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Abstract

We study inference in shift-share regression designs, such as when a regional outcome is re-
gressed on a weighted average of sectoral shocks, using regional sector shares as weights. We
conduct a placebo exercise in which we estimate the effect of a shift-share regressor constructed
with randomly generated sectoral shocks on actual labor market outcomes across U.S. Commuting
Zones. Tests based on commonly used standard errors with 5% nominal significance level reject the
null of no effect in up to 55% of the placebo samples. We use a stylized economic model to show
that this overrejection problem arises because regression residuals are correlated across regions
with similar sectoral shares, independently of their geographic location. We derive novel inference
methods that are valid under arbitrary cross-regional correlation in the regression residuals. We
show using popular applications of shift-share designs that our methods may lead to substantially
wider confidence intervals in practice.
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1 Introduction

We study how to perform inference in shift-share designs: regression specifications in which one
studies the impact of a set of shocks, or “shifters”, on units differentially exposed to them, with the
exposure measured by a set of weights, or “shares”. Specifically, shift-share regressions have the form

Yi = βXi + Z′i δ + εi, where Xi =
S

∑
s=1

wisXs, wis ≥ 0 for all s, and
S

∑
s=1

wis ≤ 1. (1)

For example, in an investigation of the impact of sectoral demand shifters on regional employment
changes, Yi is the change in employment in region i, the shifter Xs is a measure of the change in
demand for the good produced by sector s, and the share wis may be measured as the initial share of
region i’s employment in sector s. Other observed characteristics of region i are captured by the vector
Zi, which includes the intercept, and εi is the regression residual. Shift-share specifications are in-
creasingly common in many contexts (see, e.g., Bartik (1991), Blanchard and Katz (1992), Card (2001),
or Autor, Dorn and Hanson (2013)). However, their formal properties are relatively understudied.

Our starting point is the observation that usual standard error formulas may substantially under-
state the true variability of OLS estimators of β in eq. (1). We illustrate the importance of this issue
through a placebo exercise. As outcomes, we use 2000–2007 changes in employment rates and average
wages for 722 Commuting Zones in the United States. We build a shift-share regressor by combining
actual sectoral employment shares in 1990 with randomly drawn sector-level shifters for 396 4-digit
SIC manufacturing sectors. The placebo samples thus differ exclusively in the randomly drawn sec-
toral shifters. For each sample, we compute the OLS estimate of β in eq. (1) and test if its true value is
zero. Since the shifters are randomly generated, their true effect is indeed zero. Valid 5% significance
level tests should therefore reject the null of no effect in at most 5% of the placebo samples. We find,
however, that usual standard errors—clustering on state as well as heteroskedasticity-robust errors—
are much smaller than the standard deviation of the OLS estimator and, as a result, lead to severe
overrejection. Depending on the labor market outcome used, the rejection rate for 5% level tests can
be as high as 55% for heteroskedasticity-robust standard errors and 45% for standard errors clustered
on state, and it is never below 16%.

To explain the source of this overrejection problem, we introduce a stylized economic model
featuring multiple regions, each of which produces output in multiple sectors. The key ingredients of
our model are a sector- and region-specific labor demand and a regional labor supply. We assume that
labor demand in each sector-region pair has a sector-specific elasticity with respect to wages and an
intercept that aggregates several sector-specific components (e.g. sectoral productivities and demand
shifters for the corresponding sectoral good). Labor supply in each region is upward-sloping and has
a region-specific intercept that may aggregate group-specific labor supply shifters (e.g. push factors
that raise immigration from different countries of origin). Up to a first-order approximation, the
impact of sector-level shocks on labor market outcomes takes the form of a shift-share specification
similar to that in eq. (1).

A key insight of our model is that the regression residual εi in eq. (1) will generally account
for shift-share components that aggregate all unobserved sector-level shocks using the same shares
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wis that enter the construction of the regressor Xi, as well as shift-share components that aggregate
unobserved group-specific labor supply shifters using exposures w̃ig of region i to group-g specific
shocks. Thus, the residual may incorporate multiple shift-share terms with shares correlated with
those defining the shift-share regressor Xi. Consequently, whenever two regions have similar shares,
they will not only have similar exposure to the shifters Xs, but will also tend to have similar values
of the residuals εi. While traditional inference methods allow for some forms of dependence between
the residuals, such as spatial dependence within a state, they do not directly address the possible
dependence between residuals generated by unobserved shift-share components. This is why, in our
placebo exercise, traditional inference methods underestimate the variance of the OLS estimator of β,
creating the overrejection problem.

We then establish the large-sample properties of the OLS estimator of β in eq. (1) under repeated
sampling of the shifters Xs, conditioning on the realized shares wis, controls Zi, and residuals εi.
This sampling approach is motivated by our economic model: we are interested in what would have
happened to outcomes if the sector-level shocks Xs had taken different values, holding everything
else constant. Our framework allows for heterogeneous effects of the shifters: one unit increase in Xs

causes the outcome in region i to increase by wisβis, where βis is an unknown parameter.
Our key assumption is that, conditional on the controls and the shares, the shifters are as good

as randomly assigned and independent across sectors. An advantage of this assumption is that it
allows us to do inference conditionally on εi; as a result, we can allow for any correlation structure
of the regression residuals across regions.1 In contrast, if, instead of assuming independence of
the shifters across sectors, we modeled the correlation structure in the residual, as in the spatial
econometrics literature (e.g. Conley, 1999) or in the interactive fixed effects literature (e.g. Bai, 2009;
Gobillon and Magnac, 2016), the resulting inference would be sensitive to the validity of the modeling
assumptions. We show that the regression estimand β in eq. (1) corresponds to a weighted average of
the heterogeneous parameters βis and derive novel confidence intervals that are valid in samples with
many regions and sectors. We also derive an analogous formula when Xi is used as an instrument
in an instrumental variables regression, which follows directly from the fact that the associated first-
stage and reduced-form regressions take the form in eq. (1).

To gain intuition for our formula, it is useful to consider the special case in which each region is
fully specialized in one sector (i.e. for every i, wis = 1 for some sector s). In this case, our procedure is
identical to using the usual clustered standard error formula, but with clusters defined as groups of
regions specialized in the same sector. This is in line with the rule of thumb that one should “cluster”
at the level of variation of the regressor of interest. In the general case, our standard error formula
essentially forms sectoral clusters, the variance of which depends on the variance of a weighted sum
of the regression residuals εi, with weights that correspond to the shares wis.

We extend our baseline results in three ways. We provide versions of our standard errors that only
require the shifters to be independent across “clusters” of sectors, allowing for arbitrary correlation

1This is similar to the insight in Barrios et al. (2012), who consider cross-section regressions estimated at an individual
level when the variable of interest varies only across groups of individuals. They show that, as long as the regressor of
interest is as good as randomly assigned and independent across the groups, standard errors clustered on groups are valid
under any correlation structure of the residuals.
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among sectors belonging to the same “cluster.” We also show how to apply our framework to panel
data settings in which we have multiple observations of each region over time. Finally, we cover
applications in which the shifter is unobserved, but can be estimated using observable local shocks.

We illustrate the finite-sample properties of our novel inference procedure in the same placebo
exercise that we use to show the bias of the usual standard error formulas. Our new formulas give a
good approximation to the variability of the OLS estimator across the placebo samples; consequently,
they yield rejection rates that are close to the nominal significance level. As predicted by the theory,
our standard error formula remains accurate under alternative distributions of both the shifters and
the regression residuals. When the number of sectors is small or there is a sector that is significantly
larger than the rest, our method overrejects, although the overrejection is milder in comparison with
the usual standard error formulas. If the shifters are not independent across sectors, we show that it
is important to properly account for their correlation structure.

In the final part of the paper, we illustrate the implications of our new inference procedure for two
popular applications of shift-share regressions. First, we study the effect of changes in sector-level
Chinese import competition on labor market outcomes across U.S. Commuting Zones, as in Autor,
Dorn and Hanson (2013). Second, we use changes in sector-level national employment to estimate
the regional inverse labor supply elasticity, as in Bartik (1991).2 Our new confidence intervals for the
effects of Chinese competition on local labor markets increase by 23%–66% relative to those implied by
state-clustered or heteroskedasticity-robust standard errors, although these effects remain statistically
significant. In contrast, our confidence intervals for the inverse labor supply elasticity estimated using
the procedure in Bartik (1991) are very similar to those constructed using standard approaches.

Shift-share designs have been applied to estimate the effect of a wide range of shocks. For exam-
ple, in seminal papers, Bartik (1991) and Blanchard and Katz (1992) use shift-share designs to analyze
the impact on local labor markets of shifters measured as changes in national sectoral employment.
More recently, shift-share strategies have been applied to investigate the local labor market impact
of various shocks, including international trade competition (Topalova, 2007, 2010; Kovak, 2013; Au-
tor, Dorn and Hanson, 2013; Dix-Carneiro and Kovak, 2017; Pierce and Schott, 2018), credit supply
(Greenstone, Mas and Nguyen, 2015), technological change (Acemoglu and Restrepo, 2019, 2018), and
industry reallocation (Chodorow-Reich and Wieland, 2018). Shift-share regressors have been used as
well to estimate the impact of immigration on labor markets, as in Card (2001) and many other pa-
pers following his approach; see reviews in Lewis and Peri (2015) and Dustmann, Schönberg and
Stuhler (2016). Furthermore, recent papers use shift-share strategies to estimate how firms respond
to changes in outsourcing costs and foreign demand (Hummels et al., 2014; Aghion et al., 2018).3

Our paper is related to two other papers studying the statistical properties of shift-share instru-
mental variables. First, Goldsmith-Pinkham, Sorkin and Swift (2018) consider using the full vector of

2Additionally, in Online Appendix F, we use changes in the stock of immigrants from various origin countries to
investigate the impact of immigration on employment and wages, following Altonji and Card (1991) and Card (2001).

3Shift-share regressors have also been used to study the impact of sectoral shocks on political preferences (Autor et al.,
2017; Che et al., 2017; Colantone and Stanig, 2018), marriage patterns (Autor, Dorn and Hanson, 2018), crime levels (Dix-
Carneiro, Soares and Ulyssea, 2018), and innovation (Acemoglu and Linn, 2004; Autor et al., 2019). In addition to using
shift-share designs to estimate the overall impact of a shifter of interest, other work has used them as part of a more general
structural estimation approach; see Diamond (2016), Adão (2016), Galle, Rodríguez-Clare and Yi (2018), Burstein et al.
(2018), Bartelme (2018). Baum-Snow and Ferreira (2015) review additional applications in the context of urban economics.
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shares (wi1, . . . , wiS) as an instrument for endogenous treatment. They conclude that this approach
requires the entire vector of shares to be as good as randomly assigned conditional on the shifters.
Second, Borusyak, Hull and Jaravel (2018), focusing on the use of a shift-share regressor as an instru-
ment, show it is a valid instrument if the set of shifters is as good as randomly assigned conditional on
the shares, and discuss consistency of the instrumental variables estimator in this context. We follow
Borusyak, Hull and Jaravel (2018) by modeling the shifters as randomly assigned, since this approach
follows naturally from our economic model. Using this assumption, we point out the potential bias
of standard inference procedures when applied to shift-share designs, and provide a novel inference
procedure that is valid in this context.

While our paper focuses on the statistical properties of the OLS estimator of β in eq. (1), there
exists a prior literature that has focused on studying the validity of different economic interpretations
that one may attach to the estimand β. For example, this prior literature has studied how this inter-
pretation may be affected by the presence of cross-regional general equilibrium effects (Beraja, Hurst
and Ospina, 2019; Adão, Arkolakis and Esposito, 2019), slow adjustment of labor market outcomes
to the shifters Xs (Jaeger, Ruist and Stuhler, 2018), and heterogeneous effects of the shifters across
sectors and regions (Monte, Redding and Rossi-Hansberg, 2018).

The rest of this paper is organized as follows. Section 2 presents a placebo exercise illustrating
the properties of the usual inference procedures. Section 3 introduces a stylized economic model
and maps its implications into a potential outcome framework. Section 4 establishes the asymptotic
properties of the OLS estimator of β in eq. (1), as well as the properties of an instrumental variables
estimator that uses a shift-share variable as an instrument. Section 5 discusses extensions of our
baseline framework. Section 6 examines the performance of our novel inference procedures in a series
of placebo exercises. Section 7 revisits two prior applications of shift-share designs, and Section 8
concludes. Proofs and additional results are collected in an Online Appendix.

2 Overrejection of usual standard errors: placebo evidence

In this section, we implement a placebo exercise to evaluate the finite-sample performance of the
two inference methods most commonly applied in shift-share regression designs: (a) Eicker-Hubert-
White—or heteroskedasticity-robust—standard errors, and (b) standard errors clustered on groups
of regions geographically close to each other. In our placebo, we regress observed changes in U.S.
regional labor market outcomes on a shift-share regressor that is constructed by combining actual data
on initial sectoral employment shares for each region with randomly generated sector-level shocks.
We describe the setup in Section 2.1 and discuss the results in Section 2.2.

2.1 Setup and Data

We generate 30, 000 placebo samples indexed by m. Each of them contains N = 722 regions and
S = 396 sectors. We identify each region i with a U.S. Commuting Zone (CZ) and each sector s with
a 4-digit SIC manufacturing industry.

Using the notation from eq. (1), the shares {wis}N,S
i=1,s=1, and the outcomes {Yi}N

i=1 are identical
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in each placebo sample. The shares correspond to employment shares in 1990, and the outcomes
correspond to changes in employment rates and average wages for different subsets of the population
between 2000 and 2007. Our source of data on employment shares is the County Business Patterns,
and our measures of changes in employment rates and average wages are based on data from the
Census Integrated Public Use Micro Samples in 2000 and the American Community Survey for 2006
through 2008. Given these data sources, we construct our variables following the procedure described
in the Online Appendix of Autor, Dorn and Hanson (2013).

The placebo samples differ exclusively in the shifters {Xm
s }N

s=1, which are drawn i.i.d. from a
normal distribution with zero mean and variance equal to five in each placebo sample m. Since the
shifters are independent of both the outcomes and the shares, the parameter β is zero; this is true
irrespective of the dependence structure between the outcomes and the shares.

For each placebo sample m, given the observed outcome Yi, the generated shift-share regressor
Xm

i and a vector of controls Zi including only an intercept, we compute the OLS estimate of β, the
heteroskedasticity-robust standard error (which we label Robust), and the standard error that clusters
CZs in the same state (labeled Cluster).

2.2 Results

Table 1 presents the median and standard deviation of the empirical distribution of the OLS estimates
of β across the 30,000 placebo samples, along with the median standard error estimates, and rejection
rates for 5% significance level tests of the null hypothesis H0 : β = 0. We present these statistics for
several outcome variables, which are listed in the leftmost column.

Column (1) of Table 1 shows that, up to simulation error, the average of the OLS estimates is
zero for all outcomes. Column (2) reports the standard deviation of the estimated coefficients. This
dispersion is the target of the estimators of the standard error of the OLS estimator.4 Columns (3) and
(4) report the median standard error estimates for the Robust and Cluster procedures, respectively,
and show that both standard error estimators are downward biased. On average across all outcomes,
the median magnitudes of the heteroskedasticity-robust and state-clustered standard errors are, re-
spectively, 55% and 46% lower than the standard deviation.

The downward bias in the Robust and Cluster standard errors translates into a severe overrejection
of the null hypothesis H0 : β = 0. Since the true value of β equals 0 by construction, a correctly
behaved test with significance level 5% should have a 5% rejection rate. Columns (5) and (6) in Table 1
show that traditional standard error estimators yield much higher rejection rates. For example, when
the outcome variable is the CZ’s employment rate, the rejection rate is 48.5% and 38.1% when Robust
and Cluster standard errors are used, respectively. These rejection rates are very similar when the
dependent variable is instead the change in the average log weekly wage.

These results are quantitatively important. To see this, consider the following thought-experiment.
Suppose we were to provide the 30, 000 simulated samples to 30, 000 researchers without disclosing
the origin of the data to them. Instead, we would tell them that the shifters correspond to changes in a

4Figure D.1 in Online Appendix D.1 reports the empirical distribution of the OLS estimates when the dependent variable
is the change in each CZ’s employment rate. Its distribution resembles a normal distribution centered around β = 0.
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Table 1: Standard errors and rejection rate of the hypothesis H0 : β = 0 at 5% significance level.

Estimate Median std. error Rejection rate

Mean Std. dev. Robust Cluster Robust Cluster
(1) (2) (3) (4) (5) (6)

Panel A: Change in the share of working-age population
Employed −0.01 2.00 0.73 0.92 48.5% 38.1%
Employed in manufacturing −0.01 1.88 0.60 0.76 55.7% 44.8%
Employed in non-manufacturing 0.00 0.94 0.58 0.67 23.2% 17.6%

Panel B: Change in average log weekly wage
Employed −0.03 2.66 1.01 1.33 47.3% 34.2%
Employed in manufacturing −0.03 2.92 1.68 2.11 26.7% 16.8%
Employed in non-manufacturing −0.02 2.64 1.05 1.33 45.4% 33.7%

Notes: For the outcome variable indicated in the leftmost column, this table indicates the mean and standard deviation of
the OLS estimates of β in eq. (1) across the placebo samples (columns (1) and (2)), the median standard error estimates
(columns (3) and (4)), and the percentage of placebo samples for which we reject the null hypothesis H0 : β = 0 using a 5%
significance level test (columns (5) and (6)). Robust is the Eicker-Huber-White standard error, and Cluster is the standard
error that clusters CZs in the same state. Results are based on 30,000 placebo samples.

sectoral shock of interest—for instance, trade flows, tariffs, or national employment. If the researchers
set out to test the null that the impact of this shock is zero using standard inference procedures at a
5% significance level, then over a third of them would conclude that our computer generated shocks
had a statistically significant effect on the evolution of employment rates between 2000 and 2007.

The following remark summarizes the results of our placebo exercise.

Remark 1. In shift-share regressions, traditional inference methods may suffer from a severe overrejection
problem, and yield confidence intervals that are too short.

To understand the source of this overrejection problem, note that the standard error estimators
reported in Table 1 assume that the regression residuals are either independent across all regions
(for Robust), or between geographically defined groups of regions (for Cluster). Given that shift-share
regressors are correlated across regions with similar employment shares {wis}S

s=1, these methods
generally lead to a downward bias in the standard error estimate whenever regions with similar
employment shares {wis}S

s=1 also have similar regression residuals. In the next section, we show how
such correlations between regression residuals may arise.

3 Stylized economic model

This section presents a stylized economic model mapping labor demand and labor supply shocks
to labor market outcomes for a set of regional economies. The aim of the model is twofold. First,
it illustrates the economic mechanisms behind the overrejection problem documented in Section 2.2.
Second, it provides guidance on how to estimate: (i) the impact of sector-specific labor demand
shifters on regional labor market outcomes; and (ii) the regional inverse labor supply elasticity. We
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describe the model fundamentals in Section 3.1, discuss its main implications in Section 3.2, and map
these implications to a potential outcome framework in Section 3.3.

3.1 Environment

We consider an economy with multiple sectors s = 1, . . . , S and multiple regions i = 1, . . . , N. We
assume that the labor demand in sector s and region i, Lis, is given by

log Lis = −σs log ωi + log Dis, σs > 0, (2)

where ωi is the wage rate in region i, σs is the labor demand elasticity in sector s, and Dis is a region-
and sector-specific labor demand shifter. This shifter may account for multiple sectoral components.
Specifically, we decompose Dis into a sectoral shifter of interest χs, other shifters that vary by sector
µs, and a residual region- and sector-specific shifter ηis:

log Dis = ρs log χs + log µs + log ηis. (3)

We assume that the labor supply in region i is given by

log Li = φ log ωi + log vi, φ > 0, (4)

where φ is the labor supply elasticity, and vi is a region-specific labor supply shifter. We allow this
shifter to have a shift-share structure that yields region-specific aggregates of group-specific labor
supply shocks. In particular, indexing labor groups by g = 1, . . . , G, we decompose

log vi =
G

∑
g=1

w̃ig log νg + log νi, (5)

where νg is a group-specific labor supply shifter, w̃ig measures the exposure of region i to group g
labor supply shifter, and νi captures region-specific factors affecting labor supply. The variable νg

captures factors that affect the supply of labor of group g in all regions in the population of interest.
Workers may be classified into groups according to their education level, gender, or country of origin.

We assume that workers cannot move across regions but are freely mobile across sectors. Thus,
labor markets clear if

Li =
S

∑
s=1

Lis, i = 1, . . . , N. (6)

3.2 Labor market equilibrium

We assume that, in each period, the model described by eqs. (2) to (6) characterizes the labor mar-
ket equilibrium in every region, and that, across periods, changes in the labor market outcomes
{ωi, Li}N

i=1 are due to changes in either the labor demand shifters, {χs, µs}S
s=1 and {ηis}N,S

i=1,s=1, or the
labor supply shifters, {νg}G

g=1 and {νi}N
i=1.
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We use ẑ = log(zt/z0) to denote log-changes in a variable z between a period t = 0 and some
other period t. We assume that the realized changes between any two periods in all labor demand
and supply shifters are draws from a joint distribution F(·):(

{χ̂s, µ̂s}S
s=1, {η̂is}N,S

i=1,s=1, {ν̂g}G
g=1{ν̂i}N

i=1

)
∼ F(·). (7)

Up to a first-order approximation around the initial equilibrium, eqs. (2) to (6) imply that the
changes in employment and wages in region i are given by

L̂i =
S

∑
s=1

l0
is(θisχ̂s + λiµ̂s + λiη̂is) + (1− λi) (

G

∑
g=1

w̃igν̂g + ν̂i), (8)

ω̂i = φ−1
S

∑
s=1

l0
is(θisχ̂s + λiµ̂s + λiη̂is)− φ−1λi(

G

∑
g=1

w̃igν̂g + ν̂i), (9)

where l0
is = L0

is/L0
i is the initial employment share of sector s in region i, λi = φ

[
φ + ∑S

s=1 l0
isσs

]−1
,

and θis = ρsλi.
Consider first the model’s implications for the impact on regional labor market outcomes of

changes in sector-specific labor demand. We focus here on the impact of the demand shocks {χ̂s, µ̂s}S
s=1

on the change in the employment rate L̂i; however, given the symmetry between eqs. (8) and (9), the
model’s implications for the impact of these shocks on the change in the wage level ω̂i are analogous.

According to eq. (8), the change in the employment rate in region i depends on two shift-share
components that aggregate the impact of the sector-specific labor demand shocks. In both compo-
nents, the “share” term is the initial employment share l0

is; the “shift” term corresponds in each of
them to one of the two sector-specific labor demand shocks, χ̂s or µ̂s. Furthermore, L̂i also depends
on additional shift-share terms that aggregate the impact of group-specific labor supply shocks. In
this case, the “share” term is the region’s exposure to each group-specific shock, w̃ig. Conditional on
a sector s and a labor group g, the shares {l0

is}N
i=1 and {w̃ig}N

i=1 may be correlated. Settings in which
the outcome of interest depends on multiple shift-share terms with potentially correlated shares is
central to understanding the placebo results presented in Section 2.

Another implication of eq. (8) is that, even conditional on the initial employment share l0
is, the

impact of sectoral labor demand shocks on regional employment may be heterogeneous across sectors
and regions; e.g., the impact of χ̂s on L̂i depends not only on l0

is but also on θis, which may vary across
i and s. While datasets usually contain information on the initial employment shares for every sector
and region {l0

is}
N,S
i=1,s=1, the parameters {θis}N,S

i=1,s=1 are not generally known.
We summarize the discussion in the last two paragraphs in the following remark:

Remark 2. In our model, the equilibrium equations for the change in regional labor market outcomes combines
multiple shift-share terms, and the shifter effects depend on unknown parameters that may be heterogeneous.

Online Appendices B and C show that there are multiple microfoundations consistent with the
insights summarized in Remark 2. Alternative microfoundations may differ in the mapping between
the labor demand and supply elasticities, σs and φ, and structural parameters, or in the interpre-
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tation of the different terms entering the labor demand shifter Dis in eq. (3).5 In addition, Online
Appendix C.3 shows that similar insights arise in a model that allows for migration across regions. In
this case, the change in regional employment depends not only on the region’s own shift-share terms
included in eq. (8), but also on a component, common to all regions, that combines the shift-share
terms corresponding to all N regions. In this environment, l0

isθis is the partial effect of the shifter χ̂s

on L̂i conditional on a fixed effect that absorbs cross-regional spillovers created by migration.
Turning to the estimation of the inverse labor supply elasticity, eqs. (4) and (5) imply that

ω̂i = φ̃L̂i − φ̃(
G

∑
g=1

w̃igν̂g + ν̂i) with φ̃ = φ−1. (10)

It follows from eq. (8) that the change in region i’s employment rate, L̂i, also depends on the term

∑G
g=1 w̃igν̂g + ν̂i. Thus, the two terms on the right-hand side of eq. (10) are correlated with each other,

creating an endogeneity problem. The instrumental variables solution to this problem relies on the
observation that using eqs. (8) and (9), one can write the inverse labor supply elasticity as the ratio of
the impact of a sector-specific labor demand shock (e.g. χ̂s) on wages to that on employment:

φ̃ =
∂ω̂i

∂χ̂s

/
∂L̂i

∂χ̂s
.

In Sections 4 and 5, we use the model described here to provide an economic interpretation for
the econometric assumptions we impose when discussing identification and estimation in shift-share
designs. These assumptions imply restrictions on the distribution of labor supply and demand shocks
F(·) introduced in eq. (7). In Section 7, we return to this economic model when interpreting empirical
estimates of the impact of sector-specific labor demand shifters on regional labor market outcomes
(Section 7.1); and the regional inverse labor supply elasticity (Section 7.2).

3.3 From economic model’s equilibrium conditions to a potential outcome framework

We build on the results in Section 3.2 to propose a general framework for the estimation of the impact
of shifters on outcomes measured at a different unit of observation. For concreteness, we refer to the
level at which shifters vary as sectors and to the level at which the outcome varies as regions.

To make precise what we mean by “the effect of shifters on an outcome”, we use the potential
outcomes notation, writing Yi(x1, . . . , xS) to denote the potential (counterfactual) outcome that would
occur in region i if the shocks to the S sectors were exogenously set to {xs}S

s=1. Consistently with
eqs. (8) and (9), we assume that the potential outcomes are linear in the shocks,

Yi(x1, . . . ,xS) = Yi(0) +
S

∑
i=1

wisxsβis, where wis ≥ 0 for all s,
S

∑
s=1

wis ≤ 1, (11)

5In Online Appendix B, we derive eqs. (8) and (9) from a multisector gravity model with endogenous labor supply that
follows closely that in Adão, Arkolakis and Esposito (2019). In Online Appendix C.1, we show that Remark 2 is consistent
with a Jones (1971) model featuring sector-specific production inputs, as in Kovak (2013). In Online Appendix C.2, we show
that it is also consistent with a Roy (1951) model featuring workers with heterogeneous preferences for employment across
sectors, as in Galle, Rodríguez-Clare and Yi (2018), Lee (2018) and Burstein, Morales and Vogel (2019).
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and Yi(0) = Yi(0, . . . , 0) denotes the potential outcome in region i when all shocks {xs}S
s=1 are set to

zero. Thus, increasing xs by one unit, holding the shocks to the other sectors constant, leads to an
increase in region i’s outcome of wisβis units. This is the treatment effect of xs on Yi(x1, . . . ,xS). The
actual (observed) outcome is given by Yi = Yi(X1, . . . ,XS), which depends on the realization of the
shifters, (X1, . . . ,XS).

If the shifters of interest are the sectoral labor demand shocks {χ̂s}S
s=1, and the outcome of interest

is the employment change L̂i, we can map eq. (8) into eq. (11) by defining

Yi = L̂i, wis = l0
is, xs = χ̂s, βis = θis, Yi(0) = λi

S

∑
s=1

wis(µ̂s + η̂is) + (1− λi)(
G

∑
g=1

w̃igν̂g + υ̂i). (12)

Observe that Yi(0) aggregates all shifters other than the sectoral shocks of interest {χ̂s}S
s=1.6

We are interested in the properties of the OLS estimator β̂ of the coefficient on the shift-share
regressor Xi = ∑S

s=1 wisXs in a regression of Yi onto Xi.7 To focus on the key conceptual issues, we
abstract away from any additional covariates or controls for now, and assume that Xs and Yi have
been demeaned, so that we can omit the intercept in a regression of Yi on Xi (see Section 4.2 for the
case with controls). In this simplified setting, the OLS estimator of the coefficient on Xi is given by

β̂ =
∑N

i=1 XiYi

∑N
i=1 X2

i

, (13)

and we can write the regression equation as

Yi = βXi + εi, where Xi =
S

∑
s=1

wisXs. (14)

The definition of the estimand β in eq. (14) and the properties of the estimator β̂ will depend
on: (a) what is the population of interest; and (b) how we think about repeated sampling. For (a),
we define the population of interest to be the observed set of N regions, as opposed to focusing on a
large superpopulation of regions from which the N observed regions are drawn. Consequently, we are
interested in the parameters {βis}N,S

i=1,s=1 and the treatment effects {wisβis}N,S
i=1,s=1 themselves, rather

than the distributions from which they are drawn, which would be the case if we were interested in
a superpopulation of regions.8 For (b), given our interest on estimating the ceteris paribus impact of a
specific set of shocks (X1, . . . ,XS), we consider repeated sampling of these shocks, while holding the
shares {wis}N,S

i=1,s=1, the parameters {βis}N,S
i=1,s=1, and the potential outcomes {Yi(0)}N

i=1 fixed.

6Given the mapping in eq. (12), the expression in eq. (11) captures the first-order impact of the labor demand shocks
{χ̂s}S

s=1 on changes in the employment rate. We focus on this first-order impact because it helps connecting our analysis
to linear specifications used extensively in the shift-share literature. See Online Appendix D.5 for a discussion of the
approximation error arising from the linear specification imposed in eq. (8).

7We assume for now that the shifters {Xs}S
s=1 are directly observable. In Section 5.3, we consider the case in which we

only observe noisy estimates of these shifters.
8Treating the set of observed regions as the population of interest is common in applications of the shift-share approach.

For example, the abstract of Autor, Dorn and Hanson (2013) reads: “We analyze the effect of rising Chinese import
competition between 1990 and 2007 on U.S. local labor markets”. Similarly, the abstract of Dix-Carneiro and Kovak (2017)
reads: “We study the evolution of trade liberalization’s effects on Brazilian local labor markets” (emphases added).
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Given these assumptions, the estimand β is defined as the population analog of eq. (13) under
repeated sampling of the shocks Xs,

β =
∑N

i=1 E[XiYi | F0]

∑N
i=1 E[X2

i | F0]
, with F0 = {Yi(0), βis, wis}N,S

i=1,s=1, (15)

and, given eqs. (11) and (14), the regression error εi is then defined as the residual

εi = Yi − Xiβ = Yi(0) +
S

∑
i=1

wisXs(βis − β). (16)

Thus, the statistical properties of the regression residual εi depend on the properties of the po-
tential outcome Yi(0), the shifters {Xs}S

s=1, the shares {wis}S
s=1, and the difference between the pa-

rameters {βis}S
s=1 and the estimand β. Importantly, as illustrated in eq. (12), the potential outcome

Yi(0) will generally incorporate terms that have a shift-share structure with shares that are either
identical to (e.g. the term ∑S

s=1 wisµ̂s) or different from but potentially correlated with (e.g. the term

∑G
g=1 w̃igν̂g) the shares {wis}S

s=1 that define the shift-share regressor Xi. It then follows from eq. (16)
that the residuals εi and εi′ will generally be correlated for any pair of regions i and i′ with similar
values of the shift-share regressor.

We summarize this discussion in the following remark.

Remark 3. Correct inference for the coefficient on a shift-share regressor requires taking into account potential
cross-regional correlation in residuals across observations with similar values of the shift-share covariate of
interest. One possible source of such correlation is the presence in these residuals of shift-share components with
shares identical to or correlated with those entering the covariate of interest.

Remark 3 has important implications for estimating the sampling variability of β̂. In particular,
traditional inference procedures do not account for correlation in εi among regions with similar shares
and, therefore, tend to underestimate the variability of β̂. As we formalize in the next section, this is
the main reason for the overrejection problem described in Section 2.

4 Asymptotic properties of shift-share regressions

In this section, we formulate the statistical assumptions that we impose on the data generating pro-
cess (DGP), use them to derive asymptotic results, and provide an economic interpretation of these
assumptions using the model introduced in Section 3. In Section 4.1, we consider the case in which
there is a single shift-share regressor and no controls. We account for controls in Section 4.2. In Sec-
tion 4.3, we consider using the shift-share variable as an instrument for a regional treatment variable.
All proofs and technical details are collected in Online Appendix A.

We follow the notation from eq. (1) by writing sector-level variables (such as the shifter Xs) in
script font style and region-level aggregates (such as Xi) in normal style. We use standard matrix and
vector notation. In particular, for a (column) L-vector Ai that varies at the regional level, A denotes
the N × L matrix with the ith row given by A′i. For an L-vector As that varies at the sectoral level, A
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denotes the S× L matrix with the sth row given by A ′s. If L = 1, then A and A are an N-vector and
an S-vector, respectively. Let W denote the N × S matrix of shares, so that its (i, s) element is given
by wis, and let B denote the N × S matrix with (i, s) element given by βis.

4.1 Simple case without controls

We focus here on the statistical properties of the OLS estimator β̂ defined in eq. (13).

Assumptions

We consider large-sample properties of β̂ as the number sectors goes to infinity, S→ ∞. The assump-
tions below imply that N → ∞ as S → ∞. To assess how large S needs to be in order that these
asymptotics provide a good approximation to the finite sample distribution of β̂, we conduct a series
of placebo simulations in Section 6. We describe here the main substantive assumptions, and collect
technical regularity conditions in Online Appendix A.1.1. As in eq. (15), let F0 = (Y(0), B, W).

Assumption 1 (Identification). (i) The observed outcome is given by Yi = Yi(X1, . . . ,XS), such that
eq. (11) holds; (ii) The shifters are as good as randomly assigned conditional on F0 in the sense that,
for all s = 1, . . . , S,

E[Xs | F0] = 0. (17)

Assumption 1(i) requires that the potential outcomes are linear in the shifters {Xs}S
s=1. As dis-

cussed in Section 3.3, one can generate such linear specification from a first-order approximation of
the impact of the shifters (X1, . . . ,XS) on the outcome Yi. This approximation may be subject to
error. In Online Appendix A.1.1, we generalize eq. (11) to allow for a linearization error and derive
restrictions on this error under which our inference procedures remain valid.

Assumption 1(ii) imposes that the sectoral shifters X are mean independent of the shares W,
potential outcomes Y(0), and parameters B; the assumption that the shifters are mean zero is a
normalization to allow us to drop the intercept; we relax it in Section 4.2. This random assignment
assumption is a key assumption for identifying the causal impact of a shift-share covariate; a version
of this assumption has been previously proposed by Borusyak, Hull and Jaravel (2018).

If we are interested in studying the effect of labor demand shifters in the context of the model in
Section 3 (i.e. Xs = χ̂s), Assumption 1(ii) will hold if the shifters {χ̂s}S

s=1 are mean independent of
the other labor demand shifters, {µ̂s}S

s=1 and {η̂is}N,S
i=1,s=1, and of the labor supply shifters, {ν̂g}G

g=1

and {ν̂i}N
i=1. The plausibility of this restriction depends on the specific empirical application. For

example, if all N regions in the sample are regions within a small open economy, χ̂s denotes changes
in international prices in sector s, and µ̂s denotes changes in the tariffs that this small open economy
charges on its sector s imports; then, Assumption 1(ii) requires these changes in tariffs to be inde-
pendent of the changes in tariffs in any country that is large enough for their tariff changes to affect
international prices (see Online Appendix B.4 for additional details).

Assumption 2 (Consistency and Inference). (i) The shifters (X1, . . . ,XS) are independent conditional
on F0; (ii) maxs ns/ ∑S

t=1 nt → 0, where ns = ∑S
s=1 wis denotes the total share of sector s; (iii)

maxs n2
s / ∑S

t=1 n2
t → 0.
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Assumption 2(i) requires the shifters to be independent. It adapts to our setting the assumption
underlying randomization-style inference in randomized controlled trials that the treatment assign-
ment is independent across entities (see Imbens and Rubin, 2015, for a review). An independence
or a weak dependence assumption of this type is generally necessary in order to do inference.9 One
could alternatively impose assumptions on the correlation structure of the regression residuals, ei-
ther by imposing a particular structure on them, as in the literature on interactive fixed effects (e.g.
Gobillon and Magnac, 2016), or by imposing a distance metric on the observations, as in the spatial
econometrics literature (e.g. Conley, 1999). However, as the economic model in Section 3 shows, the
structure of the residuals may be very complex. The residuals may include potentially correlated
region-specific terms as well as several shift-share terms, which may or may not use the same shares
as the covariate of interest Xi. It is thus difficult to conceptualize which exact restriction on their joint
distribution one should impose.

By instead imposing restrictions on the distribution of the vector of shifters (X1, . . . ,XS) con-
ditional on F0 = (Y(0), B, W), Assumption 2(i) ensures that the standard errors we derive remain
valid under any dependence structure between the shares wis across sectors and regions, and under
any correlation structure of the potential outcomes Yi(0) or, equivalently, of the regression errors εi,
across regions.10 We thus do not have to worry about correctly specifying this correlation structure,
as one would under the alternative approaches mentioned above. Our approach allows (but does
not require) the residual to have a shift-share structure; it similarly allows all {wis}N,S

i=1,s=1 to be equi-
librium objects responding to the same economic shocks, and thus be correlated across regions and
sectors.11 In Section 5.1, we relax Assumption 2(i) and allow for a non-zero correlation in the shifters
(X1, . . . ,XS) within clusters of sectors; we only require that the shifters are independent across the
clusters. Additionally, in the context of the empirical application in Section 7.1, we discuss how to
perform inference in a setting in which all shifters of interest are generated by a common shock that
has heterogeneous effects across sectors.

In the economic model in Section 3, if Xs = χ̂s and we interpret these shocks as, for example,
sector-specific productivity shocks, Assumption 2(i) requires that there is no common component
driving the changes in sectoral productivities. Our approach does not require the shifters {Xs}S

s=1 to
be identically distributed; we allow, for example, the variance of the shock to differ across sectors.

Assumptions 2(ii) and 2(iii) are our main regularity conditions.12 Assumption 2(ii) is needed for

9For example, for inference on average treatment effects, which is commonly the goal when running a regression, one
typically assumes that the sample is a random sample from the population of interest and, thus, that the treatment variable
is independent across the individuals in the sample.

10Since our inference is valid conditional on {εi}N
i=1, it accounts for any correlation structure they may have, including

spatial, or, in applications with multiple periods, temporal correlations. See Section 5.2 for settings with multiple periods.
11This conceptualization of all the shares wis as equilibrium objects that respond (at least partly) to the same set of shocks

is consistent with the model in Section 3. As shown in eq. (12), each share wis corresponds to the share of workers in
region i employed in sector s in an initial equilibrium, l0

is. Furthermore, each of these initial employment shares will be a
function of the same sector-specific demand shocks and group-specific labor supply shocks; consequently l0

is will generally
be correlated with l0

i′s′ even for i 6= i′ and s 6= s′.
12In the context of a shift-share instrumental variables regression, Goldsmith-Pinkham, Sorkin and Swift (2018) discuss

similar conditions stated in terms of Rotemberg weights. This is convenient under the baseline assumption considered in
Goldsmith-Pinkham, Sorkin and Swift (2018) that the vector of shares (wi1, . . . , wiS) is exogenous, because the Rotemberg
weights determine the asymptotic bias of the estimator under local failures of this exogeneity condition. Since we do not
assume exogeneity of the shares, this interpretation is not available under our setup.
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consistency: it requires that the size of each sector, ns, is asymptotically negligible. This assumption
is analogous to the standard consistency condition in the clustering literature that the largest cluster
be asymptotically negligible. To see the connection, consider the special case with “concentrated
sectors”, in which each region i specializes in one sector s(i); i.e. wis = 1 if s = s(i) and wis = 0
otherwise, and ns is thus the number of regions that specialize in sector s. In this case, Xi = Xs(i), so
that, if eq. (17) holds, β̂ is equivalent to an OLS estimator in a randomized controlled trial in which
the treatment varies at a cluster level; here the sth cluster consists of regions that specialize in sector
s. The condition maxs ns/ ∑S

t=1 nt → 0 then reduces to the assumption that the largest cluster be
asymptotically negligible. Assumption 2(iii) is needed for asymptotic normality—it ensures that the
Lindeberg condition holds. It strengthens Assumption 2(ii) slightly by requiring that the contribution
of each sector to the asymptotic variance is asymptotically negligible; otherwise the estimator will
not generally be asymptotically normal, even if it is consistent.

In terms of the economic model introduced in Section 3, Assumptions 2(ii) and 2(iii) require that
no sector dominates the rest in terms of initial employment at the national level; i.e. ∑N

i=1 l0
is is not too

large for any sector. Section 6.1 shows that this assumption is reasonable for the U.S. if the S sectors
used to construct the treatment of interest Xi correspond to the 396 4-digit manufacturing sectors (see
Section 2.1). In Section 6.2, we illustrate the consequences of the failure of this assumption due to the
inclusion of a large aggregate sector, the non-manufacturing sector, in Xi.

Asymptotic theory

We now establish that the OLS estimator in eq. (13) is consistent and asymptotically normal.

Proposition 1. Suppose Assumption 1, Assumptions 2(i) and 2(ii), and Assumptions A.1(i) to A.1(iii) in
Online Appendix A.1.1 hold. Then

β =
∑N

i=1 ∑S
s=1 πisβis

∑N
i=1 ∑S

s=1 πis
, and β̂ = β + op(1), (18)

where πis = w2
is var(Xs | F0).

This proposition gives two results. First, it shows that the estimand β in eq. (15) can be expressed
as a weighted average of the region- and sector-specific parameters {βis}N,S

i=1,s=1, with the weight πis

increasing in the share wis and in the conditional variance of the shifter var(Xs | F0). Second, it states
that the OLS estimator β̂ converges to this estimand as S → ∞. The special case with concentrated
sectors is again useful in interpreting Proposition 1. In this case, ∑S

s=1 πisβis = var(Xs(i) | F0)βis(i)

and, therefore, the first result in Proposition 1 reduces to the standard result from the randomized
controlled trials literature with cluster-level randomization (with each “cluster” defined as all regions
specialized in the same sector) that the weights are proportional to the variance of the shock.

The estimand β does not in general equal a weighted average of the heterogeneous treatment
effects. As discussed in Section 3.3, the effect on the outcome in region i of increasing the value
of the sector s shock in one unit is equal to wisβis; weighting this effect using a set of region- and
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sector-specific weights {ξis}N,S
i=1,s=1, yields the weighted average treatment effect

τξ =
∑N

i=1 ∑S
s=1 ξiswisβis

∑N
i=1 ∑S

s=1 ξis
.

Alternatively, the total effect of increasing the shifters simultaneously in every sector by one unit
is ∑S

s=1 wisβis; weighting it using a set of region-specific weights {ζi}N
i=1 yields the weighted to-

tal treatment effect τT
ζ = ∑N

i=1 ζi ∑S
s=1 wisβis/ ∑N

i=1 ζi. If βis is constant across i and s, then β =

τT
ζ , provided ∑S

s=1 wis = 1 in every region i; otherwise, we can consistently estimate τT
ζ by β̂ ·

∑N
i=1 ζi ∑S

s=1 wis/ ∑N
i=1 ζi. Similarly, if βis is constant across i and s, τξ is consistently estimated by

β̂ · ∑N
i=1 ∑S

s=1 ξiswis/ ∑N
i=1 ∑S

s=1 ξis. On the other hand, if βis varies across regions and sectors, then
it is not clear in general how to exploit knowledge of the estimand β defined in eq. (18) to learn
something about τξ or τT

ζ . A special case in which it is possible to consistently estimate τξ even if βis

varies across i or s arises when Xs is homoskedastic, var(Xs | F0) = σ2, and ξis = wis; in this case, a
consistent estimate of τξ is given by β̂ ∑N

i=1 ∑S
s=1 w2

is/ ∑N
i=1 ∑S

s=1 wis.13

Proposition 2. Suppose Assumptions 1 and 2, and Assumption A.1 in Online Appendix A.1.1 hold. Suppose
also that

VN =
1

∑S
s=1 n2

s
var

(
N

∑
i=1

Xiεi | F0

)
converges in probability to a non-random limit. Then

N√
∑S

s=1 n2
s

(β̂− β) = N

0,
VN(

1
N ∑N

i=1 X2
i

)2

+ op(1).

This proposition shows that β̂ is asymptotically normal, with a rate of convergence equal to
N(∑S

s=1 n2
s )
−1/2. If all sector sizes ns are of the order N/S, the rate of convergence equals

√
S. How-

ever, if the sizes are unequal, the rate may be slower.
According to Proposition 2, the asymptotic variance formula has the usual “sandwich” form. Since

Xi is observed, to construct a consistent standard error estimate, it suffices to construct a consistent
estimate of VN , the middle part of the sandwich. To motivate our standard error formula, suppose
that βis is constant across i and s, βis = β. Then it follows from eq. (17) and Assumption 2(i) that

VN =
∑S

s=1 var(Xs | F0)R2
s

∑S
s=1 n2

s
, Rs =

N

∑
i=1

wisεi. (19)

13In general, one can consistently estimate τξ or τT
ζ by imposing a mapping between βis and structural parameters, and

obtaining consistent estimates of these structural parameters. However, since this mapping will vary across models, the
consistency of such estimator will not be robust to alternative modeling assumptions, even if all these assumptions predict
an equilibrium relationship like that in eq. (8); e.g. see Online Appendix B and Online Appendices C.1 and C.2 for examples
of this mapping in different models.
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Replacing var(Xs | F0) by X2
s , and εi by the regression residual ε̂i = Yi − Xi β̂, we obtain the estimate

V̂AKM(β̂) =
V̂AKM(β̂)(
∑N

i=1 X2
i

)2 , V̂AKM(β̂) =
S

∑
s=1

X2
s R̂2

s , R̂s =
N

∑
i=1

wisε̂i. (20)

When βis = β, we show formally that this variance estimate leads to valid inference under regularity
conditions in Section 4.2. In Online Appendix A.1.6 we show that this variance estimate remains valid
under heterogeneous βis under further regularity conditions.

To gain intuition for the variance estimate in eq. (20), consider the case with concentrated sectors.
Then the numerator in eq. (20) becomes ∑S

s=1 X
2
s R̂2

s = ∑S
s=1(∑

N
i=1 I{s(i) = s}Xi ε̂i)

2, so that eq. (20)
reduces to the cluster-robust variance estimate that clusters on the sector that each region is special-
ized. This is consistent with the rule of thumb that one should “cluster” at the level of variation of
the regressor of interest. More generally, the variance estimate essentially forms sectoral clusters with
variance that depends on the variance of R̂s, a weighted sum of the regression residuals {ε̂i}N

i=1, with
weights that correspond to the shares {wis}N

i=1. An important advantage of V̂AKM(β̂) is that it allows
for an arbitrary structure of cross-regional correlation in residuals:

Remark 4. In the expression for VN in eq. (19), the expectation is only taken over {Xs}S
s=1—we do not take any

expectation over the shares {wis}N,S
i=1,s=1 or the residuals {εi}N

i=1. This is because our inference is conditional on
the realized values of the shares and on the potential outcomes {Yi(0)}N

i=1. In terms of the regression in eq. (14),
this means that we consider properties of β̂ under repeated sampling of Xi = ∑S

s=1 wisXs conditional on the
shares {wis}N,S

i=1,s=1 and on the residuals {εi}N
i=1 (as opposed to, say, considering properties of β̂ under repeated

sampling of the residuals conditional on {Xi}N
i=1). As a result, our inference method allows for arbitrary

dependence between the residuals {εi}N
i=1.

To understand the source of the overrejection problem discussed in Section 2, let us compare the
variance estimate V̂AKM(β) with the cluster-robust variance estimate when the residuals ε̂i are com-
puted at the true β (so that ε̂i = εi). These variance estimates differ in the middle sandwich, with the
cluster-robust estimate replacing V̂AKM(β) in eq. (20) with V̂CL(β) = ∑N

i=1 ∑N
j=1 I{c(i) = c(j)}XiXjεiεj,

where c(i) denotes the cluster that region i belongs to (the comparison with heteroskedasticity-robust
standard errors obtains as a special case if c(i) = i, so that each region belongs to its own cluster).
Assuming for simplicity that the conditional variance of Xs does not depend on Y(0), it follows by
simple algebra that the expectation of the difference between these terms is given by

E[V̂AKM(β)− V̂CL(β) |W] =
S

∑
s=1

var(Xs |W)
N

∑
i=1

N

∑
j=1

I{c(i) 6= c(j)}wiswjsE[εiεj |W]. (21)

This expression is non-negative so long as the correlation between the residuals is non-negative. The
magnitude of the difference will be large if regions located in different clusters (so that c(i) 6= c(j)) that
have similar shares (i.e. large values of ∑S

s=1 wiswjs) also tend to have similar residuals (i.e. large values
of E[εiεj | W]). For illustration, consider a simplified version of the model described in Section 3 in
which: (a) σs ≥ 0 for all s and φ ≥ 0, so that 0 ≤ λi ≤ 1; (b) region-specific labor demand and supply
shocks {η̂is}S

s=1 and ν̂i are independent across regions; and (c) all labor demand and supply shocks
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are independent of each other. Then, it follows from eqs. (12) and (16) that, for any i 6= j,

E[εiεj |W, W̃] = λiλj

S

∑
s=1

wiswjsE[µ̂2
s |W, W̃] + (1− λi)(1− λj)

G

∑
g=1

w̃jgw̃igE[ν̂2
g |W, W̃] ≥ 0, (22)

which by the law of iterated expectations implies that E[V̂AKM(β)− V̂CL(β) |W] ≥ 0. This expression
illustrates that regions with similar shares will tend to have similar residuals in two cases. First, if the
variance of the unobserved shifter µ̂s is large, so that E[µ̂2

s | W, W̃] is large. In other words, standard
inference methods lead to overrejection if the residual contains important shift-share terms that affect
the outcome of interest through the same shares {wis}S

s=1 as those defining the covariate of interest
Xi. Second, if the variance of the unobserved shifter ν̂g is large, so that E[ν̂2

g | W, W̃] is large, and the
shares w̃ig through which these shifters affect the outcome variable have a correlation structure that
is similar to that of wis (so that ∑G

g=1 w̃igw̃jg is large whenever ∑S
s=1 wiswjs is large). Thus, standard

inference methods may overreject even when the unobserved shifters contained in the residual vary
along a different dimension than the shift-share covariate of interest.

4.2 General case with controls

We now study the properties of the OLS estimator β̂ of the coefficient on Xi in a regression of Yi onto
Xi and a K-vector of controls Zi. To this end, let Z denote the N × K matrix with i-th row given by
Z′i = (Zi1, . . . , ZiK), and let Ẍ = X − Z(Z′Z)−1Z′X denote an N-vector with i-th element equal to the
regressor Xi with the controls Zi partialled out (i.e. the residual from regressing Xi onto Zi). Then, by
the Frisch–Waugh–Lovell theorem, β̂ can be written as

β̂ =
∑N

i=1 ẌiYi

∑N
i=1 Ẍ2

i

=
Ẍ′Y
Ẍ′Ẍ

. (23)

The controls may play two roles. First, they may be included to increase the precision of β̂. Second,
and more importantly, they may be included because one may worry that the shifters {Xs}S

s=1 are
correlated with the potential outcomes {Yi(0)}N

i=1, violating Assumption 1(ii). To formalize how Zi, a
regional variable, may be a control variable for the shifters, which vary at a sectoral level, we project
Zi onto the sectoral space using the same shares as those defining the shift-share regressor Xi,

Zi =
S

∑
s=1

wisZs + Ui. (24)

We think of {Zs}S
s=1 as latent sector-level shocks that may have an independent effect on the outcome

Y and may also be correlated with the shifters {Xs}S
s=1, with Ui, the residual in this projection,

mean-independent of the shifters. If the kth control Zik is included for precision, then the sector-
level shocks {Zsk}S

s=1 and, thus, Zik, are uncorrelated with Xi. If Zik is included because one worries
that otherwise Xi may not be as good as randomly assigned, we interpret Zik as a proxy for the
confounding sector-level shocks {Zsk}S

s=1, and think of Uik as a measurement error in this proxy.
To make this concrete, consider the model in Section 3, with the equivalences in eq. (12). Then
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we may include Zik = ∑S
s=1 l0

isµ̂s as a control. Here the measurement error in eq. (24) is zero, and
Zsk = µ̂s. If the shifters {χ̂s}S

s=1 are correlated with the demand shocks {µ̂s}S
s=1, then not including

this control will generate omitted variable bias. Alternatively, we may include Zik = ∑S
s=1 wisη̂is

as a control. Here Zsk = 0, and Uik = Zik is a regional aggregation of idiosyncratic region- and
sector-specific labor-demand shocks that are independent of Xs. In this case, if the shifters {χ̂s}S

s=1

are independent of the demand shocks {ηis}N,S
i=1,s=1, then including the control will help increase the

precision of β̂, but it is not necessary for consistency.

Assumptions

For clarity of exposition, we focus here on the main substantive assumptions and relegate technical
regularity conditions to Online Appendix A.1.1. Let F0 = (Y(0), W, B,Z, U); without controls, this
set of variables reduces to (Y(0), B, W), as in Section 4.1. Here, Z denotes the S× K matrix with sth
row given by Z′s, and U denotes the N × K matrix with i-th element given by U′i .

We maintain Assumption 2 with F0 = (Y(0), W, B,Z, U). The inclusion of controls allows us to
weaken Assumption 1 and instead impose the following identification assumption:

Assumption 3 (Identification with controls). (i) The observed outcome satisfies Yi = Yi(X1, . . . ,XS),
such that eq. (11) holds, and the controls Zi satisfy eq. (24); (ii) The shifters are as good as randomly
assigned in the sense that, for every s,

E[Xs | F0] = E[Xs | Zs], (25)

and the right-hand side is linear in Zs,

E[Xs | Zs] = Z′sγ; (26)

(iii) For elements k such that γk 6= 0, N−1 ∑N
i=1 E[U2

ik] → 0; (iv) For elements k such that γk 6= 0,
(∑S

s=1 n2
s )
−1/2 ∑N

i=1 E[U2
ik]→ 0.

Assumption 3(ii) weakens Assumption 1(ii) by only requiring the shifters to be as good as ran-
domly assigned conditional on Z, in the sense that eq. (25) holds. To interpret this restriction, consider
a projection of the regional potential outcomes onto the sectoral space. For simplicity, consider the
case with constant effects, βis = β for all i and s, and project Yi(0) onto the shares (wi1, . . . , wiS), so
that we may write Yi(0) = ∑S

s=1 wisYs(0) + κi. Then, eq. (25) holds if (i) Ys(0) is spanned by the vector
of controls Zs; and (ii) {Xs}S

s=1 is mean-independent of the projection residuals {κi}N
i=1.

As an example, consider again the model in Section 3, with the outcomes Yi generated by eq. (12).
Then eq. (25) holds, for example, if we set Zs = Ys(0) = µ̂s and if, conditional on the sector-specific
labor demand shocks {µ̂s}S

s=1, the shifters of interest {χ̂s}S
s=1 are mean independent of the sector- and

region-specific labor demand shocks {η̂is}N,S
i=1,s=1 and of the labor supply shocks {ν̂g}G

g=1 and {ν̂i}N
i=1.

Suppose, for instance, the shocks of interest {χ̂s}S
s=1 are changes in tariffs (e.g. Kovak, 2013) and that

other potential labor demand shocks are those induced by automation and robots (e.g Acemoglu and
Restrepo, 2019). Splitting the impact of automation into nationwide sector-specific effects, as captured
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by {µ̂s}S
s=1, and sector- and region-specific deviations from the nationwide effects, as captured by

{η̂is}N,S
i=1,s=1, eq. (25) allows the political entity responsible for setting the tariffs to do so influenced

by the nationwide sector-specific effects of automation, but not by any region-specific deviation from
those national effects. In contrast, Assumption 1(ii) would require that the tariffs are also independent
of the nationwide effects of automation.

Under eq. (25), one generally needs to include the controls non-parametrically; by imposing
eq. (26), we ensure that it suffices to include the controls as additional covariates in a linear regression.
If the shifters Xs are not mean zero (in the sense that the regression intercept on the right-hand side
of eq. (26) is non-zero), eq. (26) requires that we include a constant Zsk = 1 as one of the controls.
If the shares sum to one, ∑S

s=1 wis = 1, this amounts to including an intercept Zik = 1 as a control
in the regression. Importantly, if the shares do not sum to one, this amounts to including ∑S

s=1 wis

as a control (see Borusyak, Hull and Jaravel, 2018, for a more extensive discussion of this point). For
instance, if the shares wis correspond to labor shares in different manufacturing sectors, one needs to
include the size of the manufacturing sector ∑S

s=1 wis in each region as a control.
Given Assumption 3(ii), if we observed {Zs}S

s=1 directly, we could include the vector Z∗i =

∑S
s=1 wisZs directly as control. However, the definition of each regional control Zi in eq. (24) al-

lows for Z∗i to be observed with measurement error Ui. If γk = 0, such as when Zik is included
for precision, then this measurement error in Z∗ik does not matter; if γk 6= 0, this measurement er-
ror will in general induce a bias in β̂. This is analogous to the classic linear regression result that
measurement error in a control variable generally leads to a bias in the estimate of the coefficient on
the variable of interest. Assumption 3(iii) ensures that any such bias disappears in large samples by
imposing that the variance of the measurement error for controls that matter (i.e. those with γk 6= 0)
converges to zero as S → ∞. This ensures consistency of β̂. For asymptotic normality, we need
to strengthen this condition in Assumption 3(iv) by requiring that the variance of the measurement
error converges to zero sufficiently fast. Assumption 3(iv) holds, for instance, if Ui = S−1 ∑S

s=1 ψis,
where ψis is an idiosyncratic measurement error that is independent across s. In intuitive terms, this
condition guarantees that Zi is a sufficiently good proxy for the confounding latent shocks {Zs}S

s=1.

Asymptotic theory

The following result generalizes Proposition 1:

Proposition 3. Suppose Assumptions 2(i) and 2(ii) and Assumptions A.1(i) to A.1(iii) in Online Appendix A.1.1
hold with F0 = (Z, U, Y(0), B, W). Suppose also that Assumptions 3(i) to 3(iii) and Assumptions A.2(i)
and A.2(ii) in Online Appendix A.1.1 hold. Then

β =
∑N

i=1 ∑S
s=1 πisβis

∑N
i=1 ∑S

s=1 πis
, and β̂ = β + op(1), (27)

where πis = w2
is var(Xs | F0).

The only difference in the characterization of the probability limit relative to Proposition 1 is that
the weights πis now reflect the variance of Xs that also conditions on the controls.
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To state the asymptotic normality result, define δ = E[Z′Z]−1E[Z′(Y− Xβ)], so that we can define
the regression residual in eq. (1) as εi = Yi − Xiβ− Z′i δ.

Proposition 4. Suppose Assumptions 2 and 3 and Assumptions A.1 and A.2 in Online Appendix A.1.1 hold
with F0 = (Z, U, Y(0), B, W). Suppose, in addition, that

VN =
1

∑S
s=1 n2

s
var

(
N

∑
i=1

(Xi − Z′i γ)εi | F0

)

converges in probability to a non-random limit. Then

N√
∑S

s=1 n2
s

(β̂− β) = N

0,
VN(

1
N ∑N

i=1 Ẍ2
i

)2

+ op(1).

Relative to Proposition 2, the main difference is that Xi in the definition of VN is replaced by
Xi − Z′i γ, and that Xi is replaced by Ẍi in the outer part of the “sandwich.” To motivate our standard
error formula, suppose that βis = β for all i and s. Under βis = β, it follows from eq. (25) and
Assumption 2(i) that

VN =
∑S

s=1 var(X̃s | F0)R2
s

∑S
s=1 n2

s
, Rs =

N

∑
i=1

wisεi, X̃s = Xs −Z′sγ.

A plug-in estimate of Rs can be constructed by replacing εi with the estimated regression residuals
ε̂i = Yi − Xi β̂ − Zi δ̂, where δ̂ = (Z′Z)−1Z′(Y − Xβ̂) is an OLS estimate of δ. We can estimate the
variance var(X̃s | F0) by X̂2, where

X̂ = (W ′W)−1W ′Ẍ (28)

projects the estimate Ẍ of X− Z′γ onto the sectoral space by regressing it onto the shares W. To carry
out the regression in eq. (28), W must be full rank; this requires that there are more regions than
sectors, N ≥ S. These steps lead to the standard error estimate

ŝe(β̂) =

√
∑S

s=1 X̂
2
s R̂2

s

∑N
i=1 Ẍ2

i

, R̂s =
N

∑
i=1

wisε̂i. (29)

The next remark summarizes the steps needed for the construction of the standard error ŝe(β̂):

Remark 5. To construct the standard error estimate in eq. (29):

1. Obtain the estimates β̂ and δ̂ by regressing Yi onto Xi = ∑S
s=1 wisXs and the controls Zi. The estimate

ε̂i corresponds to the estimated regression residuals.

2. Construct Ẍi, the residuals from regressing Xi onto Zi. Compute X̂s, the regression coefficients from
regressing Ẍ onto W.

3. Plug the estimates ε̂i, Ẍi, and X̂s into the standard error formula in eq. (29).
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To gain intuition for the procedure in Remark 5, it is useful to consider again the case with
concentrated sectors. Suppose that Ui = 0 for all i, so that the regression of Yi onto Xi and Zi is
identical to the regression of Yi onto Xs(i) and Zs(i). Then the standard error formula in eq. (29)
reduces to the usual cluster-robust standard error, with clustering on s(i).

The cluster-robust standard error is generally biased due to estimation noise in estimating εi,
which can lead to undercoverage, especially in cases with few clusters (see Cameron and Miller, 2014
for a survey). Since the standard error in eq. (29) can be viewed as generalizing the cluster-robust
formula, similar concerns arise in our setting. We thus consider a modification ŝeβ0(β̂) of ŝe(β̂) that
imposes the null hypothesis when estimating the regression residuals to reduce the estimation noise
in estimating εi.14 To calculate the standard error ŝeβ0(β̂) for testing the hypothesis H0 : β = β0 against
a two-sided alternative at significance level α, one replaces ε̂i with ε̂β0,i, the residual from regressing
Yi − Xiβ0 onto Zi (ε̂β0,i is an estimate of the residuals with the null imposed). The null is rejected if
the absolute value of the t-statistic (β̂− β0)/ŝeβ0(β̂) exceeds z1−α/2, the 1− α/2 quantile of a standard
normal distribution (1.96 for α = 0.05). To construct a confidence interval (CI) with coverage 1− α,
one collects all hypotheses β0 that are not rejected. The endpoints of this CI are a solution to a
quadratic equation, and are thus available in closed form—one does not have to numerically search
for all the hypotheses that are not rejected. The next remark summarizes this procedure.

Remark 6 (Confidence interval with null imposed). To test the hypothesis H0 : β = β0 with significance
level α or, equivalently, to check whether β0 lies in the confidence interval with confidence level 1− α:

1. Obtain the estimate β̂ by regressing Yi onto Xi = ∑S
s=1 wisXs and the controls Zi. Obtain the restricted

regression residuals ε̂β0,i as the residuals from regressing Yi − Xiβ0 onto Zi.

2. Construct Ẍi, the residuals from regressing Xi onto Zi. Compute X̂s, the regression coefficients from
regressing Ẍ onto W (this step is identical to step 2 in Remark 5).

3. Compute the standard error as

ŝeβ0(β̂) =

√
∑S

s=1 X̂
2
s R̂2

β0,s

∑N
i=1 Ẍ2

i

, R̂β0,s =
N

∑
i=1

wisε̂β0,i. (30)

4. Reject the null if |(β̂ − β0)/ŝeβ0(β̂)| > z1−α/2. A confidence set with coverage 1− α is given by all
nulls that are not rejected, CI1−α = {β0 : |(β̂− β0)/ŝeβ0(β̂)| < z1−α/2}. This set is an interval with
endpoints given by

β̂− A±

√
A2 +

ŝe(β̂)2

Q/(Ẍ′Ẍ)2
, A =

∑S
s=1 X̂

2
s R̂s ∑N

i=1 wisẌi

Q
, (31)

where Q = (Ẍ′Ẍ)2/z2
1−α/2 −∑S

s=1 X̂
2
s (∑i wisẌi)

2 and ŝe(β̂) and R̂s are given in eq. (29).

14Alternatively, one could construct a bias-corrected variance estimate; see, for example, Bell and McCaffrey (2002) for an
example of this approach in the context of cluster-robust inference.
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Proposition 5. Suppose that the assumptions of Proposition 4 hold, and that βis = β. Suppose also that N ≥
S, W is full rank, and that either maxs ∑N

i=1|((W ′W)−1W ′)si| is bounded and maxi E[(U′i γ)
4 | W] → 0, or

else that Ui = 0 for i = 1, . . . , N. Define X̂ as in eq. (28), and let R̂s = ∑N
i=1 wisε̃i, where ε̃i = Yi−Xi β̃−Z′i δ̃,

and β̃ and δ̃ are consistent estimators of δ and β. Then

∑S
s=1 X̂

2
s R̂2

s

∑S
s=1 n2

s
= VN + op(1). (32)

Since in both ε̂i and ε̂β0,i are consistent estimates of the residuals, this proposition shows that the
procedures in Remarks 5 and 6 both yield asymptotically valid confidence intervals. The additional
assumptions of Proposition 5 ensure that the estimation error in X̂s that arises from having to back
out the sector-level shocks Zs from the controls Zi is not too large. If the sectors are concentrated,
then ((W ′W)−1W ′)si = I{s(i) = s}/ns, so that maxs ∑N

i=1|((W ′W)−1W ′)si| = 1, and the assumption
always holds. We show in Online Appendix A.1.6 that the procedures in Remarks 5 and 6 continue
to yield valid inference if βis is heterogeneous across regions and sectors, as long as further regularity
conditions hold.

Although both standard errors ŝeβ0(β̂) and ŝe(β̂) are consistent (and one could further show that
the resulting confidence intervals are asymptotically equivalent), they will in general differ in finite
samples. In particular, it can be seen from eq. (31) that the confidence interval with the null imposed
is not symmetric around β̂, but its center is shifted by A.15 As we show in Section 6, this recentering
tends to improve the finite-sample coverage properties of the confidence interval. On the other hand,
the confidence interval described in Remark 6 tends to be longer on average than that in Remark 5.

4.3 Instrumental variables regression

We now turn to the problem of estimating the effect of a regional treatment variable Y2i on a regional
outcome Y1i using the shift-share variable Xi = ∑S

s=1 wisXs as an instrumental variable (IV). To set up
the problem precisely, we again use the potential outcome framework. In particular, we assume that

Y1i(y2) = Y1i(0) + y2α, (33)

where α, our parameter of interest, measures the causal effect of Y2i onto Y1i. We assume for simplicity
that this causal effect is linear and constant across regions.16 In analogy with eq. (11), we denote the
region-i treatment level that would occur if the region received shocks (x1, . . . ,xS) as

Y2i(x1, . . . ,xS) = Y2i(0) +
S

∑
s=1

wisxsβis. (34)

15This is analogous to the differences in likelihood models between confidence intervals based on the Lagrange multiplier
test (which imposes the null and is not symmetric around the maximum likelihood estimate) and the Wald test (which does
not impose the null and yields the usual confidence interval).

16If we weaken the assumption of constant treatment effects and instead assume Y1i(y2) = Y1i(0) + y2αi, then it follows
by a mild extension of the results in Online Appendix A.2 that our methods would deliver inference on the estimand
∑N

i=1 πiαi/ ∑N
i=1 πi, with πi = ∑S

s=1 w2
is var(Xs | F0)βis, where F0 = (Z, U, Y1(0), Y2(0), B, α, W), and βis is defined in

eq. (34).
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The observed outcome and treatment variables are given by Y1i = Y1i(Y2i) and Y2i = Y2i(X1, . . . ,XS),
respectively.

The framework in eqs. (33) and (34) maps directly to the problem of estimating the regional inverse
labor supply elasticity. In particular, in the context of the model in Section 3, eqs. (8) and (10) map
directly into eqs. (33) and (34) if we define

Y1i = ω̂i, Y2i = L̂i, α = φ̃, Y1i(0) = −φ̃(
G

∑
g=1

w̃igν̂g + ν̂i), wis = l0
is, Xs = χ̂s, βis = θis, (35)

and Y2i(0) is given by the expression for Yi(0) in eq. (12).17 As this mapping illustrates, the poten-
tial outcome Y1i(0) will generally have a shift-share structure, with the shifters being group-specific
labor supply shocks (e.g. growth in the number of workers by education group). Consequently, the
regression residual in the structural equation will generally have a shift-share structure. Similarly, as
eq. (12) illustrates, the potential outcome Y2i(0) will also generally include several shift-share compo-
nents, with the shifters being either sector-specific labor demand shocks or the same group-specific
labor supply shocks appearing in Y1i(0). Thus, the regression residual in the first-stage regression of
Y2i onto Xi will also generally have a shift-share structure.

Our estimate of α is given by an IV regression of Y1i onto Y2i and a K-vector of controls Zi, with
Xi used as an instrument for Y2i. This IV estimate can be written as

α̂ =
∑N

i=1 ẌiY1i

∑N
i=1 ẌiY2i

, (36)

where, as in Section 4.2, Ẍi denotes the residual from regressing Xi onto Zi.

Assumptions

Assumption 4 is a generalization of Assumption 3. Let F0 = (Z, U, Y1(0), Y2(0), B, W).

Assumption 4 (IV Identification). (i) The observed outcome and treatment variables satisfy Y1i =

Y1i(Y2i) and Y2i = Y2i(X1, . . . ,Xs) such that eqs. (33) and (34) hold, and the controls Zi satisfy eq. (24);
(ii) The shifters are exogenous in the sense that, for every s,

E[Xs | F0] = E[Xs | Zs], (37)

and the right-hand side satisfies eq. (26); (iii) Assumptions 3(iii) and 3(iv) hold; (iv) ∑N
i=1 ∑S

s=1 w2
is ·

var(Xs | F0)βis 6= 0.

Assumption 4(ii) adapts the standard instrument exogeneity condition (see, e.g., Condition 1 in
Imbens and Angrist, 1994) to our setting. Our approach follows Borusyak, Hull and Jaravel (2018),
who impose a similar identification condition. To illustrate the restrictions that Assumption 4(ii)
may impose, consider again the problem of estimating the inverse labor supply elasticity within the

17In some applications of shift-share IVs, the shifters {Xs}S
s=1 are unobserved and have to be estimated. We assume here

that Xs is directly measurable for every sector s, and study the case with estimated shifters in Section 5.3.
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context of the model in Section 3, with the mapping between this model and the potential outcomes in
eqs. (33) and (34) given in eqs. (12) and (35). If the controls {Zs}S

s=1 correspond to the shocks {µ̂s}S
s=1,

then eq. (37) requires that, conditional on {µ̂s}S
s=1, the labor demand shocks {χ̂s}S

s=1 used to construct
our IV are mean-independent of the idiosyncratic labor demand shocks {η̂is}N,S

i=1,s=1 and of the labor
supply shifters {ν̂i}N

i=1 and {ν̂g}G
g=1.18 For example, if {χ̂s}S

s=1 are sectoral productivity shocks, then
these productivity shocks need to be independent of shocks to individuals’ willingness to work in
different groups and regions. Assumption 4(iv) requires that the coefficient on the instrument in the
first-stage equation, which can be written as β = ∑N

i=1 ∑S
s=1 w2

is var(Xs | F0)βis/ ∑N
i=1 ∑S

s=1 w2
is var(Xs |

F0), is non-zero—this is the standard IV relevance assumption. For consistency and inference, in an
analogy to the OLS case, we assume that Assumption 2 holds with F0 = (Z, U, Y1(0), Y2(0), B, W).

In a recent paper, Goldsmith-Pinkham, Sorkin and Swift (2018) explore a different approach to
identification and inference on the treatment effect α. Focusing here for simplicity on the case without
controls, in place of Assumption 4(ii), they assume that the shares {wis}S

s=1 are as good as randomly
assigned conditional on the shifters {Xs}S

s=1; so that they are mean-independent of the potential
outcomes Y1(0) and Y2(0) conditional on X. As Goldsmith-Pinkham, Sorkin and Swift (2018) show,
under this alternative assumption, one can replace the shift-share instrument Xi = ∑S

s=1 wisXs by
the full vector of shares (wi1, . . . , wiS) in the first-stage equation. For estimation and inference, this
alternative approach requires that, conditionally on the shifters, either the shares (wi1, . . . , wiS) or else
the structural residuals be independent across regions or clusters of regions.

For estimating the inverse labor supply elasticity in the context of the model in Section 3, eq. (35)
illustrates that this alternative identification assumption requires that, conditional on {χ̂s}S

s=1, the
region-specific employment shares in the initial equilibrium {l0

is}S
s=1 are mean-independent of both

the region-specific exposure shares {w̃ig}G
g=1, and the region-specific labor supply shock νi. This

assumption is violated if regions more exposed to labor demand shocks in a sector s (e.g. to changes
in tariffs in the food sector) are also more exposed to labor supply shocks affecting workers of a group
g (e.g. currency crisis in Mexico affecting the number of Mexican migrants; see Monras, 2018).19

In terms of inference, since the structural residuals will not be independent across regions unless
they contain no shift-share component (which, according to the economic model in Section 3, is
unlikely), the approach in Goldsmith-Pinkham, Sorkin and Swift (2018) generally requires that the
shares are independent across (clusters of) regions. This assumption is, from the perspective of the
model in Section 3, conceptually very different from assuming independence of the shifters Xs across

18If, instead of eq. (34), we defined the first stage as simply the projection of Y2i onto the shift-share instrument, we could
further relax this condition and only require {χ̂s}S

s=1 to be mean-independent of the labor supply shifters. An advantage
of the current setup is that it allows us to derive primitive conditions for the consistency of the estimates of the first-stage
regression and, thus, of the IV estimator.

19To allow for a shift-share component in the structural residual, Goldsmith-Pinkham, Sorkin and Swift (2018) view the
shares (wi1, . . . , wiS) as “invalid” instruments, since, in this case, E[εiwis | X] 6= 0, where εi denotes the structural error.
Goldsmith-Pinkham, Sorkin and Swift (2018) show that if these shares are used to construct a single shift-share instrument
Xi, the bias in the IV estimator coming from the correlation between any wis and the structural residual averages out under
certain conditions as S → ∞, as in the many invalid instrument setting studied in Kolesár et al. (2015). Under the current
setup, in contrast, eq. (37) implies that Xi is a valid instrument for any fixed S. Leveraging exogeneity of Xs is a key
difference between our approach and that in Kolesár et al. (2015) and Goldsmith-Pinkham, Sorkin and Swift (2018). It
allows us to do inference without imposing a particular correlation structure on the residuals εi, and it allows us to achieve
identification without requiring S→ ∞; the latter is only needed for consistency and inference.
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sectors. Since the shifters Xs = χ̂s are exogenous, the latter only involves assumptions on model
fundamentals by restricting the distribution in eq. (7). In contrast, each share wis = l0

is corresponds
to the employment allocation across sectors in a region i in an initial equilibrium, so that the former
involves imposing restrictions on an endogenous outcome of the model. Furthermore, since all the
shares {wis}N,S

i=1,s=1 depend on the same set of sector-specific labor demand shifters {(χs, µs)}S
s=1, they

will generally be correlated across regions.20

Which identification and inference approach is more attractive depends on the context of each
particular empirical application. While the economic model in Section 3 motivates the approach we
pursue here, this does not mean that our approach is generally more attractive. In other empiri-
cal applications (e.g. when the shares are exogenous variables from the perspective of an economic
framework), the approach of Goldsmith-Pinkham, Sorkin and Swift (2018) may be more appropriate.

Asymptotic theory

It follows by adapting the arguments in the proof of Proposition 4 that, if Assumption 4 holds,
and Assumption 2 holds with F0 = (Z, U, Y1(0), Y2(0), B, W), then, under mild technical regularity
conditions (see Online Appendix A.2 for details and proof),
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s
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N

∑
i=1

wisεi,

(38)
where εi = Y1i − Y2iα − Z′i δ is the residual in the structural equation, with δ = E[Z′Z]−1E[Z′(Y1 −
Y2α)]. This suggests the standard error estimate
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s=1 X̂
2
s R̂2

s

|∑N
i=1 ẌiY2i|

=
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s R̂2

s
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i=1 Ẍ2

i |β̂|
, R̂s =

N

∑
i=1

wisε̂i, (39)

where X̂s is constructed as in Remark 5, ε̂ = Y1 − Y2α̂ − Z′(Z′Z)−1Z′(Y1 − Y2α̂) is the estimated
residual of the structural equation, and β̂ = ∑N

i=1 ẌiY2i/ ∑N
i=1 Ẍ2

i is the first-stage coefficient.
The difference between the IV standard error formula in eq. (39) and the OLS version in eq. (29) is

analogous to the difference between IV standard errors and OLS heteroskedasticity-robust standard
errors for the corresponding reduced-form specification: the residual ε̂i corresponds to the residual
in the structural equation, and the denominator is scaled by the first-stage coefficient. To obtain
the IV analog of the standard error estimator under the null H0 : α = α0, we use the formula in
eq. (39) except that, instead of ε̂i, we use the structural residual computed under the null, ε̂α0 =

(I − Z′(Z′Z)−1Z′)(Y1 − Y2α0). The resulting confidence interval is a generalization of the Anderson
and Rubin (1949) confidence interval (which assumes that the structural errors are independent). For
this reason, this confidence interval will remain valid even if the shift-share instrument is weak.

20For instance, if σs = σ for all s, then l0
is = D0

is/(∑S
t=1 D0

it), where D0
is is the labor demand shifter of sector s in region

i in the initial equilibrium. According to eq. (3), for any s, all shifters {D0
is}

N
i=1 depend on the same sector-level demand

shocks, {(χs, µs)}S
s=1 and, thus, the labor shares l0

is will generally be correlated across all regions for any given sector.
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5 Extensions

We now discuss three extensions to the basic setup. In Section 5.1, we relax the assumption that the
shifters {Xs}S

s=1 are independent, allowing them to be correlated within clusters of sectors. Section 5.2
generalizes our results to settings in which we have multiple observations for each region. Section 5.3
considers the case in which the shifters are not directly observed, and have to be estimated.

5.1 Clusters of sectors

Suppose that the sectors can be grouped into larger units, which we refer to as “clusters”, with
c(s) ∈ {1, . . . , C} denoting the cluster that sector s belongs to; e.g., if each s corresponds to a four-
digit industry code, c(s) may correspond to a three-digit code. With this structure, we replace As-
sumption 2(i) with the weaker assumption that, conditional on F0, the shocks Xs and Xk are in-
dependent if c(s) 6= c(k), and we replace Assumption 2(iii) with the assumption that, as C → ∞,
the largest cluster makes an asymptotically negligible contribution to the asymptotic variance; i.e.
maxc ñ2

c / ∑C
d=1 ñ2

d → 0, where ñc = ∑S
s=1 I{c(s) = c}ns is the total share of cluster c.

Under this setup, by generalizing the arguments in Section 4.2, one can show that, as C → ∞,
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VN(
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i=1 Ẍ2
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)2

+ op(1),

and, assuming that βis = β for every region and sector, the term VN is now given by

VN =
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c=1 ∑S,S
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c
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N
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wisεi, X̃s = Xs −Z′sγ.

As a result, we replace the standard error estimate in eq. (29) with a version that clusters X̂sR̂s,

ŝe(β̂) =

√
∑C

c=1 ∑s,t I{c(s) = c(t) = c}X̂sR̂sX̂tR̂t

∑N
i=1 Ẍ2

i

, R̂s =
N

∑
i=1

wisε̂i, (40)

where X̂s is defined as in Remark 5. Confidence intervals with the null imposed can be constructed as
in Remark 6, replacing ε̂i with ε̂β0,i in eq. (40). In the IV setting considered in Section 4.3, the standard
error for α̂ is analogous to that in eq. (40), except that ε̂i denotes the residual in the structural equation,
and we divide the expression by the absolute value of the first-stage coefficient, ∑N

i=1 ẌiY2i/ ∑N
i=1 Ẍ2

i .

5.2 Panel data

Consider a setting with j = 1, . . . , J regions, k = 1, . . . , K sectors, and t = 1, . . . , T periods. For each
period t, we have data on shifters {Xkt}K

k=1, outcomes {Yjt}J
j=1, and shares {wjkt}J,K

j=1,k=1. This setup
maps into the potential outcome framework in eq. (11) if we identify a “sector” with a sector-period
pair s = (k, t), and a “region” with a region-period pair i = (j, t), so that we can index outcomes and
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shifters as Yi = Yjt and Xs = Xkt, with the shares given by

wis =

wjkt if i = (j, t) and s = (k, t),

0 if i = (j, t), s = (k, t′), and t 6= t′.
(41)

If the shifters Xkt are independent across time and sectors, Propositions 3 and 4 immediately give
the large-sample distribution of the OLS estimator. In general, however, it will be important to allow
the shifters Xkt to be correlated across time within each sector k. In this case, one can use the
clustered standard error derived in Section 5.1 by grouping observations over time for each sector
k into a common cluster, so that c(k, t) = c(k′, t′) if k = k′. We can then apply the formula in
eq. (40) to allow for any arbitrary time-series correlation in the sector-level shocks Xkt for any given
sector k. Regardless of whether the sector-period pairs (k, t) are clustered, as discussed in Remark 4,
our standard error formulas allow for arbitrary dependence patterns in the regression residuals—in
particular, they account for potential serial dependence in the regression residuals.

If the shift-share regressor is used as an IV in a regression of an outcome Y1jt onto a treatment
Y2jt, the mapping to eqs. (33) and (34) is analogous, and one can use an IV version of the formula in
eq. (40) for inference.

5.3 IV with estimated shifters

We now consider a setting in which the sectoral shifters {Xs}S
s=1 that define the shift-share IV studied

in Section 4.3 are not directly observed. We follow the setup in Section 4.3 but assume that, instead
of observing Xs directly, we only observe a noisy measure of it,

Xis = Xs + ψis (42)

for each sector-region pair. We consider IV regressions that use two different estimates of Xi =

∑S
s=1 wisXs. First, an estimate that replaces Xs with an estimate X̂s = ∑N

i=1 w̌isXis/ňs, where ňs =

∑N
i=1 w̌is and the weights w̌is are not necessarily related to wis. The resulting estimate of Xi is

X̂i =
S

∑
s=1

wisX̂s =
S

∑
s=1

wis
1
ňs

N

∑
j=1

w̌jsXjs, (43)

and it yields the IV estimate α̃ = ¨̂X′Y1/ ¨̂X′Y2, where ¨̂X = X̂ − Z(Z′Z)−1Z′X̂ is the residual from
regressing X̂i onto Zi. Second, we consider the leave-one-out estimator

X̂i,− =
S

∑
s=1

wisX̂s,−i =
S

∑
s=1

wis
1

ňs,−i

N

∑
j=1

I{j 6= i}w̌jsXjs, ňs,−i =
N

∑
j=1

I{j 6= i}w̌js, (44)

where X̂s,−i = ∑N
j=1 I{j 6= i}w̌jsXjs/ňs,−i is an estimate of Xs that excludes region i. A version of this

estimator has been used in Autor and Duggan (2003). This leave-one-out estimator of the shift-share
instrument Xi yields the IV estimate α̂− = ¨̂X′−Y1/ ¨̂X′−Y2, where ¨̂X− = X̂− − Z′(Z′Z)−1Z′X̂−.

While we assume that Xs satisfies the exogeneity restriction in Assumption 4(ii) for every s, we
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allow the measurement errors ψi = (ψi1, . . . , ψiS)
′ to be potentially correlated with the potential out-

comes Y1i(0) and Y2i(0) in the same region i. We assume, however, that ψi is independent of the errors
ψj and of the potential outcomes Y1j(0) and Y2j(0) for any region j 6= i (see Online Appendix A.2 for
a formal statement). In Online Appendix E.2.3, we use the model in Section 3 to discuss these as-
sumptions in the context of estimating the inverse labor supply elasticity.21

The potential correlation between ψi and the potential outcomes in region i implies that the esti-
mation error in X̂i, which is a function on ψi, may be correlated with the residual in the structural
equation. Thus, including the ith observation in the construction of X̂i induces an own-observation
bias in the IV estimator α̃ of α. See Goldsmith-Pinkham, Sorkin and Swift (2018) and Borusyak, Hull
and Jaravel (2018) for a discussion. This bias is analogous to the bias of the two-stage least squares
estimator in settings with many instruments (e.g. Bekker, 1994; Angrist, Imbens and Krueger, 1999),
such as when one uses group indicators as instruments.22 We show in Online Appendix A.2 that
the magnitude of the bias is of the order 1

N ∑N
i=1 ∑S

s=1
wisw̌is

ňs
≤ S/N, so that consistency of α̃ gener-

ally requires the number of sectors to grow more slowly than the number of regions. Furthermore,
to ensure that the asymptotic bias in α̃ does not induce undercoverage of the resulting confidence
intervals, one generally requires S3/2/N → 0.

The estimator α̂−, which can be thought of as a shift-share analog of the jackknife IV estimator
studied in Angrist, Imbens and Krueger (1999), remains consistent, as shown in Borusyak, Hull and
Jaravel (2018) and in Online Appendix A.2. We also show in this appendix that, under regularity
conditions, its asymptotic distribution is given by
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VN +WN(

1
N ∑N

i=1 ẌiY2i
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with VN defined as in eq. (38), and
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SijSji), Sij =
S

∑
s=1

I{i 6= j}
wisw̌jsψjsεi
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The term WN accounts for the additional uncertainty stemming from the fact that the shift-share IV
is estimated. It is analogous to the many-instrument term in the jackknife IV estimator under many
instrument asymptotics (see Chao et al., 2012). Using simulations, we show in Online Appendix E.2.4
several designs in which, while correcting for the own-observation bias by using α̂− instead of α̃ is
quantitatively important, accounting for the additional variance term WN is less important.

21Specifically, we show in Online Appendix E.2.3 that, if Xis corresponds to employment growth rates, then ψi will
generally not be independent of (ψj, Y1j(0), Y2j(0)) in others regions j 6= i, unless one makes restrictive assumptions about
the demand elasticities σs, such as σs = 0. We also construct alternative shift-share IVs that satisfy this independence
assumption under weaker restrictions on σs, but require adjusting the shifter used in estimation.

22See, e.g., Maestas, Mullen and Strand (2013); Dobbie and Song (2015); Aizer and Doyle (2015), or Silver (2016).
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6 Performance of new methods: placebo evidence

In Section 6.1, we revisit the placebo exercise in Section 2 to examine the finite-sample properties of
the inference procedures described in Remarks 5 and 6. In Section 6.2, we show that our baseline
placebo results are robust to several changes in the placebo design.

6.1 Baseline specification

We first consider the performance of the standard error estimator in eq. (29) (which we label AKM),
and the standard error and confidence interval in eqs. (30) and (31) (with label AKM0) in the baseline
placebo design described in Section 2.23,24

For the AKM and AKM0 inference procedures, Table 2 presents median standard error estimates
and rejection rates for 5% significance level tests of the null hypothesis H0 : β = 0. In the case
of AKM0, since the standard error depends on the null being tested, the table reports the median
“effective standard error”, defined as the length of the 95% confidence interval divided by 2× 1.96.

The results in Table 2 show that the inference procedures introduced in Section 4 perform well.
The median AKM standard error is slightly lower than the standard deviation of β̂, by about 5% on
average across all outcomes. The median AKM0 effective standard error is slightly larger than the
standard deviation of β̂, by about 11% on average. The implied rejection rates are close to the 5%
nominal rate: the AKM procedure has rejection rates between 7.5% and 9.1% and the AKM0 rejection
rates are always between 4.3% and 4.5%. As discussed in Section 4.2, the AKM and AKM0 confidence
intervals are asymptotically equivalent. The differences in rejection rates between the AKM and
AKM0 inference procedures are thus due to differences in finite-sample performance. As noted in
other contexts (see, e.g., Lazarus et al., 2018), imposing the null can lead to improved finite-sample
size control. The better size control of the AKM0 procedure is consistent with these results.

6.2 Alternative placebo specifications

In Section 4, we show theoretically that the AKM and AKM0 inference procedures are valid in large
samples only if: (a) the number of sectors goes to infinity; (b) all sectors are asymptotically “small”; (c)
the sectoral shocks are independent across sectors. Given these conditions, these inference procedures
remain valid under (d) any distribution of the sectoral shifters; and (e) arbitrary correlation structure
of the regression residuals. In this section, we evaluate the sensitivity of these inference procedures
to requirements (a) to (c) above, and illustrate points (d) and (e) by documenting the robustness of
these procedures to alternative distributions of the shifters and the residuals. In all cases, we also
report Robust and Cluster standard errors estimates and rejection rates. We focus on the change in the
share of working-age population employed as the outcome variable of interest.

We first evaluate how the performance of different inference procedures depends on the number
of sectors. Panel A of Table 3 shows that the overrejection problem affecting standard inference

23We fix the matrix Z to be a column of ones when implementing the formulas in eqs. (29) and (31).
24In Online Appendix D.8, we explore the sensitivity of our results to using counties (instead of CZs) as the regional unit

of analysis, and occupations (instead of sectors) as the unit at which the shifter is defined.
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Table 2: Median standard errors and rejection rates for H0 : β = 0 at 5% significance level.

Estimate Median eff. s.e. Rejection rate

Mean Std. dev AKM AKM0 AKM AKM0
(1) (2) (3) (4) (5) (6)

Panel A: Change in the share of working-age population
Employed −0.01 2.00 1.90 2.21 7.8% 4.5%
Employed in manufacturing −0.01 1.88 1.77 2.06 8.0% 4.3%
Employed in non-manufacturing 0.00 0.94 0.89 1.04 8.2% 4.5%

Panel B: Change in average log weekly wage
Employed −0.03 2.66 2.57 2.99 7.5% 4.3%
Employed in manufacturing −0.03 2.92 2.74 3.18 9.1% 4.5%
Employed in non-manufacturing −0.02 2.64 2.55 2.96 7.8% 4.5%

Notes: For the outcome variable indicated in the leftmost column, this table indicates the mean and standard deviation
of the OLS estimates of β in eq. (1) across the placebo samples (columns (1) and (2)), the median effective standard
error estimates (columns (3) and (4)), and the percentage of placebo samples for which we reject the null hypothesis
H0 : β = 0 using a 5% significance level test (columns (5) and (6)). AKM is the standard error in Remark 5; and
AKM0 is the confidence interval in Remark 6. The median effective standard error is equal to the median length of the
corresponding 95% confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples.

procedures worsens when the number of sectors decreases: the rejection rates of 5% significance
level tests based on Robust and Cluster standard errors reach 70.6% and 56.1%, respectively, when we
construct the shift-share covariate using 20 2-digit SIC sectors (instead of the 396 4-digit SIC sectors
we use in the baseline placebo). In line with the findings of the literature on clustered standard errors
with few clusters, the rejection rates of hypothesis tests that rely on AKM standard errors also increase
to 12%, but rejection rates for hypothesis tests that apply the AKM0 inference procedure remain very
close to the nominal 5% significance level.

Panels B to D of Table 3 examine the robustness of the results in Tables 1 and 2 to alternative
distributions of the shifters. In Panel B, as in our baseline placebo exercise, the shifters are drawn
i.i.d. from a normal distribution, but we change the variance to both a lower (σ2 = 0.5) and a higher
value (σ2 = 10) than in the baseline (σ2 = 5). In Panel C, we draw the shifters from a log-normal
distribution re-centered to have mean zero and scaled to have the same variance as in the baseline.
Panel D investigates the robustness of our results to heteroskedasticity in the sector-level shocks. We
set variance of the shock in each sector s, to σ2

s = 5 + λ(ns − S/N). Thus, the cross-sectional average
of the variance of the sector-level shocks is the same as in the baseline (which corresponds to setting
λ = 0), but this variance now varies across sectors. Comparison of the results in Panels B to D of
Table 3 to those in Tables 1 and 2 suggests that our baseline results are not sensitive to specific details
of the distribution of sector-level shifters. This is consistent with the claim (d) above.

Panels E and F of Table 3 explore the robustness of our baseline results to different patterns of
correlation in the regression residuals. In the baseline placebo, since β = 0, the regression residuals
inherit the correlation patterns in the outcome variable. Here, we modify these patterns by adding
a random shock ηm

i in each placebo sample m to the outcome Yi. Panel E explores the impact of
increasing the correlation between the regression residuals of CZs that belong to the same state.
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Table 3: Alternative number of sectors, shifter distributions and residuals’ correlation patterns

Estimate Median eff. s.e. Rejection rate

Mean Std. dev Robust Cluster AKM AKM0 Robust Cluster AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Sensitivity to the number of sectors
2-digit (S = 20) −0.01 3.19 0.65 0.96 2.84 6.06 70.6% 56.1% 12.0% 5.8%
3-digit (S = 136) 0.00 2.25 0.73 0.94 2.18 2.72 54.2% 42.5% 7.5% 4.5%

Panel B: Sensitivity to the variance of the shifters
σ2 = 0.5 −0.04 6.33 2.33 2.91 6.04 7.02 48.5% 38.0% 7.9% 4.5%
σ2 = 10 0.00 1.41 0.52 0.65 1.35 1.57 48.1% 37.8% 7.5% 4.5%

Panel C: Log-normal shifters
σ2 = 5 0.27 2.26 0.86 1.05 2.17 3.7 44.6% 35.3% 7.7% 5.2%

Panel D: Heteroskedastic shifters
λ = 3 −0.01 1.63 0.55 0.72 1.51 2.14 52.1% 40.1% 8.7% 4.0%
λ = 7 0.01 1.38 0.44 0.58 1.23 2.01 53.7% 41.1% 9.5% 4.2%

Panel E: Simulated state-level shocks in regression residual
0.00 2.11 0.86 1.11 1.99 2.32 42.8% 30.4% 7.9% 4.6%

Panel F: Simulated ‘large’ sector shifter in regression residual
−0.01 2.01 0.74 0.92 1.90 2.21 48.4% 37.8% 7.9% 4.6%

Panel G: Including a ‘large’ sector in shift-share regressor
−0.02 4.25 0.59 0.76 1.18 1.34 92.0% 89.6% 77.2% 76.3%

Notes: All estimates in this table use the change in the share of the working-age population employed in each CZ as the outcome
variable Yi in eq. (1). This table indicates the mean and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples
(columns (1) and (2)), the median effective standard error estimates (columns (3) to (6)), and the percentage of placebo samples for
which we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (7) to (10)). Robust is the Eicker-Huber-White
standard error; Cluster is the standard error that clusters CZs in the same state; AKM is the standard error in Remark 5; AKM0 is the
confidence interval in Remark 6. For each inference procedure, the median effective standard error is equal to the median length of the
corresponding 95% confidence interval divided by 2× 1.96. Results are based on 30,000 placebo samples. This table presents results
for placebo simulations that depart from the baseline; the results should thus be compared to those in Tables 1 and 2. In Panel A, we
reduce the number of sectors relative to the baseline. In Panel B, we change the variance of the distribution from which all shifters
are drawn. In Panel C, we assume that the distribution from which all shifters are drawn is log-normal (re-centered at zero) with
variance equal to five. In Panel D, we allow the variance of the shock in each sector to be heteroskedastic, σ2

s = 5 + λ(ns − S/N). In
Panel E, we simulate state-level shocks and include them in our regression residual. In Panels F and G, we simulate a shifter for the
non-manufacturing sector and include it in our regression residual and in our shift-share regressor, respectively.

Specifically, we generate a random variable η̃m
k for each state k and simulation m such that η̃m

k ∼
N(0, 6). We then set ηm

i = η̃m
k(i) where k(i) is the state of CZ i. Since we have now increased the

relative importance of the correlation pattern accounted for by Cluster standard errors, the resulting
overrejection decreases from 38.3% to 30.4%. In line with claim (e) above, the rejection rates of the
AKM and AKM0 inference procedures are not affected. In Panel F, we evaluate the robustness of our
results to adding a shock to the non-manufacturing sector that is included in the regression residual.
Specifically, in each simulation m, we set ηm

i = (1− ∑S
s=1 wis)η̂

m
S with η̂m

S ∼ N(0, 5), where ∑S
s=1 wis

is the 1990 aggregate employment share of the 396 4-digit SIC manufacturing sectors included in the
definition of the shift-share regressor of interest. The results in Panel F of Table 3 show that adding
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this component to the regression residual does not affect the rejection rates.
Lastly, Panel G in Table 3 explores the consequences of adding the non-manufacturing sector to

the shift-share regressor. In Panel F, the shock to the non-manufacturing sector is part of the regres-
sion residual; in Panel G, we use this shock, in combination with the shocks to all manufacturing
sectors, to construct the shift-share regressor. Across CZs, the average initial employment share in
the non-manufacturing sector is 77.5%; i.e. N−1 ∑N

i=1(1− ∑S
s=1 wis) = 77.5%. Including such a large

sector in the shift-share regressor violates Assumptions 2(ii) and 2(iii). As a result, the AKM and
AKM0 inference procedures overreject severely; standard inference procedures fare even worse, with
rejection rates reaching up to 92%. The results in Panels F and G suggest that, provided that the
shifters are independent across sectors, it is better to exclude large sectors from the shift-share re-
gressor of interest, and thus let the shocks associated with them enter the regression residual. One
should, however, bear in mind that, if βis in eq. (11) varies across sectors, excluding large sectors from
the shift-share regressor will change the estimand β (see Proposition 3).

In the placebo simulations described in Tables 1 to 3, we have drawn the shifters independently
from a mean-zero distribution. In Table 4, we allow for non-zero correlation in the shifters within
“clusters” of sectors.25 Specifically, we report results from placebo exercises in which the shifters are
drawn from the joint distribution (Xm

1 , . . . ,Xm
S ) ∼ N (0, Σ), where Σ is an S× S covariance matrix

with elements Σsk = (1 − ρ)σ I{s = k} + ρσ I{c(s) = c(k)} and c(s) indicates the “cluster” that
industry s belongs to. In panels A, B, and C, these clusters correspond to the 3-, 2-, and 1-digit SIC
sector that the 4-digit SIC sector s belongs to, respectively.

Panel A of Table 4 shows that introducing correlation within 3-digit SIC sectors has a moderate
effect on the rejection rates of both the traditional methods and versions of the AKM and AKM0
methods that assume that the sectoral shocks are independent. Rejection rates close to 5% are ob-
tained with versions of the AKM and AKM0 inference procedures that cluster the shifters at a 2-digit
SIC level (see Section 5.1). As shown in Panel B, the overrejection problem affecting both traditional
inference procedures and versions of the AKM and AKM0 procedures that assume independence of
shifters is more severe when the shifters are correlated at the 2-digit level. However, the last two
columns show that, in this case, the versions of AKM and AKM0 that cluster the sectoral shocks at
the 2-digit level achieve rejection rates close to the nominal level. Finally, Panel C shows that the
overrejection problem is much more severe in the presence of high correlation in shifters within the
two 1-digit aggregate sectors, and this problem is not solved by clustering at the 2-digit level.

The last panel in Table 4 illustrates the inferential problems that arise in empirical applications of
shift-share designs when all shifters are correlated with each other. Such correlations also arise, for
example, when all shifters are generated (at least in part) by a common shock with potentially het-
erogeneous effects across sectors.26 As simulations presented in Table E.2 in Online Appendix E.1.1
illustrate, if there is a common component affecting all shifters, it is important to first estimate this
common component and to control for it in the shift-share regression of interest. Otherwise, hy-

25In Online Appendix D.2, we study the impact of drawing the shifters from a distribution with non-zero mean. We
show that, in line with the discussion in Section 4.2, it is important to control for the region-specific sum of shares ∑S

s=1 wis.
26There is an extensive empirical literature documenting the importance of common factors driving changes in sector-

specific variables such as sectoral industrial production, employment and value added (see, e.g., Altonji and Ham, 1990;
Shea, 2002; Foerster, Sarte and Watson, 2011).
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Table 4: Correlation in sectoral shocks

Estimate Median eff. s.e. Rejection rate

Independent 2-digit SIC Independent 2-digit SIC

Mean Std. dev Robust Cluster AKM AKM0 AKM AKM0 Robust Cluster AKM AKM0 AKM AKM0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Panel A: Simulated shifters with correlation within 3-digit SIC sectors
ρ = 0.00 −0.01 2.00 0.74 0.92 1.91 2.22 1.86 2.64 48.6% 37.8% 7.9% 4.6% 8.9% 4.7%
ρ = 0.50 0.02 2.14 0.77 1.07 2.03 2.16 2.24 2.87 49.2% 32.3% 6.4% 7.1% 4.4% 4.7%
ρ = 1.00 0.01 2.27 0.76 1.08 1.99 2.10 2.38 3.14 52.2% 35.0% 8.6% 9.7% 4.7% 4.8%

Panel B: Simulated shifters with correlation within 2-digit SIC sectors
ρ = 0.00 −0.01 1.99 0.73 0.92 1.90 2.22 1.86 2.65 48.2% 37.7% 7.6% 4.5% 8.8% 4.5%
ρ = 0.50 −0.01 2.73 0.73 1.13 1.82 1.89 2.92 4.07 62.3% 43.2% 20.5% 23.5% 5.8% 5.0%
ρ = 1.00 0.01 3.20 0.69 1.18 1.67 1.63 3.38 6.16 68.4% 48.1% 31.2% 35.7% 6.3% 5.2%

Panel C: Simulated shifters with correlation within 1-digit SIC sectors
ρ = 0.00 0.01 1.98 0.73 0.92 1.90 2.21 1.85 2.65 48.5% 37.7% 7.3% 4.4% 8.5% 4.4%
ρ = 0.50 0.02 4.95 0.74 1.41 1.88 1.59 2.42 2.36 84.2% 72.3% 58.3% 64.7% 42.7% 53.2%
ρ = 1.00 0.42 59.63 0.71 1.74 1.86 1.02 2.94 1.67 90.2% 78.3% 75.2% 82.7% 52.1% 65.6%

Notes: All estimates in this table use the change in the share of the working-age population employed in each CZ as the outcome variable Yi in eq. (1). This table indicates the
mean and standard deviation of the OLS estimates of β in eq. (1) across the placebo samples (columns (1) and (2)), the median effective standard error estimates (columns (3) to (8)),
and the percentage of placebo samples for which we reject the null hypothesis H0 : β = 0 using a 5% significance level test (columns (9) to (14)). Robust is the Eicker-Huber-White
standard error; Cluster is the standard error that clusters CZs in the same state; in columns (5) and (11), AKM is the standard error in Remark 5; in columns (7), and (13), AKM is the
standard error in eq. (40) for 2-digit SIC sector clusters; in columns (6) and (12), AKM0 is the confidence interval in Remark 6; in columns (8) and (14), AKM0 adjusts the confidence
interval in Remark 6 as indicated in Section 5.1. For each inference procedure, the median effective standard error is equal to the median length of the corresponding 95% confidence
interval divided by 2× 1.96. Results are based on 30,000 placebo samples.

33



pothesis tests based on standard inference procedures as well as on the AKM and AKM0 inference
procedures may suffer from an overrejection problem.

We summarize the conclusions from Tables 3 and 4 in the following remark.

Remark 7. In shift-share regressions, overrejection of the usual inference procedures is more severe when there
is a small number sectors. In this case, the methods we provide attenuate the overrejection problem, but may still
overreject when the number of sectors is very small. Our methods perform well under different distributions
of shifters and regression residuals, but they lead to an overrejection problem when the shift-share covariate
aggregates over a large sector. Finally, when the shifters are not independent across sectors, it is important to
properly account for their correlation structure.

In Online Appendices D.3 to D.7 we present results from additional placebo simulations in which
we investigate the consequences of: (a) the violation of the assumption that the shifters of interest are
as good as randomly assigned; (b) the presence of serial correlation in both the shifters of interest and
the regression residuals, in panel data settings; (c) the true potential outcome function being nonlin-
ear, implying that the linearly additive potential outcome framework in eq. (11) is misspecified; (d)
the presence in the regression residuals of shift-share components with shares correlated in different
degrees with those entering the shift-share covariate of interest; and, (e) the presence of treatment
heterogeneity across regions and sectors.

7 Empirical applications

We now apply the AKM and AKM0 inference procedures to two empirical applications. First, the
effect of Chinese competition on U.S. local labor markets, as in Autor, Dorn and Hanson (2013).
Second, the estimation of the local inverse elasticity of labor supply, as in Bartik (1991). Additionally,
in Online Appendix F, we apply the AKM and AKM0 inference procedures to the study of the impact
of immigration on labor market outcomes of U.S. natives.

7.1 Effect of Chinese exports on U.S. labor market outcomes

Autor, Dorn and Hanson (2013, henceforth ADH), explore the impact of exports from China on labor
market outcomes across U.S. CZs. Specifically, ADH present IV estimates for a specification that fits
within the panel data setting described in Section 5.2, with each region j = 1, . . . , 722 denoting a
CZ, each sector k = 1, . . . , 396 denoting a 4-digit SIC industry, and each period t = 1, 2 denoting
either 1990–2000 changes or 2000–2007 changes. As in Section 5.2, we index here the intersection of
a region j and a period t by i, and the intersection of a sector k and a period t by s. In ADH, the
outcome Y1i is a ten-year equivalent change in a labor-market outcome, the endogenous treatment is
Y2i = ∑S

s=1 w̄isX
US
s , where XUS

s is the change in U.S. imports from China normalized by the start-
of-period total U.S. employment in the sector, and w̄is is the start-of-period employment share of a
sector in a CZ. ADH use the shift-share IV Xi = ∑S

s=1 wisXs, where Xs denotes imports from China
by high-income countries other than the U.S. normalized by a ten-year-lag of the start-of-period total
U.S. employment in the sector, and wis is the ten-year-lag of the employment share w̄is. To measure
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these variables, we use the data sources described in Section 2.1. In all regression specifications, we
include a vector of controls Zi corresponding to the largest set of controls used in ADH.27

Table 5 reports 95% CIs computed using different methodologies for the specifications in Tables 5
to 7 in ADH. Panels A, B, and C present the IV, reduced-form and first-stage estimates, respectively.
Following Autor et al. (2014), the AKM and AKM0 CIs cluster the shifters {Xs}S

s=1 by 3-digit SIC
industry; thus, the AKM and AKM0 CIs we report are robust to serial correlation in the shifters as
well as to cross-sectoral correlation in the shifters within 3-digit SIC industries. Tables E.4 and E.5 in
Online Appendix E.1 report AKM and AKM0 CIs for alternative definitions of clusters.

In Online Appendix E.1, we present placebo simulations that depart from our baseline placebo
design in ways that explore specific features of the empirical setting studied in this section. In Ta-
ble E.1, we draw the shifters from the empirical distribution of shifters used to construct the ADH
IV (instead of drawing them from a normal distribution); the resulting rejection rates are very similar
to those in the baseline simulation. In Table E.2, we draw shifters that have a common component
with factor structure; since the resulting correlation structure cannot be captured by clustering, we
show that it is important in this case to include an estimate of the common factor component as an
additional control.28

In Table 5, state-clustered CIs are very similar to the heteroskedasticity-robust ones. In contrast,
our proposed CIs are wider than those implied by state-clustered standard errors. For the IV estimates
reported in Panel A, the average increase across all outcomes in the length of the 95% CI is 24% with
the AKM procedure and 65% with the AKM0 procedure. When the outcome is the change in the
manufacturing employment rate, the length of the 95% CI increases by 26% with the AKM procedure
and by 65% with the AKM0 procedure. In light of the lack of impact of state-clustering on the 95% CI,
the wider intervals implied by our inference procedures indicate that cross-region residual correlation
is driven by similarity in sectoral compositions rather than by geographic proximity.

Panel B of Table 5 reports CIs for the reduced-form specification. In this case, the increase in
the CI length is slightly larger than for the IV estimates: across outcomes, it increases on average by
54% for AKM and 130% for AKM0. The smaller relative increase in the CI length for the IV estimate
relative to its increase for the reduced-form estimate is a consequence of the fact that all inference
procedures yield similar CIs for the first-stage estimate, as reported in Panel C.

As discussed in Section 6, the differences between AKM (or AKM0) CIs and state-clustered CIs are
related to the importance of shift-share components in the regression residual. The results in Panel
C suggest that, once we account for changes in sectoral imports from China to other high-income
countries, there is not much sectoral variation left in the first-stage regression residual; i.e., there are
no other sectoral variables that are important to explain changes in sectoral imports from China to the

27See column (6) of Table 3 in ADH. The vector Zi aims to control for labor supply shocks and labor demand shocks other
than the changes in imports from China, and it includes the start-of-period percentage of employment in manufacturing.
The discussion in Section 4.2 implies that one should instead control for the ten-year-lagged of the start-of-period employ-
ment share in manufacturing, to match the shares that enter the definition of the shift-share IV. However, to facilitate the
comparison with the original results in ADH, we use their vector of controls. As shown in Borusyak, Hull and Jaravel
(2018), controlling for the ten-year-lagged manufacturing employment shares does not substantively affect the estimates.

28For placebo simulation evidence under our baseline assumption that the shifters are independent across 3-digit clusters,
using data for outcomes Y1i and shares wis identical to that used in this section, see Online Appendix D.4.
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Table 5: Effect of Chinese exports on U.S. commuting zones—Autor, Dorn and Hanson (2013)

Change in the employment share Change in avg. log weekly wage

All Manuf. Non-Manuf. All Manuf. Non-Manuf.
(1) (2) (3) (4) (5) (6)

Panel A: 2SLS Regression
β̂ −0.77 −0.60 −0.18 −0.76 0.15 −0.76
Robust [−1.10,−0.45] [−0.78,−0.41] [−0.47, 0.12] [−1.23,−0.29] [−0.81, 1.11] [−1.27,−0.25]
Cluster [−1.12,−0.42] [−0.79,−0.40] [−0.45, 0.10] [−1.26,−0.26] [−0.81, 1.11] [−1.28,−0.24]
AKM [−1.25,−0.30] [−0.84,−0.35] [−0.54, 0.18] [−1.37,−0.15] [−0.81, 1.11] [−1.42,−0.10]
AKM0 [−1.69,−0.39] [−1.01,−0.36] [−0.84, 0.14] [−1.77,−0.17] [−1.49, 1.05] [−1.97,−0.19]

Panel B: OLS Reduced-Form Regression
β̂ −0.49 −0.38 −0.11 −0.48 0.10 −0.48
Robust [−0.71,−0.27] [−0.48,−0.28] [−0.31, 0.08] [−0.80,−0.16] [−0.50, 0.69] [−0.83,−0.13]
Cluster [−0.64,−0.34] [−0.45,−0.30] [−0.27, 0.05] [−0.78,−0.18] [−0.51, 0.70] [−0.81,−0.15]
AKM [−0.81,−0.17] [−0.52,−0.23] [−0.35, 0.12] [−0.88,−0.07] [−0.50, 0.69] [−0.93,−0.03]
AKM0 [−1.24,−0.24] [−0.67,−0.25] [−0.64, 0.08] [−1.27,−0.10] [−1.16, 0.61] [−1.47,−0.11]

Panel C: 2SLS First-Stage
β̂ 0.63
Robust [0.46, 0.80]
Cluster [0.45, 0.81]
AKM [0.53, 0.73]
AKM0 [0.54, 0.84]

Notes: N = 1, 444 (722 CZs × 2 time periods). Observations are weighted by the start of period CZ share of national population. All
regressions include the full vector of baseline controls in ADH; i.e. those in column (6) of Table 3 in Autor, Dorn and Hanson (2013). 95%
confidence intervals are reported in square brackets. Robust is the Eicker-Huber-White standard error; Cluster is the standard error that
clusters of CZs in the same state; AKM is the standard error in eq. (40) with 3-digit SIC clusters; AKM0 is the confidence interval with
3-digit SIC clusters described in the last sentence of Section 5.1.

U.S.29 To investigate this claim, Table E.3 in Online Appendix E.1 reports the rejection rates implied
by a placebo exercise designed to match the first-stage specification reported in Panel C of Table 5.
The placebo results show that, while traditional methods still suffer from severe overrejection when
no controls are included, the overrejection is attenuated once we include as controls the shift-share
IV and the control vector Zi we use in Table 5, indicating that these variables soak up much of the
cross-CZ correlation in the treatment variable used in ADH.

Overall, Table 5 shows that, despite the wider confidence intervals obtained with our procedures,
the qualitative conclusions in ADH remain valid at usual significance levels. However, the increased
width of the 95% CI shows that the uncertainty regarding the magnitude of the impact of Chinese
import exposure on U.S. labor markets is greater than that implied by usual inference procedures. In
particular, the AKM0 CI is much wider than that based on state-clustered standard errors; furthermore
due to its asymmetry around the point estimate, using the AKM0 CI, we cannot rule out impacts of

29This is analogous to what we would observe in a regression in which the regressor of interest varies at the state level,
and we control for all state-specific covariates affecting the outcome variable: state-clustered standard errors would be
similar to heteroskedasticity-robust standard errors, since there is little within-state correlation left in the residuals.

36



the China shock that are two to three times larger than the point estimates of these effects.30

7.2 Estimation of inverse labor supply elasticity

In our second application, we estimate the inverse labor supply elasticity. Specifically, using the
notation of Section 3, we estimate the parameter φ̃ in the equation

ω̂i = φ̃L̂i + δZi + εi, φ̃ = φ−1, (46)

where L̂i denotes the log change in the employment rate in CZ i, ω̂i denotes the log change in wages,
Zi is a vector of controls, and εi is a regression residual. We use the same sample, data sources, and
vector of controls Zi as in Section 7.1.31

The model in Section 3 has implications for the properties of different strategies for estimating
the inverse labor supply elasticity φ̃. By eq. (10), the residual εi in eq. (46) accounts for changes in
labor supply shocks, ∑G

g=1 w̃igν̂g + ν̂i, not controlled for by the vector Zi. Second, it follows from eq. (8)
that, up to a first-order approximation around an initial equilibrium, changes in regional employment
rates, L̂i, can be written as a function of both shift-share aggregators of sectoral labor demand shocks
and the same labor supply shocks potentially entering εi in eq. (10), ∑G

g=1 w̃igν̂g + ν̂i. Thus, L̂i and
εi will generally be correlated and the OLS estimator of φ̃ in eq. (46) will be biased. However, as
discussed in Section 4.3, the model in Section 3 also implies that we can instrument for L̂i using shift-
share aggregators of sectoral labor demand shocks that are independent of the unobserved labor
supply shocks (see Online Appendix E.2 for more details).

In this section, we use three different shift-share IVs to estimate φ̃ in eq. (46). For each of them,
Table 6 presents the reduced-form, first-stage and 2SLS estimates. First, in Panel A, we use the instru-
mental variable in Bartik (1991); i.e. X̂i = ∑N

i=1 wis L̂s, where L̂s denotes the nation-wide employment
growth in sector s. Second, in Panel B, we use the leave-one-out version of this instrument; i.e.
X̂i = ∑N

i=1 wis L̂s,−i, where L̂s,−i denotes the employment growth in sector s over all CZs excluding CZ
i.32 Third, in Panel C, we use the IV used in Autor, Dorn and Hanson (2013), which we denote as
ADH IV and describe in detail in Section 7.1.33 As in Section 7.1, we report versions of the AKM and
AKM0 CIs with shifters clustered at the 3-digit SIC industry for all periods.

Column (3) of Table 6 shows that the estimates of the inverse labor supply elasticity are similar
no matter which IV we use: 0.80 when using the original Bartik IV, 0.82 when using the leave-one-out

30It follows from Remark 6 (see the expression for the quantity A) that the asymmetry in the AKM0 CI comes from the
correlation between the regression residuals R̂s and the shifters cubed. In large samples, this correlation is zero and the
AKM and AM0 CIs are asymptotically equivalent. The differences between both CIs in Table 5 thus reflect differences in
their finite-sample properties. This notwithstanding, the placebo exercise presented in Online Appendix D.4 shows that
both inference procedures yield close to correct rejection rates in a sample analogous to that used in ADH.

31Table E.7 in Online Appendix E.2 investigates the robustness of our results to alternative sets of controls.
32The leave-one-out version of the instrument in Bartik (1991) was originally proposed by Autor and Duggan (2003). In

Online Appendix E.2.3, we clarify the assumptions under which the model in Section 3 is consistent with the validity of
the leave-one-version of the Bartik IV. Online Appendix E.2.4 presents placebo exercises attesting that the AKM and AKM0
CIs reported in this section have appropriate coverage in the context of this empirical application.

33The effect of these IVs on the changes in the employment rate may be heterogeneous across regions and sectors
(see eq. (8)). This does not affect the validity of our inference procedures since, as discussed in Section 4.3, we allow for
heterogeneous effects in the first-stage regression.
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Table 6: Estimation of inverse labor supply elasticity

First-Stage Reduced-Form 2SLS
Dependent variable: L̂i ω̂i ω̂i

(1) (2) (3)

Panel A: Bartik IV—Not leave-one-out estimator
β̂ 0.90 0.73 0.80
Robust [0.70, 1.10] [0.54, 0.91] [0.64, 0.97]
Cluster [0.64, 1.16] [0.47, 0.98] [0.60, 1.01]
AKM [0.65, 1.16] [0.49, 0.96] [0.62, 0.98]
AKM0 [0.61, 1.17] [0.44, 0.96] [0.59, 1.02]

Panel B: Bartik IV—Leave-one-out estimator
β̂ 0.87 0.71 0.82
Robust [0.68, 1.06] [0.53, 0.89] [0.65, 0.98]
Cluster [0.62, 1.12] [0.46, 0.96] [0.60, 1.03]
AKM (leave-one-out) [0.59, 1.15] [0.47, 0.94] [0.61, 1.02]
AKM0 (leave-one-out) [0.53, 1.15] [0.42, 0.94] [0.59, 1.09]

Panel C: ADH IV
β̂ −0.72 −0.48 0.67
Robust [−1.04,−0.39] [−0.80,−0.16] [0.36, 0.98]
Cluster [−0.93,−0.50] [−0.78,−0.18] [0.35, 0.99]
AKM [−1.19,−0.24] [−0.88,−0.07] [0.27, 1.07]
AKM0 [−1.83,−0.35] [−1.27,−0.10] [0.18, 1.14]

Notes: N = 1, 444 (722 CZs × 2 time periods). The variable L̂i denotes the log-change in the
employment rate in CZ i. The variable ω̂i denotes the log change in mean weekly earnings. Ob-
servations are weighted by the start of period CZ share of national population. All regressions
include the full vector of baseline controls in ADH; i.e. those in column (6) of Table 3 in Autor,
Dorn and Hanson (2013). 95% confidence intervals in square brackets. Robust is the Eicker-
Huber-White standard error; Cluster is the standard error that clusters of CZs in the same state;
AKM is the standard error in eq. (40) with 3-digit SIC clusters; AKM0 is the confidence interval
with 3-digit SIC clusters described in the last sentence of Section 5.1; AKM (leave-one-out) is the
standard error in Section 5.3 with 3-digit SIC clusters; AKM0 (leave-one-out) is the confidence
interval with 3-digit SIC clusters described in Section 5.3.

version of this estimator, and 0.67 when using the ADH IV.34 In both Panel A and Panel B, the AKM
and AKM0 CIs are very similar to the state-clustered CI. In Panel C, the AKM and AKM0 CIs are only
moderately wider than those obtained with state-clustered standard errors.

Columns (1) and (2) of Table 6 show the first-stage and reduced-form estimates, respectively. In
Panel A and Panel B, the AKM0 CIs are similar to the state-clustered CIs; in contrast, in Panel C,
the first-stage and reduced-form AKM0 CIs more twice as wide, and more than three times as wide
as the state-clustered CI, respectively. Thus, the first-stage and reduced-form AKM and AKM0 CIs
differ more from the state-clustered CI when the ADH IV is used than when the Bartik IV is used. A
possible explanation for this finding is that the shift-share component of the first-stage and reduced-
form regression residuals is much smaller in the latter than in the former case. The Bartik IV absorbs

34One explanation for the similarity between the leave-one-out and the original Bartik IV is that, as discussed in Sec-
tion 5.3, the bias of the original Bartik IV is of the order 1

N ∑N
i=1 ∑S

s=1
wisw̌is

ňs
. This quantity equals 0.004 in this application,

indicating that the own-observation bias is likely to be small.
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the bulk of the shift-share covariates that affect the change in the employment rate and wages across
CZs. In contrast, the ADH IV is just one of the possibly various shift-share terms affecting the change
in the outcome and endogenous treatment of interest. With the remaining shift-share entering the
regression residual, it becomes quantitatively important to use our inference procedures to obtain CIs
with the right coverage.

8 Concluding remarks

This paper studies inference in shift-share designs. We show that standard economic models predict
that changes in regional outcomes depend on observed and unobserved sector-level shocks through
several shift-share terms. Our model thus implies that the residual in shift-share regressions is likely
to be correlated across regions with similar sectoral composition, independently of their geographic
location, due to the presence of unobserved shift-share terms. Such correlations are not accounted for
by inference procedures typically used in shift-share regressions, such as when standard errors are
clustered on geographic units. To illustrate the importance of this shortcoming, we conduct a placebo
exercise in which we study the effect of randomly generated sector-level shocks on actual changes in
labor market outcomes across CZs in the United States. We find that traditional inference procedures
severely overreject the null hypothesis of no effect. We derive two novel inference procedures that
yield correct rejection rates.

It has become standard practice to report cluster-robust standard errors in regression analysis
whenever the variable of interest varies at a more aggregate level than the unit of observation. This
practice guards against potential correlation in the residuals that arises whenever these residuals
contain unobserved shocks that also vary at the same level as the variable of interest. In the same
way, we recommend that researchers report confidence intervals in shift-share designs that allow for
a shift-share structure in the residuals, such as one of the two confidence intervals that we propose.
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