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Who Am I?

Groos Family Assistant Professor of Economics, Brown University

A big fan of instrumental variable (IV) methods

• Lottery- and non-lottery IVs in studies of educational quality

(Angrist et al. 2016, 2017, 2021, 2022; Abdulkadiroğlu et al. 2016)

• Quasi-experimental evaluations of healthcare quality

(Hull 2020; Abaluck et al. 2021, 2022)

• IV-based analyses of discrimination and bias

(Arnold et al. 2020, 2021, 2022; Hull 2021; Bohren et al. 2022)

• Shift-share instruments and related designs

(Borusyak et al. 2022; Borusyak and Hull 2021, 2022; Goldsmith-Pinkham et al. 2022)

A constant student of IV (and econometrics more generally)
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What is This Course?

A two-day intensive on IV, focusing on recent practical advances

• Far from comprehensive — stay tuned for more “mixtape tracks”

that take deeper dives on particular topics (judge IV, shift-share, etc)

• Emphasis on practical: IV is meant to be used, not just studied!

Four one-hour lectures: from IV basics to recent topics

• Please ask questions in the Discord chat!

• I will try to stick to the schedule but may improvise slightly

Two 40-minute coding labs, applying what we’ve learned

• 20 min: you seeing how far you can get on your own, or with your

classmate’s help (use Discord rooms!)

• 20 min: me live-coding solutions in Stata (we will also post R code)
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Models vs. Estimands vs. Estimators

Three distinct objects (though not always clearly distinguished)

• Parameters come from models of how observed data are generated

→ E.g. a structural supply/demand elasticity, an ATE, or a CEF
→ They set the target for an empirical analysis: what we want to know

• Estimands are functions of the population data distribution

→ E.g. a difference in means or ratio of population regression coef’s
→ Make assumptions to link parameters & estimands (“identification”)

• Estimators are functions of the observed data itself (the “sample”)

→ E.g. a difference in sample means or ratio of OLS coefficients
→ Since data are random, so are estimators. Each has a distribution
→ Use knowledge of estimator distributions to learn about estimands

(“inference”) and—hopefully—identified parameters
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The Lay of the Land

Economic Theory

Parameters

Data Distribution

Estimands

Observed Datasets

Estimators

Identification Statistical Inference

This course will mostly focus on identification, but we’ll cover some IV

estimation / inference issues as well



Let’s Get Specific

Human capital theory (e.g. Becker, 1957) tells us that taking two-day IV

intensives are likely to boost later-life productivity

• Parameter: returns to taking this class β, measured in some

outcome Yi (e.g. lifetime top-5 pubs / earnings / twitter followers)

• Simple causal/structural model: Yi = α+ βDi + εi, where

Di ∈ {0, 1} indicates taking this class

We see a sample of Yi, Di, and some other covariates W1i, . . . ,WKi

• We fire up Stata and type reg y d w*, r

• How do we interpret the output?
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Population Regression

The OLS estimator β̂OLS consistently estimates the regression

estimand βOLS under relatively weak conditions (e.g. i.i.d. data)

• Stata tells us β̂OLS and what we can infer about βOLS from it

• It doesn’t directly tell us about the relationship between βOLS and β



Population Regression

The population regression of Yi on Xi = [1, Di,W1i, . . . ,WKi]
′ is

given by Yi = X′iβ
OLS + Ui where E[XiUi] = 0

• Equivalently, βOLS = E[XiX
′
i]
−1E[XiYi] and Ui = Yi −X′iβ

OLS

• βOLS contains regression coefficients; Ui is the regression residual

Key point: we can always define βOLS for any Yi and Xi (assuming no

perfect collinearity); this is what Stata estimates

• Specifically it computes β̂OLS = ( 1
N

∑
iXiX

′
i)
−1( 1

N

∑
iXiYi) and

uses large-sample asymptotics (LLN/CLT) to get a standard error
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You Can’t Always Get What you Want...

But what if this estimand is not what we want?

• What if βOLS fails to coincide with our economic parameter of

interest (e.g. returns to mixtape workshops)?
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You Can’t Always Get What you Want...

The model parameter in Yi = α+ βDi + εi need not coincide with the

regression coefficient in Yi = αOLS + βOLSDi + Ui

• I.e. we may not have Cov(Di, εi) = 0 (always have Cov(Di, Ui) = 0)

Selection bias (a.k.a. omitted variables bias): students with higher

latent earnings potential εi are more likely to take this class Di

• Cov(Di, εi) > 0 means βOLS > β: overstate the returns-to-mixtape
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Can I just Control My Way Out of This?

Adding more controls (e.g. demographics) may or may not help

• Projecting εi on Xi, we get Yi = α+ βDi + γXi + ε̃i, Cov(Xi, ε̃i) = 0

• Whether or not Cov(Di, ε̃i) = 0 depends on whether Xi sufficiently

accounts for the confounding relationship Cov(Di, εi) 6= 0



Regression “Exogeneity”

D Y

ε

β



Regression “Endogeneity”

D Y

ε

β



...But Sometimes, You Get What you Need

Imagine this course was “oversubscribed,” and admission was

determined by lottery

• Among those interested in taking the course, a random sample

denoted by Zi = 1 was given access

• The rest, with Zi = 0 not initially given access (maybe got in later)

Intuitively, this external shock Zi should be helpful for identifying β

• Affects Di, so relevant to the “treatment” of interest

• Randomly assigned, so unconfounded by selection (unlike Di)

Indeed, this leads us to IV estimands (and estimators)
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The IV Solution

D Y

ε

Z
β
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Instrument Validity and Relevance

Causal/structural model Yi = α+ βDi + εi and a candidate IV Zi

• Single Di and Zi and no further controls, for now

Two key assumptions:

• Relevance: Zi and Di are correlated: Cov(Zi, Di) 6= 0

• Validity: Zi and εi are uncorrelated: Cov(Zi, εi) = 0

We then have identification:

Cov(Zi, Yi) = Cov(Zi, α+ βDi + εi) = βCov(Zi, Di) + Cov(Zi, εi)

= βCov(Zi, Di) =⇒ β =
Cov(Zi, Yi)

Cov(Zi, Di)
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The IV Estimand

The (simple) IV estimand is:

βIV =
Cov(Zi, Yi)

Cov(Zi, Di)

• Compare to the OLS estimand: βOLS = Cov(Di,Yi)
V ar(Di)
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“Reduced Form” and “First Stage”

Note that we can write:

βIV =
Cov(Zi, Yi)

Cov(Zi, Di)

=
Cov(Zi, Yi)/V ar(Zi)

Cov(Zi, Di)/V ar(Zi)
=
ρOLS

πOLS

where ρOLS and πOLS are two OLS estimands:

Yi = κOLS + ρOLSZi + Vi “reduced form”

Di = µOLS + πOLSZi +Wi “first stage”
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IV estimand as the “Second Stage”

Sometimes we refer to the IV estimand as the “second stage”:

Yi = αIV + βIVDi + Ui

where now Cov(Zi, Ui) = 0. Thus “IV=RF/FS” (βIV = ρOLS/πOLS)



The 2SLS Estimator

As with OLS, we estimate IV by sample analog:

β̂IV =
Ĉov(Zi, Yi)

Ĉov(Zi, Di)
=
ρ̂OLS

π̂OLS

where Ĉov(Xi,Wi) =
1
N

∑
iXiWi −

(
1
N

∑
iXi

) (
1
N

∑
iWi

)
,

ρ̂OLS = Ĉov(Zi, Yi)/V̂ ar(Zi), and π̂OLS = Ĉov(Zi, Di)/V̂ ar(Zi)

• This is what Stata does when you type ivreg2 y (d=z), r

• Standard errors come from the usual large-sample asymptotics

We will soon consider extensions of all of this, with controls / multiple

instruments / etc
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Angrist (1990): The “Draft Lottery Paper”

Angrist famously used Vietnam-era draft eligibility as an instrument to

estimate the earnings effects of military service

• Let Zi ∈ {0, 1} be an indicator for draft eligibility, Di ∈ {0, 1} be an

indicator for military service, and Yi measure later-life earnings

Here βIV = Cov(Zi,Yi)/V ar(Zi)
Cov(Zi,Di)/V ar(Zi)

= E[Yi|Zi=1]−E[Yi|Zi=0]
E[Di|Zi=1]−E[Di|Zi=0] has a special

name, because Zi is binary: the Wald estimand

• First stage E[Di | Zi = 1]− E[Di | Zi = 0]: effect of eligibility on

the probability of military service (b/c Di is binary)

• Reduced form E[Yi | Zi = 1]− E[Yi | Zi = 0]: effect of eligibility on

adult earnings (measured in 1971, 1981...)

IV interprets the latter causal effect in terms of the former
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