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 In Imbens and Ingrist (1994), Angrist, Imbens and Rubin (1996) and Imbens and Rubin
 (1997), assumptions have been outlined under which instrumental variables estimands can be given
 a causal interpretation as a local average treatment effect without requiring functional form or
 constant treatment effect assumptions. We extend these results by showing that under these
 assumptions one can estimate more from the data than the average causal effect for the subpopula-
 tion of compliers; one can, in principle, estimate the entire marginal distribution of the outcome
 under different treatments for this subpopulation. These distributions might be useful for a policy
 maker who wishes to take into account not only differences in average of earnings when contemplat-
 ing the merits of one job training programme vs. another. We also show that the standard instru-
 mental variables estimator implicitly estimates these underlying outcome distributions without
 imposing the required nonnegativity on these implicit density estimates, and that imposing non-
 negativity can substantially alter the estimates of the local average treatment effect. We illustrate
 these points by presenting an analysis of the returns to a high school education using quarter of
 birth as an instrument. We show that the standard instrumental variables estimates implicitly
 estimate the outcome distributions to be negative over a substantial range, and that the estimates
 of the local average treatment effect change considerably when we impose nonnegativity in any of
 a variety of ways.

 1. INTRODUCTION

 In recent empirical work (e.g. Angrist (1990), Angrist and Krueger (1991), Kane and
 Rouse (1992), Butcher and Case (1993), Card (1993), McClellan and Newhouse (1994))
 researchers have attempted to estimate causal effects using instrumental variables to deal
 with possible self-selection into a treatment. Although there is a long tradition in cross-
 section econometrics of using instrumental variables estimation in self-selection problems
 (e.g. Gronau (1974), Willis and Rosen (1979), Heckman and Robb (1985)), this recent
 work, part of the natural experiments literature, differs from the older instrumental vari-
 ables literature in its increased focus on the validity of the instruments, often at the expense
 of the strength of the relation between the instrument and the endogenous regressor. In
 Imbens and Angrist (1994), Angrist and Imbens (1995), Angrist, Imbens and Rubin (1996)
 and Imbens and Rubin (1997), assumptions have been outlined under which such instru-
 mental variables estimands can be given a causal interpretation as a local average treatment
 effect without requiring functional form or constant treatment effect assumptions.
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 556 REVIEW OF ECONOMIC STUDIES

 In this paper we make two points: first we show that under these assumptions one

 can estimate more from the data than the average causal effect for the subpopulation of
 compliers; one can, in principle, estimate the entire marginal distribution of the outcome

 under the different treatments for this subpopulation. These distributions might be useful
 for a policy maker who wishes to take into account not only differences in average earnings
 but also differences in dispersion of earnings when contemplating the merits of one
 programme or treatment vs. another.

 Second, we show that the standard instrumental variables estimator implicitly esti-
 mates these underlying outcome distributions without imposing the required nonnegativity

 condition on density estimates, and that imposing nonnegativity on these implicit density
 estimates can substantially alter the estimates of the local average treatment effect.

 We illustrate these points in two ways. First we present an analysis of the returns to

 a high school education using quarter of birth as an instrument. We show that the standard
 instrumental variables estimates implicitly estimate the outcome distributions to be nega-

 tive over a substantial range, and that the estimates of the local average treatment effect
 change considerably when we impose nonnegativity in any of a variety of ways. Second,
 we do a small Monte Carlo study to show that the proposed estimators that impose
 nonnegativity on the outcome distributions can have substantially lower root mean squared
 error than the standard IV estimator.

 2. IDENTIFICATION OF THE LOCAL AVERAGE TREATMENT EFFECT
 USING INSTRUMENTAL VARIABLES

 In this section we set up the framework used to analyse instrumental variables estimators.
 The "potential outcome" framework we use is based on Rubin's (1974, 1978, 1990) exten-
 sion of Neyman's (1923) model for randomized experiments to observational settings
 including possible interference between units and versions of each treatment, and allowing
 outcomes to be stochastic, specialized to instrumental variables in Angrist, Imbens and
 Rubin (1996). Following Holland (1986) we refer to this as the Rubin Causal Model

 (RCM).
 Let Zi be a binary instrument. Let the pair Di (0) and Di (1) denote the values of the

 treatment for individual i that would be obtained given the instrument Zi = 0 and Zi= I
 respectively. If Di (0) = 0 and Di (1) = 1 unit i is called a complier. For z = 0, 1 and d = 0, 1,
 let Yi(z, d) denote the outcome that would be observed given instrument Zi= z and treat-
 ment Di=d respectively. Implicit in this notation is the Stable Unit Treatment Value
 Assumption (SUTVA, Rubin (1980, 1990)), which requires that unit i is not affected by
 the treatment received and instrument assigned for other units. We also make the standard
 econometric instrument or exclusion assumption that the potential outcomes Yi (z, d) do
 not depend on z; for any unit there are, therefore, only two different potential outcomes
 Yi (d), one for each value of the treatment Di: Yi (0) is the outcome that would be observed
 if the treatment were Dj=0, and Yi(l) is the outcome that would be observed if the
 treatment were Di= 1. The third assumption is the strict monotonicity assumption which
 requires that Di (1) > Di (0) for all units i, with inequality for at least one unit. This assump-
 tion requires that changing the instrument from Zi = 0 to Zi = 1 would not lead anyone to
 shift from receiving the treatment to not receiving the treatment; that is, there are no units

 with Di (0) =1 and Di (1) = 0. (Labelled defiers by Balke and Pearl (1993).) Finally, we
 assume that the instrument Zi is randomly assigned, independent of the potential outcomes
 Di(0), Di(1), Yi(0) and Yi(1), or more generally, ignorable (Rubin (1978)). For all indi-
 viduals we observe the triple Zbs,i = Zi, D.bs,i= Di(Z0bs,i) and Yobs,i YI(DObs,i).
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 IMBENS & RUBIN ESTIMATING OUTCOME DISTRIBUTIONS 557

 Under these assumptions (SUTVA, the exclusion restriction, strict monotonicity and
 random assignment of the instrument) one can estimate the local average treatment effect,
 the average of the unit level treatment effect, Yi (1) - Y1 (0), for the subpopulation of
 compliers characterized by Di (0) = 0 and Di (1) = 1, by taking the ratio of the average
 difference in Yi by instrument and the average difference in Di by instrument

 E[ YE ( 1- Yi (?)IDi (O) = O, D,i(l1) = 1 ] = Et Yil Zi= 1 ]-Et Yi JZ,=0]
 E[D11JZ1= 1] -E[D1 Z1= 0]'

 where E[ ] denotes population averages. In Angrist, Imbens and Rubin (1996) these
 assumptions are discussed in detail and some examples in which these assumptions may
 be justified are given.

 A more conventional econometric approach starts with the switching regression model
 (Maddala and Nelson (1975), Willis and Rosen (1979), Bjorklund and Moffitt (1987),
 Heckman (1990)), where two outcomes are postulated:

 Yi(0) = Po+ ci, (1)

 Yi (1) = Yo + i, (2)

 in combination with a latent variable describing the selection:

 D.bs,i = 1 { IfO + lt I Zobs,i + Vi > 0} , (3)

 where 1 { } is the indicator function, equal to one if its argument is true and zero otherwise,
 and with the observed outcome equal to Yobs,i = Yi (0) (1 - Dobs,i) + Yi (1) - Dobs,i . The key
 assumption is that Zi is independent of all disturbances ci, Xi and vi. These models are
 typically estimated under additional distributional assumptions using maximum likelihood
 methods because instrumental variables estimation is not consistent for the average treat-

 ment effect yo - /Bo that is typically the focus in program evaluation.'
 A special case of the switching regression model is the dummy endogenous variable-

 constant coefficient model characterized by the equation

 Yobs,i = ,Bo + jI Dobs,i + Ei, (4)

 combined with equation (3).2 In this constant treatment effect model instrumental variables
 is consistent for the treatment effect P1I.

 In another version of the dummy endogenous variable model, the participation equa-
 tion is not explicitly written down. Instead, the response equation is presented together
 with the two assumptions that (i), ci is uncorrelated with Zi and (ii), there is a non-
 zero correlation between Di and Zi. Although the set-up is weaker than assuming full
 independence of ci and Zi, with possible dependence between ei and Zi a zero correlation
 implies that a variable Zi could be a valid instrument for the effect of Di on Yi, without
 being a valid instrument for the effect of Di on a transformation of Yi such as ln Y,.
 Because part of the appeal of the natural experiment literature is in its lack of reliance on
 functional form assumptions, we do not regard this as an appealing relaxation of the
 assumptions.

 1. An exception is Heckman (1990) who presents identification results requiring the support of the
 instrument Z, to be unbounded.

 2. See for example Heckman (1978).
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 558 REVIEW OF ECONOMIC STUDIES

 3. IDENTIFICATION OF THE MARGINAL OUTCOME DISTRIBUTIONS
 FOR COMPLIERS

 A policy maker or individual decision maker may be interested in more than just average
 treatment effects. For example, a policy maker contemplating a training programme may
 be interested in the proportion of the population whose earnings will be above the poverty
 level given the training relative to the proportion with above poverty level earnings given
 no training. Alternatively, the policy maker may be interested in the effect of the training
 programme on earnings equality as measured by the variance of earnings. In all these
 cases, knowledge of the distribution of earnings given training and the distribution of
 earnings given no training would enable the policy maker to answer these questions. In
 this section we show that given the four assumptions discussed in Section 2, SUTVA, the
 exclusion restriction, strict monotonicity and randomization of the instrument, one can
 estimate for compliers the distribution of outcomes both given treatment and given no
 treatment. In order to focus on this identification issue, the discussion in this section
 assumes that the joint distribution of observables (Zobs,i, Dobs,i, Yobs,i) is estimated without
 sampling error.

 Although we can identify the two marginal outcome distributions for compliers, we
 cannot, under our assumptions, identify the joint distribution of Yi(0) and Yi(1) for
 compliers or the distribution of their individual gains Yi (1) - Yi (0). This is, of course, not
 possible in a randomized experiment either, and it can be argued in that context that in
 many cases the two marginal distributions comprise all that is of interest.3 To pursue this
 point briefly, consider an individual contemplating taking one of two treatments. In this
 decision process it may be of use to evaluate the distribution of outcomes for "comparable"
 individuals under both treatments. Specifically, suppose that in a randomized experiment
 50% of the individuals exposed to treatment A improved and 60% of the individuals
 exposed to treatment B improved. One can think of four types of individuals, depending
 on whether they would improve or not given treatment A and improve or not given
 treatment B. Knowledge of the joint distribution of outcomes amounts to knowing both
 the two marginal outcome distributions as well as the population distribution of the four
 types. One distribution of types that is consistent with the results of the randomized
 experiment is that 10% of the experimental population improve under treatment B but
 not under treatment A, and nobody improves under treatment A but not under treatment
 B. A second distribution of types consistent with the evidence is that 40% of the experi-
 mental population improve under A but not under B and 50% improve under B but not
 u;nder A. Unless the individual decision maker has at least partial knowledge about which
 df the four types she is, in which case she should only consider the experiences of similar
 type individuals and disregard experiences of different types, there appears to be no rel-
 evance to the decision maker of knowing the type distribution in the population. It can
 therefore be argued that within subpopulations of units that are exchangeable with respect
 to observable characteristics, there is no useful information (in the sense of affecting
 decisions) in the joint outcome distribution that is not contained in the two marginal
 distributions. Information about the distribution of variables that are not observed cannot

 be used for conditioning in decision making and therefore can often be regarded as
 superfluous.

 In cases where we are interested in individual outcomes the correlation between the

 two potential outcomes may be of interest. Consider the case of a person who has been
 exposed to a treatment, say a drug, and for whom we have observed an outcome, say

 3. See Clements, Heckman and Sinith (1994) for a different view.
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 IMBENS & RUBIN ESTIMATING OUTCOME DISTRIBUTIONS 559

 death. It might be of interest, for example in a legal setting, to consider whether the person
 would have died had he not been exposed to the treatment. Answering this question would

 require knowledge about the joint distribution that cannot fully be gleaned from the two
 marginal distributions.

 To discuss the identification of the marginal outcome distributions for compliers it is
 convenient to introduce additional notation. We partition the population by the effect of

 the treatment assignment on treatment received; for never-takers (units with Di (0) = 0,
 Di (1) = O), let Ci = n; for always-.takers (units with Di (0) = 1 and Di (1) = 1), let Ci = a;
 finally for compliers (units with Di(0) = 0 and Di(1) = 1), let Ci= c. These three types
 exhaustively partition the population since by the monotonicity assumption there are no

 defiers (units with Di(0) = 1 and Di(1) = 0).
 Let On ba and 4, denote the population frequencies of the three types of individuals.

 Only compliers (units with C1 = c) are affected by the instrument; the local average treat-
 ment effect is the average causal effect for this subpopulation. We cannot directly learn
 anything about the causal effects of D on Y for always-takers because we never observe
 them without the treatment, and we cannot directly learn anything about the causal effect
 of D on Y for never-takers because we never observe them with the treatment. Although

 we might well be interested in causal effects for these groups, any estimates of average
 causal effects for them, and therefore any estimates of the population average causal

 effects, require additional information or assumptions about their responses to treatments
 to which they are never observed to be exposed.5

 If we were to observe the population type, inference would be straightforward: ignor-
 ing all noncompliers we would compare outcomes in the two treatment groups for the
 subpopulation of compliers. However, because an individual's type is not always identifi-
 able from the observed variables, inference must be indirect, based on treatment groups
 that are mixtures of compliers and non-compliers.

 Although we cannot generally identify the compliers from the observed data (Zobs,i,

 Dobs,i, Yobs,i), we can identify some of the non-compliers; if Zob,,i= 0 and Dobs,i= 1, then
 individual i must be an always-taker with Ci=a, and if Zobs,i = 1, and Dobs,i =0, then
 individual i must be a never-taker with Ci = n. Because of randomization, the instrument

 Zobs,i is independent of (Di(0), Di(1)) and therefore of Ci. Hence, in large samples we
 know the distribution of Yi(1) for always-takers; this distribution will be denoted by
 ga(y). Analogously, in large samples, we know the distribution of Yi(O) for never-takers;
 this distribution will be denoted by gn(y). Note that because we assume full independence
 rather than mean independence of the instrument Zi and the potential outcomes Yi(O)
 and Y,(l), these distributions are not indexed by the value of the instrument. By the
 independence of instrument Zi and type Ci, in large samples we also know the population

 proportions of the types: 0, = Pr (Dob,J = Z1Zobs,i= 1), ka = Pr (Dobs,i = 1 Zbs,i = 0) and thus
 we can deduce = 1 - On- qOa

 4. In terms of the selection equation (3) these three types can be defined as

 Vn if v?< -TrO- 7r1

 C=< c if -7o--rl < v<-7ro

 (a if - ro < v,.

 This illustrates that the monotonicity assumption which asserts that there are no defiers with Dj(l)=O and
 D,(0) = 1, is made implicitly rather than explicitly in the equation-based model despite its critical importance
 for causal inference.

 5. This information can be in the form of bounds on the range of outcomes. See Robins (1989), Manski
 (1990), and Balke and Pearl (1993) for calculations of bounds on treatment effects in the presence of such
 information.
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 560 REVIEW OF ECONOMIC STUDIES

 It remains to find the two critical outcome distributions, the distributions of Yi(0)
 and Yi(l) among compliers; call these go(y) and g1(y). These are more complicated to
 find from observed data than the distributions for the non-compliers because among those

 assigned Zobs,=0, both never-takers and compliers will be observed to have DobsJ ==0.
 Analogously, in the subsample with Zobs,i- 1, compliers and always-takers will be observed

 to have Dob,ji = 1.
 At this point some additional notation is useful. Let fd(y) denote the directly estim-

 able distribution of Yobs,i in the subsample defined by Zobs = z and DobsI= d. We will write
 the distributions of interest in terms of these directly estimable distributions. As already

 noted, gn(y) =fio(y) and ga(y) =foi(y). Individuals assigned to Zobs,i=0 and exposed to
 Dobsi=0 are a mixture of compliers and never-takers. By independence of instrument Z1
 and type C;, the sampling distributionfoo(y) is a mixture of the distribution of Yi(0) for
 never-takers, gn(y), and for compliers, go(y), with the mixing probability equal to the
 relative probability of these subpopulations in the entire population

 foo(y) +qg5 gn(Y).

 Analogously, for individuals assigned to Zobs,i= I and exposed to Dobs,I =1, we can rule
 out that such individuals are never-takers, but we cannot infer whether these individuals
 are always-takers or compliers. The distribution of the outcome in this subsample is
 therefore a mixture of the population distribution of Yi(l) for compliers, gc1(y), and for
 always-takers, ga(y), with the mixing probability equal to the relative population propor-
 tions of these two subpopulations

 f, 1 (y) = o + gcl (y) + Oa ga(Y)v
 4Oc+ Oa Obc +Oa

 The four directly estimable distributionsfd(y) have now been expressed in terms of

 the two complier distributions of interest, gco(y) and gc1 (y), and the two directly estimable
 nuisance distributions gn(y) =fi o(y) and ga(y) =foi(y) for never-takers and always-takers,
 respectively. We can invert these relations and express the two potential outcome distribu-
 tions of interest in terms of the observable distributions

 gco(y) - +bfoo(y) fo(y), (5)
 Xc Xc

 and,

 g l(y) _ fa cfI (y) _ ' ofoI(y). (6)

 Thus, from the four directly estimable distributions, we can derive the entire complier

 distribution of outcomes under each value of the treatment, g.( ) and gJ ( ), rather than
 just the difference in their means, which is the instrumental variables estimand.

 4 THE ANATOMY OF CONVENTIONAL INSTRUMENTAL
 VARIABLES ESTIMATES

 In this section we show that standard instrumental variables estimates are implicitly based
 on estimates of the two complier outcome distributions that are not restricted to be
 nonnegative. We then show that this point can have important implications for inference
 because restricting these estimates to be nonnegative, even in a naive way, can change
 inference considerably, as we illustrate in an example where we estimate earnings returns
 to high school using quarter of birth as an instrument.
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 IMBENS & RUBIN ESTIMATING OUTCOME DISTRIBUTIONS 561

 To further investigate the conventional instrumental variables estimator, define YZd

 to be the average of the observed outcome Yobs,i for the subsample with observed instru-
 ment Zobs,i= z and observed treatment Dobs,i= d

 Yzd =j Yobs,il {Zobs,i= z} l {Dobs,J= dj} /Z I {Zobs,i = z} l {Dobs,i= d}.

 In addition define

 Dz = , lDobs,i 1 {Zobs,i = Z}/Z_ 1 {Zobs,i = Z} ,

 Yd=j= I Yobs,il {Dobs,i=d}/Z= 1 {Dobsji=d},

 and

 YZ*=E.=I Yobs,il{Zobs,i=Z}/Z= l{Zobs,i=Z} = YZIDz+ Yzo(l -Dz).

 Then we can write the conventional IV estimator as

 yI.- yo.
 Iv = = Yc, Y Yco= (7)

 where Ycl (Di Y1, -Do Yo1)/(D1-Do) and Y,0 = (( 1-Do) Yo0-( 1-DI) Y1o)/(D1-Do). To
 interpret Yc1 and Yco, consider the probability limits of the components of expression (7),

 Y00, Y01, Y0, Y,l I Do, and D1 . As argued before, the fraction of individuals with Dobs', =
 1- in the subsample with Zobsj, = 0, Do, estimates the population share of the always-takers,
 (a. Similarly, the fraction of individuals with D.bsj = 1 in the subsample with Zobs,i = 1,
 Di, estimates the combined population share of the always-takers and compliers, (Pa + (c .
 The denominator in (7), D, - D0, is therefore an unbiased estimate of (c.

 For each (z, d), the expectation of Yzd is equal to E[ Yobs, I Zobs= z, Dobsi = d]. We
 can use the relation between the directly estimable distributionsf( ) and the distributions

 of interest g( ) to express these expectations of observed Yobs,i conditional on observed
 instrument Zobs,i and observed treatment Dobsj in terms of the expectations of the potential
 outcomes Yi (1) and Y1(0) conditional on type Ci

 E [ Y00] = E [ Yobs,i I Zobs,i = 0, Dobs, = 0]

 = (PP E[ Yi(0)1Ci= c]+ ( P E[ Y1(O)IC,= n],
 ?Oc + O5n Oct+ On

 E[Yo0] =E[ Yobs,iZobs,j=O, Dobsj,= 1] =E[ Y1(l)1 Ci= a],

 E[ Yo0] =E[ Yobs,IZobs,i= 1, Dobsj,= 0] = E[ Yi(0)I Ci= n],

 E Y I] =E Yobsj I Zobsj = 1, Dobsj = I1]

 = (Pc?(Pa E[Yi(l)ICi=c]+ (PY(Pa E[Yi(l)CiC= a].
 Ogc. + O)a ot. + OaX

 Inverting these relations we have

 FE=E[DE[Y] - E[Do]E[Y01]
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 562 REVIEW OF ECONOMIC STUDIES

 and

 E[ Y, (1)1 Cj = c] = E[ -D0]E[YO0]-E[1-D,]E[Ylo] (9)
 E[D1] - E[Do]

 The first term on the right-hand side of (7), Yc1, is therefore an estimate of the expectation
 of the potential outcome given the treatment for the compliers and the second term,

 YeO, an estimate of the expectation of the potential outcome without treatment for the
 compliers.

 The first point, exemplifying the discussion in Section 3, is that we can directly obtain

 estimates of E[Yi(l)JCi=c] and E[Yi(0)JCi=c] separately, not just of their difference
 E[ Yi (1) - Yi (0)1 Ci = c]. Such estimates might be informative about the plausibility of the
 assumptions underlying the instrumental variables estimates, and lead to a better under-
 standing of the selection process, as will be demonstrated in the next section. The second
 point is that these estimates do not take into account the underlying mixture structure
 implied by the model. More precisely, these moment estimates do not take into account

 the fact that the two distributions foo( ) and fIl () are mixtures of gn( * ) and g,o. ( ) and
 of g.(. ) and g I (), respectively, and densities must be nonnegative. In the next section
 we look at an empirical example and show that these restrictions are indeed important
 and can lead to substantially different inferences.

 5. INSTRUMENTAL VARIABLES ESTIMATES OF THE
 RETURNS TO HIGH SCHOOL

 As an illustration of the issues raised in this paper, we examine instrumental variables
 estimates of the returns to education. In an influential paper Angrist and Krueger (1991)
 (AK henceforth) investigated the causal effect of education on earnings. They noted that
 achieved education levels differed by date of birth for people born in a given year. They
 attributed this to compulsory schooling laws, which affect people born in different months
 of the same year in different ways: children start school at different ages but since they
 are all required to stay in school only until their sixteenth birthday, people are effectively
 faced with different amounts of compulsory schooling. AK then used the assigned amount
 of compulsory schooling as the instrument for achieved education levels. Since this is
 perfectly correlated (within each state) with season of birth, this strategy is referred to by
 AK as using "quarter of birth" as an instrument. AK discuss in detail why they believe
 this leads to a valid instrument.

 We simplify the data AK investigated by making both treatment and instrument
 binary. The treatment of interest is defined as the indicator whether an individual has
 twelve or more years of education or less than twelve years of education, loosely corre-
 sponding to having a high school degree vs. not having a high school degree. This redefini-
 tion of the treatment raises an issue about the validity of the instrument. If quarter of
 birth is a valid instrument for years of education, it is not necessarily a valid instrument
 for a treatment defined as a function of years of education such as the indicator function

 we are using. This issue is also relevant for the AK study: if quarter of birth is a valid
 instrument for education measured in months, it is not necessarily a valid instrument for
 the level of education rounded off to the nearest year. Although the approach is still
 straightforward with a multivalued treatment, the number of types increases rapidly with
 the number of distinct levels of the treatment, leading to a mixture structure with the
 number of mixture components g( ) exceeding the number of directly estimable distribu-
 tions f * ). Modelling decisions will necessarily be more important in that case.
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 IMBENS & RUBIN ESTIMATING OUTCOME DISTRIBUTIONS 563

 TABLE 1

 Average outcome (Yi is log weekly earning) by instrument (Z, is indicator for born in
 fourth quarter) and treatment status (Di is indicator for twelve years of schooling)

 D.b.i= 0 D.bs = 1 Total Di

 Z.br,i=O Yoo= 5595 Yo = 5-984 Yo.=5-892 Bo= 0-762
 (N= 19,454) (N = 62,217) (N=81,671) (N=81,671)

 Zob,,,=l YI0= 5 597 Yi I = 5 991 Y,.= 5 905 D1, = 0782
 (N= 17,632) (N= 63,212) (N= 80,844) (N= 80,844)

 Total Y.0=5*596 Y.,=5-988 Y=5 898 D=0-772
 (N = 37,086) (N = 125,429) (N= 162,515) (N= 162,515)

 We only consider people born in the first or fourth quarters, thereby reducing the
 instrument to a binary one. The extension to multivalued instruments is straightforward:

 the monotonicity assumption is required to hold for any pair of values of the instrument
 thereby leading to a more complicated mixture structure with the number of types equal
 to the number of distinct values of the instrument plus one. All distributions of interest
 can be recovered from the joint distribution of the observed variables.

 The data we use are taken from the AK study and comprise observations from the
 1980 census on weekly earnings, years of education and quarter of birth for 162,515 white
 men born between 1 January 1930 and 31 December 1939 during the first or fourth quarter
 of each year. In Table 1 we present the averages and sample sizes for the different values

 of treatment and instrument (D.bs,i =0 implies less than twelve years of education, Dobsi =
 1 implies at least twelve years of education. Zobs,i = 0 implies birth in first quarter, and

 Zobs,i= 1 implies birth in fourth quarter).
 The treatment-control average difference, which is identical to the ordinary least

 squares estimate of the returns to high school, is Y.1- .F=5-988-5-596=00391. The
 conventional instrumental variables estimate, which is the ratio of differences of average
 outcome by instrument status to the difference in average treatment probability by instru-
 ment, is (Y1.- Yo.)/(D1 -Do)=(5 905-5.892)/(0.782-0 762)=0-651.

 It is interesting to note that, similar to what has been found in a number of studies
 where returns to education have been estimated using instrumental variables (Angrist and
 Krueger (1991), Butcher and Case (1993), Card (1993)), we find that this instrumental
 variables estimate of the returns to education is considerably larger than the corresponding
 ordinary least squares estimate-the difference in averages by treatment status. In contrast,
 in the earlier literature on returns to education (see Griliches (1977) for a discussion), it
 was often hypothesized that ordinary least squares estimates of the return to education
 over-estimated the causal effect of education on earnings because of the so-called "ability
 bias". This bias was hypothesized to reflect a propensity of people with high ability and
 high earnings potential to have levels of education higher on average than those of people
 with low ability and low earnings potential. Card (1993) and others have pointed to these
 recent instrumental variables results as an indication that if anything, least squares
 estimates underestimate the returns to education.

 To shed further light on this issue, we consider the additional information we can

 learn from the data about the outcome distributions for the compliers, g&(y) and g,1(y).
 Their estimated means, based on the implicit estimates YC0 and YK.1 in the standard instru-
 mental variables approach, are 5 57 and 6 23 for Yi (0) and Yi (1) respectively. Comparing
 these to the estimated means of Yi (0) for never-takers (5.57) and of Yi (l) for always-takers
 (5 99), we see that the difference between the treatment-control difference (or ordinary least
 squares estimate) of 0 39 and instrumental variables estimate of 0 65 is entirely due to the
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 564 REVIEW OF ECONOMIC STUDIES

 large difference between the estimated mean of Y1(1) for compliers and always-takers,
 6 23 - 5 99 = 0 24, with the difference between the estimated mean of Yi (0) for compliers
 and never-takers equal to zero.

 In Figures 1-4 we give histogram estimates of the distribution of observed outcome

 by instrument and treatment status, fzd (y) for z = 0, 1 and d= 0, 1, with the binwidth fixed
 at 0 1. The differences between the directly estimablefoo(y) andf1o(y) and betweenfoi(y)
 andf11 (y) are barely noticeable. This reflects the fact that the instrument Zi is a very weak
 one, in the sense that Zi is only very weakly correlated with Di, the treatment of interest:
 the estimate of the average causal effect of quarter of birth on receiving at least twelve

 years of education, which is an unbiased estimate of the population proportion of compliers
 b, is only two percent.

 2 5 , . . . .

 2

 15-

 05

 0~~~~~1

 -0.5-

 IL1 I I I I I I
 4 4.5 5 5-5 6 6.5 7 7-5

 FIGURE 1

 Histogram for foo

 In Figure 5-6 we present simple unrestricted histogram-type estimates of the two

 complier distributions 'co(Y), and 'cl(y) based on equations (5)-(6) using the histogram
 estimates for the four sampling distributions f( ), and estimates for the proportions of
 the different types of 'C/ = 020, 40, = 218 and '0- 762 respectively

 A An O - An
 g O(y) = )nA c xfoo(y) - xfio(y) I1 [90 xfoo(y) - 10 90 xfio(Y)

 oc oc

 A A' oOA
 9cl(Y) = I ^ xfil(y)- Xfo i(y) = 39 10 xfil(y) -38 10 xfoi(y).

 oc oc

 The bins for the histograms are (v1_, v1), foi 1=1,... ,L where vo=3, v,-v-1=01,
 VL = 8- 5, and L = 55. The instrumental variables estimand is the difference in means of the
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 two distributions gcl(y) and gco(y) where the standard IV estimate is essentially a unre-
 stricted estimate of the difference in the two means. If we integrate the two histogram

 estimates 'cl(Y) and g o(y) of the density functions, we obtain 0 66 for the difference. The
 slight difference between this and the standard IV estimate of 0 65 is due to the smoothing
 implicit in the histogram estimates with non-negligible binwidth of the density functions.

 These estimates of the entire distribution of the potential outcomes for the compliers

 allow the further interpretation of the difference between the ordinary least squares esti-
 mate, that is, the treatment-control difference, and the instrumental variables estimate.

 Inspecting the distributions, presented in Figures 5 and 6, that underlie these estimates
 reveals the fact that the last two histogram estimates of the two compliers distributions

 are not everywhere nonnegative. The estimate of the distribution of Y,(0) for compliers,
 gCO(y), in Figure 5, does not suffer much from this, and the estimate is comparable to the
 estimate of the distribution of Yi (0) for never-takers, g,(y) =fio(y), in Figure 2. In con-
 trast, the estimate of the distribution of Yi (1) for compliers, gcl(y), in Figure 6, does seem
 quite different from the estimate of the distribution of Y,(l) for always-takers, g,,(y)=
 fol(Y) in Figure 3, and is negative over a large range of values. This negativity can be due
 to sampling variation or to violations of the assumptions. In particular, it can point to
 violations of the exclusion assumption. If the exclusion assumption is violated, and there
 is a direct effect of the instrument on the outcome, there is no reason to expect this

 particular linear combination of the sampling distributions to be nonnegative. It is also
 possible that negativity points to violations of the monotonicity assumption or the ran-
 domization of Z, although these assumptions seem plausible in this context. See AK for
 a discussion of the plausability of the ignorability assumption in this application, and
 Angrist and Imbens (1995) for a discussion of the monotonicity condition.
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 6. ALTERNATIVE ESTIMATES OF THE RETURNS TO HIGH SCHOOL

 In this section we present three new alternatives to the standard IV estimates of the returns

 to high school with quarter of birth as an instrument, each of which keeps distributional

 estimates in the proper parameter space, that is, ensure that the estimates of the two
 complier density functions g,1 (y) and gco(Y) are nonnegative. The first two estimators are,
 in spirit, nonparametric estimators, where we model each of the four density functions in

 a flexible way as piece-wise constant with 55 pieces for a total of 282 parameters. The

 third estimator assumes normality for the four outcome distributions with a total of eight
 parameters. More generally we view this third estimator as an example of the type of

 parametric estimator one may wish to use in practice. Although the identification results
 in Section 3 ensure that in principle nonparametric estimation is possible, in small samples

 more parsimonously parametrized models based on the normal distribution or generaliza-

 tions, e.g. the t-distribution or a mixture of normal distributions, may do a better job of
 smoothing the data and lead to a smaller root-mean-squared-error at the expense of some

 bias as we shall show in Section 7. The role of the parametric model is solely to provide
 a good fit to the four underlying outcome distributions. The estimand of interest, the
 difference in means of the two complier distributions, is well defined irrespective of the
 specific parametric model used.

 The first estimator, which we refer to as the "nonnegative" IV estimator, is a slight
 modification of the histogram estimates discussed in the previous section. Let 'poS(y) and

 Pl S(y) denote the estimates

 fcjos(y) =max (0, 'cj (y))LTmax (0, 'c (y))dy ,

 for j= 0, 1, where 'cO(Y) and cl (y) are the implicit IV distribution estimates discussed in
 the previous section. The estimates for the two noncomplier distributions are the same as

 before: RPoS(y) = g (y) and kPoS(y) = g (y)
 The second estimator is the maximum likelihood estimator based on four multinomial

 models with constant density on intervals v,-1 to v, for 1= 1, .. , L, where v0 = 3, vI - =-
 0 1, VL= 8 5, and L = 55, thereby forcing the nonnegativity restrictions to be satisfied by

 choosing "'(y), a l(y), and gn (y) to maximize the likelihood function rather than adjust-
 ing only the complier distributions as the nonnegative IV estimator does. Note that, in

 order to maintain comparability, the bins (vl, vl 1) are the same for both the nonnegative
 IV and the multinomial ML estimators. Within the framework of this discrete approxima-

 tion to the four outcome distributions, the restrictions are inequality restrictions in a
 parametric model.

 The third estimator is the maximum likelihood estimator with the four outcome

 distributions normal with unknown means and variances. We impose the restriction that

 the variance of Yi(0) for compliers equals that for never-takers and the variance of Yi (1)
 for compliers equals that for always-takers. Calculation of the maximum likelihood
 estimates is based on the EM algorithm (Dempster, Laird and Rubin (1977)).

 Table 2 presents estimates of the mean and variance of the four outcome distributions

 as well as estimates of the average effect for compliers for the standard IV model (using

 the implicit estimates for E[ Yi(0)ICi = c] and E[ Yi(1)ICi = c] given in (7)) and for the
 three alternatives just introduced, with standard errors based on large-sample normal
 approximations. All three new alternatives lead to estimates of the local average treatment
 effect substantially smaller than the standard IV estimate.
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 TABLE 2

 Estimates of mean and variance of potential outcomes

 Never-takers Always-takers Compliers

 Yi(0) Yi(1) YM(O) Yi(l) Yi(1)- Y,(0)

 mean var mean var mean var mean var mean s.e.

 Standard IVE 5 59 0 52 5 99 0-42 5-57 0-43 6-23 0-17 0-66 (0-17)
 Nonnegative IVE 5 59 0-52 5-98 0 41 5-48 0 97 5 94 1 23 0 45 (0.17)
 Multinomial MLE 5 60 0 49 5 99 0 40 5-49 0 97 5 92 1-23 0 42 (0-17)
 Normal MLE 5-60 0-51 5-99 0-41 5 53 0-51 603 0-41 0 50 (0 15)

 We can also compare the estimates of the entire density functions to those obtained
 for the standard IV estimator. In Figures 7 and 8 we present the ML estimates of the
 density functions of gco(y) and gcl(y) respectively under the multinomial and normal
 models. The nonnegative IV estimates are essentially identical to the multinomial maxi-
 mum likelihood estimates and therefore not separately displayed.

 The estimates of the first two moments in Table 2 for the alternative procedures and
 the density estimates in Figures 7 and 8 tell a markedly different story from the conven-
 tional IV estimates. They suggest that the distribution of Y,(1) for compliers is not as
 different from the distribution of Y,(1) for always-takers as suggested by the standard IV
 estimates. For example, the mean for Y(1) for compliers, implicitly estimated by the
 standard IV procedure as 6-23, is estimated by the other three procedures to be between
 5 92 and 6-03, much closer to the estimate of the average of Y(1) for always-takers (5 99).
 The compliers are very similar to the noncompliers with the same level of education.
 Although one many argue with the choice of the three alternative estimators, the fact that

 25 , I , I
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 Multinomial and normal MLEs for g*

This content downloaded from 
������������192.91.235.240 on Sun, 06 Mar 2022 00:50:15 UTC������������� 

All use subject to https://about.jstor.org/terms



 570 REVIEW OF ECONOMIC STUDIES

 2-

 15 -

 0

 -0.5-

 4 4-5 S 5-5 6 6-5 7 7-5

 FIGURE 8

 Multinomial and normal MLEs for g1

 they all lead to similar estimates of the local average treatment effect supports their cred-
 ibility given the monotonicity and exclusion restrictions. The variance estimates, however,
 suggest that even in such a large sample it is difficult to obtain precise estimates of the
 higher order moments of the mixture components with weak instruments. This result
 agrees with the common wisdom that unless mixture models are appropriately restricted,
 their estimates can be unreliable. A further illustration of this point is that when we relax
 the restriction under the normal model the variances of Y,(0) and Yi(l) for compliers
 equal the variances of Y,(0) and Yi(l) for never-takers and always-takers, respectively,
 the estimates are outside the believable range: the variance of Y(1) for compliers is
 estimated to be 0 02 and its mean 6 07-the distribution is concentrated around one of
 the minor modes of the sample distribution off,I (y).

 7. A SMALL SIMULATION STUDY

 In the previous section we presented new estimates for the local average treatment effect
 that differed considerably from the standard IV estimates with the AK data. To interpret
 these differences it is useful to see how these estimators perform in cases where we know
 the data generating distribution, and so we now present the results of a small simulation
 study. This is particularly important for the two estimators that can be viewed as based
 on parametrizations with many components, the nonnegative IV and the multinomial ML
 estimator where one might expect the small sample distributions to deviate considerably
 from the asymptotic distributions.

 First we discuss the theoretical properties of the nonnegative IV and the multinomial
 ML estimators. Figure 9 displays the existence of a small sample bias towards ordinary
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 least squares regression estimates that may result from imposing the nonnegativity of the

 implicit density estimates. Suppose the outcomes Y,(0) and Yi(l) are binary. For ease of
 exposition assume that the probabilities of being a complier, never-taker or always-taker,

 , 4n, and 4a respectively, are positive and known. The figure plots the never-taker mean
 outcome Yi (0) vs. the directly estimable mean outcome for those assigned and receiving
 control, a group which is a mixture of compliers and never-takers with mixture proportion

 4,/(4, + ?n). The region inside the parallelogram {(0, 0), (?J/(?J + Jn), 0), (?,/
 (?c + Jn), 1), (1, 1)}, corresponds to the set of (E[Yi Zi= 0, Di= 0], E[ Yi ,Zi1 Di= O])
 consistent with a value of E [ Yi (0)1 Ci = c)] between zero and one.

 1 ____>n /(O+( q,n)

 E[YI Z= 1, D=O]

 0 1c ( (Oc + On)
 E[YI Z=O, D=O]

 FIGURE 9

 The dot and circle in Figure 9 denote the centre and contour of the sampling distribu-

 tion of the unbiased moment estimates Yoo and Ylo of E[Y(0)IZ=0, D=0] and
 E[ Y(O)I Z = 1, D = 0] respectively. As depicted, there is some probability mass of this dis-
 tribution in the region where the implicit estimate of E[ Yi (0)1 Ci = c] = ((4c + 4n)/
 4c)E[ Yobs,i I Zobs,i = 0, Dobs,i = 0] - (nl/4c)E[ Yobs,i I Zobs,i = 1, Dobs,i = 0] is negative: the area
 to the top/left of the line going through the origin and the point (nA/('+n+ n) 1). Both
 the nonnegative IV estimates and the multinomial and normal ML estimates of

 E [ Yobs,i I Zobs,i = 0, Dobs,i = 0] and E [ Yobs,i I Zobs,i = 1, Dobs,i = 0] by definition lie in the interior

 of the parallelogram { (0, 0), (cl/(4c+ 4+,), 0), (40/(4)c + 4n), 1), ( 1, 1 ) }, thereby biasing
 these estimates away from the unbiased moment estimates and towards the forty-five

 degree line where the mean of Yi (0) for compliers is the same as the mean of Yi (0) for
 never-takers. Combined with a similar bias in the estimates of Yi (1) for compliers towards
 equality of E[Yi (1)] for compliers and always-takers, this leads to a small sample bias of
 the estimates of the local average treatment effect towards the difference in outcomes by
 treatment, or the ordinary least squares estimates of the average treatment effect. At the
 same time, however, imposing these restrictions should lead to a reduction in the dispersion
 of the estimates. This is very similar to estimation in variance components models where
 unbiased estimators for the variances can lead to negative estimates: restricting the variance
 estimates in such models to be nonnegative leads to a reduction in mean squared error
 but also an increase in bias.

 In the simulations each sample is of size 1000; 500 are randomly assigned Zi= 0 and
 500 are randomly assigned Zi= 1. The population probability of being a complier is 0- 1,
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 the probability of being a never-taker is 0 45 and the probability of being an always-taker

 is 0 45. The distributions of Yi(I) for always-takers and Yi(0) for never-takers are normal
 with mean zero and unit variance. The distribution of Yi(0) for compliers is normal with
 mean -0 5 and unit variance, and finally the distribution of Yi (1) for compliers is normal
 with mean 0 5 and unit variance. The local average treatment effect is E[ Yi (1) - Yi (0)1 Ci -
 c] = I0, and the population average treatment-control difference is E[ Yi Zi=1-
 E[ Yi Zi = 0] = O 1. For the estimators based on histograms and multinomial distributions
 we use bins of width 0 6. For the normal ML estimates we impose, as with the actual
 data, equality of the variance of Y(0) for compliers and never-takers and of the variance
 of Y(1) for compliers and always-takers.

 TABLE 3

 Estimates of the local average treatment effect (true value is 1)

 Bin Mean Median 5th 95th
 width bias rmse bias mae percentile percentile

 OLS -0 90 0-90 -0 90 0 90 0.00 0-21
 Standard IVE 0 17 0-92 0 05 0 47 0 05 2 05
 Normal MLE -0 01 0-62 -0 00 0 39 -0 04 2-05
 Nonnegative IVE 0 6 -0-31 0 53 -0 31 0 37 0-01 1-42
 Multinomial MLE 0 6 -0 33 0-52 -0 34 0 37 0-01 1-33

 In Table 3 we present summary statistics (mean bias, root-mean-squared-error, med-
 ian bias and median-absolute-error) over 500 replications for the four estimators described

 above and the OLS estimates, i.e. the treatment-control average difference. As expected,
 the nonnegative IV and multinomial ML estimator are biased towards the average treat-
 ment-control difference, but all three alternatives proposed in this paper have substantially
 lower rmse and somewhat lower median absolute error than the standard IV estimator.
 This partially reflects the thick tails of the standard IV estimator that are absent in the

 other estimators. The intuition for the thick tails of the standard instrumental variables
 estimator is clear: occasionally the moment estimate of denominator in the IV represen-
 tation (9) is close to zero, suggesting the presence of few compliers. In that case the
 restrictions imply that the numerator has to be relatively small because few compliers can

 only lead to a relatively small average effect of Z on Y. The standard IV estimator ignores
 this restriction and so can occasionally be very large.

 Given the substantial bias of the multinomial maximum likelihood estimator, in prac-
 tice it may be advisable to consider low dimensional parametrizations. Although the
 normal distribution used in the application and Monte Carlo investigation may be too
 limiting, generalizations to t-distributions or mixtures of normal distributions may be
 flexible enough to get close approximations to the four underlying outcome distributions
 while maintaining the advantages of low-dimensional parameterizations. These parametric
 models have the additional advantage that they are relatively easily extended to allow for
 covariates. If there is concern that the normal approximation to the maximum likelihood
 estimator is poor, Bayesian methods as described in Imbens and Rubin (1997) should be
 used.

 8. CONCLUSION

 In this paper we first show that with instrumental variables we can learn more from the

 data than just the average causal effect for those who are potentially affected by the
 instrument, the compliers: we can in fact estimate their entire outcome distributions under
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 both values of the treatment. These distributions may contribute to an understanding of
 the difference between simple treatment-control difference estimates of average causal

 effects and instrumental variables estimates, and can be helpful for policy purposes when
 there is concern about the distributional effects of programs.

 Our second point is that conventional instrumental variables estimates are based on
 implicit estimates of density functions that are not restricted to be nonnegative. Because

 the assumptions underlying IV estimation, as explicated in AIR, restrict the distribution

 of the observable variables, they can be used to test the validity of the instrument even in
 the binary instrument, binary treatment case. Here we focused on the implications of the
 restrictions for estimation.

 We also discussed three new methods for imposing nonnegativity on the density

 estimates. All three lead to similar inferences that are substantially different from that
 based on standard IV estimates in an example where we estimate the causal effect of
 education on earnings using quarter of birth as an instrument. This conclusion should be
 of concern to economists who routinely use these instrumental variables estimates, typically
 appealing to the lack of distributional and functional form assumptions as reasons to
 believe in their robustness. Two of the new methods are based on multinomial approxima-
 tions to the four outcome distributions and the third relies on a normal approximation.
 The multinomial approximations show in simulations some bias towards the difference in
 average outcomes by treatment status estimates. The normal distribution based estimator
 performs very well in the simulations, outperforming the standard IV estimator, and giving
 credible answers with the actual AK data. Since this approach can easily be extended to
 allow for covariates and more general parametric models as well as for small sample
 Bayesian adjustments, we view it as the most attractive of the methods developed here.
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 the National Science Foundation for financial support through grant SBR 9511718, the Alfred P. Sloan Founda-
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