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1 Introduction

Dynamic Models and Bayesian Forecasting were introduced in the seminal work by Harrison
(1976). Since then, many scientists do seem to have an interest in the theoretical innovations
and practical applications of this technique.

Two major works in the field of dynamic models are West and Harrison (1986) and West and
Harrison (1989), in which the authors introduced Bayesian subjective intervention, automatic
monitoring, and adaptation in the class of Dynamic Linear Model (DLM).

To our knowledge, there is no open source tool for Bayesian monitoring and intervention
despite the software literature offering a variety of programs to work with state space models.
To fill this gap, we introduce pybats-detection package, an effective python package for the
identification of structural changes and outliers in DLM. The package’s current version includes
smoothing for univariate DLM, automatic monitoring, and subjective intervention.

2 Smoothing

To demonstrate the use of the Smoothing class we will start with a simulated example in which
a sequence of observations y1, . . . , yt were generated following DLM evolution structure given by

yt = Fθt + εt, εt ∼ N [0, Vt],
θt = Gθt−1 + ωt, ωt ∼ N [0,Wt]

This can be done using the RandomDLM class which has the arguments (n, V, W): the number
of observations, observational variance and state vector variance. This class has three methods
that simulate data using different mechanisms:

• .level: dynamic level model;
• .growth: dynamic growth model;
• .level_with_covariates: dynamic level model where Y is simulated given Y , a matrix

of fixed covariates.

For now, we stick with .level, simulating n = 100 observations with both observational
and state vector variance equals to one 1, the starting level is set to 100. The simulated data is
plotted in Figure Figure 1.

>>> # Generating level data model

>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=100, V=1, W=1)
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>>> df_simulated = rdlm.level(start_level=100, dict_shift={})
>>> y = df_simulated["y"]
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Figure 1: Simulated data

The Smoothing class allows you to perform a retrospective analysis for Y, obtaining the
distribution of (θT−k|DT ), for k ≥ 1, the k-step smoothed distribution for the state vector at
time T , which is analogous to the k-step ahead forecast distribution (θt+k|Dt).

To use Smoothing, first it is necessary to define the model components with prior values,
which is done with the dlm class available in the pybats package. In this case, it was considered
a DLM with level and growth. The prior vector and covariances are defined by a and R. Lastly,
the discount factor denoted by deltrend is a constant in the interval [0, 1], which is used to
coordinate the adaptive capacity of predictions with increasing variance of model components.

>>> # Define model components

>>> a = np.array([100, 0])
>>> R = np.eye(2)
>>> np.fill_diagonal(R, val=1)
>>> mod = dlm(a, R, ntrend=2, deltrend=.95)

Given this, the method .fit will initialize the model and the loop forecast, observe and
update begin. The prior and posterior moments (at,mt,Ct,Rt) will be computed for all t
and saved. Subsequently, these moments will be used to obtain the moments for (θT−k|DT ),
recursively with k ≥ 1, and denoted by (aT (−k),mT (−k),CT (−k),RT (−k)).
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>>> # Fit with monitoring

>>> smooth = Smoothing(mod=mod)
>>> smooth_fit = smooth.fit(y=y)

This returns a dictionary with the following keys:

• model: the updated pybats.dglm.dlm object.
• filter: a dictionary with:

– posterior: pandas.DataFrame with the filtering posterior moments.
– predictive: pandas.DataFrame with the one-step ahead predictive moments.

If smooth is True, then also contains:

• smooth: a dictionary with:

– posterior: pandas.DataFrame with the smooth posterior moments.
– predictive: pandas.DataFrame with the smooth one-step ahead predictive mo-

ments.

2.1 smoothed predictive

The results for the smoothed predictive distribution consists of: fT (−k), qT (−k) and the bounds
for the credible interval (ci_lower, ci_upper). Given by

fT (−k) = F′aT (−k), qT (−k) = F′RT (−k)F

The credible interval is is obtained from the corresponding smoothed distributions for the mean
response of the series. Since V is considered unknown, then

(µT (−k)|DT ) ∼ TnT
[fT (−k), qT (−k)]

For this simulated example, the results for the smoothed predictive distribution for the mean
response are

>>> smooth_fit.get('smooth').get('predictive').round(2).head(5)

Table 1: Smothed predictive distribution results

qk fk t df ci_lower ci_upper

0.31 99.97 1 1 98.85 101.1
0.27 100.07 2 2 99.05 101.1
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qk fk t df ci_lower ci_upper

0.24 100.12 3 3 99.14 101.1
0.23 100.20 4 4 99.24 101.2
0.22 100.39 5 5 99.47 101.3

as for the filtered distribution

>>> smooth_fit.get('smooth').get('predictive').round(2).head(5)

Table 2: Filtered predictive distribution results

t parameter mean variance df ci_lower ci_upper

1 Intercept 99.97 0.31 1 98.85 101.1
2 Intercept 100.07 0.27 2 99.05 101.1
3 Intercept 100.12 0.24 3 99.14 101.1
4 Intercept 100.20 0.23 4 99.24 101.2
5 Intercept 100.39 0.22 5 99.47 101.3

Plotting the filtered vs smoothed predictive distributions results is possible to see difference,
primarily in the length of the credible interval (see Figure Figure 2).

2.2 smoothed posterior

The results for the posterior distributions are analogous, where

• parameter: Indicator for the respective state space parameter in θ;
• mean: The smoothed posterior distribution mean for time t = T − k (m(−k));
• variance: The smoothed posterior distribution variance for time t (C(−k)).
• credible interval (ci_lower, ci_upper): The credible interval obtained from the corre-

sponding smoothed posterior distributions. Since V is considered unknown, then

(θT−k|DT ) ∼ TnT
[aT (−k),RT (−k)].

>>> smooth_fit.get('smooth').get('posterior').round(2).head(5)
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Table 3: Smothed posterior distribution results

t parameter mean variance df ci_lower ci_upper

1 Intercept 99.97 0.31 1 98.85 101.1
2 Intercept 100.07 0.27 2 99.05 101.1
3 Intercept 100.12 0.24 3 99.14 101.1
4 Intercept 100.20 0.23 4 99.24 101.2
5 Intercept 100.39 0.22 5 99.47 101.3
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Figure 2: Mean response for Filtered and Smoothed predictive distributions for each model
component with 95% credible intervals.

In Figure Figure 3 we plot the results for filtered and smoothed distributions, in this case
for each state space parameter. As expected, the smoothed posterior distributions show a less
erratic behavior with shorter credible intervals.
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Figure 3: Mean response for Filtered and Smoothed posterior distributions for each model
component with 95% credible intervals.

2.3 Aplication: AirPassangers dataset

Now we’ll demonstrate the Smoothing class with the classic Box & Jenkins airline data, Monthly
totals of international airline passengers (1949 to 1960). The time series is plotted in Figure
Figure 4. This data has a clear multiplicative seasonality, using a linear model (with additive
seasonality) may be a naive approximation for this data. But, just for the sake of comparison
between filtered and smoothing we stick with the linear model.
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Figure 4: Monthly totals of international airline passengers, 1949 to 1960.

Using a normal DLM with three main components: Trend, Growth and Seasonality. The
seasonality is modeled using the Fourier form representation, which depends on the parity of a
period p and the number of harmonics components. Formally, the rth harmonic component is
given by

Sr(.) = ar cos(αr) + br sin(αr), r = 1, . . . , h, ar = 2π/p, h <= p/2

Here it was specified a yearly seasonal effect with period p = 12 and the first two harmonics.
The discount factor for the level and growth components is set to 0.95, and 0.98 for the seasonal
components. The results are plotted below.

>>> a = np.array([112, 0, 0, 0, 0, 0])
>>> R = np.eye(6)
>>> np.fill_diagonal(R, val=100)
>>> mod = dlm(a, R, ntrend=2, deltrend=.95, delseas=.98,
>>> seasPeriods=[12], seasHarmComponents=[[1, 2]])
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Figure 5: Mean response for Filtered and Smoothed predictive distributions with 95% credible
intervals.

Since the seasonality was modeled using harmonic components, the model has a total of six
parameters: level, growth and four for seasonality (a1, b1, a2, b2). For simplicity, the results for
de posterior distributions considered the sum of the harmonic components, whose moments are
given by

µseas = F′seasaT (−k), σ2
seas = F′seasRT (−k)Fseas

where F′seas = [0, 0, 1, 0, 1, 0]. The results are illustrated below.
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Figure 6: Mean response for Filtered and Smoothed posterior distributions for each model
component with 95% credible intervals.

3 Manual Intervention

3.1 CP6

To illustrate the subjective intervention class we use the CP6 data graphed below. This time
series runs from January 1955 to December 1959, providing monthly total sales, in monetary
terms on a standard scale, of a product by a major company in UK. Note that the use of
standard time series models may not wield satisfactory results as there a some points that need
some attention:

1. During 1955 the market grows fast at a fast but steady rate,
2. A jump in December 1955.
3. The sales flattens off for 1956.
4. There is a major jump in the sales level in early 1957.
5. Another jump in early 1958.
6. Throughout the final two years, there is a steady decline back to late 1957.

>>> cp6 = load_cp6()
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Figure 7: CP6 sales series

3.2 Fit Without Intervention

Given this, let’s see how a standard dlm performs. The model used is defined below.

>>> # Define the growth model

>>> a = np.array([600, 1])
>>> R = np.array([[100, 0], [0, 25]])
>>> mod = dlm(a, R, ntrend=2, deltrend=[0.90, 0.98])

>>> # Filter and Smooth without intervention

>>> smooth = Smoothing(mod=mod)
>>> out_no_int = smooth.fit(y=cp6["sales"])
>>> dict_filter_no_int = out_no_int.get("filter").get("predictive")
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Figure 8: Mean response for Filtered predictive distribution with 95% credible interval

Note that until November 1955 the forecast distribution was quite acceptable, the credible
interval was relatively small and the errors was were distributed around zero and inside the
interval. But with the jump in December 1955 the level rises dramatically, the biggest problem
is not the model’s inability to efficiently predict this point, but the influence it has on future
predictions. Note that for most of the year 1956 the predicted sales overestimation the real
sales, giving a cluster of negative errors (yt − ft). In early 1957 another jump was observed,
but in this case, it was accompanied by a regime change. And this has great impact in the
amplitude of the credible intervals. In early 1958 another regime change, followed by a change
in grow, that is not properly modeled since from August 1958 to January 1960 all errors were
negative with the exception of July 1959.

3.3 Fit With Intervention

With the intervention class it is possible to consider outside information to define the prior
distribution at the time t. This can be done in two ways: noise or subjective. Which must be
provided in a list of dictionaries containing the time the intervention will be carried out and the
type. Lets start with a empty list

>>> intervention_list = []

3.3.1 Noise Intervention in Prior Variance

In our example, suppose that a change in growth for the year 1956 was anticipated. An increase
in uncertainty about level and growth can be done by the addition of a matrix Ht to Rt at time
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t = 12 given by

Ht =
100 25

25 25


Thus, there is an increase (a positive shift) in the prior variance of the components. In our list
of interventions we have

>>> intervention_list = [{
>>> "time_index": 12, "which": ["noise"],
>>> "parameters": [{
>>> "h_shift": np.array([0, 0]),
>>> "H_shift": np.array([[100, 25], [25, 25]])}]
>>> }]

where

• time_index: time of intervention;
• which: type of intervention (in this case, a noise intervention);
• parameters: the values for the intervention.

– h_shit: Shift in mean (we’ll see more about that later).
– H_shift: Shift in variance.

3.3.2 Noise Intervention in Prior Mean and Variance

It is also possible to intervene in the prior mean. Suppose an increase in the market level is
expected for the year 1957, we can add a change in level of 80 units and increase the variance
by 100 at January (t = 25)

h25 =
80

0

 and H25 =
100 0

0 0


now, updating our intervention list

>>> intervention_list = [{
>>> "time_index": 12, "which": ["noise"],
>>> "parameters": [{
>>> "h_shift": np.array([0, 0]),
>>> "H_shift": np.array([[100, 25], [25, 25]])}],
>>>
>>> "time_index": 25, "which": ["noise"],
>>> "parameters": [{
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>>> "h_shift": np.array([80, 0]),
>>> "H_shift": np.array([[100, 0], [0, 0]])}]
>>> }]

In January 1958 (t = 37) another jump in level is anticipated, this time of about 100 units
with a feeling of increased certainly about the new level and also a anticipated uncertainly for
the growth. At this time, the prior mean and variance given by

a37 =
864.5

0

 and R37 =
91.7 9.2

9.2 1.56


are simply altered to

a∗37 =
970

0

 and R∗37 =
50 0

0 5


3.3.3 Observational Variance Intervention

It is also possible to perform interventions on observational variance. This can be useful for
outlier anticipation.

Suppose that at the end of 1955 there will be an announcement of future price increases
which will result in forward-buying. So, a intervention at December 1955 (t = 12) will allow for
an anticipated outlier. In late 1956, there is a a view that the marked change in the new year
will begin with a maverick value, as the product that are to be discontinued are sold cheaply.

This interventions can be done by including a variance intervention in our list of interventions
for the respective time:

>>> list_interventions = [
>>> {"time_index": 12, "which": ["variance", "noise"],
>>> "parameters": [{"v_shift": "ignore"},
>>> {"h_shift": np.array([0, 0]),
>>> "H_shift": np.array([[1000, 25], [25, 25]])}]
>>> },
>>> {"time_index": 25, "which": ["noise", "variance"],
>>> "parameters": [{"h_shift": np.array([80, 0]),
>>> "H_shift": np.array([[100, 0], [0, 0]])},
>>> {"v_shift": "ignore"}]},
>>> {"time_index": 37, "which": ["subjective"],
>>> "parameters": [{"a_star": np.array([970, 0]),
>>> "R_star": np.array([[50, 0], [0, 5]])}]}
>>> ]
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3.3.4 Performing the fit (filter and smoothing) with interventions

Finally, the fit with intervention can be done using the Intervention class. In the .fit method
we will initialize the model and the loop forecast, observe and update, this time with the
interventions given in list_interventions, begin. This will return a dictionary with the same
structure as presented in the smoothing section.

>>> manual_interventions = Intervention(mod=mod)
>>> out_int = manual_interventions.fit(
>>> y=cp6["sales"], interventions=list_interventions)
>>> dict_filter_int = out_int.get("filter").get("predictive")
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Figure 9: Mean response for filtered predictive distribution with 95% credible interval and ideal
interventions

4 Monitoring

The automatic monitoring method sequentially evaluate the forecasting activity to detect
breakdowns, based on Bayes factor for two models M0 versus M1 with same mathematical
structure, differing only through the values for θt or simply the discount factors. Let M0 be a
standard DLM without intervention and M1 and alternative model that is introduced to provide
assessment of M0 by comparison. The Bayes’ factor for the observed value yt is given by

Ht = p0(yt | Dt−1)
p1(yt | Dt−1)

,
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where p0 and p1 are the predictive densities at time t for M0 and M1.If Ht is small then the M1

model is preferred. For k = 1, . . . , t last consecutive observations yt, yt−1, yt−k+1 the local Bayes
factor is given by

Ht(k) =
t∏

r=t−k+1
Hr = p0(yt, yt−1, . . . , yt−k+1)

p1(yt, yt−1, . . . , yt−k+1)
.

and the cumulative Bayes factor (Lt) is

Lt = min
1≤k≤t

Ht(k),

the minimum at time t is taken at k = lt, with Lt = Ht(lt) and lt being a integer given by

lt = (1 + lt−1)I(Lt−1 < 1) + I(Lt−1 ≥ 1),

where I(·) is a indicator function.
Basically, Ht is initially used to indicate if yt is a outlier when Ht < τ (which represent

preference for M1). However a small Bayes factor may indicate the start of a regime change, in
this case we need to accumulate evidences. For this Lt and lt are used. The automatic detection
is done following the steps

• If Ht ≤ τ , then yt is a outlier and is omitted from the analysis.
• If Ht > τ , we must look at Lt for cumulative evidence against M0.

– If Lt < τ or lt > 2 then a parametric chance is detected M1 is adopted.

It is also possible to consider two alternative modelsM1 andM2, this is useful for identification
of outliers/regime change in two directions.

4.1 The Monitoring class

The Monitoring class implements automatic methods of sequentially monitoring the forecasting
activity of DLM in order to detect breakdowns. The model performance is purely based on
statistical measures related to model.

An instance of Monitoring class can be initialized as follows:

>>> from pybats_detection.monitor import Monitoring
>>> monitoring_learning = Monitoring(
>>> mod: pybats.dglm.dlm, prior_length: int = 10, bilateral: bool = False,
>>> smooth: bool = True, interval: bool = True, level: float = 0.05)

where mod, interval, level, and smooth have the same meaning as in Intervention class,
prior_length is an integer that indicates the number of prior observations with the monitor
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off, and bilateral is a Boolean that performs bilateral monitoring if True, otherwise unilateral
monitoring.

The fit method of Monitoring has the following arguments:

>>> monitoring_res = monitoring_learning.fit(
>>> y: pandas.Series, X: pandas.DataFrame = None,
>>> h: int = 4, tau: float = 0.135,
>>> discount_factors: dict = {"trend": 0.10, "seasonal": 0.90,
>>> "reg": 0.98},
>>> distr: str = "normal", type: str = "location", verbose: bool = True)

where

• h is the location or scale shift for alternative distribution.

• tau is the threshold for Bayes’ factors, indicating the lower limit on acceptability of Lt.
tau lies on (0, 1), values between 0.1 and 0.2 being most appropriate.

• discount_factors is a dictionary with exceptional discount factors values to increase the
uncertainty about state space parameter, when the monitor detects points of intervention.
The dictionary should contain values with the following keys representing the model blocks:
trend: level and growth; seasonal: seasonality; and reg: regressors.

• dist is the Bayes’ factors distribution family. It could be "normal" or "tstudent".

• type is the alternative model use to compute the Bayes’ factors. It could be "location"
to detect change in the location of the distribution or "scale" to detect changes in the
scale/dispersion of the predictive distribution.

• verbose is a Boolean value that if True prints the detection of monitor.

As in the Intervention class the output object monitoring_res has the same similar
dictionary structure.

4.2 Examples

The effectiveness of the Monitoring class is demonstrated in this section using time series
with irregular changes and outliers. Smaller discount factor values are used to increase the
state parameter uncertainty when a change is regarded as exceptional, which accelerates model
adaption.
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4.2.1 Simulate example

For the first 40 observations, the following 20, and the last 40, respectively, this simulated data
was generated using a normal distribution, N [µ, σ2], with µ = 100, 104 and 98 and σ2 = 0.8, 0.5
and 0.5. The model was defined and simulated using the code:

>>> np.random.seed(66)
>>> y1 = np.random.normal(loc=100, scale=0.8, size=40)
>>> y2 = np.random.normal(loc=104, scale=0.5, size=20)
>>> y3 = np.random.normal(loc=98, scale=0.5, size=20)
>>> y = np.concatenate([y1, y2, y3])
>>> t = np.arange(0, len(y)) + 1
>>> df_simulated = pd.DataFrame({"t": t, "y": y})

>>> a = np.array([100])
>>> R = np.eye(1)
>>> R[[0]] = 100
>>> mod = dlm(a, R, ntrend=1, deltrend=0.95)

The sequential learning with and without the monitor is performed as follows:

>>> monitor = Monitoring(mod=mod)
>>> fit_monitor = monitor.fit(y=df_simulated["y"],
>>> bilateral=True, h=4, tau=0.135,
>>> discount_factors={"trend": 0.10},
>>> verbose=True)

## Upper potential outlier detected at time 41 with H=3.4763e-05, L=3.4763e-05 and l=1
## Upper potential outlier detected at time 42 with H=5.7640e-02, L=5.7640e-02 and l=1
## Lower potential outlier detected at time 61 with H=1.6672e-10, L=1.6672e-10 and l=1
## Lower potential outlier detected at time 62 with H=6.8162e-06, L=6.8162e-06 and l=1

Evidence was found against model M0 at t = 41 and t = 61, with L41 = 6.85 e−6, L61 =
2.23 e−4, and L61 = 2.23 e−4, both with lt = 1, indicating a possible outlier. With the arrival of
the following observations, a regime change is recognized by the monitor. The interventions
performed can be observed in Figure below, where we can see that the model with monitoring
quickly adapts to the regime changes (B), compared to the one without monitoring (A).

4.2.2 Telephone Calls

The telephone calls data set concerns the monthly average number of phone calls in Cincinnati,
USA. This data features three levels of modifications. The first was in early 1968, with three
months of impact; the second was in the middle of 1973, less significant; and the third was in
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early 1974, more lasting. This data set is available in pybats-detection and can be loaded as
follows:

>>> telephone_calls = load_telephone_calls()
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Figure 10: Average daily telephone calls

It is decided to use the linear growth model to explain this phenomenon. We set, as usual,
vague prior distributions for the level and growth parameters.

>>> a = np.array([350, 0])
>>> R = np.eye(2)
>>> np.fill_diagonal(R, val=[100])
>>> mod = dlm(a, R, ntrend=2, deltrend=0.90)

Then, the Monitor class is initialized and the fit method is used to update the model
sequentially, taking into account the automatic monitoring. Note that the discount factor for
the level component has dropped from 0.90 to 0.20, while that for the growth remains the same.

>>> monitor = Monitoring(mod=mod)
>>> fit_monitor = monitor.fit(y=telephone_calls["average_daily_calls"], h=4,
>>> tau=0.135,
>>> discount_factors={"trend": [0.20, 0.90]},
>>> bilateral=True, prior_length=40)

## Upper potential outlier detected at time 48 with H=1.3042e-01, L=1.3042e-01 and l=1
## Upper potential outlier detected at time 60 with H=5.3347e-03, L=5.3347e-03 and l=1
## Upper potential outlier detected at time 72 with H=7.2439e-02, L=7.2439e-02 and l=1
## Lower parametric change detected at time 82 with H=2.2808e-01, L=4.1043e-14 and l=6
## Upper parametric change detected at time 97 with H=3.6864e+00, L=2.3943e-03 and l=3
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## Lower potential outlier detected at time 115 with H=1.5791e-02, L=1.5791e-02 and l=1
## Lower potential outlier detected at time 140 with H=1.7892e-03, L=1.7892e-03 and l=1
## Lower potential outlier detected at time 141 with H=3.3177e-08, L=3.3177e-08 and l=1
## Lower potential outlier detected at time 142 with H=2.4040e-03, L=2.4040e-03 and l=1
## Lower potential outlier detected at time 146 with H=2.0036e-06, L=2.0036e-06 and l=1
## Lower potential outlier detected at time 147 with H=2.7869e-21, L=2.7869e-21 and l=1
## Lower potential outlier detected at time 148 with H=2.5817e-09, L=2.5817e-09 and l=1
## Lower potential outlier detected at time 149 with H=6.6363e-03, L=6.6363e-03 and l=1

A summary of the changes detection (outlier or parametric change) is printed with the
corresponding values for Ht, Lt and lt. A comparison between the model with and without the
automatic monitoring is shown throughout the one-step-ahead forecasts and the corresponding
95% credible interval in Figure below.
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Figure 11: One-step-ahead forecasts with 95% credible interval for the telephone calls data. A:
without monitoring. B: with monitoring. Observations represented by × indicate instants with
intervention.

It is observed that there is a strong difference in the forecasts between the models with and
without automatic monitoring. In particular, the adaptation for the future of the model without
monitoring is quite poor, which generates large and imprecise credible intervals. Therefore, for
forecasting purposes, the model with monitoring is well adapted to the level changes.

4.2.3 Aditional simulation examples

>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=50, V=0.1, W=0.005)
>>> df_simulated = rdlm.level(
>>> start_level=100,
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>>> dict_shift={"t": [40],
>>> "level_mean_shift": [1],
>>> "level_var_shift": [1]})
>>> df_simulated.loc[40:50, "y"] = 101 + np.random.normal(0, 0.2, 10)
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Figure 12: Simulated data with level change

>>> a = np.array([100])
>>> R = np.eye(1)
>>> R[[0]] = 100
>>> mod = dlm(a, R, ntrend=1, deltrend=0.9)
>>>
>>> # Fit without monitoring

>>> fit_without_monitor = Smoothing(mod=mod).fit(y=df_simulated["y"])
>>> df_res = fit_without_monitor.get("filter").get("predictive")
>>>
>>> # Fit with monitoring

>>> monitor = Monitoring(mod=mod)
>>> fit_monitor = monitor.fit(y=df_simulated["y"], h=3, tau=0.135,
>>> discount_factors={"trend": 0.10})

4.2.3.1 Level change

## Parametric change detected at time 43 with H=1.2090e+01, L=3.7693e+00 and l=3
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>>> df_tmp = fit_monitor.get("filter").get("predictive")
>>> df_res["monitor"] = False
>>> df_tmp["monitor"] = True
>>> cols_ord = ["t", "y", "f", "q", "ci_lower", "ci_upper", "monitor", "e",
>>> "H", "L", "l"]
>>> df_res = pd.concat([df_res, df_tmp[cols_ord]]).reset_index(drop=True)
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Figure 13: One-step-ahead forecasts for the simulate data with level change. A: without
monitoring. B: with monitoring.

>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=50, V=0.1, W=0.01)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [10, 11, 20, 21, 30, 31, 40, 41],
>>> "level_mean_shift": [2, -2, 3, -3, 3.4, -3.4, 3, -3],
>>> "level_var_shift": [1, 1, 1, 1, 1, 1, 1, 1]})

4.2.3.2 Outliers
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>>> a = np.array([100])
>>> R = np.eye(1)
>>> R[[0]] = 100
>>> mod = dlm(a, R, ntrend=1, deltrend=0.9)
>>>
>>> # Fit without monitoring

>>> fit_without_monitor = Smoothing(mod=mod).fit(y=df_simulated["y"])
>>> df_res = fit_without_monitor.get("filter").get("predictive")
>>>
>>> # Fit with monitoring

>>> monitor = Monitoring(mod=mod)
>>> fit_monitor = monitor.fit(y=df_simulated["y"], h=4, tau=0.135,
>>> discount_factors={"trend": 0.10})

## Potential outlier detected at time 11 with H=2.0200e-08, L=2.0200e-08 and l=1
## Potential outlier detected at time 21 with H=2.9386e-11, L=2.9386e-11 and l=1
## Potential outlier detected at time 31 with H=1.0894e-12, L=1.0894e-12 and l=1
## Potential outlier detected at time 41 with H=1.3753e-07, L=1.3753e-07 and l=1

>>> df_tmp = fit_monitor.get("filter").get("predictive")
>>> df_res["monitor"] = False
>>> df_tmp["monitor"] = True
>>>
>>> # Append

>>> cols_ord = ["t", "monitor", "y", "f", "q", "ci_lower", "ci_upper"]
>>> df_res = pd.concat([df_res[cols_ord], df_tmp[cols_ord]]).reset_index(drop=True)
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Figure 14: One-step-ahead forecasts for the simulate data with outliers. A: without monitoring.
B: with monitoring.

>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=50, V=0.1, W=0.01)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [20, 21, 40],
>>> "level_mean_shift": [3, -3, 10],
>>> "level_var_shift": [1, 1, 1]})

4.2.3.3 Outlier and Level Change
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>>> a = np.array([100])
>>> R = np.eye(1)
>>> R[[0]] = 100
>>> mod = dlm(a, R, ntrend=1, deltrend=0.9)
>>>
>>> # Fit without monitoring

>>> fit_without_monitor = Smoothing(mod=mod).fit(y=df_simulated["y"])
>>> df_res = fit_without_monitor.get("filter").get("predictive")
>>>
>>> # Fit with monitoring

>>> monitor = Monitoring(mod=mod)
>>> fit_monitor = monitor.fit(y=df_simulated["y"], h=4, tau=0.135,
>>> discount_factors={"trend": 0.10})

## Potential outlier detected at time 21 with H=3.1219e-05, L=3.1219e-05 and l=1
## Potential outlier detected at time 41 with H=3.0603e-34, L=3.0603e-34 and l=1
## Potential outlier detected at time 42 with H=4.4933e-23, L=4.4933e-23 and l=1
## Potential outlier detected at time 43 with H=9.9249e-08, L=9.9249e-08 and l=1

>>> df_tmp = fit_monitor.get("filter").get("predictive")
>>> df_res["monitor"] = False
>>> df_tmp["monitor"] = True
>>>
>>> # Append

>>> cols_ord = ["t", "monitor", "y", "f", "q", "ci_lower", "ci_upper"]
>>> df_res = pd.concat([df_res[cols_ord], df_tmp[cols_ord]]).reset_index(drop=True)
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Figure 15: One-step-ahead forecasts for the simulate data with outliers and level change. A:
without monitoring. B: with monitoring.

>>> np.random.seed(66)
>>> rdlm = RandomDLM(n=70, V=1, W=0.01)
>>> df_simulated = rdlm.level(
>>> start_level=100,
>>> dict_shift={"t": [20, 21, 40, 60],
>>> "level_mean_shift": [5, -5, 10, 10],
>>> "level_var_shift": [1, 1, 1, 1]})

4.2.3.4 Outlier and Two Level Change
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>>> a = np.array([100])
>>> R = np.eye(1)
>>> R[[0]] = 100
>>> mod = dlm(a, R, ntrend=1, deltrend=0.9)
>>>
>>> # Fit without monitoring

>>> fit_without_monitor = Smoothing(mod=mod).fit(y=df_simulated["y"])
>>> df_res = fit_without_monitor.get("filter").get("predictive")
>>>
>>> # Fit with monitoring

>>> monitor = Monitoring(mod=mod)
>>> fit_monitor = monitor.fit(y=df_simulated["y"], h=4, tau=0.135,
>>> discount_factors={"trend": 0.10})

## Potential outlier detected at time 21 with H=1.0052e-03, L=1.0052e-03 and l=1
## Potential outlier detected at time 41 with H=2.4362e-13, L=2.4362e-13 and l=1
## Potential outlier detected at time 42 with H=2.7146e-10, L=2.7146e-10 and l=1
## Potential outlier detected at time 43 with H=1.3395e-02, L=1.3395e-02 and l=1
## Potential outlier detected at time 61 with H=8.6538e-15, L=8.6538e-15 and l=1
## Potential outlier detected at time 62 with H=9.8401e-09, L=9.8401e-09 and l=1
## Potential outlier detected at time 63 with H=8.5385e-02, L=8.5385e-02 and l=1

>>> df_tmp = fit_monitor.get("filter").get("predictive")
>>> df_res["monitor"] = False
>>> df_tmp["monitor"] = True
>>>
>>> # Append

>>> cols_ord = ["t", "monitor", "y", "f", "q", "ci_lower", "ci_upper"]
>>> df_res = pd.concat([df_res, df_tmp[cols_ord]]).reset_index(drop=True)
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Figure 16: One-step-ahead forecasts for the simulate data with outliers and two level change.
A: without monitoring. B: with monitoring.
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