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From Constant to Heterogeneous Effects

So far we have implicitly been considering models w/ constant effects

• Yi = α+ βDi + εi implies ∂Y/∂D = β for all observations i

• What if this model is misspecified? I.e. what if Yi = α+ βiDi + εi ?

Intuitively, different “research designs” (e.g. instruments) may capture

different effects of the same treatment — even when all are valid

• Recall charter lottery vs. takeover IVs: very different setups!

Formalized in the (Nobel-winning!) Imbens and Angrist ’94 LATE thm.

• Using a general potential outcomes framework...
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Potential Outcome Setup

Let Yi(0) and Yi(1) denote individual i’s potential outcomes given a

binary treatment Di ∈ {0, 1}

• Observed outcomes: Yi = (1−Di)Yi(0) +DiYi(1)

= αi + βiDi

• Only observe one of these POs for each i; other is a counterfactual

• Interested in the treatment effects βi = Yi(1)− Yi(0)

Imbens-Angrist’ insight: we can also do this for an IV first stage:

• Let Di(0) and Di(1) denote individual i’s potential treatment given a

binary instrument Zi ∈ {0, 1}: Di = (1− Zi)Di(0) + ZiDi(1)

Under what assumptions can we causally interpret ivreg2 Y (D=Z)?
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Imbens and Angrist (1994) Assumptions

1. As-good-as-random assignment: Zi ⊥ (Yi(0), Yi(1), Di(0), Di(1))

→ Consider the Angrist draft lottery, or Angrist-Krueger’s QoB IV

2. Exclusion: Zi only affects Yi through its effect on Di

→ Implicit in our potential outcomes notation: Yi(d) not indexed by Zi

3. Relevance: Zi is correlated with Di

→ Equivalently, given Assumption 1, E[Di(1)−Di(0)] 6= 0

4. Monotonicity: Di(1) ≥ Di(0) for all i (i.e., almost-surely)

→ The instrument can only shift the treatment in one direction
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Local Average Treatment Effect (LATE) Identification

Imbens and Angrist showed that under these assumptions:

βIV = E[Yi(1)− Yi(0) | Di(1) > Di(0)]

The IV estimand βIV identifies a LATE: the average treatment effect

Yi(1)− Yi(0) among compliers: those with 1 = Di(1) > Di(0) = 0

• Intuitively, IV can’t tell us anything about the treatment effects of

never-takersDi(1) = Di(0) = 0 / always-takersDi(1) = Di(0) = 1]

• Monotonicity rules out the presence of defiers, with Di(1) < Di(0)

=⇒ Different (valid) IVs can identify different LATEs!
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What Does This Mean Practically?

Two conceptually distinct considerations: internal vs. external validity

• Context of an IV, and who the compliers likely are, may matter

• Usual “overidentification” test logic fails: two valid IVs may have

different estimands! (see Kitagawa (2015) for alternative tests)

In addition to as-good-as-random assignment / exclusion, we may

need to worry about monotonicity when we do IV

• Sensible in earlier lottery / natural experiment / panel examples

• Maybe questionable in judge IVs (coming soon!)
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Extensions

Angrist and Imbens worked out the original LATE theroem for binary

Di, discrete Zi, and no included controls

... but it extends

• Angrist/Imbens ’95: multivalued (ordered) Di, saturated covariates

• Angrist/Graddy/Imbens ’00: continuous Di (supply/demand setup)

• Heckman/Vytlicil ’05: continuous Zi (more on this soon)

• Multiple unordered treatments is harder (e.g. Behaghel et al. 2013)

Recent discussions highlight importance of including flexible controls

• E.g. Sloczyński ’20, Borusyak and Hull ’21, Mogstad et al. ’22

• If monotonicity only holds conditional on Xi, may need Zi-by-Xi

interactions (which may lead to many-weak problems...)
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Who Are the Compliers?

Characterizing the i that make up the IV estimand (w/Di(1) > Di(0))

is key for understanding internal vs. external validity

• Unfortunately we can’t identify compliers directly: we only observe

Di(1) (when Zi = 1) or Di(0) (when Zi = 0), not both together!

It turns out we can still characterize compliers by their outcomes

(Yi(0) and Yi(1)) and other observables Xi

• Comparing E[Xi | Di(1) > Di(0)] to E[Xi] can maybe shed light on

how E[Yi(1)− Yi(0) | Di(1) > Di(0)] compares to E[Yi(1)− Yi(0)]
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Outcomes

Computing E[Yi(1) | Di(1) > Di(0)] is surprisingly easy in the IA setup

• Define Wi = YiDi, and note that this new outcome has potentials

with respect to Di of Wi(1) = Yi(1) and Wi(0) = 0

• Thus IV with Wi as the outcome identifies

E[Wi(1)−Wi(0) | Di(1) > Di(0)] = E[Yi(1) | Di(1) > Di(0)]

Similar logic shows that IV with Yi(1−Di) as the outcome and 1−Di

as the treatment identifies E[Yi(0) | Di(1) > Di(0)]

• So easy to do! And extends to covariates / multiple IVs...
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Characterizing Charter Lottery Complier Yi(0)’s

Source: Angrist, Pathak, and Walters (2013)



Covariates

For covariates Xi (not affected by Di) we can follow a similar trick:

• Either IV’ing XiDi on Di or IV’ing Xi(1−Di) on 1−Di identifies

complier characteristics E[Xi | Di(1) > Di(0)]

• Shouldn’t be very different (implicit balance test); can be averaged

Abadie (2003) gives a slicker (but a bit more involved) approach to

estimating any function of (Yi(0), Yi(1), Xi) for compliers

• Involves weighting by κ = 1− Di(1−Zi)
1−E[Zi|Wi]

− (1−Di)Zi

E[Zi|Wi]
where Wi are

any necessary “design controls” (e.g. lottery risk sets)

• You can do some really cool stuff with this!
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Black/White Potential Outcomes, Pre-Charter

Source: Josh Angrist Nobel Lecture (2021)



Black/White Potential Outcomes, Post-Charter

Source: Josh Angrist Nobel Lecture (2021)
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Heckman and Vytlicil (2005, 2007, 2010, 2013...)

If we have a Zi that varies continuously, we might learn more about

how treatment effects vary with compliance

• Different types of i may “respond” at different margins of Zi

Heckman-Vytlicil write Di = 1[p(Zi) ≥ Ui], with Ui | Zi ∼ U(0, 1)

• p(z) = Pr(Di = 1 | Zi = z) is the treatment propensity score

• Ui indexes treatment “resistance” (i.e. types of compliers); Vytlacil

(2002) shows model is equivalent to IA’s monotonicity w/ binary Zi

Now we can consider how Yi(1)− Yi(0) varies continuously with Ui ...
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Doyle (2007): MTEs of Foster Care Removal



Local Instrumental Variables

Heckman (2000) shows that MTEs are identified by “local IV”:

E[Yi(1)− Yi(0) | Ui = p] =
∂E[Yi | p(Zi) = p]

∂p

under natural extensions of Imbens and Angrist (1994)

• Suggests we flexibly estimate p(z) = Pr(Di = 1 | Zi = z),

E[Yi | p(Zi)], and then take the derivative of the latter

• In practice this is often done parametrically, and with controls
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What if We Don’t Have Continuous Instruments?

A fascinating recent literature considers intermediate cases of

Imbens-Angrist and Heckman-Vytlacil:

• Discrete (binary/multivalued) Zi, with parametric/shape restrictions

to trace out (or maybe bound) the MTE curve

• Effectively using a model to “extrapolate” from local variation,

maybe to identify more policy-relevant parameters

Some examples: Brinch et al. (2017), Mogstad et al. (2018), Kline and

Walters (2019), Hull (2020), Arnold et al. (2021), Kowalski (2022)...

• Lots more to do here (especially on the practical side)
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How Parametric “Heckit” Models Extrapolate LATEs

Source: Kline and Walters (2019)
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