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The Causal Interpretation of Two-Stage Least Squares 
with Multiple Instrumental Variables†

By Magne Mogstad, Alexander Torgovitsky, 
and Christopher R. Walters*

Empirical researchers often combine multiple instrumental variables 
(IVs) for a single treatment using two-stage least squares (2SLS). 
When treatment effects are heterogeneous, a common justification for 
including multiple IVs is that the 2SLS estimand can be given a causal 
interpretation as a positively weighted average of local average 
treatment effects (LATEs). This justification requires the well-known 
monotonicity condition. However, we show that with more than one 
instrument, this condition can only be satisfied if choice behavior 
is effectively homogeneous. Based on this finding, we consider the 
use of multiple IVs under a weaker, partial monotonicity condition. 
We characterize empirically verifiable sufficient and necessary con-
ditions for the 2SLS estimand to be a positively weighted average 
of LATEs under partial monotonicity. We apply these results to an 
empirical analysis of the returns to college with multiple instruments. 
We show that the standard monotonicity condition is at odds with 
the data. Nevertheless, our empirical checks reveal that the 2SLS 
estimate retains a causal interpretation as a positively weighted 
average of the effects of college attendance among complier groups.  
(JEL C26, I23, I26, J24, J31, R23)

Instrumental variables (IVs) are widely used to estimate causal relationships. 
In practice, researchers often combine multiple IVs using two-stage least squares 
(2SLS). In Section I, we report a survey of empirical papers using IV that were pub-
lished in leading journals since 2000. More than half of these papers report results 
from a specification with multiple IVs for a single treatment, typically combined 
using 2SLS.

The textbook motivation for combining multiple IVs is statistical efficiency. 
However, this requires an assumption of constant treatment effects. In contrast, 
allowing for heterogeneous treatment effects is a key motivation in the modern 
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program evaluation literature, and one which is supported by a large body of 
empirical work.1 In an influential paper, Imbens and Angrist (1994; “IA” here-
after) provided an alternative justification for using 2SLS with multiple IVs, one 
which allows for heterogeneous treatment effects. They showed that the 2SLS 
estimand can be interpreted as a positively weighted average of local average 
treatment effects (LATEs) for subpopulations whose treatment status is affected 
by the instruments. This result holds for any number of instruments, as long as 
IA’s “monotonicity” condition is satisfied.2

The fact that widespread empirical practice rests on the monotonicity condition 
raises a number of questions. What requirements does this condition place on choice 
behavior when there are multiple IVs? Can we expect these requirements to be satis-
fied? If not, is it still possible to retain a causal interpretation of the 2SLS estimand 
while allowing for unobserved heterogeneity in both treatment effects and choice 
behavior? The contribution of our paper is to answer these questions and, by doing 
so, offer theoretical and empirical guidance for researchers who wish to use 2SLS 
with multiple IVs.

In Section II, we begin our theoretical analysis by showing that the monotonic-
ity condition cannot be satisfied with more than one instrument without restricting 
choice behavior to be effectively homogeneous.3 For example, if the treatment is 
college attendance and the instruments are tuition and proximity, the monotonicity 
condition requires all individuals to respond more to tuition than to proximity, or 
vice versa. This is a concerning implication; it shows that appealing to IA monoto-
nicity to justify combining multiple IVs comes at the cost of assuming homogeneity 
in choice behavior.

Motivated by this observation, we then consider a weaker, partial version of 
the monotonicity condition. The partial monotonicity condition is that the IA 
monotonicity condition is satisfied for each instrument separately, holding all of 
the other instruments fixed. We show that partial monotonicity is satisfied if each 
instrument makes every individual weakly more likely to choose treatment. For 
example, a sufficient condition for partial monotonicity is that all individuals are 
at least as likely to attend college if they live closer to a college or face lower tui-
tions. However, unlike the IA monotonicity condition, partial monotonicity does 
not restrict heterogeneity in the relative impacts of different instruments; it allows 
for some individuals to respond more to tuition than to proximity, and for others to 
respond more to proximity than to tuition.

In Section III, we show that even though partial monotonicity permits heteroge-
neous choice behavior, it can still be sufficient to give the 2SLS estimand a causal 

1 Heckman (2001) compiled a list of empirical evidence on heterogeneous treatment effects prior to 2001. 
More recent papers that find evidence of unobserved heterogeneity in treatment effects include Bitler, Gelbach, 
and Hoynes (2006); Doyle (2007); Moffitt (2008); Carneiro and Lee (2009); Firpo, Fortin, and Lemieux (2009); 
Carneiro, Heckman, and Vytlacil (2011); Maestas, Mullen, and Strand (2013); Bitler, Hoynes, and Domina (2014); 
Walters (2018); Felfe and Lalive (2018); French and Song (2014); Havnes and Mogstad (2015); Kirkeboen, 
Leuven, and Mogstad (2016); Kline and Walters (2016); Carneiro, Lokshin, and Umapathi (2016); Cornelissen 
et al. (2018); Nybom (2017); and Brinch, Mogstad, and Wiswall (2017). 

2  In discussing the use of multiple IVs instead of a single binary instrument, Angrist and Pischke (2009, p. 173) 
write that “The econometric tool remains 2SLS and the interpretation remains fundamentally similar to the basic 
LATE result, with a few bells and whistles.” 

3 Our analysis here builds upon points made by Heckman and Vytlacil (2005, Section 6) and Heckman, Urzua, 
and Vytlacil (2006, Section III.D).
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interpretation as a positively weighted average of LATEs. Moreover, we characterize 
sufficient and necessary conditions for this interpretation, and show that the condi-
tions can be checked empirically. In a simple case with two binary instruments this 
amounts to verifying that the unconditional correlations between the treatment and 
each instrument have the expected sign. More generally, our results provide a set 
of tests that researchers can report alongside 2SLS estimates formed from multiple 
IVs. These tests are implemented in our companion Stata module, mivcausal.4

In Section IV, we apply our results to estimating the returns to college attendance, 
using the same data as Carneiro, Heckman, and Vytlacil (2011; CHV hereafter). We 
focus on two instruments used by those authors: local labor market conditions and 
distance to college. We show that these instruments generate different estimated 
marginal treatment effect (MTE) schedules, a finding which is inconsistent with IA 
monotonicity. Nevertheless, our empirical checks show that under partial monoto-
nicity the 2SLS estimand retains an interpretation as a positively weighted average 
of the causal effects of college attendance among complier groups. This finding 
illustrates how assumptions weaker than IA monotonicity can be sufficient for the 
modest empirical goal of using 2SLS to recover a weighted average of LATEs.

I.  Survey on the Use of Multiple Instruments

Empirical researchers often combine multiple IVs using 2SLS. To document this 
practice, we searched the Web of Science database for articles published between 
January 2000 and October 2018 containing the words “instrument” or “instrumental 
variable” in the abstract, title, or topic words. We restricted the search to the following 
five journals: Journal of Political Economy, American Economic Review, Quarterly 
Journal of Economics, Review of Economic Studies, and Econometrica. In total, 
266 articles matched our search criteria (Mogstad, Torgovitsky, and Walters 2021).

We restrict our attention to the 122 of these papers that use at least one IV in an 
empirical application. The other 144 papers not included were either methodological 
papers without an empirical application, or were papers that used the word “instru-
ment” in a different context, such as to describe a policy or financial instrument. 
Table 1 categorizes the remaining 122 papers based on the number of instruments, 
the number of IVs compared to the number of endogenous variables, the choice of 
IV estimator, and the relationship between the instruments.5

Column 1 counts papers containing at least one specification in the main body 
of the paper that included more than one IV. The number of IVs is defined as the 
number of variables excluded from the outcome equation. If a paper has multiple 
IVs, but each reported specification used no more than one instrument, then we do 
not count it in column 1. The bottom row of column 1 reveals that more than half of 
the papers in our sample used more than one instrument.

In column 2 of Table 1, we count the set of papers that have at least one specifica-
tion in the main body of the paper with more IVs than endogenous variables. This is 
typically referred to as an “overidentified” specification in a constant-effects model. 
Comparing column 2 to column 1, we see that most papers that used more than one 

4 The module is available for download from the Boston College Statistical Software Components archive. 
5 Online Appendix A reports the survey results separately by journal.
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IV had a specification with fewer endogenous variables than IVs. Nearly all of these 
specifications have just a single endogenous variable, consistent with the framework 
that we will use in our analysis.

A few of the papers in column 2 used more IVs than endogenous variables in 
a way that was either nonstandard or unclear to us. In column 3, we remove these 
papers and focus on only those that combined multiple IVs using 2SLS or optimally 
weighted generalized method of moments (GMM). This leaves 43 percent of papers 
across the five journals. This confirms our claim that combining more instruments 
than endogenous variables through 2SLS (or occasionally GMM) is widespread 
empirical practice. This practice is the focus of this paper.

Columns 4–6 of Table 1 classify the papers from column 3 into three types by the 
relationship between their multiple IVs. Case A is when at least two of the IVs are 
economically distinct quantities. For example, CHV instrument for college atten-
dance with measures of local labor market conditions, distance to college, and local 
tuition in public four-year colleges. As shown in column 4, the vast majority of 
papers fall into case A. Given its empirical importance, our analysis will be centered 
around this case.

The other two cases are less common. Case B are papers in which all IVs in 
the multiple IV specification are formed via interactions between predetermined 
covariates and a single exogenous instrument. For example, Angrist and Krueger 
(1991) use a full set of indicators interacted between state and quarter of birth as 
instruments for years of schooling. As we see in column 5, case B accounts for only 
13 percent of the papers, making it the least common of the three types of papers 
with multiple IVs. Case C is when the multiple IV specification uses functions of a 
single exogenous variable. For example, using distance and its square as instruments 
for college attendance would fall into this case. As shown in column 6, case C is also 
relatively rare, accounting for only 19 percent of the papers.

II.  Monotonicity Conditions with Multiple IVs

This section contains our results on the interpretation of the IA and partial mono-
tonicity conditions when there are multiple IVs. We first develop an equivalent 

Table 1—Multiple IVs in Top Economics Journals

Papers that use  
multiple IVs

Papers with more 
IVs than endogenous 

variables

Papers with more 
IVs than endogenous 

variables using  
2SLS/GMM

Relationship between IVs

Case A Case B Case C

(1) (2) (3) (4) (5) (6)

Number 65 57 52 35 7 10
Percentage 53 47 43 67 13 19

Notes: This table displays the results of a survey on the use of IVs in articles published in the American Economic 
Review, Quarterly Journal of Economics, Journal of Political Economy, Econometrica, and the Review of Economic 
Studies. The sample includes 122 articles published between January 2000 and October 2018 containing the words 
“instrument” or “instrumental variable” in the abstract, title, or topic words and using at least one IV in an empiri-
cal application. Columns 1–3 report numbers and percentages of these papers that use multiple IVs. Columns 4–6 
report the number and percentages of the papers from column 3 by category of relationship between IVs. Case A 
includes studies that use multiple economically distinct instruments. Case B includes studies that use covariate 
interactions with a single instrument. Case C includes studies that use multiple functions of a single instrument.
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characterization of the IA condition, which facilitates a graphical interpretation of its 
content. Among other things, the graphical interpretation reveals that the IA condition 
has nothing to do with “monotonicity” in the usual sense of the phrase. Then, we argue 
that IA monotonicity severely restricts choice heterogeneity. This motivates interest in 
the weaker, partial monotonicity assumption. Throughout the paper, we consider the 
binary treatment case, since allowing for multiple treatments already complicates the 
IA monotonicity condition even with a single instrument (Angrist and Imbens 1995; 
Heckman, Urzua, and Vytlacil 2006). For our theoretical analysis, we condition on 
covariates nonparametrically and keep this conditioning implicit in the notation.

A. Definition of the IA Monotonicity Condition

Consider a population of individuals ​i  ∈  ​. Denote individual ​i​’s potential treat-
ment status if some instrument vector ​​Z​i​​​ were set to ​z​ by ​​D​i​​​(z)​  ∈ ​ {0, 1}​​, where ​z​ 
takes values in some subset ​​ of ​​핉​​ L​​. We assume that the support of ​​Z​i​​​ is contained 
in ​​, possibly as a proper subset. When ​L  >  1​, we view each component of the 
vector ​​Z​i​​​ as comprising an economically distinct quantity. That is, if ​L  =  2​ then ​​
Z​i,1​​​ and ​​Z​i,2​​​ will denote the two distinct instruments, each of which can take two or 
more values.

IA introduced the following assumption on the potential treatment states, which 
they described as “monotonicity.”

ASSUMPTION IAM (IA Monotonicity): For all ​z, z′  ∈  ​ either ​​D​i​​​(z)​  ≥  ​D​i​​​(z′)​​ 
for all ​i  ∈  ​, or ​​D​i​​​(z)​  ≤  ​D​i​​​(z′)​​ for all ​i  ∈  ​.

Heckman and Vytlacil (2005, pp. 715–16) observed that Assumption IAM requires 
uniformity across individuals, not monotonicity in the instrument. The results ahead 
provide further justification of their observation. Nevertheless, to conform with the 
existing literature, we still refer to Assumption IAM as “IA monotonicity.” For clar-
ity, we refer to the usual definition of monotonicity as “actual monotonicity.”

ASSUMPTION AM (Actual Monotonicity): If ​z′  ≥  z​ in the vector sense 
(component-wise), then ​​D​i​​​(z′)​  ≥  ​D​i​​​(z)​​ for all ​i  ∈  ​.

We show ahead that IA monotonicity (Assumption IAM) neither implies nor is 
implied by actual monotonicity (Assumption AM).

B. A Graphical Characterization of IA Monotonicity

Assumption IAM is a comparison across all individuals for any two values of ​​Z​i​​​.  
To interpret this condition when ​​Z​i​​​ is a vector, it is useful to rephrase it as a com-
parison across all values of ​​Z​i​​​ for any two individuals. The equivalent condition is 
that for any two individuals ​j​ and ​k​, either ​j​ must take treatment under all instrument 
values that ​k​ does, or the opposite. This is the content of the following proposition.6

6 Proofs for all propositions are contained in the Appendix. 
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PROPOSITION 1: For any ​i  ∈  ​, define ​​​i​​  ≡ ​ {z  ∈   : ​D​i​​​(z)​  =  1}​​ as the set of 
all instrument values for which individual ​i​ would take treatment. Assumption IAM 
holds if and only if for all ​j, k  ∈  ​, either ​​​j​​  ⊆ ​ ​k​​​, or ​​​k​​  ⊆ ​ ​j​​​.

Proposition 1 shows that Assumption IAM can be interpreted as a “nesting con-
dition” among the sets of instrument values that induce different agents to take 
treatment.7 This means that with two instruments one can gain intuition about the 
content of Assumption IAM by drawing sets in ​​핉​​ 2​​.

For example, in Figure 1 panel A, we have drawn two sets ​​​j​​​ and ​​​k​​​ that are 
not nested. Proposition 1 says that Assumption IAM fails, which can be verified by 
comparing the choices individuals ​j​ and ​k​ would make at the points marked ​​z​j​​​ and ​​z​k​​​.  
Yet, for both individuals ​j​ and ​k​, the instrument has a monotonic effect in the sense 
that ​​D​i​​​(z)​​ is increasing in ​z​. That is, if ​z′  ≥  z​ as a vector (component-wise), then  
​​D​i​​​(z′)​  ≥ ​ D​i​​​(z)​​. This shows that Assumption AM does not imply Assumption IAM.

Figure 1 panel B depicts the opposite case, in which ​​​k​​  ⊆ ​ ​j​​​. If ​​ only consists 
of individuals like ​j​ and ​k​, then Proposition 1 implies that Assumption IAM is satis-
fied. However, the instrument does not have a monotonic effect on treatment choice. 
For example, moving from ​z​ to ​z′  ≥  z​ moves both individuals’ choices from zero​​ to 
one​​, but moving from ​z′​ to ​z″  ≥  z′​ moves their choices back to zero​​. This shows that 
Assumption IAM does not imply monotonicity in the usual sense of Assumption 
AM.

C. Implications for Heterogeneity in Choice Behavior

In this section, we examine the restrictions that Assumption IAM places on 
choice behavior. To do this, we use a random utility model. Assume that individual ​
i​’s indirect utility from choosing ​d​ when the instrument is ​z​ is given by ​​V​i​​​(d, z)​​. The 
individual chooses ​​D​i​​​(z)​  =  1​ if and only if ​​V​i​​​(1, z)​  ≥ ​ V​i​​​(0, z)​​:

(1)	​ ​D​i​​​(z)​  = ​ arg max​ 
d∈​{0,1}​

​ ​ ​V​i​​​(d, z)​  ≡ ​ {​
1,

​ 
if ​V​i​​​(z)​  ≥  0;

​  
0,

​ 
if ​V​i​​​(z)​  <  0,

 ​​​

where ​​V​i​​​(z)​  ≡ ​ V​i​​​(1, z)​ − ​V​i​​​(0, z)​​ and ties are resolved in favor of treatment.
For concreteness, consider the familiar setting of the returns to schooling in which ​​

D​i​​​(z)​​ represents a binary decision to attend college. Suppose that ​z  = ​ (​z​1​​, ​z​2​​)​​, where ​​
z​1​​​ is a tuition subsidy, and ​​z​2​​​ is proximity to a college (e.g., Kane and Rouse 1993, 
Card 1995). Larger values of either instrument encourage college attendance, so 
that ​​D​i​​​(z)​​ is a monotonic function of ​z​ and Assumption AM is satisfied. As observed 
in the previous section, this neither implies nor is implied by Assumption IAM. In 
Figure 2, we draw two possible indifference curves along which individuals ​j​ and ​k​ 
would be on the margin between attending and not attending college.

Suppose that ​z​ only takes the values ​​{​(0, 0)​, ​(0, 1)​, ​(1, 0)​, ​(1, 1)​}​​ shown in Figure 2 
panel A. Then individual ​j​ would attend college if and only if they received a tuition 

7 This nesting condition is different than the “equivalent monotonicity condition” used by Vytlacil (2002, 
p. 335), although it shares a superficial resemblance. Vytlacil (2002, p. 336) used the sets ​​​i​​​ for his proof of the 
existence of an equivalent threshold-crossing model. 
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subsidy, regardless of whether they lived in close proximity. Individual ​k​ would 
attend college if and only if they lived in close proximity, regardless of whether they 
received a tuition subsidy. That is, ​​(1, 0)​​ is in ​​​j​​​ but not ​​​k​​​, and ​​(0, 1)​​ is in ​​​k​​​ but not ​​
​j​​​, so that Assumption IAM fails. Thus, Assumption IAM does not permit individu-
als to differ in their responses to different incentives to attend college: all individuals 
must find either a tuition subsidy or distance to be more compelling. This suggests 
a strong form of preference homogeneity.

We can sharpen this statement when the instrument is continuous and the net indi-
rect utility function is differentiable. This is shown in the next proposition, which is 
illustrated in Figure 2 panel B.

PROPOSITION 2: Suppose that ​​D​i​​​(z)​​ is determined by (1). Let ​​z​​ ∗​​ be a point in the 
interior of , and let ​​(​z​​ ∗​)​  ≡ ​ {i  ∈   : ​V​i​​​(​z​​ ∗​)​  =  0}​​ denote the set of individu-
als who are indifferent between treatment and nontreatment when faced with ​​z​​ ∗​​. 
Suppose further that ​​V​i​​​(z)​​ is a continuously differentiable function of ​z​ in a neigh-
borhood of ​​z​​ ∗​​ for all ​i  ∈  ​. Then Assumption IAM implies that

(2)	​ ​∂​1​​​V​j​​​(​z​​ ∗​)​​∂​2​​​V​k​​​(​z​​ ∗​)​  = ​ ∂​1​​​V​k​​​(​z​​ ∗​)​​∂​2​​​V​j​​​(​z​​ ∗​)​​

for all ​j, k  ∈  ​(​z​​ ∗​)​​, where ​​∂​ℓ​​ ​V​i​​​(z)​  ≡  (∂/∂ ​z​ℓ​​)​V​i​​​(z)​​ for ​ℓ  =  1, 2​.

Proposition 2 says that if Assumption IAM holds, then any two individuals who 
are indifferent between treatment and nontreatment at ​​z​​ ∗​​ must have the same mar-
ginal rate of substitution between the two components of the instrument. That is, 

Figure 1. Assumption IAM Neither Implies nor Is Implied by Monotonicity of ​​D​i​​​(z)​​ in ​z​

Notes: Panel A: sets ​​​j​​​ and ​​​k​​​ are not nested, so Proposition 1 implies that Assumption IAM does not hold. 
For example, compare ​​z​j​​​ and ​​z​k​​​: ​​D​j​​​(​z​j​​)​  =  1  >  0  = ​ D​k​​​(​z​j​​)​​, while ​​D​k​​​(​z​k​​)​  =  1  >  0  = ​ D​j​​​(​z​k​​)​​. Yet, ​​D​i​​​(z)​​ is 
monotone in ​z​ for both ​i  =  j, k​. Panel B: if ​  = ​ { j, k}​​, then Proposition 1 shows that Assumption IAM would 
hold. However, neither ​​D​j​​​(z)​​ nor ​​D​k​​​(z)​​ are monotone in ​z​. For example, ​z  ≤  z​′, and ​z′  ≤  z″​, but ​​D​i​​​(z)​  = ​ D​i​​​(z″)​  
=  0  < ​ D​i​​​(z′)​  =  1​ for ​i  =  j, k​.

j

j

zj

z

z″

z′

z1

z2

z1

z2

k

k

zk

Panel A Panel B 
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assuming that the second component has an impact at ​​z​​ ∗​​ (so that ​​∂​2​​​V​i​​​(​z​​ ∗​)​  ≠  0​), 
Assumption IAM implies

(3)	​ ​ 
​∂​1​​​V​j​​​(​z​​ ∗​)​ _ 
​∂​2​​​V​j​​​(​z​​ ∗​)​

 ​  = ​ 
​∂​1​​​V​k​​​(​z​​ ∗​)​ _ 
​∂​2​​​V​k​​​(​z​​ ∗​)​

 ​​

for all individuals ​j​ and ​k​ who are indifferent at ​​z​​ ∗​​. This is a strong statement about 
preference homogeneity.

For example, suppose that individual ​i​’s net utility from attending college is given 
by the random coefficient specification

(4) ​ ​V​i​​​(z)​  = ​ B​i,0​​ + ​B​i,1​​​z​1​​ + ​z​2​​    so that  ​  D​i​​​(z)​  =  1​[​B​i,0​​ + ​B​i,1​​​z​1​​ + ​z​2​​  ≥  0]​,​

where ​​B​i,1​​  ≥  0​ controls variation in the taste for subsidies relative to proximity. 
Proposition 2 shows that Assumption IAM does not hold if ​​B​i,1​​​ varies with ​i​.8 Thus, 
the college attendance decision of every individual is either affected more by tuition 
subsidies (if ​​b​1​​  ≡ ​ B​i,1​​  ≥  1)​, or by proximity (if ​​b​1​​  <  1)​, and all individuals trade 
off these incentives at the same rate. Assumption IAM does not permit heterogeneity 
in these behavioral responses.

D. Partial Monotonicity

Assumption IAM creates unattractive implications for choice behavior because 
it requires cross-instrument comparisons, such as the comparison between ​​(0, 1)​​ 

8 Heckman, Urzua, and Vytlacil (2006, p. 399) note that Assumption IAM can fail in random coefficient speci-
fications like (4). Our analysis shows that it must fail when the instruments are continuous. 

Figure 2. Assumption IAM Requires Homogenous Choice Behavior

Notes: Panel A: each instrument takes two binary values. Individual ​j​ has ​​​j​​  = ​ {​(1, 0)​, ​(1, 1)​}​​ and individual ​k​ has ​​
​k​​  = ​ {​(0, 1)​, ​(1, 1)​}​​. Points ​​(1, 0)​​ and ​​(0, 1)​​ violate the nesting condition in Proposition 1. Panel B: an illustration 
of Proposition 2. When (3) fails to hold for two individuals ​j, k  ∈  ​, one can find points ​​z​j​​​ and ​​z​k​​​ which violate the 
nesting condition in Proposition 1 by taking small steps in the directions of the dotted arrows.
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and ​​(1, 0)​​ in Figure 2 panel A. We can eliminate these comparisons by considering 
a condition that compares only values of a single component of the instrument, 
holding all other components fixed. To state such a condition, we divide vectors ​
z  ∈  ​ into their ​ℓ​th component, ​​z​ℓ​​​, and all other ​​(L − 1)​​ components, ​​z​−ℓ​​​. We write  
​z  = ​ (​z​ℓ​​, ​z​−ℓ​​)​​ to emphasize the separation of the ​ℓ​th component.

Consider the following assumption.9

ASSUMPTION PM (Partial Monotonicity): Take any ​ℓ  =  1, …, L​, and let  
​​(​z​ℓ​​, ​z​−ℓ​​)​​ and ​​(​z​ ℓ​ ′ ​, ​z​−ℓ​​)​​ be two points in . Then either ​​D​i​​​(​z​ℓ​​, ​z​−ℓ​​)​  ≥ ​ D​i​​​(​z​ ℓ​ ′ ​, ​z​−ℓ​​)​​ for all ​
i  ∈  ​, or ​​D​i​​​(​z​ℓ​​, ​z​−ℓ​​)​  ≤  ​D​i​​​(​z​ ℓ​ ′ ​, ​z​−ℓ​​)​​ for all ​i  ∈  ​.

Assumption IAM clearly implies Assumption PM. When ​L  =  1​, Assumption PM 
is equivalent to Assumption IAM; when ​L  >  1​, Assumption PM is strictly weaker. 
To see this, recall Figure 2 panel A, where we determined that Assumption IAM 
fails. Holding ​​z​2​​  =  0​ fixed, both individuals ​j​ and ​k​ are weakly induced to treat-
ment by switching ​​z​1​​​ from zero​​ to one​​. The same is true when the roles of ​​z​1​​​ and ​​z​2​​​ 
are swapped. If ​​ consisted of only individuals like ​j​ and ​k​, then Assumption PM 
would be satisfied.

Figure 2 suggests that a simple sufficient condition for Assumption PM is mono-
tonicity in the usual sense of Assumption AM. This is the content of the following 
proposition.

PROPOSITION 3: Assumption AM implies Assumption PM.

Unlike Assumption IAM, Assumption AM can be easily satisfied in random util-
ity models with heterogeneous preferences. For example, if ​​V​i​​​(z)​​ follows the ran-
dom coefficient specification (4), then it will be satisfied if ​​B​i,1​​​ is positive for all ​i​. 
This is easy to interpret and justify: all individuals are more likely to attend college 
if tuition is lower, even if they differ in their preferences for tuition relative to prox-
imity. More generally, Proposition 3 shows that Assumption PM is satisfied when-
ever ​​V​i​​​(z)​​ is weakly increasing in ​z​.10

Our running example of the returns to college was chosen because it is famil-
iar, not because it favors either Assumption IAM or PM. In online Appendix B, 
we review three empirical papers from our survey in Section I. These papers are 
on diverse topics, but each one combines multiple economically distinct IVs using 
2SLS, and so falls into column 4 (case A) of Table 1. For each paper, we discuss the 
substantive assumptions represented by both Assumptions IAM and PM. Our con-
clusion from that exercise is consistent with our theoretical results: Assumption IAM 
is an extremely strong condition with multiple instruments, whereas Assumption 
PM—while not innocuous—is much less controversial.11

9 Mountjoy (2019) uses a similar assumption in a setting with multiple unordered treatments. 
10 More generally still, Theorem 4 of Milgrom and Shannon (1994) implies that Assumption PM will be satis-

fied if ​​V​i​​​(d, z)​​ has the single-crossing property in ​​(d; z)​​. 
11 Coupled with the equivalence of Assumptions PM and IAM when ​L  =  1​, Proposition 3 may be the source of 

the common intuition that Assumption IAM follows from Assumption AM. In the examples of online Appendix B, 
the theoretical rationale underlying each instrument suggests that Assumption AM holds, which implies Assumption 
PM but not Assumption IAM.
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Assumption AM is sufficient but not necessary for Assumption PM. For example, 
consider the study by Angrist and Evans (1998), who used the sex composition of a 
family’s first two children to instrument for family size. Let ​​D​i​​​ indicate whether the 
family had exactly two, or more than two children. Let ​​Z​i,1​​​ and ​​Z​i,2​​​ indicate the sexes 
of their first two children. Angrist and Evans (1998) present empirical evidence that 
families for which these two sexes are the same (​​Z​i​​  = ​ (0, 0)​​ or ​​Z​i​​  = ​ (1, 1)​​) are 
more likely to have a third child. Suppose that this is due to a uniform preference 
ordering in the population, so that for all ​i  ∈  ​

(5)	 ​​D​i​​​(0, 0)​  ≥ ​ D​i​​​(0, 1)​,  ​  D​i​​​(0, 0)​  ≥ ​ D​i​​​(1, 0)​,​

​and

	​ D​i​​​(1, 1)​  ≥ ​ D​i​​​(0, 1)​,  ​  D​i​​​(1, 1)​  ≥ ​ D​i​​​(1, 0)​.​

This is consistent with Assumption PM, but it violates Assumption AM.
Another way to see the difference between Assumptions AM and PM is to con-

sider the interacted random coefficient specification

(6)	​ ​V​i​​​(z)​  = ​ B​i,0​​ + ​B​i,1​​ ​z​1​​ + ​z​2​​ + ​B​i,2​​ ​z​1​​ ​z​2​​,​

where we suppose for simplicity that ​  = ​​ {0, 1}​​​ 2​​. If all individuals ​i  ∈  ​ 
have ​​B​i,1​​  ≥  0​, ​​B​i,2​​  ≤  − 1​, but ​​B​i,1​​  ≤  − ​B​i,2​​​, then Assumption AM fails while 
Assumption PM is satisfied. The reason is due to the strong negative interaction 
effect (submodularity) between ​​z​1​​​ and ​​z​2​​​ on indirect net utility, which is controlled 
here by ​​B​i,2​​​. This implies that ​​D​i​​​(​z​1​​, ​z​2​​)​​ is increasing as a function of ​​z​1​​​ when  
​​z​2​​  =  0​, but decreasing when ​​z​2​​  =  1​, and similarly when the roles of ​​z​1​​​ and ​​z​2​​​ are 
reversed. This violates Assumption AM, even though Assumption PM is satisfied.12

III.  Interpreting 2SLS under Partial Monotonicity

IA (Theorem 2) showed that under standard instrument exogeneity and rele-
vance conditions, Assumption IAM ensures that the 2SLS estimand can be written 
as a weighted average of causal effects for complier subpopulations. The weights 
are convex in that they are nonnegative and sum to one. Their result holds regard-
less of the number of instruments, as long as the first stage for the 2SLS estimand is 
fully saturated. However, it crucially depends on Assumption IAM, which we have 
shown requires a strong form of preference homogeneity with two or more distinct 
instruments. In this section, we show that the IA result can be partially salvaged 
under Assumption PM.

12 To see that the configuration above satisfies Assumption PM, note that ​​B​i,1​​  ≥  0​ implies that ​​D​i​​​(0, 0)​  
≤  ​D​i​​​(1, 0)​​, ​​B​i,1​​  ≤  − ​B​i,2​​​ implies that ​​D​i​​​(0, 1)​  ≥  ​D​i​​​(1, 1)​​, ​​D​i​​​(0, 0)​  ≤  ​D​i​​​(0, 1)​​ by virtue of the normalized coeffi-
cient on ​​z​2​​​, and ​​B​i,2​​  ≤  − 1​ implies that ​​D​i​​​(1, 0)​  ≥  ​D​i​​​(1, 1)​​. 
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A. Potential Outcomes and Exogeneity Condition

To define the 2SLS estimand, we need to introduce an outcome variable, ​​Y​i​​​. We 
write potential outcomes for ​​Y​i​​​ as ​​Y​i​​​(1)​​ and ​​Y​i​​​(0)​​ to correspond to setting ​​D​i​​​ to 
treatment (​​D​i​​  =  1​) and nontreatment states (​​D​i​​  =  0​). The notation incorporates 
the usual exclusion restriction that ​​Z​i​​​ has no direct causal effect on ​​Y​i​​​. The observed 
outcome is ​​Y​i​​  = ​ D​i​​ ​Y​i​​​(1)​ + ​(1 − ​D​i​​)​ ​Y​i​​​(0)​  = ​ Y​i​​​(​D​i​​)​​. The observed treatment state 
is related to the potential treatment states analyzed in the previous section as

	​ ​D​i​​  = ​  ∑ 
z∈

​​​1​[​Z​i​​  =  z]​​D​i​​​(z)​  =  ​D​i​​​(​Z​i​​)​.​

Throughout the paper, we maintain the following exogeneity condition.

ASSUMPTION E (Exogeneity): ​​(​Y​i​​​(0)​, ​Y​i​​​(1)​, ​​{​D​i​​​(z)​}​​
z∈​​)​  ⫫  ​Z​i​​​.

Assumption E is common in nonparametric IV models, and identical to 
Condition 1 of IA. For simplicity, we state the condition in terms of full indepen-
dence, although our analysis of the 2SLS estimand only involves mean outcomes, so 
only requires a weaker form of Assumption E.13

B. Two Binary Instruments

We first consider the case in which ​​Z​i​​  = ​ (​Z​i,1​​, ​Z​i,2​​)​​ consists of two binary instru-
ments ​​Z​i,1​​  ∈ ​ {0, 1}​​ and ​​Z​i,2​​  ∈ ​ {0, 1}​​, with support ​  = ​​ {0, 1}​​​ 2​​. We also assume 
that the direction of Assumption PM is known a priori to be

(7)	 ​​D​i​​​(0, 0)​  ≤ ​ D​i​​​(0, 1)​  ≤ ​ D​i​​​(1, 1)​,​

and

	​​ D​i​​​(0, 0)​  ≤ ​ D​i​​​(1, 0)​  ≤ ​ D​i​​​(1, 1)​​.

This particular ordering is not required, but it helps with the notation and expo-
sition to not have to consider multiple different orderings simultaneously; our more 
general results in Section  IIID relax this condition.14 The following proposition 
establishes that under these conditions the population ​​ can be partitioned into six 
mutually exclusive and exhaustive groups.

PROPOSITION 4: If ​  = ​​ {0, 1}​​​ 2​​ and Assumption PM is satisfied with the order 
shown in (7), then each ​i  ∈  ​ belongs to exactly one of the six groups in Table 2.

13 The weaker form still requires that ​​​{​D​i​​​(z)​}​​z∈​​ ⟘ ​Z​i​​​, but relaxes full joint independence to the restriction that  
​E​[​Y​i​​​(d)​ | ​​{​D​i​​​(z)​}​​z∈​​, ​Z​i​​  =  z′]​​ not depend on ​z′​ for both ​d  =  0​ and ​d  =  1​. 

14 Also, note that the direction of the comparisons are still identified under Assumption PM, just as they are 
under Assumption IAM, since Assumption E implies that ​Pr​[​D​i​​​(z)​  =  1]​  =  Pr​[​D​i​​  =  1 | ​Z​i​​  =  z]​​. 
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The terminology in Table 2 modifies that of Angrist, Imbens, and Rubin (1996). 
Always- and never-takers exhibit the same behavior regardless of either instrument. 
The ​​Z​1​​​ compliers take treatment if and only if ​​Z​i,1​​​ is switched on, while the ​​Z​2​​​ com-
pliers take treatment if and only if ​​Z​i,2​​​ is switched on. Eager compliers participate in 
treatment if either instrument is on, and reluctant compliers only participate if both 
instruments are on. For any of the six groups, an increase in either instrument weakly 
increases treatment, which implies that Assumption AM also holds in this case. 
Assumption IAM will be violated if the population includes both ​​Z​1​​​ and ​​Z​2​​​ compliers, 
since in this case a change in ​​Z​i​​​ from ​​(0, 1)​​ to ​​(1, 0)​​ would induce ​​Z​1​​​ compliers to 
enter treatment and ​​Z​2​​​ compliers to exit treatment. Figure 3 shows how realizations of 
random coefficients would map into these six group types if potential treatment states 
were generated by  equation (4).

As in IA (Theorem 2), we consider the 2SLS estimand with a satu-
rated first stage, and a second stage with ​​D​i​​​ and a constant. That is, the 
2SLS estimand is formed by using one​​ (a constant), ​​Z​i,1​​​, ​​Z​i,2​​​, and ​​Z​i,1​​ ​Z​i,2​​​ 
as instruments for one​​ and ​​D​i​​​. Since the first stage is saturated, this 2SLS proce-
dure generates the same coefficient estimate on ​​D​i​​​ as the IV estimator that uses  
the propensity score ​p​(​Z​i​​)​  ≡  Pr​[​D​i​​  =  1 | ​Z​i​​]​​ as the sole instrument for ​​D​i​​​. Let ​​β​2sls​​  
=  cov​(​Y​i​​, p​(​Z​i​​)​)​ / cov​(​D​i​​, p​(​Z​i​​)​)​​ denote this coefficient. Let ​​G​i​​  ∈ ​ {at, nt, 1c, 2c,  
ec, rc}​​ denote individual ​i​’s group among the six shown in Table  2, and define ​​
π​g​​  ≡  Pr​[​G​i​​  =  g]​​ and ​​Δ​g​​  ≡  E​[​Y​i​​​(1)​ − ​Y​i​​​(0)​ | ​G​i​​  =  g]​​ to be the population shares 
and average treatment effects for each group. The following proposition establishes 
the relationship between these quantities and ​​β​2sls​​​.

PROPOSITION 5: Suppose ​​Z​i​​​ has support ​  ≡ ​​ {0, 1}​​​ 2​​ and that Assumption PM is 
satisfied with the ordering in (7). Suppose in addition that Assumption E is satisfied, 
and that ​​β​2sls​​​ exists. Then

	​ ​β​2sls​​  = ​   ∑ 
g∈​{1c,2c,ec,rc}​

​​​​ω​g​​​Δ​g​​,​

where the ​​ω​g​​​ are weights that sum to one​​. Both ​​ω​𝑒𝑐​​​ and ​​ω​𝑟𝑐​​​ are always nonnegative. 
If ​​π​1c​​  ≥ ​ π​2c​​​, then ​​ω​1c​​​ is also nonnegative, while the sign of ​​ω​2c​​​ is given by

	​ sgn​(​ω​2c​​)​  =  1​[​π​2c​​  >  0]​ × sgn​(Pr​[​D​i​​  =  1 | ​Z​i,2​​  =  1]​ − Pr​[​D​i​​  =  1 | ​Z​i,2​​  =  0]​)​.​

Table 2—Groups under Assumption PM with (7)

​​z​​ 1​​ ​​z​​ 2​​ ​​z​​ 3​​ ​​z​​ 4​​
​​G​i​​​ (group ​g​) ​​D​i​​​(0, 0)​​ ​​D​i​​​(0, 1)​​ ​​D​i​​​(1, 0)​​ ​​D​i​​​(1, 1)​​ ​​​g​​​ ​​​g​​​

Always-taker (at) 1 1 1 1 ​∅​ ∅
Eager complier (ec) 0 1 1 1 ​​{2}​​ ∅
Reluctant complier (rc) 0 0 0 1 ​​{4}​​ ∅
Never-taker (nt) 0 0 0 0 ​∅​ ∅
​​Z​1​​​ complier (1c) 0 0 1 1 ​​{3}​​ ∅
​​Z​2​​​ complier (2c) 0 1 0 1 ​​{2, 4}​​ ​​{3}​​

Notes: The sets ​​​g​​​ and ​​​g​​​ are integers ​k​ for which group type ​g​ acts as a complier or defier when considering the 
contrast ​​z​​ k−1​​ to ​​z​​ k​​. This notation is explained in more detail in Section IIID.
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If ​​π​2c​​  ≥ ​ π​1c​​​, then ​​ω​2c​​​ is nonnegative, and the sign of ​​ω​1c​​​ is given by

	​ sgn​(​ω​1c​​)​  =  1​[​π​1c​​  >  0]​ × sgn​(Pr​[​D​i​​  =  1 | ​Z​i,1​​  =  1]​ − Pr​[​D​i​​  =  1 | ​Z​i,1​​  =  0]​)​.​

Proposition 5 shows that the 2SLS estimand is a linear combination of average 
treatment effects for the four groups that change treatment status in response to 
one or both of the instruments. The groups are nonoverlapping, and the weights on 
the groups (​​ω​g​​​) sum to unity.15 This implies that ​​β​2sls​​  =  Δ  ≡ ​ Δ​g​​​ in the unlikely 
situation that there are constant treatment effects across behavioral groups. In gen-
eral, however, the 2SLS estimand might not be a positively weighted average of 
treatment effects for the four groups, because some of the weights might be negative. 
The weights for reluctant compliers and eager compliers are always nonnegative. If ​​
π​1c​​  ≥ ​ π​2c​​​, the weight given to the ​​Z​1​​​ compliers is also nonnegative, but the weight 
given to the ​​Z​2​​​ compliers can be either positive or negative.

15 Formulas for ​​ω​g​​​ are given in the proof. 

Figure 3. Correspondence between Random Coefficients and Behavioral Types

Notes: These regions show how random coefficient realizations relate to behavioral types if treatment were deter-
mined by the binary choice model (4) with ​​B​i,1​​  ≥  0​. For example, a ​​Z​2​​​ complier has ​​D​i​​​(0, 0)​  =  0​, ​​D​i​​​(1, 0)​  =  0​,  
​​D​i​​​(0, 1)​  =  1​, and ​​D​i​​​(1, 1)​  =  1​. The first three choices imply that ​​B​i,0​​  <  0​, ​​B​i,0​​ + ​B​i,1​​  <  0​, and ​​B​i,0​​ + 1  >  0​,  
with the fourth choice implied by the third. The region of such ​​(​B​i,0​​, ​B​i,1​​)​​ realizations is shown in crosshatches.

Always-takers (at)
Z1 compliers (1c)

Z2 compliers (2c)
Never-takers (nt)

Reluctant compliers (rc)
Eager compliers (ec)

Bi,1

Bi,0−1 0−2

2

1

0

nt 2c

rc

ec

at

1c



3676 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2021

The intuition is that a shift of ​​Z​i​​​ from ​​(0, 1)​​ to ​​(1, 0)​​ induces ​​Z​1​​​ compliers to enter 
treatment and ​​Z​2​​​ compliers to exit treatment. If ​​π​1c​​  ≥ ​ π​2c​​​, then the net effect of 
this shift is still more participation in treatment. However, the ​​Z​2​​​ compliers act as 
“defiers,” and therefore receive negative weight for this binary contrast. Whether the 
overall weight given to the ​​Z​2​​​ compliers is positive or negative depends on whether 
this negative weight is outweighed by the positive weight given to the ​​Z​2​​​ compliers 
in the two other instrument contrasts for which they enter treatment: ​​Z​i​​  = ​ (0, 0)​​ to ​​
Z​i​​  = ​ (0, 1)​​, and ​​Z​i​​  = ​ (1, 0)​​ to ​​Z​i​​  = ​ (1, 1)​​. If instead ​​π​2c​​  ≥ ​ π​1c​​​, then the roles of 
the ​​Z​1​​​ and ​​Z​2​​​ compliers are reversed.

C. When Is the 2SLS Estimand a Positively Weighted Average  
of Complier Causal Effects?

Proposition 5 shows that one can check whether the 2SLS estimand is a 
positively weighted average of causal effects by examining observable relation-
ships between treatment and instruments. Specifically, if both ​​Z​1​​​ and ​​Z​2​​​ compli-
ers are present in the population and ​​π​1c​​  ≥ ​ π​2c​​​, then ​​ω​2c​​​ will be negative if and 
only if the coefficient on ​​Z​i,2​​​ in a regression of ​​D​i​​​ on ​​Z​i,2​​​ (and a constant) is nega-
tive. Likewise, if ​​π​2c​​  ≥ ​ π​1c​​​, then ​​ω​1c​​​ will be negative if and only if the coefficient 
on ​​Z​i,1​​​ in a regression of ​​D​i​​​ on ​​Z​i,1​​​ (and a constant) is negative. One can either 
check both cases, or check only the relevant case, which is identified by the sign of  
​p​(1, 0)​ − p​(0, 1)​  = ​ π​1c​​ − ​π​2c​​​.

Except for ​​π​at​​​ and ​​π​nt​​​, the group shares are not themselves separately identified. 
This is because there are five linearly independent group shares (after accounting for 
the fact that they sum to unity), but only four values of the propensity score. As men-
tioned, the sign of ​p​(1, 0)​ − p​(0, 1)​​ indicates whether ​​Z​1​​​ or ​​Z​2​​​ compliers are more 
common. However, it is not possible to determine whether the less common group is 
entirely absent.

If it were the case that ​​π​1c​​  =  0​ or ​​π​2c​​  =  0​, then Assumption IAM would hold 
and the 2SLS estimand would necessarily be a positively weighted average of the 
remaining three complier groups. The correspondence between complier group 
shares and Assumption IAM can be seen graphically in Figure 3. Assumption IAM 
implies the coefficient ​​B​i1​​​ has a degenerate distribution, collapsing the regions in 
Figure 3 onto a horizontal line. This line can go through either the region defining ​​
Z​1​​​ compliers or the region defining ​​Z​2​​​ compliers but not both, so Assumption IAM 
implies at least one of the two groups must be absent.

Finding negative weights based on the formulas in Proposition 5 represents a sit-
uation in which the unconditional relationship between an instrument and the treat-
ment has a different sign than the ceteris paribus impact of the instrument. This may 
be rare in practice, since researchers often have prior beliefs regarding the impacts 
of the instruments (e.g., if each instrument is an encouragement to take treatment), 
and a researcher may be unlikely to use an instrument if the raw correlation with the 
treatment contradicts the expected sign. A necessary condition for such a contradic-
tion is that the instruments are negatively correlated.
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PROPOSITION 6: Suppose ​​Z​i​​​ consists of two binary instruments that satisfy 
Assumption PM with the ordering in (7), that Assumption E is satisfied, and that ​​
β​2sls​​​ exists. If ​cov​(​Z​i,1​​, ​Z​i,2​​)​  ≥  0​, then both ​​ω​1c​​​ and ​​ω​2c​​​ are nonnegative.

The intuition for Proposition 6 follows from the standard omitted variables bias 
formula for ordinary least squares (OLS) regression. The second instrument serves 
as an omitted confounder in a bivariate regression of the treatment on a single instru-
ment. Since each instrument increases the likelihood of treatment, a negative bivari-
ate relationship can only arise when the included instrument is negatively correlated 
with the omitted instrument, creating negative omitted variable bias. An import-
ant special case of Proposition 6 is when the instruments are independent, so that  
​cov​(​Z​i,1​​, ​Z​i,2​​)​ =  0​ and the 2SLS weights are guaranteed to be positive. The leading 
scenario in which the instruments would be negatively correlated is when ​​Z​i, j​​ =  1​ 
tends to imply ​​Z​i,k​​ =  0​ for ​j ≠  k​. For example, ​​Z​i,1​​​ and ​​Z​i,2​​​ may indicate two differ-
ent arms in an experiment corresponding to different types of encouragement to take 
the treatment. In this setting, ​cov​(​Z​i,1​​, ​Z​i,2​​)​ <  0​ and negative weights are possible.

In online Appendix C, we use the full sufficient and necessary characterization in 
Proposition 5 to develop formal statistical tests about the signs of the weights. We 
consider four tests of the null hypothesis that the weights are positive. In a simula-
tion study, we find that the test based on the procedure of Romano, Shaikh, and Wolf 
(2014) performs the best, with size only slightly below its nominal level. We also 
consider a test of the null hypothesis that at least one weight is negative. All five tests 
can be implemented using the mivcausal Stata package.

D. Multivalued Instruments

Suppose that ​​Z​i​​​ consists of two or more distinct, discrete instruments, and that 
its support has ​K​ elements total. Label these elements as ​supp​(​Z​i​​)​  ≡ ​ {​z​​ 1​, …, ​z​​ K​}​​ 
in increasing order of the propensity score, so that ​p​(​z​​ k​)​  ≥  p​(​z​​ k−1​)​​ for all ​k  ≥  2​.  
In the case considered in Section IIIB, ​K  =  4​ and the instrument values would be 
ordered as ​​z​​ 1​  = ​ (0, 0)​​, ​​z​​ 2​  = ​ (0, 1)​​, ​​z​​ 3​  = ​ (1, 0)​​, and ​​z​​ 4​  = ​ (1, 1)​​ if ​p​(1, 0)​  
≥  p​(0, 1)​​, with the roles of ​​z​​ 2​​ and ​​z​​ 3​​ switched in the opposite case.

Let ​​ represent the set of all realizations of ​​​{​D​i​​​(z)​}​​z∈​​​ that are consistent with 
Assumption PM and the observed values of ​p​(z)​​. In Section IIIB, where there were 
two binary instruments with the ordering (7), ​​ was composed of the six groups in 
Table 2. Table 3 displays another example consistent with the ordering (5) in which 
there are seven groups. As before, let ​​G​i​​​ denote individual ​i​’s group membership, let ​​
π​g​​​ denote the proportion of the population in each group ​g​, and let ​​Δ​g​​​ denote group ​
g​’s average treatment effect.

For each ​g  ∈  ​, define the set:

 ​ ​​g​​  = ​ {k  ∈ ​ {2, …, K}​ : ​D​i​​​(​z​​ k​)​  =  1  and  ​D​i​​​(​z​​ k−1​)​  =  0 for all i with ​G​i​​  =  g}​.​

This is the set of instrument values ​k​ at which individuals in group ​g​ are compliers in 
the sense that they would not take treatment if ​​Z​i​​  = ​ z​​ k−1​​, but would take treatment 
if ​​Z​i​​  = ​ z​​ k​​. Similarly, define

	​ ​​g​​  = ​ {k  ∈ ​ {2, …, K}​  : ​D​i​​​(​z​​ k​)​  =  0  and  ​D​i​​​(​z​​ k−1​)​  =  1 for all i with ​G​i​​  =  g}​​
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as the set of instrument values at which individuals in group ​g​ act as defiers. 
For example, in Section  IIIB, we had ​​​1c​​  = ​ {3}​​, ​​​1c​​  =  ∅​, ​​​2c​​  = ​ {2, 4}​​, and  
​​​2c​​  = ​ {3}​​. We also had ​​​ec​​  = ​ {1}​​, ​​​rc​​  = ​ {4}​​, ​​​at​​  = ​ ​nt​​  =  ∅​, and ​​​g​​  =  ∅​ for 
each ​g  ∈ ​ {at, nt, ec, rc}​​; recall Table 2. Table 3 reports the sets ​​​g​​​ and ​​​g​​​, for an 
alternative case consistent with (5).

As before, consider the same 2SLS specification used by IA (Theorem 2) with 
a saturated first stage, and a second stage that contains ​​D​i​​​ and a constant. Let ​​β​2sls​​​ 
denote the 2SLS estimand corresponding to the coefficient on ​​D​i​​​. The following 
proposition provides an interpretation of the 2SLS estimand.

PROPOSITION 7: Suppose ​​Z​i​​​ takes ​K​ values ​​{​z​​ 1​, …, ​z​​ K​}​​ labeled so that the pro-
pensity score is increasing and suppose that the support of ​​Z​i​​​ is rectangular; that is ​
supp​(​Z​i​​)​  =  supp​(​Z​i,1​​)​ × ⋯ × supp​(​Z​i,L​​)​​. If Assumptions PM and E are satisfied, 
and if ​​β​2sls​​​ exists, then

	​ ​β​2sls​​  = ​   ∑ 
g∈:​​g​​≠∅

​​​​ω​g​​​Δ​g​​,​

where ​​ω​g​​​ are weights, such that ​​∑ g∈:​​g​​≠∅​ 
  ​​ ​ ω​g​​  =  1​, and

 ​ sgn​(​ω​g​​)​  =  1​[​π​g​​  >  0]​ 

	 × sgn​(​ ∑ 
k=2

​ 
K

  ​​​(1​[k  ∈ ​ ​g​​]​ − 1​[k  ∈ ​ ​g​​]​)​cov​(​D​i​​, 1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​)​)​.​

Proposition 7 shows that under Assumption PM, the 2SLS estimator produces a 
weighted average of treatment effects for groups that comply with some instrument 
change. The weights on each group could be positive or negative, but this can be 
checked empirically. To do this, one must generate the sets ​​​g​​​ and ​​​g​​​ by applying 
Assumption PM to the set of ​K​ instrument values and the observed ordering of the 
propensity score, as we did in the examples in Tables 2 and 3. The sign of the weight 
for group ​g​ is then determined by the overall sum of ​cov​(​D​i​​, 1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​)​​ for 
instrument values ​k​ at which they comply less the sum of these terms at values ​k​ for 
which they defy.

The additional rectangular support condition in Proposition 7 is necessary 
to ensure that the contrasts picked up in ​​β​2sls​​​ are restricted by Assumption PM. 
For example, if in the special case in Section  IIIB the support of ​​Z​i​​​ were only  

Table 3—Groups under Assumption PM with (5)

​​z​​ 1​​ ​​z​​ 2​​ ​​z​​ 3​​ ​​z​​ 4​​
​​G​i​​​ (group ​g​) ​​D​i​​​(1, 0)​​ ​​D​i​​​(0, 1)​​ ​​D​i​​​(1, 1)​​ ​​D​i​​​(0, 0)​​ ​​​g​​​ ​​​g​​​

Always-taker (at) 1 1 1 1 ​∅​ ∅
Group 2 0 1 1 1 ​​{2}​​ ∅
Group 3 1 0 1 1 ​​{3}​​ ​​{2}​​
Group 4 0 0 1 1 ​​{3}​​ ∅
Group 5 0 0 0 1 ​​{4}​​ ∅
Group 6 0 0 1 0 ​​{3}​​ ​​{4}​​
Never-taker (nt) 0 0 0 0 ∅ ∅
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​​{​(0, 1)​, ​(1, 0)​}​​, then either the ​​Z​1​​​ compliers or ​​Z​2​​​ compliers would always have neg-
ative weight. This is intuitive since Assumption PM does not place any direct restric-
tions on behavior in the contrast between ​​(0, 1)​​ and ​​(1, 0)​​.

E. Using Each Instrument Separately

A natural alternative to combining two or more instruments through 2SLS is to 
use each instrument separately. This may be unattractive due to a loss of statistical 
precision. However, it is justified under Assumption PM with the important caveat 
that all of the other instruments generally must be conditioned on as control vari-
ables in both the first and the second stage of the 2SLS estimator.16 This is necessary 
because Assumption E is stronger than the exogeneity condition in the traditional 
constant effects linear IV model. Whereas the traditional condition only requires ​​Z​i​​​ 
to be exogenous with respect to the outcome process, Assumption E also requires ​​
Z​i​​​ to be independent of ​​​{​D​i​​​(z)​}​​z∈​​​, and thus exogenous with respect to potential 
treatments as well.

To see why conditioning is necessary, consider again the case with two binary 
instruments. Using the first instrument without conditioning on the second requires 
considering marginal potential treatment states with respect to ​​Z​i,1​​​. These are related 
to the joint potential treatment states by

(8)	​ ​D​i,1​​​(​z​1​​)​  ≡ ​ (1 − ​Z​i,2​​)​ ​D​i​​​(​z​1​​, 0)​ + ​Z​i,2​​​D​i​​​(​z​1​​, 1)​.​

To apply the IA LATE interpretation using only ​​Z​i,1​​​ as the instrument 
would require that ​​Z​i,1​​​ is independent of ​​(​D​i,1​​​(0)​, ​D​i,1​​​(1)​)​​. We can see 
from (8) that this is unlikely to hold outside of the case where ​​Z​i,1​​​ and ​​
Z​i,2​​​ are themselves independent. However, Assumption E does imply that ​​Z​i,1​​​ and  
​​(​D​i,1​​​(0)​, ​D​i,1​​​(1)​)​​ will be independent conditional on ​​Z​i,2​​​. Similarly, Assumption PM 
implies that Assumption IAM holds for the marginal potential treatments condi-
tional on ​​Z​i,2​​​. See Mogstad, Torgovitsky, and Walters (2020) for a complete devel-
opment of these ideas.

Under Assumption PM, using one instrument while conditioning on the others 
preserves the interpretation of the 2SLS estimand as a positively weighted average 
of treatment effects because the results of IA apply for each instrument holding the 
others fixed. The resulting parameters generally identify treatment effects for mix-
tures of complier groups. In the example of Section IIIB, using ​​Z​i,1​​​ as the instrument 
when ​​Z​i,2​​  =  0​ identifies a weighted average of effects for ​​Z​1​​​ compliers and eager 
compliers, while using ​​Z​i,1​​​ as the instrument when ​​Z​i,2​​  =  1​ identifies a weighted 
average of effects for ​​Z​1​​​ compliers and reluctant compliers. The labels are reversed 
when ​​Z​i,2​​​ is used as the instrument conditional on ​​Z​i,1​​​. Since the relative shares of 
each group in the population are not identified, it is not possible to use these param-
eters to solve for the average treatment effect for any specific complier group.

In Table 4, we report on the ways that researchers use multiple instruments sepa-
rately using the same sample of papers from Section I. Of the 122 papers in Table 1, 

16 The consequences of not controlling for other instruments have been discussed elsewhere, e.g., CHV (foot-
note 6).
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we found 20 with multiple IVs that fit a separate 2SLS model using a single IV for at 
least one specification reported in the main body of the paper. Column 2 of Table 4 
restricts these papers to those that do not condition on the other omitted IVs when 
fitting such a model, while column 3 further restricts column 2 to papers that never 
used all IVs together in any specification. As shown in column 2, 90 percent of the 
papers that use multiple IVs separately do not control for the omitted instruments. 
Unless the multiple IVs are independent, these papers are reporting an estimated 
quantity that likely does not have a causal interpretation.

IV.  Estimating the Returns to College

We illustrate the results of the previous sections by estimating the returns to col-
lege attendance.17

A. Sample and Instruments

CHV used multiple IVs to estimate the returns to college in a sample of White 
men from the National Longitudinal Survey of Youth (NLSY) 1979 Cohort (Bureau 
of Labor Statistics 2019). We use their sample (Carneiro, Heckman, and Vytlacil 
2019) and focus on the two instruments that are the strongest predictors of college 
attendance: average log earnings in a youth’s county of residence at age 17, and the 
presence of a four-year college in a youth’s county of residence at age 14.18 We con-
trol for permanent differences in earnings across counties so that the local earnings 
instrument can be interpreted as capturing idiosyncratic fluctuations in local labor 
market opportunities at the time of the college enrollment decision. For these two 
instruments, Assumption PM holds if all individuals view college as more attractive 
when local labor market opportunities are weaker and when a college is nearby. 
This seems plausible, since higher opportunity costs and longer distances are likely 
undesirable for everyone. In contrast, Assumption IAM requires all individuals to 
place the same relative weight on these economically distinct types of incentives.

Table 5 reports descriptive statistics for key variables in the CHV sample. The out-
come variable ​​Y​i​​​ is the log of individual ​i​’s average hourly wage from 1989 to 1993, 
and the treatment ​​D​i​​​ equals one for individuals that attended college. Throughout 
our analysis we control for a vector ​​X​i​​​ of covariates that includes AFQT (Armed 
Forces Qualification Test) scores, mother’s years of education, number of sib-
lings, urban residence at age 14, year of birth indicators, permanent local earnings 
(defined as average log earnings in the age 17 county of residence from 1973 to 
2000), and average log earnings in the county of residence in 1991.19 The latter two 
variables account for general differences in earnings across counties.

17 As an additional example, Mogstad, Torgovitsky, and Walters (2021) provide simulated data, estimation pro-
grams, and results based on a data generating process calibrated to our empirical application.

18 These two instruments were also used in several earlier studies of the returns to education, e.g., Card (1995), 
Cameron and Heckman (1998), Kling (2001), and Cameron and Taber (2004). 

19 We follow CHV and use a version of AFQT that corrects for differences in years of schooling at the time of 
the test. CHV also include labor market experience as an additional control variable in the second stage of their 
estimation procedure. Because experience may partially mediate the effects of college enrollment, we instead con-
trol for age (captured by the year of birth indicators) and interpret the effects of college attendance inclusive of any 
impacts on experience.
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The bottom rows of Table 5 display descriptive statistics for the two instruments. 
To parallel the discussion of Section IIIB we create a binary version of the local 
earnings instrument, labeled ​​Z​i,1​​​, which equals one if the residual from a regression 
of local earnings on ​​X​i​​​ is in the bottom quartile of the sample.20 By construction, this 
definition means that 25 percent of youths experienced low local earnings at age 17. 
Fifty-three percent of individuals lived near a four-year college at age 14, which we 
label with a binary indicator, ​​Z​i,2​​​.

B. 2SLS Estimates

We begin by reporting ordinary least squares (OLS) and 2SLS estimates of the 
returns to college. Following CHV, we divide all college coefficients by four to 
express returns on an annual basis. Column 1 of Table 6 displays the coefficient 
from a bivariate OLS regression of log wages on college attendance, which gives an 
annual return of 9 percent. Column 2 shows that controlling for the covariates and 
instruments reduces the college premium to 4 percent per year.

An extensive literature argues that OLS estimates of the returns to schooling may 
be biased by unobserved differences in ability (e.g., Card 2001). Motivated by this 
concern, columns 3–7 of Table 6 report 2SLS estimates of the system:

(9)	​ ​D​i​​  =  ψ + ​Π​1​​​Z​i,1​​ + ​Π​2​​​Z​i,2​​ + ​X​ i​ ′​ δ + ​η​i​​,​

(10)	​ ​Y​i​​  =  α + β​D​i​​ + ​X​ i​ ′​ γ + ​ϵ​i​​.​

We compare 2SLS estimates from models excluding the instruments from the sec-
ond stage one at a time, adding the other to the set of controls ​​X​i​​​ in equation (10) as 
in Section IIIE, as well as a model that excludes both instruments from the second 
stage simultaneously.

The first stage estimates show that both instruments boost college attendance. 
Column 3 of Table 6 reports OLS estimates of equation (9), and column 4 shows 
estimates from a saturated specification that adds an interaction between the two 
instruments. The interaction term is small and statistically insignificant, and its value 
implies that the partial effect of each instrument is always positive, indicating that 

20 In results not reported here, we found that other thresholds for discretizing the local earnings instrument 
yielded similar results but were less predictive of college attendance. 

Table 4—Multiple IV Papers That Use IVs Separately

Papers that  
ever use IVs 
separately 

(1)

Papers that do 
not control for 

omitted IVs 
(2)

Papers that always use 
IVs separately and never 
control for omitted IVs 

(3)
Number 20 18 9

Note: This table includes the subset of papers from Table 1 that use multiple IVs and fit a sep-
arate 2SLS model using a single IV in at least one specification in the main body of the paper.
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the ordering of the propensity score is consistent with (7) from our discussion of two 
binary instruments in Section IIIB. In view of the insignificant interaction term, we 
maintain the more parsimonious additively separable model from column 3 going 
forward.

This specification shows that youths experiencing low local earnings at age 17 
are 10 percentage points more likely to attend college conditional on the controls, 
and this estimate is highly statistically significant. In the framework of Section IIIB, 
this implies that 10 percent of the population complies with ​​Z​i,1​​​, including eager 
compliers, reluctant compliers, and ​​Z​1​​​ compliers. Youths that live near a four-year 
college at age 14 are 6 percentage points more likely to attend college, an estimate that 
is also statistically significant. The larger first stage for the local earnings instrument 
implies that the share of ​​Z​1​​​ compliers exceeds the share of ​​Z​2​​​ compliers (​​π​1c​​  > ​ π​2c​​​).  
However, the levels of these shares are not identified, so we have no empirical basis 
for assuming that ​​π​2c​​  =  0​.

Columns 5 and 6 of Table 6 reveal that the two instruments generate very differ-
ent estimates of the returns to college. Treating the low local earnings variable as 
the excluded instrument yields a positive and significant 2SLS estimate of 19.8 per-
cent per year, while excluding the nearby college variable produces an insignificant 
estimated return of negative 2.4 percent. Though controlling for omitted instruments 
can be important for the interpretation of IV estimates (as discussed in Section IIIE), 
in this case we found that the 2SLS estimates were insensitive to including the other 
instrument as a maintained control. The instrument-specific estimates in columns 5 
and 6 are outside the typical range of estimated returns to college attendance (usu-
ally around 10 percent; see Card 1999), but both estimates are also statistically 
imprecise.

Table 5—Summary Statistics

Mean
Standard 
deviation

(1) (2)
Average log wage, 1989–1993 2.378 0.499
Attended college 0.495 0.500
Corrected AFQT score 0.449 0.952
Mother’s years of schooling 12.102 2.335
Number of siblings 2.927 1.909
Urban residence at age 14 0.744 0.436
Year of birth 1959.759 2.340
Permanent local log earnings 10.283 0.188
Local log earnings in 1991 10.293 0.165
Low local earnings at age 17 0.250 0.433
Nearby four-year college at age 14 0.525 0.500

Sample size 1,747

Notes: This table reports means and standard deviations of key variables for White men in the 
NLSY 1979 sample. Column 1 displays mean characteristics, and column 2 shows standard 
deviations. AFQT score is corrected for differences in years of schooling at the time individu-
als took the test. Permanent local log earnings equals average log earnings from 1973 to 2000 
for an individual’s county of residence at age 17. Low local earnings at age 17 is an indicator 
equal to one if the residual from a regression of average log earnings for an individual’s county 
at age 17 on the other covariates falls below the twenty-fifth percentile in the sample.
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As can be seen in column 7, excluding both instruments from the second stage 
yields a more reasonable and precisely estimated return of 13.7 percent per year. At 
the same time, the standard rationale for this procedure relies on the strong restric-
tions on choice behavior underlying Assumption IAM. Moreover, the overiden-
tification test for the combined model is rejected at marginal significance levels  
(​p  =  0.08​), suggesting heterogeneity in returns across subpopulations affected by 
each instrument. This raises the possibility that violations of Assumption IAM could 
contaminate the combined 2SLS estimates.

Table 6—OLS and 2SLS Estimates of the Returns to College

 2SLS
 OLS First stage Second stage excluding:

No 
controls Controls

No 
interaction Interaction

Local 
earnings

Nearby 
college Both

(1) (2) (3) (4) (5) (6) (7)

College attendance 0.085 0.042 0.198 −0.024 0.137
  (return per year) (0.006) (0.006) (0.065) (0.100) (0.049)
Low local earnings at 17 0.103 0.104 0.124 0.092

(0.033) (0.022) (0.033) (0.051)
Nearby four-year college at 14 0.000 0.061 0.069 −0.054

(0.027) (0.023) (0.025) (0.033)
Low local earnings −0.067 −0.036
  × nearby college (0.046) (0.045)
Corrected AFQT score 0.096 0.232 0.232 −0.049 0.157 0.008

(0.014) (0.011) (0.011) (0.062) (0.094) (0.047)
Mother’s years of schooling 0.013 0.030 0.030 −0.006 0.021 0.001

(0.005) (0.004) (0.004) (0.010) (0.014) (0.008)
Number of siblings −0.005 −0.018 −0.018 0.006 −0.010 0.002

(0.005) (0.005) (0.005) (0.008) (0.009) (0.007)
Urban residence at 14 0.020 0.031 0.032 −0.001 0.027 0.002

(0.024) (0.024) (0.024) (0.029) (0.028) (0.027)
Permanent local log earnings 0.073 −0.081 −0.083 0.127 0.056 0.060

(0.073) (0.067) (0.067) (0.088) (0.068) (0.070)
Local log earnings in 1991 0.727 0.224 0.228 0.581 0.780 0.641

(0.078) (0.069) (0.069) (0.104) (0.115) (0.090)
First stage F-statistic for  
  excluded instruments

21.970 7.182 15.451

p-value: overidentification test 0.080

Sample size 1,747 1,747 1,747 1,747 1,747 1,747 1,747

Notes: This table reports ordinary least squares (OLS) and two-stage least squares (2SLS) estimates of the 
effects of college attendance on log wages for White men in the NLSY 1979. Columns 1 and 2 show coeffi-
cients from OLS regressions of log hourly wages on college attendance. Columns 3–7 display coefficients from 
two-stage least squares models instrumenting college attendance with low earnings in an individual’s county at 
17 and the presence of a four-year public college in an individual’s county at 14. Columns 3 and 4 show first stage 
specifications with and without the interaction of the two instruments. Column 5 displays the estimated second 
stage using the low local earnings variable as the excluded instrument, column 6 shows the second stage using 
the nearby college variable as the excluded instrument, and column 7 displays the second stage excluding both 
instruments. The second stage estimates are based on the additively separable first stage in column 3. Columns 
2–7 also control for cohort indicators. Returns to college are expressed annually by dividing the college coeffi-
cient by four. Robust standard errors in parentheses.



3684 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2021

C. Assessing IA Monotonicity

We explore violations of Assumption IAM by comparing estimates of marginal 
treatment effects (MTEs) for the two instruments (Heckman and Vytlacil 1999, 
2005, 2007). The MTEs are based on the model

(11)	​ ​D​i​​​(z)​  =  1​[p​(z, ​X​i​​)​  ≥  ​U​i​​]​,​

(12)	​ ​(​Y​i​​​(1)​, ​Y​i​​​(0)​, ​U​i​​)​ ⫫ ​Z​i​​ | ​X​i​​,​

where ​​U​i​​​ is distributed uniformly, conditional on ​​X​i​​​ and ​​Z​i​​​. Vytlacil (2002) showed 
that the model defined by (11) and (12) is equivalent to the framework of IA. In 
particular, the separable threshold-crossing representation of potential treatment 
choices in equation (11) is equivalent to Assumption IAM, with the homogeneous 
ordering of preferences over the instruments represented by the one-dimensional 
unobservable ​​U​i​​​.

Heckman and Vytlacil (2005) define the MTE as the average treatment effect at a 
percentile of the unobserved cost ​​U​i​​​ and value of the covariates ​​X​i​​​, that is,

	​ MTE​(u, x)​  ≡  E​[​Y​i​​​(1)​ − ​Y​i​​​(0)​ | ​U​i​​  =  u, ​X​i​​  =  x]​.​

They show that if there is continuous variation in the probability of treatment, then 
the MTEs are identified by derivatives of average outcomes with respect to the pro-
pensity score: ​MTE​(u, x)​  =  ∂ E​[​Y​i​​ | p​(​Z​i​​, ​X​i​​)​  =  u, ​X​i​​  =  x]​/∂ u​.

Assumption IAM (or the equivalent (11)) implies that these derivatives should be 
the same regardless of which instrument generates variation in the propensity score. 
This is no longer the case when Assumption IAM is not true. The reason can be 
seen from Figure 2 panel B and Proposition 2, which showed that the marginal rate 
of substitution between two instruments must be constant under Assumption IAM. 
If the marginal rate of substitution is heterogeneous, so that Assumption IAM is 
not satisfied, then a small change in the propensity score due to the first instru-
ment induces different individuals to enter treatment than a small change due to 
the second instrument. If these individuals have different treatment effects, then 
the resulting MTEs will also be different. Comparing MTEs generated by different 
instruments therefore provides a test of Assumption IAM.21

Since MTEs are not nonparametrically identified when the instruments are dis-
crete, we use parametric models for ​p​(​Z​i​​, ​X​i​​)​​ and ​E​[​Y​i​​ | p​(​Z​i​​, ​X​i​​)​, ​X​i​​]​​ to estimate MTE 
curves separately for each instrument. This amounts to extrapolating from the LATEs 
identified by each instrument to compare treatment effects at a common value of the 
propensity score, which must be the same if Assumption IAM holds.22 We estimate 
MTEs by first fitting a logit model for ​p​(​Z​i​​, ​X​i​​)​​, then running local regressions of ​​Y​i​​​ 
on ​​X​i​​​ and a quadratic function of the estimated propensity score, weighted with a 

21 This observation is based on Mogstad, Torgovitsky, and Walters (2020), who develop MTE methods for mul-
tiple IVs that enable testing Assumption IAM and aggregating information across instruments under Assumption 
PM. 

22 See Brinch, Mogstad, and Wiswall (2017); Mogstad, Santos, and Torgovitsky (2018); Mogstad and Torgovitsky 
(2018); and Kline and Walters (2019) for related discussion of extrapolation based on discrete instruments.
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triangle kernel function maximized at the target value of ​u​. We allow for covari-
ate heterogeneity by interacting the linear propensity score term with elements 
of ​​X​i​​​. The MTE estimates are derivatives of the fitted conditional mean function 
evaluated at the sample average of the covariates. Paralleling the 2SLS models in 
columns 4 and 5 of Table 6, we exclude each instrument separately while includ-
ing the other as a control variable, thereby producing separate MTE estimates 
based on the separate variation in each instrument. We focus on MTEs for val-
ues of ​u​ from 0.2 to ​0.8​ because estimates at extreme values of ​u​ were impre-
cise. Inference is conducted based on 1,000 bootstrap replications of the entire  
procedure.

The results reveal that the two instruments generate different MTE schedules. 
Panel A of Figure 4 shows that the local earnings instrument yields a relatively 
flat MTE curve, suggesting limited variation in treatment effects as a function 
of unobserved responsiveness to labor market opportunity costs. In contrast, the 
MTE curve for the nearby college instrument is sharply downward sloping, imply-
ing substantial treatment effect heterogeneity along the distance dimension. As a 
result, MTEs based on the nearby college instrument tend to be larger at low values 
of ​u​ and smaller at high values of ​u​ compared to those based on the local earnings 
instrument. The bootstrap confidence intervals displayed in panel B show that the 
differences in MTE schedules are statistically significant at low and high values of ​
u​, and a joint test rejects equality of the two sets of MTEs at conventional levels (​
p  =  0.046​). Subject to the modeling restrictions required to estimate MTEs with 
discrete instruments, these results indicate that Assumption IAM does not hold 
jointly for the local earnings and nearby college instruments.

D. Implications for Combined 2SLS Estimates

Our results so far suggest that Assumption IAM may be violated for the com-
bination of instruments considered here. At the same time, estimates based on the 
individual instruments are imprecise, so it may still be useful to combine these 
instruments via 2SLS. How do violations of Assumption IAM affect the interpreta-
tion of the combined 2SLS results in Table 6?

We answer this question by applying Propositions 5 and 6 to the CHV sample. 
Table 7 reports coefficients from regressions of ​​D​i​​​ on each instrument separately 
along with the coefficient from a regression of ​​Z​i,2​​​ on ​​Z​i,1​​​. These models also con-
trol for ​​X​i​​​. Column 1 demonstrates that controlling for the covariates (but not the 
other instrument), the correlation between each instrument and the treatment is pos-
itive and statistically significant. The formulas in Proposition 5 then imply that the 
weights for each complier group must be positive under Assumption PM even if 
both ​​Z​1​​​ and ​​Z​2​​​ compliers are present. Similarly, column 2 shows that the partial 
correlation between the two instruments is also positive. By Proposition 6, this 
implies that the 2SLS weights are positive even if Assumption IAM is violated. The 
joint distribution of the two instruments therefore turns out to be sufficient to yield 
positive weights in this case.

The final rows of Table 7 use these results in formal statistical tests for positive 
and negative 2SLS weights. We consider tests of both the null hypothesis that the 
weights are all positive, and the complimentary hypothesis that at least one weight 
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is negative.23 As expected given the strong positive correlations in Table 7, the null 
hypothesis of negative weights is rejected at conventional levels (​p  =  0.001​), while 
a test of the null of positive weights does not reject and generates a high ​p​-value of 
1.0. These findings show that in the CHV application, the combined 2SLS estimand 
retains an interpretation as a positively weighted average of treatment effects when 
Assumption IAM is replaced by the weaker Assumption PM. This has been empha-
sized elsewhere as an attractive property of estimands in settings with treatment 
effect heterogeneity (e.g., Angrist and Pischke 2009). Our results demonstrate that if 
estimating a positive weighted average of treatment effects is the researcher’s goal, 
then they may be justified in combining instruments via 2SLS without relying on the 
onerous homogeneity restrictions implied by IA monotonicity.

V.  Conclusion

The IA monotonicity condition is a cornerstone of modern IV analysis. It is 
appealed to often, but rarely justified explicitly. As we have shown, it will not hold 
when there are multiple IVs without severe restrictions on choice heterogeneity. 

23 The tests, which were implemented using our companion Stata package mivcausal, are described in more 
detail in online Appendix C. The ​p​-value reported for the null of positive weights is from the test based on Romano, 
Shaikh, and Wolf (2014). 

Figure 4. Marginal Treatment Effects of College Attendance Based on Local Earnings and Nearby 
College Instruments

Notes: This figure plots estimates of marginal treatment effects (MTEs) of a year of college attendance on log 
wages using low average log earnings in an individual's county at age 17 (local earnings) and the presence of a col-
lege in an individual's county at age 14 (nearby college) as instruments. Panel A plots separate MTE estimates based 
on each instrument, and panel B plots the difference in estimated MTEs with 90 percent confidence intervals based 
on 1,000 bootstrap replications. MTE estimates are estimated derivatives of the conditional mean log wage with 
respect to the propensity score evaluated at the mean of the controls. The predicted probability of college attendance 
comes from a logit regression of college attendance on the two instruments and controls. The conditional mean of 
log wages is estimated based on local regressions of log wages on a quadratic function of the estimated propensity 
score and controls. Local regressions are evaluated at increments of 0.04 from 0.2 to 0.8 using a triangle kernel and 
bandwidth of 0.32. The controls in both steps include quadratic functions of AFQT, mother's education, number of 
siblings, permanent local earnings, and local earnings in 1991, along with urban status and cohort indicators. AFQT 
and mother's education are interacted with the instruments in the logit model and with the linear propensity score 
term in the outcome regressions. The MTE estimates using a given instrument include the other instrument and its 
interactions with the linear propensity score term, AFQT, and mother's education as additional controls.

Panel A. Marginal treatment effects for
each instrument

Panel B. Difference in marginal treatment effects
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This creates a dilemma for using IV methods to aggregate findings into a larger body 
of knowledge: each instrument is associated with a different set of complier groups, 
but combining multiple IVs together using IA monotonicity requires assuming that 
these groups are effectively identical in terms of their choice behavior.

In this paper, we have clarified the implications of IA monotonicity and consid-
ered combining instruments under a weaker condition called partial monotonicity. 
Partial monotonicity is not a strong assumption about choice behavior. It is satisfied 
under the usual mathematical interpretation of monotonicity that each instrument 
encourages all individuals either toward or away from treatment. We have shown 
that it still preserves the interpretation of the 2SLS estimand as a positively weighted 
average of causal effects for complier groups, except in rare cases. The conditions 
for positive weights turn out to hold in our application to estimating the returns to 
college attendance, even while the IA monotonicity condition seems to be violated.

Our results provide theoretical and empirical guidance for researchers who wish 
to use 2SLS with multiple IVs. Under partial monotonicity, a set of positively 
weighted average treatment effects can be identified by using each instrument sep-
arately, treating the others as control variables. In some cases it may be attractive 
to use multiple instruments together to gain statistical precision, in which case our 
test procedures allow analysts to test for negative weights. When the test results 
indicate that the weights are positive, the resulting 2SLS estimate is interpretable 
as a positively weighted average of treatment effects for a set of underlying com-
plier groups. When the test suggests negative weights, the combined 2SLS estimand 
may not have a causal interpretation, but the instrument-specific estimates retain 
their interpretation as positively weighted averages of treatment effects and can be 
reported separately or aggregated as desired.

It is important to recognize that the treatment effect parameter identified by 2SLS 
may not answer an interesting scientific question or policy counterfactual even 
when the weights are positive. This point motivates our companion paper (Mogstad, 
Torgovitsky, and Walters 2020), in which we develop a framework for aggregating 
multiple IVs to conduct inference about specific target parameters that do answer 

Table 7—Testing for Positive 2SLS Weights

 College attendance Nearby college
(1) (2)

Low local earnings at 17 0.110 0.102
(0.022) (0.024)

Nearby college at 14 0.071 1.000
(0.023) —

p-value: positive weights 1.000
p-value: negative weights 0.001

Notes: This table displays regressions of the variable listed in each column 
on the variable listed in each row in the NLSY sample. All models control 
for covariates. Robust standard errors are in parentheses. The first p-value 
comes from a test of the null hypothesis that the 2SLS weights are all pos-
itive, and the second comes from a test of the null hypothesis that at least 
one weight is negative.
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well-posed counterfactual questions. The framework generalizes the approach of 
Mogstad, Santos, and Torgovitsky (2018) to replace IA monotonicity with partial 
monotonicity. The key idea is that even under partial monotonicity, each instru-
ment still carries identifying content about unobserved quantities that are instrument 
invariant, such as the average treatment effect. Harmonizing this content across 
instruments allows for information to flow between instruments and to aggregate 
into a greater whole. This provides a way to combine exogenous variation from 
multiple sources for policy evaluation, while still maintaining plausible conditions 
on choice behavior.

Appendix

PROOF OF PROPOSITION 1:
(​⇒​) Suppose that the nesting statement is not true. Then there exist ​j, k  ∈  ​ such 

that ​​​j​​  ⊈ ​ ​k​​​ and ​​​k​​  ⊈ ​ ​j​​​. Since the empty set ​∅​ is a subset of every set (including 
itself), this implies that both ​​​j​​​ and ​​​k​​​ are not empty. Thus, there exists a ​​z​j​​  ∈ ​ ​j​​​ 
such that ​​z​j​​  ∉ ​ ​k​​​, and there exists a ​​z​k​​  ∈ ​ ​k​​​ such that ​​z​k​​  ∉ ​ ​j​​​. By the definition 
of these sets, this means that

(13)	 ​​D​j​​​(​z​j​​)​  =  1  >  0  = ​ D​j​​​(​z​k​​)​​

and

	​​ D​k​​​(​z​j​​)​  =  0  <  1  = ​ D​k​​​(​z​k​​)​​.

Thus, ​​D​i​​​(​z​j​​)​  ≥ ​ D​i​​​(​z​k​​)​​ for some ​i  =  j​, but ​​D​i​​​(​z​j​​)​  < ​ D​i​​​(​z​k​​)​​ for some other ​i  =  k​. 
This violates Assumption IAM. By contraposition, it follows that Assumption IAM 
implies the nesting statement.

(​⇐​) Conversely, if Assumption IAM is not true, then there exist ​j, k  ∈  ​ and ​​z​j​​, ​
z​k​​  ∈  ​ such that (13) holds. By definition, (13) implies that ​​z​j​​  ∈ ​ ​j​​​, but ​​z​j​​  ∉ ​ ​k​​​, 
and that ​​z​k​​  ∈ ​ ​k​​​, but ​​z​k​​  ∉ ​ ​j​​​. That is, ​​​k​​  ⊈ ​ ​j​​​, and ​​​j​​  ⊈ ​ ​k​​​. It follows that the 
nesting statement also implies Assumption IAM. ∎

PROOF OF PROPOSITION 2:
Suppose to the contrary that there exist ​j, k  ∈  ​(​z​​ ∗​)​​ for which (2) does not hold. 

Then the matrix

	​ ∂ ​V​jk​​​(​z​​ ∗​)​  ≡ ​ [​ 
​∂​1​​​V​j​​​(​z​​ ∗​)​​ 

​∂​2​​​V​j​​​(​z​​ ∗​)​​  
​∂​1​​​V​k​​​(​z​​ ∗​)​

​ 
​∂​2​​​V​k​​​(​z​​ ∗​)​

​]​  ≡ ​ [​ 
∂ ​V​j​​​(​z​​ ∗​)​​ 
∂ ​V​k​​​(​z​​ ∗​)​

​]​​

is invertible. Thus, the span of the rows of ​∂ ​V​jk​​​(​z​​ ∗​)​​ is ​​핉​​ 2​​, so there exists a unit vector  
​​v​​ ∗​  ∈ ​ 핉​​ 2​​ such that ​∂ ​V​j​​​(​z​​ ∗​)​ ​v​​ ∗​  >  0​, while ​∂ ​V​k​​​(​z​​ ∗​)​ ​v​​ ∗​  <  0​. Taking a Taylor series 
expansion at ​​z​​ ∗​ + ϵ ​v​​ ∗​​ for sufficiently small ​ϵ  >  0​, we have that

	​ ​V​j​​​(​z​​ ∗​ + ϵ ​v​​ ∗​)​  ≈ ​ V​j​​​(​z​​ ∗​)​ + ϵ​[∂ ​V​j​​​(​z​​ ∗​)​ ​v​​ ∗​]​  >  0,​
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while

	​​ V​k​​​(​z​​ ∗​ + ϵ ​v​​ ∗​)​  ≈ ​ V​k​​​(​z​​ ∗​)​ + ϵ​[∂ ​V​k​​​(​z​​ ∗​)​ ​v​​ ∗​]​  <  0​,

since ​​V​j​​​(​z​​ ∗​)​  = ​ V​k​​​(​z​​ ∗​)​  =  0​. On the other hand, an ​ϵ​ step in the direction ​− ​v​​ ∗​​ yields

	​ ​V​j​​​(​z​​ ∗​ − ϵ ​v​​ ∗​)​  <  0    while  ​  V​k​​​(​z​​ ∗​ − ϵ​v​​ ∗​)​  >  0.​

Using the random utility model, (1), we have that

	​ ​D​j​​​(​z​​ ∗​ + ϵ ​v​​ ∗​)​  =  1  > ​ D​j​​​(​z​​ ∗​ − ϵ ​v​​ ∗​)​  =  0​

and

	​​ D​k​​​(​z​​ ∗​ + ϵ ​v​​ ∗​)​  =  0  < ​ D​k​​​(​z​​ ∗​ − ϵ ​v​​ ∗​)​  =  1​,

which shows that Assumption IAM is violated. This establishes the result through 
contraposition. ∎

PROOF OF PROPOSITION 3:
Take any ​​(​z​ℓ​​, ​z​−ℓ​​)​​ and ​​(​z​ ℓ​ ′ ​, ​z​−ℓ​​)​​ in ​​. Since ​​z​ℓ​​, ​z​ ℓ​ ′ ​  ∈  핉​, either ​​z​ℓ​​  ≥ ​ z​ ℓ​ ′ ​​ or ​​z​ ℓ​ ′ ​  ≥ ​

z​ℓ​​​. Suppose that the first case holds. Then ​​(​z​ℓ​​, ​z​−ℓ​​)​  ≥ ​ (​z​ ℓ​ ′ ​, ​z​−ℓ​​)​​, so ​​D​i​​​(​z​ℓ​​, ​z​−ℓ​​)​  ≥  
​D​i​​​(​z​ ℓ​ ′ ​, ​z​−ℓ​​)​​ for all ​i​, as required by Assumption PM. ∎

PROOF OF PROPOSITION 4:
That an individual ​i​ cannot belong to more than one of the six groups can be 

verified by inspection. To see that ​i​ must belong to at least one of these groups, note 
that under (7), either

(14)	​ ​D​i​​​(0, 0)​  ≤ ​ D​i​​​(0, 1)​  ≤ ​ D​i​​​(1, 0)​  ≤ ​ D​i​​​(1, 1)​​

or

(15)	​ ​D​i​​​(0, 0)​  ≤ ​ D​i​​​(1, 0)​  ≤ ​ D​i​​​(0, 1)​  ≤ ​ D​i​​​(1, 1)​.​

If ​i​ satisfies (14) then by Table 2, their group is ​​G​i​​  ∈ ​ {at, nt, 1c, ec, rc}​​, that is, some-
thing other than a ​​Z​2​​​ complier. If ​i​ satisfies (15), then their group is something other 
than a ​​Z​1​​​ complier. In either case, they must belong to one of the six groups listed 
in Table 2. ∎
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PROOF OF PROPOSITION 5:
Label the instrument pairs as ​​z​​ 1​  = ​ (0, 0)​​, ​​z​​ 2​  = ​ (0, 1)​​, ​​z​​ 3​  = ​ (1, 0)​​, and  

​​z​​ 4​  = ​ (1, 1)​​, and denote their associated probabilities as ​​q​​ k​  ≡  Pr​[​Z​i​​  = ​ z​​ k​]​​  
for ​k  =  1, 2, 3, 4​. We will prove the result for the case with ​​π​1c​​  ≥ ​ π​2c​​​, so that 
the propensity score ​p​(​z​​ k​)​  ≡  Pr​[​D​i​​  =  1 | ​Z​i​​  = ​ z​​ k​]​​ is increasing in ​k​, due to  
Assumption PM and (7). A symmetric proof applies to the case with ​​π​2c​​  ≥ ​ π​1c​​​.

Theorem 2 in IA shows that the 2SLS estimand is given by a convex weighted 
average of three Wald (1940) estimands, which we write as

(16)	​ ​β​2sls​​  = ​ λ​2​​ ​w​2​​ + ​λ​3​​ ​w​3​​ + ​λ​4​​ ​w​4​​,​

where the Wald estimands are given by

	​ ​w​k​​  ≡ ​ 
E​[​Y​i​​ | ​Z​i​​  = ​ z​​ k​]​ − E​[​Y​i​​ | ​Z​i​​  = ​ z​​ k−1​]​    ________________________   

p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​ ,​

and the weights are defined by

	​ ​λ​k​​  ≡ ​ 
​(p​(​z​​ k​)​ − p​(​z​​ k−1​)​)​​∑ ℓ=k​ 4  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​

     ___________________________________     
​∑ j=2​ 4  ​​​[​(p​(​z​​ j​)​ − p​(​z​​ j−1​)​)​​∑ ℓ=j​ 4  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​]​

 ​.​

Theorem 1 of IA shows that each Wald estimand, ​​w​k​​​, gives the average treatment 
effect for individuals who change treatment status in response to a change in the 
instrument from ​​z​​ k−1​​ to ​​z​​ k​​. Using the group definitions in Proposition 4, this implies 
that ​​w​2​​​ represents the average treatment effect for both the ​​Z​2​​​ compliers and eager 
compliers. Similarly, ​​w​4​​​ reflects the average treatment effect for the ​​Z​2​​​ compliers 
and the reluctant compliers. So,

	​ ​w​2​​  = ​ (​  ​π​2c​​ _ ​π​2c​​ + ​π​ec​​ ​)​​Δ​2c​​ + ​(​  ​π​ec​​ _ ​π​2c​​ + ​π​ec​​ ​)​​Δ​ec​​,​

​and

	​ w​4​​  = ​ (​  ​π​2c​​ _ ​π​2c​​ + ​π​rc​​ ​)​​Δ​2c​​ + ​(​  ​π​rc​​ _ ​π​2c​​ + ​π​rc​​ ​)​​Δ​rc​​.​

However, ​​w​3​​​ is different, since a shift from ​​z​​ 2​  ≡ ​ (0, 1)​​ to ​​z​​ 3​  ≡ ​ (1, 0)​​ creates 
two-way flows. In particular, such a shift induces ​​Z​1​​​ compliers to take treatment, but ​​
Z​2​​​ compliers to exit treatment. Using a minor modification of the argument in IA, 
it follows that

       ​       ​w​3​​  = ​ 
E​​[​​​(​Y​i​​​(1)​ − ​Y​i​​​(0)​)​​(​D​i​​​(1, 0)​ − ​D​i​​​(0, 1)​]​​    __________________________   

p​(​z​​ 3​)​ − p​(​z​​ 2​)​ ​ ​

	​ = ​
(

​  ​π​1c​​ _  
p​(​z​​ 3​)​ − p​(​z​​ 2​)​ ​)​​Δ​1c​​ − ​

(
​  ​π​2c​​ _  
p​(​z​​ 3​)​ − p​(​z​​ 2​)​ ​)​ ​Δ​2c​​​

	​ = ​ (​  ​π​1c​​ _ ​π​1c​​ − ​π​2c​​ ​)​​Δ​1c​​ − ​(​  ​π​2c​​ _ ​π​1c​​ − ​π​2c​​ ​)​​Δ​2c​​,​
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where the last equality used ​p​(​z​​ 3​)​ − p​(​z​​ 2​)​  = ​ (​π​at​​ + ​π​1c​​ + ​π​ec​​)​ −  
​(​π​at​​ ​+ π​2c​​ + ​π​ec​​)​  ​ π​1c​​ − ​π​2c​​​.

Substituting the expressions for the Wald estimands into (16), we have

	​ ​β​2sls​​  = ​   ∑ 
g∈​{1c,2c,ec,rc}​

​​​​ω​g​​​Δ​g​​,​

where

	​ ​ω​ec​​  ≡ ​   ​λ​2​​ ​π​ec​​ _ ​π​ec​​ + ​π​2c​​ ​,​

	​ ​ω​1c​​  ≡ ​   ​λ​3​​ ​π​1c​​ _ ​π​1c​​ − ​π​2c​​ ​,​

	​ ​ω​rc​​  ≡ ​   ​λ​4​​ ​π​rc​​ _ ​π​rc​​ + ​π​2c​​ ​,​  and

	​​ ω​2c​​  ≡ ​ (​  ​λ​2​​​π​2c​​ _ ​π​ec​​ + ​π​2c​​ ​)​ − ​(​  ​λ​3​​​π​2c​​ _ ​π​1c​​ − ​π​2c​​ ​)​ + ​(​  ​λ​4​​​π​2c​​ _ ​π​rc​​ + ​π​2c​​ ​)​​.

It is straightforward to verify that ​​ω​ec​​, ​ω​1c​​​, and ​​ω​rc​​​ are each nonnegative, and that

	​ ​  ∑ 
g∈​{1c,2c,ec,rc}​

​​​​ω​g​​  = ​ λ​2​​ + ​λ​3​​ + ​λ​4​​  =  1.​

For ​​ω​2c​​​, note first that

	​ ​π​ec​​ + ​π​2c​​  =  p​(​z​​ 2​)​ − p​(​z​​ 1​)​,​

and that, similarly,

	​ ​π​1c​​ − ​π​2c​​  =  p​(​z​​ 3​)​ − p​(​z​​ 2​)​    and  ​  π​rc​​ + ​π​2c​​  =  p​(​z​​ 4​)​ − p​(​z​​ 3​)​.​

Substituting this observation and the definition of ​​λ​k​​​ into the expression for ​​ω​2c​​​ and 
simplifying, we have

	​ ​ω​2c​​  = ​ π​2c​​ × ​ 
​q​​ 2​​(p​(​z​​ 2​)​ − E​[p​(​Z​i​​)​]​)​ + ​q​​ 4​​(p​(​z​​ 4​)​ − E​[p​(​Z​i​​)​]​)​

     ____________________________________     
​∑ j=2​ 4  ​​​[​(p​(​z​​ j​)​ − p​(​z​​ j−1​)​)​​∑ ℓ=j​ 4  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​]​

 ​.​

The denominator of this expression is always positive and ​​π​2c​​​ is always 
nonnegative. For the numerator, notice that since ​​Z​i,2​​  =  1​ if and only if  
​​Z​i​​  ∈ ​ {​z​​ 2​, ​z​​ 4​}​​,

​​q​​ 2​​(p​(​z​​ 2​)​ − E​[p​(​Z​i​​)​]​)​ + ​q​​ 4​​(p​(​z​​ 4​)​ − E​[p​(​Z​i​​)​]​)​​​  =  E​[​Z​i,2​​​(p​(​Z​i​​)​ − E​[p​(​Z​i​​)​]​)​]​​

​	 =  E​[​Z​i,2​​​(​D​i​​ − E​[​D​i​​]​)​]​ 

	 ≡  cov​(​D​i​​, ​Z​i,2​​)​,​
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where the second equality follows by iterating expectations. Thus, the sign of  
​​ω​2c​​​ is the same as that of ​cov​(​D​i​​, ​Z​i,2​​)​​, which is in turn the same as the sign of  
​E​[​D​i​​ | ​Z​i,2​​  =  1]​ − E​[​D​i​​ | ​Z​i,2​​  =  0]​​, since

	​ cov​(​D​i​​, ​Z​i,2​​)​  = ​ (E​[​D​i​​ | ​Z​i,2​​  =  1]​ − E​[​D​i​​ | ​Z​i,2​​  =  0]​)​Pr​[​Z​i,2​​  =  1]​Pr​[​Z​i,2​​  =  0]​.​ ∎

PROOF OF PROPOSITION 6:
Since ​​Z​i,1​​​ and ​​Z​i,2​​​ are binary,

  ​  Pr​[​D​i​​  =  1 | ​Z​i,2​​  =  1]​ − Pr​[​D​i​​  =  1 | ​Z​i,2​​  =  0]​​

    ​    =  p​(1, 1)​Pr​[​Z​i,1​​  =  1 | ​Z​i,2​​  =  1]​ + p​(0, 1)​Pr​[​Z​i,1​​  =  0 | ​Z​i,2​​  =  1]​​

     ​     − p​(1, 0)​Pr​[​Z​i,1​​  =  1 | ​Z​i,2​​  =  0]​ − p​(0, 0)​Pr​[​Z​i,1​​  =  0 | ​Z​i,2​​  =  0]​.​

Assumption PM with (7) together with Assumption E imply that

   ​   p​(1, 1)​  ≡  Pr​[​D​i​​  =  1 | ​Z​i,1​​  =  1, ​Z​i,2​​  =  1]​

	 =  Pr​[​D​i​​​(1, 1)​  =  1]​  ≥  Pr​[​D​i​​​(0, 1)​  =  1]​  =  p​(0, 1)​,​

and similarly that ​p​(1, 0)​  ≥  p​(0, 0)​​ and ​p​(0, 1)​  ≥  p​(0, 0)​​. If ​cov​(​Z​i,1​​, ​Z​i,2​​)​  ≥  0​, 
then also ​Pr​[​Z​i,1​​  =  1 | ​Z​i,2​​  =  1]​  ≥  Pr​[​Z​i,1​​  =  1]​  ≥  Pr​[​Z​i,1​​  =  1 | ​Z​i,2​​  =  0]​.​ Thus,

   ​   Pr​[​D​i​​  =  1 | ​Z​i,2​​  =  1]​ − Pr​[​D​i​​  =  1 | ​Z​i,2​​  =  0]​​

	​ ≥ ​ [p​(1, 1)​ − p​(1, 0)​]​Pr​[​Z​i,1​​  =  1]​

	 + ​[p​(0, 1)​ − p​(0, 0)​]​​(1 − Pr​[​Z​i,1​​  =  1]​)​  ≥  0.​

By Proposition 5, this implies that ​​ω​2c​​  ≥  0​. A symmetric argument shows that  
​Pr​[​D​i​​  =  1 | ​Z​i,1​​  =  1]​ − Pr​[​D​i​​  =  1 | ​Z​i,1​​  =  0]​  ≥  0​, so that ​​ω​1c​​  ≥  0​ as well. ∎

PROOF OF PROPOSITION 7:
By Theorem 2 in IA,

(17)	​ ​β​2sls​​  = ​  ∑ 
k=2

​ 
K

  ​​​λ​k​​ ​w​k​​,​

where the Wald estimands are

	​ ​w​k​​  ≡ ​ 
E​[​Y​i​​ | ​Z​i​​  = ​ z​​ k​]​ − E​[​Y​i​​ | ​Z​i​​  = ​ z​​ k−1​]​    ________________________   

p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​ ,​
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and the weights are

(18)	​ ​λ​k​​  ≡ ​ 
​(p​(​z​​ k​)​ − p​(​z​​ k−1​)​)​​∑ ℓ=k​ K  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​

     ____________________________________     
​∑ j=2​ K  ​​​[​(p​(​z​​ j​)​ − p​(​z​​ j−1​)​)​​∑ ℓ=j​ K  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​]​

 ​.​

By Assumption E,

(19)	​ ​w​k​​  = ​ 
E​[​Y​i​​​(​D​i​​​(​z​​ k​)​)​ − ​Y​i​​​(​D​i​​​(​z​​ k−1​)​)​]​   _____________________  

p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​ ​

	​ = ​ 
​∑ g∈​   ​​ E​[​Y​i​​​(​D​i​​​(​z​​ k​)​)​ − ​Y​i​​​(​D​i​​​(​z​​ k−1​)​)​ | ​G​i​​  =  g]​​π​g​​     ________________________________   

p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​ ​

	​ = ​ 
​∑ g:k∈​​g​​​ 

  ​​​ Δ​g​​ ​π​g​​ − ​∑ g:k∈​​k​​​ 
  ​​​ Δ​g​​​π​g​​   ____________________  

p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​ ,​

since ​​Y​i​​​(​D​i​​​(​z​​ k​)​)​ − ​Y​i​​​(​D​i​​​(​z​​ k−1​)​)​  =  0​ except when ​k  ∈ ​ ​​G​i​​​​​ or ​k  ∈ ​ ​​G​i​​​​​.  
Substituting (19) into (17),

(20)  ​​β​2sls​​  = ​  ∑ 
k=2

​ 
K

  ​​​λ​k​​​(
​ 
​∑ g:k∈​​g​​​ 

  ​​​ Δ​g​​​π​g​​ − ​∑ g k∈​​g​​​ 
  ​​​ Δ​g​​​π​g​​   ____________________  

p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​
)

​​

	​ = ​  ∑ 
k=2

​ 
K

  ​​​λ​k​​​(
​ 
​∑ g∈​   ​​​ (1​[k  ∈ ​ ​g​​]​ − 1​[k  ∈ ​ ​g​​]​)​​Δ​g​​​π​g​​

    ___________________________   
p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​

)
​​

	​ = ​  ∑ 
g∈

​​​​
(

​π​g​​ ​ ∑ 
k=2

​ 
K

  ​​​(1​[k  ∈ ​ ​g​​]​ − 1​[k  ∈ ​ ​g​​]​)​​(
​  ​λ​k​​ ___________  
p​(​z​​ k​)​ − p​(​z​​ k−1​)​ ​)​

)
​​Δ​g​​ 

	 ≡ ​  ∑ 
g∈

​​​​ω​g​​​Δ​g​​.​

Substituting the definition of ​​λ​k​​​ from (18) and simplifying,

(21)  ​​ω​g​​  = ​ π​g​​ ​ ∑ 
k=2

​ 
K

  ​​​(1​[k  ∈ ​ ​g​​]​ − 1​[k  ∈ ​ ​g​​]​)​

	 × ​
(

​ 
​∑ ℓ=k​ K  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​

    ___________________________________     
​∑ j=2​ K  ​​​[​(p​(​z​​ j​)​ − p​(​z​​ j−1​)​)​​∑ ℓ=j​ K  ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​]​

 ​
)

​​

	​ = ​ π​g​​ ​ ∑ 
k=2

​ 
K

  ​​​(1​[k  ∈ ​ ​g​​]​ − 1​[k  ∈ ​ ​g​​]​)​​(​ 
cov​(​D​i​​, 1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​)​

   ___________________  
var​(p​(​Z​i​​)​)​

 ​ )​,​
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where in the numerator we used

	​ cov​(​D​i​​, 1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​)​  =  E​[1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​​(​D​i​​ − E​[​D​i​​]​)​]​​

	​ =  E​[1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​​(p​(​Z​i​​)​ − E​[p​(​Z​i​​)​]​)​]​​

	​ = ​  ∑ 
ℓ=k

​ 
K

 ​​​q​​ ℓ​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​,​

and in the denominator we used

  ​  var​(p​(​Z​i​​)​)​  =  E​[​D​i​​​(p​(​Z​i​​)​ − E​[p​(​Z​i​​)​]​)​]​​

	​ = ​  ∑ 
ℓ=1

​ 
K

  ​​p​(​z​​ ℓ​)​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​​q​​ ℓ​​

	​ = ​  ∑ 
ℓ=1

​ 
K

  ​​​(​ ∑ 
j=2

​ 
K

 ​​1​[ j  ≤  ℓ]​​(p​(​z​​ j​)​ − p​(​z​​ j−1​)​)​)​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​​q​​ ℓ​​

	​ = ​  ∑ 
j=2

​ 
K

 ​​​[​(p​(​z​​ j​)​ − p​(​z​​ j−1​)​)​​∑ 
ℓ=j

​ 
K

 ​​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​​q​​ ℓ​]​,​

where the third equality follows from a telescoping sum identity,24 together with 
the fact that ​​∑ ℓ=1​ K  ​​​(p​(​z​​ ℓ​)​ − E​[p​(​Z​i​​)​]​)​ ​q​​ ℓ​  =  0​. Examining the expression for the 
weights in (21), we have that

 ​ sgn​(​ω​g​​)​  =  1​[​π​g​​  >  0]​ 

	 × sgn​(​ ∑ 
k=2

​ 
K

  ​​​(1​[k  ∈ ​ ​g​​]​ − 1​[k  ∈ ​ ​g​​]​)​cov​(​D​i​​, 1​[p​(​Z​i​​)​  ≥  p​(​z​​ k​)​]​)​)​.​

It remains to show that ​​ω​g​​  =  0​ when ​​​g​​  =  ∅​, so that only groups that comply with 
at least one instrument contrast receive weight in the 2SLS estimand. To see that this 
is so, suppose to the contrary that there is a group ​g​ with ​​π​g​​  >  0​ for which ​​​g​​  =  ∅​,  
while ​​ω​g​​  ≠  0​. Given the structure of ​​ω​g​​​, such a group must have ​​​g​​  ≠  ∅​. That is, 
this group must defy at some instrument contrast, even though they do not comply at 
any other instrument contrasts. We will prove that such a “pure defier” group cannot 
exist under Assumption PM by establishing a contradiction.

Let ​​j​0​​  ∈ ​ ​g​​​ be the instrument contrast at which the “pure defier” group ​g​ defies. 
By definition, ​​D​i​​​(​z​​ ​j​0​​​)​  =  0​, while ​​D​i​​​(​z​​ ​j​0​​−1​)​  =  1​. Since ​​​g​​  =  ∅​, it follows that for 
any ​i​ with ​​G​i​​  =  g​,

(22)	​ ​D​i​​​(​z​​ j​)​  =  1​[ j  <  ​j​0​​]​.​

24 In particular, that ​​a​​ ℓ​  =  ​a​​ 1​ + ​∑ j=2​ K  ​​ 1​[ j  ≤  ℓ]​​(​a​​ j​ − ​a​​ j−1​)​​ for any scalars ​​​{​a​​ ℓ​}​​ ℓ=1​ 
K
  ​​. 
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In particular, ​​D​i​​​(​z​​ 1​)​  =  1​, while ​​D​i​​​(​z​​ K​)​  =  0​.
To proceed, it will be helpful to use the following terminology. We call two vec-

tors ​​z​​ j​​ and ​​z​​ k​​ pm-comparable if they differ in only one component. That is, ​​z​​ j​​ and ​​
z​​ k​​ are pm-comparable if there exists an ​ℓ′  ∈ ​ {1, …, L}​​ such that ​​z​ ℓ​ j ​  = ​ z​ ℓ​ k​​ for all ​
ℓ  ≠  ℓ′​. If ​​z​​ j​​ and ​​z​​ k​​ are pm-comparable, then Assumption PM requires that either ​​
D​i​​​(​z​​ j​)​  ≤ ​ D​i​​​(​z​​ k​)​​ for all ​i  ∈  ​ or that ​​D​i​​​(​z​​ j​)​  ≥ ​ D​i​​​(​z​​ k​)​​ for all ​i  ∈  ​. Moreover, as 
we show in Lemma 1, if ​j  ≤  k​, then there cannot exist a group ​​g​​ ∗​​ with ​​π​​g​​ ∗​​​  >  0​ 
for which individuals ​i​ in group ​​g​​ ∗​​ have ​​D​i​​​(​z​​ j​)​  > ​ D​i​​​(​z​​ k​)​​. We will now use this 
result to show that the existence of the “pure defier” group ​g​ defined above creates 
a contradiction.

Let ​​z​​ ​j​1​​​​ be the vector whose first component is the same as that of the largest 
propensity-score instrument value, ​​z​​ K​​, while all other components are the same as 
the smallest, ​​z​​ 1​​. That is,

	​ ​z​​ ​j​1​​​  ≡ ​ (​z​ 1​ K​, ​z​ −1​ 1  ​)​.​

Then ​​z​​ ​j​1​​​​ and ​​z​​ 1​​ are pm-comparable, and ​​z​​ ​j​1​​​  ∈  supp​(​Z​i​​)​​, which we have assumed is 
rectangular. Since ​​D​i​​​(​z​​ 1​)​  =  1​ for any ​i​ with ​​G​i​​  =  g​ and ​p​(​z​​ 1​)​​ is the smallest pro-
pensity score value, it follows from Lemma 1 that ​​D​i​​​(​z​​ ​j​1​​​)​  =  1​ for these individuals 
as well. Thus by (22), it must be that ​​j​1​​  < ​ j​0​​​.

Now let ​​z​​ ​j​2​​​​ be the same as ​​z​​ ​j​1​​​​ except with its second component replaced by ​​z​ 2​ K​​. 
That is,

	​ ​z​​ ​j​2​​​  ≡ ​ (​z​ 2​ K​, ​z​ −2​ ​j​1​​ ​ )​  ≡ ​ (​z​ 1​ K​, ​z​ 2​ K​, ​z​ 3​ 1​, …, ​z​ L​ 1 ​)​.​

Then ​​z​​ ​j​2​​​​ is pm-comparable to ​​z​​ ​j​1​​​​, and ​​z​​ ​j​2​​​  ∈  supp​(​Z​i​​)​​. If it were the case that ​​j​2​​  ≥ ​ j​0​​​,  
then ​p​(​z​​ ​j​2​​​)​  ≥  p​(​z​​ ​j​0​​​)​  ≥  p​(​z​​ ​j​1​​​)​​, so that Lemma 1 would imply that ​​D​i​​​(​z​​ ​j​2​​​)​  =  1​  
for individuals with ​​G​i​​  =  g​. At the same time, (22) would imply that ​​D​i​​​(​z​​ ​j​2​​​)​  
=  0​ for these individuals, yielding a contradiction. Thus, it must be that ​​j​2​​  < ​ j​0​​​.

Continuing in this way, we find a sequence of vectors ​​z​​ ​j​1​​​, ​z​​ ​j​2​​​, ​z​​ ​j​3​​​, …, ​z​​ ​j​L​​​​ that each 
differ from ​​z​​ K​​ in one component less than its predecessor, and such that ​​j​ℓ​​  < ​ j​0​​​ for 
each ​ℓ​. This process ends once we reach ​​j​L​​​, at which point ​​z​​ ​j​L​​​  = ​ z​​ K​​ is the instrument 
value corresponding to the largest propensity score value. However, this implies a 
contradiction, because ​​j​L​​  < ​ j​0​​​ while at the same time ​​j​L​​  =  K  ≥ ​ j​0​​​. We conclude 
that a “pure defier” group cannot exist under Assumption PM, and therefore that the 
sum in (20) only needs to be indexed over ​g  ∈  ​ for which ​​​g​​  ≠  ∅​. ∎

LEMMA 1: Suppose that Assumption E holds. Let ​​ denote the set of all realizations 
of ​​​{​D​i​​​(z)​}​​z∈​​​ that are consistent with Assumption PM. Suppose that ​z​ and ​z′​ are 
pm-comparable and that ​p​(z)​  ≤  p​(z′)​​. Then there does not exist a group ​​g​​ ∗​  ∈  ​ 
such that ​​π​​g​​ ∗​​​  >  0​ and ​​D​i​​​(z)​  > ​ D​i​​​(z′)​​ for all ​i​ with ​​G​i​​  = ​ g​​ ∗​​.
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PROOF:
Since ​z​ and ​z′​ are pm-comparable, Assumption PM requires that ​​D​i​​​(z)​  ≤ ​ D​i​​​(z′)​​ 

for all ​i  ∈  ​, or ​​D​i​​​(z)​  ≥ ​ D​i​​​(z′)​​ for all ​i  ∈  ​. If such a group ​​g​​ ∗​​ did exist, then the 
latter case would need to hold. However, this would imply that

	​ p​(z)​  ≡  Pr​[​D​i​​  =  1 | ​Z​i​​  =  z]​​

	​ =  Pr​[​D​i​​​(z)​  =  1]​​

	​ =  Pr​[​D​i​​​(z)​  =  1 | ​G​i​​  = ​ g​​ ∗​]​​π​​g​​ ∗​​​ + Pr​[​D​i​​​(z)​  =  1 | ​G​i​​  ≠ ​ g​​ ∗​]​​(1 − ​π​​g​​ ∗​​​)​​

	​ >  Pr​[​D​i​​​(z′)​  =  1 | ​G​i​​  = ​ g​​ ∗​]​​π​​g​​ ∗​​​ + Pr​[​D​i​​​(z′)​  =  1 | ​G​i​​  ≠ ​ g​​ ∗​]​​(1 − ​π​​g​​ ∗​​​)​​

	​ =  Pr​[​D​i​​  =  1 | ​Z​i​​  =  z′]​  ≡  p​(z′)​,​

which contradicts the assumption that ​p​(z)​  ≤  p​(z′)​​. ∎
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