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 NOTES AND COMMENTS

 INDEPENDENCE, MONOTONICITY, AND LATENT INDEX MODELS:

 AN EQUIVALENCE RESULT

 BY EDWARD VYTLACIL1

 1. INTRODUCTION

 A COMMON PROBLEM IN ECONOMICS is to evaluate the effect of a treatment when

 individuals self-select whether to receive the treatment. This problem arises when trying to

 evaluate the union/nonunion wage differential, the effect of job training on earnings, and
 the returns to schooling, where being unionized or making a human capital investment is

 the treatment.

 One standard approach to this problem is the use of a selection model as first proposed

 by Heckman (1976). Under this approach, the researcher models selection into the pro-
 gram by a latent index crossing a threshold, where the latent index is interpreted as the
 expected net utility of selecting into treatment. However, some statisticians have criticized

 or even dismissed the use of selection models to estimate treatment effects, arguing that
 such analysis is inherently driven by distributional and functional form assumptions.2 This

 sentiment has been echoed within economics.

 The local average treatment effect (LATE) framework is a form of linear instrumen-

 tal variables (IV) analysis developed by Imbens and Angrist (1994).3 However, like the

 1 I would like to acknowledge James Heckman for his continued support. Many of the ideas in
 this note were directly motivated from my discussions with him, and this note grew out of our joint

 research. I would also like to thank him for his many detailed and extremely helpful comments and

 suggestions on this note. I would like to thank Victor Aguirregabiria, Lars Hansen, Guido Imbens,

 and especially Jaap Abbring for helpful comments. I would also like to thank seminar participants

 at the University of California-Irvine, Carnegie-Mellon University, University of Chicago, University

 College London, Institute for Fiscal Studies, Northwestern University, Olin School of Business at

 Washington University, Rochester University, University of Southern California, Stanford University,

 Tel Aviv University, Tilberg University, University of Toulouse, University of Wisconsin, and Yale

 University. All errors are my own. Financial support from the Alfred P. Sloan Doctoral Dissertation

 Fellowship, the C. V. Starr Foundation, and the Joint Center for Poverty Research is gratefully

 acknowledged.

 2 See, e.g., the comments and discussions on Heckman and Robb (1986) in Wainer (1986), espe-
 cially those by Tukey and Holland and the Heckman and Robb rejoinder. There is a large literature

 on the semiparametric estimation of selection models; see, for example, Ahn and Powell (1993).

 However, as emphasized by Heckman (1990), estimation of treatment effects requires knowledge of

 the intercept of the outcome equations, and most of the semiparametric literature does not consider

 estimation of the intercepts of the outcome equations.

 3 See also Angrist, Imbens, and Rubin (1996) for a further exposition of the approach for the
 special case of a binary instrument.
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 332 EDWARD VYTLACIL

 selection model approach,4 and unlike traditional IV analysis,5 the LATE framework

 allows for heterogeneous treatment effects, in particular, for the effect of the treatment

 to vary across individuals with the same observed characteristics and with selection into

 treatment possibly dependent on the individual-specific treatment effect. In order to allow

 for heterogeneous treatment effects, the LATE approach requires additional assumptions
 not imposed in conventional IV analysis, with these additional assumptions stated directly

 in terms of the underlying counterfactual variables.

 On the surface, the LATE assumptions do not seem connected to the assumption of a

 selection model. They do not directly involve an unobselved index crossing a threshold or

 the imposition of any structural economic model. The LATE approach has been advanced

 as being less restrictive than econometric selection models, but has been attacked for not

 being motivated by or interpretable as an economic model.6

 This note shows that the assumption of an unobserved index crossing a threshold that

 defines the selection model is equivalent to the independence and monotonicity assump-

 tions at the center of the LATE approach. In particular, the selection model assumptions

 imply the LATE assumptions, and given the LATE assumptions, there always exists a selec-

 tion model that rationalizes the observed and counterfactual data. The LATE assumptions

 are not weaker than the assumptions of a latent index model, but instead impose the

 same restrictions on the counterfactual data as the classical selection model if one does

 not impose parametric functional form or distributional assumptions on the latter. This

 equivalence result shows that the LATE analysis of Imbens and Angrist can be seen as

 an application of a latent index model, and thus directly connects their research to the

 econometric literature on selection models.

 This note proceeds in the following way. I first introduce the switching regression frame-

 work and the necessary notation in Section 2. I define and discuss the assumption of a

 selection model in Section 3 and the LATE assumptions in Section 4. In Section 5, I

 show that these two sets of assumptions are equivalent: the selection model implies the

 independence and monotonicity conditions assumed in LATE analysis, and the indepen-

 dence and monotonicity conditions imply that a selection model may be assumed without

 imposing any additional restrictions.

 2. FRAMEWORK

 Let (f2, X, P) denote the probability space. All random variables will be defined on this
 common probability space. Let co denote an element of f2. Let (Y0(w), Y1 (w)) denote
 random variables corresponding, respectively, to the potential outcomes in the untreated

 and treated states. For those unfamiliar with measure-theoretic notation, it may be most

 intuitive in the context of this note to think of f2 as denoting the set of all individuals

 in the universe of interest and of co as indexing individuals. When translating the LATE

 assumptions of Imbens and Angrist (1994) into this notation, co will serve the same role
 as their individual i subscript.

 4 See Heckman and Robb (1986) and Bjorklund and Moffitt (1987).
 5 Traditional IV approaches are critically dependent on the assumption that either (i) the treatment

 effect does not vary across individuals, or (ii) the treatment effect does vary across individuals, but

 individuals do not select into treatment based on their idiosyncratic gains from treatment. See, e.g.,

 Heckman and Robb (1986), Heckman (1997), and Heckman and Vytlacil (2002).

 6 See, e.g., the comments by Heckman (1996) and Moffitt (1996) on Angrist, Imbens, and Rubin

 (1996), and the rejoinder by Angrist, Imbens, and Rubin (1996).
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 INDEPENDENCE AND MONOTONICITY 333

 Let D(w) be a random variable for receipt of treatment; D(w) = 1 denotes the receipt
 of treatment; D(w) = 0 denotes nonreceipt. Let Y(w) be the measured outcome variable
 so that

 Y(w) D(i)Y (Y ) + (1- D(w)) Yo().

 I will assume that Y1(w) and Y0o(w) have finite first moments and also that 1 > P[D(w)
 1] > O.' Let W(w) denote a vector of observed covariates. Partition W(W) into two sub-
 vectors, W(wo) = [X(wo), Z(wo)], where X contains the covariates that directly affect the
 (Y1, YO) outcomes (as well as possibly affecting the treatment decision), and Z contains
 the covariates that only affect the treatment decision D. Variables in Z are referred to as

 instruments or excluded variables. In the rest of this note, I do not explicitly consider the

 obselved random variables X; everything in this note is conditional on X.

 Let S denote the support of Z, and let z denote a possible realization of Z. For each

 z c 2, let Dw(w) be the counterfactual variable denoting whether the observation would
 have received treatment if Z(w) had been externally set to z. This defines a collection of

 random variables, {Dz (w) z c }, where the collection of random variables is indexed
 by the support of Z. Clearly D(w) = Dz(M>) (w). To simplify the analysis, I will assume that
 S is countable. This assumption is imposed for expositional purposes only. An Appendix
 containing the derivations for the more general case where S is possibly uncountable is
 available upon request from the author.8

 Let

 (1) p(z) = P[D(wj) = ljZ(wj) = z].

 p(z) is sometimes called the "propensity score" by statisticians and is sometimes called
 the "choice probability" by economists.9

 3. LATENT INDEX SELECTION MODELS

 The latent index assumption is that the treatment choice is determined by an index
 crossing a threshold. The most conventional form of the classical selection model imposes
 a linear index assumption, in particular,

 (2) D = 1[ZP > U],

 where 1[.] is the indicator function and U is assumed to be independent of Z. The form
 of the selection model that I consider (and show is equivalent to the LATE assumptions)
 revises equation (2) in two ways. First, I relax the linear index assumption to consider

 7 Following a standard abuse of notation, I will write [D(@) = 1] as short for [a): D(@) = 1].
 8 The analysis of this note trivially generalizes to the case where 2 is uncountable if one imposes

 that {Dz ((o) z E 2} is separable, i.e., if one imposes that there exists a countable set Y* c X, such

 that for any z E 2 there exists a sequence {zI, Z2,. . . } C 2* such that liMk,> Dzk = Dz. The appendix
 shows the equivalence result for the case where 2 is uncountable and a separability assumption has
 not been imposed.

 9 The term "propensity score" orginates in Rosenbaum and Rubin (1983), who analyzed its role
 in the method of matching. See Heckman and Robb (1986) and Heckman and Vytlacil (2002) for

 a discussion of how the propensity score plays a fundamentally different role in matching models

 versus selection models.

This content downloaded from 192.91.235.240 on Wed, 09 Mar 2022 20:17:53 UTC
All use subject to https://about.jstor.org/terms



 334 EDWARD VYTLACIL

 D = l[v(Z) > U] for some function P. Second, I explicitly impose that the latent index

 equation continues to hold under hypothetical interventions. In other words, I assume not

 only that the individual's actual choice be described by the latent index model, but also

 that the same model describes what her choices would have been had her value of Z been

 externally set to any other value. Formally, I make the following assumptions:10

 LATENT INDEX SELECTION MODEL (S-1): Dj(w) = 1[v(z) > U(w)] for some v :
 + e X, with (i) v(z) a measurable, nontrivial fiunction of z,11 and (ii)

 Z(wo) iL (U(wo), Yo(o), Y1 (w)), where " -L " denotes independence.

 In Assumption S-1, without loss of generality, we will impose the normalization that

 v(z) = p(z) and P[U(cw) < t] = t for any t c _P, where p(z) = P[D(w) l=Z(w) =z] and

 Si5 is the support of p(Z(wo)).

 4. ASSUMPTIONS OF LATE APPROACH

 As an alternative to the assumption of a selection model, the two identifying assump-

 tions of the LATE approach of Imbens and Angrist are as follows:'2

 LATE INDEPENDENCE ASSUMPTION (L-1): (i) For- all z c 2, Z(w) IL (Y1 (co), YO(w),
 Dj(w)), and (ii) p(z) is a nontrivial function of z.

 LATE MONOTONICITY ASSUMPTION (L-2): For all (z, z') c S x 2, either Dz(w) >
 Dz,(w) for all w c f, or Dz(w)< Dz,(w) for all w c f.

 The independence assumption is not that Z(w) is independent of Dj(w) conditional
 on Z(wo) = z. (Z(wo) is independent of Dz(w) conditional on Z (w) = z from the usual
 laws of probability.) Instead, the assumption is that Z(w) is independent of each element

 of {Dz(w) : z c S}. The monotonicity assumption is not that D(w) is nonincreasing or
 nondecreasing in z. Instead, the assumption is that for any (z, z') c S x 2, the (weak)

 ordering between Dz (w) and Dz (w) is invariant to choice of W.13
 To help understand these assumptions, assume the Dz (w) are generated by

 the latent variable model Dj(w) = 1[4(z, U(w)) > 0]. If Z(w) is independent of
 (U(wo), Y0(wo), Y1(w)), then Z (w) is independent of (Dz(w), Yo(W), Y1(W)) for all z c 2
 and the independence assumption is satisfied. If Z(w) is not independent of U(w), then

 10 Recall that the analysis of this note is implicitly conditioning on X(w), where X(w)
 are any covariates that directly effect the outcome variables. Thus, assumption (ii) is that

 Z(wi) IL (U(), Yo(W), Y1 (w))IX(w)
 11 In particular, v(z) is a measurable function such that there exists (z, z') E I x I with v(z) 7& v(z').
 12 Recall that the analysis of this note is implicitly conditioning on X(w), where X(w) are any

 covariates that directly effect the outcome variables. Thus, making the conditioning on X(w) explicit,

 we have, e.g., that Z (w) IL (Yo(w)), Y1(w)), Dz(w)))IX(w()) for all z E 1; likewise, the monotonicity
 condition holds conditional on X(w).

 13 Manski (1997) also imposes a monotonicity condition in his analysis, although his monotonicity
 condition is fundamentally different from the one imposed in LATE analysis. The LATE monotonicity

 condition is a cross-person restriction on the relationship between different hypothetical treatment

 choices, with the hypothetical treatment choices defined in terms of an instrument. In contrast, the

 Manski (1997) monotonicity condition is a monotonicity restriction on the relationship between the
 treatment and the outcome for each given individual.
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 INDEPENDENCE AND MONOTONICITY 335

 in general Z (w) will not be independent of D, (w) and the independence assumption will
 not hold. If the ; index is separable in z and U, so that 4(z, U (w)) = v(z) + U (w), then
 for any (z, z') c 2, v(z) > v'(z') implies that Dz(w) > Dz,(w) for all w c f2. Thus, the
 additive separability assumption implies the monotonicity assumption. The monotonicity

 assumption will not necessarily hold without additive separability. For example, it will not

 hold in the random coefficient latent index model if a given coefficient is both positive

 and negative with positive probability.

 It will be convenient to define the following sets:

 D`-(I) = @Dz() I},

 Dz-1 (0) = { @:Dz (i)= O}-

 Speaking loosely of co as an "individual," D;-1(1) is the set of people who would select
 into treatment if the instrument were externally set to z, and D;-1(0) is the set of people
 who would not select into treatment if the instrument were externally set to z. Using this
 notation, the monotonicity condition can be equivalently stated as follows:

 EQUIVALENT MONOTONICITY CONDITION: For all (z, z') c S x 2, either D;1 (1) C
 DZ1(1) or D;1(1) DD1(1).

 Given the above assumptions, Imbens and Angrist (1994) show that the linear instru-

 mental variables estimand can be interpreted as a weighted average of treatment effects.

 In particular, they show that if Z is binary, = {0, 1}, with D1(w) > Do(w), then the
 linear instrumental variables estimand identifies E(Y1 - Yo ID = 1, Do= 0),

 E(Z(Y - E(Y))) =

 They show that if Z is not binary, then the linear instrumental variables estimand identifies

 a particular weighted average of such terms.

 5. EQUIVALENCE OF IDENTIFYING ASSUMPTIONS

 The central hypothesis of this note is that the independence and monotonicity assump-

 tions of the LATE approach are equivalent to the assumption of a latent index model as

 specified in S-1. Since one can trivially show that the latent index model defined by S-l
 implies conditions L-1 and L-2, we need only to show that conditions L-1 and L-2 imply

 a latent index representation of the form given by S-1. The analysis proceeds as follows.
 Given conditions L-1 and L-2, I show that one can construct a latent index with implied

 counterfactual treatment variables {Df(w9})ZE, such that (i) the constructed latent index
 satisfies all conditions of S-1, and (ii) Dz(w) = Dz(w) for all w outside of a set of P-
 measure zero, for all z c S.

 We now construct the latent index representation implied by the LATE assumptions.
 The latent index representation will have the form

 DZ(j) = 1[p(z)>_ U(001.

 The random variable U(w) is by definition a real valued measurable function, and we now
 construct this function.
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 336 EDWARD VYTLACIL

 We will define the U (w) function to take different values depending on whether c is
 in the sets N, A, or C, with these sets defined as follows:

 N=-n DZ-'(0)
 ZE Z

 A= nDj-(1)
 ZE Z

 C (N U A) (UD -1(O) n (U D-1(1))

 By construction, the sets N, A, and C form a partition of f2. D;-1(1) is a measurable
 set for any z c 2, S is countable by assumption, and thus the sets A, N, and C are
 measurable. Again loosely speaking of a) as indexing individuals, we have that N is the

 set of individuals who would not select in for any value of the instrument, A is the set
 of individuals who would select in for all values of the instrument, and C is the set of
 individuals who would select in for some values of the instrument but would not for other

 values. In the terminology of Angrist, Imbens, and Rubin (1996), w c N are referred to as

 never-takers, co c A are referred to as always-takers, and w c C are referred to as compliers.
 I will set U(w) 1 for w c N and set U(w) = 0 for w c A. For w c C, I proceed as

 follows. Let

 ;o (w{) = z E Dz(w) = O

 ,(&)) ={z c Dz(D=() 1}.

 The sets SO(w) and 1(ow) partition 2, where the partition is a function of W. S%O(W) is
 the set of instrument values such that the individual would not select into treatment if

 her Z had been externally set to those values; (cw) is the set of instrument values such

 that the individual would select into treatment if her Z had been externally set to those
 values. Critical to construction of U(w) for w c C is the following result, where p(z) is
 the propensity score defined in equation (1).

 LEMMA 1: Assume L-1 and L-2. Then for all co c C,

 sup p(z) < inf p(z).
 ZES(Z)< ZESi ((O) () ZE20(,W) (

 PROOF: See Appendix A.

 Lemma 1 essentially says that, for any fixed w c C, the sets 1j (w) and S%o(w) can be
 separated based on the propensity score. In other words, for any fixed individual who
 would select in for some values of the instrument but would not select in for other values

 of the instrument, the propensity score corresponding to any instrument value for which

 the person selects in is always at least as large as the propensity score corresponding to
 any instrument value for which the person would not select in.

 We now construct the U(w) function:

 1 if cN,

 u if cA,

 inf p(z) if ) cC.
 Z E 21 (Wv)

This content downloaded from 192.91.235.240 on Wed, 09 Mar 2022 20:17:53 UTC
All use subject to https://about.jstor.org/terms



 INDEPENDENCE AND MONOTONICITY 337

 Given this construction of U(w), the following lemma shows that U(w) is a random
 variable.

 LEMMA 2: Given L-1 and L-2, we have that U(w) is a random variable, i.e., the function

 U, U: f2 e? X, is measurable Y.

 PROOF: See Appendix A.

 The following lemma shows that Z(w) is independent of (U(w), Yo(w), Yl(w)).

 LEMMA 3: Given L-1 and L-2, we have

 Z(wo) IL (U(wo), Yo(wi), Y,(w)).

 PROOF: See Appendix A.

 We now define a selection model using the propensity score, p(z), as the index and the
 random variable U(wj) as the threshold:

 Dz (&) = 1 [p (z) >- U (001)

 From L-1, we have that p(z) is a nontrivial function of z, so that the selection model

 satisfies condition (i) of S-1. Given L-1 and L-2, Lemma 3 states that the selection model
 satisfies condition (ii) of S-1. The following theorem shows that the hypothetical choices
 implied by the selection model agree with the original hypothetical choice variables with
 probability one.

 THEOREM 1: Given L-1 and L-2, we have, for any z c 2,

 Dz (o) = Dz (o) w.p.1.

 PROOF: See Appendix A.

 Theorem 1 shows that it is possible to construct a latent index selection model

 that agrees with the original hypothetical choice variables w.p.1 and such that both
 conditions of S-1 hold. Thus, the independence and monotonicity assumptions imply
 that there exists a latent index representation for participation in treatment. The
 LATE conditions and the selection model impose exactly the same restrictions on

 (Z(C)), Y,(wi), Yo(w)), {Dz(w)}IZE). The LATE conditions and the selection model are not
 only indistinguishable based on observational data, but they cannot be distinguished based
 on any hypothetical intervention or experiment. The two models are equivalent.14

 14 This equivalence result is related to a result of Glickman and Normand (2000). They consider
 the LATE assumptions L-1 and L-2 augmented with the additional assumptions that (i) Z is a scalar

 random variable and (ii) z < z' =X Dz(w) < Dz, (w). Note that assumptions L-1 and L-2 do not imply
 these conditions; in particular, note that the LATE monotonicity condition does not imply condi-

 tion (2). They show that LATE, when augmented with these additional assumptions, is equivalent to

 the latent variable model Dz = 1[z > U]. This result can be seen as a special case of the equivalence
 result of this note. In particular, this note shows that LATE (without the additional assumptions) is

 equivalent to Dz = 1[v(z) > U]. Imposing conditions (i) and (ii) implies that v is invertible so that
 under their conditions we have Dz = 1[z > V] with V = v-'(U).

This content downloaded from 192.91.235.240 on Wed, 09 Mar 2022 20:17:53 UTC
All use subject to https://about.jstor.org/terms



 338 EDWARD VYTLACIL

 This derivation has used the assumption that S is finite or countable. This assumption

 has been imposed for expositional purposes only, and an Appendix containing the deriva-

 tions for the more general case where S is possibly uncountable is available upon request

 from the author. The analysis of this note has not imposed the assumption that the dis-

 tribution of the threshold U be absolutely continuous with respect to Lebesgue measure,

 and the random variable U constructed above from the LATE assumptions will have a

 distribution that is not in general absolutely continuous with respect to Lebesgue measure.

 However, this does not imply that selection models with continuous U are more restric-

 tive than the LATE assumptions. An Appendix, available upon request from the author,

 shows that, for a selection model with the distribution of U not absolutely continuous

 with respect to Lebesgue measure, there will exist on some probability space an alterna-

 tive selection model with U distributed absolutely continuously with respect to Lebesgue

 measure and implying the same joint distribution for all variables of interest, i.e., the

 same distribution of potential outcomes, hypothetical choices, and covariates. Finally, the

 analysis of this note has used p(z) as the latent index of the selection model. This nor-

 malization is convenient for the derivation. This is only a normalization, and applying any

 monotonic transformation to p(z) and U will result in an equally valid representation for

 the. latent index. The use of p(z) as a normalization in the above derivation is not dis-
 similar to proofs of the existence of a utility function. Utility functions are only defined

 up to monotonic transformations, and proofs by construction for utility functions typically

 involve representations for the utility function that are convenient for the derivation but

 not necessarily natural otherwise (see, e.g., Debreu (1959)).
 The equivalence result of this paper implies that results developed within the LATE

 framework apply equally to the selection model framework, and vice versa. The identi-

 fication analysis for treatment parameters developed under the LATE assumptions (e.g.,
 Imbens and Angrist (1994)) apply to the identification of treatment parameters under the

 assumption of a selection model. Likewise, identification analysis for treatment parameters

 under the selection model assumption (e.g., Heckman (1990) and Heckman and Vytlacil
 (1999, 2001a)) apply to identification of treatment parameters under the LATE condi-

 tions. The sharp bounds on the average treatment effect, E(Y1 - Y0), under the LATE
 assumptions with Y1, Y0, and Z binary (Balke and Pearl (1997)), are also the sharp bounds
 for the average treatment effect under a selection model assumption with Y1, Y0, and Z
 binary. And likewise, the bounds on the average treatment effect, shown by Heckman

 and Vytlacil (2001b) to be sharp under the selection model assumption without requir-
 ing Y1, Y0, or Z to be binary, are also the sharp bounds on the average treatment effect

 under the LATE assumptions without requiring Y1, Y0, or Z to be binary. The relation-
 ship between treatment parameters under the selection model assumption (see Heckman
 and Vytlacil (2000)) also holds under the LATE assumptions. In addition, there is a large
 literature within econometrics on the semiparametric and nonparametric estimation of

 selection models (e.g., Ahn and Powell (1993), Andrews and Shafgans (1998), and Das,

 Newey, and Vella (2000)). The equivalence result of this paper implies that these estima-

 tion methods can be applied under the LATE conditions. In either the LATE or selection
 model approach, auxiliary assumptions are sometimes imposed, and the analysis of this
 paper may be adapted to show what the auxiliary assumptions stated in terms of one
 approach translate into in terms of restrictions in the alternative approach.

 Dept. of Economics, Stanford University, 579 Sierra Mall, Stanford, CA 94305-6072,
 U.S.A.; vytlacil@stanford.edu; www.stanford.edu/vytlacil

 Manuscript received August, 1999; final revision received December, 2000.
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 INDEPENDENCE AND MONOTONICITY 339

 APPENDIX: PROOFS

 PROOF OF LEMMA 1: Proof is by contradiction. Assume there exists wt) E C such that

 supzE20(,,) p(z) > infzj1(,) p (z). Then there exists (z, z') such that Dz (w) = 0, Dz, (w) = 1, and
 p(z) > p(z'). By the monotonicity and independence conditions (L-1 and L-2), p(z) > p(z') implies
 D-1 (1) D D-1(1), which contradicts the assumption that Dz()) = 0, Dz, (w) = 1.

 PROOF OF LEMMA 2: First consider the sets A, N, and C. Dj-1(1) is a measurable set for any
 z E X, I is finite or countable by assumption, and thus the sets A, N, and C are measurable.

 We now show that U is a measurable function. For any t E [0, 1], {w ) E C: infZ 1 (,) p(z) < t} =
 UZEy(t)[CnDZ- (1)], where l(t) = {z E I: p(z) < t}. Since D;-'(1) is a measurable set for any z E I
 and I is finite or countable by assumption, we have that Uz,2(t) [C n D,1 (1)] is measurable C n Y for
 any t E [0, 1]. Thus, the restriction of U to C is measurable. The restrictions of U to N and to A are

 trivially measurable. Finally the sets N, A, and C are measurable and form a partition of 12, and we

 thus have that U(w) is a random variable, i.e., the function U, U: 12 F- )I, is measurable Y.

 PROOF OF LEMMA 3: We first show that U(w) is independent of Z(W) conditional on (Yo(wO),
 Y, (w)). For any fixed t, consider

 P[U(wi) < tIZ(wi), Yo(wi), Y,(w)].

 Define l(t) = {z E I: p(z) < t}. If l(t) is nonempty, then using the construction of U(w) and
 Lemma 1, we have that

 P[U(wi) < tjZ(wi), Y0(wi), Y,(w)] =P[ U D 1(1) Z(wt), Yo(w)), Y,())].
 ZE2(t)

 Let RN denote the set of natural numbers. By L-2, we can construct a sequence {zj E I: j E N}, such
 that D-1 (1) C Dh1 (1) for all j E N and Uij Dzj1 (1) = Uz2(,) Dz'(1). Thus zj j1 i zI+

 P[U(wt)) < tjZ(wt), ) Yn (w)), Y1 (w))] = P U DZ (1) Z(w), Yo (w), Y, (w) ZEI(t)

 = limP[D[-(1)IZ(wi), Yo(wi), Y1(wi)]
 i-> J

 = lim P[Dz 1 (1) Yo (w), Y1 ()],

 where the first equality follows from the definition of U(w), the second equality follows from conti-
 nuity from below, and the third equality follows from L-1. Following the same reasoning,

 P[U(wi) < tjYo (wi), Y,(w)] = limP[Dz1 (1)IYo(w), Y,(w)],

 and thus

 P[U(wO) < t Z(wO), Yo(w)), Y,(w))] = P[U(w)) < tIYo (w), Y1(,)]

 for any t such that Z(t) is nonempty. If l(t) is empty, then {wto: U(cw) < t} = nz: D-1 (1), and
 a parallel argument shows that P[U(w) < tjZ(w), Yo(w), Y1(w)] = P[U(w) < t1YO(W), Y1(w)] for t
 such that Y (t) is empty. Thus, U (w) AL Z(w) I(Y, (w), Yo (w)). Using that Z (w) a (Yo (w), Y, (w)) by
 assumption L-1, we now have that Z(w)) I (U(w)), Y,(w)), Yo(w))).

 PROOF OF THEOREM 1: Define Db(w) = 1(p(z) > U(w)). Recall that 9P denotes the support of
 p(Z(w)). Pick any z E S. Consider

 P[w o: Dz(wi) :A D(z)] = P[wo E N: Dz(wi) 7# Dz(wi)]

 + P[ E A : Dz (w) A Dz (w)] + P[w E C : Dz (w) : Dz (w)].

 We will prove that each of the three terms on the right-hand side of this expression is zero.
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 Consider the first term of the expression. If {1} E Ss, then Pr[N] = 0 and trivially P[W E N: D2(w) #
 Dz(w)] = 0 for all z E S. Now assume {i} 1 . ) so that p(z) < 1 for any z E S. For w E N, we have

 Dz(w) = 0, and Dz(w) = 1(p(z) > 1) = 0 for any z E 2, so Dz(w) = Dz(w) for all w E N, and thus

 P[w E N : Dz(w) # Dz(w)] = 0 for all z E S.
 Consider the second term of the expression. For any w E A, Dz(w) = 1,Dz(w) = 1(p(z) > 0) = 1,

 so that Dz(w) = Dz(w) for all w E A. Thus, P[w E A : Dz()) + Dz())] = 0 for all z E 2
 Now consider the third term of the expression. If P[wO E C] = 0, then trivially Pr[wO E C: Dj(w) #

 Dbz()] = 0. Now assume P[w E C] > 0. We have Dj(w) = 0 and Db(w) = 0 if z is such that p(z) <
 U(w), and Dj(w) = 1 and Dj(w) = 1 if z is such that p(z)> U(w). But, if z is such that p(z) =
 U(w), then Dz(w) = 1 and Dz(w) may equal 0. The event Dz(w) = 1 and Dz(w) = 0 will occur for

 some z values if supZE20(W) p(z) = infZE2,(O) p(z). Thus, {w E C : Dz(w) = Dz(w)} = {w E C : U(w) =
 p(z), Dz(w) = O}. So we need to show that {w E C : U(w) = p(z), Dz(w) = O} is a set of zero measure
 in the case where P[W E C] > 0. We will now show P[w : U (w) = p(z), Dz (w) = O 1w E C] = 0 by a proof
 by contradiction. Let P[w : U (w) = p(z), Dz(w) = 01w E C] = r, and assume r > 0. There are two cases
 to consider, first where there does not exist z' E 21 (co), such that p(z') = infZE2J (0) p(z) (the inf is not
 attained), and second where the inf is attained. First consider the case where the inf is not attained. By

 construction, the event [U(wo) = p(z), Dz(w) = 0] implies Dz(w) = 1 for any z* such that p(z*) > p(z).
 Thus, for any such z*, p(z*) > p(z) + rP[(0 E C], and thus (p(z), p(z) + rP[(0 E C]) n 0 = 0. But

 then U(wo) 7& infZE21(,) p(z), a contradiction. Now consider the case where the inf is attained. Then
 there exists z' such that p(z') = p(z) and Dz, = 1 and Dz = 0. The independence and monotonicity
 assumptions (assumptions (L-1) and (L-2)) immediately imply that this is a zero probability event.
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