after observing the estimate θ̂j is given by

θ∗j ≡ E[θj | θ̂j ] = Σj
Λ + Σj

θ̄ + Λ
Λ + Σj

θ̂j (B9)

More generally, Equation (B9) gives the minimum mean-squared error prediction of θj given θ̂j when
the normality of θj is relaxed, provided θ̄ and Λ continue to parameterize the mean and variance of
the prior distribution.

Empirical Bayes posteriors estimate θ̄ and Λ and plug these hyperparameter estimates into Equa-
tion (B9). We estimate θ̄ and Λ by the weighted iterative procedure studied by (Morris, 1983), which
is equivalent to a maximum likelihood procedure. At iteration k the hyperparameter estimates are:

ˆ̄θk =
∑
j

ωjk∑
j′ ωj′k

θ̂j (B10)

Λ̂k =
∑
j

ωjk∑
j′ ωj′k

(
(θ̂j − ˆ̄θk)2 − Σj

)
(B11)
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with inverse-variance weights that are proportional to ωjk = (Λ̂k−1 + Σj)−1 and where ωj0 = 1. We
iterate this procedure to convergence.

Bonhomme and Weidner (2020) discuss posterior average effect estimators of the cumulative dis-
tribution function for θj , given by

F̂θ(t) = 1
J

∑
j

E[1[θj ≤ t] | θ̂j ] (B12)

for each t in the support of θj . Note that 1− F̂θ(0) is a posterior average effect estimate of the fraction
of θj in the population that is positive. Under the normality assumption:

E[1[θj ≤ t] | θ̂j ] = Φ

− θ∗j√
ΛΣj

Λ+Σj

 (B13)

which can, as with Equation (B9), be estimated by plugging in the estimates of the mean and variance
hyperparameters. Just as with the empirical Bayes posterior estimator, Bonhomme and Weidner
(2020) show that this posterior average effect estimator has certain robustness properties: it is optimal
in terms of local worst-case bias, and its global bias is bounded by the minimum worst-case bias within
a large class of estimators. They further show how regressions of the empirical Bayes posterior means
on judge characteristics also have a posterior average effect interpretation and thus the same robustness
properties for estimating conditional mean functions.

To estimate the density of θj as posterior average effects, we consider

f̂θ(t) = 1
J

∑
j

E

[
1
h
K

(
t− θj
h

)
| θ̂j
]

(B14)

where K(·) is a kernel function and h is a bandwidth. For the posterior densities in Figures 1, 3, and
A3 we use an Epanechnikov kernel, K(u) = 3

4 (1− u2)1[|u| ≤ 1], and a rule-of-thumb bandwidth. To
compute f̂θ(t), we note that under the reference model (i.e., normality)
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and
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We compute these by again plugging in estimates of the mean and variance hyperparameters, and use
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to compute the posterior density.

B.4 Rescaled Benchmarking Regressions: Numerical Example and in NYC

This appendix illustrates how our rescaling approach allows us to measure discrimination in bail
decisions, even though misconduct potential is unobserved and cannot be directly conditioned on.
We first consider a simple numerical example. Suppose that there are two types of hypothetical
defendants assigned to a single bail judge: high-risk H types and low-risk L types. 75 of the 100
H-type defendants have misconduct potential (Y ∗i = 1) but only 25 of the 100 L-type defendants
have misconduct potential, such that µH = 0.75, µL = 0.25, and pH = pL = 0.5. The judge is type-
neutral when making release decisions: if the defendant has Y ∗i = 1 there is an 80 percent chance the
defendant is released regardless of type, and if the defendant has Y ∗i = 0 there is a 20 percent chance
the defendant is released regardless of type. Thus, while the judge receives a signal of the defendant’s
unobserved misconduct potential, this signal is not perfectly predictive, implying the judge will release
some defendants who will misbehave and detain some defendants that would not misbehave.

Appendix Table A5 summarizes the setup. Panel A shows that this judge has a release rate of
0.65 for L-type defendants but a release rate of 0.35 for H-type defendants. This means that a simple
benchmarking regression would suffer from OVB: it finds that L-type defendants have a 30 percentage
point higher release rate than H-type defendants (αj = 0.3), despite the judge being type-neutral.

Panel B of Appendix Table A5 shows how discrimination can be measured in this simple numerical
example with observational release rate comparisons that are rescaled using average misconduct risk.
Following Equations (14) and (15), we compute Ωi = 0.50

0.75 = 2/3 for released H-type defendants with
Yi = 0 and released L-type defendants with Yi = 1, and Ωi = 0.50

0.25 = 2 for released L-type defendants
with Yi = 1 and released H-type defendants with Yi = 0. The rescaling factor thus up-weights the
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release rates of individuals who are relatively less common in each type (risky L-type defendants and
non-risky H-type defendants), while down-weighting the release rates of individuals who are relatively
more common (non-risky L-type defendants and risky H-type defendants). This pattern of up- and
down-weighting generally arises when H-type defendants have higher misconduct risk: i.e., when
µH > µ̄ > µL. In such cases, observations of released L-type defendants who subsequently offend
are up-weighted (Yi − µL > 0 and µ̄ − µL > 0 so Ωi > 1), as are observations of released H-type
defendants who do not subsequently offend (Yi − µH < 0 and µ̄− µH < 0, so again Ωi > 1.

The rescaling factor removes OVB by implicitly equalizing the proportion of risky and non-risky
defendants by type. This means that a rescaled benchmarking regression correctly find that H- and
L-type defendants with the same misconduct potential have identical release rates (∆j = 0). This is
shown in the final column of Appendix Table A5, Panel B.

Appendix Table A6 similarly illustrates our finding of significant racial discrimination in NYC
bail decisions. We use the benchmark local linear estimates of mean risk in Table 3 to estimate
the number of white and Black defendants with and without misconduct potential in column 1 of
Panel A. In column 2, we combine these estimates with estimates of release and released misconduct
rates adjusted by court-by-time fixed effects to compute the number of released defendants in each
race and misconduct category, as in Equation (19). This calculation yields the case-weighted average
observational disparity of 6.8 percentage points in column 6. In Panel B, we use the local linear
estimates of mean risk to compute and apply the appropriate rescaling factor Ωi. Our baseline
estimates of average misconduct risk are µw = 0.346 for white defendants and µb = 0.436 for Black
defendants. Combining these estimates with the share of white and Black defendants in our sample
yields an overall average misconduct risk of µ̄ = 0.392. Following Equations (14) and (15), these
estimates yield a rescaling factor of Ωi = 1−0.392

1−0.346 = 0.928 for released white defendants with Yi = 0,
Ωi = 0.392

0.436 = 0.901 for released Black defendants with Yi = 1, Ωi = 0.392
0.346 = 1.137 for released white

defendants with Yi = 1, and Ωi = 1−0.392
1−0.436 = 1.077 for released Black defendants with Yi = 0. Thus the

rescaling factor up-weights the release rates of risky white defendants and non-risky Black defendants
(who are relatively less common) while down-weighting the release rates of non-risky white defendants
and risky Black defendants (who are relatively more common). Applying these rescaling factors to
the observational release rates yields a system-wide discrimination estimate of 4.2 percentage points,
matching the estimate in Panel B of Table 3.

B.5 Bounding Mean Risk and Racial Discrimination

This appendix details the construction of mean risk and unwarranted disparity bounds in Appendix
Table A11. As in the baseline analysis, this procedure uses estimates of race- and judge-specific
release rates ρjr = E[Dij | Ri = r] and released misconduct rates λjr = E[Y ∗i | Dij = 1, Ri = r].
Instead of extrapolating the latter estimates to estimate the mean risk parameters µjr, and the
corresponding estimates of discrimination ∆j , here we bound the range of logically possible µjr given
typical misconduct rates of highly lenient judges and search within these ranges to bound statistics
of the prior distribution of discrimination.

Each column of Appendix Table A11 forms bounds from a different leniency threshold ρ ∈
{0.8, 0.85, 0.9}. For each race r, we first use a local linear regression of the estimated λjr on the
estimated ρjr to estimate the average λjr for judges with ρjr = ρ, parameters we denote by λr. By
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definition, each λr bounds the mean risk of race r as

µr ∈ [λrρ, λrρ+ (1− ρ)]. (B19)

The lower bound λrρ is obtained from assuming all detained defendants for a judge with a leniency
of ρ have Y ∗i = 0 while the upper bound is obtaind from assuming the (1 − ρ) share of detained
defendants have pretrial misconduct potential (Y ∗i = 1). Panel A of Appendix Table A11 reports
estimates of these bounds for each race, along with their associated standard errors in parentheses.
Note that by construction the width of each interval is equal to 1− ρ.

To obtain bounds on the statistics in Panels B and C of Appendix Table A11, we perform grid
searches within the mean risk bounds in Panel A. For example, to bound the system-wide level of
discrimination we search within the mean risk bounds to find the (µw, µb) pair that minimizes and
maximizes the case-weighted average of judge-specific unwarranted disparity ∆j . We report these
bounds and their associated standard errors in parentheses. Note that the width of each statistic’s
interval is weakly increasing in 1− ρ, reflecting the increase in the range of mean risk parameters.

B.6 Judge Decision-Making Model and Extensions

This appendix first derives the specific form of the posterior function pj(·) in the model discussed
in Section 6.1. We then show how equivalent models are obtained when judges have inaccurate
beliefs over the risk of white and Black defendants, and when judges minimize race-specific costs of
misconduct classification errors. Finally, we show how disparate impact manifests in this model.

The initial model assumes judges form accurate posteriors of defendant misconduct potential Y ∗i
after observing noisy signals νij = Y ∗i + ηij with normally distributed noise: ηij | Y ∗i , (Ri = r) ∼
N(0, 1/τ2

jr). The distribution of these posteriors is given by Bayes’ rule as:

pj(ν; r) ≡ Pr(Y ∗i = 1 | νij = ν,Ri = r)
Pr(νij = v | Y ∗i = 1, Ri = r)Pr(Y ∗i = 1, Ri = r)

Pr(νij = v,Ri = r)

= φ(τjr(v − 1))τjrµr
φ(τjr(v − 1))τjrµr + φ(τjrv)τjr(1− µr)

(B20)

where φ(x) ∝ exp(−x2/2) is the standard normal density and µr = E[Y ∗i | Ri = r] is the mean risk
of race r. Simplifying this expression yields:

pj(ν; r) =
(

1 + exp(τ2
jr(1− 2v)/2)1− µr

µr

)−1
(B21)

With πjr giving the private benefits of releasing defendants of race r, the judge’s release rule is then
given by Dij = 1[πjRi ≥ pj(νij ;Ri)].

Equation (B21) shows that risk posteriors are strictly increasing in v, such that they can be
inverted to write the judge’s release decision as a cutoff rule for her observed signals νij :

Dij = 1
[

1
2 − ln

(
µRi(1− πjRi)
(1− µRi

)πjRi

)
/τ2
jRi
≥ νij

]
(B22)
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We use this fact to parameterize the hierarchical model, as discussed in Section 6.1. Here

κjr = 1
2 − ln

(
µr(1− πjr)
(1− µr)πjr

)
/τ2
jr. (B23)

It follows from Equation (B23) that if judges form posteriors with inaccurate priors µ̃jr 6= µr, this
bias in beliefs cannot be distinguished from bias in the preference parameters πjr. Only the index
Ijr = µ̃jr(1−πjr)

πjr(1−µ̃jr) , which combines beliefs and preferences, is relevant to the judge’s decision-making
process. Consequently, the judge’s marginal released outcomes

E[Y ∗i | pj(νij ; r) = πr, Ri = r] =
(

1 + Ijr

(
1− µr
µr

))−1
(B24)

will generally differ by race when either µ̃jr 6= µr for one or both races (indicating inaccurate beliefs)
or when πjw 6= πjb (indicating racial animus).

An equivalent model is derived by assuming the judge minimizes the cost of making “false positive”
decisions (detaining an individual with no pretrial misconduct risk) and “false negative” decisions
(releasing an individual with pretrial misconduct risk), rather than having explicit benefits of releasing
white and Black defendants. Denote these judge- and race-specific type-I and type-II error costs by
cIjr, c

II
jr > 0. A judge’s ex-post utility for a given release decision Dij ∈ {0, 1} is then:

Uij = −cIIjRi
DijY

∗
i − cIjRi

(1−Dij)(1− Y ∗i ) (B25)

and her expected utility over her posterior risk beliefs is

E[Uij | νij , Ri] = −cIIjRi
Dijpj(νij , Ri)− cIjRi

(1−Dij)(1− pj(νij , Ri)) (B26)

The judge’s expected utility is thus maximized by cutoff rule:

Dij = 1[πjRi
≥ pj(νij , Ri)] (B27)

where πjr = cII
jRi

cI
jRi

+cII
jRi

∈ (0, 1) gives the judge’s relative cost of type-II error.
To characterize discrimination in this model, note that Equation (B22) and the conditional nor-

mality of νij implies that the judge’s conditional release rates can be written

δjr0 = Pr(Dij = 1 | Y ∗i = 0, Ri = r) = Φ
(

1
2τjr −

1
τjr

ln Ijr
)

(B28)

δjr1 = Pr(Dij = 1 | Y ∗i = 1, Ri = r) = 1− Φ
(

1
2τjr + 1

τjr
ln Ijr

)
(B29)

When signal quality is the same by race, τjw = τjb, these expressions show that disparate impact
∆j = (δjw0− δjb0)(1− µ̄) + (δjw1− δjb1)µ̄ is only zero when Ijw = Ijb. By comparison with Equation
(B24), this scenario will generally lead to bias at the margin unless white and Black average misconduct
risk are also equal (µw = µb). Furthermore, the fact that ∆j is strictly decreasing (to zero) in the
white index Ijw and strictly increasing (to one) in the Black index Ijb implies that there exist a set of
thresholds (Ijw, Ijb) resulting in no racial discrimination on average, even when signal quality differs.
Again, this will typically yield racial bias, per Equation (B24), to the extent mean risk differs by race.
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B.7 Conventional Monotonicity Violations and Judge Signal Quality

This appendix shows how differences in the way judges consider defendant and case characteristics,
which lead to violations of conventional MTE monotonicity, can be viewed as differences in judge
signal quality within models like the one we develop in Section 6.1. In doing so we show that such
models are without observational loss, provided judge release decisions are better-than-random.

Consider a setting with a binary potential misconduct outcome Y ∗i and a set of binary judge
release decisions Dij . The distribution of these random variables is fully specified by the mean risk
µ = E[Y ∗i ] and the conditional release rates δj0 = E[Dij | Y ∗i = 0] and δj1 = E[Dij | Y ∗i = 1]. With
mean risk fixed, any restriction on judicial decision-making —such as conventional MTE monotonicity
or alternative parameterizations—can thus be understood as restricting the set of (δj0, δj1).

We first show that when judges are making better-than-random release decisions, in the sense of
0 < δj0 < δj1 < 1 for each j, it is without observational loss to assume a decision-making model of
Dij = 1[κj ≥ Y ∗i + ηi/τj ], with ηi | Y ∗i continuously distributed and τj > 0. This follows since then
τj = G−1

η (δj0)−G−1
η (δj1) > 0 and κj = G−1

η (δj0)/τj rationalize each (δj0, δj1), where Gη(·) specifies
the cumulative distribution of ηi | Y ∗i :

E[Dij | Y ∗i = y] = Pr(κj ≥ y + ηi/τj)

= Gη((κj − y)τj)

= Gη(G−1
η (δj0)) + y(G−1

η (δj1)−G−1
η (δj0))

= δj0 + y(δj1 − δj0) (B30)

In particular, Equation (B30) shows that our risk signal threshold decision rule (23), in which ηi |
Y ∗i ∼ N(0, 1), is without loss in this case. In general, we may think of τj as capturing judge j’s signal
quality: how less likely she is to release defendants with Y ∗i = 1 than those with Y ∗i = 0.

We next relate differences in such signal quality to conventional monotonicity violations in a simple
behavioral model of judicial decision-making. Suppose judges observe a vector of defendant and case
characteristics X∗i which are, without loss, mean zero and positively correlated with misconduct
potential: µX(1) ≡ E[X∗i | Y ∗i = 1] > E[X∗i | Y ∗i = 0] ≡ µX(0). Judges place different weights βj on
the elements of this vector and also vary in their overall leniency πj , such that:

Dij = 1[πj ≥ X∗′i βj + Ui] (B31)

where we assume Ui | X∗i , Y ∗i is uniformly distributed. In this model E[Dij | Y ∗i = y] = πj−µX(y)′βj ,
assuming the parameters are such that these are all between zero and one.

Conventional monotonicity in this model requires Pr(Dij ≥ Dik = 1) or Pr(Dik ≥ Dij = 1) for
each (j, k), which generally restricts the weights βj to be the same across judges. If some elements ofX∗i
were observed to the econometrician, one could relax this assumption by a conditional analysis within
sets of defendants with identical observables (e.g., Mueller-Smith, 2015). Conditional monotonicity
would then generally constrain the weights corresponding to unobserved characteristics to be constant.

Judicial decision-making is here better-than-random when δj0 − δj1 = (µX(1)− µX(0))′βj > 0 or
when the weights in each βj are non-negative with at least one element strictly positive. In this case
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we have from the above result an equivalent representation of:

Dij = 1[κj ≥ Y ∗i + Vi/τj ] (B32)

where Vi | Y ∗i ∼ U(0, 1). Here judge signal quality is given by τj = (µX(1) − µX(0))′βj and has
a straightforward interpretation: with only one element in X∗i , for example, differences in τj are
proportional to differences in the behavioral weights βj . More generally, this discussion shows how
parameterizations of the distribution of signal quality across judges can be thought to structure
differences in how judges weigh defendant and case characteristics when making release decisions.

B.8 SMD Estimation of the Hierarchical MTE Model

We estimate the hierarchical model described in Sections 6.1 and Sections 6.2 by a simulated minimum
distance (SMD) procedure that targets moments of the distribution of race- and judge-specific release
rates ρjr = E[Dij | Ri = r] and released misconduct rates λjr = E[Y ∗i | Dij = 1, Ri = r], estimated
from quasi-experimental judge assignments. This appendix formally specifies this procedure.

We first obtain estimates of ρjr and λjr from OLS regressions of pretrial release Di and pretrial
misconduct Yi on judge-by-race interactions, adjusting for the quasi-experimental court-by-time ef-
fects) and defendant and case observables as discussed in Section 5.2. Subject to the usual asymptotic
approximation, the resulting estimates ρ̂jr and λ̂jr can be modeled as noisy measures of the true
parameters, with a known distribution of sampling error. Specifically:

ρ̂jr = ρjr + ερjr (B33)

λ̂jr = λjr + ελjr (B34)

where ε | ρ, λ ∼ N(0,Σ) for a variance-covariance matrix Σ that is given by conventional asymptotics.
Let X = ((ρ̂jr, λ̂jr)j=1,...,268,r∈{w,b}) collect these estimates across the 268 judges in our sample and
both races w and b.

The model in Appendix B.6 specifies ρjr and λjr as functions of mean misconduct risk µr, judge
signal quality τjr, and risk thresholds πjr:

ρjr = Φ((f(πjr, µr, τjr)− 1)τjr))µr + Φ(f(πjr, µr, τjr)τjr))(1− µr) (B35)

λjr = Φ((f(πjr, µr, τjr)− 1)τjr))µr/ρjr (B36)

where Φ(·) denotes the standard normal cumulative distribution function and:

f(π, µ, τ) = 1
2 − ln

(
µ(1− π)
π(1− µ)

)
/τ2. (B37)

We further model signal thresholds κjr = f(πjr, µr, τjr) and log signal quality ln τjr as being joint-
normally distributed across judges, with reisdual correlation across races. That is, we specify:

ln τjr = αr + βrκjr + εjr (B38)

for each race r, with (κjw, κjb)′ ∼ N(µκ,Λκ) and (εjw, εjb)′ | κ ∼ N(0,Λτ ).
Equations (B33)–(B38) specify a complete distribution for the observed quasi-experimental esti-
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mates X in terms of a hyperparameter vector Θ = (µw, µb, αw, αb, βw, βb, µ′κ, vec(Λ
1/2
κ )′, vec(Λ1/2

τ̃ )′)′.
We estimate Θ by SMD, targeting moments of X as discussed in Section 6.1. Specifically, let M̂ be a
vector with the first two race-specific elements of:

M̂1r =
268∑
j=1

ωρjrρ̂jr (B39)

M̂2r =
268∑
j=1

ωρjr(ρ̂jr − M̂1r)2 (B40)

the next three race-specific elements corresponding to coefficient estimates from the ωλjr-weighted
quadratic OLS regression of:

λ̂jr = M̂3r + M̂4rρ̂jr + M̂5rρ̂
2
jr + υ̂jr (B41)

and the sixth race-specific element corresponding to the ωλjr-weighted residual variance estimate:

M̂6r =
268∑
j=1

ωλjrυ̂
2
jr (B42)

The weights are derived from the estimation error matrix Σ: ωρjr is proportional to the inverse variance
of ρ̂jr − ρjr while ωλjr is proportional to the inverse variance of λ̂jr − λjr, with both weights rescaled
to sum to one in the population of judges. We further include in M̂ the

√
ωρjwω

ρ
jb-weighted covariance

of ρ̂jw and ρ̂jw as well as the
√
ωλjwω

λ
jb-weighted covariance of λ̂jw and λ̂jw. Together this gives 14

elements in M̂ , the same number of hyperparameters in Θ.
The SMD procedure matches the empirical moments in M̂ with the corresponding model-implied

moments averaged across 500 simulated draws of the above data-generating process. That is, we
estimate:

Θ̂ = arg min
Θ

14∑
m=1

(
M̂m −

1
500

500∑
s=1

Mms(Θ)
)2

(B43)

where the functions Mms(·) of candidate hyperparameters Θ are given by applying the previous
moment calculations to data generated from 500 fixed simulation draws s. Conventional asymptotic
theory for Θ̂ applies under appropriate regularity conditions (e.g., Pakes and Pollard, 1989).

Columns 3 and 6 of Appendix Table A18 report SMD estimates and standard errors for the full
model. As discussed in the main text, our baseline model estimates set βr = 0. Per the intuition in
Section 6.1 and to keep the model just-identified, we correspondingly drop the quadratic term from
the moment regression in Equation (B41). The resulting estimates are reported in columns 2 and 5
of Appendix Table A18. To impose conventional MTE monotonicity, we further set the variance of
τjr to zero. The resulting estimates are reported in columns 1 and 4 of Appendix Table A18.

Lastly, given Θ̂, we compute maximum a posteriori probability estimates (also known as posterior
modes) of the judge-specific parameters θj = (κjw, ln τjw, κjb, ln τjb)′, following an approach similar
to that which Angrist et al. (2017) apply for a similar hierarchical model. Note that the log-likelihood
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of θ = (θ′1 . . . , θ′268)′ and quasi-experimental estimates X can be written:

L(θ,X ) = lnφm
(
X − X̄(θ); Σ

)
+ lnφm (θ − µθ; Λθ) (B44)

where φm(·;V ) gives the density of a mean-zero multivariate normal vector with variance-covariance
matrix V ; X̄(·) collects the formulas from Equations (B35) and (B36), for ρjr and λjr in terms of µw,
µb, and θ; and both µθ and Λθ are derived from the αr and βr, µκ, Λκ, and Λτ . Our estimates of θ
are given by maximizing this likelihood, plugging in our baseline hyperparameter estimates Θ̂.
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