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Where do (Good) Instruments Come From?
True Lotteries
Natural Experiments
Panel Data
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Subtlties of the Validity Condition

To apply IV, we need to make a good case for instrument validity
(note we can always check relevance!)

Consider our simple causal model, Y; = a + 8D; + ¢;. Validity,
Cov(Z;,e;) = 0, intuitively requires two distinct assumptions:

As-good-as-random assignment : individuals with higher/lower
potential earnings face the same distribution of Z;

Exclusion : the “assignment” of Z; only affects Y; through D;

Confusingly, old-school econometrics texts sometimes refer to
Cov(Z;, ;) = 0 as the “exclusion restriction”

More modern IV texts take care to distinguish between these two

conceptually distinct requirements...
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Where do IVs Come From?

1. True Lotteries

One sure-fire way to ensure that Z; is as-good-as-randomly assigned
is... to randomly assign it!

Some of the best IVs come from lotteries, either run by the
researcher (e.g. an RCT) or so-called “natural experiments”

We still need to worry about violations of the exclusion restriction

Relevance holds when Z; has some effect on D;

“Gold standard” IV: a randomized offer to participate in a program, with
D; recording program participation

Exclusion restriction likely to hold for any Y;, by construction

Relevance almost guaranteed (provided people want the program!)



Example

Charter School Lotteries

Abdulkadiroglu et al. (2016) are interested in whether going to a
“charter” middle school increases standardized test scores

Charter students tend to score better, but we worry about selection

History of doubting educational inputs, since Coleman (1966)
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Example

Charter School Lotteries

We leverage an institutional feature of charters: admission lotteries

When more kids want to enroll than there are seats, admission
offers Z; € {0, 1} are effectively drawn from a hat

Offers plausibly only affect later test scores Y; by changing charter
enrollment D; € {0, 1}, so are plausibly valid instruments

We need to control for lottery fixed effects (‘risk sets”) to make Z;

as-good-as-randomly assigned — more on this soon

We study a particular charter (UP Academy), which is “takeover”

Two offer IVs: “immediate” (on lottery night) and from a waitlist



Lottery IV Estimates of UP Test Score Effects

TABLE 8—LOTTERY IV ESTIMATES OF UP EFFECTS

2SLS

First stage

Comparison Immediate =~ Waitlist  Enrollment

group mean OLS offer offer effect
(1) O] ©) ) )
Panel A. All grades
(Sixth through eighth) Math (N = 2,202) 0.059 0.301 0.760 0.562 0.270
(0.022) (0.063) (0.067) (0.056)
ELA (N =2,205) 0.103 0.148 0.759 0.562 0.118

(0.020)  (0.063)  (0.067) (0.051)



Where do IVs Come From?

2. Natural Experiments

Without appealing to literal randomization, we may credibly argue Z; is
as-good-as-randomly assigned conditional on some W;

Such “natural experiments” rely on a selection-on-observables
argument (for Z;, instead D;)

Still worry about exclusion: Z; cannot affect Y; except through D;
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schooling with a creative IV: student quarter-of-birth

Compulsory schooling requirements prevent students from

dropping before the day they turn 16 (used to be more binding)

Fixed school start dates mean students who drop out at 16 get
more or less schooling depending on their birth date



Example

Quarter-of-Birth

Angrist and Krueger (1991) famously estimate labor market returns to
schooling with a creative IV: student quarter-of-birth

Compulsory schooling requirements prevent students from
dropping before the day they turn 16 (used to be more binding)
Fixed school start dates mean students who drop out at 16 get

more or less schooling depending on their birth date

Quarter-of-birth seems quasi-randomly assigned — is it excludable?
See Buckles and Hungerman (2013)...



The Quarter-of-Birth Natural Experiment: Visualized

Years of Education

Log Weekly Eamings

A Average Education by Quarter of Birth (first stage)
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Quarter-of-Birth IV Estimates of Returns to Schooling

Table 4.1.1: 2SLS estimates of the economic returns to schooling

OLS 2SLS

1) (2) (3) 4) (5) (6)

Years of education 0.075 0.072 0.103 0.112 0.106 0.108
(0.0004)  (0.0004) (0.024) (0.021) (0.026) (0.019)

Covariates:

9 year of birth dummies v v v
50 state of birth dummies v v v
Instruments: dummy dummy dummy full  set

for for for of QOB
QOB=1 QOB=1 QOB=1 dummies
or

QOB=2




Where do IVs Come From?
3. Panel Data

We might also combine IV + difference-in-differences identification
E.g. instrument with Z; x Post,, controlling for Z; and Post; FEs
This requires two parallel trends assumptions, for the RF and FS

Still need to worry about the exclusion restriction, as always



Example

Charter School Takeovers

In Abdulkadiroglu et al. (2016), we complement the lottery analysis of
takeover charters with an instrumented diff-in-diff analysis
Students enrolled in the “legacy” public school were eligible for

being “grandfathered” into UP, without having to apply to the charter

We compare their trends in test scores & enrollment to a matched
comparison group of observably-similar students at other schools



Grandfathering IV: Visualized

Panel A. Score levels
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. o

o 04 0.4

5 03 03

S 02 02

@ o ol

<

g -of ~_ 01 \/\_C
~02 \/ -02
-03 03] N~
—04 -04

-3 -2 - 0 1 2 -3 -2 - 0 1 2
Grade relative to takeover Grade relative to takeover
ligible I vhlp|
Panel B. Score DD
1 14
0.8 0.8
[
‘8- 0.6 0.6 1
@ 0.4 0.4 4
2 o2 ) 024
S U
0217 024
-0.4 0.4 4

-3 -2 0 1 2
Grade relative to takeover

Grade relative to takeover

Eligible-ineligible, relative to baseline

———— 95%ClI




Grandfathering IV Estimates of UP Test Score Effects

TABLE 7—GRANDFATHERING IV ESTIMATES OF UP EFFECTS

2SLS
Comparison First ~ Enrollment
group mean OLS stage effect
() ©) ®) 4
Panel A. All grades
(Seventh through eighth) ~ Math (N = 1,543) —0.233 0.400 1.051 0.321
(0.032) (0.040)  (0.039)
ELA (N = 1,539) —0.214 0.296 1.040 0.394

(0.035) (0.041) (0.044)
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Just-ldentified IV

Tthe Stata ivregress/ivreg2 commands (or fixest: :feolsin R)

allows for controls and multiple treatments / instruments

e

When # treatment = # instruments, we say the IV is “just-identified”:

Y; = BD; + Wiy +¢; (second stage)
D; =nZ;+ Wi +n; (first stage)

7

where W, includes a constant.
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Just-ldentified IV

The reduced form is:
Y; = pZi + Wik +v;

Same identification logic as before:

Validity: Cov(Z;, ;) = 0, allowing Cov(Z;, W;) # 0

Relevance: 7 # 0, so Z; and D; are correlated controlling for W
IV is still “reduced form over first stage”: (87V = p@Ls /7xOL5)

Can use Frisch-Waugh-Lovell to “partial out” W, from'Y;, D;, Z;,
and so get back to an IV regression without controls



Overidentification

Sometimes we have more than one instrument Z;, for/ =1, ..., L.
This leads to an “overidentified” IV regression:
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Overidentification

Sometimes we have more than one instrument Z;, for/ =1, ..., L.
This leads to an “overidentified” IV regression:

Y; = BD; + Wi~ +¢; (second stage)
D; = Z!m + Wiu +n; (first stage)

where Z; = [Z;1,...,Z;1]'. Reduced form: Y; = Zp + Wik + v;
Validity: Cov(Zy,e;) = 0 for all £
“Overidentified” b/c we could use any Z;, to identify 5 = p, /7

Relevance: m, # 0 for at least some /¢

Overidentification can yield tests of IV validity
Intuitively, 2SLS checks whether all the Z;, yields the same IV
estimate, which is sensible in a constant-effects model...
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Putting the “2S" in “2SLS"

You'll notice | haven't actually defined 2SLS beyond the simple case
v _ Cov(Zi,Yy) - 21v _ Cov(Zi,Ys)
Before we had 5" = =775y leading to 7% = GoolZD)
General form follows similarly (as a sample analog) but is

notation-heavy, so we won't go into it here
A more useful way to define 2SLS is by a two-step procedure:
First regress D; on all instruments Z;, and controls W
Then regress Y; on the “fitted values” f)i and controls Wy,
The proof of this follows from some (simple) linear algebra

Intuitively, regressing Y; on 7959 Z; gives a scaled RF:

- ~OLS
ﬂn/::P
ZOLS




Avoid Manual 2SLS!

Although easy, you should never do such “manual 2SLS" yourself!

Your point estimates will be right, but your SEs won't bel!

Also might forget to include some controls in the second stage, etc

Just let Stata/R do everything for you...



2SLS Done Right

clear all
sysuse auto

ivreg2 price (mpg=rep78) weight, r

IV (25LS) estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

Number of obs = 69
F( 2, €6) = 5.16
Prob > F 9.0083
Total (centered) S5 = B576796958.9 Centered R2 = -2.5922
Total (uncentered) 55 = 3183192639 Uncentered R2 =  9.3491
Residual S5 = 2071965250 Root MSE = 5480
Robust
price Coef. Std. Err. z p>lz] [95% Conf. Interval]
mpg 1494,283  1499.569 @0.94 0.349 -1534.819 4343.384
weight 19.38214 8.57869 1.21 0.226 -6.431778 27.19607
_cons -55229.89 57542.19 -8.96  9.337 -163018.5 57550.73
Underidentification test (Kleibergen-Paap rk LM statistic): 1.200
Chi-sq(1) P-val = 9.2734
Weak identification test (Cragg-Denald Wald F statistic): 1.459
(Kleibergen-Paap rk Wald F statistic): 1.083
Stock-Yoge weak ID test critical values: 18% maximal IV size 16.38
15% maximal IV size 8.96
20% meximal IV size 6.66
25% meximal IV size 5.53
Source: Stock-Yogo (2085). Reproduced by permission.

NB: Critical values are for Cragg-Denald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): a.000

(equation exactly identified)

Instrumented: mpg
Included instruments: weight
Excluded instruments: rep78
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Many Vs
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Weak Instruments

When running just-identified IV, you should always worry about the

“strength” of your instrument

Specifically the first stage F-statistic , which tests 7959 = 0

If 7OLS is small relative to its standard error, the IV is “weak”
Typically use the rule-of-thumb of F < 10 (Staiger and Stock 1997)

In this case the second-stage SEs will be large and the 2SLS
estimate will tend to be biased towards the corresponding OLS

Much made of this over the years, but Angrist and Kolesar (2022)
argue recently that we shouldn’t worry too much

The SE increase tends to be large enough to “cover up” the bias

Just-id. 2SLS is “approximately median-unbiased”



Weak Instruments: Visualized

Monte Carlo: Y; = ¢;, D; = 11Z; + n; 1 = VCLT(Si) = V(LT‘(T}Z‘) =1
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Weak Instruments: Visualized

Monte Carlo: Y; = ¢;, D; = 11Z; + n;: 11 = 0.1 (Weaker)
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Weak Instruments: Visualized

Monte Carlo: Y; = ¢;, D; = 11Z; + n;: T1 = 0.01 (Very Weak)
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Many Vs

A more pernicious problem is many-instrument bias, when overid

Also tends to manifest in low first-stage F's, so also good to check

Many-1V bias is also towards OLS. But unlike before, the SEs go down
Intuitively, a more flexible FS tends to fit D; better — more power

But we can have overfitting with lots of Z; — essentially recreate D;

As we'll see, this bias is especially relevant in judge IV designs
Potentially many judge assignment indicators as the instrument

Leave-out corrections (e.g. Angrist et al. 1999) have been adapted
to this setting in recent years (e.g. Koleséar 2013)



Many Instruments: Visualized

Monte Carlo: Y; = ¢;, D; = I1Z;1 + n;: IV with one Zj;3
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Many Instruments: Visualized

Monte Carlo: Y; = ¢;, D; = I1Z;; + n;: IV with ten Z;;
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Many Instruments: Visualized

Monte Carlo: Y; = ¢;, D; = I1Z;1 + ;. IV with 100 Zij
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What to Do?

Check your F's after every IV regression
State of the art: Montiel Olea and Pflueger '15; weakivtest in Stata
Staiger-Stock rule-of-thumb (F > 10) still seems widely held

See Lee et al. (2020) and Keane and Neal (2022) for some
discussions of additional subtleties

If your F is small, some things to consider:
Is there a different instrument that's stronger?
Is there a better functional form for the instrument you have?
Do interactions with covariates help? (note: beware many-weak!)

Does changing the covariate set help? (note: beware invalidity!)
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