Mrudhula Ashok Shenava 265469976

LAB 1: Packet Sniffing and Spoofing

] , /bin/bash 66x24
[02/01/19]seed@VM:~$ ifconfig

enp0s3 Link encap:Ethernet Hwaddr 08:00:27:5f:2e:af

inet addr:10.0.2.6 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::2142:7c¢95:5d2d:aba6/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:13 errors:0 dropped:® overruns:0 frame:0

TX packets:92 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:2226 (2.2 KB) TX bytes:9870 (9.8 KB)

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:76 errors:0 dropped:0 overruns:0 frame:0
TX packets:76 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1

RX bytes:22073 (22.0 KB) TX bytes:22073 (22.0 KB)

[02/01/19]seed@vM:~$ i

I bin/bash 66x24
[02/01/19]seed@VM:~$ ifconfig
enpOs3 Link encap:Ethernet HWaddr 08:00:27:1d:3c:a2
inet addr:10.0.2.5 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::1b16:e46:4143:36cf/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:91 errors:0 dropped:® overruns:0 frame:0
TX packets:84 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:14978 (14.9 KB) TX bytes:9421 (9.4 KB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:141 errors:0 dropped:0 overruns:0 frame:0
TX packets:141 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:25038 (25.0 KB) TX bytes:25038 (25.0 KB)

[02/01/19]seed@vM:~$ [




Mrudhula Ashok Shenava 265469976

TASK 1.1: Using tools to Sniff and Spoof Packets

Task 1.1a:

[02/01/19]seed@VM:~/.../labl$ cat sniffer.py
#!/usr/bin/python
from scapy.all import *

def print pkt(pkt):
pkt.show()

pkt = sniff(filter="icmp',prn=print pkt)
[02/01/19]seed@M:~/.../labl$

[02/01/19]seed@M:~$ ping 10.0.2.6 -c2

PING 10.0.2.6 (10.0.2.6) 56(84) bytes of data.

64 bytes from 10.0.2.6: icmp seq=1 ttl=64 time=0.809 ms
64 bytes from 10.0.2.6: icmp seq=2 ttl=64 time=0.930 ms

--- 10.0.2.6 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1023ms
rtt min/avg/max/mdev = 0.809/0.869/0.930/0.067 ms
[02/01/19]seed@vM:~$

[062/01/19]seed@M:~/.../labl$ gedit sniffer.py
[02/01/19]seed@M:~/.../1lab1l$ sudo python sniffer.py
[sudo] password for seed:

###[ Ethernet ]###

dst = 08:00:27:5f:2e:af
src = 08:00:27:1d:3c:a2
type = 0x800
###[ IP ###
version =4
ihl =5
tos = 0x0
len =84
id = 14190
flags = DF
frag =0
ttl = 64
proto = icmp
chksum = Oxeb30
src = 10.0.2.5
dst = 10.0.2.6
\options \
###[ ICMP 4
type = echo-request
code =0
chksum = 0x4e80
id = 0x9ac
seq = ox1
###[ Raw |###
load = "\xfe\xfbT\\Tw\ r\x00\x08\t\n\x0b\x0c\ r\x0e\

x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1
f 1 #9%8\ ' () *+, -./01234567 '




Mrudhula Ashok Shenava 265469976

Filter is used to capture only relevant information. If filter is not specified, all information that is coming in will be
captured. Promiscuous mode means that the sniffer can observe all the traffic on the network regardless of the
destination address. If promiscuous mode is off, it can observe only incoming packets to that device.

[62/01/19]seed@M:~/.../labl$ python sniffer.py
Traceback (most recent call last):
File "sniffer.py", line 7, in <module>
pkt = sniff(filter='icmp',prn=print pkt)
File "/home/seed/.local/lib/python2.7/site-packages/scapy/sendrecv.py”, line 731, in sniff
*arg, **karg)] = iface
File "/home/seed/.local/lib/python2.7/site-packages/scapy/arch/linux.py", line 567, in _ init
self.ins = socket.socket(socket.AF PACKET, socket.SOCK RAW, socket.htons(type))
File "/usr/lib/python2.7/socket.py", line 191, in _ init
_sock = realsocket(family, type, proto)
socket.error: [Errno 1] Operation not permitted
[62/01/19] seed@VM:~/.../lab1$ fi

When we run without root privileges, we see that some authorities are not passed hence does
not allow to successfully run the program as shown above.

Task 1.1b:

ICMP

[02/01/19]seed@M:~/.../labl$ cat sniffer.py
#!/usr/bin/python

from scapy.all import *

def print pkt(pkt):
pkt.show()

pkt = sniff(filter="icmp',prn=print pkt)
[02/01/19]seed@VM:~/.../labl$

[02/01/19]seed@VM:~$ ping 10.0.2.6 -c2

PING 10.0.2.6 (10.0.2.6) 56(84) bytes of data.

64 bytes from 10.0.2.6: icmp seq=1 ttl=64 time=0.809 ms
64 bytes from 10.0.2.6: icmp seq=2 ttl=64 time=0.930 ms

--- 10.0.2.6 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1023ms
rtt min/avg/max/mdev = 0.809/0.869/0.930/0.067 ms
[02/01/19]seed@vM:~$ |}



Mrudhula Ashok Shenava

Tce

[02/01/19] seedavM:~$ [

[02/01/19] seed@M:~/.../labl$ gedit sniffer.py
[062/01/19]seed@M:~/.../labl$ sudo python sniffer.py
[sudo] password for seed:
###[ Ethernet ]###
dst = 08:00:27:5f:2e:af
src = 08:00:27:1d:3c:a2
type = 0x800
##[ IP ##
version =4
ihl =5
tos = 0x0
len =84
id = 14190
flags = DF
frag =60
ttl = 64
proto = icmp
chksum = 0xeb30
src = 10.0.2.5
dst = 10.0.2.6
\options \
##[ ICMP 4
type = echo-request
code =0
chksum = 0x4e80
id = 0x9ac
sel = 6x1
###( Raw ###
load = "\xfe\xfbT\\Tw\ r\x00\x08\t\n\x0b\x0c\ r\xoe\
x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1
1 #$%8\ ' () *+, -./01234567'

[62/01/19]seed@VM:~$ ping 1.1.1.1 -cl
PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp seq=1 ttl=55 time=36.9 ms

--- 1.1.1.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 36.919/36.919/36.919/0.000 ms

265469976




Mrudhula Ashok Shenava 265469976
[62/01/19]seed@VM:~/.../1labl$ sudo python sniffer.py
[sudo] password for seed:
###[ Ethernet ]###
dst = 52:54:00:12:35:00
src = 08:00:27:1d:3c:a2
type = 0x800
[ IP J###
version =4
ihl =5
tos = 0x0
len =84
id = 50575
flags ='DF
frag =0
ttl = 64
proto = icmp
chksum = 0x6713
src = 10.0.2.5
dst =1.1.1.1
\options \
[ ICMP |4
type = echo-request
code =0
chksum = 0x4c0
id = 0xbd9
seq =10kl
[ Raw ##
load = "\xb5\rU\\\xfO\xf8\x01\x00\x08\t\n\x0b\x0c\ r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\

x1c\x1d\x1e\x1f !"#$%&\'()*+,-./01234567"
### Ethernet ]###

dst = 08:00:27:1d:3c:a2
src = 52:54:00:12:35:00
type = 0x800
i IP |4
version =4
i =5
tos = 0x0
len =84
id = 59326
flags =
frag =0
ttl = 55
proto = icmp
chksum = Ox8ded
src 201,11
dst =10.0.2.5
\options '\
HH# IONP |4
type = echo-reply
code =0
chksum = Bxccd
id = Oxbd9
5eq = Ox1
#44( Raw 44

XIc\x1d\x1e\xIf !"#$%\' (1*+.-./61234567"

load = "\xbS\rU\\\xf0\xf8\x01\x00\x08\ t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\



Mrudhula Ashok Shenava 265469976

/bin/bash 66x25

TASK 1.2: Spoofing ICMP Packets




Mrudhula Ashok Shenava 265469976

[02/03/19]seed@VM:~$ telnet 10.0.2.7

Erying 10.8.2.7 ...

Connected to 10.0.2.7.

Escape character is '"]’'.

Ubuntu 16.04.2 LTS

VM login:

Login timed out after 60 seconds.

Connection closed by foreign host.

[02/03/19]seed@VM:~$ telnet 10.0.2.7

Trying 10.0.2.7...

Connected to 10.0.2.7.

Escape character is '"]’.

Ubuntu 16.04.2 LTS

VM login: seed

Password:

Last login: Sun Feb 3 23:31:30 EST 2019 from 10.0.2.5 on pts/4
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.8.0-36-generic i686)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

3 packages can be updated.




Mrudhula Ashok Shenava 265469976

[02/03/19]seed@VM:~/.../labl$ sudo python sniffer.py

[ IP |4

version =4

ihl = None

tos = 0x0

len = None

id =

flags =

frag =0

i | = b4

proto = icmp

chksum = None

src = 16.0.2.6

dst = 10:8:2.5

\options \

[ ICMP ] #4#

type = echo-request
code =B
chksum = None
id = 0x0
seq = 0x0

éent 1 packets.
[02/03/19] seed@M:~/.../1labls$ J§

icmp X ~ | Expression...
Time Source Destination Protocol
3 2019-02-03 23:49:01.5408951.. 10.6.2.6 10.0.2.5 ICMP
4 2019-02-03 23:49:01.5413429.. 16.0.2.5 10.0.2.6 ICMP

In this task we spoof IP packets with arbitrary source IP. We spoof ICMP echo request packets
and send them to VM on the same network as shown above in the screenshot. Then we monitor
the packets through Wireshark as shown above. We notice the request is accepted by the
receiver and echo packet reply is sent back to the spoofed IP address.



Mrudhula Ashok Shenava 265469976

TASK 1.3: Traceroute

[02/03/19]seed@VM:~/.../labl$ cat sniffer.py
#!/usr/bin/python
from scapy.all import *

a=IP()
a.fdst="'1.2.34"
a=rtl=3
b=ICMP()
send(a/b)

130083 23:59:50, 897083, 19.0.0. 1134 0P 426cho (ping) request id-Bubee, seq=88, |
018-60-63 23:50:54,0036904., 1250 3.3 180086 I0P 78 Tine-to-1ave exceeded (Tine to Live evcee

In this task Scapy estimates the distance in terms of number of routers between VM and a
selected destination. We send a packet with a time-to-live field set to 3 as shown above it will
drop the packet if it exceeds the ttl and give the IP address of the first router and we continue so
that our packet reaches its destination in given time. This is done so that the network is never
over used and only used for necessary purpose which drops the chance for unwanted data to be
sent.

TASK 1.4: Sniffing and Spoofing

[02/04/19]seed@/M:~$ ping 1.2.3.4 -c2
PING 1.2.3.4 (1.2.3.4) 56(84) bytes of data.

We initially ping 1.2.3.4 and see this is before running the sniffer program and we notice that
the ping is unable to reach.



Mrudhula Ashok Shenava 265469976




Mrudhula Ashok Shenava 265469976

[02/04/19]seed@M:~/. ../labl$ sudo python sniffer.py

#HHEE[ IP 1#t
version =4
ihl =85
tos = 0x0
len = None
id =1
flags =
frag =0
ttl = b4
proto = hopopt
chksum = None
src = 1.2.3.4
dst = 10.0.2.5
\options \

#HHE[ ICMP J##
type = echo-reply
code =0
chksum = None
id = 0x9bd
seq = Ox1

Sent 1 packets.

[02/04/19]seed@/M:~$ ping 1.2.3.4 -c2

PING 1.2.3.4 (1.2.3.4) 56(84) bytes of data.

64 bytes from 1.2.3.4: icmp seq=1 ttl=64 time=10.2 ms
64 bytes from 1.2.3.4: icmp seq=2 ttl=64 time=5.67 ms

--- 1.2.3.4 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 5.676/7.964/10.252/2.288 ms

[02/04/19] seed@VM:~$ |}

Then we run the sniffing and spoofing program where an ICMP echo request is sent. Regardless
whatever our target IP is there will always be a response to the ping sent.



Mrudhula Ashok Shenava

265469976

TASK 2: Writing Programs to Sniff and Spoof Packets

TASK 2.1: Writing Packet Sniffing Program

Task 2.1a: Understanding How a Sniffer Works

enp0s3

lo

[02/04/19] seed@VM:~$ ifconfig

Link encap:Ethernet HWaddr 08:00:27:5f:2e:af

inet addr:10.0.2.6 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::2142:7c95:5d2d:aba6/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:303 errors:0 dropped:0 overruns:0 frame:0

TX packets:392 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:42121 (42.1 KB) TX bytes:40260 (40.2 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:205 errors:0 dropped:0 overruns:0 frame:0
TX packets:205 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1

RX bytes:29419 (29.4 KB) TX bytes:29419 (29.4 KB)

inet6 addr:

r)

s

/

i

struct ipheader {

unsigned char

unsigned char
unsigned short

unsigned short
unsigned short

unsigned char
unsigned char
unsigned short
struct in addr
struct in addr

struct ethheader {

int

int
int

int

[062/04/19] seed@VM:~/.../labl$ cat sniff.c
#include <pcap.h>
#include <stdio.h>
#include <arpa/inet.h>
#define ETHER ADDR LEN 6

iph ihl:4, //IP header length

iph_ver:4; //IP version

iph tos; //Type of service

iph len; //IP Packet Length (data + heade

iph_ident; //Identification

iph flag:3, //Fragmentaion flags
iph offset:13; //flags offset
iphittt; //Time to Live
iph_protocol; //Protocol type

iph chksum; //IP datagram checksum
iph sourceip; //source IP address
iph dstip; //Destination IP address

u char ether dhost[ETHER ADDR LEN]; /* destination host address *

u char ether shost[ETHER ADDR LEN]; /*source host address */

u short ether type;

/*IP? ARP? RARP? ETC */



Mrudhula Ashok Shenava 265469976

void got packet(u char *args, const struct pcap pkthdr *header, const u c
har *packet)

struct ethheader *eth = (struct ethheader *)packet;
if(ntohs(eth->ether type) == 0x0800) { //0x0800 is IP type
struct ipheader * ip = (struct ipheader *)
(packet + sizeof(struct ethheader));

_ printf(" Source IP: %s\n", inet ntoa(ip->iph sourc
e printf(" Destination IP: %s\n", inet ntoa(ip->iph
dstip));

}
%nt main()

pcap t *handle;

char errbuf[PCAP ERRBUF SIZE];

struct bpf program fp;

char filter exp[] = "ip";

bpf u int32 net;

//Step 1: Open 11ve pcap session on NIC with name eth3
//Students needs to change "enp0s3" to the name
//found on their own machines (using ifconfig).

handle = pcap open live("enp@s3", BUFSIZ, 1, 1000, errbuf);
//Step 2: Compile filter exp into BPF psuedo code
pcap compile(handle, &fp, filter exp, 0, net);

pcap setfilter(handle, &fp);

//Step 3: Capture packets

pcap loop(handle, -1, got packet, NULL);

pcap close(handle); //Close the handle

return 0;



Mrudhula Ashok Shenava

265469976

[02/04/19]seed@VM:~/.../labl$ gcc sniff.c -o sniff -lpcap
[02/04/19] seed@VM:~/.../labl$ sudo ./sniff
[sudo] password for seed:

Source IP: 160.60.
Destination IP:
Source IP: 10.0.
Destination IP:
Source IP: 10.60.
Destination IP:
Soucce IP: 160.0:
Destination IP:
Source IP: 10.0.
Destination IP:
Source IP: 160.0.
Destination IP:
Saurce IP: 19.0.
Destination IP:
Source IP: 10.60.
Destination IP:

2e

190.8-2.6

2.5

107825

2.9

10.0.2.6

2.5

do.B.2.5

240

16-9.2.3

2.3

2D RN IRN . 2BD
225
126.230.32 .5
2.5
128.230.1.49

Source IP: 128.230.12.5
Destination IP: 10.0.2.5
Source IP: 128.2360.1.49
Destination IP: 10.0.2.5
Source IP: 19.6.2.5
Destination IP: 10.0.2.6
Source IP: 10.0.2.6
Destination IP: 10.0.2.5

Above is the code used for sniffing

The sniffer program run by the attacker in IP 10.0.2.6 can observe this on enp0s3 interface and
port 23 as the sniffer is in promiscuous mode.

We use port 23 because it is a telnet connection. Filter is used to capture only relevant
information. If filter is not specified, all information that is coming in will be captured.
Promiscuous mode means that the sniffer can observe all the traffic on the network regardless
of the destination address. If promiscuous mode is off, it can observe only incoming packets to

that device.



Mrudhula Ashok Shenava 265469976

Problem 1: Please use your own word to describe the sequence of the library calls that are
essential for sniffer programs. This is meant to be a summary, not detailed explanation like the
one in the tutorial.
The sequence of library calls essential for sniffer programs are:
1. The device or interface to be sniffed on should be specified.
2. |Initialize pcap. We create file handles for each session so that we can differentiate them.
3. We use filters if we want to sniff only specific traffic and not all the traffic. For this we
need to create a rule set, compile it and then apply it.
4. We can either capture a single packet at a time or run a loop that waits for packets to
come and calls a predefined function as soon as a packet enters.
5. Close the session after the sniffing is completed.

Problem 2: Why do you need the root privileges to run sniffer? Where does the program fail if
executed without the root privilege?

The below screenshot depicts the output when sniffer is run without the root privilege. The
pcap_lookupdev() throws an error. The packets on the network are captured through the
network interface card. The access/control/work with the network interface. Hence, we require
root to run sniffer else the program fails.

Problem 3: Please turn on and turn off the promiscuous mode in the sniffer program. Can you
demonstrate the difference when this mode is on and off? Please describe how you
demonstrate this.

When the promiscuous mode is turned on, the user on IP 10.0.2.5 tries to establish a connection
with 10.0.2.6. The attacker running the sniffer program in IP 10.0.2.6 can observe this because
the promiscuous mode is on.

Promiscuous mode bit is set in the pcap_open_live() function. The 3™ bit parameter is set to 1,
indicating that promiscuous mode is on. When promiscuous mode is on, sniffer program can
capture all the packets in the same network regardless of the destination Ip.



Mrudhula Ashok Shenava 265469976

[02/04/19] seed@VM:~/.../labl%$ gcc sniff.c -0 sniff -1lpcap
[02/04/19] seed@VM:~/.../labl$ sudo ./sniff

Source IP: 10.0.2.5

Destination IP: 10.0.2.6

source IPr 16.8.2.6

Destination IP: 10.0.2.5

Source IP: 10.0.2.5

Destination IP: 10.0.2.6

Source IP: 10.0.2.6

Destination IP: 10.0.2.5

When the promiscuous mode is turned off, the user IP 10.0.2.5 tries to establish a connection
with 10.0.2.6. The attacker running the sniffer program in IP 10.0.2.6 cannot observe this because
the mode is off. When the user tries to establish a connection with the attacker, then the sniffer
can observe the traffic as the destination specified is the attacker on 10.0.2.6.

Promiscuous mode bit is set in the pcap_open_live() function. The 3™ bit parameter is set to o,
indicating the promiscuous mode is off. When the promiscuous mode is off. The sniffer cannot
capture all the packets in the same network, it can only capture packets whose destination IP of
the sniffer’s system.

int main()
{
pcap t *handle;
char errbuf[PCAP ERRBUF SIZE];
struct bpf program fp;
char filter exp[] = "ip";
bpf u int32 net;
//Step 1: Open live pcap session on NIC with name eth3
//Students needs to change "enp0s3" to the name
//found on their own machines (using ifconfig).
handle = pcap open live("enp0s3", BUFSIZ, 0, 1000, errbuf);
//Step 2: Compile filter exp into BPF psuedo-code
pcap compile(handle, &fp, filter exp, 0, net);
pcap setfilter(handle, &fp);
//Step 3: Capture packets
pcap loop(handle, -1, got packet, NULL);
pcap close(handle); //Close the handle
return 0;



Mrudhula Ashok Shenava 265469976

[02/04/19] seed@VM:~/. ../labl$ ./sniff
Segmentation fault
[02/04/19] seed@VM:~/. ../lab1s |}

Task 2.1b: Writing Filters

{

Capture the ICMP packets between two specific hosts.

Let us consider two host machines here. Server (host 1) with IP 10.0.2.7 and user (host2)
with IP 10.0.2.5. The attacker with IP 10.0.2.6. Through the attacker machine, we try to
sniff the ICMP packets between the server and the user, that is, listen to the request and
reply between the user machine and the server machine.

We want to capture only the ICMP packets between the two hosts. Therefore, we need
to create a rule set to filter the traffic. The filter is added to the sniffer program when the
session is opened inside pcap_open_live(). This is done by compiling the filter using
pcap_compile() and then applying the filter using pcap_setfilter().

The below screenshot shows the attacker has successfully sniffed the communication
between the user and the server.

int main()

pcap t *handle;

char errbuf[PCAP ERRBUF SIZE];

struct bpf program fp;

//char filter exp[] = "ip";

char filter exp[] = "proto ICMP and host (10.0.2.7 and 10.0.2.5)";
bpf u int32 net;

//Step 1: Open 11ve pcap session on NIC with name eth3
//Students needs to change "enp0s3" to the name

//found on their own machines (using ifconfig).

handle = pcap open live("enp0s3", BUFSIZ, 1, 1000, errbuf);
//Step 2: Compile filter exp into BPF psuedo code

pcap compile(handle, &fp, filter exp, 0, net);

pcap setfilter(handle, &fp);

//Step 3: Capture packets

pcap loop(handle, -1, got packet, NULL);

pcap close(handle); //Close the handle

return 0O;



Mrudhula Ashok Shenava 265469976

[02/04/19]seed@VM:~/.../labl$ gedit sniff.c
[02/04/19]seed@VM:~/.../labl$ gcc sniff.c -o sniff -1lpcap
[02/04/19] seed@VM:~/.../labl$ sudo ./sniff
[sudo] password for seed:

Source IP: 186.0.2.7

Destination IP: 10.0.2.5

sSource “IP:-18.8.2.5

Destination IP: 10.0.2.7

Source IP: 16.9.2.7

Destination IP: 10.0.2.5

source IP:-18.8.2:5

Destination IP: 10.0.2.7

No. Time Source Destination Protocol Length Info

1 2019-02-04 14:30:32.9431193.. 10.60.2.7 10.0.2.5 ICMP 98 Echo (ping) request id=0x@9ad, seq=1/256, ttl=64 (no res
2 2019-02-04 14:30:32.9431286.. 10.0.2.5 10.0.2.7 ICMP 98 Echo (ping) reply 1d=0x09ad, seq=1/256, ttl=64

3 2019-02-04 14:30:33.9705033.. 10.0.2.7 10.0.2.5 ICMP 98 Echo (ping) request id=0x@9ad, seq=2/512, ttl=64 (reply
4 2019-02-04 14:30:33.9708146.. 10.0.2.5 10.0.2.7 ICMP 98 Echo (ping) reply id=6x09ad, seq=2/512, ttl=64 (reques

e Capture the TCP packets that have a destination port range from port 10 — 100.
Let us consider the host machine, user with IP 10.0.2.5 and server with IP 10.0.2.7. The
attacker with IP 10.0.2.6. Through the attacker machine, we try to sniff the TCP packets
sent from the user to the ports 10 — 100 of server.

We want to capture only the TCP packets between two hosts sent to ports 10 — 100.
Therefore, we need to create a rule set to filter the traffic. The filter is added to the sniffer
program when the session is opened inside pcap_open_live(). This is done by compiling
the filter using pcap_compile() and then applying the filter using pcap_setfilter().

The below screenshot shows that the attacker has successfully sniffed the TCP packets
send between the user and the server through 10 — 100.



Mrudhula Ashok Shenava 265469976

int main()
{

pcap t *handle;

char errbuf[PCAP_ERRBUF SIZE];

struct bpf program fp;

//char filter exp[] = "ip";

//char filter exp[] = "proto ICMP and host (10.0.2.7 and 10.0.2.5)";

char filter exp[] = "proto TCP and dst portrange 10-100";

bpf u int32 net;

//Step 1: Open live pcap session on NIC with name eth3

//Students needs to change "enp0s3" to the name

//found on their own machines (using ifconfig).

handle = pcap open live("enp0s3", BUFSIZ, 1, 1000, errbuf);

//Step 2: Compile filter exp into BPF psuedo code

pcap compile(handle, &fp, filter exp, 0, net);

pcap setfilter(handle, &fp);

//Step 3: Capture packets

pcap loop(handle, -1, got packet, NULL);

pcap close(handle); //Close the handle

return 0;

}

[02/04/19]seed@VM:~/.../labl$ gcc sniff.c -0 sniff -lpcap
[02/04/19] seed@VM:~/.../labl$ sudo ./sniff

sSource 'IP:"16:8.2.7

Destination IP: 10.0.2.5

Source IP: 10.0.2.7

Destination IP: 10.0.2.5

Source IP: 10.0.2.7

Destination IP: 10.0.2.5

Solurce"1P: 10.68.2.7

Destination IP: 10.0.2.5

Source IP: 10.0.2.7

Destination IP: 10.0.2.5

Source IP: 16.0.2.7

Destination IP: 10.0.2.5

Time Source Destination Protocol Length Info

2019-02-04 14:48:02.3254536.. 10.6.2.7 10.8.2.5 TCP 74 57480 — 23 [SYN] Seq=4270848252 Win=2926@ Len=0 MSS=1
2019-02-04 14:48:02.3254634.. 10.6.2.5 8.2.7 TCP 74 23 — 57480 [SYN, ACK] Seq=994896737 Ack=4270848253 Wi
2019-02-04 14:48:02.3257331.. 10.8.2.7 .8.2.5 TCP 66 57480 — 23 [ACK] Seq=4270848253 Ack=994896738 Win=29Z
2.7 8.2.5
2.5 8.2.7

2019-02-04 14:48:02.3259454.. 10.0.2. TELNET 93 Telnet Data ..
2019-02-04 14:48:02.3265345.. 10.0.2. TCP 66 23 — 5?485) [ACK] SEq 994896738 Ack= 4279348280 Win=29¢



Mrudhula Ashok Shenava 265469976

Task 2.1c: Sniffing Passwords

User establishes a telnet connection to host 10.0.2.7. The credentials for the host are entered by
the user and this is seen in plain text in the attacker’s terminal because he is running the sniffer
program with the filter set to port 23 to read only telnet traffic.

Telnet connection runs on port 23. When we sniff telnet connections, the entire traffic is
displayed in plain text including the username and password.

char *data = (u_char *)packet + sizeof(struct ethheader) + sizeof(struct ipheader) + sizeof(struct tcpheader);
size_data = ntohs(ip->iph_len) - (sizeof(struct ipheader) + sizeof(struct tcpheader))
if (size_data > 0) {
printf(" Payload (%d bytes):\n", size_data);
for(i = 0; 1 < size_data; i++) {
if (isprint(*data))
printf("%c", *data);

else
printf(".");
data++;
}
}
}
return;
}
int main()
{

pcap_t *handle;

char errbuf[PCAP_ERRBUF_SIZE];

struct bpf_program fp;

//char filter_exp[] = "port 23";

char filter_exp[] = "src net 10.0.2.7 and port 23";
bpf_u_int32 net;

/] Step 1: Open live pcap session on NIC with interface name
handle = pcap_open_live("enp0s3", BUFSIZ, 1, 1000, errbuf);

/] Step 2: Compile filter_exp into BPF psuedo-code
pcap_compile(handle, &fp, filter_exp, 0, net);
pcap_setfilter(handle, &fp);

/] Step 3: Capture packets
pcap_loop(handle, -1, got_packet, NULL)

pcap_close(handle); //Close the handle
return 0;




Mrudhula Ashok Shenava 265469976

[02/04/19]seed@VM:~/.../labl$ sudo ./sniffpass
[sudo] password for seed:

Got a packet
El g L T e L
fo: 180.8.2.5
Source Port: 57484
Destination Port: 23
Protocol: TCP
Payload (20 bytes):
2
Got a packet
From: 18.8.2.7
To: . 10.8.2.5
Source Port: 57484
Destination Port: 23
Protecol: TCP
Payload (12 bytes):
?
Got a packet
From: 10.0.2.7
10~ 18.68.2.5
Source Port: 57484
Destination Port: 23
Protocol: TCP
Payload (39 bytes):
?

Got a packet
Erom: 18.8.2.7
To: 10.0.2.5
Source Port: 57484
Destination Port: 23
Protocol: TCP
Payload (12 bytes):
....... A....



Mrudhula Ashok Shenava 265469976




Mrudhula Ashok Shenava 265469976




Mrudhula Ashok Shenava 265469976




Mrudhula Ashok Shenava 265469976

TASK 2.2: Spoofing

Task 2.2a: Write a spoofing program.

Attacker sends spoofed UDP packet with a message to server who is listening. This is confirmed
by the Wireshark capture that the source IP of the packet is different from that of the attacker’s.
The attacker on 10.0.2.6 sends a spoofed UDP packet with the message “Hi Server!” to 10.0.2.7
with source IP as 10.0.2.5. The source UDP port is 9999 and destination UDP port is 9080. We

ping from one machine to another and check the network traffic on Wireshark.

void main()

char buffer[PACKET_LEN];
struct ipheader *ip = (struct ipheader *)buffer;
struct udpheader *udp = (struct udpheader *)(buffer + sizeof(struct ipheader));

/Fill UDP data/
char *data = buffer + sizeof(struct ipheader) + sizeof(struct udpheader);
char *msg="Hello Server.\n";

int data_len=strlen(msg);
strncpy(data,msg,data_len);

/Fill UDP header/

udp->udp_sport = htons(9999);

udp->udp_dport = htons(8888);

udp->udp_ulen = htons(sizeof(struct udpheader)+data_len);
udp->udp_sum =03

JFill IP header/

ip->iph_ver=4;

ip->iph_1ihl=5;

ip->iph_ttl=20;

ip->iph_sourceip.s_addr=inet_addr(SRC_IP);
ip->iph_dstip.s_addr=inet_addr(DST_IP);

ip->iph_protocol=IPPROTO_UDP;

ip->iph_len=htons(sizeof(struct ipheader) + sizeof(struct udpheader) + data_len);

send_raw_1ip_packet(ip);

[02/04/19] seed@VM:~/.../labl%$ sudo ./spoof
[sudo] password for seed:
Sending spoofed IP packet...
From:=="1950-2_7
Jo: 10792 .5
[02/04/19] seed@VM:~/.../labl$



Mrudhula Ashok Shenava 265469976

No. Time Source Destination Protocol Length Info

12019-02-04 17:28:22.3981444.. PcsCompu_5f:2e:af Broadcast ARP 42 who has 10.0.2.5? Tell 10.0.2.6

2 2019-62-64 17:28:22.3986003.. PcsCompu_1d:3c:a2 PcsCompu_5f:2e:af ARP 60 10.0.2.5 is at 08:00:27:1d:3c:a2
73.. 10.0.2. 10.6.2.5 uoP 56 9999 - 8888 Len=14

. PcsCompu_1d:3c:a2  PcsCompu_0b:86:8e  ARP 66 whé has'16.9.2.??'Teil'19.é.é.5 '

6 2019-62-04 17:28:27.6014098.. PcsCompu_6b:86:8e PcsCompu_1d:3c:a2  ARP 60 10.6.2.7 is at ©8:00:27:0b:86:8e
7 2019-02-04 17:28:50.7925283.. 10.0.2.7 10.0.2.3 DHCP 342 DHCP Request - Transaction ID ©xabaf8de3
8 2019-02-04 17:28:50.7954351.. 10.6.2.3 255.255.255.255 DHCP 590 DHCP ACK - Transaction ID @xabaf8de3
9 2019-02-04 17:28:55.8475203.. PcsCompu_6b:86:8e PcsCompu_d6:b4:6c ARP 66 Who has 16.6.2.3? Tell 10.0.2.7
10 2019-62-04 17:28:55.8475281.. PcsCompu_d6:b4:6c PcsCompu_6b:86:8e ARP 66 10.0.2.3 is at ©8:00:27:d6:b4:6c

11 2019-02-04 17:29:01.3535332.. fe80::2142:7¢95:5d2.. ffe2::fb MDNS 180 Standard query ©x0000 PTR _ftp._tcp.local, "QM" question

» Frame 3: 56 bytes on wire (448 bits), 56 bytes captured (448 bits) on interface ©
» Ethernet II, Src: PcsCompu_5f:2e:af (08:00:27:5f:2e:af), Dst: PcsCompu_1d:3c:a2 (08:00:27:1d:3c:a2)
» Internet Protocol Version 4, Src: 10.6.2.7, Dst: 10.0.2.5
» User Datagram Protocol, Src Port: 9999, Dst Port: 8888
v Data (14 bytes)
Data: 48656c6c6f205365727665722e0a
[Length: 14]

©8 00 27 1d 3c a2 08 6@ 27 5T 2e af 08 00 45 08 e BT -

00 2a 77 63 00 00 14 11 17 ad Ga 00 02 07 Ga 00 N
9020 02 05 27 of 22 b8 00 16 00 00 HEIEEEIEE e i m
GEE: 65 72 76 65 12 2e 64 Server |

Task 2.2b: Spoof an ICMP Echo Request.

In the screenshots below, we can see that the attacker sends a spoofed ICMP request to a host
and the host sends back an ICMP reply. This is also shown in the Wireshark capture.

The attacker on 10.0.2.6 creates an ICMP packet with source address as google and sends the
request to 10.0.2.5. The host at 10.0.2.5 receives the ICMP packet and then sends the reply to
google. This is captured by Wireshark and attached as proof. The attacker creates the ICMP
packet by specifying the contents in ICMP header and the IP header. The packet is sent using raw
socket.

[02/04/19]seed@M:~$ ping google.com -cl

PING google.com (172.217.3.110) 56(84) bytes of data.

64 bytes from lga34s18-in-f14.1el00.net (172.217.3.110): icmp seq=
1 tt1l=52 time=9.12 ms

--- google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 9.126/9.126/9.126/0.000 ms
[02/04/19] seed@VM:~$ |}




Mrudhula Ashok Shenava 265469976

[02/04/19] seed@VM:~/.../labl$ gcc spoof.c -o spoof -1lpcap
[02/04/19]seed@VM:~/.../labl$ sudo ./spoof
Sending spoofed IP packet...
From: '172,217.3.118
Tn=18.p.2.5
[02/04/19] seed@VM:~/.../lab1$ |}

No. Time Source Destination Protocol Length Info
12019-62-04 18:11:08.8371144.. 172.217.3.110 .0.2. BAD G
2 2019-02-64 18:11:14,0897313.. PcsCompu_5f:2e:af PcsCompu_1d:3c:a2 ARP 42 who has 10.0.2.5? Tell 10.0.2.6
3 2019-62-04 18:11:14.0905986.. PcsCompu_1d:3c:a2 PcsCompu_5f:2e:af ARP 60 10.0.2.5 is at 08:00:27:1d:3c:a2

» Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface ©

» Ethernet II, Src: PcsCompu_5f:2e:af (08:00:27:5f:2e:af), Dst: PcsCompu_1d:3c:a2 (08:00:27:1d:3c:a2)
» Internet Protocol Version 4, Src: 172.217.3.110, Dst: 10.60.2.5

>

08 00 27 1d 3c a2 08 60 27 5F 2e af 08 00 45 00 ..".<... R
00 1c 48 12 00 00 14 11 a2 73 ac d9 03 6e 6a 60 ..H..... .s...n..
020508 00 f7 ffeO GO @O GO ..., ..

Problem 4: Can you set the IP packet length field to an arbitrary value, regardless of how big
the actual packet is?

The actual length of an IP packet is the sum of IP header length and ICMP header length. If we
set the IP packet length field to an arbitrary value, the packet will not be formed properly and
hence, info shall be truncated. This will form an incomplete packet. And we already know that no
incomplete packet will ever get on to or be transmitted over the network.

Problem 5: Using the raw socket programming, do you have to calculate the checksum for the
IP header?

The checksum for the IP header is calculated by OS before transmitting it over the network. So if
you do not explicitly calculate, it will anyways be added. So, we can say that it’s optional and that
we can do it or not do it according to requirement.

Problem 6: Why do you need the root privilege to run the program that use raw sockets? Where
does the program fail if executed without the root privilege?

The raw socket creation throws an error. The packets on the network are captured through the
network interface card. The access to these functions is only granted to privileged or root users.



Mrudhula Ashok Shenava 265469976

In order to create a socket or for the socket to spoof/access/control/work with the network
interface we require root privilege to run programs that use raw sockets, else the program fails.

TASK 2.3: Sniff and then Spoof

User pings a host 1.2.3.4, the attacker sniffs the ICMP request, immediately spoofs the ICMP reply
to the source of the ICMP request. The user receives the ICMP reply from the attacker as shown
in the Wireshark capture.

Snoofing is sniffing for the request and immediately sending the reply. The user pings a host
1.2.3.4, the attacker on 10.0.2.6 receives the ICMP packet using pcap which listens promiscuously
to traffic, spoofs an ICMP reply using raw socket by replacing the source IP as the destination IP
and the destination IP as the source IP. The Ethernet header in the reply is not added because
we spoofing at IP level. The fields in the IP header and the ICMP header are spoofed by the
attacker. When the reply is sent to the User, it seems like he gets a normal reply from the host
he pings to. Even if the host is non-existant, he will receive a reply. The Wireshark capture is the
proof of this.

[02/04/19]seed@VM:~$ ping 1. 2.3.4-c3

PING 1.2.3.4 (1.2.3.4) 56(84) bytes of data.

64 bytes from 1.2.3.4: 1cmp seq=256 ttl=50 time=800 ms
64 bytes from 1.2.3.4: 1cmp seq=768 ttl=50 time=822 ms
64 bytes from 1.2.3.4: icmp_seq=1024 tt1=50 time=2845 ms
64 bytes from 1.2.3.4: icmp seq=1536 ttl=50 time=845 ms

--- 1.2.3.4 ping statistics ---

3 packets transmitted, 4 received, -33% packet loss, time 2000ms
rtt min/avg/max/mdev = 800.099/1328.504/2845.819/876.169 ms
[02/04/19] seed@VM:~$ [




Mrudhula Ashok Shenava 265469976

1.2.3.4 :

tured (784 bits) on interface ©
:a2), Dst: RealtekU_12:35:00 (52:54:00:
.2.3.4

8
.ga
b
:

» Frame 10: 98 bytes on wire (784 bits
» Ethernet II, Src: PcsCompu_1d:3c:a2 (
» Internet Protocol Ver 4, Src: 16.

v
8
o

&
S

135:00)

@
N
o
~N
53
s
Ta
"

2




Mrudhula Ashok Shenava

unsigned short in_cksum(unsigned short *buf,int length);
void send_raw_ip_packet(struct ipheader* ip);
void spoof_reply_icmp(struct ipheader* ip);

int count=1;
int main()

pcap_t *handle;

char errbuf[PCAP_ERRBUF_SIZE];
struct bpf_program fp;

char filter_exp[] = "ip proto icmp";
bpf_u_int32 net;

// Step 1: Open live pcap session on NIC with interface name
handle = pcap_open_live("enpOs3", BUFSIZ, 1, 1000, errbuf);

// Step 2: Compile filter_exp into BPF psuedo-code
pcap_compile(handle, &fp, filter_exp, 0, net);
pcap_setfilter(handle, &fp);

// Step 3: Capture packets
pcap_loop(handle, -1, got_packet, NULL);

pcap_close(handle); //Close the handle
return 0;

void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char

265469976

*packet);

voild spoof_reply_icmp(struct ipheader* 1ip)
{
printf("\n---- - e e \n")
int ip_header_len = ip->iph_1ihl*4;
const char buffer[PACKET_LEN];

memset((char*)buffer,0,PACKET_LEN);
memcpy((char*)buffer,ip,ntohs(ip->iph_len));

//Construct icmp header
struct ipheader *newip=(struct ipheader*)buffer;

newicmp->icmp_type=0; [/© for reply
newicmp->icmp_chksum=0;

newicmp->icmp_seq=count++;

//Construct ip header
newip->iph_sourceip=ip->iph_dstip;
newip->iph_dstip=ip->iph_sourceip;
newip->iph_ttl=50;
newip->iph_len=ip->iph_len;

//5end Spoofed reply
send_raw_ip_packet(newip);

struct icmpheader *newicmp=(struct icmpheader*) (buffer +ip_header_len);

newicmp->icmp_chksum=in_cksum({(unsigned short *)newicmp, sizeof(struct icmpheader));




