Comparison Log 2025-12-14 22:36:46.752643 mwtab Python Library Version: 2.0.0 Source: https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN001569/mwtab/... Study ID: ST000956 Analysis ID: AN001569 Status: Inconsistent Sections "PROJECT" contain missmatched items: {'PROJECT_SUMMARY': ['"It is now known that intestinal microbiota influences the development of colorectal cancer (CRC). This microbe-CRC connection suggests a potential paradigm shift in the way CRC is detected, treated and managed. Knowledge of specific microbial components involved in the development of CRC is critical to moving this field forward. Among the bacterial species known to associate with CRC, Streptococcus gallolyticus subsp. gallolyticus (Sg), previously known as S. bovis biotype I, stands out as having a strong and well-documented clinical association supported by numerous case reports and surveys over the past several decades. We and others also found that Sg is present in a substantial percentage of CRC patients (up to ~ 74%). We further demonstrated that Sg actively promotes colon tumor growth. These exciting discoveries underscore the importance of Sg in CRC with respect to both function and clinical relevance. Further investigation into the molecular details of the Sg-CRC relationship should have a high priority. Going forward, the key question is how Sg promotes colon tumor development. Data from our lab led us to hypothesize that Sg produces certain metabolites that contribute to its ability to promote cell proliferation. We propose to identify the metabolites important for promoting colon cancer cell proliferation. Our approach is based on two recent findings. We discovered that there are variations among Sg strains in the ability to stimulate host cell proliferation. We also observed that the ability of Sg to promote cell proliferation is bacterial growth phase regulated. Thus by comparing the metabolomics profiles of different Sg strains, and Sg strains from different growth phase co-cultured with colon cancer cells, respectively, we will identify metabolomics signatures that correlate with the ability of Sg to promote cell proliferation. These metabolites will then be investigated in more detail in future studies. In addition, DNA methylation pattern in cells treated with Sg, negative control bacteria and media only will also be compared. "', 'It is now known that intestinal microbiota influences the development of colorectal cancer (CRC). This microbe-CRC connection suggests a potential paradigm shift in the way CRC is detected, treated and managed. Knowledge of specific microbial components involved in the development of CRC is critical to moving this field forward. Among the bacterial species known to associate with CRC, Streptococcus gallolyticus subsp. gallolyticus (Sg), previously known as S. bovis biotype I, stands out as having a strong and well-documented clinical association supported by numerous case reports and surveys over the past several decades. We and others also found that Sg is present in a substantial percentage of CRC patients (up to ~ 74%). We further demonstrated that Sg actively promotes colon tumor growth. These exciting discoveries underscore the importance of Sg in CRC with respect to both function and clinical relevance. Further investigation into the molecular details of the Sg-CRC relationship should have a high priority. Going forward, the key question is how Sg promotes colon tumor development. Data from our lab led us to hypothesize that Sg produces certain metabolites that contribute to its ability to promote cell proliferation. We propose to identify the metabolites important for promoting colon cancer cell proliferation. Our approach is based on two recent findings. We discovered that there are variations among Sg strains in the ability to stimulate host cell proliferation. We also observed that the ability of Sg to promote cell proliferation is bacterial growth phase regulated. Thus by comparing the metabolomics profiles of different Sg strains, and Sg strains from different growth phase co-cultured with colon cancer cells, respectively, we will identify metabolomics signatures that correlate with the ability of Sg to promote cell proliferation. These metabolites will then be investigated in more detail in future studies. In addition, DNA methylation pattern in cells treated with Sg, negative control bacteria and media only will also be compared.']}