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Preface

This book makes an effort to reconcile two different attempts to come to
grips with the foundations of mathematics. One is mathematical logic, which
traditionally consists of proof theory, model theory and the theory of
recursive functions; the other is category theory. It has been our experience
that, when lecturing on the applications of logic to category theory, we met
with approval from logicians and with disapproval from categorists, while
the opposite was the case when we mentioned applications of category
theory to logic. Unfortunately, to show that the logicians’ viewpoint is
essentially equivalent to the categorists’ one, we have to slightly distort
both. For example, categorists may be unhappy when we treat categories
as special kinds of deductive systems and logicians may be unhappy when
we insist that deductive systems need not be freely generated from axioms
and rules of inference. The situation becomes even worse when we take the
point of view of universal algebra. For example, combinatory logics are for
us certain kinds of algebras, which goes against the grain for those logicians
who have spent a life-time studying what we call the free such algebra. On
the other hand, cartesian closed categories and even toposes are for us also
certain kinds of algebras, although not over sets but over graphs, and this
goes against the grain of those categorists who like to think of products and
the like as being given only up to isomorphism. To make matters worse,
universal algebraists may not be happy when we stress the logical or the
categorical aspects, and even graph theorists may feel offended because we
have had to choose a definition of graph which is by no means standard.

This is not the first book on categorical logic, as there already exists a
classical monograph on first order categorical logic by Makkai and Reyes,
not to mention a book on toposes written by a categorist (Johnstone) and a
book on topoi written by a logician (Goldblatt), both of whom mention the
internal language of toposes*. Our point is rather this: logicians have made

* Let us also draw attention to the important recent book by Barr and Wells,
which manages to cover an amazing amount of material without explicit use of
logical tools, relying on embedding theorems instead.
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three attempts to formulate higher order logic, in increasing power: typed
A-calculus, Martin—-Laf type theory and the usual (let us say intuitionistic)
type theory. Categorists quite independently, though later, have developed
cartesian closed categories, locally cartesian closed categories and toposes.
We claim here that typed A-calculi and cartesian closed categories are
essentially the same, in the sense that there is an equivalence of categories
(even untyped A-calculi are essentially the same as certain algebras we call
C-monoids). All this will be found in Part I. We also claim that intuitionistic
type theories and toposes are closely related, in as much as there is a pair of
adjoint functors between their respective categories. This is worked out in
Part II. The relationship between Martin-L&f type theories and locally
cartesian closed categories was established too recently (by Robert Seely) to
be treated here. Logicians will find applications of proof theory in Part I,
while many possible applications of proof theory in Part II have been
replaced by categorical techniques. They will find some mention of model
theory in Part I and more in Part II, but with emphasis on a categorical
presentation: models are functors. All discussion of recursive functions is
relegated to Part II1.

We deliberately excluded certain topics from consideration, such as
geometric logic and geometric morphisms. There are other topics which we
omitted with some regret, because of limitations of time and space. These
include the results of Robert Seely already mentioned, Gédel’s Dialectica
interpretation (1958), which greatly influenced much of this book, the
relation between Godel’s double negation translation and double negation
sheaves noted by Peter Freyd, Joyal’s proof of Brouwer’s principle that
arrows from R to R in the free topos necessarily represent continuous
functions (and related results), the proof that N is projective in the free topos
and the important work on graphical algebras by Burroni.

Of course, like other authors, we have some axes to grind. Aside from
what some people may consider to be undue emphasis on category theory,
logic, universal algebra or graph theory, we stress the following views:

We decry overzealous applications of Occam’s razor.

We believe that type theory is the proper foundation for
mathematics.

We believe that the free topos, constructed linguistically but
determined uniquely (up to isomorphism) by its universal pro-
perty, is an acceptable universe of mathematics for a moderate
intuitionist and, therefore, that Platonism, formalism and in-
tuitionism are reconcilable philosophies of mathematics.
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This may be the place for discussing very briefly who did what. Many
results in categorical logic were in the air and were discovered by a number
of people simultaneously. Many results were discussed at the Séminaire
Bénabou in Paris and published only in preprint form if at all. (Since we are
referring to a number of preprints in our bibliography, we should point out
that preliminary versions of portions. of this book had also been circulated
in preprint form, namely Part Iin 1982, Part Il in 1983 and Part 0 in 1983.)
If we are allowed to say to whom we owe the principal ideas exposed in this
monograph, we single out Bill Lawvere, Peter Freyd, André Joyal and
Dana Scott, and hope that no one whose name has been omitted will be
offended. _

Let us also take this opportunity to thank all those who have provided us
with some feedback on preliminary versions of Parts 0 and I. Again, hoping
not to give offence to others, we single out for special thanks (in alphabetic
order) Alan Adamson, Bill Anglin, John Gray, Bill Hatcher, Denis Higgs,
Bill Lawvere, Fred Linton, Adam Obtulowicz and Birge Zimmermann-
Huysgen. We also thank Peter Johnstone for his astute comments on our
seminar presentation of Part II. Of course, we take full responsibility for all
errors and oversights that still remain.

Finally let us thank Marcia Rodriguez for her conscientious handling of
the bibliography, Pat Ferguson for her excellent and patient typing of
successive versions of our manuscript and David Tranah for initiating the
whole project.

The authors wish to acknowledge support from the Natural Sciences and
Engineering Research Council of Canada and the Quebec Department of
Education.

Montreal, July, 1984

This reprint differs from the original only in the correction of some
typographical errors. July 1987

In this reprinting we have repaired various minor misprints and errata.
We especially thank Johan van Bentham, Kosta DoSen, and Makoto
Tatsuta for their careful reading of the text. '

Since this book was first published, there has been a tremendous
increase of interest in categorical logic among theoretical computer
scientists. Of particular importance has been the development of higher-
order (= polymorphic) lambda calculi (see Girard’s thesis). In the
terminology of Part I of this book, such calculi correspond to the
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deductive systems associated with the intuitionistic type theories of Part
II(cf. alsoR.A.G. Seely, J. Symb. Logic 52 (1987), pp. 969-989).

The equational treatment of weak natural numbers objectsin Part I has
been extended to strong natural numbers objects (see J. Lambek,

Springer LNM 1348 (1988) 221-229).
Montreal, March, 1994,
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Introduction to Part 0

In Part 0 we recall the basic background in category theory which
may be required in later portions of this book. The reader who is familiar
with category theory should certainly skip Part 0, but even the reader who
is not is advised to consult it only in addition to standard texts.

Most of the material in Part 0 is standard and may also be found in other
books. Therefore, on the whole we shall refrain from makihg historical
remarks. However, our exposition differs from treatments elsewhere in
* several respects.

Firstly, our exposition is slanted towards readers with some acquain-
tance with logic. Quite early we introduce the notion of a ‘deductive system’.
For us, this is just a category without the usual equations between arrows.
In particular, we do not insist that a deductive system is freely generated
from certain axioms, as is customary in logic. In fact, we really believe that
logicians should turn attention to categories, which are deductive systems
with suitable equations between proofs.

Secondly, we have summarized some of the main thrusts of category
theory in the form of succinct slogans. Most of these are due to Bill Lawvere
(whose influence on the development of category theory is difficult to
overestimate), even if we do not use his exact words. Slogan V represents the
point of view of a series of papers by one of the authors in collaboration with
Basil Rattray.

Thirdly, we have emphasized the algebraic or equational nature of many
of the systems studied in category theory. Just as groups or rings are
algebraic over sets, it has been known for a long time that categories with
finite products are equational over graphs. More recently, Albert Burroni
made the surprising discovery that categories with equalizers are also
algebraic over graphs. We have included this result, without going into his
more technical concept of ‘graphical algebra’.

In Part 0, as in the rest of this book, we have been rather cavalier about
set theoretical foundations. Essentially, we are using Godel-Bernays, as do
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most mathematicians, but occasionally we refer to universes in the sense of
Grothendieck. The reason for our lack of enthusiasm in presenting the
foundations properly is our belief that mathematics should be based on a
version of type theory, a variant of which adequate for arithmetic and
analysis is developed in PartII. For a detailed discussion of these
foundational questions see Hatcher (1982, Chapter 8.)

1 Categories and functors

In this section we present what our reader is expected to know
about category theory. We begin with a rather informal definition.

Definition 1.1. A concrete category is a collection of two kinds of entities,
called objects and morphisms. The former are sets which are endowed with
some kind of structure, and the latter are mappings, that is, functions from
one object to another, in some sense preserving that structure. Among the
morphisms, there is attached to each object A4 the identity mapping 1 ,:
A — A such that 1 4(a) = a for all ac 4. Moreover, morphisms f: 4 — B and
g:B— C may be composed to produce a morphism gf: A — C such that
(gf)a) = g(f(a)) for all acA. (See also Exercise 2 below.)

Examples of concrete categories abound in mathematics; here are just three:

Example CI1. The category of sets. Its objects are arbitrary sets and its
morphisms are arbitrary mappings. We call this category ‘Sets’.

Example C2. The category of monoids. Its objects are monoids, that is,
semigroups with unity element, and its morphisms are homomorphisms,
that is, mappings which preserve multiplication (the semigroup operation)
and the unity element.

Example C3. The category of preordered sets. Its objects are preordered
sets, that is, sets with a transitive and reflexive relation on them, and its
morphisms are monotone mappings, that is, mappings which preserve this
relation.

The reader will be able to think of many other examples: the categories of
rings, topological spaces and Banach algebras, to name just a few. In fact,
one is tempted to make a generalization, which may be summed up as
follows, provided we understand ‘object’ to mean ‘structured set’.

Slogan I. Many objects of interest in mathematics congregate in concrete
categories.
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We shall now progress from concrete categories to abstract ones, in three
easy stages.

Definition 1.2. A graph (usually called a directed graph) consists of two
classes: the class of arrows (or oriented edges) and the class of objects (usually
called nodes or vertices) and two mappings from the class of arrows to the
class of objects, called source and target (often also domain and codomain).

source

_—

Arrows Objects

————inn s sl

target

One writes /f: A — B’ for ‘source f = A and target f = B’. A graph is said to
be small if the classes of objects and arrows are sets.

Example C4. The category of small graphs is another concrete category. Its
objects are small graphs and its morphisms are functions F which send
arrows to arrows and vertices to vertices so that, whenever f: A — B, then
F(f). F(4)— F(B).

A deductive system is a graph in which to each object A there is associated an
arrow 1 ;: A — A, the identity arrow, and to each pair of arrows f: A — Band
g: B— C there is associated an arrow gf: A — C, the composition of f with g.
A logician may think of the objects as formulas and of the arrows as
deductions or proofs, hence of

f:A-B g:B-C
gf:A-C
as a rule of inference. (Deductive systems will be discussed further in Part 1.)

A category is a deductive system in which the followmg equations hold,
forall f:A—B,g:B—C and h:C—D:

fla=f=13f, (hg)f=hgf).

Of course, all concrete categories are categories. A category is said to be
small if the classes of arrows and objects are sets. While the concrete
categories described in examples 1 to 4 are not small, a somewhat surprising
observation is summarized as follows:

Slogan II. Many objects of interest to mathematicians are themselves
small categories.

Example CI'. Any set can be viewed as a category: a small discrete
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category. The objects are its elements and there are no arrows except the
obligatory identity arrows.

Example C2'. Any monoid can be viewed as a category. There is only one
object, which may remain nameless, and the arrows of the monoid are its
elements. In particular, the identity arrow is the unity element. Compo-
sition is the binary operation of the monoid.

Example C3'. Any preordered set can be viewed as a category. The objects

- are its elements and, for any pair of objects (a, b), there is at most one arrow

a— b, exactly one when a <b.

It follows from slogans I and TI that small categories themselves should be
the objects of a category worthy of study.

Example C5. The category Cat has as objects small categories and as
morphisms functors, which we shall now define.

Definition 1.3. A functor F: of — % is first of all a morphism of graphs (see
Example C4), that is, it sends objects of .o to objects of # and arrows of .o
to arrows of 4 such that, if f: 4 — A’, then F(f): F (A)— F(4'). Moreover, a
functor preserves identities and.composition; thus

F(L)=1pay, Flgf)=F@F(f).
In particular, the identity functor 1_:.o — .o/ leaves objects and arrows
unchanged and the composition of functors F: .« — # and G: & — % is given
by

(GF)(A)=G(F(4)), (GF)(f)=G(F(f)),
for all objects A of & and all arrows f: 4 — 4’ in of.
The reader will now easily check the following assertion.

Proposition 1.4. When sets, monoids and preordered sets are regarded as
small categories, the morphisms between them are the same as the functors
between them.

The above definition of a functor F: o/ » & applies equally well when o/
and # are not necessarily small, provided we allow mappings between
classes. Of special interest is the situation when 2 = Sets and < is small.

Slogan Ill. Many objects of interest to mathematicians may be viewed as
functors from small categories to Sets.

Example F1. A set may be viewed as a functor from a discrete one-object
category to Sets.
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Example F2. A small graph may be viewed as a functor from the small
category -=3- (with identity arrows not shown) to Sets.

Example F3. If # =(M,1,-)is a monoid viewed as a one-object category,
an .#-set may be regarded as a functor from .# to Sets. (An .#-set is a set A
together with a mapping M x A — A, usually denoted by (m, a) = ma, such
that la =a and (m-m')a = m(m’'a) for all ac A, m and m'eM.)

Once we admit that functors &/ — & are interesting objects to study, we
should see in them the objects of yet another category. We shall study such
functor categories in the next section. For the present, let us mention two
other ways of forming new categories from old.

Example C6. From any category (or graph) & one forms a new category
(respectively graph) &/°? with the same objects but with arrows reversed,
that is, with the two mappings ‘source’ and ‘target’ interchanged. o/°" is
called the opposite or dual of 7. A functor from &7/°? to 4 is often called a
contravariant functor from &/ to %, but we shall avoid this terminology
except for occasional emphasis.

Example C7. Given two categories o/ and %, one forms a new category
& x B whose objects are pairs (4,B), A in & and B in #, and whose
arrows are pairs (f,g):(A, B)—(A4',B’), where f:A—> A" in o/ and g: B
B’ in #. Composition of arrows is defined componentwise,

Definition 1.5. An arrow f: A — B in a category is called an isomorphism if
_ there is an arrow g: B— A such that gf = 1, and fg = 1. One writes A @ B
to mean that such an isomorphism exists and says that A is isomorphic
with B. \

In particular, a functor F: .o — 4% between two categories is an isomorph-
ism if there is a functor G: # — &/ such that GF = 1 and FG = 1,,. We also
remark that a group is a one-object cétegory in which all arrows are
isomorphisms.

To end this section, we shall record three basic isomorphisms. Here 1 is the
category with one object and one arrow.

Proposition 1.6. For any categories </, 4 and %, _
A x1z2d, (AXBXEC2AXBXE), A XB=RxA.

Exercises

1. Prove Propositions 1.4 and 1.6.

2. Show that for any concrete category .« there is a functor U: .o/ — Sets
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which forgets’ the structure, often called the forgetfil functor. Clearly Uis
Jaithful in the sense that, for all f,g:A3B, if U(f)=U(g) then
S=g. (A more formal version of Definition 1.1 describes a concrete
category as a pair (o, U), where o is a category and U: .o - Sets is
a faithful functor))

3. Show that for any category «f there are functors A:of —of x of
and O_:/—1 given on objects A of o by A(4)=(A4,A4) and
0O,(A) = the object of 1.

2 Natural transformations
In this section we shall investigate morphisms between functors.

Definition 2.1. Given functors F,G: o/ 3 &, a natural transformation
t:F—G is a family of arrows t(4): F(4) - G(A) in %, one arrow for each
object A of o7, such that the following square commutes for all arrows
[iA->Bin «:

1(A)
F(4) G(A)
£f) G()
F(B) B G(B)

that is to say, such that
G(f)(A) = t(B)F(f).

It is this concept about which it has been said that it necessitated the
invention of category theory. We shall give examples of natural transform-
ations later. For the moment, we are interested in another example of a
category. ‘

Example C8. Given categories o/ and 4, the functor category #* has as
objects functors F:.of -4 and as arrows natural transformations. The
identity natural transformation 1 r F = F is of course given by stipulating
that 1;(4) = 15, foreach object A of . If t: F — G and u: G — H are natural
transformations, their composition uct is given by stipulating that
(u°t)(A) = u(A)t(A) for each object 4 of .

To appreciate the usefulness of natural transformations, the reader should
prove for himself the following, which supports Slogan 1L

Proposition 2.2. When objects such as sets, small graphs and .#-sets are
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viewed as functors into Sets (see Examples F1 to F3 in Section 1), the
morphisms between two objects are precisely the natural transformations,
Thus, the categories of sets, small graphs and .#-sets may be identified with
the functor categories Sets!, Sets ™ and Sets”respectively.

Of course, morphisms between sets are mappings, morphisms between
graphs were described in Definition 1.3 and morphisms between .#-sets are
-homomorphisms. (An -homomorphism f: A— B between #-sets isa
mapping such that f(ma) = mf(a) for all meM and acA)

We record three more basic isomorphisms in the spirit of
Proposition 1.6. ’

. Proposition 2.3. For any categoriqs &, B and %,

A 2o, G (G, (oA x B = A x B
We shall leave the lengthy proof of this to the reader. We only mention here
the functor % — (%), which will be used later. We describe its action
on objects by stipulating that it assigns to a functor F:.of x B —% the
functor F*: o/ - %% which is defined as follows:

For any object A of ., the functor F *A):#B—%¥ is given by
F*(A)(B) = F(A, B) and F*(A4)(g) = F(1,,9), for any object B of # and any
arrow g:B—B' in 4.

For any arrow f:A— A", F "‘(f\);\F *(A)— F*(A') is the natural transform-
ation given by F*(f)(B) = F(f, 1), for all objects B of 4.

Finally, to any natural transformation t: F — G between functors F. , Gt
o/ x % 3% we assign the natural transformation t*: F* — G* which is given
by t*(A)(B) = (4, B) for all objects A of o7 and B of .

This may be as good a place as any to mention that natural transform-
ations may also be composed with functors.

Deﬁnition 2.4. In the situation

VENL YR
G

if £: F — G is a natural transformation, one obtains natural transformations
Kt:KF - KG between functors from « to € and tL: FL— GL between
functors from 2 to # defined as follows:

(Kt)(4) = K(t(A)), (eL)(D) = t(L(D)),
for all objects 4 of & and D of 9.

If H: of — 4 is another functor and u: G » H another natural transform- -
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ation, then the reader will easily check the following ‘distributive laws’:
K(uot)=(Ku)o(Kt), (uct)L= (uL)o(tL).
If we compare Slogans I and III, we are led to ask: which categories may

be viewed as categories of functors into Sets? In preparation for an answer
to that question we need another definition.

Definition 2.5. 1If A and B are objects of a category o/, we denote by
Hom_,(A, B) the class of arrows 4 — B. (Later, the subscript « will often be
omitted.) If it so happens that Hom (A, B) is a set for all objects 4 and B, o/
is said to be locally small.

One purpose of this definition is to describe the following functor.

Example F4. 1f of is a locally small category, then there is a functor
Hom ,: o/°" x .o/ — Sets. For an object (4, B) of &°P x o, the value of this
functor is Hom, (A4, B), as suggested by the notation. For an arrow
(g,h):(4,B)~ (4", B)) of o°® x o/, where ¢:A'> A and h:B- B in o,
Hom_/(g, h) sends feHom (4, B) to hfgeHom (A, B)).

Applying the isomorphism Sets”” > — (Sets*)*" of Proposition 2.3, we
obtain a functor Hom%: o/°? - Sets¥ and, dually, a functor Hom¥op:
o —Set””. We shall see that the latter functor allows us to assert that
& is isomorphic to a ‘full’ subcategory of Sets”".

Definition 2.6. A subcategory % of a category 4 is any category whose class
of objects and arrows is contained in the class of objects and arrows of @
respectively and which is closed under the ‘operations’ source, target,
identity and composition. By saying that a subcategory € of B is full we
mean that, for any objects C,C’ of @, Homy(C, C') = Hom,(C, C)).

For example, a proper subgroup of a group is a subcategory which is not
full, but the category of Abelian groups is a full subcategory of the category
of all groups.

The arrows F — G in Sets”” are natural transformations. We therefore
write Nat(F, G) in place of Hom(F, G) in Sets*™.

Objects of the latter category are sometimes called ‘contravariant’
functors from .o/ to Sets. Among them is the functor h 4+ = Hom (-, 4)
which sends the object 4’ of .o onto the set Hom_/(A’, A) and the arrow
J:A"> A" onto the mapping Hom_,(f, 1 ,): Hom (A", A)— Hom (4’, A).

The following is known as Yoneda’s Lemma.

Proposition 2.7. If o is locally small and F- /" — Sets, then Nat(h,, F) is
in one-to-one correspondence with F (A).

Proof. 1f ae F(A), we obtain a natural transformation & h 41— F by stipulat-
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ing that d(B):Hom,(B,4)—>F(B) sends ¢g:B—A onto F(g)(a)
(Note that F is contravariant, so F(g): F(4)— F(B).)

Conversely, if t: h , — F is a natural transformation, we obtain the element
t(A)(1 )€ F(A). It is a routine exercise to check that the mappings a - a and
t —t(A)(1,) are inverse to one another.

Definition 2.8. A functor H: o/ — A is said to be faithful if the induced
mappings Hom (4, A') > Homg(H(A4), H(A)) sending f: A — A’ onto H(f):
H(A)— H(A') for all A', Ae o/ are injective and full if they are surjective. A
full embedding is a full and faithful functor which is also injective on objects,
that is, for which H(4) = H(A’) implies A = A".

Corollary 2.9. If o is locally small, the Yoneda functor Hom¥.,: of —
Sets”*” is a full embeddmg

Proof. Writing H=Hom¥.,, we see that the induced mapping
Hom(4, A") —» Nat(H(A), H(A")) sends f: A — A’ onto the natural transfor-
mation H(f). H(A)— H(A’) which, for all objects B of .o, gives rise to the
mapping  H(f)(B)=Hom(l,, f): Hom(B,4)—»Hom(B,4). Now
feH(A')(A), hence f: H(A)— H(A'), as defined in the proof of Proposition
2.7, is given by
J(B)(g) = H(4)(g)(f) = Hom,, (g, 1,)(/)
= fg =Hom,, (1, /)(g) = H(f)(B)(9),

hence f'= H(f). Thus the mapping f +~ H(f) is a bijection and so H is full
and faithful.

Finally, to show that H is injective on objects, assume H(A4) = H(4"), then
Hom(4, 4) = Hom(4, 4'), so A’ must be the target of the identity arrow 1,
thus A’ = 4.

Exercises ,
1. Prove propositions 2.2 and 2.3.

2. 1f 2 is the category - — - (with identity arrows not shown), show that the
objects of o#2 are essentially the arrows of s and that ‘source’ and ‘target’
may be viewed as functors §, 8" /2 3 .

3. If F,G:of =3 # are given functors, show that a natural transformation
t: F > G is essentially the same as a functor t: o/ - %2 such that 5t=F
and 't =G.

4. Show that the isomorphism in Yoneda’s Lemma (Proposition 2.7) is
natural in both 4 and F, that is, if f: B— A and t: F — G then the relevant
diagrams commute.
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3 Adjoint functors

Perhaps the most important concept which category theory has
helped to formulate is that of adjoint functors. Aspects of this idea were
known even before the advent of category theory and we shall begin by
looking at one such.

We recall from Proposition 1.4 that a functor o/ — % between two pre-
ordered sets & = (A4, <) and # = (B, <) regarded as categories is an order
preserving mapping F: A — B, that is, such that, for all elements a,a’ of 4, if
a < a' then F(a) < F(a). A functor G: # — &/ in the opposite direction is said
to be right adjoint to F provided, for all aeA and beB,

F(a)<b ifand only if a< G(b).

Classically, a pair of order preserving mappings (F, G) is called a covariant
Galois correspondence if it satisfies this condition.

Once we have such a Galois correspondence, we see immediately that
GF: o/ — & is a closure operation, that is, for all a,a’e A,

a< GF(a),
GFGF(a) < GF(a),
ifag<d then GF(a)<GF(a).

Similarly, FG:% — % may be called an interior operation: it satisfies the
conditions dual to the above.

In a preordered set an isomorphism a = o’ just means that a <a’ and
a’ < a.(In a poset, or partially ordered set, one has the antisymmetry law: if
a>~da then a=d.) We note that it follows from the above that
GFGF(a) = GF(a) and, dually, FGFG(b) = FG(b), for all acA4 and beB.

The most interesting consequence of a Galois correspondence is this: the
functors F and G set up a one-to-one correspondence between isomorphism
classes of ‘closed’ elements a of A such that GF(a) = a and isomorphism
classes of ‘open’ elements b of B such that FG(b) = b. We also say that F and
G determine an equivalence between the preordered set &7, of closed
elements of &7 and the preordered set %, of open elements of %. The
following picture illustrates this principle of ‘unity of opposites’, which will
be generalized later in this section.

X4 B

G

inclusion inclusion

'MO . ‘@0
equivalence
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Before carrying out the promised generalization, let us look at a couple of
examples of Galois correspondence; others will be found in the exercises.

Example G1. Take both &7 and 4 to be (N, <), the set of natural numbers
with the usual ordering, and let

F(0) =0, F(a) = p, = the ath prime number when a >0,
G(b) = n(b) = the number of primes <b.
Then F and G form a pair of adjoint functors and the ‘unity of opposites’

describes the biunique correspondence between positive integers and prime
numbers.

Many examples arise from a binary relation R € X x Y between two sets X
and Y. Take o = (P(X), <), the set of subsets of X ordered by inclusion,
and # = (#(Y), =), ordered by inverse inclusion, and put

F(A) = {ye YlvxeA(x’ .V)ER}a

G(B) = {xeX|V,p(x, y)ER},
for all A = X and B < Y. This situation is called a polarity; it gives rise to an
isomorphism between the lattice &, of ‘closed’ subsets of X and the lattice
B, of ‘closed’ subsets of Y. (Note that the open elements of 4 are closed
subsets of Y)

Example G2. Take X to be the set of points of a plane, Y the set of half-
planes, and write (x, y)eR for xey. Then, for any set 4 of points, GF(A) s the
intersection of all halfplanes containing A, in other words, the convex hull of
A. The ‘unity of opposites’ here asserts that there are two equivalent ways of
describing a convex set: by the points on it or by the halfplanes containing it.

We shall now generalize the notion of adjoint functor from preordered sets
to arbitrary categories. In so doing, we shall bow to a notational prejudice
of many categorists and replace the letter ‘G’ by the letter ‘U”. (U’ is for
‘underlying’, ‘F” for ‘free’)

Definition 3.1. An adjointness between categories &/ and % is given by a

quadruple (F,U,n,¢), where F:of - % and U:# — .o/ are functors and

7:1,— UF and & FU — 14 are natural transformations such that
(Ue)o(nU) =1y, (eF)o(Fn)= 1.

One says that U is right adjoint to F or that F is left adjoint to U and one

calls 7 and e the two adjunctions.

Before going into examples, let us give another formulation of what will
turn out to be an equivalent concept (in Proposition 3.3 below).
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Definition 3.2. A solution to the universal mapping problem for a functor
U: % — o is given by the following data: for each object 4 of .o an object
F(A) of # and an arrow n(A): A — UF(A) such that, for each object B of #
and each arrow f: 4 — U(B) in &7, there exists a unique arrow f*: F(4)— B
in % such that U(f*m(A4) =f.

F(A4) ~ _
- S
UF(A) T~ -

A -~ ~p

U(r+)
n(4) U(B)
f
A

Example Ul. Let # be the category of monoids, </ the category of sets,
U:#— o/ the forgetful (= underlying) functor, F(4) the free monoid
generated by the set A and 5(4) the obvious mapping of A into the
underlying set of the monoid F(A).

Definition 3.2'. Of special interest is the case of Definition 3.2 in which 4 is
a full subcategory of .« and U: % — o is the inclusion. Then 7(A4): A — F(A)
may be called the best approxzman\on of A by an object of # in the sense that,

for each arrow f: 4 — B with B in 4, there is a unique arrow f*: F(4)— B
such that f*#(A4) = f. One then says that % is a full reflective subcategory of
&/ with reflector F and reflection .

Example U2. Let of be the category of Abelian groups, # the full
subcategory of torsion free Abelian groups and F(4) = A/T(A), where T(4)
is the torsion subgroup of A.

Proposition 3.3. Given two categories o/ and %, there is a one-to-one
correspondence between adjointnesses (F, U, #, ¢) and solutions (F, 7, *) of
the universal mapping problem for U: & — 7.

Proof. If(F, U,n,¢)is given, put f* = g(B)F(f). Conversely, if U and (F, 5, *)

are given, foreach f: 4 — A4', put F(f) = (n(A") f)* and check that this makes
F a functor and # a natural transformation; moreover define &(B) = (1 va)™

It follows from symmetry considerations that an adjointness is also
equivalent to a ‘co-universal mapping problem’, obtained by dualizing
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Definition 3.2. (A left adjoint to % — </ is a right adjoint to #° — &/°P)
In view of Proposition 3.3, Examples U1 and U2 are examples of adjoint
functors. We shall give other examples later.
There is yet another way of looking at adjoint functors, at least when oA
and # are locally small.

Proposition 3.4. An adjointness (F, U, 1, ¢) between locally small categories
s/ and # gives rise to and is determined by a natural isomorphism
Hom,(F(-),—) & Hom /-, U(-)) between funetors .&/°° x £ 3 Sets.

We leave the proof of this to the reader.

Even if 7 is not locally small, there is a natural bijection between arrows
FA-B in # and arrows A— UB in /. Logicians may think of such a
bijection as comprising two rules of inference; and this point of view has
been quite influential in the development of categorical logic. An analogous
- situation in the propositional calculus would be the bijection between
proofs of the entailments C A A B and A+ C=> B (see Exercise 4 below).
Inasmuch as implication is a more sophisticated notion than conjunction,
the adjointness here explains the emergence of one concept from another.
This point of view, due to Lawvere, may be summarized by yet another
. slogan, illustrations of which will be found throughout this book (see, for
instance, Exercise 6 below).

Slogan IV, Many important concepts in mathematics arise as adjoints,
right or left, to previously known functors.

We summarize two important properties of adjoint functors, which will be
useful later.

Proposition 3.5. (i) Adjoint functors determine each other uniquely up to

natural isomorphisms.
(i) If (U, F) and (U', F') are pairs of adjoint functors, as in the diagram

U U
€ i o,
- F " F

then (UU’, F'F) is also an adjoint pair.

Exercise

1. If(F, G) is a Galois correspondence between posets <7 and %, show that F
preserves supremums and G preserves infimums. If .o/ has and F preserves
supremums, show that its right adjoint G: & — &/ can be calculated by the
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formula
G(b) = sup {ae o/ | F(a) < b}.

2. In Example Gl, show that the two sets {F(a)+ alaeN} and
{G(b)+ b + 1|beN} are complementary sets.

3. Givenacommutative ring C, take X to be the set of elements of C, Y the set
of prime ideals of C and define R< X x Y by writing (x, y)eR for xey. If F
and G are defined as for any polarity, show that, for any ideal 4 of C,
GF(4)={xeX|3,x"e A}, the so-called radical of A. Also show that the
closure operation FG on the set of subsets of Y makes Y into a compact
topological space called the spectrum of C. The ‘unity of opposites’ here
describes a one-to-one correspondence between closed subspaces of the
spectrum and ideals which are equal to their radical.

4. Take o and # to be the preordered sets of formulas of the propositional
calculus, the order being entailment. For a fixed formula C, show that
F:of — % and G: B — & defined by F(4)= C A A and G(By=C=Barea
pair of adjoint functors. What is the ‘unity of opposites’ in this case?

5. Prove propositions 3.4 and 3.5.

6. fof =B = Sets, C a given set, let F(4) = C x 4 and Ul (B) = Bt for any sets
A and B. Extend U and F to functors and show that U is right adjoint to F.

7. Show that the forgetful functor from Cat to Sets which sends every small
category onto its set of objects has both a left and a right adjoint.

8. Show that the forgetful functor from Cat to the category of graphs has a
left adjoint, which assigns to each graph the category ‘generated by it’.

4 Equivalence of categories

We shall extend the ‘unity of opposites’ to general categories, but
first we need to extend the notion of ‘equivalence’.

Definition 4.1. An adjointness (F, U, #,¢) is an adjoint equivalence if y and ¢
are natural isomorphisms. More generally, an equivalence between
categories o/ and 4 is given by a pair of functors F: of —» B and U: B — o
such that UF =1, and FU = 1,,.

The extra generality is an illusion: given that #:1,— UF and &": FU — 1 g are
isomorphisms, one obtains an adjoint equivalence by putting

&(B) = £(B)F(Ue'(B)jyU(B))~ 1.

Proposition 4.2. An adjointness (F, U, 7, ¢) between categories &/ and %
induces an adjoint equivalence between full subcategories o/, of o7 and &,
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of %, where

oA =Fixn = {Aesl|n(A) is an isomorphism},
A, = Fix ¢ = {Be#|e(B) is an isomorphism}.

Moreover, nU is an isomorphism if and only if ¢F is.

The significance of the last statement is this: if nU is an isomorphism, .=,
"“becomes a reflective subcategory of o, if ¢ F is an isomorphism 4 , becomes
a coreflective subcategory of 4. (See Definition 3.2, ‘coreflective’ being the
dual of ‘reflective’.)

Proof. Only the last statement requires proof. It is a consequence of the
following.

:Lemma 4.3. Given an adjointness (F, U, #, ¢) between categories </ and 4,
the following statements are equivalent:
(1) nUF=UFn,
(2) nU is an isomorphism,
(3) eFU =FUs,
(4) &F is an isomorphism.
Proof. We show that (1)=>(2)=(3)=(4)=>(1).
(1)=>(2). Suppose for the moment that n(A) has a left inverse g, we claim
that, in the presence of (1), g is also a right inverse. For
n(A)g = UF(gimUF(A) by naturality of »
= UF(g)UFn(4) by (1)
- =UF(gn(4)) = UF(1 5} = 1y
Now, by Definition 3.1, nU(B) has a left inverse Ug(B), hence nU(B) is an
isomorphism, which proves (2).
(2)=>(3). Assume that nU(B) is an isomorphism, then its inverse is Ug(B),
by Definition 3.1. Hence
eF U(B) =¢gF U(B)F (1(/1:'0(3))
= ¢FU(B)F(nU(B)U¢(B))
=eFU(B)FnU(B)FUé¢(B)
= FU¢(B).

(3)=>(4). This is proved exactly like (1)=>(2). In fact, we may quote
(1)=>(2), since there is an adjointness between #°° and /.
(4)=-(1). This is proved like (2)=-(3) or by duality quoting (2)=>(3).
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Examples of Proposition 4.2 abound in mathematics. The main problem
is usually the identification of s/, and %,,. The following examples require
some knowledge of mathematics that has not been developed in this book.
(The same will be true for exercises 2 and 3 below.)

Example Al. Let o be the category of Abelian groups and £ the opposite
of the category of topological Abelian groups. Let K be the compact
group of the reals modulo the integers: K = R/Z. For any abstract Abelian
group A, define F(A4) as the group of all homomorphisms of 4 into K,
with the topology induced by K. For any topological Abelian group B,
define U(B) as the group of all continuous homomorphisms of B into K.
Then U and F are easily seen to be the object parts of a pair of adjoint
functors. Here </, is &, while @, is the opposite of the category of
compact Abelian groups. The ‘unity of opposites’ asserts the well-known
Pontrjagin duality between abstract and compact Abelian groups. The
last statement of Proposition 4.2 tells us that the compact Abelian groups
form a reflective subcategory of the category of all topological Abelian
groups.

Example A2. Let o/ be the category of rings and & the opposite of the
category of topological spaces. For any ring A, F(4) is the topological
space of homomorphisms of 4 into Z/(2), the ring of integers modulo 2,
the topology being induced by the discrete topology of Z/(2). For any
topological space B, U(B) is the ring of continuous functions of B into
Z/(2) (with the discrete topology), with the ring structure inherited by that
of Z/(2). Here </, is the category of Boolean rings and %, is the opposite
of the category of zero-dimensional compact Hausdorff spaces. The ‘unity
of opposites’ asserts the well-known Stone duality. Both o/ o and # are full
reflective subcategories.

We summarize the ‘unity of opposites’ principle in another slogan. (The
reader will have noticed that a duality between categories .« and & is
nothing but an equivalence between o7 and B

Slogan V. Many equivalence and duality theorems in mathematics arise
as an equivalence of fixed subcategories induced by a pair of adjoint
functors.

Exercises

L. Prove the statement following Definition 4.1 that every equivalence gives
rise to an adjoint equivalence. (Hint: first show that nUF = UFy.)
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2. Givea presentation of the well-known Gelfand duality between commuta-
tive C*-algebras and compact Hausdorff spaces in a manner similar to
Example A2. (Let & be the category of commutative Banach algebras.)

3. If o is the category of presheaves on a topological space X and 4 is the
category of spaces over X, show that there is a pair of adjoint functors
between &/ and # which induces an equivalence between sheaves and
local homeomorphisms. (See also Part II, Theorem 10.3)

4. Prove that U: % - o is (half of) an equivalence if and only if it is full and
faithful and every object of ./ is isomorphic to one of the form U(B), for
some object B of 4.

Limits in categories

In this section we shall study limits in categories. They contain as
special cases many important constructions, for example products,
equalizers and pullbacks, as well as their duals. Moreover, they serve as an
illustration of Slogan I'V. We begin with the following special case.

Definition 5.1. An object T of a category < is said to be a terminal object
if for each object 4 of & there is a unique arrow O, 4 — T. (Later, we
shall usually write 1 for T)

‘We note that the uniqueness of O, may be expressed equationally by
saying that, for all arrows h: A—>T,h= Q.

It is easily seen that T is unique up to isomorphism: if T’ is another
terminal object, then T’ T. Hence, one often speaks of the terminal
“object. For example, in the category of sets, any one element set {*} is
terminal and, in the category of groups, any one element group is terminal.
A terminal object in 2/°? is also called an initial object in «. In Sets, the
only initial object is the empty set 5, while, in the category of groups,
any terminal object is also initial.

As an illustration of Slogan IV, we note that to say that o/ has a
terminal (respectively initial) object is the same as saying that the functor
Oy« —1 has a right (respectively left) adjoint.

Definition 5.2. Given a set I and a family {4,]iel} of objects in a category
</, their product is given by an object P and a family of projections
{pi: P— A4;]iel} with the following universal property: given any object Q
and any family of arrows {q;: 0 — A,|iel}, there is a unique arrow f:Q — P
such that p,f= g, for all iel.

We may also say that the family {p;: P— A,|iel } is a terminal object in the
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category of all families {q;:Q — A4;|iel} (with appropriate arrows).

It is easily seen that the object P is unique up to isomorphism. Hence,
one speaks of the product. It is often denoted by []i;4;. In the category
of sets, products are ‘cartesian’ products. In many concrete categories,
products are constructed on the underlying sets with an obvious induced
structure. This is true for the categories of monoids, groups, rings etc., in
fact all ‘algebraic’ categories (that is, varieties of universal algebras), as
well as for the categories of posets and topological spaces.

A product in &/ is also called a coproduct in <. There is no one
preferred name for coproducts in the literature; in Sets, coproducts are
disjoint unions, while, in the category of groups, they are free products.

What if I is the empty set? Then the universal property asserts that,
for each object Q, there is a unique arrow Q — P, in other words, that P
is a terminal object.

Again we have an illustration of Slogan IV: to say that all I-indexed
families in &/ have products (respectively coproducts) is the same as saying
that the functor o/ - ¢! which sends an object 4 of &/ onto the constant
family {A[iel} has a right (respectively left) adjoint.

It may be worth looking at the product of two objects 4 and B of &/
in some detail. It is given by an object A x B with projections 7, z:4 x B
— A and 7 5:4 x B— B such that, for all arrows f:C— A4 and g:C— B,
there is a unique arrow {(f,g>:C—A4 x B satisfying the equations:

74,8{fs9> =1, . 5<f,9)=9g.

Note that the uniqueness of < f, g> may also be expressed by an equation,
namely:

{Ty,ph Wy gh> =h,
forall hC— A x B.

Evidently, the defining property of 4 x B establishes a bijection between
pairs of arrows (C - 4, C— B) and arrows C— 4 x B. To say that all such
products exist is the same as saying that the diagonal functor A: o/ —
s/ x o/ has a right adjoint. Dually, all binary coproducts exist if and only
if A has a left adjoint.

Definition 5.3. A pair of arrows f,g:4 =3 B is said to have an equalizer
e:C— A provided fe = ge and, for all i: D — 4 such that Sh=gh, there is
a unique arrow k: D — C satisfying ek = h. Another way of expressing this
is to say that e:C— A is terminal in the category of all arrows h: D — A
such that fh=gh.

It is easily seen that the equalizing object C is unique up to isomorphism.
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In the category of sets or groups, one may take C = {aeA|f(a)=g(a)}
and e:C— A as the inclusion. As is the case for products, equalizers in
many concrete categories are formed on the underlying sets. An equalizer
in &/°F is also called a coequalizer in /. In Sets, the coequalizer of two
mappings f,g: B3 A is given by e: 4 —» C, where C is obtained from 4 by
~ identifying all elements f(b) and g(b) with beB, and where e is the obvious
. surjection. (More precisely, C = A/=, where = is the smallest equivalence
relation on A such that f(b) = g(b) for all beB.) In the category of groups,
the coequalizer of two homomorphisms f,g: B33 4 is obtained similarly
from a suitable congruence relation on A (or normal subgroup of A).
While it was evident how finite products could be presented equationally,
it is by no means obvious how this can be done for equalizers. The
following discussion is our version of Burroni’s pioneering ideas.

With any diagram A_‘g{ B we associate another diagram

E(f.q) o_cgf_,g’) A which is to serve as its equalizer. Clearly, we must stipulate
the equation

- (BY)  fa(f,9) =g 9)

| Next, let us consider the universal property of a(f,g). Given an arrow
h:D — A such that fh=gh, we seek a unique arrow B(f,g,h): D — E(f,g)
such that
*) £, 9)B(f, 9, 1) = h.
While (*) is an equation, it depends on the condition fh = gh, which we
would like to get rid of. We shall consider two special cases of B(f,g,h)
in which the condition fh = gh is automatically satisfied.

First special case: consider any arrow h: D — A, then surely

S ho(f b, gh) = gho(fh, gh).
Hence we stipulate an arrow y(f,g,h) (= B(f, g, ha(fh, gh))): E(fh, gh)—
E(f, g) satisfying as a special case of (*): .
(B2)  «f,9)(f. g, h) = ho(fh,gh).
Second special case: consider any arrow f: A — B, then surely f1,=f1,.
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Hence we stipulate an arrow ) (=Bf, f,1)): A—E( [, f) satisfying as
a special case of (*):

B3)  «f,NH(f)=1,.

From the two special cases we can define B(f,g.h) in general:

Assuming fh = gh, put
**)  B(f.9. W =f.9,W(fh).

Then
o f, 9B, 9. B) = o f, gy f, 9, W)O(f h) = hau( f b, gh)S(f hy),
by (B2). As it so happens that fh = gh, this becomes equal to
hl D= h
by (B3), and so we recapture (*).

It remains to express the uniqueness of B(f, 9, W) equationally. So suppose
that a(f, g)k = h, we want this to imply that k = B(f, g, ). This is evidently
done by
(B4)  B(f.9,4f,g)k) =k.

Here f can be eliminated in favour of y and § using (**),
We summarize the preceding discussion of equalizers as follows.

Proposition 5.4.(Burroni). Equalizers for all pairs of arrows f,g: A3 B are
given by the following data: an arrow o(f,9) E(f,g)— A for each such
pair, a family of arrows y(f, g, h): E(fh,gh)— E(f, g) one for each h: D —A,
and an arrow &(f): A — E(f, f) satisfying (B1) to (B4) (with § eliminated
from (B4) by (**)).

Definition 5.5. A pullback of a diagram g>€ is given by a diagram P<:;1

S . . . A

which is terminal in the category of all diagrams D\B such that

A——m——C

D —————sp

commutes. In other words,
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A C

P

B

commutes and, for any other commutative square as above, there is a
unique arrow D — P such that the two triangles

A
> P\
It is easily seen that P is unique up to isomorphism. A pullback in #°°
is called a pushout in /. In a category with a terminal object T, binary
products are special cases of pullbacks, namely when C = T. Instead of

describing pullbacks in other special categories, we shall show how, in
general, they may be constructed from products and equalizers.

D B commute,

Proposition 5.6. If a category has binary products and equalizers,
pullbacks may be constructed as follows:

h N
a

Ta, B g

)  AXB———= B

y n,A'B
P = E(fn, gn’)\,/

Proof. Note that fra(fn,gn')=gn'a(fr,gn’), by (Bl). Suppose h:D— A
and k:D—B are such that fh=gk. Then there is a unique arrow
{h,k>:D—A x Bsuch that n{h,k) = h and n'(h, k) =k, hence a unique
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arrow s: D —P such that na(fr,gn’)s = h and n'a(fr,gn’)s = k, that is,
a(fr,gn’)s = (h, k).

Definition 5.7. Let there be given a category # (the index category) and
a functor I':.# » o/ (called an S-diagram). A limit of T is given by a
terminal object in the category of all pairs (4, t) with 4 an object of &/
and t: K(4) — I a natural transformation, where K(A): # — & is the functor
with constant value A. In other words, (4o, to! K(Ay)—T) is a limit of I
if for all (4, t: K(4)—T) there is unique f:A— A, such that to(I)f = o)
for all objects I of 4.

It is easily seen that A4, is unique up to isomorphism. Special cases of
limits are products (# discrete), equalizers (4 is -33°) and pullbacks (#
is "3). Limits may be constructed from products and equalizers as are
pullbacks (Proposition 5.6). Limits in «/°° are also called colimits in <.
If £ is a directed poset, limits are usually called inverse or projective limits,
while colimits are called direct or inductive limits. The limit of I (or rather
the object A,) is sometimes denoted by lim I’ and the colimit by limT..

The following connection between limits and adjoint functors illustrates
Slogan IV.

Proposition 5.8. To say for given categories .# and & that every #-diagram
I % — o has a limit (respectively colimit) is equivalent to saying that the
constancy functor K: o/ — «/”, which associates to every object A of o the
functor K(A): .# — o with constant value 4, has a right adjoint (respectively
left adjoint).

Proof. One way of asserting that K has a right adjoint L:o/” — &/ is by the
solution to the universal mapping problem (dualize Definition 3.2): for each
object I' of &/ there is an object L(I') and a natural transformation
¢(N): KL{T)—-T such that, for every natural transformation ¢ K(A4)-T
there is a unique natural transformation t*: 4 — L{I') satisfying
g(IK(t*) =t. But this says precisely that (L(I), &I’)) is a limit of T (see
Definition 4.7).

Many functors occurring in nature preserve limits (up to isomorphism).
We shall mention two examples.

Proposition 5.9. 1f A is an object of the locally small category </, then
Hom(A4,—). & —Sets preserves limits: if I:.# » &/ has limit A, then
Hom(A4, I'(-)): # — Sets has limit Hom(A4, A,).

Proof. Write h*=Hom(4,-) and assume that (A, to: K(4g)—=T) is
terminal in the category of all pairs (4,t: K(4)—-T). We assert that
(h*(Ao), hAty: hAK(Ag)—h4T) is terminal in the category of all pairs
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(X,7: K(X)—h*T'), X being a set. (Note that h*K(4o) = K(h*(A4,)).) In
other words, we claim that there is a unique mapping y: X — h*(4,) such
that (h*to)eK() = 1. To see what this last equation means, apply it to
any object I of .#, then it asserts

~ Hom(1 ,, to(N))y = (I).
Again, applying this equation to any xe X, we obtain

to(DY(x) = t(I)(x).
If t: K(A) T is defined by t(I) = t(I)(x), we see that this means

toe K(Y(x)) = tr.
The existence of a unique y(x): A - A, with this property is assured by the
fact that (A4,,t,) was terminal. :

Proposition 5.i0. IfF: of — A is left adjoint to U: # — o/, then U preserves
_limits and F preserves colimits.

Proof. If o/ and & are locally small, this is an easy corollary of Proposition
'5.9. However, one may just as well prove the result directly, without
assuming local smaliness, and we shall do so for U.

While it is easy to give a precise argument as in the proof of Proposition
5.9, the reader may find the following sketch more intuitive.

Let ¥ (respectively 2) be the full subcategory of </ (respectively #”)
consisting of those # -diagrams which have limits. Evidently, € contains all
constant #-diagrams K (4), with 4 in &, such that K _(4)(I)= A for all I
in #. Hence we may factor the constancy functor Ko/ —.o/* through
K. o/ —-%. As in Proposition 5.8, we may regard lim, as right adjoint
to K/,. Now F”: o’ —» B’ (respectively U”: B’ — o) factors through
F:4— 9 (respectively U2 — %) and U’ is right adjoint to F’. Then,
clearly, F'K', = K}F.

o £ e
Ky | Kg
€ ﬁ, 2
inclusion inclusion
I F*

MJ__________,QJ
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Taking right adjoints, we obtain, in view of Proposition 3.5,
lim, U’ = Ulim,. Applying both sides to any diagram A:# — % and noting
that U'(A) = UA, we finally obtain lim(UA) = U{(lim(A)).

Definition 5.11. A category & is said to be complete (cocomplete) if it has
all limits (colimits) of diagrams I': # — &/, .# being small. This means that
products (coproducts) and equalizers (coequalizers) exist.

Assuming compieteness of &/ or # one can prove a kind of converse of
Proposition 5.9 and of 5.10. For example, if U: % — of preserves limits
and & is complete, one can construct a left adjoint F:.&/ - %, as in
Exercise 1 of Section 3, provided a certain ‘solution set condition’ holds;
this is the content of Freyd’s Adjoint Functor Theorem. These converse
results will be brought out in the exercises; they depend on the following
lemma, the proof of which is a bit tricky.

Lemma 5.12. If o is complete, then o/ has an initial object if and only
if it has a small pre-initial full subcategory ¥, that is to say, for any object
A of o there is an object C of ¢ and an arrow f:C— A in &/.

Proof. The necessity of the condition is obvious. To prove its sufficiency,
let (Ag,u: K(Ag)—T) be the limit of the inclusion functor "¢ — .«/. In
particular, for each object C of € there is an arrow u(C): A, — C. Take
any object A of &, then, by assumption, we can find C in % and an arrow
f:C— A, hence an arrow fu(C): Ao — A. It remains to show that there is
only one arrow Ay, — A.

Suppose we have two arrows g,h: 4,34 and let k:K — A4, be their
equalizer. It will follow that g = h if we can show that k has a right inverse.
By assumption, there exists C' in € and an arrow f": C' — K. It will suffice to
show that kf'u(C')=1,,.

Now, for any object C of €,

WOl u(C) = u(C),
by naturality of u and because u(C)kf': C' — C is an arrow in the full sub-

category €. Since (A, ) is the limit of the inclusion % — 7, there exists a
unique arrow e: Ay — A, such that u(C)e = u(C). Hence

kfuC)=e=1,,

and our argument is complete.

Exercises

1. Prove that limits can be constructed from products and equalizers,
generalizing the proof of Proposition 5.6.
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. Deduce from Proposition 5.10 that, in the propositional calculus
regarded as a preordered set (see Exercise 4 of Section 3), the distributive
law holds: pA(avb)=(pAaa)v(pab)

. Given two functors F, G: o 3 4, let (F; G) be the category whose objects
are pairs (4,b: F(A)— G(A)), A any object of o, and whose arrows
{4,b) > (A, b) are arrows a:A— A’ in o, such that G(a)b=b'F(a).
Assuming that & is complete and that G preserves limits, show that (F; G)
has an initial object if and only if it has a small pre-initial full subcategory.
(Hint: Use Proposition 5.12.)

. If o is locally small, a functor U: .o/ — Sets is said to be representable if _
U = Hom(A, -) for some objects A of /. Show that U is representable if
and only if the category (K({*});U) has a small pre-initial full sub-

- category. (Hint: Use Exercise 3 with % = Sets.)

. Let .o/ be a complete category. Show that a functor U:.o/ —» & has a left
adjoint if and only if U preserves limits and, for each object B of 4, the
category (K(B); U) has a small pre-initial full sub-category.

. Let of be a complete category. Show that a functor I': .# — .o has a colimit
if and only if the category (K(I'); K) has a small pre-initial full subcategory.
(Here the first K denotes the constancy functor o —(=#”)¥, while the
second K denotes the constancy functor & — /)

. Given a small category o and any functor F: o/°P — Sets, show that Fisa
colimit of representable functors as follows. Let £ be the category whose
objects are pairs (4, t), 4 an object of o and £: Hom (-, A) > F a natural
transformation, and whose arrows (4, t) —»(4',t') arearrows a: 4 — A’ in o
such that t'oHom (—,a)=t¢. Then F is the colimit of the functor I'y:
# ¢~ Sets”™" obtained by composing the Yoneda embedding o — Sets”*
with the obvious forgetful functor #,— /. (The associated natural
transformation £,: I', — K(F) is defined by ty(4,f)=1t.)

6 Triples

We recall that a closure operation on a preordered set .of -
(], <) is a mapping T: |/ | —|.o/| with the following properties:

A<B
T(4)< T(B)’
for all elements A,B of || The first of these says, of course,
that T is order preserving. This notion has been generalized from pre-
ordered sets to arbitrary categories and is then called a ‘standard construc-
tion’, ‘triple’ or ‘monad’. Reluctantly, we choose the second term, as it
appears to be the most widely used.

A<ST(A), TT(4)<T(A),
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Definition 6.1. A triple (T,n, p) on a category &/ consists of a functor T:
s/ — of and natural transformations #: 1, — T and u: T? — T satisfying the
equations

peTyn=1p=penT, popuT=p°Tu.

These equations are sometimes called the unity laws and associative law
respectively and are illustrated by the following commutative diagrams:

T T

T L T? T a T

nT lr n Tu m
T " T T m T

The reader will recall how natural transformations are composed (see
Example C8); for example, the associative law asserts that, for every object
A of o,

AT (A)) = W(A)T(u(A4)).
Proposition 6.2. (Huber). If F:o/ - % is left adjoint to the functor
U: # — of with adjunctions ;1 ,—» UF and &: FU — 14, then (UF,n, UeF)is
a triple on &.

Proof. For example, let us prove one of the unity laws:
ueTy=UeFoUFn=U(F°Fn)= Ul =1y,
“by Definition 3.1, and since

(Ulp)(4) = U(IF(A)) = 1U(F(A)) = 1y(A).
We leave the proofs of the other two laws to the reader.
We shall see that the converse of this proposition is also true; but first we

shall look at a number of examples of triples, which, on the face of it, do not
seem to arise from a pair of adjoint functors.

Example T1. Let there be given a monoid .# = (M, 1,*). For each set 4
define the set T(4)= M x A and the mappings
A A->M x A, wA:Mx(MxA)-Mx A4
a(l,a) (m,(m',@)) > (m-n, a).

One easily makes T into a functor Sets — Sets and checks that # and p are
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natural transformations. Moreover, one obtains a triple (T, 5, 1) on Sets, the
unity laws and associative law here following from the equations
ml=m=1m, (mm)ym' =m(@m m
for all m,m’ and m”"eM, which will explain their names.
Example T2. Let T =P be the covariant power set functor Sets — Sets,
that is, for any set A4,
P(A)={X|X c 4}
and, for any mapping f: A — B, and any subset X < A4,
P(IX) = {f(x)|xeX}.
Furthermore, let the natural transformations n and u be given by the
mappings #(A4): A — P(A) and p(A): P(P(A)) - P(A) defined by

nA)a)={a}, wAX)=x=)X,

Xed ]
-for any set 4, any element ae 4 and any set & of subsets of 4. The reader is
invited to show that (T, #, u) is a triple by verifying the unity and associative
laws in this case.

We now return to the question: does every triple on & arise from a

. o, F U . -
pair of adjoint functors .o/ ——%—s/ as in Proposition 6.2? The
answer is ‘yes’, but the category 4 is not unique. In fact, we shall present two
extremes for the construction of 4.

Definition 6.3. Given a triple (T,n,u) on a category &, the Eilenberg—
Moore category /7 of the triple is defined as follows. Its objects, called
algebras, are pairs (4, @), where ¢: T(A) - A is an arrow of = satisfying the
equations

on(A)=1,, ou(Ad)=oT(p)
for all objects A of . Its arrows, called homomorphisms, (4, p)— (A, ¢')are
arrows oz A— A’ of of satisfying the equation

@' T(a) = aep.

These equations are illustrated by the following commutative diagrams:

y A T
A" "2 T(4) —2_, a1y
D ¢ T 4 4 : ¥
A T(A) ———— A A —— &

a
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Example T1 (continued). Anelement of T(A) = M x Ais a pair (m, a) with
meM and aeA. One usually writes ma = ¢(m,a). The equations of an
algebra then read

la=a, (m'm)a=m(ma),
for all acA,m and m'eM. In other words, an algebra is an .#-set (see
Example F3in Section 1). The equation satisfied by a homomorphism reads
afma) = mo(a),

for all ac A4, so we recapture the usual homomorphisms of .#-sets (see
Proposition 2.2). ‘

Example T2 (continued). The algebras of the power set triple on Sets are
sup-complete (hence inf-complete) lattices and the homomorphisms are
sup-preserving (hence also order preserving) mappings.

In view of these examples and many others like them, we enunciate our final
slogan.

Slogan VI. Many categories of interest are the Eilenberg—Moore
categories of triples on familiar categories.

In both examples above, the familiar category is Sets, but in Exercise 2
below it is Ab, the category of abelian groups. Categories, on the other
hand, may be viewed as algebras over Grph, the category of graphs.

Definition 6.4. Given a triple (T,n, ) on a category <, by a resolution
(@, U, F, ) of this triple we mean a category 4 and a pair of adjoint functors

of —Er% —U—».ﬂ such that UF = T with adjunctions # (as given) and ¢
such that UeF = u (as in Proposition 6.2). The resolutions of the given
triple form a category whose arrows @®:(%,U,F,e)—(#,U’,F,¢) are
functors ®: & — £’ such that ®F = F', U'® = U and ®¢ = ¢'®. In particular,
the following two triangles commute:
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Proposition 6.5. The Eilenberg—Moore category T of the triple (T, 7, 1)
on &7 gives rise to a resolution (™, U™, FT, ¢), which is a terminal object in
the category of all resolutions. Thus, given any resolution (4, U, F, ), there
is a unique functor K™: 8 — o/, called the comparison functor, such that
KTF = FT,UTKT = U and K"e =¢"KT. Moreover, UT is faithful.
Proof. (1) We define UT: /7 — o/ by ‘

Ul(4,9)= 4, UT@=q,
for any algebra (4, ) and any homomorphism a. Evidently, U7 is faithful.

(2) We define FT: .o —» /T by

FY(A)=(T(A), l(4)), FT(f)=T(),
for any object 4 and any arrow f of . It is easily checked that (T(4), u(4))
is an algebra, that T(f) is a homomorphism and that UTFT=T.
(3) We define the natural transformation " from FTUT to the identity

functor on T by its action on the algebra (4,¢) as follows: the
homomorphism ¢7(4, ¢) = ¢. Indeed, the square

7o) —— 2 74y,
H(4) @
T(A4) A

]

commutes by Definition 6.3. To see that UTeTFT = y, one calculates
(UTeTFT)(4) = (UTe")(T(4), w(A)) = UT(u(4)) = u(A).
We let the reader check that
E"FToF™n)(A) = 17¢0), (UTeTonUTY(A, 0) = (14),
for any object 4 of o/ and any algebra (4, @), whence it follows that
(T, UT,FT,¢") is a resolution of the given triple.

(4) Let (#,U,F,¢) be another resolution of the same triple, we shall
construct the comparison functor K*: #— .o/T and show that it is the
unique functor with the desired properties. For any object B and any arrow
g of B, we put

K*(B)=(U(B), U&(B)), K"(g)= U(g).
Thensurely UTK™ = Uj in fact, this result forces the definitions of KT(g) and
of the first component of K*(B). Moreover, eTK”(B) = Ue(B), and this forces
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the definition of the second component of K”(B). It remains to check that
KTF = FT. Indeed, for any object A of &,

KTF(A) = (UF(A), UsF(4)) = (T(4), W(4)) = F"(4).
This completes the proof.

We remark that, in view of Slogan VI, it is of interest to know when the
comparison functor is an equivalence of categories. Conditions for this to
be the case were found by Beck. Without going into these conditions here,
let us only mention that a functor U: 8 — &/ is called tripleable or monadic if
it has a left adjoint and if the ciomparison functor K7 is an equivalence.
Examples of tripleable concrete categories U: % —Sets are all algebraic
categories, that is, varieties of universal algebras, and the category of
compact Hausdorff spaces.
The category of resolutjons of a triple also has an initial object.

Definition 6.6. The Kleisli category o of a triple (T, #, u) on a category &/
is defined as follows. Its objects are the same as those of .&7; however, arrows
A— A’ in o are not the same as they would be in &, instead they are
arrows A4 - T(A') in «/. How do we compose arrows f: 4 - T(4') and
g: A’ = T(A")? Denoting their composition in &/ by g*f: A — T(A")in &,
we define

grf = wANT@g)f.
In particular,

frn(A) = wA)T(MA) = fAMTA)f =14A)f = f
and

n(A)x f = A Tn(A) f = 1AV f = f,
hence n(A): A — T(A) serves as the identity arrow A— A in o/ 7. We leave it
to the reader to check the associativity of composition in o/ ;.

Example T2 (continued). What is the Kleisli category of the power set
triple on Sets? An arrow 4 — P(B) in Sets may be regarded as a multi-
valued function from A to B or, equivalently, as a relation between 4 and B.
More precisely, let f: A — P(B) correspond to R, < 4 X B, where (a,b)eR,
means bef(a). What about the composition of f with g: B~ P(C)?
According to Definition 6.6,

(g* (@) = W C)(P(g)(f(a))
= J{g®)bef (@)},
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_ hence

" (a,c)eR, <>ce(g* f)(a)

< Jyepbef(a) A ceg(b))

<> 3e5((a, b)eR, A (b, c)eR,)

<>(a,c)eR,R, ,
according to one way of defining the ‘relative product’. Moreover, the
identity arrow 1, in the Kleisli category is represented by the mapping
n(A):A—>P(A) in Sets, which sends ae4 onto {a}<A. Hence
(a,a)eR,4<>a'e{a}, s0 R, is the identity relation on 4. We conclude
~ that the Kleisli category of the power set triple on Sets is (isomorphic to) the
category whose objects are sets and whose arrows are binary relations.

- Proposition 6.7. The Kleisli category <, of the triple (T, #, ) on & gives
rise to a resolution (&4, Uy, Fr,er), which is an initial object in the
category of all resolutions. Thus, given any resolution (%, U, F,¢), there
is a unique functor Kr:o/r— % such that K;Fr=F, UK;=U; and
K er = eKy. Moreover, Fr is bijective on objects.

Proof. (1) We define Uy: o/ 1 — o by

UrA)=T(4), Uf)=uB)T(f),
for any object 4 of &/ 1, that is of o/, and for any arrow f: 4 - Bin &/ 1, that
is, f:A— T(B) in of. It is easily verified that U is a functor.
(2) We define Fy:of — o/ 1 by

FA)=A, Fi(f)=nB)f,
for any object 4 and any arrow f: A — B in &¢. Evidently, F is bijective on
objects and it is easily checked that U,F, = T and that F; is a functor.
(3) We define the natural transformation ¢; from FUy to the identity
functor on & by putting e(4) = 15, in . To see that Uye,Fr = p one
calculates
(UrerFp)(A) = (Urer)(A4) = Urllgyy) = w(A).
We let the reader check that
(erFroFn)(A) = 1rray=n(A4), (UrerenUg)(4)= 4,
for any object A of #, hence of o7, whence it follows that (&, Uy, F1,&7)
is a resolution of the given triple.
(4) Let (%, U, F,¢) be another resolution of the same triple. We shall

construct a functor K,: &/ — % and show that is the unique functor with
the desired properties.
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For any object 4 of o/, and any arrow g:A— A’ in o/, that is, g:

A—T(A) in &, we put

K(A)=F(4), Kqlg)=eF(A)F(g)
Then surely K F1{(A4) = K(A4) = F(A), and this forces the definition of K1
on objects. Moreover, for any f:A—B in o, KyF(f)=K(n(B)f)=
eF(BYFn(B)F(f)=F(f). Thus K Fy=F.

Conversely, K;Fr = F implies that K{(n(B)f) = F(f); in particular, it
implies for g: A — T(A")in o that K [(yT(A4)g) = F(g). We shall see later that
this forces the definition of K on arrows, once we know what it does to the
arrow 1r.q-

We calculate

Kre(A) = K(ly ) = eF(A") = eK1{(4')
as required, and this forces the definition of K 1{l74). Nowifg: 4 — T(4') in
&of is any arrow A— A" in &,
g =wAMT(A)g = WA) Tz T(A)g = Lrcay*nT(A)g,
where * denotes composition in &1, hence
K(g) = K{l741)K(nT(A)g)
= eF(A)F(g),
which finally establishes the uniqueness of K.
It remains to check that
UK {A) = UF(A)=T(4) = U(A4),
UK 1{(g) = UeF(A)UF(g) = l(A)T(g) = Ur(g),
and this completes the proof. '

Corollary 6.8. Let Ly: s/ — /T be the special case of the comparison
functor K7 when # = o 1 (or of K when # = o/7), then we have functors

T
MFTm{TLT:dTU:M
with FT = L F, left adjoint to U” and Uy = UTL; right adjoint to F.
Moreover, F is bijective on objects, U7 is faithful and Ly is full and faithful.
Proof. In view of Propositions 6.5 and 6.7, it only remains to show that Ly

is full and faithful. This follows from the following calculation: for any
g A-T(A) in o,

L(g) = K"(g) = U{g) = w(4)T(g),
hence

g = WA MT(A)g = W(A)T(gn(A) = L{g)n(4).
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Corollary 6.9. The Kleisli category of a triple is equivalent to the full
subcategory of the Eilenberg-Moore category consisting of all free
algebras.

Proof. The full and faithful functor L, establishes an equivalence between
/1 and a full subcategory of /7. Since, for any object Aof o,

Li(4) = K"(4) = (U(A), Urer(A)) = (T(4), (4)) = F(A),

it follows that the objects of this subcategory are precisely the ‘free’ algebras
of the triple. ' '

Example T1 (continued). The Kleisli category of the triple associated with
amonoid ./ is equivalent to the category of all free .#-sets regarded as a full
subcategory of the category of all .#-sets.

Exercises.

1. Complete the proofs of Propositions 6.2 and 6.5 and the proofs in
Examples T1 and T2. ‘

2. Given a ring R (associative with unity element), construct a triple (T, 1, 1)
on the category Ab of abelian groups with T(4) = R® 4 for any abelian
group A. What is the Eilenberg-Moore category of this triple?

3. Prove the associativity of composition in the Kleisli category of a triple.

4. (Linton). Show that the Eilenbefg~Moore category may be constructed
from the Kleisli category as a pullback:

AT Sets udd
Fa
ur , | Sets ¥
o Sets ™"
Yoneda
7 Examples of cartesian closed categories

In Part I we shall talk at length about ‘cartesian closed categories’,
which will be defined equationally. In preparation, it may be useful to
give a less formal definition and to present some examples.

A cartesian closed category is a category ¢ with finite products (hence
having a terminal object) such that, for each object B of %, the functor
() x B: ¢ — % has a right adjoint, denoted by (—)?: ¢ — €. This means that,
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for all objects 4, B and C of %, there is an isomorphism
(*) Hom,(4 x B,C)3 Hom (4, Ch)
and, moreover, that this isomorphism is natural in 4, B and C.

Example 7.1. The category Sets is cartesian closed. Here A x B is the usual
cartesian product of sets and C? is the set of all functions B— C. The
bijection (*) sends the function f: A x B— C onto the function f*: 4 — C8,
where f*(a)(b) = f(a,b) for all ac4 and beB. (See Section 3, Exercise 6.)

Example 7.2. More generally, for any small category %, the functor
category Sets® is cartesian closed. Also cartesian closed is the category of
sheaves on a topological space and, in fact, every so-called topos (see Part
II, Sections 9 and 10, even without natural numbers object).

Example 7.3. We recall from Section 1 that a poset (P, <) (that is,
preordered set satisfying the antisymmetry law) may be regarded as a
category. As such, it has finite products if and only if it has a largest element
1 and a binary operation A suchthatc <a A bifandonlyifc <aandc<b
for all elements a, b and ¢ of P. In fact, (P, 1, A ) is thcn a monoid satisfying
the commutative and idempotent laws:

anb=bAa ana=a.

Such a monoid is usually called a semilattice, and one may recapture the
partial order by defining a<b to mean a Ab=a. For (P,1, A) to be
cartesian closed there must be another binary operation <= such that
a A b<cifandonlyifa < c<bforallelementsa,bandcof P.(P, 1, A, <=)is
then called a Heyting semilattice.

Example 7.4. A Heyting algebra (P, 0,1, A, v, <) also has a smallest
element 0 and a binary operation v suchthatav b<cifandonlyifa<c
and b < ¢ for all elements a, b and ¢ of P (hence (P, A, V) is a lattice),
it being assumed that (P, 1, A, <) is a Heyting semilattice. When the
underlying poset (P, <) is viewed as a category, V becomes a coproduct
and the category is called bicartesian closed. Incidentally, the distributive

law an(bve)=(aab)vianc

then follows from general categorical pringiples (see Section 5, Exercise 2).
A typical example of a Heyting algebra is the lattice of open subscts ofa
topological space X, with the following structure:

1=X,0=0,UAV=UnV,Uv V=UuV,
Ve<Us=sint((X — U)uV),
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r all open subsets U and V of X, where ‘int’ denotes the interior operation.
Another example of a Heyting algebra will be the lattice of subobjects of
an object in a topos (see Part II, Section 5, Exercise 3). Many other examples
are found in the literature (see the books by Balbes and Dwinger and by
Rasiowa and Sikorski).

Example 7.5. Cat, the category of small categories, is cartesian closed. For
any small categories o/ and &, &/ x 4 is their product and A7 is the
category of all functors & — %. (See: Section 1, Example C7; Section 2,
Example C8; Proposition 2.3.)

_ Example 7.6. Although the category top of topological spaces and con-
_tinuous mappings is not itself cartesian closed, various full subcategories of
- top are. For example, the category of Kelley spaces (that is, compactly
_generated Hausdorff spaces) is cartesian closed if products are defined in the
usual way and ¥ is the set of all continuous functions X — Y with the
- compact—open topology. (See the book by MacLane for more details.)

Example 7.7. The category of w-posets is cartesian closed. An w-poset is a
poset in which every countable ascending chain a,<a;<a, <...of
elements has a supremum. Morphisms of w-posets are mappings which
preserve supremums of countable ascending chains (such mappings
necessarily preserve order). The product structure is inherited from Sets and
B4 is Hom(A, B) with order and supremum being defined componentwise.
(For details see Part I, Proposition 18.1. For related cartesian closed
categories see the book by Gierz et al.)

Example 7.8. The category of Kuratowski limit spaces is cartesian closed.
A limit space is a set X with a partial w-ary operation (that is,.an operation
defined on a subset of X", the set of all countable sequences of elements of
X) satisfying the following conditions:

(i) the constant sequence (x,x,...) has limit x;
(i) if a sequence has limit x, then so does every subsequence;
(iii) if every subsequence of a sequence has a subsequence with limit x,
then the sequence itself has limit x.

A morphism f:X—Y between limit spaces is a function such that,
whenever {x,|neN} is a sequence of elements of X with limit x, then
{f(x,)|neN} has limit f(x). The product is defined as for sets, with limits
given componentwise, and Y¥ is the set of all morphisms X — Y, where the
limit of { f,;|neN} is said to be f provided the limit of { f,(x,)|neN} is f(x)
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whenever the limit of {x,|neN} is x. (For details see the book by
Kuratowski, Chapter 2.)

Exercises

1. Carry out the detailed proof in any of the above examples.

2. Show that Heyting semilattices may be defined equationally.




Cartesian closed categories
and A-calculus







Introduction to Part 1 41

Introduction to Part I

A-calculus or combinatory logic is a topic that logicians have
studied since 1924. Cartesian closed categories are more recent in origin,
having been invented by Lawvere (1964, see also Eilenberg and Kelly, 1966).
Both are attempts to describe axiomatically the process of substitution, so it
is not surprising to find that these two subjects are essentially the same.
More precisely, there is an equivalence of categories between the category
of cartesian closed categories and the category of typed A-calculi with
surjective pairing. This remains true if cartesian closed categories are
~_provided with a weak natural numbers object and if typed A-calculi are
~ assumed to have a natural numbers type with iterator.

. This result depends crucially on the functional completeness of cartesian
- closed categories, which goes back to the functional completeness of
combinatory logic due to Schonfinkel and Curry. It asserts, in particular,
that every arrow ¢(x): 1 — B expressible as a polynomial in an indetermi-
- nate arrow x: 1 — 4 over a cartesian closed category 7 (with given objects

f

A and B) is uniquely of the form 1 ~, 4-L5 B, where fis an arrow in &
not depending on Xx.
" Functional completeness is closely related to the deduction theorem for
 positive intuitionistic propositional calculi presented as deductive systems.
In our version, it associates with each proof of THB on the assumption
- THA a proof of A-B without assumptions. However, functional com-
pleteneés goes beyond this; it asserts that the proof of THB on the
assumption THA is, in some sense, equivalent to the proof by tran-
sitivity: '
THA AFB

THB

- Deductive systems are also used to construct free cartesian closed
categories generated by graphs, whose arrows A—B are equivalence
classes of proofs.
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We present a decision procedure for equality of arrows in the free
cartesian closed category (with weak natural numbers object) generated by
the empty graph; equivalently, for convertibility of expressions in the pure
typed A-calculus under consideration. This is the coherence problem for
cartesian closed categories, the solution of which goes back to early work in
the A-calculus.

Finally, we study C-monoids, essentially monoids which may be viewed
as one-object cartesian closed categories without terminal object. The
category of C-monoids is shown to be equivalent (even isomorphic) to the
category of untyped A-calculi with surjective pairing. Again, this result
depends on functional completeness of C-monoids.

It is shown that every C-monoid may be regarded as the monoid of
endomorphisms of an object U in a cartesian closed category such that
U x U= U = U". Anexample of such a category with U not isomorphic to
1, due to Dana Scott, is presented.

The reader who wishes to see these results in their historical perspective is
advised to look at the following comments.

Historical perspective on Part 1

For the ‘purpose of this discussion, it will suffice to define a
cartesian closed category as a category with an object 1 and operations
(-) x (=) and ()" on objects satisfying conditions which assure that

(i) Hom(A,1)={x},
(i) Hom(C, A x By~ Hom(C, 4) x Hom(C, B),
(iiiy Hom(4, C?)~Hom(4 x B, C).

Here {*} is supposed a typical one-clement set, chosen once and for all.

It will be instructive to reverse the historical process and see how
combinatory logic could have been discovered by rigorous application of
Occam’s razor.

Condition (i) says that, for each object A, there is only one arrow A — 1,
hence we might as well forget about the object 1 and the arrow leading
to it. However, the arrows 1 — A must be preserved, let us call them entities
of type A.

Condition (ii) says that the arrows C — A x B are in one-to-one corres-
pondence with pairs of arrows C— A and C — B, hence we might as well
forget about the arrows going into 4 x B. :

Condition (iii) says that the arrows 4 x B— C are in one-to-one corres-
pondence with the arrows A — C?, hence we might as well forget about

B
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the arrows coming out of 4 x B too. Consequently, we might as well
forget about 4 x B altogether.

We end up with a category with a binary operation ‘exponentiation’

on objects. Of course, this will have to satisfy some conditions, but these
may be a little difficult to state. It is interesting to note that Eilenberg
and Kelly went on a similar tour de force and ended up with a category
~ with exponentiation in which some monstrous diagrams had to commute.
* We may go a little further and forget about the category structure as
well, since arrows 4 — B are in one-to-one correspondence with entities
of type B4, which we shall write B<= A for typographical reasons. Composi-
tion of arrows is then represented by a single entity of type ((C=A)<=
(C<=B))<=(B<=A). However, we do need a binary operation on entities
called ‘application’. given entities f of type B* and a of type A4, there is
an entity f‘a (read f of a) of type B.
- We have now arrived at typed combinatory logic. But even this came
rather late in the thinking of logicians, although type theory had already
been introduced by Russell and Whitehead. Let us continue on our journey
backwards in time and apply Occam’s razor still further.

An arrow A — B in a category has a source 4 and a target B. But what
if there is only one object? Such a category is called a monoid and, indeed,
the original presentation of combinatory logic by Curry does describe a
monoid with additional structure. (The binary operation of multiplication
is defined in terms of the primitive operation of application.) Underlying
untyped combinatory logic there is a tacit ontological assumption, namely
that all entities are functions and that each function can be applied to
any entity. ‘

To present the work of Schonfinkel and Curry in the modern language of
universal algebra, one should think of an algebra 4 = (| 4),, 1, K, ), where
|A] is a set, / is a binary operation and I, K and S are elements of |A] or
nullary operations. According to Schonfinkel, these had to satisfy the
following identities: :

Ia=a,
(K’a)’b = a,
(8" fYg)e=(f'cV(g’c),
for all elements a, b, ¢, f and g of | A|. (Actually, he defined I in terms of
K and S, but this is beside the point here.) The reader may think of I as
the identity function and of K as the function which assigns to every entity

a the function with constant value a. It is a bit more difficult to put S
into words and we shall refrain from doing so.
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Schonfinkel (1924) discovered a remarkable result, usually called
‘functional completeness’. In modern terms this may be expressed as
follows: every polynomial ¢(x) in an indeterminate x over a Schonfinkel
algebra A4 can be written in the form f/x, where fe|A|.

From now on in our exposition, the arrow of time will point in its
customary direction.

Curry (1930) rediscovered Schonfinkel’s results, but went further in his
thinking. He discovered that a finite set of additional identities would
assure that the element f representing the polynomial ¢(x) was uniquely
determined. We shall not reproduce these identities here, but reserve the
name ‘Curry algebra’ for a Schénfinkel algebra which satisfies them.

Using the terminology of Church (1941), one writes S as A, ¢(x), which
must then satisfy two equations:

Gy (A0(x)) a = ¢(a),

() Affx)=f.

(Many mathematicians write x — ¢(x) in place of ,¢(x).) A J-calculus is a
formal language built up from variables x, y, z, ... by means of term forming
operations (-)/(~) and A(-), the latter being assumed to bind all free

occurrences of the variable x occurring in (=), such that the two given
identities hold. The basic entities I, K and S may then be defined formally by

I=A.x,
K =24,x,
S = A, A4/ 2) (' 2)).

(Actually, Church would have called such a language a AK-calculus and
Curry might have called it a Afn-calculus, but never mind.)

Both Curry and Church realized the importance of introducing types
into combinatory logic or A-calculus. To do this one just has to observe
that, if f has type B< A and a has type 4, then f/a has type B, as already
pointed out. In particular, the basic entities I, K and S, suitably equipped
with subscripts, should have prescribed types. Thus I,, K, p and S, ¢
have types A<=A, (A<=B)<=A and ((4 «=C)«=(B<=())<=((A<=B)<=C()
respectively.

As pointed out in the book by Curry and Feys, these three types are
precisely the axioms of intuitionistic implicational logic. Moreover, the
rule which computes the type of f‘a from those of f and a corresponds
to modus ponens: from B <= A4 and A one may infer B. In fact, Schonfinkel’s
definition of I in terms of K and § is exactly the same as the known proof
that A<= A may be derived from the other two axioms.
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Incidentally, several early texts on propositional logic used only
implication and negation as primitive connectives, having eliminated con-
Junction and other connectives by suitable definitions, again inspired by
Occam’s razor. The observation that it is more natural to retain conjunc-
tion and other connectives as primitive is probably due to Gentzen and
was made again by Lawvere in a categorical context.

Curry and Feys also realized that the proof of Schénfinkel’s version of
functional completeness was really the same as the proof of the -usual
deduction theorem: if one can prove B on the assumption A then one can
prove B<=A without any assumption. In fact, it asserts that the proof of
B on the assumpnon A is ‘equivalent’ to the proof by modus ponens:

B<=A A
B .

From our viewpoint, Curry’s version of functional completeness, which
insists on the uniqueness of f such that ¢(x) equals f'x, then presupposes
that entities are not proofs but equivalence classes of proofs.

In connection with cartesian closed categories, the analogy with
propositional logic requires that 1, 4 x Band B4 be writtenasT, 4 A Band
B <= A respectively. (For other structured categories, the senior author had
pointed out and exploited a similar analogy with certain deductive systems,
beginning with the so-called ‘syntactic calculus’ (see Lambek 1961b,
Appendix II), which traces the idea back to joint work with George D.
Findlay in 1956.) The relation between A—calci‘gli with product types and
cartesian closed categories then suggests the observation: types = formulas,
terms = proofs, or rather equivalence classes of proofs. Independently, W
Howard in 1969 privately circulated an influential manuscript on the
equivalence of typed A-terms (there called ‘constructions’) and derivations
in various calculi, which finally appeared in the 1980.Curry Festschrift (see

.also Stenlund 1972).

Up to this point we have avoided discussing natural numbers. In an
untyped A-calculus natural numbers are easily defined (Church 1941).
Writing

fog=24f"(g’%),

one regards 2 as the process which assigns to every function f itsiterate fof,
s0 2/ f=fof. Formally, one defines

O0=il l1=lx=I 2=l(xx),....

The successor function and the usual operations on natural numbers are
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defined by

S'n=Aye(n’y)),
m+n=A{(m'y)o(n'y)),
mn = meon,
m'=n'm.

Unfortunately, there are difficulties with this as soon as one introduces
types. For, if a has type 4, then f and g in (fog)‘a both have types A* =B
say. For n’ f to make sense, n will have to be of type B®, and for nfm to make
sense, m will have to be of type B. If m and n are to have the same type, we are
thus led to require that B® = B, which is certainly not true in general,
although Dana Scott (1972) showed that one may have B® = B.

One way to get around this difficulty is to postulate a type N of natural
numbers, a term 0 of type N and term forming operations S(—) (successor)
and I(-,—,-) (iterator) such that S(») has type N and I(a, &, n) has type A for
all n of type N, a of type A and & of type A“*. These must satisfy suitable
equations to assure that I(a, h, n) means h*/a.

The analogous concept for cartesian closed categories is a weak natural
numbers object: an object N with arrows 0: 1 — N and S: N — N and a process
which assigns to all arrows a:1 — A4 and h: A — A4 an arrow g: N — 4 such
that the following diagram commutes:

0 S
1 N > N
j g g
1 ! A 7 > A

Lawvere had defined a (strong) natural numbers object to be such that the
arrow g: N —» A with the above property is unique.

‘For us, a typed A-calculus contains by definition the structure given by N,
0, S and I. In stating Theorem 11.3 on the equivalence between typed A-
calculi and cartesian closed categories, we stipulate that the latter be
equipped with a weak natural numbers object. Such categories were first
studied formally by Marie-France Thibault (1977, 1982), who called them
‘prerecursive categories’, although they are implicit in the work of logicians,
e.g. in Godel’s functionals of finite type (1958).

We would have preferred to state Theorem 11.3 for strong natural
numbers objects in Lawvere’s sense. Unfortunately, we do not yet know
how to handle the corresponding notion in typed A-calculus equationally.
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As far as we can see, the iterators appearing in the literature (e.g. Troelstra
1973) mostly correspond to weak natural numbers objects. See however
Sanchis (1967).

For further historical comments the reader is referred to the end of Part I.

1 Propdsitional calculus as a deductive system

We recall (Part 0; Definition 1.2) that, for categonsts a graph
consists of two classes and two mappings between them:

source
—————— it it et . .
Arrows Objects

—ee .
target

In graph theory the arrows are usually called ‘oriented edges’ and the
objects ‘nodes’ or ‘vertices’, but in various branches of mathematics other
words may be used. Instead of writing

source(f)= A, target(f)=B,
S

one often writes f: A — B or A B. We shall look at graphs with addi-
tional structure which are of interest in logic.
A deductive system is a graph with a specified arrow

Rla. 1" —4, 4,

and a bmary operation on arrows (composition)

4L 3Lc
gf

Logicians will think of the objects of a deductive system as formulas, of the
arrows as proofs (or deductions) and of an operation on arrows as a rule of
inference. .

Logicians should note that a deductive system is concerned not just with
unlabelled entailments or sequents A4 — B (as in Gentzen’s proof theory),
but with deductions or proofs of such entailments. In writing f: A — B we
think of f as the ‘reason’ why A entails B.

A conjunction calculus is a deductive system dealing with truth and
conjunction. Thus we assume that there is givenaformula T (= true)and a

- binary operation A (=and) for forming the conjunction 4 A B of two
given formulas A and B. Moreover, we specify the following additional

R1b.
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arrows and rules of inference:

R2. 42T

R3a. AAB-T4E, 4

R3b, AnB-TA,p

f g
R3c. C-—54 C->HB

Here is a sample proof of the so-called commutative law for conjunction:

AAB-T4B, B 4B T4B, 4

AnBSTanTan) g, 4

The presentation of this proof in tree-form, while instructive, is superfluous.
It suffices to denote it by {7/, g, T4 5> Or even by (', m ) when the subscripts
are understood.

Another example is the proof of the associative law a4 5 c:(A A B)A C
— A A (B A C). It is given by

ta,B,c= a8 npcr STABTanB,0 TanpC)? (1.1)

or just by a = (nn, {n'm, 7' ).

If we compose operations on proofs, we obtain ‘derived’ rules of
inference. For example, consider the derived rule:

Ancac, 4 4 LB anclac,c cLp
AAnC—-B AANnC—-D

arcL29BAp
It asserts that from proofs f and g one can construct the proof

fng=L{fm4cdmTac
Thus we may write simply

4LB c4p

AncI29. 8D

A positive intuitionistic propositional calculus is a conjunction calculus
with an additional binary operation <=( = if). Thus, if 4 and B are formulas,
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soare T, 4 A Band A< B. (Yes, most people write B=> 4 instead.) We also
specify the following new arrow and rule of inference.

Rda. (A<B)AB-f4B 4

caB-lg

h

R4b. —_—
C—— A<B

Actually we should have written h* = A§ 5(h), but the subscripts are usually
understood from the context.
We note that from R4b, with the help of R4a, one may derive

R'4b. C-ll¢B,(C A B)<B,
D44
(DcB)m(AcB)

R'4c.

To derive these, we put
flc,p = 1:/\3’ g<=1p=(gep p)*

Conversely, one may derive R4b from R'4b and R'dc by putting
h* = (h<= I, p-

For future reference, we also note the following two derived rules of
inference:

4L T-9Be4

rfa ? g’
T——-—»Bcf——A A*-B

2

where

= (r )% g'= €p,4<90 4, 14).

An intuitionistic (propositional) calculus is more than a positive one; it
requires also falsehood and disjunction, that is, a formula 1 (=false) and
an operation v (= or) on formulas, together with the following additional
arrows:

Rs. L-Da,,

Réa. a4, 4,p
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R6b. B-AE 4V B,
C
Rée.  (C=A) A (C=B)~42,C=(4v B).
The last mentioned arrow gives rise to and may be derived from the rule

i g
Riée. ALsCc B-5C

AvB—————->[f’g] C'

Indeed, we may put
[f,g]= (%< gD
If we want classical propositional logic, we must also require
R7. le(l<=Ad)—A

Exercises

1. For the appropriate deductive systems, obtain proofs of the following and
their converses:

AAT»A,A<T>AT=A4-T,
(AAB)=Co{A=C)A (B<=C);
A<=(BAC)—»{4=C)<=B;
AAL->L, A=loT Av 14
(A/\C)V(B/\C)—*(AVB)AC.

2. For the appropriate deductive systems, deduce the following derived rules
of inference:

alp cLp  alip ¢

4ep =9 pec avedY9Bup

3. Show how (§ 5 may be defined in terms of the rule R'6c¢.

4. Show that, in the presence of R1 to R6, the qlassical axiom R7 may be
replaced by

ToAv(L<=A)

2 The deduction theorem
The usual deduction theorem asserts:
fAABFC then AFC<=B.
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This result is here incorporated into R4, with the deduction symbol
replaced by actual arrows in the appropriate deductive system .

hAAB-C

h*A->C<«B’
However, at a higher level, the horizontal bar functions as a deduction
symbol, and we obtain a new form of the deduction theorem. It deals with
proofs from an assumption x: T-» A. In other words, we form a new
deductive system .#(x) by adjoining a new arrow x: T— 4 and talk about
proofs ¢(x): B— C in this new system. More precisely, .#(x) has the same
formulas (= objects) as & and its proofs (= arrows) ¢(x) are freely
generated from those of % and the new arrow x by the appropriate rules of
inference (= operations). Clearly, if & is a conjunction calculus (positive
calculus, intuitionistic calculus, classical calculus), so is the new deductive
system .Z(x).

Proposition 2.1. (Deduction theorem). In a conjunction, positive, intuition-
istic or classical calculus, with every proof ¢(x): B— C from the assumption
x: T— A there is associated a proof f:4 A B—C in £ not depending on x.

We write f= k. ¢(x), where the subscript ‘xe A’ indicates that x is of
type A.

Proof. We shall give the proof for a positive calculus. The same proof is
valid for a conjunction calculus, if * is ignored. The proof goes through for
an intuitionistic or classical calculus, as the additional structure is
presented in the form of arrows rather than rules of inference.

We note that every proof ¢(x): B— C from the assumption x: T~ 4 must
have one of the five forms: '

(i) k:B—C,a proofin Z;
(i) x:T—> A, with B=T and C=4;
(i)  {Y(x), x(x)>, where Y(x): B—C’, (x): B—C", C=C' A C";
(iv)  x(xW(x), where y(x): B— D, x(x): D— C;
(v)  Y(x)*, where Y(x):BAC' - C", C=C"<C". _
In all cases, Y(x) and x(x) are ‘shorter’ proofs than ¢(x), and we define
inductively:
(l) KxeAk = knil,B;
(") KxeaX = nA,T’
(1) reee 4 CYX), 1X)D = {Hge qW(X), Ke g2(X) ;3
(IV) KxeA(X(x)w(x)) = KxeAX(x)<nA.B’ KxeA’/’(x)>;
(V) KxeadW(x)*) = ((Krea¥(x))0a,8,c)%;
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where o, 5 c:(AAB)AC >AA(BAC) is the proof of associativity
discussed in Section 1.
The above argument was by induction on the length of the proof ¢(x).
Formally, this may be defined as O in cases (i) and (ii), as the sum of the
lengths of x(x) and ¥(x) plus 1 in cases (iii) and (iv) and as the length of y/(x)
plus 1 in case (v).
Remark 2.1. Logicians don’t usually talk of an assumption x: T — 4 if there
is a known proof a:T— A or another assumption y: T — A4; but from our
algebraic viewpoint, this does not matter. '

The reader is warned that we do not distinguish notationally between
composition of proofs gf in £ and in L(x). In &, Ksealgf) = g fr'4.p and
in £(x) it is ‘gn;,B(nA,B,fn'A,B)

Exercise
Prove the following general form of the deduction theorem for the positive
intuitionistic propositional calculus: with every proof ¢(x). B—C from
the assumption x: D — A there is associated a proof f:(4<=D)A B—C.
Hint: writing f = p,@(x), put
(1) ka = kn:ieD,B’ (ll) PxX = 8A,B9
(i) p Y0 x(x)) = pY(x), p:X(X) 75
(iv) pLtCW(x)) = pt(X) Ty s PY(X) D

V) PAW(xX)*) = (pY(X)0ty o 5, 5)*, Where Y(x): B' A B C.

3 Cartesian closed categories equationally presented

A category is a deductive system in which the following equations
hold between proofs:

El.  fly=f, 13f=f (hg)f="h(gf)
forall f:A—B, ¢gB-C, hC-D.

Thus, from any deductive system one may obtain a category by imposing
a suitable equivalence relation between proofs. ,

A cartesian category is both a category and a conjunction calculus
satisfying the additional equations:

E2. f=0Qy4 forall f14-T;
E3a. m,s{fi9> =/,
E3b. 7 5<fi0> =0,
E3c. {myph,nyph)=h,
for all f:C—-»A, g.C—-B, hC—-AAB.
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E2 asserts T is a terminal object. One usually writes T = 1, and we shall
do so from now on. An equivalent formulation of E2 is
E"2. =04, 0pf=0, forall f:A—>B.

E3 asserts that 4 A Bis a product of 4 and B with projections ., 5 and
74,5- We shall adopt the usual notation A AB=A4 xB.
As a consequence of E3, let us record the distributive law:

{fig>h=<fhgh) (3.1)
forall f:C—A, g:C—.»B,_ h:D—-C.

Proof. We show this as follows, omitting subscripts:

Logdh=L{a({f,9>n, 7 ({f,9>h)> ‘
=L@ {9 (7 fo90)h)
=(Sh.gh).

We shall also write

Sxg=fnrg={ryc, g4
whenever f1 A — Band g: C— D, and note that x :o/ x o/ — .« is a functor
(see Part 0, Definition 1.3). Indeed, we have

Lyxle={lmyelemyc)
={ g0 Mg,
={mgclyxeTaclaxe)
=1,.c

and, omitting subscripts, by the distributive law,

(S xg)={frgn' 3 f'mgn')
=l f'mgn' )y, gn' {f'm, g7 )
={ff'mg9'n">
=ff"xgq.
A cartesian closed category is a cartesian category .« with additional
structure R4 satisfying the additional equations
Eda. e, g<{h*ncpmcp) =h,
Edb.  (e4,5<knc 5 mc 50 )* =k, ‘
foral hCAB—-A4A and k:C— A<B.
Thus, a cartesian closed category is a positive intuitionistic propositional
calculus satisfying the equations El to E4. This illustrates the general
principle that one may obtain interesting categories from deductive systems
| by imposing an appropriate equivalence relation on proofs.
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Inasmuch as we have decided to write C A B = C x B, we shall also write
A<B= AP The equations E4 assure that the mapping

Hom(C x B, 4) == Hom(C, A)

is a one-to-one correspondence. In fact, one has the following universal
property of the arrow ¢, 5 A% x B— 4:

given any arrow h: C x B— A, there is a unique arrow h*: C — A?
such that
g4 p(h* x 1p)=h.

The reader who recalls the notion of adjoint functor will recognize that
therefore Uy =(—)? is right adjoint to the functor Fy=(-) x B:of - o
with coadjunction g5: FyUp— 1, defined by ex(A4) = ¢, 5. Thus, an equiva-
lent description of cartesian closed categories makes use of the adjunction
ns1,,— UgFgin place of *, where #5(C) = 5 5: C - (C x B)%, and stipulates
equations expressing the functoriality of Uy and the naturality of eg and 5,
as well as the two adjunction equations. Here

Uf)=fP=f<=15=feq )"
for all f:A— A'. (For ny see R'4b in Section 1))
We shall state another useful equation, which may also be regarded as a
kind of distributive law.

h*k = (h{knp, g, 7p,))*, (32)
where h: 4 x B> C and k: D — A.
Proof. We show this as follows, omitting subscripts:
h*k = (e (h*km, ' H)*
=(e{h*n, 'y (km,n' H)*
= (h{km, 7' H)*.

Quite important is the following bijection, which holds in any cartesian
closed category.

Hom(A4, B) = Hom(l1, B4). (3.3)

Proof. As in Section 1, with any f: A — B we associate f : 1 — B4, called
the name of f by Lawvere, given by

=7 4%
and with any g: 1 - B4 we associate g’: 4 > B, read ‘g of”, given by

g’ =65 4$90 0 1 4.
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We then calculate
i"f"l!____f, l_gf’l___g.

Exercises

1. Show that in any cartesian category
Ax1=A4A, AxB=BxA, (AxB)xC=Ax(BxC)

2. Show that in any cartesian closed category
A'=A, 1M1, (AxBCxA°xBS, AP*Cx (AL

3. Write down the equivalent definition of a cartesian closed category in
terms of Uy, Fy, 75 and &,

4. Prove the last two equations of Section 3.

4 Free cartesian closed categories generated by graphs

Given a graph %, we may construct the positive intuitionistic
calculus 2(Z) and the cartesian closed category (%) freely generated
by &.

Informally speaking, 2(%) is the smallest positive intuitionistic calculus
whose formulas include the vertices of & and whose proofs include the
arrows of . (Logicians may think of the latter as ‘postulates’, although
there may be more than one way of postulating X — Y, as there may be more
than one arrow X — Y in Z.) More precisely, the formulas and proofs of
D(Z) are defined inductively as follows: all vertices of & are formulas,
T(=1) is a formula, if 4 and B are formulas so are A A B(= 4 x B) and
B <= A(= B%); the arrows of & and the arrows 1, O ,, Typ Ty pande, gare
proofs, for all formulas 4 and B, and proofs are closed under the rules of
inference—composition, (-, - and (-)*.

We construct # (%) from 2(Z) by imposing all equations between proofs
which have to hold in any cartesian closed category. Another way of saying
this is that we pick the smallest equivalence relation between proofs
satisfying the appropriate substitution laws and respecting the equations of
a cartesian closed category. The equivalence classes of proofs are then the
arrows of #(%); but, as usual, we will not distinguish notationally between
proofs and their equivalence classes.

Let Grph be the category of graphs, whose objects are graphs and whose
morphisms F: & — @ are pairs of mappings F: Objects(%) — Objects(#) and
F: Arrows(%) — Arrows(@) such that f: X — X’ implies F(f): F(X)— F(X).

Let Cart be the category of cartesian closed categories, whose objects are
cartesian closed categories and whose arrows are functors F: .o/ — % which
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preserve the cartesian closed structure on the nose, that is,
F(1)=1, F(A x B)=F(A) x F(B), F(A®) = F(A)"®,
F(O4) = Oruy F(ryp)="mru,re)» el
F({f.g>)=<F(f), F(g)) etc.

Let % be the obvious forgetful functor Cart — Grph. With any graph & we
associate a morphism of graphs H,: % — U F(¥) as follows: Hy{X)= X
and, if f: X - Yin &, then Hqr(f) = f (the equivalence class of f regarded as
a proof in 2(Z)). We then have the following universal property:

Proposition 4.1. Given any cartesian closed category & and any morphism
F: & - U(s#) of graphs, there is a unique arrow F': #(Z) - & in Cart such
that (F')H, =F. '

F(Z).
UF(X) .
%(FI) — F' \\\
-
K4
Hy U(A)
F

Proof. Indeed, the construction of F’ is forced upon us:
F(X)=FX), F(T)=1, F(A4 A B)=F'(A)x F'(B), etc,;
F(f)=F(f) forall f:X—=Y, F(O,) = Opetc;
F({f.g2)=<F(f), F(g), etc.

We must check that F’ is well defined, that is, for all f,g: A - B in (%),
[ =g implies F'(f) = F'(g). This easily follows because no equations hold
in #(Z) except those that have to hold.

The above universal property means that # is a functor Grph — Cart which
is left adjoint to # with adjunction H ,:Id »#%.

The reader will have noticed that the objects of the category Grph and
Cart introduced here are classes. These may have to be regarded as sets in
an appropriate universe.
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Exercise i )
Show that the deductive system Z(x) in Section 2 is 9(2,), where L, is

the graph obtained from % by adjoining a new edge x between the old
vertices T and A. ’

5 Polynomial categories

Given objects A, and A of a (cartesian, cartesian closed) category
&, how does one adjoin an indeterminate arrow x:Ag— A to o7 One
method is to adjoin an arrow x: 4, — 4 to the underlying graph of .« and
then to form the (cartesian, cartesian closed) category freely generated by
the new graph, as was done in Section 4 for cartesian closed categories.
Equivalently, one could first form the deductive system (conjunction
calculus, positive intuitionistic calculus) o7[x] based on the ‘assumption’ x,
as was done in Section 2 in the special case Ao =T. The formulas of /[ x]
are the objects of .7 and the proofs of .« [x] are formed from the arrows of
«/ and the new arrow x: 4, — A by the appropriate rules of inference.
. To assure that «/[x] becomes a category and that the inclusion of &/
into /[ x] becomes a functor, one then imposes the appropriate equations
between proofs. If equality of proofs is denoted by 5, we may also regard
& as the smallest equivalence relation = between proofs such that

gf=hin o implies gf=h,
Y(x)=y'(x) and x(x) = x'(x) implies x(xJ(x) = ¥ (x)y'(x),
P01 = o(x) = 1c0(x),
(O (x))p(x) = ¥ (X)W (x)ep(x)),
for all p(x):B—>C, (x), Y'(x):C-D, x(x),x(x):D—E.

Note that, in view of the reflexive law, = and = extend equality in /.
Arrows in the category .«/[x] are proofs on the assumption x modulo =,
they may be regarded as polynomials in x.

The same construction works for cartesian categories or cartesian closed
categories, only then 5 must be such that </[x] becomes a cartesian or
cartesian closed category and that the functor o — o [x] preserves the
cartesian (closed) structure. That is, the equivalence relations = between
proofs considered above must also satisfy:

if {f,g> =hin & then {fig)>=h,etc.
if Y(x) =¢'(x) and x(x) = ¥'(x) then {Y(x), x(x)> = {Y¥'(x), x'(x) >,
g, {Y(x), 2(%)) = Y(x), etc,,

for all Y(x), ¥'(x): D - B and (%), ¥'(x):D-C.
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By a cartesian (closed) functor we mean a functor which preserves the
cartesian (closed) structure on the nose. Let H,. .o — &/[x] be the
(cartesian, cartesian closed) functor which sends f: B— C onto the ‘const-
ant’ polynomial with the same name. This possesses the following universal

property.

Proposition 5.1. Given a (cartesian, cartesian closed) category ./, an
indeterminate x: A, — A over &/, any (cartesian, cartesian closed) functor
F: o/ -+ 2 and any arrow b: F(A,)— F(A4) in %, there is a unique (cartesian,
cartesian closed) functor F': o/[x]— % such that F'(x)=b and FFH,=F.

Xx:Ay—> A
A[x]
b N
\\ F/
\\
~
H, SNy b: F(4y)> F(A)
F
oA

Proof. Every proof ¢(x) on the assumption x has one of the following
forms:

ko x, 20(x), Px),a(x)>,  Ylx)*
where k is an arrow in 7, that is, a constant polynomial. The crucial step in
the argument is to define F'{¢p(x)). We define inductively:

F'(k) = F(k),

F'(x)=b,

F'(x(e(x)) = F'(x(x))F (Y(x)),

F(Y(x), 1(x) ) = <F(Y(x)), F'(x(x)) 7,

F'y(x)¥) = (F'((x)))*
It remains to show that F” is defined on polynomials, not just on proofs, that
is, that ¢(x) = ¢'(x) implies F'(¢p(x)) = F'(¢'(x)). Write ¢(x) = ¢'(x) for the
latter, then it suffices to check that = has the substitution property and
respects all the equations of a cartesian closed category.

For example, to check that {n; px(x), 7c px(x)) = x(x), we calculate
F'({mc, px(x) e, px(%) D) = {mpcy, ey (X(%))s Ty, pemy F (X(X)) >
= F'(x(x)),

Corollary 5.2. Given a (cartesian, cartesian closed) category ./, an
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indeterminate x: A, — A over &/ and an arrow a:A,— A in o, there is
a unique (cartesian, cartesian closed) functor S3:./[x]— o/ such that
SUx)=aand S{H, =1,.

Proof. Take F=1_ in Proposition 5.1.

S may be regarded as the process of substituting a for x. One usually writes

S3(e(x)) = ¢(a).
The corollary shows that, in presence of an arrow a: 4, 4, the functor
- Hg o — [xX] is faithful.

Exercise

Adjoining an indeterminate arrow x:1— (¥ to the cartesian closed
category & of sets one obtains the degenerate category %[x] in which

Ix@.

6 ‘Functional completeness of cartesian closed categories

If A is a commutative ring with unity, then any polynomial in an
indeterminate x over A has the unique normal form a, +a,x + -+ + a,x".
For cartesian or cartesian closed categories one has an even simpler normal
form (see Corollary 6.2 below). The following result, called functional
completeness, refines the deduction theorem of Section 2.

Proposition 6.1. (Functional completeness). For every polynomial ¢(x):
B—C in an indeterminate x:1— A4 over a cartesian or cartesian closed
category ./ there is a unique arrow f:4 xB—C in & such that

J<xOp, 1) 5 0(x).

Proof. Let K, 4¢(x) be defined as in the proof of the deduction theorem
(Proposition 2.1). We check by induction on the length of the proof ¢(x)
that

Kxea®(x){xOp, 15> 5 @(x).
Indeed, '
kny p<xOp, 15 T klp sk,
74,1{xO1,1;> = x0; Fx1, 5%
e atl(x), e q2(%) > {xOp, 15
5 (KxeaV(X)<XOp; 157, Kueax(x){xOp, 15> > T {Y(x), 1(x)),
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KreaX(X) T 4,5, Ke aW(x) > {xOp, 15> T KreaX(X){xOp, Y(x))
F KeeaX(X){XOp, 1p ¥(x) 5 x(x)(x),
(Kea¥(X)og, 5, V¥ {xOp, 15
T (Keea¥(x)a {({xO, 1w, ' H)*
5 (Kyeap(X)a (KX O, 1), ' H)*
F (KeeaP(X){x O, (m, 7' » > )*
T (KeeaW (X)X O, 1D)* 2 (Y(x))*,

using (3.2) for h*k and a{{f,g>,h> = {f,{g,h>>.
We next verify that k. ,(x) depends only on the polynomial ¢(x), that is,

on the equivalence class of the proof ¢(x) modulo =. Let us write
o(x) = Y(x) for K, ,0(x) = K, 4¥(x). Then it is easily checked that = has the
substitution property and satisfies all the conditions which equality in
/[ x] should satisfy. (See the sample calculation below.) Since = was
defined as the smallest such equivalence relation, it follows that = is
contained in =, that is, that
* @(x) = Y(x)  implies K. ,0(x) =t e P(),
as claimed.
For example, let us check that, if (f,g>=h in &, then {f,g>=h.
Indeed,
KxeA<f5g> = <KxeAf’KxeAg> = <f7I’,g7T,,>
= <f’g>7tl = hTE’ = KxeAh‘
As another example, let us check that
e () n, ') = x(x),
to take the worst case. Writing x,. ,x(x) = h, we have
KxeA(LHS) = EKyeq < X(X)*TC, 7[,>
=8 < KxeA(X(x)*n), KxeAn/ >
= g{ KxeAX(x)* (=, KyieaT p2 xxeAn,>
= g{(ho)* (m,nn’ >, w'n’ )
=el(ha)*n, 7' Y <{m, ' ), w'n’ )
=hal{{n,nn' Y, n'n >
=h{n,{nn’,7'n'>)
=hi{mn)
=hl=h.

Finally, to prove the uniqueness of f:4 x B—C, assume that
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f{xOp, 15> = @(x). We claim that then f = i, ,¢(x). Indeed,

KxeaP(X) = Kye y(f{xOp, 1))

= fea{xOp, 1)

= f{Krea(¥Op) Kreqlp)

= [ KxeaX{ Ty, K2eaOn)s Krealp)

= f< 4,1 4,8, OpTa 5, Wy p)

=f{ 45 TWyp)

=flygs=1.
Corollary 6.2. For every polynomial ¢@(x):1-C in an indeterminate x;
1 — A4 over a cartesian or cartesian closed category «/, there is a unique
arrow g: A— C in & such that gx = ¢(x). Over a cartesian closed category

s, there.is a unique arrow h: 1 — C4 such that ec,al{h,x) = @(x).
Proof. To derive this from Proposition 6.1, merely put

g = Kyeea@(x)< 14, Q4> h=Tg"

and check that x,.,(gx){1,,0,> =g and h/ =g (see the proof of (3.3)).
Later we shall write 1,_,¢(x) for the h such that h/x = ec,aCh x) = o(x).

Actually, over a cartesian closed category, the corollary is no weaker than
the theorem, since the polynomials B — C are in one-to-one correspondence
with the polynomials 1 — C®. Usually, it is this corollary, which is referred
to as ‘functional completeness’.

Exercises

1. Prove the following general form of functional completeness for cartesian
closed categories: for every polynomial ¢(x): B— C in an indeterminate
arrow x: D — A over a cartesian closed category &, there is a unique arrow
J: AP x B— C such that

SLxmp p)*, 1) = ().
Hint: see the exercise in Section 2, which establishes a general form of the
deduction theorem.

2. If o/ is cartesian closed and .o/[ x] is the cartesian category formed from &/
by adjoining an indeterminate x: 1 — A4, show that </ [x] is also cartesian
closed.

3. Instead of adjoining a single indeterminate x: 1 — A, one can also adjoin a
set of indeterminates X = {x,,..., x,}, where x;: 1 - 4,. Show how to do
this when n =2 and also that

xy,x,] = A[x,]1[x,] = (2],
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wherez:1 - A, x A,. Prove directly that ¢(x, , x,) can be uniquely written
in the form g{x,,x;) or hf{x,x;).

4. Fill in the details in the proof of Proposition 6.1.

7 Polynomials and Kleisli categories

In this section we take another look at the polynomial
cartesian or cartesian closed category «/[x], where x is an indeterminate
arrow 1 — A, to show that its construction could have been carried out
with tools familiar to categorists.

A cotriple (S, e,J) on a category o/ consists of a functor §: .o/ —» o7 and
two natural transformations &: S — 1, and é: S — S? such that, for any object
B of «#,

eS(B)S(B) = 155, = Se(B)o(B), 0S(B)3(B) = S6(B)6(B).

Of course, a cotriple on & is just a triple on /°P (see Part 0, Section 6).
Accordingly, the Kleisli category s/ of the cotriple has the same objects
as o/, but arrows f: B C in &/ are arrows f: S(B) - C in «. In particular,
the identity arrow 1 in &/ is &(B) in &/. Moreover, if g: C - D in </, the
composition g*f in o/ is defined by gf = gS(f)3(B). One easily verifies
that /5 is a category.

With any object 4 of a cartesian or cartesian closed category &/ one
may associate a cotriple (S,,¢,,9,) as follows:

Si=Ax(=), eB)=nyp, O4B)={Typ,lyxp)-

Thus SyB)=AxB and, for f:B—C,S(f)={m,p, fryp>. The
routine calculation that this is indeed a cotriple is left to the reader.

The functional completeness of cartesian or cartesian closed categories
may now be interpreted as follows:

Proposition 7.1. The category «/[x] of all polynomials in the indetermi-
nate x:1—> A4 over the cartesian or cartesian closed category &/ is
isomorphic to the Kleisli category o/ , = o/, of the cotriple (S 4,84, 4).

First proof. Consider the functor P:.o/ ,— o/[x] defined for objects B of
o 4, that is of &, and arrows f:C— B in &/ 4, that is, f:4A x C— B in &/,
by

PB)=B, P(f)=f{xOclc>-

" To check that this is a functor, we apply it to 1z in & 4, that is, e ,(B) = 7y p
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in o7, as well as to the composition

g*f = gS(f)d «(B)
= g<nA,AxB’fn:4.AxB><nA,B’ Vyup) =9<{myp f>.

Indeed ,

P(e(B)) =7y p<xOp, 15> = 1p,

Plg+f)=g<{m [ >{x0,1) =g<{x0, f{xO,1>)
=g{x0,1>f{x0Q,1) = P(g)P(f).

Finally, Proposition 6.1, tells us that P has an inverse K, where K(B) =
and K(f(x)) = ke f(x).

It may be of interest to point out that the curious definition of x_ AOn(x))
given in Proposition 2.1 is related to the curious definition of composmon
in a Kleisli category.

While logicians may favour the proof just given, confirmed categorists
will undoubtedly prefer another proof which establishes directly that the
Kleisli category </, has the universal property of Proposition 5.1, and
which therefore allows them to bypass the constructions in Sections 5 and 6
altogether.

Second proof. We shall confine attention to the case when o is cartesian,
leaving the cartesian closed case as an exercise to the reader.

We first show that M 4 1s a cartesian category by defining Og:C— 1,
npc:B x C— B and mjfi:: B x C—C as follows:

— A ’ A ’
OC = Quxcr TBec=TpcMapxcr TBC= g, c4,BxC

and by taking {-,~) as in &/. The equations of a cartesian category are
easily checked, for example:

w4 f,g) = 1w’ {n,{f,9> > = n{f,9) =,
{rxh, w'Axh) = (' {m, h), n'w'{m, h) > = {mh,n'hD> = h.

Now define the functor H ,: &/ — o/ , for objects B and arrows f: C — B of
&/ by

H B)=B, H,(f)=fryc.

It is easily checked that H , preserves the cartesian structure exactly. We
claim that H, has the same universal property as H, in Proposition 5.1,
with 7, , serving as the indeterminate.

Let F: .o/ — 2 be a given cartesian functor and b: 1 — F(A) a given arrow
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in . We want to show the existence of a unique cartesian functor F':
o/ 4— R such that FH, = F and F(n, ;)= b. Define F' on objects B and
arrows f:B—C in o/, by

F'(B)=FB, F(f)=F(f)<{bOxp lrs)-
We check that F' is a cartesian functor:

Fi(n')= F(n)<bO,1> =n'<(bO,1) =1,

Flgxf)=F(g{m f>)<bO,1> = F(g){m,F(f)><{bO, 1)
= F(g)<bO, F(f)<bO,1)>> = F(g)<bO, 1) F(f)<bO,1)
=F(g)F (/)

F'(n*) = F'(nn') = Frn'){bO, 1> = ax'(bO, 1> =,

F'(n'*) = o’ similarly,

F({f,g%) = F(<£,9>)<bO, 1) = F(f), F(g) y<bO, 1)
=CF(f)<bO, 1), F(g)<bO, 1)) = F'(f), F(g)).
Moreover, F’ has the desired properties:
F'(H (B)) = F'(B) = F(B),
FHAf) = F(fr)= F(f5)<bO, 1) = F(f)n{bO, 1)
=F(/)1 = F(f),
Flr,,)= F(nA,l)<boF(1)’ 1F(1)> =7,,{bOy,1;)
=bO;=bl1,=b.
Finally, to show uniqueness of F’, assume that F’ has these properties,
then
F(f)=F(fn'{m,1)) = F((fr)x1)
=F(fm)F(1)=FH(f)F({nn'))
=F(/)F({nm, O 7)) =F (f)F'({n+O,n’>)
=F(/)XF(mMF(O), F(n)) = F(f)<bO, 1.
This completes the proof.

Exercises

1. Given an indeterminate arrow x: 1 » A over a cartesian closed category
&, show that #[x] is isomorphic to the Kleisli category of the triple
(Tas14 14), where T, = (-)*, N4(B)=n} 4, u(B) = (e(e, ' ))*

2, Show that the Eilenberg—Moore category of the cotriple (S,,¢,,d,) is
isomorphic to the slice category «f/A4 whose objects are arrows B— 4 in
#f and whose arrows are appropriate commutative triangles.
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3. Complete the second proof of Proposition 7.1 in case .« is cartesian
closed. (This will give another proof of Exercise 2 of Section 6).

8 Cartesian closed categories with coproducts

Cartesian closed categories were defined as positive intuitionistic
propositional calculi satisfying certain equations between proofs. To
complete the picture we define a bicartesian closed category as a full
intuitionistic propositional calculus satisfying the following additional
equations:

ES. f=0, forall f:1 - A4;
E6a. [f,gle 5= f;

Eéb.  [f,glkss=9;
EBéc.  [hi,p, b, p]l=h;

forall f:A—C,g:B—~C and h: Av B-C.
We recall that the operation [~,-] was defined in terms of the arrow
(8.5 CA x CB- C4V8 Thus

Lf91=Cas<"fTg™)". _

It is customary to write O for L and A + Bfor A v B. The equations assert
that 0is an initial object and A + Bis a coproduct of A and B with injections
k4. and K g. Thus Hom (0, A) has exactly one element and

Hom (4, C) x Hom (B, C) =~ Hom(4 + B, C).

Functional completeness holds for bicartesian closed categories. More
precisely, we have:

Proposition 8.1. 1f o/ is a bicartesian closed category and «/[x] is the

cartesian closed category of polynomials in the indeterminate arrow
x:1— A over o/, then &/[x] is also a bicartesian closed category.

Proof. We refer to the one-to-one correspondence between arrows B— C
in #/[x] and arrows A x B—C in «. Thus 0 is an initial object in &/[x]
because

Hom(A4 x 0, B) = Hom(0 x A4, B) = Hom(0, B"),
which has exactly one element because 0 is an initial object in .o¢. Again,
B+ C is the coproduct of B and C in &/[x] because

Hom(A x B,D) x Hom (A x C, D)= Hom ((4 x B) + (A x C), D)

>~ Hom(A4 x (B +.C), D).

This uses the fact that (4 x B) + (4 x C) is a coproduct in &7 and also the
distributive law
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(AxB)+(AxC)=Ax(B+ (),

see the exercises below. A slightly longer argument avoids the distributive
law:

LHS = Hom(B, D*) x Hom(C, D*) = Hom(B + C, D4) = RHS.

It is an interesting consequence of Proposition 8.1 that the identities ES and
E6 can be stated as equations between constants, that is, without
quantifying over arrows f,g and h. For example, in E6a, we may replace
f by (nw)’ and g by (n'w)’, where w: 1 - C4 x CB Now, regarding w as an
indeterminate arrow, we have

Law), (m'w) Jic 4 p = (mw)’.

By functional completeness, w may be eliminated from this equation.
Writing 2 =1+ 1, we may think of arrows p:1 -2 as propositions or
truth-values. In particular, we put

K =1, Ky =4
We shall also introduce the classical propositional connectives
13292, A,Vv,m,e12X2-52

(The arrows L and p A g should not be confused with the objects L and
A A B= A x B.) For example, we shall exploit functional completeness to
obtain the definition of p A q.

We want

pAT=p, pal=.1.
By functional completeness, we have
pAx=fx
for a certain arrow f:2— 2, where x: 1 — 2 is an indeterminate proposition.
Then
f=lfu.fKel=lpAT,pALl=[p L]
hence
prq=fq=[p,L]q.
In this fashion, we arrive at the following:

Definition 8.2. If p and ¢ are arrows 1 — 2 in a bicartesian closed category
and T = Kl,l’ .L = Kll,l,

a=[1,T1
prq=[p, 11q,

FRR—
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pv4q= [T,p]q,
p=>q= [Ta—]p]q’
p<>q=_[p,"plq.

Somewhat surprising at first sight is the following observation about
bicartesian closed categories.

Proposition 8.3. In a bicartesian closed category there is at most one arrow
A 0. Thatis, in an intuitionistic propositional calculus there is at most one
proof 4— L, up to equivalence of proofs.

Proof. In a bicartesian closed category Hom (4 x 0,C) * Hom (0 x 4,C) =
Hom (0, C*) is a one-element set. In particular, the composite arrow

|ij()

Ax0 —40 g Ax0

must be theidentity 1, ,. Now suppose there is an arrow f: 4 —0. Then the
top arrow of

S La

N
o
)

is the same as

aldad2, g Tao, 4

namely 1. Since also
04,410

is 14, it follows that 4 = 0.

We have shown that either Hom(4,0) = & or else A =~ 0, in which case
Hom(A4,0) =~ Hom(0, 0) consists of a single element.

Proposition 8.3 tells us in particular that it is futile to try and define
‘Boolean categories’, that is, bicartesian closed categories in which the
obvious arrow A4 — (L <=(L <= A)) is an isomorphism. Up to equivalence of
categories, there are no Boolean categories other than Boolean algebras.
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Exercises
1. Establish the following isomorphisms in any bicartesian closed category:
A+0=A, Ax0=0, A°x1;
A+BxB+A4, (A+B)+C=A+(B+C);
(A+B)x Cx(AXxC)+(BxC), AB*Cx A48 x AC.

2. Write down explicit equations between arrows to replace E5 and E6, that
is, eliminate f, g and h.

3. Give a detailed justification for Definition 8.2, as was done for P A qinthe
text.

4. What can be said about those objects 4 of a bicartesian closed category
for which 04 = 0?

9 Natural numbers objects in cartesian closed categories

A natural numbers object in a cartesian closed category .,
according to Lawvere, consists of an initial object

1 LN SN

f

in the category of all diagrams 1 Laliging. This means that, for all
such diagrams there is a unique arrow h: N — A such that

h0=a and hS=fh,

as is illustrated by the following commutative diagram:

0 S

1
4
i
=

>
=~

Y
Mmoo
P

a S

Sometimes we merely wish to assert the existence of , never mind its
uniqueness. Then we shall speak of a weak natural numbers object. Cartesian
closed categories with a weak natural numbers object have been called
‘prerecursive categories’ by Marie-France Thibault. (See Exercise 2 below.)

For example, in Sets, the set N = {0, 1,2,...} of natural numbers together
with the successor function S(x) = x + 1 forms a natural numbers object.
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More generally, all toposes considered, in Part II have natural numbers
objects.

If ILN —S—>N is a weak natural numbers object, we shall write

h=J (a,f). Thus

J sHom(l, A) x Hom(4, A)— Hom(N, A)
satisfies the equations

Jaa, f0=a, Ja,f)S=1Jaf)

Proposition 9.1. If the cartesian closed category .« has a natural numbers
object (weak natural numbers object) and if x:1— 4 is an indeterminate
arrow over &, then the cartesian closed category =/[x] has the same
natural numbers object (weak natural numbers object).

Proof. A short conceptual argument goes as follows. A (weak) natural
numbers object in & gives rise to one in the slice category <//A, hence in
/[ x], which comes with a full and faithful functor K,: #/[x]— «//A. For
the more meticulous reader, we shall now give a detailed computational
proof.

First, assume the existence of a weak natural numbers object in <. Let
p(x):1—>B and ¢(x): B— B be given polynomials in o/[x]. We seek a
polynomial y(x): N — B such that

x(x)0 = B(x), 1(x)S = @(x)x(x).

In view of functional completeness, these equations involving x are
equivalent to the following equations not involving x:

KxeA(X(x)o) = KxeAﬂ(x)’ KxeA(X(x)S) = KxeA((p(x)X(x))'

Writing ,
. KeeaB(x)=b:Ax1-B, k,0(x)=f:AxB—-B,
we seek
KeeaX(X)=h:AXxN—-B
such that

h{mn,0n'>=b, h{m,Sn'>=f<{mh).
With b and f we may associate b’: 1 — B4 and f': B4 — B given by
b =(b{n',np)*, ['=(Kne))* '
Then we may find #": N — B4 such that
Wo=b, WS=fW,
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as is illustrated by the following diagram:

0 N S N
l i
' i
! I
: W ih
|
|
| |
*A 'A
> B
% B 7

Now put h=¢{h'n’,n), then routine calculations show that
h{m,0n'>=b, h{m,St')=f{mh},

as required.

If we have a natural numbers object in <7, not just a weak one, then the
arrow h': N — B* is uniquely determined by the equations 0 =)' and
H'S =f"l. From this it easily follows that h is also uniquely determined by
the equations it satisfies. For we may calculate A’ in terms of h as follows:

(W', mp)* = (e<hm,m)y{n', m))*
=(e{Wmn'H)*
=M,
and then transform the equations satisfied by A into the equations satisfied
by K.
In what follows we shall write, for indeterminate arrows y:1 - B,v:1 — B?
and zz1-N,
JB(.V’ U!)Z = 1B<y’ U,Z>,
where (y,v,z) is short for {{y,v>,z).

Corollary 9.2 A weak natural numbers object in a cartesian closed

category is given by an object N and arrows 1 ﬂ»N i>N and I
(B x B®%) x N - B, for each object B, satisfying the identities

Ig<y,0,0> =y, I1p<y,0,52) =0/ 1p<p,0,2),
where the subscripts y,v,z on the equality symbol have been omitted.

Proof. We use Proposition 9.1 with A =B x B%. Adjoining a single
indeterminate x:1-— A is equivalent to adjoining two indeterminates
y:1—>B, and v:1 - B5,
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Corollary 9.2 may also be stated in terms of an arrow N — (B%)®")in place of
Iy.

Exercises

1. If a cartesian closed category has a natural numbers object, then this is
unique up to isomorphism.

2. Determine all weak natural numbers objects in the category of sets.
3. Carry out the routine calculations mentioned in the text to show that
h{m,0n'y=b, h{mSn')>=f{mhd.

4. Show that a natural numbers object in a cartesian closed category is
equivalent to the following condition: for each g: 4 — B and f:B— B there
is a unique k: N x 4 — B such that the following diagram commutes:

00,4, 1, Sx1
A AVN A A

L
P4
N

e — e e = X

k

=

X
|
|
1
|
|

5

g f

The same assertion without uniqueness holds for a weak natural numbers
object. This suggests how to define (weak) natural numbers objects in
cartesian categories which are not cartesian closed.

5. Show that, if a cartesian closed category < has a (weak) natural numbers
object, then so does o/A for each object 4 of o.

6. Verify the remark in the proof of Proposition 9.1 that, if A is an object of a
cartesian closed category ¢ and x: 1 - A an indeterminate arrow, there is
a full and faithful functor K,: o/[x] - o//A.

7. (Lawvere) Given a category ¢, let s#"°°P be the category whose objects are
‘endomaps’ f: A — A and whose arrows are commutative squares.
There is an obvious forgetful functor U: o7 o7,

(a) Show that s7'°°" is equivalent to o™, where N is regarded as the free
monoid on one generator.

(b) Assuming that <7 is cartesian closed, show that U has a left adjoint F if
and only if .« has a natural numbers object. (Hint: In one direction
define F(4)= S x 1,: N x A~ N x A and use Exercise 4 above. In the
other direction consider F(1).)
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8. Consider the cartesian closed category of limit spaces (Part 0, Section 7,
Example 7.8). Show that the natural numbers object is the set N of natural
numbers with the ‘discrete’ convergence structure: a sequence {x,|neN}
converges to xe N if it is eventually constant with value x.

10 Typed A-calculi

The purpose of this section is to associate a language with a
cartesian closed category with weak natural numbers object, which will be
called its ‘internal language’. The kind of language we have in mind will be
called a ‘typed A-calculus’ for short, although it might be known from the
literature more fully as a ‘typed Ay-calculus with product types (surjective
pairing) and iterator’. This association will turn out to be an equivalence
between appropriate categories.

A typed J-calculus is a formal theory defined as follows. It consists of
classes of ‘types’, ‘terms’ of each type, and ‘equations’ between terms which
are said to ‘hold’, all subject to certain closure conditions. We shall write
aeA to say that a is a term and is of type 4; the symbol € belongs to the
metalanguage.

(a) Types: The class of types contains two basic types and is closed
under two operations as follows:

(al) 1 and N are types (these are the ‘basic’ types).

(a2) If A and B are types so are A x B and B,

There may be other types not indicated by (a1) and (a2) and there
may be un-expected identifications between types.

(b) Terms: The class of terms is freely generated from variables and
certain basic constants by certain term forming operations as
follows:*

(b1} Foreach type 4 there are countably many variables of type A, say
xfed (i=0,1,2,...). We shall hardly have occasion to refer to a
specific variable, instead we shall frequently use the phrase ‘let x be
a variable of type A’, abbreviated as ‘xe4’.

(b2) =*el.

(b3) If acA,beB and ceA x B, then (a,b)eA x B, n,z(c)eA and
7y glc)eB.

(b4) If feB* and aeA, then g5 4(f, a)eB.

(bS) If xeA and @(x)eB, then 4,.,¢(x)eB*.

{(b6) OeN; if neN, then S(n)eN.

(b7) If acA,he A* and neN, then I ,(a, h,n)e A.

* There may be other constants and term forming operations than those specified.




Typed A-calculi : 73

We shall abbreviate &5 ,(f,a) as f’a (read: f of @’) when the type
subscripts are clear from the context. There may be other terms not
indicated by (b1) to (b7). Intuitively, &5 , means evaluation, {— ,—~» means
pairing and A,.,¢(x) denotes the function X = p(x). A, acts like a
quantifier, so the variable x in A, ¢(x) is ‘bound’ as in V,_, ¢(x) or
_[,, f(x)dx. We have the usual conventions for free and bound variables and
when it is permitted to substitute a term for a variable. The term a is
substitutable for x in ¢(x) if no free occurrence of a variable in a becomes
bound in ¢(a). A term is ‘closed’ if it contains no free variables. We usually
omit subscripts in 7, g(-), I ,(-,~,-) etc.

(c) Egquations:

(c1) Equations have the form a 5 a’, where X is a finite set of variables,
aand a’ have the same type A, and all variables occurring freelyin a
or a’ are elements of X.

(c2) The binary relation between terms g, a’ which says that a 5 a’ holds
is reflexive, symmetric and transitive and it satisfies the rule when
X < Y thenifa 5 b holds one may infer that a 5 b holds, which will
be abbreviated:
azb
asb

It also satisfies the usual substitution rules for all term forming
operations, in particular the following:

agb Pz, @' (%)
f!a f’b 'q'xeA(p(x) AxeA(pl(x)

from Wthh the other substitution rules follow.

All these are obv1ous substitution rules, except perhaps the rule involving
4, which decreases the number of free variables.
(c3) The following specific equations hold:
a3 * for all ael;
n({a,b))5a for all acA,beB,
w'({a,b>)5 b for all acA,beB,
“Kmle),mw'(c)) ¢ forall ced x B;
Area®(x)fa s o(a) for all ac 4 which are substitutable for x,

Awea(f'%)5 f for all feB*, provided x is not in X
(hence does not occur freely in f);
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I(a,h,0) 5 a, for all acA, he A*
I(a,h,S(x)) = h’I(a, h,x); provided x is not in X (hence does not
Xuix}
occur freely in a or h);

Aeea®(X) T Avea@(x), if X' is substitutable for x in ¢(x) and x’ is
not free in ¢(x).

There may be other equations not indicated by (c1) to (c3).
The last equation listed under (c3) may be omitted if we are willing to
identify terms which differ only in the choice of bound variables.

One of the rules listed under (c2) allows us to pass fromas btoa = b,
Xuix}

even when x is not in X . Under certain conditions one can go in the opposite
direction, as we shall see. Of course, if this were always the case, there would
have been no point in putting the subscript X on the equality sign.

Proposition 10.1. Inany typed A-calculus, one may infer from ¢(x) = (x)
Xu{x}

that ¢(a) 3 Y(a) for any ac A, provided x is not in X and all variables

occurring freely in a are elements of X.

Proof. From (x) = Y(x) wWe infer A, 0(x)% Awa¥(x) hence
Xy

{x}
Awea®(x) a5 A 4¥(x)’a, using (c2). In view of (c3), we then obtain

@(a) % Y(a).

Corollary 10.2. If fand g do not contain free occurrences of the variable x

of type A, then from f = g we infer / 5 g, provided there exists a term a of
Xuix}

type A such that all variables occurring freely in a are elements of X.
Proof. 1f x is not already in X, this follows from Proposition 10.1.

Unfortunately, it may happen that A4 is ‘empty’ that is, no closed term of
type A exists (see examples 10.5 and 10.6, below). On the other hand, if there
are closed terms of each type, the proviso of Corollary 10.2 is always
satisfied. This is the case, for example, in the ‘pure typed A-calculus with
weak natural numbers object’ to be discussed presently. In such a situation
the subscript X on = is redundant and one may replace = by just =.
Sometimes one may argue differently, but with the same result. Suppose

S/ r; ‘g, then f/x -—; }g’x, hence A, 4(f'X) 5 A,c4(gx). In view of (c3), it
Xulx Xuix

follows that f 5 g. The assumption here is that f and g have type B4, We
shall sum this up:

Proposition 10.3. 1 f and g are of type B* and if xc A4 does not occur freely
in f or g, then from f = g one may infer f = g.
Yurdx}
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We shall consider three examples of typed A-calculi with weak natural
numbers object.

Example 10.4. Suppose there are no types, terms and equations other than
those indicated by the closure rules (and also no nontrivial identifications
between types), then we obtain the pure typed A-calculus with weak natural
numbers object called Z,,.

Example 10.5. Given a graph ¥, the A-calculus A(%) generated by ¥4 is
defined as follows. Its types are generated inductively by the type forming
operations (~) x (~) and (-)") from the basic types 1, N and the vertices of %
(which now count as basic types). Its terms are generated inductively from
the basic terms x#,0 and * by the old term forming operations (-,-», n(-),
(), &(—); Ageal-), S(-)and I(—,—,~) together with the new term forming
operations: if aeA then faeB, for each arrow f: 4— B in 4. Finally, its
equations are precisely those which follow from (c1) to {c3) and no others.
Note that there are plenty of empty types, for instance, all the vertices of 4.
Clearly, Example 10.5 includes 10.4 if ¢ is the empty graph.
We now come to the principal example of this section.

Example 10.6. The internal language L(s/) of a cartesian closed category
& with weak natural numbers object is defined as follows. Its types are the
objects of o7, with 1, N, A x B and B* having the obvious meanings. Terms
of type A are those polynomial expressions ¢(x,,...,x,):1—A in the
indeterminates x;:1—A4; which are obtained from variables, namely
indeterminates, and basic constants, namely arrows 1 — A in ¢, by the term
forming operations:

al—-A bl1-B al-A4 o(x:1-B
{a,b}:1-Ax B’ fa:1-B A, ,.0(x):1->BY

where f:A—B and A, ,0(x)= "k, ,0(x){1,, O, as in the proof of
Corollary 6.2. Moreover, we write * for O, n, g(c) for n, gc, €5 4(f, a) for
eg.4 {f,a), etc. Finally, if a and b are polynomial expressions whose free
variables are in X, a 5 b is said to hold in L («) if a < b as polynomials in
A[X].

We shall no_w’introduce morphisms ®: & — &’ of typed Ai-calculi, to be
called translations.

(d1) @ sends types of &£ to types of £ and terms of & to terms of &’ so
that if ae 4, then ®(a)e®(A); but we insist that if a is closed, so is
®(a) and that @ sends the ith variable of type A4 to the ith variable of

type ®(A).
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(d2) @ preserves the specified type operations on the nose, for example:
O(1)=1, O(4 x B)=D(A) x D(B),...;

and the specified term forming operations up to ‘equality holding’,
e.g. the foillowing equations hold in #"

B( 4 p(c)) = nQ(A),O(B)((D(C)); DA e 40(x)) = l@(x)eou)d)(‘l’(x))-
(d3) Moreover, ® preserves equations:

ifag b holds in .# then ®(a) = ®(b) holds in &".
[P ¢}

In view of (d3), ® really acts on equivalence classes of terms (modulo the
equivalence relation described in (c2)). We shall say that two translations
are equal if they have the same effect on such equivalence classes. Thus
® =¥ provided ¢(a);{)‘l‘(a’) holds whenever a % @’ holds.

We thus obtain a category A-Calc whose objects are typed A-calculi and
whose arrows are translations.

Let Carty be the category of cartesian closed categories with weak
natural numbers object and cartesian closed functors preserving weak
natural numbers objects on the nose. The proof of the following is left to the
reader.

Proposition 10.7. Let L(s«/) be the internal language of &/ and, for any
morphism F: o/ — o', let L(F) be defined by L(F)(4) = F(A), L(F)(x,) = xi,
L(F) (¢p(X)) = Fx(e(X)), where x; is the ith variable of type F(A) and Fy is
the unique arrow in Carty such that the following diagram commutes:

AH)-= = =S5 ~ o' [X]

7 o

Then L is a functor from Carty to A-Cale.

%, is aninitial object in A-Calc, that is, for any typed A-calculus & thereisa
unique translation %, — %. In particular, for any & in Carty there is a
unique morphism %, — L(«/). This may be called the interpretation of %,
in /.
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The reader may have noticed that the languages discussed in this section
‘may be proper classes in the sense of Godel-Bernays. If necessary, one may
work in a set theory with universes, in which ‘classes’ are replaced by ‘sets in
a sufficiently large universe’.

Exercises

f. Verify that A: Grph — A-Cale (see Example 10.5) is a functor left adjoint to
the obvious ‘forgetful’ functor ¥: A-Cale — Grph. (The underlying graph of
a A-calculus has as vertices the types and as arrows A — B suitable
equivalence classes of pairs (x, (x)), where ¢(x) is a term of type B with no
free variables other than x, which is of type A4.)

2. By a classification we mean two classes and a mapping between them:
Entities —_ Types

The mapping assigns to each entity its type, and we write ‘ae A’ for ‘the
type of a is A”. Morphisms ® between classifications are defined in the
obvious way:aeA4 should imply ®(a)e®(4). The category of small
classifications is thus equivalent to Sets?, where 2 is the category consisting
of two objects and one arrow between them. Show that the obvious
forgetful functor from A-Cale to the category of classifications has a left
adjoint.

3. f % is a Heyting algebra considered as a cartesian closed category, show
that there may be unexpected identifications between types in L(%).
4. Verify that L{.) in Example 10.6 is a typed A-calculus.

11 The cartesian closed category generated by a typed A-calculus

To show that the functor L in Section 10 is an equivalence of

categories we shall obtain a functor C in the opposite direction.

Given a typed A-calculus .#, we construct a cartesian closed category
C(£) with weak natural numbers object as follows:

The objects of C(Z) are the types of &.

The arrows A — B of C(%) are (equivalence classes of) pairs (xe 4, ¢(x)),
with x a variable of type A and ¢(x) a term of type B with no free variables
other than x. (Think of the function x - ¢(x).)
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Equality of arrows is defined by: (xe 4, ¢(x)) = (x'e 4, y(x')) if and only if
@(x) = Y(x) holds, where = abbreviates =

The identity arrow 4 — 4 is the pair (xe 4, x).

The composition of (xe A, ¢(x)): A~ B and (yeB, Y(y)): B— Cis given by

(xeA, Y(p(x))): A— C, ¢(x) having been substituted for y in ¥(y).
The cartesian closed structure of C(%) is obtained as follows:

Oa=(xe4, %),
48 =(z€4 x B,n(z)),
yp= (264 x B, 7'(2)),
((zeC, 0(2)),(zeC,¥(2))) = (26 C, { 9(2), Y(2) )),
(ze4 x B, 2(2))* = (x€ 4, 4,ep (<X, yD)),
&c,a = (yeC* x A, ec 4(n(y), w'(¥))).
C(#) has a weak natural numbers object:
0=(xel,0),

S =(xeN, §(x)),
Iy =(we(B x B?) x N, I(n(n(w)), #'(n(w)), '(w))).

It is easy to make C into a functor A-Cale - Carty. Indeed, suppose
O: L — & is a translation, define C(®): C(#) - C(") as follows:

If A is an object of C(&), that is, a type of &, C(®) (4) = ®(A) is the
corresponding type of .#”, hence an object of C(%").

If f=(xeA, o(x)) is an arrow 4 — B in C(%), that is, o(x) is a term of
type Bin &, C(®)(f) = (P(x) € ©(A4), ©(p(x)))-is the corresponding arrow
®(4)—» D(B) in C(L).

To sum up:

Proposition 11.1. C is a functor from A-Cale to Cart,,.

Instead of adjoining an indeterminate arrow x: 1 — A4 to the cartesian closed
category C(%), one may adjoin a ‘parameter’ x of type 4 to the language &.
To be precise, if & is a typed A-calculus and x is a variable of type A, one
may form another language #(x) by adjoining the parameter x as follows:

<Z(x) has exactly the same types as % and also the same terms, except
that x is no longer counted as a variable. In other words, the closed terms of
Z(x) are terms ¢(x) in £ which contain no free variables other than x. In
the same spirit, 5 in #(x) means = in % just make sure that x is not

Xufx}
in X.
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Some dictionaries define a ‘parameter’ as a ‘variable constant’. For us it is
a variable kept constant.
Proposition 11.2. C(¥)[x] = C(ZL(x)).

Proof. We show that C(#(x)) has the universal property of C(¥) [x] (see
Section 5):

C(Le)_

H \\ b: 1--F(A)

C(¥)

The indeterminate x:1—>4 is defined by (yel, x). H, is C of the
inclusion of % into #(x), which may necessitate some relabelling of
variables. Suppose F: C(£)— ./ is any cartesian closed functor preserving
the weak natural numbers object, and given any arrow b: 1 — F(4) in <,
we claim that there is a unique such functor F': C(#(x)) - < such that
F'H,=F and F'(x)=b.

Indeed, put F'(B) = F(B) for each object B of C(2), that is type in .&.
Suppose f = (yeB, ¢(x,y)) is any arrow B— C in C(Z(x)), that is, o(x,y)
is any term of type C in & with free variables xe A and yeB. Define F "f).
F(B)— F(C) in o as follows:

First note that ¢(x, y) zl/(y)f x holds, where y(y) is A,_,¢(x, ). Thus

f=¢ec 4{g,x O,,),where g = (yeB, ¥(y)): B> C4 in C(#). Now define
F'(f) = epic),ray<F(9); b Oy -

That this definition has the right property is easily seen. Moreover, it is
clearly forced upon us, since F'(g) = F(g) and F'(x) = b. We now establish
the main result of this section.

Theorem 11.3. The categories A-Cale and CartN are equivalent, in fact
CL=zid and LCx=id.
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Proof.’ (i) Consider the natural transformation &: CL —id defined for each
& in Carty by &(f): CL(of) — o as follows:

An object of CL(«) is a type of L(«), that is, an object of .«/. Put
gAY A) = A.

An arrow B— C in CL(#) has the form f = (yeB, ¢(y)), where ¢(y)eC
in L(«/). Put &() (f)= the unique arrow g: B— C such that gy 5 o
using functional completeness.

It is easily verified that ¢() is an arrow in Carty. Moreover, in view of
functional completeness, it establishes a one-to-one correspondence
between Homgy,,, (B, C) and Hom,, (B, C). Thus &(«/) is an isomorphism.

(i) Consider the natural transformation #: id — LC defined for each % in
A-Cale by #9(&¥). & - LC(Z) as follows:

LW A) = 4;
LN p(xy,...,x,))=(zel, p(x,,...,x,)) in C(&L(x1s-.. 5 X))

Note that we have identified C (%) [x,, ..., x,] with C (Llxy,...,x,))asis
justified by Proposition 11.2. It is easily verified that 7(.%#) is an arrow in -
Calc. To see that n(#)is an isomorphism, construct its inverse, which sends

(ze1, (z)) onto e(*).

Corollary 114. C(¥,), the free cartesian closed category with weak
natural numbers object generated by the pure typed A-calculus, is an initial
object in Carty.

The initial object of Carty may also be obtained by the methods of
Section 4. ,

We end this section with a remark concerning the problem of how to
interpret languages in categories. In the present context this is explained
quite easily: an interpretation of a typed A-calculus % in a cartesian closed
category «/ with weak natural numbers object is just a translation & —
L(s/). By Theorem 11.3 (or just by adjointness, see Exercise 3 below), this is
essentially the same as a cartesian closed functor C(ZL)— . As already
observed after Proposition 10.7, %, has a unique interpretation in any
cartesian closed category with weak natural numbers object.

Exercises

1. Show how to obtain the free cartesian closed category with a weak
natural numbers object generated by any classification. (See Exercise 2 of
Section 10.)

2. In the spirit of this section, find a new method for constructing the free
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cartesian closed category with a weak natural numbers object generated
by a graph.

3. Show that C is left adjoint to L with adjunction 5 and .
4. Prove that I5{<{y,v>,x)> =(tel, I(y,v,x))in C(L(y,v,x)).

12 The decision problem for equality

Let us look at the cartesian closed category with weak natural
numbers object freely generated by the empty graph, as in Section 4, but
with weak natural numbers object, or as in Exercise 2 of Section 11. Since
both are initial objects in Carty (see Corollary 11.4), they are isomorphic.
We shall write €, for this initial object. €, is of interest to logicians, as it
gives a version of Godel’s primitive recursive functionals of finite type, and
to categorists, as it is related to the so-called ‘coherence problem’ for Cart,,.
This problem asks when diagrams in a category commute or, equivalently,
when two arrows between two given objects are equal. Indeed if one wants
to compute Hom(4, B) in %, two problems arise:

(I) Find an algorithm for obtaining all arrows 4 — B in €, (that is, all
proofs A — B in the corresponding deductive system).

(I) Find an algorithm for deciding when two arrows A4 — B are equal
(better: when two proofs describe the same arrow).

We shall here address ourselves to the second problem. Looking at the
proof of the distributive law

fr9>h={fhgh)
for cartesian closed categories given in Section 3, we note that both sides
must be expanded to be shown equal. It seems easier to consider %, as given
by C(%,) rather than as constructed by the method of Section 4.

Two arrowsf, g: A — Bin %, are thus given by two terms @(x) and (x) of
type B in %, with a free variable x of type 4. We want to decide whether
¢(x) 5 ¥(x) holds, or equivalently, .. ,0(x) = A, ,¥(x) holds in Z,,. Let us
call two terms g and b of ¥, whose free variables are contained in X
convertible if the equation a 5 b holds in Z,,. Terms of .#, are, of course,
defined inductively, as the reader will recall. Thus Problem (II) has been
reduced to deciding when two closed terms of type B in £ (x) or &, are
convertible. In view of the fact that there are closed terms of each type in
<o, we need not distinguish between = and =, as was pointed out in
Section 10.

Actually, we shall solve the decision problem for convertibility not in .Z,
but in £, which is like £, but without type 1. In other words, Z, is a
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variant of pure typed A-calculus in which the only basic type is N. This may
be done without loss in generality for the following reason: a closed term of
type Bin £ or £ o(x) corresponds to an arrow 1 — Bin %, or %, [ x], where
the object B is canonically isomorphic to either 1 (which case may be
dismissed as uninteresting) or an object whose inductive construction does
not contain 1 at all. This is so in view of the canonical isomorphisms
Cx1=Cx=1xC, C'=C and 1°= 1. The last mentioned isomorphism
presupposes that Hom(1, C) is not empty, which is the case in %, as there
are closed terms of each type in %,.

‘To solve the decision problem for convertibility of terms in &, we shall
replace convertibility by a finer relation, that of reducibility. However, it
becomes tedious to distinguish between terms which differ only in the
choice of bound variables. We shall call two such terms a and @’ congruent
and write a=4'.

First we shall define a relation a > ' between terms of type 4 in Lo Or
Z'p (actually, congruence classes) and say ‘a basically reduces to a”. There
are eight basic reductions; in each of the basic equations of typed A-calculus
the left hand side basically reduces to the right hand side:

Bl a>x (acl,a # *); (not used in &)
B2. n({a,b})>a (aeA, beB),

B3. n'({a,b))>b (acA, beB);

B4. {nfe),n'(c)> >¢ (ced x B);

BS.  Awea@(x)a>¢(a) (acA);

B6. Aea ffx)>f (feB4,x not free in f);

B7. I(a,h,0)>a (ae A, he A%

BS. I(a,h,S(n)) > h' I(a, h,n) (acA,he A%, neN).

We shall say that b reduces to b’ in one step and write b 5 b’ provided b’ is
obtained from b by replacing a single occurrence of a subterm ainbbyd
where a > a'. For example,

AreaSTRX YD) YD 3 Axea{%, YD
because n({x,y>) > x.
We shall say that b reduces to b’ in n steps and write b > b’ provided
bEbo?bl?m >b,=V.
In particular, b > b’ means that b = b'. We shall also say b reduces to b’ and

write b > b’ prov1ded there is a natural number n such that b >b.
The convertibility relation between terms is of course the smallest

s

s
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equivalence relation containing >, that is, the equivalence relation
generated by >. This takes a particularly simple form in view of the
following:

Proposition 12.1. (Church-Rosser Theorem). In %}, ifb > cand b > d then
there exists a term e such that c> e and d > e.

We postpone the proof of this until later and only note its consequence:

Corollary 12.2. Tfband b’ are terms of type B, thenb = b' holdsin &£, if and
only if there is a term deB such that b>d and b > d.

Proof. 1t suffices to check that the relation between b and b’ which holds
whenever there exists d such that b > d and b’ > d is an equivalence relation.

We shall call a term b irreducible, or in normal form, if there does not exist a
term b’ such that b > ', that is, if for no subterm a of b there exists a’ with
a> a'. Another way of saying this is that b > b’ implies b = b’ for all terms b'.

Remark 12.3. In £ there are irreducible closed terms x(A) of each type A,
defined inductively as follows:

k(1) = *,k(N)=0,1(A x B) = {k(A), k(B)>, k(B4) = 1,_,(B).

We shall leave the easy verification of this to the reader and pass on to some
further obvious consequences of the Church—Rosser Theorem.

Clearly, a sufficient condition for b = b’ to hold in £, or %, is that b and
b’ reduce to congruent irreducible terms (or have congruent normal forms).
Call b normalizable if there exists an irreducible b* such that b > b*.

Corollary 12.4. In &, if b is normalizable, then its normal form is unique
up to congruence. Two normalizable terms are convertible if and only if
they have congruent normal forms.

One might think that this gives a decision procedure for convertibility of
normalizable terms: reduce each to normal form and see whether these
irreducible terms are congruent. Unfortunately, there is still a problem of
how to reduce a given term to normal form. While one sequence of one-step
reductions may end up with an irreducible term after a finite number of
steps, it is conceivable that another sequence of one-step reductions will
never terminate, and we may have no way of telling beforehand whether we
are on the right track.

We shall call a term bounded (some authors say ‘strongly normalizable’) if
there is a number n so that no sequence of one-step reductions has more
than n steps. The bound of t, written bd(t), is the smallest such n. For
example, the bound of an irreducible term is 0. Clearly, if a term is bounded,
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every sequence of one-step reductions will terminate after a finite number of
steps. (The converse of this statement is also true, in view of Konig's
Lemma; but we shall not need this.) In particular, every bounded term is
normalizable. Note that if ¢ > t' then bd(t) > bd(t).

We thus have an algorithm for deciding convertibility of two bounded
terms in £ just reduce both of them at random until irreducible terms are
reached and then compare these to see whether they are congruent.

We shall prove in Section 13 that the Church—Rosser Theorem holds for
bounded terms and in Section 14 that all terms are bounded. We shall thus
obtain an algorithm for deciding convertibility of terms in %}, and therefore
for deciding equality of arrows in €, = C(%,).

For the moment, let us just make an observation that will be useful later.

Lemma 12.5. Suppose ¢(x) is a term in .%#,, with no free variables other than
x of type A and a s a closed term of type A such that ¢(a) is bounded. Then
@(x) is bounded.

Proof. If ¢(x) > ¥(x) by virtue of B2 to B8, then surely also ¢(a) > vla).
However, when the basic reduction x > is used, then @(*) = y(*) arc the
same terms. This unfortunate exceptlon complicates the proof somewhat.
Still, o(x) = y¥(x) implies ¢(a) = Y(a). Consider the set I of all terms Y(x)
such that ¢(x) > y(x). For any y/(x) in I it thus follows that ¢(a) > y(a).
Since ¢{a) is bounded, the set A of all terms b such that @(a) > b is finite.
(Remember that we do not distinguish between congruent terms, that is,
terms that differ only in the choice of bound variables.) Moreover, for each b
in A, the set T, of all y(x) such that y(a) = b is finite. Hence I’ < U I'yisalso

beA
finite, and therefore (x) is bounded. '

Exercises

1. Show that all irreducible closed terms of £, have the form x, $%(0), {a,b)
(where a and b are necessarily irreducible) or 1,.,(x) (where ¢(x) is
necessarily irreducible). Thus closed terms of the form n(c), 7'(c), f/a or
I{a, h,n) are never irreducible.

1

2. Show that {a,b) is bounded if and only if @ and b are bounded.

13 The Church—Rosser theorem for bounded terms

In this section we shall prove the Church-Rosser Theorem
(Proposition 12.1) for the special case when b is a bounded term of &Ly or,
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more generally, of £, but without any subterm of type 1 other than *. As
we shall prove in Section 14 that every term is bounded, this will establish
Proposition 12.1.

Proposition 13.1. 1f b is bounded and b >cand b>d, then thereisa term e
such that c2eand d>e.

Proof. We argue by induction on the bound of b and reduce the problem to
the case m<1,n<1. The case m=1, n=1, is handled by Lemma 13.2
below. If m =0, or n =0, there is nothing to prove.

So suppose m> 1 or n> 1. We then have

b?c1 > ¢ b?d1 > .4,

m—1
; where m—1>0 or n—1>0. By Lemma 13.2 below we find e; so that
_ ¢;>e, and d; >e;. Now ¢, and d, have smaller bound than b; so, by
inductional assumption, we can find ¢, and d, so that c>c,,e;, >c,,
. e; = d,andd > d,. Again, e, has smaller bound than b; so we can find e such
that ¢, > e and d, > e. By transitivity, czeand d=e.
This proof is illustrated by the following diagram:

7N X
NN

b

N
s

7 \,@
N \

It remains to prove the lemma.

Lemma 13.2. Ifb >c and b > d then there is a term e such that ¢ > ¢ and
d>e.
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Proof. The reduction of b to ¢ depends on the basic reduction of a subterm
a of b to @, and the reduction of b to d depends on the basic reduction of a
subterm f of b to f'. If a and f do not overlap, we have

=...a...f... ,
=...da...f...,
=...a..f..

If we now take

e=...da...f...,

then clearly c ze and d > e.

If the subterms a and f of b do overlap, one of them must be a subterm of
the other, say f is a subterm of a. Without loss in generality, we may assume
that a = b. So b reduces in two ways: an ‘outer’ reduction on the whole term
b and an ‘inner’ reduction on the subterm f. Thus we have achieved a
reduction of the problem to the following special case:

Ifb >c (outer reduction) and b > d (inner reduction) then there is a term e
such that ¢ >e and d > e. (Recall that b > ¢ means that there is a basic
. reduction of b to ¢.)

There are now eight cases for b >c according to the eight basic
reductions in Section 12. The following diagrams illustrate what we do in
these eight cases. We always put the outer reduction on the left and the
inner reduction on the right.

~

*

B2. n({a, b)) n({n(c), ©'(c)))
|
a

n(a', b)) m(e) (c)

\Gl/\/

n(c)

i
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In the first subcase of B2, the inner reduction takes a to g "(whence b’ = b) or
bto b’ (whence a’ = a). In the second subcase of B2, the inner reduction takes
{a,b) to ¢, provided a = n(c) and b = n'(c).

B3. Similar
B4. {me), m'(e)y {n(a, b)), m'({a, b)))

c/ }n(c)) <ab>/ >a b))
\ / \(a’ b>

In the first subcase of B4, the inner reduction takes ¢ to ¢’. In the second
subcase of B4, the inner reduction takes 7(c) to a, provided ¢ =(a,b).
There is another subcase of B4, not shown, in which the inner rcductxon
takes 7'(c) to b.

BS.
xeA <P(X) a zeA (fjx)‘a\
(p(a)\ e \ /fla

P'(a’ )
In the first subcase of B5, the inner reduction takes (p(x) to @'(x) (whence
a'=a) or a to a (whence ¢'(x) = ¢(x)). Note that if o(x)> ¢'(x) then
¢(a) > ¢'(a). In the second subcase of BS, the inner reduction takes Axeq @(x)
to f, provided ¢(x) = f'x and x is not free in f.

Area (') Aiea (kyeAQ
a:eA (f*x)y - Ayea (p(y) .teA P(x)

/ AN

xeA ®(x)

/ \’
\



88 Cartesian closed categories and A-calculus

In the first subcase of B6, the inner reduction takes f to f”. In the second
subcase of B6, the inner reduction takes f x to ¢(x), provided f = A, ,0().

/ \

Ka', i, 0)

\ al /

'Here the inner reduction takes a to @’ {whence h' = h) or h to i’ (whence
a =a).

B7. Ka, h, 0)
a

B8. Ka, h, S(n))

PN

h'Ka, h, n) Ka', i, S(n))

N

KiKa', W, n")

Here the inner reduction takes a to a’ (whence ¥ =handn'=n)orhto i
(whence a'=a and n' =n) or n to n’ (whence @' =a and h' = h).

The proof of Lemma 13.2 is now complete, hence so is the proof of
Proposition 13.1.

Exercise

(Obtutowicz). Show that the argument in case B4 breaks down if n(c) or
7'(c) is of type 1 and that the argument in case B6 breaks down if f/x has
type 1. In particular, show that the Church—Rosser Theorem fails for £,
by taking c or f to be a variable.

14 All terms are bounded

One wants to prove that all terms of &, are bounded. Clearly all
irreducible terms are bounded, in particular variables, 0 and *. We may list
the following partial results.
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Remark 14.1. ,
(1) <a,b) is bounded if @ and b are.
(2) m(c) and 7'(c) are bounded if ¢ is.
(3) Axea(x) is bounded if ¢(x) is.
(4) S(n) is bounded if n is.

Proof. We shall prove (1), for example, the others being similar. We argue
by induction on bd(a) + bd(b). Clearly, it suffices to show that ¢ is bounded
whenever {a,b) > c.If c = {(a’,b) witha Faorc={ab)withb>¥,cis
bounded by inductional assumption. The only other case is a = n(c),
b = 7'(c), but then ¢ is bounded because it is a subterm of a. |

Unfortunately, this kind of argument does not extend to terms of the form
b’a and I(a, h,n). Note that in the basic reductions

Aea®(X) a> (@), 1(a,h,S(n))>h’I(a,h,n)

the right hand side may be more complicated than the left hand side, -

We shall follow Tait and replace boundedness by an apparently stronger
notion, that of ‘computability’, which is defined by induction on types. We
first confine attention to closed terms.

Definition 14.2. A closed term c is computable provided one of the following
cases holds:
(i) cel or N and c is bounded;
(i) ceA x B and =n(c) and ='(c) are computable;
(ili) ceB“, cisbounded and ¢’ a is computable for all computable closed
acA.

Here are two immediate consequences of the definition.

Lemma 14.3. Assume ¢ and ¢ closed.

(1) If ¢ is computable, then ¢ is bounded.
2 If ¢ is computable and ¢ > ¢/, then ¢’ is computable.

- Proof. We shall prove (1) and leave (2) as an exercise, as it is never used.
The proof of (1) goes by induction on types. We need only look at the
case ce 4 x B. Since ¢ is computable, so is n(c)e 4, by Definition 14.2. By
inductional assumption, the result holds for A, hence 7n(c) is bounded.
Therefore c, being a subterm of n(c), is also bounded.

Lemma 14.4. (I) A closed term c is computable if one of the following three
cases holds:

(1) ¢=<(a,b) and a and b are computable;
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(2) c¢=24,49(x) and ¢(a) is computable for all computable closed
acA,

(3) c is neither of the above and, for all closed ¢/, if ¢ > ¢’ then ¢’ is
computable.

(IT) For all types C, k(C) is computable.

Proof. For the purpose of this proof only we shall make two definitions.
Call a closed term a pre-computable if it satisfied (1), (2) or (3) above. Call a
type C nice if all pre-computable ce C are computable. We may thus restate
(I) as:

(I') All types are nice.

Before proving this, let us make an observation:

(1) If C and all subtypes of C are nice then x(C) is computable.

‘Being a subtype’ is of course the transitive relation generated by: Aand B
are subtypes of A x B and B4,

Indeed, (II1) is easily shown by induction on the type C. By Definition
142, x(1)=%* and x(N)=0 are clearly computable, because they are
bounded. Moreover, k(4 x B) = (k(A),x(B)) is computable by (1} if x(A4)
and x(B) are, and k(B4) = 4, ,x(B) is computable by (2) if k(B) is, so that the
induction hypothesis applies.

As we are planning to prove (I'), (I) will follow immediately from (III). It
remains to prove (I), which we shall do by induction on types. To this
purpose, let us adopt the following assumption:

(A) All proper subtypes of C are nice and the closed term ceC is
pre-computable.

We wish to establish the following conclusion:
(C) ¢ is computable.

We shall look at the cases C = 1, N, A x B and B“ separately, but first let us
note this preliminary conclusion:

(P) ¢ is bounded.

Indeed, by assumption (A), ¢ satisfies (1), (2) or (3). In case (1), ¢ is bounded
by Remark 14.1 and Lemma 14.3, because a and b are bounded. In case (2),
it will follow from Remark 14.1 that ¢ is bounded if we show that ¢(x) is
bounded. Now x(4) is computable by the assumption (A) and (III).
Therefore, ¢(x(A)) is bounded by (2) and Lemma 14.3, hence o(x) is
bounded by Lemma 12.5. In case (3), ¢ is evidently bounded, because,
whenever ¢ > ¢, then ¢’ is bounded by Lemma 14.3.
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We are now ready to prove the conclusion (C). When C=1 or N,
computable means bounded, and so we refer to the preliminary conclusion
P).

Suppose C =4 x B. According to Definition 14.2, we must show that
n(c)eA and 7'(c)e B are computable, for example, the former. We shall
proceed by induction on bd(c). By assumption (A), 4 is nice, so we need only
show that n(c) is pre-computable. Since n(c) is neither a pair nor a A-term, we
only have to check (3).

So suppose n(c) > a', we must show that a’ is computable. There are two

cases. If ' =n{c) and ¢ > ¢, @' is computable by inductional assumption,
since bd(c')<bd(c). If @ =a and c=a and c={a,b), a' is computable
by (1). .
Next, suppose C = B4. According to Definition 14.2, we must show that
c‘aeB is computable for all computable closed ae 4, as we already know
that cis bounded by (P). We shall proceed by induction on bd(c) + bd(a). By
assumption B is nice, so we need only show that c‘a is pre-computable.
Since c’a is neither a pair nor a i-term, we only have to check (3).

So suppose cfa > b', we must show that b’ is computable. There are two
cases. If b’ =¢'fa with ¢ > or b'=c’d with a>a', b is computable by
inductional assumption, since bd(a’) < bd(a) and bd(c’) < bd(c). If b’ = ¢(a)
and ¢ = A, ¢(x), b’ is computable by (2).

We have thus established the conclusion (C) and the proof of Lemma 14.4
is complete.

Lemma 14.5. If ac A, he A* and neN are computable closed terms, then
I(a, h,n) is computable. '

Proof. We proceed by induction on bd(a) + bd(h) + bd(n) + a(n), where
a(n) is the number of occurrences of the symbol S in the normal form of n.
(Recall that n computable implies n bounded.) Since I(g, h, n) is neither a
pair nor a A-term, we need only check case (3) of Lemma 14.4.

So suppose I(a, h,n) > d; we must show that d is computable. There are
three cases. If d=I(d’,h,n) with a > a or d=I(a,W,n) with h > W or
d=I(a,h,n)withn > ', d is computable by inductional assumption, since
bd(a’) < bd(a), bd(h') < bd(h) and bd(n') < bd(n) but o(n)=0c(n). If d=a
with n=0, d is given to be computable. Finally, if d=h'I(a,h,m) with
n = S(m), we have o(m) < o(n) and bd(m) = bd(n), so I(a, h, m) is computable
by inductional assumption. Since h is given to be computable, d is
computable by Definition 14.2.

. We now extend the notion of computability to open terms.
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Definition 14.6. A term t = ¢(x,,...,X,), with no free variables other than
X1,...sX,, 18 computable provided, for all computable closed terms a4, ..., a,
of appropriate types, the closed term = ¢(a,,...,qa,) is computable.

Theorem 14.7. All terms of £, are computable, hence bounded.

Proof. We proceed by induction on the length of terms. For the constants *
and 0 and for all variables the result holds trivially. It remains to prove the
following six statements.

(1) If a and b are computable, so is {a,b).

Indeed, let @ and b be computable, then so is {a,5), by Lemma 14.4.
(2) 1If ¢ is computable, then so are n(c) and #'(c).

Indeed, let ¢ be computable, then so are n(¢) and #'(¢) by Definition 14.2.

(3) IffeB* and aeA are computable, then so is ffa.

Indeed, let f and a be computable, then so is f’d, by Definition 14.2 and
Lemma 14.3.

4 If o(x,xq,...,x,) is computable, so is 1., ¢(x,X1,...,X,).

Indeed, let @(x)= ¢(x,a,,...,a,) for computable closed a,,...,a, and
assume that @{a)eB is computable for all computable closed ae A. Then
A4 @(x) is computable, by Lemma 14.4.

(5) If neN is computabile, so is S(n).
Indeed, let 7 be computable, that is, bounded. Then so is S(7).

(6) If acA, he A* and neN are computable, then so is I(a, b, n).
Indeed, let @, it and 71 be computable. Then so is I1(a, h, 1), by Lemma 14.5.

The first person to prove Theorem 14.7 in essentially the generality given
here was R.C. de Vrijer. Our proof is closer to Tait’s original proof, but
depends crucially on an idea of de Vrijer, which is here embedded in
condition (3) of Lemma 14.4 and the use that is made of it.

Exercises
1. Prove (2) to (4) of Remark 14.1.

2. Prove (2) of Lemma 14.3.
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15 ‘C-monoids

A small category with one object is a monoid, that is, a semigroup
with a unity element. (See Part 0, Section 1, Example C2') If a small
cartesian closed category has only one object, it is a rather uninteresting
monoid. For, if 1 is the terminal object, Hom(1, 1) has only one element.
However, if we delete the terminal object, we obtain an interesting class of
monoids.

A C-monoid (C for Curry, Church, combinatory or cartesian) is a monoid
A with extra structure (r, 7', &, %, { »), where 7, 7, and ¢ are elements of .#
(nullary operations), (—)* is a unary operation and {(—,-) is a binary
operation satisfying the following identities: :
Cl. nla,b)=a,

C2. n'{a,b) =b,

C3. {me,m'c) =¢,

C4. eh*rn, ') =h,

Cs. ek, W' Yy =k, _

for all a, b, c, h and k. These are the axioms of a cartesian closed category

without terminal object, with the type subscripts erased.
~ We list some easy consequences of the above definition:

C3a. <a,byc=<{ac,bc),
C3b. (mn')y=1,

Cda. e(h*a,b)=h<{ab),
C5a.  h*k=(h{kn,n'))*,

C5b. ¢&*=1,
for all a,b,c,h and k.
Proof.
{a,bYc=<{nla,b>c,n'{a,b)c) by C3,
= {ac,bc) by C3.
(ma'd={nl,w'l)=1 by C3.
e(h*a, by =e¢(h*nla,b), 7' {a,b} ) by C1 and C2,
=¢gl{h*n, 7' Y{a,b) by C3a,
=h{a,b) - by C4.
h*k = (e h*km, 7' D)* by C5,

=((h*nlkn, 7' >, 7' Ckn, 7'y 3)* by Cl and C2,
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=(e{h*n,n' ) km, ' H)* by C3a,

= (h{km, 7' ))* by C4.
g =((m,n'D)* by C3b,

=(e(ln,n'))*=1 by C5.

Definition 15.1. In any C-monoid we may write

axb={anbn'), ¢ =(gemfn'>)*
for all elements a,b,f, g.

Of course, this definition is motivated by the corresponding equations in a
cartesian closed category. The following consequences of this definition are
left as an exercise to the reader.

Cé6. {a x b){(c x d)=ac x bd,
C7.  g'h=(ge<hn,fn'))¥,
Cs. g’ kt = (gk)®.

C-monoids are the objects of a category whose arrows are C-
homomorphisms, that is, mappings which preserve the operations w, 7', ¢, *
and (.

Given a C-monoid o7, we may form the polynomial C-monoid </[x] by
the usual construction of universal algebra: the elements of /[x] are
polynomials, that is, words built up from x and the elements of &/ using the
C-monoid operations modulo the smallest congruence relation which
satisfies C1 to C5 and which assures that the mapping h: o — &/ [x] which
sends every element of .o/ onto the corresponding constant polynomial is a
C-homomorphism. In particular, if {a,b) = c in & then also {a,b) =cin
o[ x], etc.

The canonical C-homomorphism h: o — /[ x] has the usual universal
property: for every C-homomorphism f: o/ — % and every element be4,
there exists a unique C-homomorphism f;: o/ [x] — 4 such that f, s = fand

fy(x)=>.
(x]
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In particular, when & = o/ and f=1_, f,(¢(x)) = p(b).
C-monoids have the important property of functional completeness:

Theorem 15.2. If ¢(x) is a polynomial in the indeterminate x over a
C-monoid &, there exists a unique constant f in ./ such that

fLxm)*, 1) = (x) in L[x].
Proof. Define p,@(x) by induction on the length of the word ¢(x):
(@) p.k=kn' if kest;
(ii) PxX =8
(i)  pY(x), 2(x)> = (pP(X), p2a(X) D5
(i) p (X)) = px ()<, pY(x)D;
V) p(x)*) = (oY (X)),
where « = {nn, {n'n, ') ). (We have written = for identity of words, while
= is reserved for equality of polynomials, that is, equivalence classes of

words. See also the exercise at the end of Section 2.)
We next show that p, really applies to polynomials, that is,

*) if o(x)=y(x) then p.p(x)= p.Y(x).

Now = is the smallest congruence relation between words in x satisfying C1
to C5 and the conditions assuring that 4 is a homomorphism. Therefore it
suffices to show that for each of these p,LHS = p,RHS, e.g., for C4 that

px(e{x(x)* n, 7' >) = p, x(x).
This is shown by routine calculations, which are left as an exercise to the

reader. Note also that, if (a,b) =c in &, then p,{a,b)> ={p,a,p.b> =
{am',bn' ) ={a,b)n’ = cn’ = p,c. Equally routine is the verification that

Pxo(x){(xm)*, 1) = o(x),
so that the existence part of the theorem has been established.
Finally, to show the uniqueness of f in the theorem, we suppose that
f{(xn')*, 1) = o(x)and wish to show that p, ¢(x) = f.Indeed, a straightfor-
ward calculation gives

px(f {(xn)*, 13) = fp L (xn)*, 1) by (iv) and (i),
=1 {px(xn)*, px1 by (i),
= f {lpx(xn)o)*, 7> by (v) and (ii),

= f{lpxx{m p, ' day*, 7' by (iv),

= f(e{m,n'w Ya)*, w’> by (ii) and (i),

= f{(e{ma, W' Tad)*, > by C3a,

= fL(enm, ' D)*, 7' ) by definition of a,
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= f{m,7') by C5,
=f by C3b.
This completes the proof of the theorem.

If we now define
g'a=elglan’)* 1),
we have the following immediate consequence:

Corollary 15.3. If ¢(x) is a polynomial in the indeterminate x over a C-
monoid .#, then there exists a unique ge.# such that g/x = @(x).

Proof. Take g =f* = (p,¢(x))* and use C4a.

It is suggestive to write
A p(x) = (P @(x))*,

then the corollary may be expressed by the equations:
A@(X) x=0(x), Alg'x)=g.

Of course, the universal property of .#[x] allows us to obtain from the first
of these that, for all ae.#,

40(x)'a = p(a).
Let us also mention the following ‘fixed point theorem’ for C-monoids,
which is behind Russell’s paradox.

Proposition 15.4. For every polynomial ¢(x) in .#[x] there exists an
element ae.# such that ¢(a) = a.

Proof. Put b= 1,¢(x'x) and a=b’b, then
ola)= @b’b)=b'b=a.

This result explains why C-monoids cannot incorporate propositional
logic. For, if we had an operation 7 of negation, if would follow that
7p = p for some element p.

For future references we shall list some further derived identities of C-
monoids:

C9 (an'Y*k = (an')*;

C10.  (fg)fa=f"(g"a);

Cll.  A(f'a)=fA.a, if xis not free in f'q;
C12. ta=a;

C13. (Aak=Aa, if x is not free in a.
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. Proof.

(an’'y*k = (an’ Ckm, 7' H)* by C3a,
= (an')* 4 - by C2;
(f9) a=ed fglan)*, 15,
= e fle{glan')*n, ' H)*, 1) by C5,
=&l fedglan’y*n',n' H)*, 1) by C9,
=¢e{ fle{glan’y*, 1>n)*, 1) by C3a,
=e{f((g'a)n)*, 1)
= f"(g"a)
(A:(ffa))'x=f'a,
= f((.a)x),
=(fA.a) x by C10;

a=e(an)*, 1) =e(an)*n, 7' >{1,1)
=an'{1,1>=aq
(Ac@k) x = (A a) (k' x) = a = (4,0) x.

Exercises
1. Prove C6, C7 and C8.

2. Define a weak C-monoid like a C-monoid, except that C3, C4 and C5 are
- replaced by C3a, C4a and C5a respectively. Check that C6to C8 hold in a
weak C-monoid.

3. Fill in the details in the proof of Theorem 15.2. Check that the existence
(but not the uniqueness) of f holds in any weak C-monoid.

4. How unique is the C-structure of a monoid? If ¢ is any invertible element
of the C-monoid .#, one can define a new pairing 5{a,b) with new
projections 7o ™! and n'c”!. Show that all possible pairings in .# are
obtained in this way.

5. Evenif the operations {~,~)>, n and n’ of a C-monoid are laid down, ¢ and
(-)* may be changed: if 7 is any invertible element, one may replace ¢ by
e{m, 7'y and h* by t~ ' h*. Show that this is the only way in which ¢ and
(-)* may be changed.

6. If o(x, y)e o [x,y] = o/ [x] [y]is a polynomial in two indeterminates over
the C-monoid &/, show that there is a unique element g of & such that

o(x,y) =g (x,y>.
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16 C-monoids and cartesian closed categories

A C-monoid looks like a cartesian closed category, but lacks a
terminal object. Essentially, this is all it lacks, as we shall see.

An element A of a monoid is called an idempotent if AA = A. For reasons
that will become clear presently, we denote idempotents by capital letters. If
A and B are idempotent elements of a C-monoid, so are A x B and B4, as
follows immediately from C6 and C8 of Section 15 respectively. We also
note that the elements 7'* and 1 are idempotents, the former by C9, (We
shall denote them by capital letters later too).

Following Dana Scott, we shall write f: 4— B for Bf4 = f or, equiva-
lently, Bf = f and fA =f. One may note at this stage:

Cl4. Iff:A-Bandg:C—Dthenfxg:Ax C—BxDand f% AP — BC.
But this will become evident later, once we have established the following:
Theorem 16.1. (Dana Scott). The idempotents of a C-monoid .# are the

objects of a cartesian closed category K(.#) with arrows f: A — B given by
elements f of .4 such that Bf4 =f.

Proof. We shall denote an arrow 4 - B by a triple (4, f, B). Then it is easily
seen that K(.#) is a category with identities (4, 4, 4) and composition
(B,g,C) (4, f,B)=(A,gf, C). Actually, K(#) is a special case of a category
K (/) associated with any category .7, called the ‘Karoubi envelope’ or
‘idempotent splitting’ envelope of «7. Properties of this general construc-
tion will be considered in the exercises at the end of this section.
To obtain a cartesian closed structure for K(.#) we define O A
A->7™*, mypAXB—A, myp:AxB->B, e ,:BYxA->Aby
OA = (A, nl*, nl*)’
748 = (A X B, An(A x B), 4),
nyp=(A x B,Bn'(4 x B), B),
&p.4 = (B* x A4, Be(B* x A), B),
and verify that
f:C>A4 ¢gC-B
f,9>:C>AxB’
hAxB-C
h*:A—C*?
The equations of a cartesian closed category (Section 3, E2 to E4b) are now
easily checked.
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Note that the terminal object of K(.#) is n'*, not 1. To avoid confusion, we
had better write Tand U in place of #'* and 1 respectively when they are
regarded as objects.

Corollary 16.2. The full subcategory K,(.#) of K(.#) consisting of all
objects isomorphic to T or U is a cartesian closed category.

Proof. First note that any full subcategory of a cartesian closed category
containing T and closed under x and exponentiation is also a cartesian
closed category. In the present situation one easily verifies that

UxU=U, U'=U,
using Definition 15.1, and one recalls that

AXTXAxTxA, ATxA, TAxT, .
for'any object 4 in a cartesian closed category, in particular, when 4 =~ Tor
Az=U. '

We remark that K(.#) has at most two non-isomorphic objects. (When
can one manufacture a cartesian closed category with exactly two objects
out of ./ in such a way that .# can be recaptured?)}

Proposition 16.3. Let o be any locally small cartesian closed category with
an object U such that U x U = U and UY = U, then End(U) is a C-monoid.
In case o is K(#) or K(A), End(U) =~ 4.

Proof. Let : U x U U and :UY> U be the given isomorphisms. We
shall endow End(U) with the structure of a C-monoid (r, 7, ¢, 1, {}), it being
temporarily necessary to distinguish 1 from * and {} from (). We define
T=Tyu0 ', w'=np,07",
e=¢gyy(t™ ! x 1p)e7 2,
{a,b} =0{a,b), ht=1(ho)*.
It is now easy to check that the equations C1 to C5 of a C-monoid are
satisfied. Here, for example, is a proof of C4:
e{htn,n'} = aU,U(t"‘ x 1y)o " o {t(ho)*ny yo~t,my yo ™D
= gy,y{(ho)*ny y, ny,ydo ™! 7
=(ho)e™ ! =h.
The argliment uses the following easily proved equation in a cartesian

1 That this can always be done has in the meantime been proved by P.H. Rodenburg
and F.J. van der Linden, “Manufacturing a cartesian closed category with exactly
two objects out of a C-monoid™, Studia Logica 48 (1989),279-283.
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closed category:
(a X b)<C, d> = <ac, bd>a N

as well as the equations (3.1) and E4a of Section 3.

Now suppose «f = K(#) or Ky(#). Then U=1, UxU=U and
UY=U, so 0=1,=(U,U,U) and 7=1, likewise. The isomorphism
M 3 End(U) we seek is clearly given by f — (U, f, U). For example, the
element # of End(U) is defined as

Tywo ' =(U x U,Un(U x U), U)(U,U,U)" !
=(U,n,U),
which is the image of the element n of .# in End(U).

Proposition 16.3 is useful in providing examples of C-monoids, while
Theorem 16.2 tells us that all C-monoids must be of this form. So far, we
have not even seen a single non-trivial C-monoid, but we shall find one in
Section 18.

Exercises.

1. If f2=f: A A is an idempotent arrow in a category &, show that the
following statements are equivalent:
(i) fsplits, that is, there exist m: B, — A, the image of f, and e;: A — By,
the co-image of f, such that me, =fand e, m, = 1,.
(i) The pair of arrows f,1,: A3 4 has an equalizer m;: B, — 4.

2. Given any category &, form the category K(=), the Karoubi envelope of
&, as follows: its objects are idempotent arrows of o/ and its arrows f — g,
where f2=f:A— A and g = g: B— B, are triples (f, ¢, g), where p: A— B
is such that of = ¢ = g¢ or, equivalently, gof = ¢. Show that K(«/) is a
category in which all idempotents split.

3. Suppose # is a monoid (considered as a category with one object), show
the following:
(@) In K(A#) every object is a retract of 1.
{b) K(A)is cartesian closed if and only if .# is a weak C-monoid.

4. Consider the category Split: its objects are small categories in which to
each idempotent arrow f2 =f: A — A there is associated a given splitting

. 1
Ai»B,ﬂ»A such that the splitting of 1 ,: 4 —» 4 is A4, 4 —A, 4;

its arrows are functors which preserve splittings. Show that the forgetful
functor from Split to Cat has a left adjoint.
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17 C-monoids and uﬁtyped A-calculus

The untyped A-calculi we shall study here are an extension of the
(untyped) An-calculus in the literature. The absence of types assures that
application is unrestricted.

Definition 17.1. An extended A-calculus is given by a set of terms and
equations which are said to ‘hold’. The set of terms is freely generated from
countably many variables and a possibly empty set of constants by certain
term forming operations including the following: if ¢ is a term so are n(c) and
w'(c); if a and b are terms so are b’a and (g, b); if ¢(x) is a term, possibly
containing the variable x freely, then A,@(x) is a term in which all
occurrences of x are bound. The binary relation between terms a and b
which says that the equation a = b holds is an equivalence relation which
satisfies the usual rules* allowing substitution of equals for equals,
including :

@(x) = P(x) a=b
A (x) = A(x)'ffa=fIb
from which the other substitution rules follow, and the followmg rule
allowing substitution of terms for free variables:

@(x) =Y (x)

@(a)=y(a)’

provided no free occurrence of a variable in a becomes bound in ¢(a) or
¥(a). Finally, the following specxﬁc equations are postulated, for a,b,c, f
and ¢@(x):

Ll o) 'x=o(x)

L2. A (ffx)=f, if x is not free in f;
L3. n{(a,b)) = a;

L4 (b)) =b

Ls. (n(c), 7'(c)) = c.

LO.

Note that from L1 and LO one obtains

LU,  A.0(x) a=ola),
provided no free occurrence of a variable in a becomes bound in ¢(a).
A Jn-calculus is defined similarly, but without the term forming

* As usual, rules are interpreted as saying: if the hypotheses hold, so does the
conclusion.
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operations n(-), n'(-) and (~,-), hence without L3, L4 and L5. Some
authors furthermore drop L2, calling the resulting system a A-calculus.

The pure extended A-calculus (Ay-calculus, A-calculus) is such a system in
which there are no terms other than those defined inductively and in which
the relation which says that equality holds is the smallest equivalence
relation having all the required properties.

Remark 17.2. 1t is known that in any A-calculus one can define term
forming operations 7(-), #'(-) and (-,-) to satisfy L3 and L4 but not L5.
For example, one may put:

n(c)=c’i, wherei=24,Ax,

m'(c)=c'j, wherej=2,4,y,

(@,b)=2,((z"a)'b).
Indeed, we may then calculate

™(a,b))=(a,b)i=('a)!b=a, 7'((a,b))=(a,b)j=(j'a)’b=b.

Unfortunately, it does not follow from these definitions that (n(c), n'(c)) =c.
In fact, no definition of such a ‘surjective pairing’ is possible. (See
Barendregt’s book, Exercise 15.4.4.)

Proposition 17.3. Every C-monoid .# gives rise to an extended A-calculus
L(A). the terms of L(4#) in the free variables x,,...,x, are words
constructed from elements of .# and the indeterminates x,,..., x, by the
following operations:

7(c) = e, Tc)=nc,

(@,b)=<a,b),

fla=elflan)* 1,

A 0(x) = (p p(x))*.
Finally, a = b holds in L(.#) if a =b in the polynomial C-monoid .#[X],
where X contains all the variables occurring freely in a and b.
Compare this with Example 10.6. For the last two definitions see Section 15.
Alternative definitions will be discussed later. Note that the equality
relation in #[x,,...,x,, ] is a faithful extension of that in Mxy,. %]
Indeed, if we suppose that f=g in .#[X][y] and substitute 1 for y we
obtain f=g in #[X].
L1 and L2 were already established in Corollary 15.3. L3 to L5 are easily

shown to hold:

n{(a,b))=nla,b) =aq, (n(c), n'(c)) = {(me,w'c) =c.
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Proposition 17.4. Every extended A-calculus % gives rise to a C-
monoid M(.Z), whose elements are (equivalence classes of) closed terms of
& and where

1=1x,
gf=Ag" (f* %),
= A, 7(x),
' =, 7 (x),

{frg>=4"x,9"x),
e=14,(n(2) 7' (2)),
h*=2,A,(h'(x,y)).

Moreover, a=b in M(¥) if a=b holds in Z.

Proof. The equations of a C-monoid are easily checked. For example,
(e<h*n, 'Y x =& ({h*n, 7' )’ x)
= ¢/ ((h*m) x, m'(x))
= ((i*m)’x)! (' "x)
= (h* 'n(x)) (' (x))
= h! (n(x), w'(x))
=h'x,
hence e h*n, 7' > = h. The other equations are left as exercises.
The correspondences & +— L{#) and ¥ — M(¥) discussed in Propo-
sitions 17.3 and 17.4 may be extended to functors between appropriate
categories. Unfortunately, it is not obvious that these give an equivalence
of categories. The reason for this is that in Proposition 17.3 the definitions
of n(-), ©'(~) and (—,—) were badly chosen.
Let us change the term forming operations n(-), n'(-) and (—,-) in
Proposition 17.3 as follows:
nlc)=n'c,
rle)=n'le,
(a,b)={Aca,4,b)'1,
where it is assumed that x is not free in a or b. We now calculate:
n((a, b)) = n ({Aea, Ab)1),
=m{Aa,1.b>)1 by C10,
=(Aa)'1 by Cl1,

::a;
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(m(e), w'(c)) = {A(m ), Aol ) > /1,
={(mh.c,m'A.c>’1 by Cli,
=(A,c)1 =,
~ Inthefollowing, M is taken as in Proposition 17.4 and L as in the revised

form of Proposition 17.3. Moreover, we now make the convention that
terms a and b of £ are identified if a = b holds in &.

Theorem 17.5. M and L establish a one-to-one correspondence between
C-monoids .# and extended A-calculi #:

MI(H)y=AM, LM(PL)=ZL.
Proof. (a) The elements of ML(.#) are (equivalence classes of) closed terms

of L{.#), hence the same as the clements of .#. Let us provisionally
distinguish operations in ML(.#) from those in .# by a subscript #. Then

l,=24x=1, by C12 and Corollary 15.3,
(f9)y= 2.(f* (g’ x)),
=1.((fg)'x) by Cl0,
=/9;
= A (x) = A (n'x)=m.
Similarly 7, =7'. We could also show that {a,b>y=<a,b) by a direct
calculation, but it is easier to argue that both are the unique ¢ such that
nfc=agand n''c=».
Before showing that g, =¢, let us note that in L(4)
C15.  &'(a,b)=a’b.

Indeed,

e'(a,b) =¢'({Aa,Ab)'1),
=(e{Aa,A.b>) 1 by C10,
=(e{A,a,1>A,.b)"1 by C13,
=(e{{an")*,1>A,b)1 as (an')*'x = a by C4a,
=(e(am’)*, 1)) ((4:b)'1) by C10,
=(17a)’b,
=a’b by C12.

Therefore
&y = 4. (n(2) 7'(2))
= 1,(¢(n(z), 7'(2)))
=4,(2)

=Eé.
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Thus ¢, = e. Asfor b and h*, both are the unique k such that e(kn, 'y =h,
hence hf=h*,
Thus M L(#) and . have not only the same elements, but also the same
operations, hence they are the same C-monoid.
(b) The terms of the language LM (%) with free variables x4,..., x, are, by
"definition of L, polynomials in M(%#) [x,,...,x,]. Let us assert, for the
moment without justification, that there is an equality

* M(&)[xy,....x,]=M(&L(x,...,x,))

Here £(x;,...,x,) is the language obtained from % by adjoining
parameters x,..., X,. This is to say, the closed terms of #(x,,...,x,) are
open terms of & in the free variables x,,...,x,. We shall justify the
assertion (*) later.

Thus LM(%) has the same terms as %; we shall now compare their term
. forming operations. Temporarily we shall distinguish these by placing a
' subscript # on those of LM(%).
First,

(ffa)y=e{flan)*,1)
= A(e'({flan')*, 157 x))
= A(e"((f(an')*)"x, 17x)).

Now
(flany*) x =f"((an')* x) |
- = ((an) (x,))
=f12y(a’ (7’ (x,)))
=f'2,(a'y)
=ffa.
~ Hence
(ffa)y= A.(e' (' a,x)),
=) ((f'a)’x) by Cl15,
=ffa.
Next,

(A 90(x))y = A 0(x),
since both are the unique f such that f/x = ¢(x). Moreover,
' (m(0)y =7, ¢ = Am(x) ¢ = m(c),
and similarly for (n'(c))4. Finally,
(a,b)y = {A.a,Ab)> 1
= (A((4:a)"y,(AD) y))'1
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=((4:0)"1,(A,5)'1)
=(a, b).

It remains to justify the assertion (*). For argument’s sake, take n = 1. Itis
fairly clear that we have an isomorphism

(**)  M(&)[x]1=M(Z(x)).
For it is easily verified that M(#(x)) has the required universal property:
for any C-homomorphism f: M(¥)— .4 and any element ae.#, there is a

unique C-homomorphism f*: M(%(x))— .# such that its restriction to
M(Z)is fand f *(x) = a. Indeed, we need only take

o)) =f(A0(x) a
Now why can we replace the isomorphism in (**) by equality? This
depends on how indeterminates are defined. While the standard construc-
tion of #[x] has been described in Section 15, alternative constructions are
possible. Thus, in the special case # = M(Z), we may define

(***) ML) [x]=M(Z(x)),

in view of the universal property discussed above. This establishes (*) and
therefore Theorem 17.5.

Once Theorem 17.5 has been established, we may define indeterminates in
general as variables by putting

(****)  M[x]=M(L(A)(x)).
From this the special case (***) may be recaptured thus:
M(Z)[x] = M(LM(Z)(x)) = M(Z(x)).

The category of C-monoids has as objects C-monoids and as morphisms
C-homomorphisms, that is, monoid homomorphisms which preserve the C-
structure.

The category of extended A-calculi has as objects A-calculi and as
morphisms translations, that is, mappings which send variables to vari-
ables, closed terms to closed terms, and which preserve the term forming
operations and equations: e.g. t(<a,b>)= {t{a),t(b))> holds in £’ and if
a=bholds in % then t(a) = t(b) holds in %, for any translation t: & — #".
Moreover, if t and ¢’ are translations, we write ¢ = ¢'if #(a) = £'(a) holds in ¥’
for all terms a of &.

Corollary 17.6. The category of C-monoids is isomorphic to the category
of extended A-calculi.

Proof. We extend L and M to functors inverse to one another.
Iff: M — A’ is a C-homomorphism, the translation L(f): A — LA

00 oo e
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is defined as follows: for any polynomial ¢(X), where X = {x1,...,%,}, we
put L(f) (¢(X)) = fx(p(X)), where Sx: M[X] > M'[X] is the unique C-
homomorphism extending f such that fy(x,) = x;fori=1,...,n

Ift: & — &' is a translation, the C-homomorphism M(t): M(¥#)—» M (&)
is defined thus: for any ae M(%), M(t)(a) = a).

In particular we have (taking n= 1)

(ML)(f)(@) = M(L(/)(a) = L(f) (@) = f (a),
(LM)®)(9(x)) = LM©) (@(x) = M(H).((x)) = t(p(x)).

The very last equation requires some explanation. It is easily seen that
M(t), = M(t,), where t, is the restriction of ¢ to & (x)(considering #(x)asa
subset of &), hence

M(1)(o(x) = M(t,) (9(x)) = t,(0(x)) = t{p(x)).
Thus MLand LM are both identity functors and not just isomorphic to
identity functors. This shows that the two categories are isomorphic and
. not just equivalent, for what it is worth.

Exercises

1. Check the remaining equations of a C-monoid in the proof of 17.4.

2. Show that every A-calculus gives rise to a weak C-monoid (as in
Proposition 17.4, using Remark 17.2) and conversely (as in Proposition
17.3). Is this a one-to-one correspondence?

3. Complete the proof of (++) above by checking that f*(c) = f(c).

18 A construction by Dana Scott

In this section we shall construct a cartesian closed category with
an object U such that

(*)  UxUxU=xUY Uzl

As we saw in Section 16, End(U) will then be a non-trivial C-monoid.
According to Section 17, it will also provide us with non-trivial models of
various versions of untyped A-calculus. The original construction is due to
Dana Scott; we present it here in a categorical setting due to Plotkin and
Smyth.

~ We shall begin by considering the category 2 of w-posets. Its objects are _
partially ordered sets in which every countable ascending chain of elements
has a supremum. Its morphisms are order preserving mappings which
preserve these sups. We denote the supremum of the ascending chain

T 8y<a;<€a,<...by V,a,.
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Proposition 18.1. 2 is a cartesian closed category.

Proof (sketched). The cartesian structure is inherited from Sets. Thus 1 is a
one-element set with the trivial order and 4 x B is the cartesian product
with order and sups defined componentwise. Thus,

V(a,,b,)=(V a,, V b,).

Note that the unique mapping 4 - 1 and the usual projections A x B— 4
and A x B— B are morphisms in 2. B4 is Hom(4, B) in # with order and
sups defined componentwise:

f<g if and only if f(a) < g(a) for all acA,
(V)@= V f.a).

The usual evaluation mapping ¢ 4: B* x A B given by

ep.a(f>a)=f(a)

is easily seen to be a morphism, as are the mappings obtained by the rules

cLia c9%B axptic

’ *
L8 xp 4 M

and defined by
{[,92©)=(f(c),g(c)), h*(a)(b) = h(a,b),

forall ceC,ae A and be B. The equations of a cartesian closed category hold
as in Sets.

Ultimately, we wish to find an object U of 2 satisfying (*). For the time
being, we have at least the following;

Lemma 18.2. There is an object ¥ of 2 such that

(**) VxVxV#1 and V has a smallest element.

Proof. Let A # 1 be any nontrivial object of 2 with a smallest element 0
and put V= 4" for the product of countably many copies of A4, with
componentwise order and sup. Consider the mappings o, f: ¥ — V defined
by

%(v)(n) =v(2n), B)(n)=v2n+ 1),

for all neN. It is easily verified that o and f are morphisms in £ and that
g={a,B>: V-V x Vis an isomorphism in &, with inverse.¢ ! given by

0" o 0)2m) =01(n), 07N vy,0) 20+ 1) = v2(n),
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for all neN. Thus ¥ x V= V. Moreover, clearly ¥ 1and V hasa smallest
element O given by 0(n) =0 for all neN.

In addition to %, we shall make use of a related category 2*,

Definition 18.3. The category 2* has the same objects as 2, but arrows
A~ Bin #* are decreasing retractions, that is, pairs (f, g) with f: 4 — B and
g:B— A in 2 such that

9f=14 fg<lp.
Composition is defined by

(9.9 =(ff.99)
when (f,gA—-B and (f.g).B—C. The identity arrows are
(110 A A .

Remark 18.4. 1f (f, g): A— B is a decreasing retraction, then g is uniquely
determined by f.

Proof. Suppose we also have (f,g'):4A—B in #*. From fg<1, and
g'f =1, we infer that g =g'fg < ¢'. But, similarly g’ < g, and sog=g¢'.

Remark 18.5. For any object V of 2, the contravariant (!) representable
functor V) =Hom(-, V) gives rise to a covariant endofunctor F,:
P* - 2* which sends (f,g): A— B in 2* to (V9, V/). V4> VB in #*,
Proof. We shall verify that

VIVI=1,, VIVIL1pn,
Indeed, let h: A— Vand k: B— Vin 2, then

VIV (k)= V'(hg)=hgf =h1,=h,

(VoVi)(k)= Vo(kf)=kfg< klp=k.

To find the required object U of &£ satisfying (*), we shall apply the
following useful lemma to #*,

Lemma 18.6. Let o be a category in which every countable sequence
Ag—A; A,
has a direct limit, and let F: o — o be an endofunctor of o which preserves
such direct limits. Given any object Vand any arrow h: V— F(V), the direct
limit U of the sequence
v rr) 8, Py -
is a fixed point of F, that is, F(U)= U
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Proof. F(U) is the direct limit of the sequence
F(h)

F(v) Py 0, g3y .

Since this is the tail of the sequence in the lemma, F (U)y=U.
We are now ready to obtain the main result of this section.

Theorem 18.7. There is an object U of 2 such that

*) UxUxU=~xUY U#l

Proof. Beginning with any nontrivial object 4 of Z with a smallest element,
we form the object V= A™ as in Lemma 18.2 and the endofunctor Fy, as in

Remark 18.5. We then apply Lemma 18.6 to the category .o = 2* and the
endofunctor F = F),. To do so, we must verify the conditions of the lemma:

(i) 2* has direct limits of countable sequences;
(i) Fy preserves them;
(iii) there is an arrow (f,g): V- F, (V)= V" in 2%

We shall defer the proofs of (i) and (ii) to the end of this section, but
establish (iii) now. We define f: V— V¥ and g: V¥ > V as follows:

J@)w) =v, g(t)=1(0),
for all v,weVand teV", where 0 is the smallest element of V. It is easily
checked that

af =1y, fag<ly.
Indeed,
@) W)=g(f () =f®)(©0) =0,
([ =1 g®)=10) <t
since, for any weV,
S0) (w) = £(0) < t(w).

By Lemma 18.6, Fy, has a fixed point U, that is, VY = U. Since ¥ % 1, also
U # 1. Moreover,

UxUxVYx Vi (WVxV)VxpViay,
Ul (VY)Y v Veylay,
and this establishes (*). A
It remains to verify (i) and (ii). Consider a sequence in #*:

(S) AO (IOLIO)‘/i1 (ll’]l),Az_'...,
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where
(1) Jnln = 1A,.$ UM S lA,,.H'

We wish to find the direct limit of (S) in 2*.
Note that (S) gives rise to the ‘inverse’ sequence

S/ A jO A jl AZ‘_—.“
0¢ 1

in 2. We can find the inverse limit (4, p,) of ($) in 2, where p,: A — A, has
the usual universal property. This is done as in Sets, by taking

(2) A= {aenAnIvnijn(an+1)=an}

neN

and by defining p,: 4> A4, by

©)] p.(a)=a,.
It is easily checked that 4 has sups of countable ascending chains and that
P, preserves them. Therefore,

(0 (A, p,) is the inverse limit of (§) in 2.

Consider now the arrows f,, ,: 4,,— A4, in 2 defined as follows:
Iy qdpeg i ifm<n,

) S ={1Am ifm=n,
Jndn+1 Jm-1 ifm>n.

1t is easily verified that the following triangles commute:

A
) fm/ \<,,
A e
Therefore, by the universal property of the inverse limit (4, p,), there exists a
unique morphism ¢,,: 4,,— A in £ so that

(6) Pn9m =fm.n‘
We assert that (g,,p,): A,— A4 in ¥, that is,
(7) pnqn = 1A,,7 qnpn s 1A'

Indeed, the equation follows from (6) and (4), while the inequality is
contained in the following stronger assertion:

® V gupm= 1.
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This is proved by showing that, for each aeA4, if a,, = a(m) = p,.(a),
v qm(am) =a,

that is, for each neN,
V Plm(@y) = a,.

Indeed, by (6)

<a, fm<an,

Pnqm(@n) =fm,n(am){

=a, fm>=n,

as an easy consequence of (4).
There is a gap in the above argument. To calculate (8) one must first
check that one has an ascending chain

QoPo < q1P1 <
As in the above argument, this translates into showing that

Jomlao) <fia(a)<....

We leave this as an exercise.
Now (8) also gives rise to the sequence

(8 Ag—tad, P4,
in . We claim that

(I (4, g,) is the direct limit of ($”) in 2.

Indeed, it is easily verified that 9n+1in = q,- So suppose h,: A,— B are
given arrows in 2 so that the following triangles commute:

i

An

An+l

©) hy L

B
We shall prove that there is a unique arrow @:A— B in 2 such that
(10)  ¢g,=h,.
On the one hand, if (10) holds, we may calculate ¢ as follows:
1) e=¢ V 4nPx by (8),
= V ©GnPn>
\n/ h.p, by (10).
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On the other hand, if ¢ is defined by (11) (first check that h, p, increases with
n), we have

(1) ¢qn=V h,puqm
= V hnfm,n
= hm,

Since

h, fm<n,
(12) h"f"'"{<h ifm>n,

~as an easy consequence of (4), (9), and (1).
This completes the proof of (II).
We shall prove next that

(1)  (A,(g,,p,)) is the direct limit of (S) in 2*.

Indeed, we showed in (7) that (g, p,): 4, — A in Z*. Moreover, the following
triangles commute in 1748

(qV anﬂ)

(ins Jn)

in view of (I) and (II).

To prove the universal property of (g,,p,): A,— A, suppose that
(h,,k,): A,— B in 2* are such that the appropriate triangles commute.
By (I), there is a unique ¥: B— A such that p,¥ =k, and, by (II), there is a
unique @: A — B such that ¢q, = h,. One easily calculates that

Yo=1, oY<ly ‘
Hence (¢,y):A—B is the unique morphism in £* such that
(0. ¥)(q., P) = (h,, k,). This completes the proof of (IIT), hence of (i).
It remains only to prove (ii). Applying F,, to the direct limit of (S) in 2¥,
we obtain
Fy (4, G pa)) = (VA (770, V)
by Remark 18.5. According to (ITI), this is the direct limit of

(Vj°, Vio) (ij, Vix)

> YA

(S///) VAO

> VAz —,

provided ¥?and V% play the same roles with regard to (S""’) as ¢, and p, do
with regard to (') respectively.
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Indeed, the contravariant functor V' sends direct limits in 2 to inverse
limits in 2. So, by (II), (V4, V) is the inverse limit of

Vio Vin

y 4o VA, VA2 e,

hence V%" plays the rdle of p,. Now it follows from (6), if m and n are
interchanged, that

Vanyom = yfum,

Since the réle of f,, , in (5) is now played by ¥/»=_it follows that V= plays
the rdle of g,,.
Thus we have

Fy(lim(S)) 2 lim($"") = lim F,(S),

and this establishes (ii). The proof of the theorem is now complete.

Exercises

. Fillin the details in the proof of Proposition 18.1. For example, show that

£p,4 Dreserves sups.

. Check (5) and (12) in the proof of Theorem 18.7 and complete the proof of

®).

. Show that the argument of this section remains valid if 2 is taken to be the

category of all partially ordered sets in which every upward directed
nonempty set has a supremum, the morphisms being required to preserve
these sups.

. (R.E. Hoffman.) Show that the category 2 of Exercise 3 is the Eilenberg-

Moore category of the following triple (T, #, 1) on the category of posets:
for any poset 4, T(A) is the set of ideals (dual filters) of 4; n(A) (a) is the
principal ideal generated by ae4; u(A4) assigns to every ideal of T(A) its
union, an ideal of A.

. Investigate whether the category of sup-complete semilattices and

sup-preserving mappings is cartesian closed.

Historical comments on Part I

Section 1
Deductive systems, at least freely generated ones, probably first

appeared in the proof-theoretical studies of Gentzen (see e.g. Szabo 1969,
Kleene 1952 and Prawitz 1965, 1971). The view that deductive systems are
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- graphs with additional structure or categories with missing equations has
been propounded by one of us and Fred Szabo for many years. Our
presentation here has been influenced by categorical considerations. In
‘particular, our choice of axioms and rules of inference are motivated by
adjoint functors, as has been suggested by Lawvere (19694, 1970).

Section 2

The version of the deduction theorem in the text differs from others
in the literature in various respects, but mainly in that it applies to deductive
systems which are not necessarily freely generated from axioms.

Section 3

While cartesian closed categories may now be subsumed under the
general notion of ‘graphical algebra’ (Burroni 1981), the equational
presentation of cartesian closed categories and other structured categories
had already been emphasized by Lambek (1968, 1969, 1972), who regarded
them as certain kinds of deductive systems with an equivalence relation
between proofs. Prawitz (1971) had also studied an equivalence relation
between proofs in intuitionistic logic for completely different motives. It
was shown by Mann (1975) and rediscovered by Seely (1977) that, for
intuitionistic propositional calculus, the two equivalence relations are
essentially the same. This confirms our view that category theory may serve
as useful motivation for many constructions in logic.

Section 4

The construction of free algebras from words is well-known. The
construction of free structured categories from formulas and proofs is in
(Lambek, op. cit.) and was further developed by Szabo (1974b, 1978).

Section 5

The usual construction of polynomial algebras in an indeterminate
x also finds a parallel here in the construction of a polynomial structured
category in an indeterminate arrow x considered as an assumption, as in
(Lambek 1972, 1974, 1980a, b). The presentation here has greatly benefited
from improvements suggested by Bill Hatcher.

Section 6

The functional completeness of cartesian closed categories had
been shown by the senior author in 1972 under certain conditions and in
1974 without extra conditions.
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Section 7

Lambek also showed (1974) that polynomial categories may be
viewed as Kleisli categories of a certain cotriple and that this gives another
proof of functional completeness. That the latter categories may be used for
introducing indeterminates and polynomials has also been noticed by
Volger (1975). It should be emphasized that, as long as equalizers are
excluded from the definition of cartesian closed categories, adjoining an
indeterminate of type A is not the same as forming the slice category /A,
but it is once equalizers are included. The latter was observed by
Grothendieck and Joyal (see Part II, Section 16, Exercise 2).

Section 8

The observation that one can do propositional calculus in a
bicartesian closed category appears to be due to Lawvere. The present
treatment follows Lambek (1974). The fact that there is at most one arrow
A -0 was noticed by Joyal (oral communication), but our proof follows
Freyd (1972). For the fact that there are no Boolean categories other than
Boolean algebras, see also (Szabo 1974a).

Section 9

The story of natural numbers objects has already been told in the
Historical Perspective on Part 1.

Section 10

An exhaustive discussion of the history of the i-calculus before
cartesian closed categories will be found in the book by Barendregt; see also
the book by Hindley, Lercher and Seldin. Our categorical viewpoint
stresses the importance of product types and surjective pairing, usually
ignored by logicians. The subscript X in 5 is to allow for the possibility of
‘empty’ types, which may arise in the internal language of a cartesian closed
category. Incidentally, as long as such categories may be large, we must
admit proper classes of types and terms. The internal language of a
cartesian closed category depends crucially on functional completeness.
Lawvere (1969b) may have anticipated this language when he called the
correspondence from Hom(1, B4) to Hom(4, B) ‘A-conversion’.

Section 11

While our internal languages may resemble what logicians call
‘diagram languages’ (e.g. Chang and Keisler 1973), the cartesian closed
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category generated by a typed A-calculus is essentially what they call a ‘term
model’. The proof of the categorical equivalence between typed A-calculi
and cartesian closed categories with weak natural numbers object appears
here for the first time in detail.

Section 12 ,

The coherence problem for monoidal categories was solved by
MacLane (1963), who proved that there ‘all diagrams’ (composed of
canonical arrows) ‘commute’. As this statement fails for biclosed monoidal
categories and because of the necessity to define ‘canonical’, Lambek (1968,
1969) reformulated the coherence problem in the form (II): to find an
algorithm for deciding when two arrows A — B in a free biclosed monoidal
category are equal. He had first solved the preliminary problem (I): to find
. an algorithm for obtaining all arrows 4 — B, by applying cut elimination 4
la Gentzen to proofs 4 — B in the free syntactic calculus, which had been
studied (1961) because of its interest for Linguistics. These methods were
extended by Szabo (1974b, 1978) to other structured categories, including
cartesian closed categories (but without natural numbers), by Kelly and
MacLane (1971), by Voreadou (1977), and;, most recently by Minc (1977,
1979) and his students (e.g. Babaev 1981 and Solov’ov 1981, see also the
survey article by MacLane 1982). That Gentzen’s cut elimination is
closely related to normalization of terms in typed A-calculus is well-
known to modern proof theorists (see e.g. Howard 1980, Prawitz 1971,
Girard 1971, 1972, Minc 1975, Zucker 1974 and Pottinger 1977). A direct
solution of the coherence problem for cartesian closed categories, without
passing to typed A-calculus, has quite recently been obtained by
Obtujlowicz.

Section 13 v

Although the decision problem for convertibility in the untyped
- A-calculus is recursively unsolvable, it gave rise to the original Church-
Rosser Theorem, which easily extends to bounded (usually called ‘strongly
normalizable’) terms in the typed A-calculus. The difficulties with type 1
were pointed out by Adam Obtulowicz,

Section 14

Strong normalizability for typed A-calculus without product types
was first proved by Tait (1967).. Many people have extended his methods,
e.g. Troelstra (1973). Different methods were employed by Howard (1970),
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Pottinger (1978, 1981) and Gandy (1980b). De Vrijer (1982), using
Troelstra’s methods, was the first to show how to handle surjective pairing
and iterators. Our proof is closer to Tait’s original proof, for example, in
defining computability for closed terms first; but it could not have been
developed without the help of de Vrijer’s manuscript, which inspired the
crucial condition (3) of Lemma 14.4.

Section 15

Church (1937) made the important observation that Curry’s
combinatory logic (in our terminology: a free Curry algebra) may be viewed
as a monoid with unsolvable word problem. The C-monoids treated here
also have surjective pairing; they are essentially one-object cartesian closed
categories without terminal object. The idea to consider C-monoids
occurred to Dana Scott and the senior author upon comparison of their
respective papers in the Curry Festschrift (1980). Their brief collaboration
on this topic culminated in a seminar at Amsterdam in 1981. For further
variants of Curry algebras see Meyer (1982).

Section 16

The discovery that the Karoubi envelope of a C-monoid is a
cartesian closed category is due to Dana Scott (1980b). Incidentally, the
Karoubi envelope first appears in Freyd’s book on Abelian categories,
though not under this name. (See also Artin et al. 1972 page 413.) The fact
that a cartesian closed category with two non-isomorphic objects suffices
was noticed by us.

Section 17

Our proof of the isomorphism between the categories of C-
monoids and A-calculi with surjective pairing was circulated in 1982.
Further work, particularly on weak C-monoids, has been done by Adachi
(1983), Curien (1983, 1984), Hayashi (1983), and Koymans (1984).Categor-
ical aspects of the A-calculus were also studied by Obtufowicz (1979) and
Obtufowicz and Wiweger (1982).

Section 18

An obvious question to ask about the untyped A-calculus, as
originally defined or as extended by us, is what its models, that is, Curry
algebras or C-monoids, look like. In particular, are there any models other
than the trivial one with only one element? This is the old question: can one
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consistently posit a universe of functions which apply to all functions,
including themselves, as arguments? The classical Church—Rosser
Theorem implies, among other things, that the free Curry algebra generated
by the empty set is not trivial. On the other hand, we know from Section 16
that all we need for a nontrivial C-monoid is a cartesian closed category
'with an object U, not isomorphic to 1, such that UV ~ U =~ U x U. Dana
Scott has constructed a number of such examples (and others allowing UY
and U x U to be mere retracts of U, giving models of -A-calculus without
Rule (), i.e. weak C-monoids). His original model (1972) used continuous
lattices, but several other people pointed out that w-posets would suffice
(e.g. Fleischer 1972 and Egli 1973). We follow Plotkin and Smyth (1978).
Many other models have been considered since (see Barendregt 1981 and
Koymans 1984).
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~ Type theory and toposes
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Introduction to Part II

We present two versions of type theory with product types
and special types N for natural numbers and Q for truth values. The first
version incorporates the usual intuitionistic predicate calculus, while in
the second version logical connectives and quantifiers are defined in terms
of equality. These two versions are shown to be equivalent, although the
second is useful for describing the internal language of a topos.

An important example of a type theory is the internal language of a
topos. For us, a topos is assumed to have a natural numbers object. It
follows that Peano’s rules for arithmetic are provable in this internal
language. We put this language to work to show that various categorical
notions, such as equality of arrows, monomorphisms and injectivity, can
be handled linguistically, as is usually done in the topos of sets. In
particular, we show that Russell’s theory of descriptions applies to toposes:
if one can prove in the internal language of a topos that V, 3!, z0(x, ),
then there is a-unique arrow g: A — B such that V,_,¢(x, gx) holds in the
topos. We also show that, if a type theory satisfies the rule of choice, then
the Aristotelian or Boolean axiom V. g(x v -ix) is provable. (For the
internal language of a topos, this is due to Diaconescu.)

There is a way to analyse the internal language of a topos by discussing
which statements hold at stage C, where C is an object of the topos. This
viewpoint originates from a special case implicit in the work of Kripke
and was extended to its present generality by Joyal. We discuss a number
of cases in some detail: functor categories (including Kripke models and
A -sets) and sheaf categories.

Not only is there a type theory associated with a topos 7, its internal
language L(Z), but there is also a topos associated with any type theory
€, the topos T(L) generated by £. While not every type theory is the
internal language of a topos, every topos is equivalent to one generated
by a type theory.

We introduce categories Lang and Top whose objects are type theones
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and toposes respectively and extend L and T to functors L: Top — Lang
and T:Lang— Top. In some loose sense, T is left adjoint to L; but to
make this precise, we replace Top by a reflective subcategory Top, whose
objects are toposes ‘with canonical subobjects’. This adjointness is
exploited for a number of constructions, e.g. to form the so-called “free’
topos (an initial object of Top,), to adjoin an indeterminate arrow to a
topos and to divide a topos by a filter of propositions (i.e. subobjects of 1).

For us, an interpretation of a type theory € in a topos 7 is a morphism
L- L(7) in Lang or, in view of adjointness, a morphism T(8)— T in
Top,. If the terminal object of J is an indecomposable projective we call
the interpretation £ — (), or just the topos 7, a model of £. A suitable
generalization of Henkin’s completeness theorem for higher order logic
may be viewed as saying that evefy type theory has enough models or
that every topos is a subdirect product of toposes whose terminal objects
are indecomposable projectives.

In presence of the rule of choice, the last result is refined to show that
every topos is equivalent to the topos of global sections of a sheaf of local’
toposes. This theorem and its proof are quite similar to a well-known
theorem about commutative rings.

Finally, we discuss some constructivist principles which are demanded
by intuitionists on philosophical grounds, but which appear here as
metatheorems about pure type theory. For example, the disjunction
property asserts that if p v q is provable then either p is provable or q is
provable. Again, the existence property asserts that if 3, ,¢(x) is provable
then ¢(a) is provable for some closed term a of type 4. These metatheorems
are here proved with the help of an ingenious method of Freyd, who
translates them into asserting that the terminal object in the free topos,
namely the topos generated by pure type theory, is an indecomposable
projective. Similar proofs are given for other intuitionistic principles: the
disjunction property with parameters, Troelstra’s uniformity rule,
independence of premisses and Markov’s rule.

Historical perspective on Part IT

Aristotle had asserted the principle of the excluded third:
for every statement p, either p or not p. An equivalent formulation by the
Stoics said that two negations make an affirmation. Surprisingly, this
assertion went essentially unchallenged for more than 2000 years, until it
turned out to be the culprit behind such nonconstructive arguments as
lead from "WV e(x) to 3,¢(x).
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¢

Brouwer, in his criticism of classical mathematics, felt that an existential
statement 3,¢(x) should be admitted as true only if there were an entity
g about which it was known that ¢(a). While Brouwer may have been
opposed to formalism originally, many of his present-day disciples are
formalists; and there now exist formal languages of intuitionistic logic
which differ from their classical counterparts only by lacking Aristotle’s
principle of the excluded third, here also referred to as the Boolean axiom.
For these formal intuitionistic languages, it then becomes desirable to
establish a metatheorem which asserts that, if 3,¢(x) can be proved, then
there must be a term a such that ¢(a) can be proved. It is a principal
result of Part II that this metatheorem and others of a similar nature hold
for pure intuitionistic type theory. -

" Types are inherent in everyday language, for example, when we dis-
tinguish between ‘who’ and ‘what’ or between ‘somebody’ and ‘something’.
In a formal language one might, in the same spirit, be led to replace 3,¢(x)
by 3,.,0(x), where 4 indicates the type of entities that the variable x
ranges over, be they natural numbers, truth values or sets of natural
numbers, etc. Historically, this step was first undertaken by Bertrand
Russell, who wanted to save Frege’s formal system of Cantorian set theory
(as well as his own system) from paradox.

- Russell’s own formulation of ‘ramified’ type theory was too complicated
to catch on among practising mathematicians, in spite of various attempts
" to simplify it (see Hatcher’s book for an account of the history). Instead,
mathematicians have been leaning on other foundations (Godel-Bernays
or Zermelo—Fraenkel), even though elegant type theories were proposed
and studied by Church (1940) and Henkin (1950).

Category theory, invented by Eilenberg and MacLane (1945), is some-
what like type theory in its very nature, since every arrow comes equipped
with two ‘types’, its source and its target. It was Lawvere (1964) who first
realized that category theory can also be used as a foundation for
mathematics and he presented an axiomatic description of the category
of sets. It soon became apparent that one could delete some of the less
natural of these axioms and still describe categories of functors and, more
generally, categories of (generalized) sheaves, known as Grothendieck
toposes, that were being studied by the Paris school of algebraic geometry.
- This observation led to the axiomatic description of elementary toposes by
Lawvere and Tierney, see Lawvere (1971) and Tierney (1972).

Nothing could have been further from the minds of the founders of
topos theory than the philosophy of intuitionism. Yet, it was soon realized
that with each topos there was associated a type theory, its internal
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language, which did not necessarily satisfy Aristotle’s principle of the
excluded third. Consequently, even people not embracing the philosophy
of intuitionism became motivated to make mathematical arguments con-
form to intuitionistic restrictions. For, any theorem about sets provable
in this manner would hold not just in the category of sets but in any
topos whatsoever. Such a theorem could then be specialized to yield a
new classical result, for example, about sheaves in place of sets (see Mulvey
1974).

According to Lawvere (19754), sheaves might be perceived as con-
tinuously variable sets, perhaps changing in time, in 2 manner reminiscent
of Heraclitus and implicit in Brouwer’s original view and, more formalily,
in Kripke’s interpretation of intuitionistic logic. More generally, one might
think of arbitrary toposes as alternative mathematical universes. However,
let us confine attention to those toposes .#, called models, which resemble
the usual category of sets in having the following properties, the first of
which merely serves to exclude the trivial topos with only one object:

(@) no contradiction holds in .#;

() if p v q holds in .#, then either p holds in .# or q does;

() if 3,.4¢(x) holds in #, then there is an entity a of type 4 in .4
(actually an arrow a:1-— 4) such that ¢(a) holds in .

In the presence of the Boolean axiom, these models are essentially
the same as Henkin’s ‘nonstandard’ models; and his completeness theorem
(1950) may be generalized to say that every type theory has ‘enough’ such
models in the sense that a statement is provable if and only if it holds in
every model.

By a type theory we here mean any (applied) higher order logic which
includes a type N for the natural numbers and in which Peano’s axioms
for arithmetic hold. (While one can weaken Peano’s axioms considerably
and replace them by a suitable axiom of infinity, there seems to be no
particular advantage in doing so.) Among type theories there is a dis-
tinguished one, pure type theory, which contains no types, terms and
assumptions other than those which it has to contain by virtue of being
a type theory.

Every type theory gives rise to a topos, the topos generated by it,
essentially what logicians might call its term model. It is constructed
linguistically; for example, its objects are equivalence classes of terms and
arrows between them are terms denoting functional relations. In particular,
the topos generated by pure type theory is the so-calied free topos, which
admits a unique ‘logical morphism’ into any topos.

One of the principal results of Part II can be summarized as saying
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that the free topos is a model, that is, that it satisfies conditions (a), (b)
and (c) above. Thus we have metatheorems about pure intuitionistic type
theory which codify basic intuitionistic principles (as was discussed for (c)
earlier). While these metatheorems could be proved using standard proof
theoretic methods, namely Kleene-Friedman realizability or Gentzen—
Girard cut elimination, they are here proved with the help of a categorical
technique due to Peter Freyd (which however turns out to be equivalent
to realizability).

What are the philosophical implications of these last results? While
extreme intuitionists might reject type theory altogether, we may think of
models as possible worlds acceptable to moderate intuitionists (at least
those models in which all numerals are standard). Among these models
the free topos stands out as a kind of ideal world in the Platonic sense.
But, as the construction of the free topos was linguistic, this is also a
justification of the formalist point of view. We have thus reconciled three
apparently competing traditional philosophies of mathematics:

(i) intuitionism, according to which only knowable statements are
true,

(i) Platonism (or realism), which asserts that mathematical ex-
pressions refer to entities whose existence is independent of the
knowledge we have of them,

(iii) formalism, whose principal concern is with expressions in the
formal language of mathematics.

For the sake of completeness, we mention that there is yet another
basic philosophy of mathematics:

(iv) logicism, which says that all of mathematics can be reduced to
logic.

It seems less obvious how to reconcile this position with the others,
as long as properties of natural numbers are postulated rather than derived
(even though logicists usually also recognize an axiom of infinity).

If we reject logicism, what should take its place? We are tempted to
follow Lawvere (1967, 1969a) and adopt the view that the growth of
mathematics should be guided by various categorical slogans (see Part 0)
or the more widely held view that category theory underlines the general
principles common to different areas of mathematics. For example, as
regards Part II, the free topos came to our attention when we tried to
find a left adjoint to the forgetful functor from toposes to graphs, while
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the categorical notion of projectivity, which had proved useful in algebra,
showed unexpected applications in logic. The categorical viewpoint thus
treats logic less as a foundation than as part of mathematics, which is
also what Brouwer had in mind.

1 Intuitionistic type theory

A type theory is a formal theory given by the following data:

(a) a class of types, including a special type &;

(b) aclass of terms of each type, including countably many variables of
each type;

{¢) for each finite set X of variables a binary relation Iz of entailment
between terms of type Q all free variables of which are elements of
X.

These data are subject to the following conditions:

(@) The class of types is closed under the inductive clauses:
{(al) 1,N and Q are types (‘basic’ types);
(a2) if A and B are types, so are A x B and PA.

We allow the possibility of additional types besides those specified by
clauses (al) and (a2), and even identifications between types. We interpret N
as the type of natural numbers, 1 as a one-element type and Q as the type of
truth values or propositions

(b) The class of terms is freely generated from certain basic terms by
certain operations including the following. Among the terms of
type A are countably many variables x{, x4,.... Usually we shall
not quote a variable by name, but merely say: ‘let x be a variable of
type A’ or even ‘let xe A”. The set of terms also contains a number of
specific terms and is closed under certain operations.

(b1) * is a term of type 1;

(b2) ifaisaterm of type A and b is a term of type B, then {a,b) isa
term of type A x B;

(b3) ifaisaterm of type 4 and «is a term of type PA, then acaisa
term of type Q;

(b4) if p(x)is a term of type Q (possibly containing the free variable
x of type A), then {xeA|p(x)} is a term of type PA not
containing a free occurrence of x;

(bS) O is a term of type N;

(b6) if n is a term of type N so is Sn;
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(b7) T and L are terms of type &;

(b8) if p and q are terms of type Q, soare pA q, p v q and p=>g;

(b9) if p(x)is a term of type Q (possibly containing the free variable
x of type A), then V. ,0(x) and 3, ,¢(x) are terms of type Q
not containing free occurrences of x.

We allow the possibility of additional basic terms and term forming
operations besides those specified by clauses (b1) to (b9). The notions of
free variable, bound variable and closed term are defined as usual (see
below). We summarize the formation of terms in the following list, in
addition to which there are variables of each type:

1 N PA AxB Q

x 0 {xedlo(x)} <{ab> T,L
Sn PAGPVY
p=q
Vien @(X), 3xca 0(x)
aea
where the subterms, n, ¢(x),a,b and o have the appropriate types:

N Q A B PA

n o(x) a b a

P
q

Thus S(-), {xeA|-}, (—,—) etc. are term forming operations. Terms of type
Q are also called formulas.

The term L and the term forming operations (-} v (-) and 3, ,(~) may
be eliminated by means of the following definitions:

L =Vieat,
PV 4=Yeo(((p=1) A (g=1))=1),
Jiea (%) = Vieq(Viea(@(x) = 1) =1).
One may also define a number of widely used term forming operations:
p =p=1,
peq =(0=9) A(g=>p),
a=da= V,‘em(deuéa’eu),

{a} ={xeAla=x},
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El!xeA (p(x) = ax’eA {XEAI([)(X)} = {xl}’
{<{x,y>ed x Blo(x,y)} = {ze4 x B|
3:ceA 3_vsli(z = <x’ }’> A (p(Z))},
6 S P =V calxea= xep).
where « and f are terms of type PA.
The definition of = given above may be ascribed to Leibniz.
The variable x of ¢(x) is said to be bound in {xeA|p(x)} and V,_, o(x),

hence also in 3, ,¢(x) and 3!, , o(x). An occurrence of a variable is said to
be free when it is not bound.

(c) Entailment satisfies the following axioms and rules of inference:

1. Structural rules

1.1. rkp;

pkq qkr

pr

rPlkq |

p ’i('u{y) q

AV LBV AL))
o)z Y(b) ’

if y is a variable of type B and b a term of type B with no free occurrences of
variables other than elements of X, it being assumed that b is substitutable
for x, that is, no free variable in b becomes bound in @(b) or y(b).

1.2,

1.3.

2. Logical rules

2.1 PT; 2.1 1lkp;
2.2, rgpAg 22 pvqb(-}-
iff riyp and rs g; iff pkgr and gk r;
2.3. pq=riff p A qlzr;
24 plrYyesd(y) 24, 3.90)kp
iff plz,, Y ) iff Y0 iz, p-

Therules 2.1',2.2' and 2.4’ can be derived if L, v and 3 are defined as above.
We write - for }5, that is, for iz when X is the empty set. The reason for
the subscript X on the entailment symbol becomes apparent when we look
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at the following ‘proof tree’
(1.1) (LY

VxEA ([)(X) - VxeA (p(x) (2 ) E]xeA (D(X) - 3xeA go(x)

vst (p(X) i;(p(X) . (D(X) }; 3.xeA (p(X)

4 vst (P(X) '37 E’xeA (p(X) (1 4)
vxeA (p()C) ‘_ 3xeA QD(X) ’

where the last step is justified by replacing every free occurrence of the
variable x (there are none) by the closed term a of type A4, provided there is
such a closed term. Had we not insisted on the subscripts, we could have
deduced this in any case, even when A is an empty type, that is, when there
are no closed terms of type 4. We then would have been able to infer from
the fact that all unicorns have horns that some unicorns have horns.
Aristotle would have avoided this conclusion by denying that all unicorns
have horns. Some modern authors avoid it by abandoning the transitivity
of entailment!

In what follows, we write y p for T kg p.

Q.4)

(1.2)

3. Extralogical axioms

Comprehension:

3. R Veealxe{xed|p(x)} =o(x).
Extensionality:

32. FVueraVoepa(Veca(xeus>xev) =>u =),
33 FVeaViea((st)=>s = 1).

Products:

34 FV,e12=%,

35. }_VzeAxBaxEAayeBZ ={x¥),

3.6. PV e VeeaVyenVyes (<6 YD = (X, ¥y Y= (x = X' A y=y).
Peano axioms:

3.7 V., en(Sx=0=> 1),

38 FVenVyen(Sx =Sy=x = y),

39. FViepn((0€u A Voon(xeu=Sxeu)) =V yyeu).

The type theories described so far are intuitionistic. A classical type
theory satisfies an additional axiom:

Yieq(t v i)
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or, equivalently,

" Vet =>1).

Example 1.1. Puretype theory is the type theory in which there are no types
or terms other than those defined inductively by the above closure rules,
there are no non-trivial identifications between types, and I is the smallest
binary relation between terms satisfying the stated axioms and rules of
inference.

In pure type theory there are closed terms of each type, hence subscripts
on the entailment symbol may be omitted. Indeed, we have the following
closed terms of the indicated type:

1 N Q P4 AXB

* 0 T {xed|l} <ab)’
it being assumed that @ and b are already known to be of types 4 and B
respectively.

We shall prove later that pure type theory has the important

Existence Property. If --3,_, ¢(x) then - ¢(a) for some closed term a of
type A.

It is possible to consider some variants of our formulation of type theory
which are logically equivalent, but for which the existence property does
not hold. For example, one might replace the term forming operation
{xeA|-} together with the above comprehension scheme by the axiom
scheme

= 3msPA vxeA (x EU<> (P(x) )’

but then it would be impossible to witness this statement by a term of the
language. Similarly one could replace the term * of type 1 by the axiom

F3,,4T,

which could then no longer be witnessed.

One may formulate a seemingly stronger version of type theory where
instead of PA = Q* one requires B for arbitrary types 4 and B. This would
necessitate replacing {xeA|p(x)} by i..,¢(x) when o(x) is of type B.

Example 1.2. Given a graph %, the type theory generated by % is defined as
follows. Its types are generated inductively by the type forming operations
(=) x (=) and P(~) from the basic types 1, N,Q and the vertices of % (which
now count as basic types). Its terms are generated inductively from the basic
terms x#, , 0,T, L by the old term forming operations (—,-), (-)e(-),
{xeA|-}, etc. together with the new term forming operations for each
arrow f: A— B of 4 if ae 4 then fueB. Finally, its axioms and rules of
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inference are precisely those which follow from (c) and no others. Note that,
if G is the empty graph, Example 1.2 reduces to Example 1.1.

Exercises

1. If 1, v and 3 are defined, deduce the logical axioms and rules 2.1,2.2' and
2.4,

2. Prove the equivalence of the axioms V,o(t v ) and V,o(Tt=>1).

3. Prove that in a classical type theory
'—vasA (p(x) |; axed—lq’(x)-

4, Describe a strong version of type theory with exponential types B4 as a
typed A-calculus with an entailment relation.

2 Type theory based on equality

We shall consider another variant of type theory here in which all
logical symbols are defined in terms of equality. This is less intuitive than
the version presented in Section 1, but has a practical advantage in
facilitating interpretation in certain catégories, as we shall see.

Types are subject to the same closure conditions as in Section 1, but the
closure conditions for terms, aside from assuring that there are countably
many variables of each type, are now summarized more briefly as follows:

1 N P4 AxB Q

x 0 {xeAlo(x)} (a,b) aea
Sn a=da

where it is assumed that

N Q A B PA

n o(x) a b a
d
We then introduce the old symbols T, A,=>and V by definitions as follows:
T = ok == ok,
prag  =pg>=<T,T),
p=q =pAg=p,

vxeA¢(x) = {XEAICP(X)} = {XEAlT}
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We already saw in Section 1 how to define 1, v and 3 in terms of these.

It is convenient here to view entailment kg not as a binary relation
between formulas, but as a relation between finite sets of formulas and
formulas. Thus we write

Iz q
to say that g is entailed by I' = {p,,..., p,}, where n > 0. It is assumed that
all variables occurring freely in p,,...,p, and q are elements of X. Such a

notion of entailment (without the subscript X) was first used by Gentzen. As
is customary, we may also omit the braces { } in I and write more
briefly

Pis---sPalx g
When n =0, that is, I' = ¢, this may also be written kgq. Furthermore, )
when X = ¢, the subscript X may be omitted.
I’z g also has a conventional meaning when I' is infinite. It then asserts
that Iy g for some finite subset I of T".
It remains to lay down the axioms and rules of inference for the new
entailment relation.

1. Structural rules

1.1. rkp;
12 I'kp T'u{plkq.
o T'kgq ’
1.3, _I_’ﬁ_ﬁ;

Fu{p}izq

Tk

14. X9 .

Ikoma
Ls. T(y) ko 0()

Ib)keb)

where it is assumed that b may be substituted for y in ¢(y) and I'(y) =
{@1(3),-.., 04y}, that is, no occurrence of a free variable in b becomes
bound in ¢(b) or ¢(b).

2. Pure equality rules
1.2, ka=a;
22, a=b, ¢@ked),
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where it is assumed that a and b may be substituted for x in @(x);

53, I',plxq Rq&g
Tkp=q
3. Other axioms and rules.
3.1 {a,by={c,dYxa=c
32, (abd={c,ddgb=d
33 kk(xe{xed|p(0)}) = o)
whel(re it is assumed that x is an element of X

Tly o ¢(x) = x€a
Tk {xeAlp(x)} =o
where it is assumed that x is not free in I';
3.5 Ez=x,
where it is assumed that z is of type 1;
Iz=<{%y)ko(xy.9)

I'izui0(2)
where it is assumed that x and y are not free in I" or ¢(z);
37 Sx = Ok P
3.8. Sx =Syks 1 x =,

Iz o0) T, p(x)hx, ) o(SX)
rl—)fu{x}(p(x)
where it is assumed that x is not free in T".

We wish to compare the traditional (old) type theories of Section 1 with
the (new) type theories based on equality of Section 2.

34

3.

39.

Proposition 2.1. Every traditional type theory @ gives rise to a type theory
N(0) based on equality, provided =is defined by Leibniz’ rule and
Pi»--->Dakg q is taken to mean p; A ... A p, iz g, in particular, (J kg means
Thq

Proof. Types and variables have not changed. It is an easy exercise to check
that the new axioms and rules of inference are theorems and derived rules of
inference in the old system. We shall just give a sample proof of new rule 3.6,
which perhaps requires some explanation. To simplify the argument, we
take I" and X empty.
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Suppose
2=L% Y055 0(2).
Then
FxeaFyes? = (%, 0 k7 0(2),
by old 2.4’ twice. But
b 3xeadyenz = <X, ¥,
by old 3.5 and 2.4. Therefore

i 0(2),
by old 1.2.

Proposition 2.2. Every type theory 4" based on equality gives rise to a
traditional type theory O(A"), provided T, A, = and V are defined in terms
of = and plyq means {p}lxq.

Proof. Types and variables do not change. It is an exercise, but not quite a

routine one, to verify that the old axioms and rules of inference are theorems

and derived rules in the new system. We shall content ourselves with two

samples here, leaving some of the rules of equality to Lemma 2.3 below.
As our first example, we shall establish the old 2.2:

rkp A q ifand only if riyp and rigq.

For simplicity, we shall omit the subscript.
Assume that

r=pAag.
This means
r=<p,q> =T, T).
Now, by new 3.1 and 1.3,
1pg>=<T, THp=T.
Hence, by new 1.2,
rbkp=T.
But, by Lemma 2.3 below,
p=THp.
Therefore, by new 1.3 and 1.2,

rp.
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| Similarly,
rt-gq.
Conversely, suppose
rp and rhg,
we wish to show that ri-p A g, thatis, r-(p,q)> = (T, T). First we argue
as follows, for convenience in tree form;
(given) (Lemma 2.3)
rtp pEp=T 22
rbp=T p=THP=<T,q)
re=<p,q> =<{T,q> ‘
(Transitivity of entailment follows of course from 1.3 and 1.2.) Similarly
LT, qy =<T,T).
Using transitivity of equality (see Lemma 2.3 below), we infer the desired
result. )
As a second example, we shall derive the old 3.5, assuming that the old
logical rules have already been established.
We begin by citing a special case of the old 1.1: if z is a variable of type
A x B, ‘

3xeAayeBZ = <x’ Y> }? 3m.:AayeBZ = (X, Y>

Using the old 2.4" twice, we infer that
z= <X, y> ’{_x,y.z} 3xeAElysl‘Iz = <x’y>~

In view of the new rule 3.6 and transitivity of entailment we deduce
baxe.AByeBZ = <X,y>.

Using the old 2.4, we obtain the desired result. Incidentally, it appears from

this proof that we might as well have taken I" empty in 3.6.
It remains to state and prove the promised lemma.

Lemma 2.3. The following derived rules of equality hold inany type theory
based on equality:

(i) a=bkb=agq

(i) a=>b,ob)k ela)
(i) a=bb=cka=c
) p=Tkp

(v) pkp=T.
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Proof. For simplicity we take X empty. Specializing 2.2 to the case ¢(x) =
x = a, we obtain

a=b,a=aFb=a.

Citing 1.1 and using 1.3 and 1.2, we infer (i).
From (i) and 1.3 we get

a=b, p(b)=b=a,
and from 2.2 and 1.3 we get
a=b, p(b),b=ak¢(a).
Therefore, taking I' = {a = b, p(b)}, p=b =a and q = ¢(a), we use 1.2 to
infer I'gq, that is, (ii).
(iii) is a special case of (ii) with @(x) = x =c.
Next, we use 2.1 to infer - % = «, that is, - T. Now by (ii),
p=T,TFp.
Hence, by 1.3 and 1.2, (iv) follows.

Finally, from T and 1.3 we have p,p+T. Also, from 1.1 and 1.3 we
have p, THp. ,

Hence, by 2.3 taking I'={p} and g= T, we get (v).

Up to now, terms were generated freely by certain term forming
operations in both old and new type theories. From now on, we shall
usually identify terms if they are provably equal.

Theorem 2.4. Traditional type theories and type theories based on equality
are equivalent in the sense that

ON(O)=0, NON)=N
for all traditional ¢ and type theories based on equality 4.

Proof. Givenan old type theory ¢, we form the old type theory ¢' = ON(0).
On the face of it, the term forming operations in ¢ are different from those
in 0. For example, p A gin ' is {p,q> = (T, T > in O, where = is defined
by Leibniz’s rule. However in @ one can prove {p,g)={T,TY>kpAgand
conversely, hence {p,¢> =(T,T> and pA q are provably equal by old 3.3.
In this way one shows that the term forming operations in ¢ are really the
same as those in 0, if attention is paid to provable equality between
formulas in @. Moreover, plky g in ¢ if and only if {p} ky q in N(0), that is,
phq in ¢. Thus @ and @ = ON(0) are the same theories. In a similar
manner one shows that for any new type theory 4", 4 and NO(A') are
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the same. Later we shall consider morphisms between type theories called
‘translations’, so that type theories, traditional or based on equality, will
form a category. The assignments N and O of propositions 2.1 and 2.2
will then become functors and Theotem 2.4 will assert that the category
of traditional type theories is isomorphic to the category of type theories
based on equality.

Type theory based on equality also has a seemingly stronger version
where instead of PA = Q4 one requires B for all types 4 and B.

Exercises
1. Prove Proposition 2.1.
2. Complete the proof of Proposition 2.2.

3. Prove that in any traditional type theory the definitionsof T, A, = and V
in terms of = become theorems.

4. Prove thatin any type theory based on equality Leibniz’s rule is a theorem.

5. Describe a strong version of type theory with exponential types B4 asa -
calculus with equality and entailment.

3 The internal language of a topos

In this section we shall associate with every topos J a type theory
1(7), its so-called internal language.
An (elementary) topos 7 is a cartesian closed category in which the sub-
object functor is representable. What this means is that there is given an
object Q, called the subobject classifier and a natural isomorphism

Sub =~ Hom(-, Q).

More precisely, it means that there is given an arrow T:1—Q such that
(i) forevery arrow h: A —Qan equalizer of hand T QO 4: 4 — 1 - Qexists,
call it a kernel of h and write

kerh:Kerh— A4;

(ii) for every monomorphism* m: B — A there is a unique arrow char m:
A —Q, called its characteristic morphism, such that m is a kernel of char m.

The statement that m: B— A4 is a kernel of h: A > Q, or that h is the
characteristic morphism of m, may also be expressed by saying that the
following square is a pullback:

* An arrow m in a category ¥ is a monomorphism if ma =mb implies a=b. An
epimorphism is a monomorphism in €°P.



140 Type theory and toposes

Og
B 1

'

A — Q)
h

While characteristic morphisms are unique, kernels are only unique up to
isomorphism. Thus

char(kerh)-=-h, ker(charm)=m.

The reader will notice that we denote equality of arrows in a topos by the
symbol -=-; this is to distinguish it from the internal equality to be
introduced later.

From now on we shall include in the definition of a topos the requirement
that it possess a natural numbers object in the sense of Lawvere. This means
that there is a diagram

1 4n SN

initial in the category of all diagrams -

f

14544, A,
that is, for every such diagram there is a unique arrow g: N — 4 such that

g0-=-a, ¢S-=-fyg.

It is possible to give an alternative definition of a topos which is a little

more economical: instead of requiring B4 for all B and 4, it suffices to

require this only when B = Q (see Section 13). We write PA for Q4 and think

of this as the power set of 4. However, for now, we shall insist that a topos is
cartesian closed. We repeat:

Definition 3.1. A topos is a cartesian closed category with a subobject
classifier and a natural numbers object.

Many examples of toposes will be found in sections 9 and 10.
For future reference we shall state and prove two immediate conse-
quences of Definition 3.1.

Proposition 3.2. Let 65 B—Q be the characteristic morphism of the
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monomorphism {1, 15>: B— B x B. For any two arrows f,g: 4 3 B,
Sf-=+g ifand only if 65{ f,g>=-TO,.

Proof. One implication is immediate, since 65 f, f >*=-85{1p, 1> f-=-
TOpf=TO, To prove the other implication, assume 65< f,g>-=-
T O 4 Now the following square is a pullback:

Os
B I

{lg, 1gp T

B x B Q
5 :

B

Therefore, there exists a unique arrow k: A — B such that

Cfrgd =g 10k =<k k).

Applying ng p- and 7p p, to this, we obtain

The second consequence of Definition 3.1 we have in mind is a categorical
version of a scheme that is used in the definition of primitive recursive
functions. :

Proposition 3.3. (Recursion scheme). Given any object A4 in a cartesian
closed category with natural numbers object and arrows a:1— A4 and h:
N x A- A, there is a unique arrow g: N - 4 such that

g0-=-a, ¢gS-=-h{ly,g>.

Proof. In view of the universal property of the natural numbers object,
there is a unique arrow { f,g>: N - N x A such that the following diagram
-commutes:

N - N

& S

Nx A N
{0, a> {Sny. 40 B>
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This translates into the following four equations:

@i f0-=-0,
(i) fS-=-5f
(i)  g0-=-q,

(v)  gS-=-h{f.9>.
Now the identity is the unique arrow N — N such that the following
diagram commutes:

o Y s N
Therefore f-=-1y, in view of (i) and (ii). Then (iv) becomes gS-=-h{1y,¢>,
and (iii) and (iv) are the required equations.

Corollary 3.4. In any cartesian closed category with natural numbers

object, 1 —Q->N <—S— N is a coproduct diagram, so that N + 1~ N.

Proof. Suppose we are given ILAAN. Put h-=-kny , and apply
Proposition 3.3 to obtain a unique arrow g: N — 4 such that g0-=-q and

QS'='h<1N;9>‘=‘kn1v,,4<IN,9>'="k-

Note that g is usually written as [a, k] and that the existence and uniqueness
of g may be stated equationally by [a, k10-=-a, [a,k]S =k, [0, gS]-=-g,
for all g: N — 4 (see Part I, Section 8).

At this point it is useful to recall from Part I, Section 5 that to any
cartesian closed category ./ one may adjoin an indeterminate arrow
x:1— A, where A is any object of 7, to obtain the polynomial cartesian
closed category «/[x]. In particular, from a topos 4 one may obtain the
cartesian closed category 9 [x]. We do not assert that 7 [x] is a topos,
although we shall see later (Section 16, Exercise 2) that it generates a topos
7 (x) equivalent to the slice topos /4. Of course, I [x] shares many
properties with a topos. (Such a topos-like category has been called a
‘dogma’ in the literature, but we shall not go into that notion here.) For
example, it follows from Part I, Proposition 9.1 that 7 [x] has a natural
numbers object.
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We also recall from Part I, Section 6 the important property of func-
tional completeness of cartesian closed categories. In particular, this
property implies that for every polynomial ¢(x): 1 — B in 7 [x], depending
on the indeterminate x: 1 — A, there is a unique arrow f: 4 Bin J such
that

o(x) 5 fx.
Here - =-is the equality relation in 7 [ x]. Another way of putting this is that
there i 1s a unique arrow g: 1-B4in 7 such that

¢(x) gix= ep 49, x).
One also writes

) g= A’stgo(x.)'

Definition 3.5. The internal language 1(J") of a topos 7 has as types the
objects of 7. It is understood that the type Q is the object Q, the type N is
the object N, etc. It has as terms of type A in the variables x; of type 4,
(i =1, ...,m) polynomial expressions ¢(x,,...,x,): 1 = A4 in the indeter-
minate arrows x;:1 — A4, over 7. In particular,

variables of type A are indeterminate arrows 1 —» 4,

* is 1],

0 isO0:1-N,

Sn is1-5N ——‘SL»N

(aby is15%82, 4 p

o1 £ad) 04 =
a=da is1>2"%HA4xA4 ————-oQ, where 8, =char{1,,1,>,

aea is 1—<-—E—-—2—»PA x A —2+Q, where ¢, =¢g 4,

{xeA|@(x)} is A,c40(x), the unique arrow o:1-»PA such that

xea =+ @(x).
Xuix}

It is understood in the above that n,a, b, a’, & and ¢(x) have already been
suitably interpreted as arrows. A more careful description of the terms in
L(7) would proceed as in Example 10.6in Part L.

Furthermore, if X = {x{,...,Xn}s

(pl(X),“-’(pn(X)'Y(pn-i-l(X)

means that, for all objects C of 7 and all arrows h: C — A4,
lff,h._——_.TOC (l = ],_“’n) then fn+1h'='TOC,
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where f; (i=1,...,n+ 1) is defined by functional completeness as follows:

JikX 15 X )= 0X).
In other words, putting A= A4, x 4, x --- x A, (association on the left),

TS = Aeeca Pl 4,0, % - s T g, 4,%)-
It is easily verified that the internal language of a topos is indeed a type
theory based on equality, except perhaps for the Peano axioms. We shall
return to this point later.

The reader will recall that we have written - =- for equality of arrows in
the topos I (external equality) to distinguish it from =, which is here the
equality symbol in L(J ) (internal equality).

In particular, b p in L(J) means that p-=-T as arrows in 7. It will be
convenient to have yet another notation for this, namely . F p, saying that
the topos J satisfies the proposition p or that p holds in . This is
particularly useful when p is a closed formula of pure type theory, which
may be viewed as a kind of sublanguage of L(7"). In fact we thus have an
interpretation of pure type theory in any topos & . Similarly, |5 {(x) means
)= T.

More generally, what is the meaning of ¢(X)k ¥(X) according to the
above definition? To simplify the discussion, take X = {x}, where x: 1 - 4.
In view of functional completeness, we may write

o(x) = fx, Y(x)=gx,
where f and g are uniquely determined arrows A —Q. According to
Definition 3.5, fxk; gx means: for all C—A4, fh-=-T O, implies
gh- =T Q.. Inparticular, if we take h as a kernel of £, this condition asserts
that a kernel of f is contained in a kernel of g.

In particular, if fx} gx and gx Iz fx, we may infer that f and g have the
same kernels. Since characteristic morphisms are unique, this implies that
f+=-g. We have thus established, in the case X ={x}, that the following rule
holds in the internal language of any topos:

o(X)RY(X) Y(X)ix o(X)
o(X) 5 Y(X) ’

Exercises
1. Show that in a topos fix,...,f,xFgx means that
ker fyn...nker f, S kerg.
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2. Verify that the internal language of a topos satisfies all the axioms and
rules of inference of type theory based on equality other than Peano’s
axioms (which will be discussed in Section 4).

4 Peano’s rules in a topos

We shall prove that Peano’s rules hold in any topos, thus
completing the proof of the following:
Theorem 4.1. The internal language of a topos is a type theory based on
equality.

For the rest of the proof of Theorem 4.1, the reader is referred back to
Exercise 2 of Section 3.
Peano’s first rule. For example, if X is empty, this may be written thus:

P1. on<S,00, > xk fx, : ‘

where f: N —Q is any arrow. (Usually f is the arrow LOy:N>15Q)
According to Definition 3.5, this means: for all objects C and all arrows

h:.C-N, if

i  ox<(5,0080h="TOc,

then

(i) Sh=TO¢.

Assume (i), which, by Proposition 3.2, may be written

Sh-=-00yh-=-00¢.

Now, by Corollary 3.4, there is a commutative diagram:

N
0 S
1 [T.1] N
T f
Q

Thus
[T.f10-=-T, [T,f18:=1.
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hence
Sfhe=-[T,f1Sh-=-[T,f100c¢ =T Oc,
which is (ii).
Peano’s second rule. This may be written

P2. 5N<STCN,N',S7T,N,N'><xsy>*—{;,y}éN<x,y>'
According to Definition 3.5, this means: for all objects C and all arrows
{hk>»C—->NXxN,

if 5y(Sh,Sk) =T O¢ then &y(h k) =-TOc.
In view of Proposition 3.2, this implication may be rendered as follows:
ifSh-=-Sk then h-=-k.

In other words, P2 asserts that S is a monomorphism.
By Corollary 3.4, we have the following commutative diagram:

Thus
[03 1N]0=03 [Os 1N:ls=1N

[0, 15]is of course the usual predecessor arrow. Assuming that Sh-=-Sk, we
then have h-=-[0, 1y]Sh-=-[0, 1y]Sk-=-k.

Peano’s third rule (mathematical induction). To give an idea of its proof,
we shall look at the special case in which X = . (At any rate, it is not
difficult to reduce the general rule to this special case.) It is also clear that,
without loss in generality, one may assume that I' = {p}, as one can always
replace T by the conjunction of its elements. It is furthermore possible to
deduce the case I" = {p} from the case I = (&, by replacing ¢(x) by p=>¢(x),
as follows:

p,p=>0(X)z 0(x) @(x)k @(Sx)

pHo(0) p,p=(x)k ©(Sx)
Fp=>¢(0) p=>@(x)Fp=>¢(5x)
K p=>0(x)

Pk o(x)
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It therefore remains to prove Peano’s third rule in the following form:
Fo0) o)k o(Sx)
k o(x) '

Before showing that P3 holds in L(7"), we wish to introduce a symbol for the
binary relation ‘less than’ between natural numbers. Apply Proposition 3.3
to the situation a: 1 - PN, h: N x PN - PN, where

a-=-{xeN|Ll},

hi{x,u)-=-{x}ovu-=- {yeN|y=xv yeu}.

{

x,u} {x,u}
By Proposition 3.3, there is a unique arrow g: N — PN such that
g0-=-{xeN|L}, gSx-=-{yeN|y=xv yegx}.

Now define

P3.

m<n=megn
for terms m,n of type N. Then we have
(i) x<0=-1,

(i) y<Sx=y=xvy<ux
{x.y}

Let us now return to P3. We are given that - ¢(0) and ¢(x)k; ¢(Sx) and
wish to prove that I ¢(x). To do so, we pass from ordinary induction to
‘course of values induction’. Define the arrow f: N - Q by

fX‘ _f 'v_veN(y < SX = (P(y))
Then
J0-="V,ey < SO=>0(y))
= Ven(y=0v y<0)=q(y)) by (i)

=Yy =0=0(y)) by (i)

c=p(0)=-T (given).

Also
J8x: = -Vyen(y < S(Sx)= 0(y))

Ve =Sx v y<Sx)=>0(y)) by (ii)

5 0(SX) A fx-5-fx,
because . v

fX' x ~VyeN(y < SX=>(0(}’))

T Ve(y=xVvy<x)=0(y) by (i

and

P(x)k ¢(Sx) (given).
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Thus
f0-=-T, fS-=f

Now, by Lawvere’s definition of the natural numbers object, there is a
unique arrow N —Q to make the following diagram commute:

0 N S

N

1 T Q T Q

As we have just shown, the arrow f: N — Q will do so, but so will the arrow
TOp:N—-1-Q. Therefore f-=-T Oy, that is, fx-=-T. Since fxk o(x),
also ¢(x) =T, that is, ¢ ¢(x). The proof of P3 is now complete.

Exercise
Show how to define < using the recursion scheme.

5 . The internal language at work

The internal language of a topos J may be put to work to express
various properties of arrows internally or even to carry out certain
categorical constructions. ' ‘

The following result is sometimes summarized by the slogan: external
equality in a topos is equivalent to (provable) internal equality.

Proposition 5.1 For any arrows f,g: A3 Bin a topos T, f+=-gif and only
if

T B, ufx=gx.

. Proof. That external equality implies internal equality is evident. We shall

prove the converse. ;

That in L(7) we have IV, fx = gx means k fx=gx, by Rule 2.4 of
Section 1, that is, fx=gx-="T, that is, 05{f,g> =Ty, by functional
completeness. Therefore f-=-g, by Proposition 3.2.

The following lemma turns out to be useful.

Lemma 5.2. Given a monomorphism m: B— C and an arrow f: A— Cin
the topos J such that o
g'}:VxEAayeBmy = fx9

there is a unique arrow g: A — B such that mg-=- f.
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Proof. Since J is a topos, m is a kernel of its characteristic morphism
h: C - Q. In particular

hm =T O¢m =T Qp.
Now clea}fly
my = fxiz  hfx = hmy,
hence
my = fxlz yhfx="T.
In view of Lemma 2.3, we infer that
my = fxk; 2 hfx,
therefore
3,epmy = fxk hfx,

by the usual rule of existential specification (see Section 1, rule 2.4'). As we
~are given that

}; 3yeBrny = fx!
it follows that
ks hfx.

According to our interpretation of 5 in T (see Definition 3.5), this means
that, for all k:D— A4, ’

hfk-=-T Op.
So, in particular,
Bf-=TO,=TOc.
Since m is an equalizer of h and T O, it follows that f-=-mg for a unique
g.-A— B.
We recall that in a topos, as in any cartesian closed category, there is

a one-to-one correspondence between arrows h:C—Q and arrows
Th:1-Q¢ = PC. In fact, by Part I, Section 3 (3.3), we have

he=-Th =-gq {THOc, 1¢)-
Now let z:1 - C be an indeterminate arrow, then
hz:=-eqc{"h,z) = ze"h",
according to the definition of e in the internal language (see Definition 3.5).
We may express this as follows:
Lemma 5.3. In any topos, if i: C—Q, then "h™: 1 - PC is given by
Ch1.-=-{zeC|hz}.
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We are now ready to express characteristic morphisms in the internal
language.
Proposition 5.4. If m: B— C is a monomorphism in the topos 7, then
Fcharm?-=-{zeC|3,ymy = z}.
Proof. Let h: C—Q be such that
Ch1.=-{zeC|3,pmy = z}.
Thus, for an indeterminate arrow z:1 - C,
hz:=-3,.pmy =z,

in view of Lemma 5.3. It is easily checked that hmy-=-T, hence that
hm-=-T Qp. We shall prove that m is a kernel of h. Replacing z by fx,
where x:1— A is another indeterminate, we get

hfx-==-3,.gmy = fx.
Suppose now that hf-=-T O, that is,
hfx-=-T,
then we may infer that
Tz, pmy = fx.
According to our interpretation of i in Definition 3.5, this implies
K 3yesmy = fx
in L(7), that is
T BV cea3yesmy = fX.

By Lemma 5.2, there is a unique arrow g: A — Bsuch thatmg-=- f. Thus mis
a kernel of h, that is, h is the characteristic morphism of m, as was to be
proved. -

Itis easily checked that {1 ,,1,>: A— A x Aisamonomorphism. In fact,
this was presumed in Proposition 3.2 when J, was defined by

o4=char{l,,1,>.

Corollary 5.5. In any topos

o, ={zed x A|3,.1{x,x)> =1z}
Proof. This is an immediate consequence of Proposition 5.4. It is an easy
exercise to check that also

Fo,0-=-{z€A x A|ny 42 =7, 4z}.

But, recalling the general definition of {{x,yd>eA x Blo(x,y)} from
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Section 1, we may also write Corollary 5.5 as
Mo, ={{x,y)€A x B|x =y}

or even as
o, ={{x,x>ed x A|T}.

Lemma 5.6. 1f h*: A— PB corresponds to h: A x B—Q in a topos,
h*x-=-{yeB|h{x,y)}.

Proof. h* is the unique arrow 4 — PB such that gy(h* x 1 g =-h, where
eég=¢g . Let x:1 - A4 and y:1 - B be indeterminate arrows, then

yeh*x =-eg(h*x,y)
{x.9}
=-gg(h* x 15)<x, y)
{x.y}
:h<xay>

{x,y}
The result now follows.

If we define the singleton morphism 1, = §5: A — PA, we have immediately:
Corollary 5.7. 1,x-=-{x'€eA|x =x"} = {x}.

Proposition 5.8. In any topos the singleton morphism 1,:4—PA is a
monomorphism.

Proof. Suppose f,g: B3 A are such that 1, f-=1,9. By Proposition 5.1,
‘_VyeBlAfy = lAgy, ‘

that is, by Corollary 5.7,
L {fy}={gy}.

It now follows from the usual properties of equality that K fy =gy, that is,
that f+=-g, by Proposition 5.1.

The following result is sometimes summarized by saying that description
holds in a topos.

Theorem 5.9. Suppose that
T FVxeadliep0(x, y),

then there is a unique arrow g: A — B such that
T FV xeat0(x, gx);

in fact,

y=gx-=;<p(x,y).

X,y
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Proof. We recall from Proposition 5.8 that the singleton morphism Iy
B— PB is a monomorphism.
In view of functional completeness, we may write
{yeBlo(x,y)} 5 fx
for a unique arrow f: 4 — PB. The assumption of the theorem may then be
written: '
JTE VxeA ElyEB Igy = fx'
Applying Lemma 5.2, we obtain a unique arrow g: A — B such that izg-="f,
hence

jkvxeA{gx} = {yEB‘(P(X,Y)}
Thus k ¢(x, gx) and therefore VY, 40(x,gx) in L(T).

Exercises

1. With any object C in a topos there is associated a subobject m,: C - PCof
PC with
Fcharmc - =-{wePC|V (zew=w= {z})}.

(a) Show that there is an arrow ng:C —C such that mcne-=-1¢, the
singleton morphism.

(b) If m: A— B is a monomorphism and f: 4 — C any arrow, show that
there is a unique arrow g:B—C extending f, that is, such that
gm-=-n¢f forms a pullback. (Hint: First let h: B—PC be such that

hy-5-{26Clealy =mx A fx=2)},

then find the unique g such that h-=-mgg.)

(¢) A partial map from B to C is a pair of arrows (m: A B, f: 4> C),
where m is a monomorphism. Given two partial maps from B to C, say
the above and (m": A’ = B, f": A’ - C), an isomorphism between them is
an isomorphism o:4 A’ such that m's-=-m and f'¢-=f. Let
Part (B, C) be the set of isomorphism classes of partial maps from B
to C; show that Part(—,C ) is a contravariant functor (by pulling back).

(d) Show that in a topos Part(—C) is representable; in fact,
Part(, C) & Hom(-, C). C is called a partial map classifier of C.

(¢) Obtain the definition of the subobject classifier as a special case of this
construction. '

2. If A+ B is a coproduct of objects A and B in a topos, clearly there
is a monomorphism m, p: A+ B— P(A+ B)= PA x PB. Show that
a coproduct of A ‘and B may indeed be constructed by tak-
.ing Tcharm, 1= {{u,v>ePAx PBlQunv=Cp Vv U= A Av)},
where 3w =3, xeu, &, ={xed|L}. The canonical injections K,
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A—>A+B and «, g:B—> A+ B are given by My gk 4 p%- = {{x}, @p>,
My pKa8y 5 { D> {}>. If f: A~ C,g: B— C, use Theorem 5.9 to obtain
aunique arrow [ f,g]: A + B— Csuch that Lfiglkas =f,[f, )65 ="9.
Show that the uniqueness may also be expressed equationally by
[hx 45, iy g]-=-h for all A+ B—C.

3. In any topos 7, for a, B: 1 —» PA, we may define o < Btomean T Fac B
Show that, for each object A of 7, Hom(1, PA) = Sub(A4) is a Heyting
algebra, that is, a poset which, regarded as a category, is bicartesian closed.

6 The internal language at work II

In this section we shall use the internal language to discuss
monomorphisms, epimorphisms, injectives and projectives in a topos. First
we note that monomorphisms and epimorphisms may be described exactly
as in the category of sets.

Proposition 6.1. In a topos 7, f: A— B is a monomorphism if and only if
(a) ‘9- I: VxeAvx'eA(fx = fxl =X= x’)’

an epimorphism if and only if
&) T VY epdreafx =),
an isomorphism if and only if
@ TV fx=y.
Proof. Suppose (a) holds and g,h:C3 4 are such that fg-=-f h. Then
clearly,
T EVY,ecf9z = fhaz.

Hence, in view of (a),
T EVY,ecgz = hz.
Then by Proposition 5.1, g-=-h, and so fis a monomorphism.

Conversely, suppose f is a monomorphism. Let {gh):C—+AxAbea
kernel of k: 4 x A, where

k= {{x,x'YeAd x A| fx= fx'}.
Then k{g,h) =T O, hence
k(gz,hz)-?-T,
from which it follows that
=< gz, hz>e"kT,
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that is,

b fgz = ghz.
By Proposition 5.1, we infer fg-=- fh, hence g- =-h. Thus the kernel of k is
{g,g> and so, by Proposition 5.4,

k= {{x,x' YeA x A|T,c{g: 90z =X, x>}

It now follows that

fx= X"l <% x'>elk™
lﬁ:,x’}azec<gz’ gZ> = <xa X’>
C X = x'.

hence that condition (a) holds.
Next, assume (b) and suppose g, h: B=3 C are such that gf-=-hf, hence

T EY e adfx = hfx.
From this and (b) we infer by ordinary logic that

T EVyepgy = hy,
hence, by Proposition 5.1, that g-=-h, and so f is an epimorphism.
Conversely, suppose f is an epimorphism. By functional completeness,
there is a unique arrow g: B—Q such that
gy 5 Jeafx =)
In particular,
gfx.?.T .?-TOfo’
so that
gf T T OBf ’
again by functional completeness. Since f is an epimorphism, g-=-T Op,
hence
gy's-T,
that is
"; 3xeAf X =},
from which (b) follows.

Finally, assume (c). Apply Theorem 5.9 to ¢(y,x) = fx = y. Thus, there is
a unique arrow g: B— A such that

x=gy;=-fX=y-

x,y}
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From this it easily follows that g is the inverse of f, and so f is an
isomorphism,
Conversely, assume that f is an isomorphism with inverse g. Then

yt:vyergy = y A VxeAgfx =X,

from which (c) easily follows.

The following allows us to recognize and construct equalizers and
pullbacks.

Proposition 6.2. (a) m: C— A is an equalizer of f,g: A3 B if and only if

Fecharm™ =-{xeA| fx = gx},

that is,

Sx=gx-= 3. cmz=x.
A
®) C—'—"—-»A1 x A, §A1 is a pullback of 4, l—»B«iAz if and only if
a2 :
Teharm™-=-{{x,x,)€A, X Ay|fx; =gx,},

that is

fxl =gXy r=: BzeCmZ= <X1,x2>.

X1,%2

Proof. Let"charm™ be defined as in (a). We must first show that fm-=-gm.
By Proposition 5.4,

‘Tcharm™ =-{xeA|3,.cmz = x},
hence
dpecmz’ = x- = fx =gx.
Replacing x by mz, we obtain
tz fmz = gmz,

hence fm-=-gm, by Proposition 5.1.
Next suppose h: D — A is such that fh-=-gh. Then, clearly

b fht = ght,
that is,

k- hte"charm™,




156 Type theory and toposes

that is,
k= (char m)ht,
that is,
(charm)ht-=-T -=-T Opt.
Thus, by functional completeness,
(charm)h-=-T Qp,

hence there is a unique k: D — C such that mk-=-h. This shows that m isan
equalizer of (f, g).
If m' is any equalizer of (f, g), then m’ = m, hence char m’ = char m, which
explains the ‘only if part of the statement. This completes the proof of (a).
As to (b), it suffices to point out that a pullback of (f,g) is given by an
equalizer of (f7 4, 4,>974,,42)-

A monomorphism (epimorphisin) is called regular if it is an equalizer
(coequalizer) of a pair of arrows. :

Lemma 6.3. In a topos all monomorphisms and epimorphisms are regular.

Proof. For monomorphisms this follows from the definition of a topos,
according to which every monomorphism m:A— B is an equalizer of
(charm,T Op).

Now suppose e: A— B is an epimorphism. We. shall prove that it is a

coequalizer of its kernel pair C é A, which may of course be constructed as
a pullback: g :

S

C ~——————— A

4 > B

According to Proposition 6.2, we may take f-=-m, 4m and ge=-14 oM,
where m: C— A x A is determined by its characteristic morphism

Fcharm™-=:{{x,x'YeA x Alex =ex},
that is, by

ex = ex'{- = -’ 3,.cmz = {x, X' ).
x,x’
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Suppose h: 4 — D is such that hn A,‘;m-=~h7tj4, 4m. This is easily seen to
imply that
T EV oV weclex = ex’ = hx = hx').
We seek a unique k: B— D such that ke-=-h. Indeed, let
oy, )=, ,;(t =hx Aex=1Y).

Using Proposition 6.1 and the above, it is an easy exercise in logic to prove
that ‘

T EY,es 1003, 1)
It then follows from Theorem 5.9 that there is a unique arrow k: B — D such
that ke-=-h, as was to be proved.

An injective in a category is an object I such that for every (regular)
monomorphism m: B— A4 and every arrow f:B—1I there is an arrow
g: A— I such that gm-=-f.

Dually, a projective is an object P such that for every (regular)
epimorphism e: A — B and every arrow f: P — B there is an arrow g: P— A

such that eg-=-f.

There is no unanimity in the literature whether to insist on the adjective
‘regular’ in these definitions. Fortunately, this does not matter in a topos, in
view of Lemma 6.3.

Proposition 6.4. For any object C in a topos 7, PC = QF is injective. In
particular, Q = P1 is injective.

Proof. Given a monomorphism m: B— A4 and an arrow f: B— PC, define
g: A— PC by functional completeness thus:

gx-=-{zeC|3,glmy =x A ze fy)}.
Then
gmy-=-{zeC|3,g(my =my A zefy')}.
By Proposition 6.1,
g—l:vyeBVy’éB(my’ =my=y= Y'),
hence :
gmy-=-{zeClzefy} = [,
and so gm-=-f, by functional completeness.

Lemma 6.5. In a topos pullbacks preserve epimorphisms. This means: if
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LA

B 7 C

is a pullback and e is an epimorphism, then so is €'.

Proof. In view of Proposition 6.2, the pullback may be constructed by
letting m: P— A x B be an equalizer of en, p and fm 5 and by settmg
f'-='n,m and €-=-7, ym. Note that

Ccharm™-=-{{x,y)€A x Blex = fy}.
By Proposition 6.1,
T EV ecIrenx = 2,
hence, in particular,
T EY e esex = fY.
Therefore
TE VyeBBxE 4<{x,y>e charm’,
that is, by Proposition 5.4,
T EVepIreadiepmt = X, ¥)-
After interchanging the two existential quantifiers, we obtain from this
T EVyepicpTa st = ¥,
and so, by Proposition 6.1, ¢'-=-7/y gm is an epimorphism.
Proposition 6.6. If C is an object in a topos &, the following statements are
equivalent:

(i) C is projective;
(i) all epimorphisms e: A —C split (that is, there exists m: C — 4 such

that em-=-1¢);
(iii) from
ykvzecaxeAw(zs X)

we may infer that, for some arrow f:C— 4,
gvkvzec(»o(za fZ)
Proof. That (i) implies (ii) is immediate. That (i) implies (i) depends on
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Lemma 6.5. Indeed, assume (i) and let e: 4 — B be an epimorphism,
f:C— B any arrow. Form the pullback

P

C -

By Lemma 6.5, ¢’ is an epimorphism. Hence, by (ii), there is an arrow
m'’: C — P such that ¢m’-=-1.. Therefore

eflm/_ =.felml. ='f;
and so (i) holds.
To show that (iii) implies (ii), we let ¢(z,x) =z =ex, where e is an
epimorphism. Then, by Proposition 6.1,

‘ T Y oec3xeap(2, ).
By (iii), there exists f: C — A such that

'7— F vzeC(p(é’ fZ),
that is,

T EV,ecz = efz,

that is, by Proposition 5.1, ef - =-1., which shows (ii).
To show that (ii) imt(ﬁies (iii), let @(z, x) be any formula of L{J") in the
variables zeC and xe4 and suppose '

T BV ec3xea(2, X).

Let n: B— C x A be a kernel of char n defined by
Tcharn™-=-{{z,x)eC x A|o(z,x)},

that is, in view of Proposition 54,

ayeﬂny = <Z, X >( =i (p(z, X).

2%

Therefore
JTE VzecaxeAayeBny = <Z, > >
Interchanging existential quantifiers, we deduce .

-9— kvzecayennc,“ny = Z.
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Now define e: B— C by e-=-n¢ 4n. Then
T BV, ecdyepty = 2.

Thus, by Proposition 6.1, e is an epimorphism. Hence, by (i), there is an
arrow m: C — B such that em-=-1.. Put f-=-n;_,nm, then f:C— A4 and

{z,fz)-=-{emz,n'nmz)
=-{nnmz, w'nmz )
“=-nmz.
Hence
oz, f2)-5-3,epny =<z, f2)
=T,
that is,
T EV.ec0(z, f2),

and so (iii) holds.

Exercises
1. Give a direct proof of Proposition 6.2 (a).

2. Give a proof that Q is injective without using Q 2 P1.

3. Show that, for any object C of a topos, the partial map classifier C defined
in the exercise of Section 5 is injective.

4. (Higgs). If f: Q- is a monomorphism in a topos, prove that f2-=-1,,.
(Hint suggested by S&edrov: First prove the following in the internal
language:

() FVsealfx=(fT+x)),
(“) - Vxeﬂ(f 2x = x)y
(iii) +V enlfx=f3x).

Then conclude that +V, o(f2x = x).) (See S&edrov 1984b.)

7 Choice and the Boolean axiom

If £ is a type theory, so is £(2), where z is a variable of type C, say,
regarded as a parameter. To be precise, (z) has the same terms as £, but
open terms of € with no free variables other than z are viewed as closed
terms in £(z). Moreover, the entailment relation x of £(z) is the entailment
relation fz ) of £, assuming z¢X.
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Definition 7.1. A type theory satisfies the rule of choice if from

= vxeA(x Ex= ayeB(P(xv y) ),

where A is any type, « any closed term of type PA and ¢(x, y) any formula
with no free variables other than x and y, one may infer that

Y ealxea=3yeph(x, 3))
for some formula y(x, y) such that

‘l’(x5 Y) h},y}(p(xa )’)

This rule can be stated in a more transparent way if there are sufficiently
many function symbols in £, see Proposition 7.5 below.

Lemma 7.2. If € satisfies the rule of choice, then so does £(z), where z is any
variable of type C say.

Proof. Suppose
=V cealx€(z) = 3,.50(2, X, y)),
where « and ¢ depend on the parameter z. Then
i V(z.x)sC wal{z, x>ea' = HyeB(p(Z’Xﬂ i)
where »
o ={<z,x)eC x A|xea(z)}.
If @ satisfies the rule of choice, we can find Y¥(z, x, y) where
W(z, %, Pk .y 9(2, X, ¥)
such that
BV e x al 2, XD eo =3, gz, X, y)),
that is
Y sealx€a(z) =3, p0(2, X, y)).

Proposition 7.3. If £ satisfies the rule of choice and p is any closed formula
then Fp v -p. ‘

Proof. We define
a, = {xeQ|x v (1x A p)},
B, = {xeQ|x v (x A p)},
Vo = (% B} = {yePQly=a, v y=B,}.
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We assert that

(1 FVyeralyey,=>Ienx€y).

Indeed, we argue informally thus: if yey, then either y =a, or y = f§,, so
either T ey or L ey. By the rule of choice, we can then find a formula y(y, x)
such that

@ YO0k, xey,
(3) *_Vyel’ﬂ(ye’yp = a!xeﬂl//(y, X))

Arguing informally again, we have «,ey, and /?pey,,, hence, by (3),

B!xeﬂlp(ap’x) and a!xsﬂl//(ﬁp’ X). Say lp((xp’ xl) and w(ﬁp’ xz)’ 80, by (2)9 xl EOCp
and x,€p,. Therefore

(x1 v (7x1 AP)) A (1X3 V (x5 A D)),
hence p v (x; A 7x,). The result now follows: the first disjunct is p; the
second implies 1p; for if p holds, a, = {xeQ|x v 1x} = f,, hence x; = x,,
which contradicts x; A 1x,. Thus p v -p.

Corollary 7.4. 1f 2 satisfies the rule of choice, then £ is classical, that is
FVeafX v 1x).

Proof. By Lemma: 7.2, £(x) satisfies the rule of choice. Hence, by
Proposition 7.3, k x v 2x.

We should point out that in the language L(7) of a topos & the rule of
choice takes a somewhat simpler form.

Proposition 7.5. The language L(7) of a topos satisfies the rule of choice if
and only if, for all formulas ¢(x, y), one may infer from J EV,_ A3ye8P(%, Y)
that 7 kY, ,0(x, gx) for some arrow g:A-Bin J

Proof. Assume the rule of choice as' stated in Definition 7.1 with
a = {xeA| T} and suppose that 7 FV,_,3,.50(, y). Then we may infer that
T EV e adlep¥(x, y) for some formula y(x, y) such that y(x, y) k5 x y}q)(x y). In
view of description (Theorem 5.9), there is a unique arrow g: A — B such that
T EV e a¥(x, gx), hence T EV,_,0(x, gx).

Conversely, assume the simpler condition of Proposition 7.5 and suppose
that 7 kY, (xea=-3,30(x, y)). Let m: A" > A be a kernel of «/: 4 - Q and
let x:1-A" be an indeterminate arrow. Then kmx'ea, hence
e 3,epp(mx’,y). By assumption, there is an arrow g:A'— B so that
Eo(mx',gx). Take Y(x,y)=3,(x=mx Ay=gx" A @(x,y)). It is now
easily shown that J FV, ,(xea=>3!, p(x,y)), by observing that xea
means xecharm?, that is, 3,..,x=mx/, in view of Proposition 5.4.
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Moreover, from Y(x,y) one may clearly infer that ¢(x,y), so that L(J)
satisfies the rule of choice according to Definition 7.1.

According to Lawvere, a topos has choice if all epimorphisms split. In view
of Proposition 6.6, this means that all objects are projective, or, equiva-
lently, that rule (iii) of Proposition 6.6 holds for all objects C and 4. In view
of Proposition 7.5, this is evidently the same as saying that L(Z") satisfies the
rule of choice. Thus we immediately have the following consequence of
Corollary 7.4.

Corollary 7.6. If a topos has choice then it is Boolean, that is, it satisfies
Vléﬂ(t \"4 '1t).

This result is due to Diaconescu, whose proof was quite different.
As long as we are discussing the Boolean axiom, we may point out the
following alternative characterization.

Proposition 7.7. A topos is Boolean if and only if llfz«—‘l—ll is a
coproduct diagram. .

Proof. Assume that 1 _Lg(i 1 is a coproduct diagram in the topos 7.

Let 1:Q - Q be defined by ~x for an indeterminate arrow x:1- Q. Then
1 Q—-Q is clearly the unique arrow such that the following triangles

commute:
Q
T 1
1 1 1
L T
J
Q

Therefore 1~-="1g. From this it follows that, for an indeterminate t: 1 — Q,
BRI A hence

T EVeqnt=>t.
. . a .
Conversely, assume that  is Boolean. Given 1 — A4 L 1, we aim to

show that there exists a unique arrow f:Q - A4 such that fT-=-a and
fl-=-b ’
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Consider the formula ¢(t, x), with variables ¢ of type Q and x of type A,
given by ,
olt,xy=(tAx=a)v(tAx=Db).
Since
T EV ot v 1b),
we easily infer that
T theﬂalxeA(p(t, X).
Since J has description, there is a unique arrow f:Q- 4 such that
T EV,.o0(t, ft). Thus in the language L(9).
E@EA ft=a)v(at A ft=D)
Substituting T and L for ¢, we obtain —fT=a and +fLl =b, hence
fT-=-aand f1-=-b, by Proposition 3.2.
It remains to show that these last two equations determine f uniquely.
They clearly imply
thkft=a, -thkft=Db,
hence
tv Atk A ft=a)v (st A ft=>0)
Since -t v 1t, we infer & (t,f1), that is 7 FV,q0(t, f1),

which determines f uniquely, as already mentioned.

Exercises
1. Fora, feHom(l, PA)definea < ftomean J ko < f. Show thata topos 7
is Boolean if and only if Hom(1, PA) = Sub A is a Boolean algebra for all
. objects A of .&. (See Exercise 3 of Section 5.)
2. Prove that a topos has choice if and only if all objects are projective.
3. (Lawvere)—Prove that a topos 7 has choice if and only if, for every arrow
f: A— B such that FFV,3,.,T, there is an arrow g: B— 4 such that
faf-=-f (Hint: In a Boolean topos we infer I EV p3, Ve a(fx' =
y=>fx =y). Now apply Propoéition 7.5)

8 Topos semantics

Let 7 be a topos and L{7) its internal language. In this section we
examine the provability predicate - for L(J") in more detail.

Definition 8.1. If ¢(x) is a formula of L(7") in the variable x of type 4, then
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@(x)-=-fx for a uniquely determined arrow f:A4—Q. For an arrow
a:C— A in J one writes ¢(a) = fa, by abuse of notation, and regards a
as a generalized element of A at stage C. One also writes C |- ¢(a) for fa-=-
T Oc and reads this as ‘(a) holds at stage C’ or ‘C forces ¢(ay.

More generally, in the presence of a parameter y of type B, if

@y, %) =-g{y, %),
{3.x}
where g: B x A—Q, one writes

‘P(}’,a)59<J’Oc,a>-

The following is an easy consequence of the above definition.

Proposition 8.2. (1) If C]— ¢(a) and h: D — C, then D ||— ¢(ah).

(2) Fe(x) in L(7) if and only if, for all objects C and all generalized
elements a: C— A, C|— ¢(a).

(3) Cl- ola) if and only if -V, p(az).

(4) If h: D - C is an epimorphism and D |- ¢(ah), then C|— ¢(a).

Proof. For example, we shall show (3). According to Definition 8.1, C|-¢(a)
means fa-=-TQg, thatis, faz-=-T, which translates into | ¢(az), that is,
F V. ecolaz).

By (2) of Proposition 8.2, ‘truth’ in a topos is equivalent to truth at all stages
and for all generalized elements. Actually, the stages may be restricted to a
generating set of 7. A set € of objects of 7 is called a generating set if, for
any two arrows f,g: A3 B, f-=-g, if and only if, for all C in € and all
h:C— A, fh-=-gh. We shall state this formally:

Proposition 8.3. 1f € is a generating set of objects of 7, then k ¢(x)in L(7)
if and only if, for all objects C in ¢ and all generalized elements a of 4 at

stage C, Cll— ¢(a).

~ Proof. Suppose C|—¢(a) for all Ce¥ and all a:C— A. Then fa-=-
TOc¢="TOqaforallCe¥anda:C— A,andso f-=-T O, thatis, k ¢(x).
The converse is evident.

Proposition 8.3 may be exploited to reduce the notion of ‘truth’ in L(J) to
an inductive definition of ‘p(a) holds at stage C’ in a way familiar to
logicians. We shall here regard (") as a type theory in the sense of Section
1 of Part II, not as a type theory based on equality. Atomic formulas ¢{(x)in
an indeterminate x of type A are the following: x itself, in case 4 =€
b(x)ef(x), where b(x) has type B and f(x) has type PB; T and L. Compound
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formulas are constructed with the help of the connectives A, v and = and
the quantifiers V. and 3,.5.
The following theorem should be called ‘Beth—Kripke~Joyal semantics’.

Theorem 8.4. Given that a: C— A, then:

©0) Cl—aiffa-=-TQg, in case 4 =Q;

(1) Cl-bla)ep(a) iff e5{ B(a),bl@) > =T Oc;

(2) C|- T always;

(3) C|— L iff C is an initial object of J;

@) Cl-o(a) A Y(a) iff Cll- ¢(a) and C | Y(a);

(5) Cl— o(a) v Y(a) iff there is an epimorphism [k,1]: D+ E— C such
that D|— ¢(ak) and E|— y(al),

6) Cl pla)=>y(a) iff, for all h: D — C, if D ||~ @(ah) then D |— y(ah),

(7) Cl—V,ep¥(y,a) iff, for all h:D— C and all b: D — B, D |~ (b, ah);

(8) Cl—3,.p¥(y,a) iff there is an epimorphism h:D — C and an arrow
b: D — B such that D|— (b, ah). '

Although the symbols - and = are defined symbols, we add the following
clauses in the same spirit:

9 Cl -o(a) iff, for all h:D— C, if D |~ ¢(a) then D =0,

(10) C|I b(a) = b'(a) iff b(a)-=-b'(a).

Proof. Most of the above clauses may be left as exercises; we shall only
prove (3), (5) and (8).

(3) Suppose C|— L. By Proposition 8.2, this means -V, 1, whence it
follows that +V,.c3!,_, L. By description (see Theorem 5.9), there exists a
unique arrow f:C-— A4 such that -V, L. Since this is the case, C is an
initial object.

Conversely, suppose C is initial. Then the two arrows T Q¢, LO:C 3 4
must coincide, hence -V, (T = 1), that is, FV, L.

(5) Suppose C |~ ¢(a) v ¥(a), that is, by Proposition 8.2, i faz v gaz,
where @(x) = fx and Y(x) = -gx. Let k =ker(fa), | =ker(ga). Then, by
Lemma 5.3,

Cchark™V-=-{zeC| faz}, "charl.-=-{zeC|gaz}.

Let D =Ker(fa) be the source of k, E=Ker(ga) the source of I. By
Proposition 5.4,

faz =3 pz =ks,
and similarly for g. Therefore
*—z_(asebz =ksv 3teEz = lt)’
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hence
2 3ueD+Ez = [k, ’]u;

for, in the first case, u =k, s and, in the second case, u=xpgt. By
Proposition 6.1, [kI{l:D+E—C is an epimorphism. Moreover,
fak-=-T Op, hence -V, faks, that is, D |- ¢(ak). Similarly one obtains

E |- (al).
Conversely, suppose [k,[l:D+E—C is an eplmorphlsm such that
D|— ¢(ak) and E |- y(al). Thus, in L(9),

() FViecdiep+elk Qu =2z,
(i) FVepolaks), =V, gplal).
Now, by Lemma 8.5 below,
FVuep+ E(3septt = Kp pS V Jieptt = Kp gt)-
Hence, by (i),
FV.ec(3senz = ks v gz = 1),
using [k, [Jxp g+ =k, etc. Therefore, by (i),
FV.eclplaz) v Ylaz)).

(8) Suppose C |- 3,.p¥(y, a), where a: C — A. In view of Proposition 8.2,
this means that in L(7)

(1) l'_ VzecayeBw(ya {,lZ).
Let g B x A—Q be the unique arrow such that

i) ¥(, x) g<y,X>

and write n.D—»C x B for the kernel of

< 7E,C,B’ anC,B>
—_—— T,

CxB BxA 550

Thus
Fcharn™-=-{(z,y)eC x Blg{y,az)},
that is, by Proposition 5.4,
(iii) Jgepns =<z, y> -g<y,az).

{z.y}
From (i), (ii) and (iii) we infer
'_ VzecaysBaseD(ns = <Z, y > ):
hence

FV.oecTsenmic phts = 2.
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~Thus h=mn¢pn is an epimorphism, by Proposition 6.1. Moreover, if
b = n; gn, we have

Y(bs, ahs) =g {bs,ahs) ‘

=9 {Tc,p, AT, g P 1S
=T,
hence )
Ve pW(bs, ahs),

that is D |~ y(b, ah), by Proposition 8.2.

Conversely, assume that i: D — C is an epimorphism and that b: D — B is
such that D |- (b, ah), that is, -V ,¥(bs, ahs). Now, by Proposition 6.1,
FV.ecTsephs = z, hence =V .3, p¥(bs, az). It follows that -V, -3, s¥(y, az),

that iS, C “_ ayeBw(y9 a)'
It remains to prove the following:
Lemma 8.5. In L(9),
FVoea+ B(3xeaZ = K0, 5X V Tyepz = Ky pY).

Proof. We refer the reader to Section 5, Exercise 2. Using the particular
construction of A + B given there, we want to show that

FVoea+B(Fxeama sz = {x}, D> v Iyepmy 5z = (D4 {¥})-
Indeed, m, 3: A + B— PA x PB was there defined by
Tcharm, 7= {{u,v)ePA x PB|(3lu A v= Zfp)
V=g, A3}
which is easily seen to be the same as
{wePA x PB|3,. 0= {{x},Tp) v Dyes0 ={D & {y}>}.
Take an indeterminate arrow z:1 — A + B, then k; m, yze"charm, 7 and

the result follows. -

Sometimes clauses (5) and (8) in Theorem 8.4 can be strengthened, as was
done in the original semantics of Kripke. We recall from Proposition 6.7
that an object C in a topos is projective if and only if all epimorphisms
e: D — C split. We shall call an object C indecomposable if, for all arrows
k:D— C,I: E— Csuchthat[k,I]:D + E - C is an epimorphism, either k or
is an epimorphism.
Proposition 8.6. Given that a: C — A, then:

(5" if C is indecomposable, then C| ¢(a) v y(a) iff C|— ¢(a) or
Cl—-yla);
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(8) If C is projective, then C |- 3, z¥(y, a) iff there is an arrow b':C— B
such that C{— (b, a).

Proof. (5') Assume that C is indecomposable and that C|— o(a) v Y(a). By
(5) of Theorem 8.4, there is an epimorphism [k,[]: D + E - C such that
D |- ¢(ak) and E |- y(al). Since C is indecomposable, either k or I is an
epimorphism. Therefore, by Proposition 8.2(4), either Cl~ ola) or
Cl¥(a).

(8) Assume that C is projective and that C|— 3,.p¥(y,a). By (8) of
Theorem 8.4, there is an epimorphism h: D — C and an arrow b: D — B such
that D | y(b, ah). Since C is projective, h splits, so there is an arrow k: C — D
such that hk-=-1.. Now, by Proposition 8.2(1), CH—- Y(bk, ahk). Writing
b’ = bk, we have C|— y(b', a).

Exercises _
1. Complete the proofs of Proposition 8.2 and Theorem 8.4.

2. Prove that an object C is indecomposable if and only if it is not the union
of two proper subobjects.

3. Given an object Cin a topos 7, form a type theory £, whose closed terms
of type A are the arrows C — A of 7, that is, elements of type A at stage C.
In the notation of Definition 8.1, show that +¢(a) in £, if and only if

Cl ofa).

4. Given an object C in a topos 7, construct a topos J /C whose objects are
arrows A— C and relate L(J/C) to £, above. (See Part I, Section 7,
Exercise 2 and also Exercise 2 of Section 16 below.)

5. In clauses (6) and (7) of Theorem 8.4, show that D need only be taken in the
generating set € of objects of 7~

9 Topos semantics in functor categories
Example 9.1. Special examples of toposes are functor categories Sets®,

where ¥ is a small category. Before discussing the semantics of such toposes,
we briefly review some of their pertinent structure.

Limits and colimits are constructed objectwise. For example, the terminal
object 1 is the functor defined on objects C of € by 1(C) = {}.

Exponentiation is defined with the help of Yoneda’s Lemma. For any
object 4 of €, we write

h4 = Hom,(4,-).
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If F,G: € — Sets, we ought to have
GF(A) = Nat(h*, G') = Nat(h* x F,G),
so we are led to define
G¥(A) = Nat(h* x F, G).
Moreover, for f: A— B and C in 4, G"(f): GF(4)— GF(B) is defined by

G (NH)(C)g,c)=HC)g S, 0),
for any teGf(A), g: B— C and ceF(C).
The evaluation functor &g : G* x F— G is defined by
&6, /{(O)(t, ¢) = HC) (1> €)
for any teGF(C) and ceF(C).
The exponential adjunction
v tHxF-G
t*: H - GF
is defined by
(A} @) (C)(h, c) = (C)(H(h)(a), c),

for any objects A and C in %, h: A— C, acH(A) and ceF(C).

The reader will be able to satisfy himself that Sets” is a cartesian closed
category. To obtain the topos structure, we first observe that Yoneda’s
Lemma requires

Q(A) = Nat (h4,Q) = Sub(h?),
so we are led to define Q(A) as the set of all subfunctors of k4. Such a
subfunctor is essentially given by a collection S of arrows with source A
satisfying:

if heS then ghes,

for all arrows g whose source is the target of h. S is called an A-sieve,
although an algebraist may think of S as a left ideal of arrows with source 4.
If f:A— B, Q(f):Q(A)— B} is given by
Qf)S)= ) {g:B—ClgfeS}.
Cet
Trivial examples of A-sieves are the empty set (J and the set 4/€ of all
arrows with source A.
T:1-Q is the natural transformation defined by

T(A)(x) = A/€.

If m: F—G is a monomorphism in Sets?, charm:G—Q is the natural
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transformation defined by
(char m)(A)(a) = ( J{f: A~ Bl3serG(/)@)' ="m(B)(b)},

Bet
for all objects A of ¥ and all aeG(A). In particular, equality is given by

S(A)a,a)= | J{f: A BIF ()(a)- = F() @)},

Be®
for all a, a'eF(A).
Ift: F —» Qis any natural transformation we define the subfunctor Ker t of
F on objects 4 of € by
(Kert)(A) = {acF(A)|t(A)(a)- = A/¥),
while (ker t)(4) is taken to be the inclusion. It is now easily verified that
char(kert)-=-t, ker(charmj=m

Finally, the constant functor N(A)=N, N(4— B)=1,is a natural
numbers object.

In order to apply the clauses of Theorem 8.4 and Proposition 8.6 to the
semantics of Sets®, we observe the following;

Proposition 9.2. The representable functors h¢=Hom,(C,-), with C
ranging over the objects of ¥, form a generating set for Sets®. Moreover,
each representable functor A€ is indecomposable and projective.

Proof. Suppose t,t: F 3 G are two distinct natural transformations, then
there is an object 4 of ¢ and an element ae F(A4) such that t(A)(a) # t'(A)(a).
Now, by Yoneda’s Lemma, F(A4) = Nat(h*, F), so a corresponds to a natural
transformation 4: h* — F. More precisely, 4(B): Hom(A, B) — F(B) s defined
by

a(B)(f) = F(f)(a).

In particular,

A) (19 =F(1 )@ =a
Now

((A)(a) = t(A)a(A)(1,0) = (£°A)(A)(L),
sotod #t'°d.(Here ° denotes composition of natural transformations.) This
shows that the representable functors h* form a generating set.

Why is h* indecomposable? Suppose [k, I]: F + G — h* is an epimorph-
ism, we claim that k or lis an epimorphism. Since epimorphisms are defined
pointwise, we know, in particular, that [k(4), (A)]: F(4)+G(A)—

- Hom(4, A) is surjective. Therefore 1, must be in the image of k(A) or I(A4),
say the former. Then k(A)(a) = 1, for some aeF(4). Hence

(kod)(B)(f)-=-k(B)A(B)(f)-=-k(B)F(f)(a) - =-Hom(4, f)k(A)(a)
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-=-Hom(4, f)(1,)
— :
$0 kod = 1,4, which makes k an epimorphism.

Finally, to show that h is projective, we suppose that the natural
transformation k: F — h* is an epimorphism and show that it splits. Now
k(A): F(A)—»Hom(A, A) is a surjection, so there is an element ae F(4) such
that k(A)(a)-=-1,. As above, we deduce that ked = 1,4, so that k splits.

The proof of Proposition 9.2 is now complete.

To rewrite the clauses of Theorem 8.4 and Proposition 8.6 for Sets®, we shall
write ‘stage C’ for ‘stage h®. We recall that, in view of Yoneda’s Lemma, an
arrow c: h® - F is uniquely determined by an element ¢e F(C), where

«(A)f) = F(/)©),
for any f:C—> A4 in &, and therefore
&= c(C)(1).

Proposition 9.3. Given c: h— F, then
(0) Cl—ciff ¢=C/¥, in case F =

(1) Cl-b(c)ep(o) iff f(C)(1¢, ble) = C/%;

(2) C|— T always;

(3) Cl~ L never;

@) Cl~olc) A Y(c) iff Cl—@(c) and Cl-yc);

(5) Cl-ole) v ¥lo) iff Cll— @le) or C—ylc);

(6) Cl o(c)=>y(c)iff, for all k: C — D, if D |— ¢(c,) then D | y(c,), where
¢, = ch¥, h* hP — hC;

(7) Cl-V,ec¥(y. ) iff, for all k:C—D and all b:h® -G, D|—y(b,c)),
where ¢, = ch¥;

(8) Cl~3,c¥(y, c) iff Cll— (b, c) for some b: K- G.

Proof. (0) If éeQ(C), then ¢ is a C-sieve. Moreover, by Theorem 8.4, C | ¢
if and only if ¢-=-T(Q, which easily translates into the assertion that
&= T(C)(*) = C/@.

(1) Here we assume that b = b(c) is an element of G(C) and that f§ = f(c) is
an element of (PG)(C) = Q%(C). Thus b: h° > G and B: h® - PG are natural
transformations and

bef-=-e5°(B,b)
is obtained by composing two natural transformations, the first being
£ =tqq Taking any object A and any arrow f:C-»A, one easily
calculates that
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beB)A)S) = FAS, G(NB)).
Therefore,

(bep)-=-B(C)(1¢,b),
from which the result follows.

(2) 1s immediate. -

(3) We know from Theorem 8.4 that A€~ 1 if and only if A€ is initial in
Sets?, which implies, in particular, that Hom(C, C) = h%(C) is initial in Sets,
that is, empty. This cannot be because it contains IC

(4) is immediate.

(5') follows from Proposition 8.6 and the fact, established in Propo-
sition 9.2, that A€ is indecomposable.

(6) The reader will easily verify that Theorem 8.4(6) is st111 true if D is
restricted to be an object of a generating set for 7. In case 7 = Sets?, we
replace a: C— A by c: kS — F and h: D — C by h*: h® > b€, where k: C - D is
any arrow in €. Thus (6) should read:

Cll—o(c)=y(c) iff, for all k:C—D in &, if D | p(ch*) then D I y{ch®).

An easy calculation shows that if ¢, = ch*, then ¢, = F(k)(¢)eF(D) is what
has become of ¢eF(C) in changing states from C to D along k.

(7) InTheorem 8.4(7) likewise D need only be takenin a generating set. In
Sets®, this becomes:

forall c:h® > F, Cll~VY,ec¥(y,c)

iff, for all k: C— D and all b: h® - G, D |— (b, ch¥).

(8) follows from Proposition 8.6 and the fact, established in Propo-
sition 9.2, that hC is projective.

The proof of Proposition 9.3 is now complete.

Remark 9.4. In (6) and (7) above, the element ¢, of F at stage D is what has
become of the element ¢ of F at stage C in passing along k: C — D.

Example 9.5. Kripke models. We now look at a special case of Example 9.1
in which € is a preordered set regarded as a category. For objects
(= elements) A, B of ¢, Hom(A, B) has precisely one element if A < B, it is
empty otherwise. The objects of Sets? may be regarded as #-indexed
families of sets F = {F(A4)|Ae%} such that, whenever 4 < B, there is a
‘transition mapping’ F ,5: F(4)— F(B) satisfying

Fua=1pay FpcFap="Fyc.
A morphism ¢: F — G is a family of mappings {t(A): F(A) > G(A)| Ae®) such
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that, for all B > A, the following square commutes:

A
F(A) “@_ . G(4)
F AB GAB
F(B) o) G(B)

Limits and colimits are defined elementwise.

Exponentials are given thus: for F, G: € — Sets,
Gf(A4) = Nat(h* x F,G)

is essentially the set of all families {¢(B): F(B) - G(B)|B > A} such that, for
all C = B, Gyct(B) = t{C)F gc. We may interpret such a family as an arrow
F ,— G4, where F , is the restriction of F to {Be%|B > A}. We note that, if
A < B, then GF(4) = GF(B). Evaluation ¢g z: GF x F—G is then given by

&6, /(C)(t, ) = 1(C)(c),
for any teGF(C) and ceF(C). .
To describe the topos structure of Sets® when % is a preordered set we let
(4)= {Be%|B> 4},
QA)={F S (A)|V5c((BEL A C2 B)=Ce¥}.
The two extreme cases are & = J and & = {Be¥|B> A} =(A4). f A< B,
the transition mapping Q5 Q(A) —Q(B) is given by
Qip(N=Y m(B)
and T:1->Q is given by
T(A4)(x) = (A4). .
We let the reader work out characteristic morphisms and kernels.

The semantics for Sets® when € is a preordered set is essentially that
proposed by Kripke for first order intuitionistic logic, now generalized to
higher order. As in general functor categories, stages are representables h®,
usually just written as C, with the difference that now there is at most one
transition C — D, precisely when C< D.

The modifications of Proposition 9.3 in case ¥ is a preordered set are
obvious. For example:

©0) Clc iff é=(C), in case F=Q;

(1) Cl-bep iff f(C)(b) = (C);
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(6) Cl-o(c)=¥(c) iff, whenever C <D, if D|— ¢(cp) then D |~ (cp),
where & = Fp(d).

Example 9.6. .#-sets. At the other extreme from Example 9.5 is the case of
a functor category Sets® in which € has exactly one object C. € is then given
by a monoid .# = Hom(C, C) and may be identified with .#. A functor
% — Sets is essentially a set X with a monoid homomorphism .# — X* or,
equivalently, an .#-set (X, 1), that is, a set X with amapping A M x X —» X
(where M is the underlying set of .#), called the action, satisfying
AL, x)=x, Almn,x)=Am,An,x))

for all xeX, m and neM. In particular, the sole representable functor h¢:
M —Sets corresponds to the .#-set #, the action M x M - M being
multiplication.,

If two functors .# — Sets are given by .#-sets (X, 1) and (Y, 1), a natural
transformation between them is given by an .#-set homomorphism
f:(X,2)—> (Y, u), that is, a mapping f: X — Y such that

S (Am, x)) = p(m, f(x))
for all meM and xeX. ,

Limits and colimits are calculated as in Sets, with the obvious ‘induced’
action. In particular, the empty .#-set is an initial object, while the terminal
object is the set {*} with trivial action.

To describe the cartesian closed structure, we may convert the definitions
of Example 9.1 to .#-sets, but it seems easier to drgue directly. Given .#-sets
A=(|Al|, %) and B=(|B|,u), we want

|B4| = Hom(#, B*) =~ Hom(# x A, B),
so we define {B"I = Hom (. x A, Byand endow it with the action 6 given by
6(m, f)(n,a) = f(nm, a),

forallm,neM, fe|B*|and ae| A|. Evaluation 5 ,: B* x A — Bis then given
by

8B,A(f9 a) Ef(la a)’
for all ae|A] and fe|B4|.

To describe the topos structure of Sets# let us first point out that, in the
language of Example 9.1, Q(C) is the set of all left ideals of .#. Examples of
left ideals are: &, .# and the principal left ideal (m) = {nm|ne M} generated
by meM. For any meM = Hom(C, C), we define Q(m): Q(C)—Q(C) by
stipulating, for any left ideal L of .#,

Qm)(L) = {neM|nmelL}.
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This makes Q(C) into an .#-set with action (m, L)—Q(m)(L). In passing
from Sets” to .#-sets, we should write Q for Q(C), so Q is now the .#-set of
left ideals of .#. Moreover, T: {*} —Q is defined by T (x) = .#. Again we
leave characteristic morphisms and kernels to the reader.

Before examining the topos semantics for .#-sets, we note that there is
only one generator h€, hence only one stage C, reference to which may as
well be omitted. However, there are many transitions C—C.

For any .#-set A, an arrow a:.# — A is determined by the element
d = a(1)e] A}. We shall present some selected clauses for the semantics of .-
sets, as modified from Proposition 9.3:

(0) |~aiff d=.#,in case A =L

(1) | bep iff f(1,B) = A, where be|B| and fe|Q°);

(6) |- o(@)=y(a) iff, for all keM, if |- o(ka) then | y(ka);

(N I V,es¥(y; a) iff, for all keM and all be|B|, | (b, ka);

(®) - 3ea¥(v,a) ifl |- Y(b, a) for some be|Bl.

Exercises

1. A type F in the internal language of Sets® is said to be partially empty if
F(A) = & for some object Ae%. If this is so, prove that there are no closed
terms of type F. Complete the proof that Sets? is a topos.

2. Fill in the missing details in the proofs of 9.3 and 9.5.
3. Prove that the topos of .#-sets is Boolean if and only if .4 is a group.

4. (Johnstone). Prove that the following statements are equwalent
(1) DeMorgan’s law for .#-sets:

=V oVieal (s A 1)=>8 v L)

(i) For any left ideals K, L of A, if KnlL=¢ then K= or
L= .

(iii) Left Ore condition for .#: for all m, neM, there are u, veM
such that um-=-vn.

5. Prove the following:
(@) foran .#-set A, thearrows 1 - A correspond to the fixed points under
the action;
(b) 1is projective in Sets” if and only if # has an element 0 such that
m0 =0 for all me M. »

6. Prove thatanarrow p:1 -+ Qin Sets® is given by a left ideal L= p(C)(x) of
A such that, for all meM, Q(m)(L) = L. Show that this can only happen




Sheaf categories and their semantics ‘ 177

when L= or M, hence that Hom(1,Q) is a two-element Boolean
algebra.

7. (Bradd Hart). Prove that in the topos of small graphs the subobject
classifier Q is a graph with two vertices and five arrows.

8. Let n be the n-clement chain

ey gyt

01 2 n—1

and consider the Kripke model Set".

(a) Prove that Hom(1,Q)=n+ 1.

(b) Show that Sets" |= 1f8, where f =V, qoft v "t) is the Boolean axiom.
(Hint: check that n— 1|~ # and O~ +.)

(¢) Generalize part of the above argument by showing that, if p is a
terminal element of a poset 2, then p|-f in Sets?.

9. Let w be the poset of natural numbers. Show that not Sets® = 18
(by checking that not 0] -af) and infer that not --f in pure type
theory 2,.

10 Sheaf categories and their semantics

We recall that a topological space X = (| X|, 0(X)) is given by a set
| X| of points and a lattice O(X) of open subsets of | X| closed under finite
intersection and arbitrary union. We shall often also write X for | X|. The
lattice 0(X) is a Heyting algebra with

1=X, 0=, UAV=UnV, UvV=UuUV
and, less obviously,

U=V=int((X — U)uV), ,
this being the largest open set W such that WnU < V. In general O(X) is
not a Boolean algebra, in fact

29U =int(X —int(X — U))
is the interior of the closure of U.
Definition 10.1. A presheaf on X is a contravariant functor from O(X) to

Sets, that is, a functor F: O(X)° — Sets. Here 0(X) is regarded as a category
as in Example 9.5. :

Because F is contravariant, the mapping F,: F(U)— F(V) applies
whenever V< U. One calls se F(U) a section over U and writes

Fyp(s) =sly,
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which is called -the restriction of s to V. According to Example 9.5, the
presheaves on X form a topos.

Example 10.2. A presheaf F on X is called a sheaf provided it has the
following property: for every open covering
U= U Ui
iel
of U and all pairwise compatible sections {s;e F(U)},.,; such that
siiUint = stU,»r\Uj » ‘

for all i, jel, there exists a unique se F(U) such that s|,, =s,, for all iel.
The reader may easily verify that this is the same as saying that

FU)-TFU)3 [] FUnU)

i, je

is an equalizer diagram in Sets, where the mappings are the obvious ones
induced by the restrictions.

The full subcategory of Sets consisting of sheaves will be denoted by
Sh(X). We shall see later that it is a topos. In the meantime we mention two
special examples of sheaves on X:

(a) The sheaf of continuous real valued functions on X assigns to each
open subset V of X the set

F(V)=Cont (V,R)

of continuous functions from ¥ to R.
(b) Each open subset U of X determines a sheaf F = hy, this being the
contravariant representable functor given by

hy(V}=Hom(V,U) = {{Q} otherwise

a(xyer

The reader will notice that we have taken the sole element of Hom(V, U) to
be « rather than incly, the inclusion mapping of ¥V into U.

In both these examples, F(() is a one-element set. To see that this is a
consequence of the definition of ‘sheaf’ one must use the fact that the empty
set admits a covering by an empty family!

We shall denote the category of topological spaces and continuous
mappings by top, to distinguish it from the category Top of toposes and
strict logical functors to be considered in Section 13. If X ctop, the slice
category top/X is called the category of spaces over X. Its objects are arrows
Y- X in top and its arrows are commutative triangles:
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The category of spaces over X has a full subcategory whose objects are
called sheaf spaces: they are local homeomorphism p: Y— X, which means
that for every point yeY there is an open neighborhood ¥ of y such that Ply
is a homeomorphism.

Theorem 10.3. For any topological space X there is a pair of adjoint
functors

L
Sets?X°" = -l" > top/X,

Lleft adjoint to I', which induce an equivalence of categories between Sh(X)
and the full subcategory of top/X consisting of sheaf spaces. Moreover, the
former is a reflective subcategory with reflector 'L and the latter a
coreflective subcategory with coreflector LT".

. L
Sets?(X)°" top/X

Vs r \

I
! I
| |
1 |
! I
\ ’

Sh(X) 2= {Sheaf spaces over X}

The reflector I'L is called the associated sheaf functor.

Proof. We describe I' first on objects p: Y— X of top/X:
I(p)(U) = {s: U - Y|ps = inclyx}.
A continuous mapping s: U — Y such that ps is the inclusion of U into X is
called a section of p. If V= U, I'(p)(U)-T(p)(V) is given by genuine
restriction. Thus I' is a functor. It is easily verified that I'(p) is a sheaf: the
sheaf of sections of p.
We also describe L first on objects F:(@(X)°®—»Sets. The local
homeomorphism L(F):Y; — X will be defined presently. The underlying set
|Yel= | F,

xeX
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is the disjoint union of stalks F,, where

F,=limF(U)= ) F(U) 3 -

xelU xelU
Here, for seF(U) and teF(V), s  t means that s|y = t|y for some open'
W< U Vsuch that xe W. If [s], denotes the equivalence class of s modulo
+ , we thus have
| Y| = {6, 10 Fpeo(x€ U A se F(U))}
The topology on Y is generated by basic open sets of the form
V(s, U)={(x,[s],)|xeU},
where Ue0(X) and seF(U).
After these preliminaries, we define L(F) as the projection:
L(F)(x,[s]) = x. '
This is continuous, because
LF)~Y(U)=V(s,U).
It is in fact a local homeomorphism, because it maps V(s, U) biuniquely
onto U. Finally, it is easily verified that a natural transformation F -G
induces an arrow L(F)— L(G) in top/X, so that L is a functor.
Next, we shall introduce the adjunctions n:id - I'Land &: LT" —id. Recall
that
TL(F)(U) = {o: U - Yg| L(F)o = inclyy}
~and put '

n(F)(U)(s)(x) = (x, [s].)s
for any se F(U) and xeU. Recall also that

| Yrpm| = {x, (1D Fyeop(xeU A ps = inclyx)},
LT(p)(x, [s10) = x,
and put ‘

&(p)(x, [s].) = s(x).
It is easily checked that e(p) is well-defined and continuous and that 7 and ¢
satisfy the appropriate identities assuring that L is left adjoint to T.

We know from general principles (see Part 0, Section 4) that Fix n ~ Fixe,

where

Fixn = {F|n(F) is an isomorphism},

Fix e = {p|e(p) is an isomorphism}.
We shall prove that Fix n = Sh(X) and that Fix ¢ ~ {sheaf spaces over X},s0
that the equivalence asserted in Theorem 10.3 will follow.




Sheaf categories and their semantics ‘ 181

A straightforward calculation shows that s—§=n(F)(U)(s), where
§(x) = (x, [s],), is a biunique correspondence whenever F is a sheaf. Hence
ImTI < Sh(X) = Fix#,
and so all three categories are equivalent. Thus #I" is a natural equivalence
and Sh(X) is a reflective subcategory. '
It is also easy to calculate that (x, [s],)— &(p)(x,[s],) = s(x) is a biunique
correspondence whenever p is a local homeomorphism. Hence
Im L < {sheaf spaces over X} < Fixe,

and so all three categories are equivalent. Thus &L is a natural equivalence
and sheaf spaces over X form a coreflective subcategory.
The proof of Theorem 10.3 is now complete.

Proposition 10.4. Sh(X) is a topos.

Proof. We begin by pointing out that, as a reflective subcategory, Sh(X) is
closed under limits, so these are constructed objectwise as for functor
categories in general. Exponentiation also is constructed as for presheaves:
given sheaves F and G, one wants

-GF(U) = nat(hy x F, G);

but, since O(X) is a poset, we have
*} if Ve U,

& otherwise.
Therefore, we define
GF(U) = nat(F|y, Gly),

where F| is the restriction of F to @(U)°®. This is easily shown to be a sheaf.
Evaluation &g 5: GF x F— G is then also given as for presheaves by

&6,/ (U)(t,8) = ¢(U)(s),
‘where tenat(F|y, Gly) and se F(U).
Clearly, the presheaf N is a sheaf. However, the subobject classifier differs
from that for presheaves, which follows Example 9.5; instead we put
QU) = {VeO(X)|V< U} v
If U’ U we obtain the mapping U)—Q(U’) given by Ve=VnU’ for
VeQ(U). The reader may verify that Q is a sheaf. The arrow T:1 - Qis given
by
T(U)(*)=U.
To check that we have made the right choice for the sheaf Q, we could
- apply the associated sheaf functor to the presheaf Q. However, it may be



182 Type theory and toposes

more instructive to verify instead that
char(kerg)-=-g, ker(charm)~

for any arrow ¢g:F—Q and any monomorphlsm m: G- F, provided
characteristic morphisms and kernels are defined appropriately.

To simplify matters, we shall assume that G is actually a subsheaf of F
and that m(U) is the inclusion mapping of G(U) into F( U)for each Ue@(X).
We then put

(charm)(U)(s) = U {Ve0X)|V < U asl,eG(V)}
for UeO(X) and se F(U). It is easily seen that this is the largest subset W of

U such that s|, e G(W). In particular, 8(U)(s, t) is then the largest subset W
of U such that the restrictions of s and t agree on W. We furthermore put

(Kerg)(U) = {se F(U)|g(U)(s) = U},
and let (ker g)(U) be the inclusion of (Ker g)(U) into F(U).

In particular, every subobject of 1 in Sh(X)is isomorphic to a kernel of an
arrow g: 1 - Q. Letting U = g(X)(x), we easily see that g = g, is then given
by

gu(V)x)=UnV
for each Ve@(X). Hence

(Kergp)(V) = {se1(V)|gy(V)(s) = V}
E{se{*}]UﬁV= V}
_ {{*} fVecu,

& otherwise.
Thus
(Ker gy)(V) = Hom(V, U) = hy(V),
and so every subobject of 1 is isomorphic to hy for some U eO(X).

We observe that the subobjects hy, of 1 form a generating set for Sh(X),
because they form one for Sets®¥™. However, there is no reason why the
representable sheaves hy, should be indecomposable or projective in Sh(X).
Thus, we derive the semantics of Sh(X) from Theorem 8.4 without the help
of Proposition 8.6. We write U |~ ¢(a) for hyll— ¢(a) and assume that
a:hy—F is determined by deF(U) as usual, where d= a(U)(*) or
a(U)(1y). (The reader will recall that we had written  for the sole element of
Hom(V, U) in place of incly.)

Ifh, ., = Hom(-,incly ) is the natural transformation hy — hy mduced
by the inclusion V< U and if a: hy, — F, we write a|, = achy, ..
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Proposition 10.5. (Sheaf semantics). Let F be a sheaf on X, U an open
subset of X, a:hy— F. Then '

(0 Ul-aiffd=U, in case F=Q;

(1) Ul bep iff fU)(b)= U, where b:hy—F and B:h, - QF;

(@) U T always;

G) Ul-Liff U= g '

) Ul ola) A Yla) iff Ul p(a) and U |- y(a);

) Ul-o@ v y(a) iff U=VUW for some V, We®(X) such that
VI olaly) and W |- y(aly);

(6) Ul o(a)=y(a) iff, for all V < U, if V |- p(al,) then V |- y(al,);

(M) Ul-V,c¥(p,a) iff, for all V < U and all b: hy =G, V|- y(b,al,);

(8) U - 3,c6¥(», a) iff there is an open covering U = U,-E, U, and arrows
b;: hy,— G such that U, |- Y(b;,aly) for all iel.

Proof. We look at a few less obvious clauses.
(1) We recall that bep:h, —Q is defined by

beB=ero(B,b),
hence

(bep) = (bef)(U)(+)
=¢(U)(f, b)
= fU)o),

in view of the definition of ¢, = &qr in the proof of Proposition 10.4. It
follows that bef-=-T-Q, if and only if f(U)®)=U.

() Ul L means that LoQy-=-ToQy. The subscript U here should
really be hy. Now Oyihy— 1, s0 Oy(V): Hom(V, U)— {*}, and therefore
TWV)Ou(V): Hom(V,U)-QV) sends * to T(V)(*)=V. Similarly
L(M)Oy(V) sends * to L(V)(*)= &. So U [ L asserts that, for all ¥ < U,
V = ¢, that is, that U = .

Note that @f |~ L in Sh(X), but not in Sets®*™,

(5) Suppose U |- ¢(a) v y(a). By Theorem 8.4, there are arrows k: D — hy,
and LEE—hy such that [kIl:D+ E—h, is an epimorphism and
such that D}~ ¢(ak) and E|~ Y(al). Writing @(x)-=fx, we thus have
Sfeack-=-To(O,. Wenow factor k through its image. Being a subobject of 1,
this may be taken to be of the form h,. Recall that hy <y is the natural
transformation hy — hy, induced by the inclusion V < U, then

k-=-thU°e,
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where e is an epimorphism. Now

foaohvguoe.=.foaok.=. To OD.z. Te Oyoe’
and so

feachycy-=-T°Oy,
that is, V |— ¢(aly). Similarly, we obtain W || y(aly).

1t remains to show that U = ¥V u W. We argue informally in the internal

language of the topos of sheaves on X. Let xehy, then 3,5, g[k, [Jw = x. By
Lemma 8.5, 3,.pw = Kp gy OF 3,.zw = Kp 52, hence ky = x or Iz = x, say the
former. Now k-=-h,_,°e, so h,., ey =Xx in the internal language. But
eyehy, hence x = h,_,y for some y'eh,. Writing t = hy ', We infer
that x = h,_, . ,t. The same conclusion holds in case Iz = x, so it holds in

any case.
We have thus proved

FY ey Jrehy o ® = Proweut-

Since hywy is a monomorphism, we may replace 3 by 3!. Therefore,
by description, there is a unique arrow f:hy—hy yp such that
hyoweyof+='1y. By Yoneda’s Lemma, we may write f-=-h,, where
g = f(U)(*). It easily follows that ‘

incl,,uwsuog-:lu.
Thus incl, .y is surjective, and so U=V UW.

Conversely, suppose U =V uW and V |- ¢(aly) and W y(aly). We
shall construct an epimorphism [k, []: hy + hy — hy such that V|- ¢(ak)
and W |- y(al). Indeed, taking k = h,_, and I = hy, ., we have ack-=-4al,
and aol*=-al,. To show that [k,I] is an epimorphism, suppose f,g:hy = G
are such that fo[k,1]-=-g-[k,[], that is, fok-=-gok and fol-=-gol. We
shall prove that f-=-g.

Consider the following commutative square:

S
hy(V) G(V)
[
hy(incly < ) | G(inclycy) = Gyy
hy(U) GU)

A0)
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Writing = f(U W1y)(at this point it is convenient not to replace 1, by %), we
see that

(foR)(V)(1y)-=-f(V)(incl, )
'=’Guv(f)~

Therefore

va(f )= Gy(d)

and similarly

Guw(f )= Gywl9).
Since G is a sheaf, we infer that f'= g, hence that f-=-g.

(6) Suppose U |- ¢(a)=y(a). Consider any open V< U, so h,
hy —hy. Writing al, =ah,_,, we use Theorem 8.4 to infer that if
V- @lay) then VI y(ay).

Conversely, assume this implication. Suppose k: D — hy, and D |— o(ak).
We want to show that D |~ y(ak), so that Theorem 8.4 will then yield
U | @(a)=y/{a). As in the proof of (5) above, we factor k- = -ech,_,;,. Now
we are given that

f°a°hygy°e‘='T° OD’='T°OV°e’
hence
foaohygu.=.To OV’
thatis V|- ¢(ay). But then, by assumption, V | y(a,), from which it easily

follows that D |~ y(ak), as was to be shown.
The remaining clauses will be left as exercises to the reader.

Exercises

1. Prove that F is a sheaf on X if and only if FU)-[TeFUY
JTi.iF(U;AU) is an equalizer diagram for all coverings U = | J,.,U,
of open subsets U of X. '

2. Prove that Cont(~, R) and hy, = Hom(~, U) are sheaves on X.

3. Fill in the missing parts in the proofs of Theorem 10.3 and propositions
104 and 10.5

4. Prove that @ |- Lin Sh(X), but not in Sets®®™,

5. Consider the sheaf C=Cont(-,R) on X, U an open subset of X
and ahy—C. Show that Ul—a##0 if and only if d=a(U)(1y)
vanishes on no nonempty open subset of U. Deduce that

Sh(X)E V,(1x = 0=>x = 0).
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6. Discuss the ring structure of C.

7. For any open subset U of X, let Q(U) be the ring of all continuous real-
valued functions defined on dense open subsets of U, with feC(¥) and
geC(W) identified when fly.w =glyw, where V and W (hence also
¥V n'W) are dense open subsets of U. Show that Q is a sheaf and that

-Sh(X)EV, p(x=0=>3F,ox'y=1).
(If feC(V) and ge C(W), one defines (f-g)(x) = f(x)-g(x) for all xe V n W)

11 Three categories associated with a type theory

Given a type theory £, we first present a naive way of associating a
category D(£) with €. Its objects are the types of £ and its arrows 4 — Bare
pairs (x, @(x)), where x is a variable of type 4 and (p( )a term of type B with
no free variables except possibly x.

We agree to identify arrows (x, ¢(x)) and (x', ¥(x')) if the terms ¢(x) and
W(x) are provably equal, that is, F¢(x) = y(x). Composition of arrows
(x,0(x)): A-B and (y,¥(y): B—C is given by (x,¥(e(x))):A—C.
Moreover, the identity arrow 4 — A is of course (x, x).

The kind of category obtained in this way, but with a looser equality
relation between arrows, has been described axiomatically and has been
called a dogma in the literature. A dogma is not in general a topos, although
it generates one. A dogma with the strong kind of equality advocated here
may be faithfully embedded in a topos.

We next present a second way of associating a category A(£) with a type
theory £. Its objects are closed terms « of type PA for any type A. We may
think of « as denoting a set of type PA; but, taking a nominalistic position,
we shall often regard « itself as a set. Equality between objects « and o is
defined to hold provided they have the same type PA and ko =

The arrows f:o— f of A(®) are triples (o, f], f), where | f]is a closed
term of type P(4 x B)and | f| < o x . We often call | f| the graphof f. We
may think of f as denoting a relation between the sets denoted by « and f
respectively; but, taking a nominalistic position, we shall often regard fasa
relation between the sets o and . Equality between relations f,g:a 3 B is
defined thus:

f+=-g means | f|=|g|.
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The identity relation 1, «— o is defined by

)= {{(x,x'Yed x A|lx=x'}.
This is what has previously been denoted by 7d , . Composition of relations
fia— f and g: B— 7y is defined by

Igfl = {<X,Z>€A X C|3yea(<X,Y>€lf| A <.Vsz>€|gl)}

It is easily seen that A(Q) is a category. Such categories of ‘sets and
relations’ have been described axiomatically and called allegories by Peter
Freyd. We point out that with any relation f:a — § one may associate its
converse f ~': f—a defined by

If = {{nx>eB x A|<{x,y)el f]}.

Our final way of associating a category with a type theory concerns a
subcategory T(£) of A(L), which later will be seen to be a topos. It has the
same objects as A(L), namely sets. Its arrows are functions, that is relations
f:a— f satisfying

I—VxeA(xea => 3!yeB<x’ Y>E| fl)
Another way of expressing this is:

FiLL S YL F Y S,

" The following lemma will be used in the next section.

Lemma 11.1. A function f:a—f is a monomorphism if and only if
f_lf'='la'

Proof. Assume f~f-=-1, and fg-=-fh, where g, h:y 3 a. One immedi-
ately computes

g-=f"g=f"fh=h
hence f is a monomorphism.
Conversely, suppose f is a monomorphism. Consider the set

Y=Y ={<xxdeA x Al3,l({x pdel f1 A X,y el fD}
Define g, h:y = o by

191 = {<<x, x>, x)e(Ad x A) x A[{x, x>},

th) = {{{x, X", x'De(A x A) x A|{x,x"Dey}.
Then

[fgl-={<<{x,x D, pde(4 x A) x B[{x,y el f| A {x,x"dey},

| fh]-=-{<<x, x>, y>e(A x A) x BI{x, yYel fI A {x,x Yey}.
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Since f is a function, it follows from the definition of y that fg-=-fh, hence
that g-=-h. Therefore -y |1}, that is, y-=-{1,].

Ultimately we shall prove that T(£) is a topos; but, in this section, we
shall content ourselves with a weaker statement. '

Proposition 11.2. T(8) is a cartesian closed category.

Proof. When necessary, we shall use bold face to distinguish objects in T(£)
from types in £. The terminal object 1 of T(2) is defined by

1= {x},
while products are defined by
ax f={{x,yyeA x Blxea A yep},
where a is of type PA and B of type PB. The arrows O ;0= 1, M, g0t X f—a
and 7, g o x f— B are defined thus:
[0  =ax {x} = {{(x,y)ed x l|xea},
|7q,51 = {<<{x, D, x> €(4 x B) x A|xex A yeB},
|7, 5] similarly.
Moreover, if f:y—a and g:y— B, we define { f,g>:y—a x f by
1<f,9>1={<2,<{x,y>>eC x (4 x B)|<z,x €| [ A {z,y)elg|}.
It is a routine exercise to check that T(£) satisfies all the equations of a
cartesian category.
Before continuing, we introduce a useful notation: Suppose « is a term of
type PA, B is a term of type PB and p is a term of type P(4 x B),
pa—f=pSax AV lxea=3 p{x,ydep)

It is important to distinguish the formula p: « — § of £, in which p is a term
of type P(A x B), from the statement f:a— B about T(2), in which f is an
arrow of T(L), which really means that | f|:a— § in the notation just
introduced.

We now define

p*={weP(A x B)|w:a— f},
if « has type PA and B has type PB. We also define ¢;,: f* x a — 8 by
legl = {{<W, x>, y>€(P(A x B) x A) x Blw:a— B A {x,py)ew}.
Moreover, if h: « x -y, then h*.o—y* is defined thus:
[h*| = {{x,w)eA x P(B x C)|xea A wioyA
Vyep(VEB =3, (<X, y ), 2D €lh| A (y,2DEW))}.
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It is again a routine exercise to show that the remaining equations of a
cartesian closed category are satisfied.
In particular, if Q = {teQ|T},
* = {weP(4A x Q)|w:a—Q}.
Instead of regarding Pa as an abbreviation for Q% we may also define Pa
directly by
Pa={wePA|w< a}.
The reader should note that then P« is no longer equal to Q° but only
isomorphic to it, the proof of which fact we leave as an exercise. On the
other hand, we then have
HB%*< P(a x B),
so that f* becomes a subobject of P(a x f) in T(®), in fact a ‘canonical’
subobject, in a sense that will be explained in Section 15.
Having defined Pa directly, we do the same for g, Pa x & — Q rather than
regarding it as an abbreviation for &g ,. Thus
leg] = {<{{u,x>,t>e(PA x A) x Q|xea AuS a A t=(xeu)}.
Moreover, if h: f x a — 2, we obtain h*: f — Pa as follows:
[h*| = {<y,u>eB x PAlu={xeA|<{y,x), T Yelhl}}.

Strictly speaking, this is not the same as the h*: § — Q* mtroduced earlier,
but we use the same notation anyway.

Exercises

1. Prove that an arrow f:a—f in T() is an epimorphism if and only if
=

2. Check that the equations of a cartesian closed category are satisfied in
T(2).

3. Show that there are functors D(8)— A(L)— T(L).

4. Prove directly that Pux as defined above is isomorphic to

*S. Show that, for h: f x «— € and k: - Pa,
g (h* x 1) =-h,(efk x 1 ))*-=-k.

12 The topos generated by a type theory

We shall show that the category T(£) associated with a type theory
£ is a topos. In view of Proposition 11.2, it remains only to produce a
subobject classifier and a natural numbers object.
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The subobject classifier Q and the canonical arrow T:1 - (to be
distinguished from the term T of type Q in £) are defined as follows:
Q= {teQ|T},
IT|={{xTO}

Lemma 12.1. Every arrow h:a—Q in T(f) has a kernel ker i: Kerh—a
that is, an equalizer of hand T O, so that the following square is a pullback:

Ker h - ]
ker h T

o ' Q

We define o
Kerh = {xeA|{x, T Yelh|},

[kerh| = {{x,x>eA x A|{x,T Yelh|}.
Proof. First note that the square commutes. Suppose f: f— a is such that
hf-=-TQg. Then

lhfl-=-{<y,T>eB x Q|yep}.
Define g: f —Ker h by |g| = | f|, then g is easily seen to be the unique arrow
for which (ker h)g-=-f.
Proposition 12.2. (2, T) is a subobject classifier of T(2).
Proof. If m:  — o is a monomorphism in T(L), we define its characteristic
morphism char m:a —Q by

[charm|= {{x,t)eA x Q|t =(3,.5{y, xDe|m|)}..
It remains to check that

(i) char(kerh) -=-h,
(ii) ker(charm)zm,

where h:a—Q and m: - o is a monomorphism.
Before proving this, let us establish a lemma, which will also be useful
elsewhere. (See Lemma 20.3.).

Lemma 12.3. Given aformula ¢(t) of £ with a free variable t of type Q such
that

(x)  F3leaolt)
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then
(*+)  FVYqolt = 0(T)e>0(1)).

Proof. We argue informally. (a) Suppose ¢(t). Assuming ¢, we obtaint = T,
hence ¢(T). Thus t = @(T ). Assuming ¢(T ), we obtain T = ¢ from (), hence
t. Thus @(T)=t. Therefore ¢(T)<>t, hence o(T)=t, by propositional
extensionality. This proves one of the implications in (**).

(b) Conversely, suppose t = ¢(T). By (), o(s) for some seQ. In view of (a),
t=¢@(T)=s, hence ¢(t). This proves the other implication in (+*).

We now return to the proof of Proposition 12.2.
Proof of (i). We calculate
|char (ker h)|-=-{<x,t>e A x Q|t = (3,.,{y,x Delker h|)}
= {(x,1)eA x Qt = (3, (X, T Yelh| A y = X))}
= {{x,t>eA x Qlt=({x,T Yelh))}
c=-{{x,t)ed x Q|{x,t)e|h|}-=-|h],
by Lemma 12.3 with ¢(t) = (x,t>e&lh|.

Proof of (ii). Suppose m: f— o is a given monomorphism. We claim that
m = ker (char m). Indeed, define g: § — Ker(charm) by |g| =|m|, as in the
proof of Lemma 12.1, then

lg™gl-="Im™m|-=-1,,
by Lemma 11.1.
On the other hand,
He=lmm™?|
'='{<X,X>EA X A|3yeB<y,x>e|m|}
{<{x,x)eA x A|<{x, T Ye|charm|}
{{x,x)eA x A|xeKer(charm)}

= | 1 Ker(charm)l'

lgg™

I

Therefore g is an isomorphism. The proof of Proposition 12.2 is now
complete.

The natural numbers object N in T(£) with canonical arrows 0:1 - N and
S:N — N is defined as follows:
N={xeN|T},
10]={<*,0)}
IS]={<{x,y>eN x N|y = Sx}.



o

Proposition 12.4. (N,0,S) is a natural numbers object in T(Q).
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Proof. Let there be given arrows in T(£):
g h

l — a — o

where o is a closed term of type PA. Then g must be determined by
lgl-=-{{*,a)}, where ais a closed term of type A such that -agea in . We
seek a unique arrow f:N -« such that the following diagram commutes:

1 0 N S - N

S S

1 z o 7 - o

What this means is that || < N x a, that | f| is functional and that
*) 0,a)€|f], fS-=-hf.

The following well-known construction of | f], presented here as an
informal argument, is taken from Jacobson’s textbook Basic Algebra 1.
Note that the argument is completely intuitionistic.

Let I' be the set of all subsets u of N x « having the following properties:

() <0,a)eu,
(ll) VyeNVxeA(<y3x>eu:<Sy’ h(x))eu), )
where h(x) is the unique ze 4 such that {x,z)€|h|. Since N x « has these
properties, clearly I' is nonempty. Let | f| be the intersection of all ueI", We
shall prove that f=(N,|f|,a) is the required arrow N—a.
First, it is easily shown by induction that VienTrea {3, x €| f]. To see that
J 1is a function, it remains to show that if { y, x e| fland {y,x" >e| f| then
x=x'
Let
0 ={VeN|VoesVreal (<3, X D€l f] A <y, X Dl )= x = X))}
We shall prove by induction on y that V,enV€0, so that N = ¢.
To show that Oeg, it suffices to prove that V:ea(<0,x)€| fl=>x =a). So
suppose <0,x) €| f|; then <0, x>eu for all uel. Let
ur={<0,a>}u{<Sy,x>eN x A|<Sy,x)e|f|}.
It is easily shown that u 1€T (see Exercise 4 below), hence (0, x Yeu,, and
therefore x = a.
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Next, suppose yeg, we claim that Syeo. Since ye N, we can find xe 4 such
that {y, x> €| f], hence also {(Sy, h(x)> e} f|. It will suffice to show that, for
any x'eA, {Sy,x')e| f| implies x" = h(x). So suppose {(Sy,x >e| f|, then
{8y, x' >eu for all uel". Take

u = {{Sy,h(x)>} u{<z,x">eN x A|{z,x"Ye| f] A z # Sy}.

It is easily verified that u,eI” by checking that {(0,a)>eu, and by showing
that (), x" Yeu, =Sy, h(x")>€u,. The latter is shown by relying on the
decidability of equality at type N (see Exercise 2 below) and by examining
the two separate cases when y' % y and y' = y. (We leave the first case to the
reader (see Exercise 4 below) and present here the second case only. We
assume that (y,x")eu, and deduce that {Sy, h(x") >eu, as follows. Since
y # 8y, clearly (y,x">€|f|. But, since yeo, x" = x, hence {8y, h(x")> =
{8y, h(x))€u,.) Therefore Sy, x' Yeu,, and so x’ = h(x), as was to be shown.

We have thus completed the proof that f is a function. Moreover, (i) and
(ii) hold with u replaced by |f|. The reader will have no difficulty in
verifying that (i) does in fact assert the equation fS- = hf, so that (*) holds.

To prove the uniqueness of f, let gbe any arrow N — a Satisfying (*). Then
|lgleT" and so | f| €]g|. Since f and g are both functions N — «, it follows
that f-=-g.

This completes the proof of Proposition 12.4. We summarize Propo-
sitions 12.1, 12.2 and 12.4 as follows:

Theorem 12.5. For any type theory £, T(f) is a topos (with natural
numbers object).

Exercises

1. Complete the details of the proof of Lemma 12.1.

2. For any type theory £, prove that equality at type N is decidable, that is,
V. enVyen(x =y v x # y), where x # y is short for 7(x = y).

3. For any type theory £, prove that
FVen(x =0 v d,.yx = Sy).

4. Complete the proof of Proposition 12.4.
(Hint: To prove that u, €I, use Exercise 3 above. To prove that u,erl’,
consider the subcases y' = Sy and y’ # Sy.)

13 The topos generated by the internal language

In Section 3 we associated with every topos 4 a type theory L(),
its internal language, while in Section 12 we associated with every type
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theory £ a topos T(8), the topos generated by €. In this and the next section
we shall study two morphisms ’

¢rT > TUT), 1y:2—>LT(Q)

in appropriate categories of toposes and type theories. After having settled
on suitable definitions, we shall prove that ¢, is an equivalence of categories
and that 5, is a conservative extension. Finally, we shall extend L and T to
functors, making ¢ and # into natural transformations.

We had previously (see Definition 3.1) defined a topos as a cartesian
closed category with a subobject classifier (Q,7) and a natural numbers
object (N, 0,S). For our present purposes it is more natural to use an
equivalent* definition in which the ‘closed’ part of the definition is
weakened: instead of requiring arbitrary exponents C4, we shall only
require PA = Q. More precisely, in place of exponentiation we postulate
the power set structure (P, ¢, *), meaning that for each object 4 there is an
object PA, an arrow ¢,: PA x A-Q and a rule

BxA——h—->Q

h*
B —— PA
satisfying
eqh* x 1,)-=-h, (eqlk x 1))* ="k, .
for all h:Bx A—Q and k: B— PA. The natural numbers object will be
retained.

If 9 and 7 are toposes in the present sense, that is, with exponentiation
related to power sets, we shall define a strict logical functor F: 9 —» 9" as a
functor which preserves all this structure on the nose, that is, which
preserves 1,0, x, 7,7, { >,Q, T, P, ¢ * N, O and S, and which in addition
preserves 5 Thus, or for other reasons, we have,

F(l)=1, F(O4) =0y, F(T)=-T,

F(PA)=P(F(A4)), F(h*)-=-F(h)*, F(6,) =0
Note that a strict logical functor automatically preserves the symbols of the
internal language L(7) (see Definition 3.5), hence characteristic morph-
isms, in view of Proposition 54. It follows that a strict logical functor
preserves kernels up to isomorphism.

Definition 13.1. The category Top has as objects toposes in the weaker

*In the sense that every topos in the new sense is equivalent to one in the old sense
(see Proposition 13.3).
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sense, that is, with exponentiation relaxed to power sets, and as morphisms
strict logical functors.
With each topos 4 we shall associate a strict logical functor &,
T — TL(T). This is defined as follows.
Definition 13.2. If A is an object of 7, hence a type of L(J), then
(AA)=A={xeA|T}
is an object of TI(J). If f: A— B is an arrow of , we put
EAN)=FAB,
where f is a triple (A, |f], B) with _
Ifl=gph f={{x,y>ed x B|fx =y}
being the graph of f (actually, in our usual terminology, of f).
It is easy, though tedious, to verify that ¢, is a strict logical functor. For
example,
{r(A X B)y="AxB-="AxB={,(4) x £4(B),
according to the definition of & x § in T(2) in Section 11. Similarly,
{s(PA) ="PA-="PA = P({;(4)),
according to the definition of Px in T(L). However, , does not preserve
exponentiation on the nose, only up to isomorphism, as
Eg(BY)y =-{ueBA| T}, & (By*"-=-{weP(4 x B)|w: A - B}.
This is why we weakened the definition of a topos to replace exponentiation
by power sets. As a final illustration we shall show that é,‘ - preserves 9, that
is, that 8,-=-9,.
Indeed, according to the proof of Proposition 12.2,6,: A x A —»Qis given
by
10, = {<<xp, 205t ) (A x A) X Qt =T (3, X1, %2 ) €I, LD}
In view of Proposition 11.2, the formula following the existential quantifier
above may be replaced by

<X,x1 >EIIAI A<x’x2>e|1A|’
hence by
X=Xy AX=X,.

Therefore
18,]-={{{x1, %20, tDe(4 x A) x Q|t = (x; = x,)}
-=-gphd,-=-8,],

as was to be proved.
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Proposition 13.3. £, is an equivalence of categories.

Proof. We shall show that every object of TL(7) is isomorphic to an object
in the image of £, and that £, is full and faithful. (See Part 0, Section 4,
Exercise 4.)

An object of TL(Z ) is a closed term in (), say o of type PA, that is, an
arrowa: 1 > PAin 7. Let m: A’ — A be a kernel of o/: 4 — Q, we claim that
ax A =-{,(A'). Indeed, consider the arrows p:1—>P(A' x A), p':1-
P(A x A’) given by

p={x,xded x Almx' =x},p' = {{x,x'DeA x A'|mx' = x}.
Then (A, p,a) and («, p’,A’) are seen to be arrows inverse to one another.

To see that £, is full, assume that (A, @, B) is an arrow £,(A4)— £,(B) in
TI{T), where ¢ is a closed term of type P(A x B) such that

f': VxeAB!yeB<x,y>€(P-

Since description holds in  (Theorem 5.9), there is a unique arrow
f:A— B such that fx=y-(=}-<x,y>6(p. It follows that ¢-=-gph f-=-|f],
Xy

and so (A,¢,B) ="f=-¢(f).

Thus &, is full. To see that &, is faithful, assume that f,g: A3 B and
Es () =E5(g), then (A|f],B)-=-(A,|g|,B), hence J = gph f=gphg and
therefore 7 =V, 4(fx = gx). Since internal equality implies external equ-
ality (Proposition (5.1)), we have f-=-g.

Exercises

1. Show how to define arbitrary equalizers in terms of kernels, hence deduce
that strict logical functors preserve equalizers up to isomorphism.

2. Complete the verification that £ is a strict logical functor.

3. Complete the proof of Proposition 13.3. (In particular, to show that
(o, o', A’} is an arrow, note that a-=-"charm™-=-{xe A|3,.., mx' = x} by
Proposition 5.4, hence that 7V, (xea=13,..,.{x,x>ep’) by Propo-
sition 6.1.)

14 The internal language of the topos generated

We begin this section by settling on a suitable category of type
theories. We then set up a pair of functors between type theories and
toposes.

?‘—‘—‘_—VW“"<A I u
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Definition 14.1. The category Lang of type theories has as objects type
theories based on equality. Its morphisms 7: & — £’ are translations. These
send types to types so as to preserve 1, N,Q, P and x. They send closed
terms to closed terms of corresponding types so as to preserve *, 0, S, €,
=,{ } and { ) up to provable equality. They also send variables to
variables in a prescribed way: with ith variable of type A to ith variable of
type t(A4). Finally, they send theorems to theorems: more precisely, if 'k p
in £ then (I, 7(p) in £'. Two translations t and t’ between the same
languages are said to be equal if I, t(a) = 7'(a) for all terms a = a(X) of any
type A, where X contains all free variables occurring in a.

For example,
({xeA|x = a}) = {x'et(4)|x =1(a)},

where x and x’ are the ith variables of types 4 in £ and 1(4) in &'
respectively. Note that a translation is completely determined by its action
on types and closed terms, provided it is known which is the ith variable of
any given type in the target language.

Definition 14.2. The translation 5, € » LT(8) is defined as follows. For
each type A of £ we put

ne(A)=A={xed|T}.
(Note that the notation A coincides with that given in the special cases
= 1,Qand N in Sections 11 and 12.) For each closed term a of type A in £
we put
(@) =a: 1> A, where |a]| = {{(x,a)}.

(We note that the notation a coincides with that glven in the special cases
a= T or 0 in Section 12.)

A translation 7: - €' is called a conservative extension if, for each closed
formula p of £, 1(p) in & implies Ip in L.

Proposition 14.3. Forevery type A of a type theory £, , induces a biunique
correspondence between closed terms of type PA in £ modulo provable
equality and terms of type PA = {ue PA| T} in LT(2). In particular, n, is a
conservative extension.

Proof. A closed term of type PA in LT(8) is an arrow f:1-+ PA in T(Q)
whose graph |f| is a term of type P(l1 x PA) in £ such that
l_vzela!uei’,{ (Z, u>E|fI’ that iS, Fa!uel’A(*’ u)elf‘ Letting

a={xeA|I palxeu A {xudelf])},
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we readily see that | f|={(*,a)}, hence f-=-a. Thus Re IS surjective.
To show that it is one-to-one, assume a-=-a’, then el =|a’|, that is,
H{{x,ad}={{*,a'>}, and so Fa =0 Since Q= P1 in T(®), n, is a
conservative extension, which fact may also be shown directly.

A stronger result for pure type theory £, will be shown later (Corollary
20.4). '

In general, ny:  » LT(2) is far from being an isomorphism of languages.
LT(L) may have more types than €: in addition to types of the form A,
corresponding to types A of £, there are types o coming from objects of the
topos T(£), that is, closed terms of type PA in £. (On the other hand, it is
conceivable that the terms A = A’, even when 4 # A’, although one may
then infer that they have the same type PA = PA') LT(L) may have more
terms than £: a term of type A in LT(2) is an arrow ¢:1 > A in T(L), whose
graph|gp|isatermof type P(1 x A)in £ satisfying - s {xx>€l@l;onlyif
there is a closed term a of type A such that I (x, a)€|p| can we infer that
¢ =|a|. Different terms of £ cannot collapse in LT(g), for, when a and 4’ are
distinct in £, then not -a =d’, so that a-#-a’ in T(L).

In view of this discussion, the following result becomes evident.

Pfoposition 14.4

(1) ngis injective on terms (as long as, for any terms a, a’ of the same type
in £,a =4 implies that a and «' are identified in 2).

(2) nyissurjective on terms (say, of type A), if and only if £ has the unique
existence property: from F3!,_,¢(x) one may infer that there is a closed
term a of type A such that + ¢(a).

We shall say that 5 is almost an isomorphism ifit is bijective on terms and €
has enough types, that is, any object « of T(g) is isomorphic to one of the
form A’, which is necessarily a kernel of &*: A — Qin T(8),if o is a term of
type P4 in L.

For example, 7,,,, is injective (because internal equality in J implies
external equality) and surjective, because 7 has description. In any case, it
is almost an isomorphism, because Nuey = L) and &, is an equivalence,
in view of Lemma 14.6 below and Proposition 13.3. :

We shall complete this section by showing how both L and T may be
extended to functors.

Definition 14.5. The functor L: Top — Lang assigns to each object 7 of Top
its internal language L(J). It assigns to each strict logical functor
F:9 —» 7" a translation L(F) as follows. For a type 4 of L(F), that is, an
object 4 of 7, we put

L(F)(A) = F(A).
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Foraclosed term a of type A in L("), that is,an arrow a: | - Ain I, we put

L(F)(a) = F(a).

We leave it to the reader to check that L(F) as defined above is indeed a
translation and that L is a functor. We also leave it as an exercise to show
that L is full and faithful. Instead we shall prove the following useful resuit.

Lemma 14.6. For any topos 7,

L(ég') =Ny

Proof. For types A and closed terms a we have

LE7)(A) = C5(A) = A =y (4),

L )a) = E(a) =a =1y (a),
using Definitions 14.5, 13.1 and 14.2 in this order. Moreover, if x is the ith
variable of type A in L{7") and x'is the ith variable of type A in LTL(7"), we
have

L 5)(x) = X" =1y 4(X),
again by Definitions 14.5 and 14.2.
Definition 14.7. The functor T: Lang — Top assigns to each language £ the
topos T(2), generated by it. For any translation ©:£—- £ we define
T(z): T(2) - T(L') as follows. If o is an object of T(L), say a closed term o of
type PA in £, we put

T(x)(2) = (),
a closed term of type P(1(A4)) in €', hence an object of T(&'). Now let f1a— f
be an arrow in T(8), that is, a triple (a,] f|, B) with | f| a closed term in £ of
type P(A x B) satisfying

Fiflecaxp, FVaxea=31,5<x,yelf1)
Then we define T()(f): t(ax) — ©(B) by

I T@U) =111
and verify that (t{e), =(|f]), ©(B)) is an arrow in &, that is, (| f]) &
() x t(B), etc. It is a routine matter to check that T(z) is a strict logical
functor, which even preserves exponentials.

For example,

T(t)( x B)-=-(a x B)-=-7(2) x ©(B)-=-T(x)(x) x T(z)(f)

and )
T(t)(0,) =0 T(e) ()
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because

[T()(6,)]-=(18,])
T{{{x ) x=y)e(4 x A) x Q|xea A yea})
=-{{x, YD, x" = y'Ye(r(4) x t(A)) x Q|x'et(o) A y'et(a)}
'=.|5z(a)l

’="51‘(r)(a)|-

Having defined the functors L and T we may verify that £ and # as given
by Definitions 13.2 and 14.2 are natural transformations. This will be left as
an exercise. _

We conclude this section by pointing out the possibility of changing
types in LT(8). A type a of LT(8) is of course a subtype of A = {xe4|T}
and gives rise to the term a of type PA, an arrow 1 PA in T(8) with graph

o) = {{*, 0>}
Remark 14.8. In T(£) we have the following ‘change of type’ identities:
{xealp()} =-{xeA|xea  p(x)}
Viea®(X) =V, \(x€0=>0(x)),
Fxea®@(X) =3, A(xEX A (X)),

and similarly for 3!.

Exercises

1. Prove that the functor L: Top — Lang is full and faithful.
2. Prove that £ and 5 are natural transformations &:id — TL, nid—-LT.
3. Prove Remark 14.8.

4. Show that, if the definition of morphism is sufficiently relaxed, He will
become an isomorphism.

15 Toposes with canonical subobjects

We would like to show that T is left adjoint to L. To this purpose we
need a natural transformation & TL-—id to accompany the natural
transformation #:id — L Tconstructed in Section 14. The obvious candidate
for ¢, is an ‘inverse’ of the equivalence ¢,:9 — TL(J) constructed in
Section 13. Such a functor ¢, must exist, since ¢, is an equivalence of
categories. The problem is to ensure that ¢, is a ‘strict’ logical functor, that
is to say, that it preserves everything on the nose. This can easily be achieved




Toposes with canonical subobjects : 201

if we insist that from now on all toposes have ‘canonical’ subobjects. If the
reader is not happy with this restriction and is willing to sacrifice strictness,
he may skip a page or so and proceed directly to Definition 15.2.

We recall that a subobject of A is a monomorphism B — A4 (or sometimes,
waving hands, the object B itself). An isomorphism between subobjects
B—+A and C— A is an isomorphism B =% C such that the following
triangle commutes:

A

B

Definition 15.1. A topos with canonical subobjects is a topos where to each
object A is associated a subset of the set of all subobjects, called ‘canonical’,
such that every subobject of 4 is isomorphic to a unique canonical one and
such that furthermore the following postulates are satisfied: ‘

C1. 1,:A— A is a canonical subobject of 4.

C2. Iff: B— A is a canonical subobject of 4 and g: C — B is a canonical
subobject of B, then fg: C— A is a canonical subobject of A.

C3. If f:B—A4 and g:D— C are canonical subobjects of 4 and C
respectively, then f x g: B x D— 4 x C is a canonical subobject of A x C.

C4. If f:B— A4 is a canonical subobject of A, then Pf:PB—PA is a
canonical subobject of PA4, where, for an indeterminate arrow v:1 — PB,

(Pf)v‘f'{XEAHyeB(yEU Afy= x)}

A topos with canonical subobjects has canonical kernels. Thus, to each
morphism h: A —Q we may associate its canonical kernel ker h: Ker h— A
namely the canonical subobject of 4 which isisomorphic to a kernel of b, that
is, which has characteristic morphism k. Then we have

char(ker h}-=-h, ker(char m)-=-m,

where h: A - Qis any arrow and m: B— A is any canonical monomorphism.
Let Top, be the category whose objects are toposes (as in Section 13) with
canonical subobjects and whose morphisms are strict logical functors (as in
Section 13) which preserve canonical subobjects. (A strict logical functor
must, in any case, send a subobject onto a subobject.) Since every strict
logical functor preserves characteristic morphisms, hence kernels, up to
isomorphism, the morphisms of Top,, will preserve canonical kernels on the
nose.
How common are toposes with canonical subobjects? It is clear that the



202 Type theory and toposes

category of sets has canonical subobjects, namely subsets. Consequently,
also functor categories have canonical subobjects, namely subfunctors.
Therefore also reflective subcategories of functor categories have canonical
subobjects, in particular, so does the category of sheaves on a topological
space.

Given any type theory £, we constructed the topos T(£) generated by itin
Section 12. For any monomorphism m: $ >« in T(R) we easily find the
canonical subobject corresponding to it, namely ker(char m), as in the proof
of Proposition 12.2. More generally, any ‘inclusion’ in T(£) is a canonical
monomorphism.

With any topos 4~ we may now associate a topos TL{Z ) with canonical
subobjects. Moreover, as was shown in Section 13, TL(J) is equivalent to
g as a category.

We shall use the same letter L for the functor L: Top, — Lang induced by
the functor L: Top — Lang discussed in Section 14. As remarked above, for
- any object £ of Lang, T(£) is an object of Tep,, so we may also write
T:Lang — Top,.

Definition 15.2. Let  be a topos with canonical subobjects. We construct
the strict logical functor ¢,: TI{(J)— 7 as follows. Given an object o of
TL(T), say a closed term of type P4 in L(7), that is,an arrow oz 1 - P4 in
7, we put
&4(a) = Ker(a),

the canonical subobject of A whose characteristic morphismisaf: 4 - Qin
J . Given an arrow f:a— f, where | f| is a closed term of type P(A x B)
satisfying the usual two conditions, we take &,{(f) &,(¢) > &,(B) as the
unique arrow g: Ker(af) - Ker(8) such that, if we write k, = ker{a), for an
indeterminate arrow x: 1 —»Ker(a!), in L(7),

ko, kygx el f1.

The existence of the unique arrow g follows by description (Theorem 5.9)
once we verify that

}—VxeKer(oz’)H!yeKer(li')<kax’ kﬂy>€|f|
To see this, we argue informally in the internal language, as follows. Let
xeKer(a*), then a'k,x-=-T, that is, k,xea. Since

Vx'eA(xlea:B!y’eB<x’7y,>GIf|)’
there is a unique y'eB such that (k,x,y' >e|f|. Since
vx'eAVy’eB(<x,’y,>E|f’:(xlea A yleﬁ))s
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we have y'eff. Now
B-="TB!7-=-Tchark, =+ {y'€B|3,eprksy = '},
so we may infer from y'ef that there exists yeKer(8/) with k;y = y', and
this y is also unique, since k; is a monomorphism: Thus we have a unique
yeKer(B’) such that {k,x,kzy €| f], as claimed.
It remains to verify that ¢, is a strict logical functor which preserves
canonical subobjects.
For example, let us check that e, (a X f) = &,(x) X &,(B). In view of the
definition of &, we must show that
Ker((x x f)!) = Ker(a’) x Ker ().
In fact, we shall prove this equality with Ker replaced by ker. As before, we
write k, = ker(a”) and also K, = Ker(a/). We note that, by C3, k, x k; is a
canonical subobject, hence it will be the same as k,, , provided it has the
same characteristic morphism. Indeed, by Proposition 5.4,

Tchar(k, x k)7

'='{<X,Y>€A X B;H(x’,y’>el(axl(ﬁ<x,y> = (ka: X kﬂ)<x,’yl>}
= {{x,y>€A x Bl x =k, X' A Iyex,y =kgy'}
={{x,y>eA x B|xe chark,7 A ye"chark,,"}
-=-Tchark,™ x Tchark,™,

by Proposition 11.2. Finally, since k, = ker(a/), thisisa x f-=-"chark,_, P
hence k, x k; ="k, ;, as was to be shown.

In a similar manner one may show that ¢, (Pa) = P () using C4. We
shall leave the remainder of the proof that ¢ is a strict logical functor as an
exercise to the reader. Instead, we shall now verify that it preserves
canonical subobjects. '

First, let us check this in the special case

eg(m,) = ks,

where m,:x— A is the canonical inclusion given by
[m,] = {{x,x)eA x A|xea}.

Now, by definition, ¢, (m,) is the unique arrow g:k,— A4 such that
= CkoX, kygx > €lmy),

where x:1-K, is an indeterminate arrow. Since k,-=-1, by Cl, this
implies gx =k,x, hence g-=-k,, as was to be checked.

Next, let us turn to the general case of a canonical monomorphism
m:o.— f. This means as above that o < f and that
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Im]-=-{<x,x)ed x A|xea}.
Then, by C2 or directly, mgm-=-m,. Hence
; ko =-e5(m,)- ='8y(mp)3y(m)'='kﬂ8f(m)~
We shall now prove that &, (m) is a canonical monomorphism,
In any case, ¢, (m) = k, where k is canonical, hence kyez(m) = kgk. Now
kg k is canonical by CS5, hence kpes(m)-=-kk, and so ¢, (m)-=-k, as was to
be shown.

We shall leave it as an exercise to the reader to show that ¢ is a natural
transformation.

Lemma 15.3. ¢,¢,=1,.
Proof. By Proposition 5.4.,
Cohar 1, 1=+ {xeA|3,epx = y}-=-{xeA|T} = A.

Therefore A/-=-char 1, and so ker(A)-=-1 4- From the last equation, by
taking the source of each side, we obtain Ker(A’) = A. Therefore, using
definitions 13.2 and 15.2, we calculate

erbs(A)=¢,(A)=Ker(A)= 4
on objects. Similarly, on arrows f: 4 - 4’ we have
erls(f)=¢,(0) =g,

where g: A — 4’ is the unique arrow such that, for an indeterminate arrow
x:1—A,

E < gxdelf].
Since

Ifl=gphf = {<{x,fx)|xeA},
we see that g-=-f,

Theorem 15.4. L: Tob0 — Lang has T:Lang — Top, as a left adjoint, with
adjunctions #:id » LT and & TL- id.

Proof. We verily that

L(Ey)”luf)'z'lu:r)» gnn)T(%)'=’1nﬁ)-
Indeed, the first equation is obtained by applying the functor Lto Lemma
15.3 and recalling that L 7) =14 by Lemma 14.6. To prove the second
equation, let us only carry out the calculation for objects a of T(8), leaving
the calculation for arrows to the reader:

ey T(Ne) () =-epgny(0)- = “Eng)(a)
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by definitions 14.7 and 14.2. Now a: 1 PA = PA gives rise to the arrow
ergfa):Ker(1') > Ker((PA)’) in T(8). Recalling from the proof of Lemma
15.3 that Ker(A') = A, we may write e5o,(a): 1 - PA. By Definition 15.2, this
is the unique arrow g: 1 — PA such that, for an indeterminate x:1 -1, in
LT(8), bx<kyx, kagxde |al.

Now, again from the proof of Lemma 15.3, k, = ker(Af)-=-1,. Moreover,
in £ we have L x = x. Therefore g is determined by F(*,g)€|a|. Since
|} = {{*,a)}, it follows that g-=-«, as was to be proved.

In Part O we had considered full reflective subcategories; but the same
definition applies to reflective subcategories which are not full.

Corollary 15.5. Top, is a (non-full) reflective subcategory of Top with
reflection ¢,: 9 - TL(T).

Proof . Given a morphism G: 7 -+ 7 of Top with 7" in Top,, we shall find a
unique morphism G’ of Top, such that G’¢,, = G. Indeed, let G’ = ¢,,.. TL(G),
then

Gl =8,TLG)K s =65(7G=0G,
using the naturality of £ and Lemma 15.3. On the other hand, assuming
G'¢, = G, we calculate

£5 TL(G) = &4, TL(G")TL(£ ;) by functoriality of TL,
= G'ery 5 T 7) by naturality of g,
= G'eryqy T(1y5)) by Lemma 14.6,
= G’ by Theorem 15.4.

Exercises
1. Complete the proof in Definition 15.2 that ¢, is a strict logical functor.

2. Prove that ¢ is a natural transformation TL—id.
3. Complete the proof of the second equation in Theorem 15.4.

4. Show that, for each object 7 of Topy, {;&5 = 175

16 Applications of the adjoint functors between toposes
and type theories

InSection 15 weestablished theexistence ofa pair ofadjoint functors

L
. Topy & Lang
T
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between toposes with canonical subobjects and type theories. In this section
we shall see what mileage we can get out of this adjointness, which
establishes a biunique correspondence between translations £ — L(J") and
strict logical morphisms T(8) - Z which preserve canonical subobjects. It
is reasonable to call either of these two arrows an interpretation of 8 in 7.
We shall exploit the adjointness to carry out a number of constructions in
Top,.

Example 16.1. The free topos.

Let us consider for a moment pure type theory £, which has only those
types, terms and theorems that it must have by virtue of being a type theory
and which also contains no unnecessary equations between types.
Clearly, £, is an initial object in the category Lang, hence it admits exactly
one interpretation into any given topos with canonical subobjects. It
follows that # = T(L,)is an initial object in the category Top,, which it has
become customary to call the free topos.

We shall see later how categorical properties of # may be translated into
metatheorems about £,. In a more philosophical vein one may argue that
F is the ideal universe a moderate intuitionist or constructivist believes in.
It is not so easy to describe an ‘ideal universe’ for a classical mathematician,
since he would insist that Hom(1, Q) has exactly two elements.

Example 16.2. Adjoining an indeterminate to a topos.

We had seen earlier how to adjoin an indeterminate arrow x: 1+ Atoa
topos J to obtain a cartesian closed category (or even dogma) 7 [x]. This
is not usually a topos, just as for a field F the ring F[x] is not usually a field.
We shall here construct a topos & (x) and a strict logical functor 7 — 7 (x)
which has the expected universal property to some extent. (The analogy

“with the field F(x) is not quite complete here.)

We begin by adjoining a parameter to a type theory £. Asin Section 7, if x
is a variable of type A, then £(x) is the type theory with the same types as £,
where x is counted as a constant, so that closed terms are open terms of £
containing no free variables other than x and where deducibility for closed
terms means b in £. In describing the ith variable of type 4 in £(x) one must
of course skip the variable x, say the kth variable of type 4 in Q.

The canonical translation 7,: 8 — £(x) regards £(x) as an extension of .
This is not necessarily a conservative extension, since from I p, with x of type
A notoccurring freely in p, one may infer - pif thereisa closed term of type 4
in £, but not in general.

The translation 7, has the obvious universal property: for any translation
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7:8— £ and any term a of type 1(A4) in €, there is a unique translation
7": £(x) — £’ such that 7't =1 and 1(x) =a. In fact, ¢’ is the translation
which substitutes a for x in any term ¢(x) of £(x) to yield the term p@)of &,

X
20) :\
=~ ‘ a

We may use this result to adjoin an indeterminate arrow 1— A to the
topos T(L) generated by a type theory £, namely the arrow x:1— A in
T(£(x)) with graph {<{#,x}}. In fact, the morphism T(z,): T(2) - T(2(x))
in Top, has the universal property: for any morphism G: T(8)— 7" of
Top, and any arrow a:1-G(A) in J”, there is a unique morphism
G T(2(x))— 7" of Top, such that G'T(z,) = G and G'(x)-=-a.

To prove this, let 7: £ » &' = L(J") correspond to G under the adjoint-
ness, to wit ‘

T = L(G)n,.
Since a is a term of type 7(4) in L(J"'), we may find 7': 8(x)—» L(J") so that
() T, =1, T(X)=a.
Now let G': T(&(x))» 5" cdrrespond to 7" under the adjointness, to wit
G =g, T(7).
A routine calculation then shows that
(#*)  GT(r,)=G, G(x)=-a

Moreover, these two equations imply (*), so that the uniqueness of G’ follows
from that of ',

Next, let us consider the problem of adjoining an indeterminate arrow
1 A to an arbitrary topos 7, possibly with canonical subobjects. We
may of course just recall that 7 ~ TL(J) and cite the above construction
with £ = L(7). If we wish to be more explicit, we should assert some kind of
universal property for the composite functor

7 42, 717 T, Ty ().

Unfortunately £, does not preserve canonical subobjects even if 7 has
canonical subobjects; it is a morphism of Top but not of Top,. We must
phrase the universal property rather carefully. Define 7 (x) = T(I(J) (x)).
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The strict logical functor T(zr,)¢ I — F (x) has this universal property:
for any strict logical functor G:7 — 7" such that " has canonical
subobjects and any arrow a: 1 - G(A4) in ', there is a unique strict logical
functor G: 9 (x)—J' preserving canonical subobjects such that
G'T(z,)¢, = G and G'(x)- =-a. Note that G’ is meant to preserve canonical
subobjects even if G does not.

To deduce this from the universal property of T(z, ) established above, we
merely cite Corollary 15.5, which says that Top, is a reflective subcategory
of Top.

There is also a more categorical method for adjoining an indeterminate
to an elementary topos due to Joyal, based on a similar construction for
Grothendieck toposes in SGA4, which works in fact for arbitrary cartesian
categories with equalizers. We shall discuss this in Exercise 2 below.

Example 16.3. Dividing a topos by a filter of propositions.

If € is any type theory and F is a set of closed formulas of £, we may
construct a new type theory £/F which has the same types and terms as £
but where provability means F, that is, provability from the assumptions
F. We recall that F is called a filter provided from pr g and peF one may
infer ge F and from peF and ge F one may infer p A ge F. When F is a filter,
Fp is the same as peF. Note that 2 = 8/{T}.

Consider now the canonical translation t7: € — 2/F which introduces
new postulates F. Clearly, this has the following universal property: given
any translation t: £ —» &' such that -1(p) in & for all peF, there is a unique
translation t": /F —» &' such that 't =1.

The morphism T(tz): T(®)— T(2/F) in Top, then has the following
universal property: given any morphism G: T(2)— Z " in Tep, such that
J"EG(p) for all peF, there is a unique morphism G': T(&/F)— 7" in Top,
such that G'T(tz) =G. .

The proof is similar to the proof of the corresponding result in 16.2. As a
particular case, if £ is pure type theory, T(£,/F) is an initial object in the
full subcategory of Top, consisting of those toposes which satisfy the
assumptions F.

We may also consider the morphism T(1;)¢,: 9 — 7 /F in Top, where
T |F = T(L(J)/F). As for the analogous result in 16.2, one may again show
that this has the following universal property: for any morphism G: 9 - 7~
in Top such that ' has canonical subobjects and = G(p) for all peF,
there is a unique morphism G": 7 /F — ' in Top,, such that G' T(z)¢, = G.

In particular, if G:  — ' is any strict logical functor and if F is the filter
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of all arrows p: 1 »Qin 7 such that 7'FG(p), then G factors uniquely as
T - |F—-7"'. The filter F 'here is analogous to the kernel of a
homomorphism in ring theory.

Example 16.4. Topos of fractions.

Suppose X is a set of arrows in a topos 7. We want to form a topos
Z X~ ! with canonical subobjects in which these arrows are invertible and
obtain a logical morphism J —Z Z~! which is initial among logical
morphisms G:J — 7' such that  has canonical subobjects and G(o) is
invertible for all oeX. The word ‘initial’ here refers to the existence of a
unique strict logical morphism 7 X! -9 which preserves canonical
subobjects and such that the following triangle commutes:

T

\

T

The proposition that an arrow g: A — B is invertible in the topos 7 is a
proposition p, in the internal language of 4. According to Proposition 6.1,

= VygBH!xerx =y.

Letting Fy be the filter generated by all p, for which oeX, we may define
L' =7 [Fy and cite the universal property of Example 16.3.

Example 16.5. The free topos generated by a graph.

We recall (Part 0, Definition 1.2) that a graph consists of two classes, the
class of arrows and the class of nodes, and two mappings between them,
called ‘source’ and ‘target’. One writes f: A — B for: source(f)= A and
target(f) = B. A morphism f:% —> % between graphs sends nodes and
arrows to nodes and arrows respectively such that f: 4 - B in 4 implies
F(f). F(4)- F(B) in 4. We thus obtain the category Grph of graphs. We
shall now consider a functor V:Lang — Grph.

With every type theory £ there is associated its underlying graph V(8): its
nodes are the types of £ and its arrows A — B are term forming operations
ar> ¢(a) induced by terms @(x) of type B, x being a free variable of type A. If
7:  — &' is any translation, V(z): V(2)— V(£') is defined by V(r) (A) =1(4)
and V(1) (¢(x)) = t(p(x)).
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It is not difficult to construct a left adjoint A: Grph — Lang to V. Given a
graph %, we define the type theory A(%) by allowing as basic types all nodes
of ¢, in addition to 1, Q and N, and by closing the set of terms under the
term forming operations a + fa, where f: 4 — B is any arrow of %. (See also
Example 1.2.) To show that A is the object part of the functor left adjoint to
V, we need a morphism 7,:% — VA(¥%) with the appropriate universal
property.

We define n,(4) = 4, a node A of % being a type of A(%) hence a node of
V A(%), and n4(f) = the term forming operation a—fa. Now let F: 4 — V()
be any morphism of graphs, we seek a unique translation 5 A(%) — £ such
~ that V(tpny = F.

A®)
. \\
VA®) TSN

Ny V(2

We define t on types by stipulating that for a new basic type 4 of A(%), that
is, a node of %, tx(4) = F(A). We define 7, on terms by stipulating that, for
any new term forming operation a ~ fa of A(%), f: A— B being an arrow
of 4,
tp(fa) = F(f)(zpa)).
We leave it to the reader to check that 7, thus constructed is the unique

translation satisfying V(tz)n, = F.
Composing adjoint functors, we see that the functor

Top, —£'—> Lang —IL Grph

has as a left adjoint

Grph —1—\-» Lang I—» Top,.

In the special case when ¥ is the empty graph (no nodes, no arrows), TA(%)
is of course the free topos # considered in Example 16.1.

We shall discuss briefly two variations of Example 16.5.
A multigraph consists of two classes, the class X of arrows and the class Y
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of nodes, and two mappings:

source: X — Y*
target: XY,

where Y* is the free monoid generated by Y. An arrow of a multigraph may
be written in the style of Gentzen as

f: Ay, A,,...,A,—>B.

The underlying multigraph of a type theory has as nodes types and as
arrows term forming operations

(@y,....a) > ola,,...,a,) .
- given by arbitrary open terms ¢(x,,...,x,) of the type theory.

The reader will have no difficulty constructing the free type theory and
the free topos generated by a multigraph.

Classifications had been introduced in Part I, Section 10, Exercise 2. We
recapitulate: a classification consists of two classes, the class of entities and
the class of types, and a mapping between them which assigns to each entity
its type. The category of small classifications is the topos Sets”. The
underlying classification of a type theory has as entities of a given type the
closed terms of that type. Again, the reader will be able to construct the free
type theory and the free topos generated by a classification.

Exercises
1. Prove the equivalence of (*) and (*x) in Example 16.2.

2. Given an object A of the topos 7, one forms the slice topos 7 /A, whose
objects are arrows f:B— A in 4 and whose arrows are commutative
triangles in 7. The logical functor H: 9 — 7 /A sends the object B of 7
onto the object 7, 514 x B— A of 7°/A. Among the arrows of 7 /4, the
arrow & H(1)—> H(A) givenby {n, {, 74 1 ): A x 1 - A x Abehaveslikean
indeterminate: given a logical functor G: 7 —» 7"’ and an arrow a: 1 — G(4)
in g7, there is a logical functor G /A —Z", unique up to natural
isomorphism, such that G'H = G and G'(£)-=-a. G’ is constructed at the
object f: B— A by the pullback:

G'(f) G(B)
G(f)
1 p G(4)

T /A is equivalent to (x) in Example 16.2.
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3. If p: 1 > Qisanarrow in .7, let (p) be the filter generated by pand S, — 1 the
subobject of 1 which is the kernel of p. Show that the topos 7 /(p) of
Example 16.3 may also be constructed by adjoining an indeterminate
arrow 1§, to 7. ‘Deduce that J/(p) is equivalent to the slice topos
T/S,.

4. Construct the free type theory and hence the free topos generated by (a) a
multigraph and (b) a classification.

17 Completeness of higher order logic with choice rule

We recall that an interpretation of a type theory £ in a topos J is a
translation € — L(7). If 7 has canonical subobjects, this corresponds by
adjointness to a unique strict logical functor T(8)—J preserving
canonical subobjects. Among the interpretations of € there is always the
canonical one #,: 8 — LT(2), where T(&) is the topos generated by £. Being
an adjunction, #, is initial in the category of all interpretations of £.
Moreover, it is a conservative extension: to know whether a formula p holds
in € it is necessary and sufficient that its image under 7, holds in LT(£).

A standard model of a type theory £ is an interpretation £ — L(Sets). One
wants to introduce a more general notion of ‘model’ and prove a
completeness theorem: every type theory has ‘enough’ models, that is, for
every closed formula p of £, Fp in £ if and only if .4 F1(p) for all models
7. & — L(.#). It is easily seen that, in general, there are not enough standard
models. On the other hand, if we admit all interpretations as models, the

" completeness theorem holds trivially, in view of the fact that the initial

interpretation #, is a conservative extension, and so -p in £ if and only if
T(Q)Ep. We are looking for a definition of ‘model’ 7: £ » L(.#) in which .#
resembles the category of sets more closely than an arbitrary topos does.

Definition 17.1. A model of a type theory £ is an interpretation 7: £ — L(.#)
in which the topos .#, also sometimes called a ‘model’, has the following
properties:

MO. Not AE1;
MIL. if MEpv qthen #Epor MEq;
M2. if #E3,,0(x) then A F ¢(a) for some arrow a: 1 > 4 in 4.

Here p,q and ¢(x) are assumed to be any formulas in L(.#), the first two
without free variables, the last admitting at most the free variable x.
Algebraically the above conditions assert the following about the terminal
object 1 of -
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MO. 1 is not initial;
M1, 1 is indecomposable, that is, it is not the union of two proper
subobjects;
M2.  1is projective.
For M2’ see Proposition 6.6. Logically these conditions assert that truth
in .# is much like truth in Sets. If .# is a Boolean topos, we may also infer
the following:

M3, if A E p(a) for all arrows a: 1 - A4, then A EV,_,0(x).

Algebraically M3 asserts:
M3, lisa generator of 4, that is, the functor I' = Hom(1,-): 4 — Sets
is faithful.
Unfortunately this functor I' is not a logical functor, although it preserves
products up to isomorphism. As regards exponents, we have

I(B4) = Hom(4, B) & (B,

Also, being left exact*, I' preserves monomorphisms; in particular, it sends
subobjects of 4 to subsets of I'(4). However, this mapping Sub 4—
Sub I'(4) need not be surjective. We may therefore regard .# essentially as a
subcategory of Sets, with the same products up to isomorphism but with
fewer subobjects, that is, not every ordinary subset need correspond to a
subobiject in .
Thus .# is essentially what Henkin calls a ‘non-standard’ or ‘general’
" model. In a widely quoted article he showed that classical higher order logic
has enough models. For expository purposes he confined attention to type
theory with the axiom of choice, as in this case the proof becomes much
simpler. ,

Following Henkin, we shall also assume for the time being that £ satisfies
the rule of choice (see Definition 7.1). From this it follows easily (see
Proposition 17.4 below) that LT(£) also satisfies the rule of choice, that is,
the topos T(L) has choice: all epimorphisms split (see Proposition 7.5 and
the remark following it). Recall from Corollary 7.4 that now £ and LT(£)
are classical, hence T(2)is a Boolean topos. We shall obtain our models of £
by dividing T'(L) by all possible prime filters.

In what follows we shall consider a pre-ordered set in which the order
relation is written . We shall abbreviate ‘pt~q and g+ p" as ‘pllq’ and
regard H as an equality relation, so that the pre-ordered set becomes a
partially ordered set. We shall furthermore assume that it is a lattice: any
two elements p and g have a least upper bound p v g and a greatest lower
bound p A g. For good measure, we shall also assume that a lattice has a

* A functor is called left exact if it preserves finite limits.
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largest element T and a smallest element L. A lattice is called distributive if,
for any elements p, g and r,

pAlgvrHPAgQ v (p A
From this it follows that the opposite lattice, that is, the same set with the
reverse order, is also distributive, namely

pvi@AanHpvaalpv.

Definition17.2. A subset P of a lattice is called a filter provided
Fl1. if peP and ptq then geP,

F2. if peP and qeP then p A geP.

A filter P is called proper if

F3. L¢P

and prime if furthermore

F4, if p v qeP then peP or qeP.

An ultrafilter is a maximal proper filter. In a Heytmg algebra this means
that, for every element p,

F5. either peP or -peP,
where «p=p= 1.

Clearly, every ultrafilter is prime and, in a Boolean algebra, every prime
filter is an ultrafilter.
We record for later use:

Lemma 17.3. Every filter in a distributive lattice is the intersection of all
prime filters containing it.

Proof. Let p be an element not in the filter F; we seek a prime filter
containing F but not p. Let P be maximal among filters containing F but
not p; it remains to show that P is prime. Suppose q¢ P and '¢ P. Then the
filter generated by P and ¢ must contain p, and so must the filter generated
by P and q'. Therefore r A gi~p and ¥ A ¢'Fp for some r, r'eP. Hence, by
distributivity, (r A ') A(q v q')1-p, and so q v ¢'¢P. This shows that P is
prime as required.

We recall that a topos 7 has choice if its internal language L(7") satisfies the
rule of choice.

Proposition 17.4. Suppose € is a type theory which satisfies the rule of
choice, then so do
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(a) £/P, for any filter P of closed formulas,
(b) LT(Q).
Proof. To show (a), suppose

PFVaealxea=>3,.50(x, y))
for some peP. We may write this as

= (p A xe0)=3,.50(x, y).
Now, since £ satisfies the rule of choice, so does £(x), by Lemma 7.2.
Therefore
I;(p A xE“)=>3!yeB¢(xa,V)
for some formula y(x, y) such that y(x, y) F5y @(x, ). We may write this as
p};xea=3!yeliw(x’ y)a
so /P satisfies the rule of choice.
To show (b), suppose
(1) T(Q)kvxsuayeﬂ <X, y> ep, )
where a and B are terms in £ of types PA and PB respectively and
p:1- P(a x B)is an arrow in T(L) with graph |p| = {{*,p)>}, where pisa
term of type P(4 x B) in £ satisfying -p < a x B (see Proposition 14.3).
According to Remark 14.8, (1) may be rewritten in LT(Q) as

3] FV.aalxea=3 4yef A <{x,y>ep))

As this is the image of a formula in € under the conservative extension Na>
we have in €

(3) !_vxeA(xea»HyeB(yeﬂ A <X,J’>€P))
Since £ satisfies the rule of choice, we may infer
(4) ‘_VxEA(XE(X=>3!yEB<X,y>EO')

for some term ¢ such that o < p.
Applying 7, to (4) and recalling Remark 14.8 once more, we obtain

(5) T(Q) '= Vxeaa!yeli < X, y > €0,

where T(L)F o < p. By description, there is a unique arrow f:a— f in T(2)
such that {x,y)>ee may be rewritten as fx = y, hence

(6) T(R)EV, ., {x.fx)ep.
Thus T(R) has choice.

Taking £ = L(Z) in Proposition 17.4, we immediately obtain the following;
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Corollary 17.5. 1f 7 has choice and P is a filter of arrows 1 > Qin 7, then
T [P = T(L(F)/P) has choice.

Theorem 17.6. Every type theory which satisfies the rule of choice has
enough models.

Proof. We look at interpretations of the form
o, 8 ¢/P 12, L T(8/P),

where P is a prime filter of closed formulas in €. By Proposition 17.4,
4 = T(L/P) has choice, and so satisfies M2. It satisfies MO and M1 since P
is a prime filter. (For,if #Ep v g, then PFp v g, hence P+ p or P}~ g, hence
MEpor H#Eq.)

Now let p be a closed formula of £ and suppose that I op(p) for all prime
filters P. Thus, for all P, F1y,(p), hence p in L/P, since n,, is a
conservative extension, and so peP. Therefore I-p, by Lemma 17.3.

We shall see later that Theorem 17.6 remains valid even without the
assumption that & satisfies the rule of choice. At any rate, the rule of choice
was only used to.show that T(£/P) has choice. Without this conclusion we
have really proved a more general result, stated here in algebraic form:

Proposition 17.7. Every topos is a subdirect product of toposes whose
terminal objects are indecomposable. If the given topos has choice, the
terminal objects of the components of the product are also projective
generators.

Proof. The proposition asserts that for every topos 7 there is a monomor-
phism M: 7 - Il 7 ;in Top, where the 7 ; have the stated property. We
construct M by taking ;= 7 /P, and stipulating that M composed with
the projection n;:I1,.; 7 ;— 7 ; shall be

7 2z, 7 T, ayp),

where P;is any prime filter in the Heyting algebra of arrows 1 - Qof 4 and
1; L{T)—» L{J)/P; is the canonical translation.

Let us calculate the effect of M on any object 4 of  and any arrow
f:A— B of 7. In view of definitions 13.2 and 14.7,

nAM(A)) = T(z)¢5(A)
= T(z;)(A)

=14A)
= A mod P,
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[ AMN =" T(5)(E N
= T(5)(0)]
=(f)
{<{x,y>€A x B| fx =y} mod P;.

It follows that M is injective on objects as well as faithful. Such a functor,
often called an embedding, is clearly a monomorphism in Top.

See Remark 17.8 in Supplement, page 250.

18

Exercises

- Prove that a topos . has the disjunction property M1 if and only if the

terminal object 1 of .# is indecomposable.

. If # is a Boolean topos, deduce M3 from M1 and M2.

. Show that the intersection of all ultrafilters of a Heyting algebra containing

a given filter F is the set of all elements p such that <~peF.

. In proving his famous incompleteness theorem, Gédel constructed a

sentence y in pure type theory £, such that Setsky but Siy, where
B = Vieo(t v 1) is the Boolean axiom. Since there is only one interpretation
L6/B — L(Sets), show that pure classical type theory £,/8 does not have
enough standard models.

Sheaf representation of toposes
Proposition 17.7 may be strengthened considerably. Not only are

the toposes 7/P, where P ranges over the prime filters of the Heyting
algebra Hom,(1,Q), the componerits of a subdirect product representation
of 7, they are the stalks of a sheaf on a compact space from which 7~ may be
recaptured as the topos of global sections, just as a commutative ring may
be recaptured as the ring of global sections of a sheaf of local rings on its
spectrum, a standard result in algebraic geometry.

To describe the topological space in question, we shall first discuss the
spectrum of a distributive lattice L in general. We recall that a filter on the
opposite lattice L°P, which is also distributive if L is, is called an ‘ideal’. For
clarity, we repeat:

Definition 18.1. An ideal Q of a lattice satisfies:

I1.
12.

if peQ and g+ p then qeQ;
if peQ and geQ then p v geQ.

An ideal is proper provided

13.

T¢Q
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and prime ’provided moreover
I4. if p A geQ then peQ or qeQ.

For what follows we make the crucial observation that prime ideals are
precisely the complements of prime filters. We shall write pf(L) for the set of
prime filters of L.
The spectrum spec(L) of a lattice L is the set of prime ideals of L
topologized with basic open sets determined by elements pel:

A(p) = {Qepf(L?)| p¢Q}.
If we replace the prime ideals by their complements, spec(L) may be
described equivalently as the set of prime filters with basic open sets

V(p)= {Pepf(L)|peP)}.

This is to be distinguished from the cospectrum of L which also consists of
prime filters but has as basic open sets

V*(p) = {Pepf(L)|p¢ P}.

Lemma 18.2. The basic open sets of the spectrum of a distributive lattice L
satisfy:

V)oVig=Vpvyg),
V)N V(g =V(pAg),

V(i) =g,

V{(T)=spec L,
V(p)< V(q) if and only if pl-gq.

Proof. To check the last statement, suppose p l-q, then the filter ®
generated by p does not contain the element g. By Lemma 17.3, (p) is
contained in a prime filter P not containing q. Therefore Pe V(p) and

P¢V(g), so V(p)& V(qg).

An arbitrary open set is of course a union of basic open sets. An important
observation asserts the following.

Proposition 18.3. In the spectrum of a distributive lattice, every basic open
set is compact and, conversely, every compact open set is basic. In
particular the whole spectrum is compact.

- Proof. In the following argument we use ideals, not filters. Suppose

Ap)=J Ap) ={Qepf(L™)|K ¢ 0},

iel
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where K is the ideal generated by the set {p;/iel}. Then p belongs to the
intersection of all prime ideals Q containing K, hence to K, by Lemma 17.3.
Therefore

pEpyv v,
for a finite subset {i,,...,i,} of I, and so
APp)= Alpi)v---U Alpy,)
Conversely, let V = { ] cx 2 (p) be any open set. If V' is compact, then K

must contain a finite subset {p;,...,p,} such that ¥ = { Ji=; A(p). In fact,
V=A(p)forp=p, V- Vp,

Remark 18.4. 1f a topological space X has a basis # which is closed under
finite intersections, as does the spectrum of a distributive lattice, then a
functor F: #° — Sets extends uniquely to a sheaf G: Op(X)°® — Sets by the
construction

G(V) = lim {F(B)|B< V & Be#}
—

ifand only if F has the sheaf property with respect to coverings of elements of
2. By this we mean that if B={ )., B;, for B, B;e4, and given a family of
elements {x;eF(B;)|iel} which is compatible in the sense that

F(BinBj”Bi)(xi) = F(BimBj"Bj)(xj)’
for all i, jel, then there exists a unique xeF(B) such that

F(B;— B)(x) = x;,
for all iel.
Let us now look at a topos 4 and define its spectrum Spec J as the
spectrum of the Heyting algebra of arrows 1 - Qin . With any object 4 of
T we associate the functor 4 defined on the basic open set V(p) of Spec 7
by

A(V(p)) = Homy (1, 4),
with the obvious restriction mappings

A(V(g)- AV (p)
when V(p) € V(g), that is, piq in L(7).
Theorem 18.5. For any object A of a topos 7, the contravariant functor 4
defined on basic open sets by A(V (p)) = Hom, (1, 4) may be extended to
a sheaf on SpecZ. Note, in particular, that A(Spec.7")=Homy(1, 4).

Moreover, a stalk of this sheafl at a point P of SpecJ is given by
Homy (1, A).
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Proof. In view of Reniark 18.4 and Proposition 18.3, it suffices to check the
sheaf property for finite covers of basic open subsets of Spec 7. So suppose

V)= V)

sothat pt~q, v --- v ¢, in L{J"), and let a,-eHomf/(qi)(l, A) be such that, for
all i, jel, the restrictions of a; and a ;t0 7 /(q; A q;) coincide. Then we claim
that there is a unique aeHom, (1, A) such that, for all iel, the restriction
of ato T/(q) is a;.

According to the construction of 77/(q,), a; is given by its graph |a;| = a,,
which is a term of type P(1 x A) in L(7) such that the proposition

Feno, =3, ,(*,xDeq;
belongs to the principal filter (g,), that is,
q;-Fena,
in L(7"). We are given that, for all i, jel,
qi A g oy =a;
in L(Z"). Now the following is a theorem of intﬁitionistic type theory:

n ’ n n
A 1((‘Ii A q)=a=ay), 'Vl qil_a!uel’(le)'Al (gi=>u=a,).
i=

i,j= i=
Indeed, this result holds more generally if P(1 x A)is replaced by any type B
and may be called definition by cases.

Using the fact that 7 /(p)Fq, v --- v q,, we may therefore infer that

T Sarin A (G=u=a)
By description, there is a unique term « of type P(1 x A) in () such that
T/0F A @=a=z) |
hence, for alli=1,...,n.

TNa)Fo=a.

We claim that a is the graph of a functiona: 1 » 4 in 7 /(p). To prove this, we
must show that 9 /(p) F Fcnoa. Now we have

T /@) *k Fene;, T/g)Fa=a,

hence

I /(q;)EFcno.
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Therefore

T E{g,v - vqg)=Fcna,
whence 7 F p=>Fcn o, as remained to be shown. The sheaf property has now
been established, hence 4 may be extended to a sheaf on Spec 7

What are the stalks of this sheaf? In general, the stalk of a sheaf G on a
topological space X at a point xeX is given by

G, = lim {G(V)|xeV},
where ¥ ranges over all open sets containing x or only over all basic open sets
containing x. In the present case, we have the stalk
Ap=lim {A(V(p))|Pe V(p)}
ey
= lim {Hom, (1, A)|pe P}
—
=Homy, (1, A).

We leave it to the reader to check that Hom ,_/,,(1 A) is indeed a colimit of
the Homg (1, 4).

John Gray has defined a sheaf G with values in a category .« that need not
be the category of sets. It assigns to each open set V an object G(V) of &/
such that, if

v=_V,

iel
then the following is an equalizer diagram in of:

G(V)— H GV)z3 II GVinV)).
i,jel

Another way of expressing essentially the same fact as Theorem 18.5 is
the following.

Proposition 18.6. Assigning to each basic open set V(p) of Spec s the
topos 7 /(p), one obtains a sheaf S(7°) on Spec J with values in Top. Its
stalks are the toposes /P, where P ranges over the prime filters of
Hom(1, Q).

Proof. According to the general definition of category-valued sheaves
above, bearing in mind compactness of V(p), it suffices to show that, if

pPH4y Vv 4,
in L(7), then the following is an equalizer diagram in Top:

ST 7/a)= 1 7hana)

ij=1
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This may be shown by a straightforward application of ‘definition by cases’.
We let the reader check that 7 /P is the colimit of the 7 /(p). The relation
between the sheaf $(7) and the set-valued sheaves 4 is given by

A(V(p)) = HomS(y)(V(p))(l, A).

In analogy with ring theory, one may call a topos J local if it is non-trivial
and has the disjunction property:

if 7 Epvqthen T Epor T kg

Equivalently, this says that 7 (1,9Q) has exactly one maximal proper ideal.
For a filter P on Hom,(1, Q), clearly /P is local if and only if P is prime.

Corollary 18.7. Every topos is equivalent to the topos of global sections of
a sheaf of local toposes.

Exercises

1. Complete the proof of Theorem 18.5 and write out a proof of Proposition
18.6.

2. Call a non-trivial topos cosimple if the Heyting algebra Hom(1, ) has
exactly two elements and cosemisimple if Hom(1, Q) is Boolean. Show that
the stalks of the sheaf S$(77) are all cosimple if and only if 7 is
cosemisimple.

3. Define the cospectrum of a topos 7 as the cospectrum of the Heyting
algebra Hom(1,9). Show how to obtain a presheaf $%(7) on this
cospectrum defined by SHITNV ) = T /Alt(p), where
Alt(p) = {geHom,(1,Q)|T kp v q} is the filter of alternatives of p.

4. Prove the theorem on definition by cases in the text.

5. Prove the following second version of definition by cases (which is
intuitionistically distinct from the first version in the text): if p,,...,p, are
closed formulas and a,,...,a, are terms of type A, then

n n n
A (PiVPjVai=aj)ﬂ A P, A (x=a;vp).
i=1

Lj=1 i=1

6. Prove that the topos of global sections of the sheaf associated with the
presheaf S*(7) of Exercise 3 is the topos J and that its stalks are the
toposes 7 /Tp, where with each prime filter P one associates the filter
Tp= {peHomf(l,Q)]i]qqé,,ﬂ~ Fpvg} '

7. Prove that the intersection of all maximal proper ideals of a distributive
lattice is the set of all elements p such that, for all elements ,pvqg=T
implies g = T.
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8. Provethat adistributivelattice has exactly one maximal properideal ifand
only if, for all elements pand g, p v g= T implies p= T or g= T. Hence
deduce that the two characterizations of a local topos in the text are
equivalent.

19 Completeness without assuming the rule of choice

In this section we shall generalize the completeness theorem for
higher order logic discussed in Section 17 by dropping the condition that
the rule of choice holds. The proof, already suggested by Henkin for
classical logic, will involve adjoining infinitely many so-called ‘Henkin
constants’. From our point of view, these are just parameters. Models for
intuitionistic first order logic had been discussed by Beth and Kripke. We
shall here follow the proof of the completeness theorem for intuitionistic
first order logic by Aczel.

First, let us explain what is meant by adjoining an infinite set X of
variables to a type theory £. Each term of £(X) is a term of £(X’) for some
finite subset X’ of X. We define I'p in £(X) to mean FI; pin &, it being
understood that X contains all free variables in I" and in p. By this we mean
that I'tp for some finite subset I'" of I" and some finite subset X’ of X
containing all free variables in I'" and in p.

In what follows, we shall need a large supply of variables; a countable
number will not do in general. As usual, we assume that the class of terms of
alanguage is a set in a sufficiently large universe. Let A be the cardinality of
the set of closed terms of £ or N, whichever is larger. We shall assume that
Y is a new set of variables containing A variables of each type, given once
and for all, in addition to the countably many variables which already occur
in formulas of £

The general completeness theorem for higher order logic asserts:

Theorem 19.1. Given any type theory £, #Fz(p) for all models
7. 8- L(A) if and only if p in . '

Proof. Clearly, when Fp in € then F1(p) in L(4), hence . k(p).
Conversely, suppose p, is a closed formula of £ such that not p, in £.
We shall construct a model

g5 e, Mo T(2,)

of € such that not t-#,_(po) in LT(2,), thatis,not =pyin £ . Here £, will
be constructed from £ by adjoining an infinite set of parameters and
imposing an infinite set of conditions.
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We form a sequence of type theories

g=2,59 S, 5, ..

where £, = £(X,)/P, is defined as follows, with X S Y.

(@) Xo=Z;forn>1, X,2X,_, contains exactly one variable x,eY
for each term a of type P4 in 8(X,_,) such that dyeq Xx€a belongsto P, _;
but we insist that Y— X, still contains A variables to each type.

(b) Po=(T) is the smallest filter of closed formulas of L forn>1,
P,2P,_, is a prime filter of closed formulas of £(X,) containing all
formulas of the form x,ea, but not containing p,.

We shall verify by mathematical induction that these parallel construc-
tions can be carried out.

(a) The construction of X, as a subset of Y presupposes that X, has at
most 4 variables of each type, which will follow from the fact that 2(X,_))
has at most A closed terms. Indeed, this is so for 2(X,) = L. Assuming
that £(X, _,) has at most A closed terms, consider the closed terms of £2(X,).
Each of these is obtained from an open term Y(xy,...,x,) of &X,_,) by
substituting x,, for x;. The number of such y is at most 4, e.g. since the
universal closure of each formula y =y is a closed term of 2(X,_,)
Replacing the x; we obtain at most 4™ = A substitution instances for each v,
hence at most A? = 4 closed terms in £(X).

(b) The construction of P, presupposes that P,_, together with the
formulas x,ea does not entail p, in £(X,). Indeed, suppose p, could be
derived from these assumptions, then this derivation would only involve a
finite number of formulas of P, _, and a finite number of formulas X,Eq, as
well as only a finite number of elements of X, so

F, Xy €0, 00X, €0y b= po,
where F is a finite subset of P,_, and X" is a finite subset of X »- But then
E axeAl xeal’ A 316.4,,, X€ % ’.?'nx,,_lpoa

and so p,eP,_,, which contradicts the construction of P,
Now let 8 = 2(X)/P.,, where

X,= X, P,={JP,.
n=0 n=0

Moreover, I'-p in £, shall mean that FuP, i pin £X,), that is,
I"UP, k5, p for some finite subset I" = T" and some natural number n. In
particular, Fp in £, if and only if peP,,, that is, peP, for some n.

We claim that the interpretation
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eSS e, Mo 10,

is a model, that is, T({,) satisfies MO, M1 and M2. As is easily seen, it
suffices to prove:

() L¢P,; in fact po¢Po;
N if pv qgeP, then peP or geP;

2) if 3, ,0(x)e P, then @(a)e P, for some term a of type 4 in £(X ).

For example, to see why (1) implies M1, suppose p: 1-»Q and g1 Q
are arrows in T(8,,) such that T(2,)Fp’ v q'. As already observed earlier,
we may write p’ = p and ¢’ = ¢, where p and q are closed formulas of £,
hence we know that -p v qin LT(£,,). Since n,_ is conservative, it follows
that p v gin €, thatis, p v geP . Then by (1), peP_, or geP,, so that
T(2,)Fp or T(2,)F 4, which establishes M1 for T(£,).

We shall now prove (0) to (2).

(0) Suppose pyeP,,, then p,eP, for some n, contradicting the construc-
tion of P,.

(1) Suppose p v geP,, then p v qeP,, for some n, hence peP, < P, or
qgeP, & P,

2) Suppose Frea@(x) belongs to P, then it belongs to P,_, for some
n>1. Let o = {xeA|@(x)}, then 3xe,4 xeo belongs to P,_,;, hence x,ea
belongs to P,, therefore o(x,)eP, S P,

Finally, if T(2,)F po, then poeP,, since 1, _ is conservative, contradict-
ing (0). This completes the proof of the completcness theorem.

What do models of intuitionistic type theories look like? Models of first
order intuitionistic logic had been constructed by Beth and Kripke. In one
such construction, associated with the name ‘Kripke’, the role of the topos
of sets is taken by the functor category Sets?, where £ is a nonempty
preordered set. Strictly speaking, for this to be called a model, # should
have an initial element. The topos semantics of Section 9 will then assure
that Sets? satisfies M1 in addition to MO and M2, which hold in any case.
General models of intuitionistic type theory will bear the same relation to
such Kripke models as Henkin models of classical type theory do to Sets.

Theorem 19.2. For any type theory £ there is a partially ordered set 2 and
a faithful left exact functor I': T(8) — Sets”. 2 will have an initial element if £
is consistent and has the disjunction and existence properties, e.g , if £ is the
internal language of a model. In that case, I is near exact. ‘

Proof. In what follows, Y will be a given set containing A variables of each
type, as in the proof of Theorem 19.1. We shall construct a preordered set
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2 as follows. Its elements are pairs (X, P), where P is a ‘saturated’ prime
filter of closed formulas in £(X), X being any subset of Y such that Y-X has
A variables of each type. By P being saturated we mean that, if 3,_,¢(x)
belongs to P, then ¢(a) belongs to P for some closed term a of type 4 in £.
The condition on Y-X assures that there are enough additional free
variables left. The set # is partially ordered by stipulating that
(X,P)<(X', P} if and onlyif X< X' and Pc P

Let us now abbreviate T(£)as 7. Infact, we may as well assume that T is
any topos and that £ = (7). We form I': 7 — Sets” as follows: for each
object 4 of 7 and each arrow f:A—> B in 7,T(A): 2 - Sets and ()
I'(4) > I'(B) are defined by

T(A)X, P)=Homy (1, 4), T(f)(X, P)=Hom,yp(L,f).

Why is I'(4) a functor? If (X, P)< (X', P'), there is a canonical translation
©: &(X)/P— 2(X")/P’, hence a logical functor T(z): 7 (X)/P->T(X')/P', and
this induces a mapping Hom,, (1, 4) > Homy 4, (1, A) which sends the
arrow a:1— A of 7(X)/P onto the arrow T(z)(a) of 7(X')/P". The reader
will easily verify that I'(f) is a natural transformation. That I is left exact
follows from the fact that limits in Sets” are defined componentwise.

Finally we note that, if € is consistent and has the disjunction and
existence properties, (¥, (T))is an initial element of 2. Again, that I is near
exact (see Remark 17.8 in Supplement) follows since colimits in Sets” are
defined componentwise.

20 Some basic intuitionistic principles

In this and the following sections, we show that various constructi-
vist or intuitionistic principles hold in pure type theory.
In as much as intuitionists are willing to believe in a formal language,
they do believe in the disjunction property:
if ~pv g then por gq.
We shall prove that this is indeed valid in pure intuitionistic type theory 2.
It is not valid in pure classical type theory £,/(f), where = Viealt v 1)
isthe Boolean axiom. For example, Godel constructed a sentence y for which
neither B~y nor vy, yet, of course, S~y v y.
It is often claimed that classical mathematics is non-constructive. Here is
an example of a non-constructive existence proof based on the Boolean
axiom, which we learned from van Dalen:

Theorem. There exist irrational numbers a and b such that q? is rational.
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Proof. Either,/2v2is rational or not. In thefirst case take a = b = /2, in the
second case take a =,/2¥? and b=,/2.

It so happens that for this theorem a constructive proof is easily available:
take a = /2 and b = 2log,3. Intuitionists insist that all existence proofs be
constructive. In particular, they ought to believe in the existence property:

if F3,,¢(x) then there is a term a of type A such that F¢(a).

Again we shall prove this for pure intuitionistic type theory £,. This too

fails in pure classical type theory £,/(f). For example, take
Px)=(x=0A9)v(x£0A9y),
where y is Godel’s undecidable sentence.

Clearly, on the assumption y v =y such an x exists, thus -3, .y¢(x). On
the other hand, if we could prove B ¢(n) for some standard numeral n = S*0,
we would also be able to prove y (in case k =0) or -y (in case k #0).

This counterexample breaks down if we admit terms of type N other than
standard numerals. For example, if we adjoin to £,/(f) a minimization
operator u,.y (the smallest xe N such that), then, whenever classically we
can prove 3, .y@(x), we can also prove ¢(n) for n = p, y¢(x). Presumably, an
intuitionist would reject all non-standard numerals, that is, he would be
committed to the belief that all terms of type N are provably equal to terms
of the form $*0, where k is a natural number. Yet he should accept the
minimization operator applied to ¢(x) whenever F3,y¢(x), because in
pure type theory £, it will always yield a standard numeral, as will follow
from the discussion below and Lemma 20.3.

The minimization operator is a special case of the unique existence

property:
if 3 ,(x) then there is a term a of type 4 such that Hy(a).
Indeed, if A= N and 3, yo(x), let

Y(x) = @(xX) A Vyen(y < x=10(y)),

then the smallest x such that ¢(x) is the unique x such that y(x). The unique
existence property is acceptable to both intuitionists and classical math-
ematicians, but for different reasons; it holds in £, automatically (see
Lemma 20.3 below), but in £,/(f) only if a description operator or a
minimization operator is adjoined.

It is more difficult to find an example in classical mathematics where the
existence property breaks down even if a description operator is allowed.
Here is a candidate with 4 = P(PN): let y(x) be the formal sentence which
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asserts that x is a non-principal ultrafilter on the set N and put

0(x) = (e x(x)= 2(x)).
Then clearly S 3, _,¢(x), yet we conjecture that not B+ ¢(a) for any closed
term a of type 4 = P(PN).

In fact, Feferman has shown that, if y(x) means that x is a well-ordering of
the reals and if ¢(x) is defined as above, then - ¢(a) for no closed term g of
Zermelo—Fraenkel set theory, hence surely for no term of classical type
theory. :

There might be an even simpler example where the existence property
breaks down at type 4 = PN, if one could find a formula o(x) which asserts
that the subset x of N is not definable in classical type theory.

As already mentioned, both disjunction and existence properties hold in
pure intuitionistic type theory £,. There are several ways of proving these
metatheorems. We shall here adopt a method which resembles the
realizability arguments known to logicians, but which depends on a
categorical construction due to Peter Freyd. We shall postpone the details
of this construction to a later section; for the moment we are content to state
its most relevant properties.
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Theorem 20.1. Every topos J possesses a ‘Freyd cover’, a topos J and a
strict logical functor G: 9" — Z with the following properties:

(N All arrows 1 — N in J" have the form S*0 for some keN,
Moreover, the internal logic of 4 is described as follows, where we have
written 4 = G(4), p = G(p) and ¢(x) = G'(p(x)), G: I [x] - T [%] being the
canonical extension of G such that G'(x) = x:
) JET always;
(3) JE L never; .
“) fkp/\qifffhphndf#q;
5 TEpvqiff Tkpor Tkg;
(6) TEp=>qiff () TEp=g

and (ii) 7 Fp implies T kg;

M T EYes@(x) iff () T F Y, 165(x)
and (i) 7k (a) for all a: 1 > 4 in F;

®) T 3,40(x) iff T F (a) for some a: 1 » A in 7. |

Finally, if 9 = T(®) is the topos generated by a type theory, 4 has |
canonical subobjects and G preserves them. ‘
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We note that if 4 is a type of £, it is automatically an object in every topos,
hence we need not distinguish notationally between the object A of J and
the object A of 7. Similarly, if p is a closed formula of £,, we need not
distinguish between the arrow p:1->Q in J and the arrow p: 1 -Qin 7.

While the proof of Theorem 20.1 will be left to a later section, we shall use
the theorem now to prove some of the more basic intuitionistic principles.

Proposition 20.2. The disjunction property holds in £4: if-pvgthentp
or ~g.

Proof. Let p and g be closed formulas of €, and suppose Fp v g. Then
p v ¢ holds in any topos, in particular, # Fp v g, where & is the Freyd
cover of the free topos #. By (5) of Theorem 20.1, # Ep or # Fq. Now
apply the logical functor G:# >% and remember that G(p)-=-p.
Therefore, & Fp or #kq. This shows that -p or I-¢ in I(¥F) = LT(8).
Since €, — LT(8,) is a conservative extension (see Proposition 14.3), -p
or kqin £,. ' .

The last part of this argument can also be done as follows. If the arrow
p-=-T in &, then its graph {{*,p)} is provably equal to {{*, T )}, from
which it easily follows that Fp in £,.

Lemma 20.3. The unique existence property holds in £4:if 3!, 4W(x)then
F(a) for some closed term a of type A. In particular, every arrow 1 - N in
the free topos & has the form S*0 for some keN.

Proof. We are given that 3!, ,(x) and wish to show that —i(a) for some
closed term a of type 4. We proceed by induction on the construction of 4.

IfAd=1, take a=*.

If A=Q, take a = Y(T). (See the proof of Lemma 12.3)

If A = PB, take a = {yeB|3,pp(¥(v) A yev)}.

If A= B x C, we first find a term b of type B such that -30.c(<b, z5),
then a term ¢ of type C such that F({b,c>).

If A= N, we proceed as follows. By assumption, y determines an arrow
n:1- N in the free topos F = T(L,) with graph

Inl={{*,x)>el x N{Y(x)}.

Now let F: & — % be the unique arrow in Top, from the initial object &,
then F(n):1 - N in #. By (1) of Theorem 20.1, F(n)-=-S*0 for some keN.
Therefore, n- =+ GF(n)-=-5*0 in #. From the way 0 and S are defined in &
(see. Section 12, just before Proposition 12.4), it follows that
In| = {{*,5%0)}. Take a = $*0in £,, then {*,a)e|n|, hence Fy(a)in £,.

The proof by induction is now complete. :
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The reader may have noticed that the discussion of the case A = PB above is
reminiscent of the proof of Proposition 14.3. It is therefore not surprising
that, for the special type theory £,, we have the following strengthened
form of Proposition 14.3.

Corollary 20.4. The canonical translation £y — LT(8,) induces a biunique
correspondence between terms of type 4 in €, modulo provable equality
and terms of type A = {xe 4| T} in LT(8,), that is, arrows 1— A in the free
topos T(L,).

Proof. For the present purpose, it is instructive to distinguish notationally
between A and A. A term of type A in LT(8,) is an arrow f:1— A in T(£,),
hence its graph [f| is a term of type P(1 x A) in £, such that
3.4 {*,x>€| f|. By Lemma 20.3, there is a closed term a of type 4 in &,
such that =(*,a)€| f|, hence | f|-=-{<{*,a)}. Therefore, f-=-ain T(L,),
where a is the image of a under the canonical translation.

Proposition 20.5. The existence property holds in £, if +3,_,¢(x) then
F@(a) for some closed term a of type A.

Proof. Suppose F3,.,40(x). Then this holds in any topos, in particular,
F k3,_,0(x). By (8) of Theorem 20.1, there is an arrow a: 1 » 4 in & such
that & k p(a). Now apply the logical functor G:# — %, then we obtain
F E @(d), where d = G(a) is an arrow 1 > A = G(A) in &. Therefore, I ¢(d)
in L(F) = LT(8,). By Corollary 20.4, d = a’ is the image of a term a’ of type
A in £, under the canonical translation £, — LT(&,). It follows that - ¢(a’)
in £,.

Remark 20.6. With the exception of the unique existence property, the
results in this section can also be obtained by algebraic methods, which is in
fact the way Freyd proved them.

Let us recall from Proposition 6.6 the following characterization of
a projective object C in a topos J: if T EV,c3d,.0(z,x) then
T EV,co(z, fz) for some arrow f:C—>A4in J.

Condition (8) of Theorem 20.1 can now be read as saying that the
terminal object 1 is projective in 4. Now the free topos & is a retract of £#:
we have F: % - % and G: & — % such that GF =id. It then easily follows
that the terminal object 1 of # is also projective. (One must use the fact that
the logical functor F preserves epimorphisms.) Therefore, for any type 4 in
B, if #EI, 0(x) then FE@(a) for some arrow a:1 —» 4 in £F.

We are close to a proof of Proposition 20.5: we have established the
existence property for L(#) but not yet for £,. To obtain the resuit for €,
one must still have recourse to Lemma 20.3 or Corollary 20.4.
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Itis even easier to give an algebraic proof of Proposition 20.2. Recall from
Section 8 that an object C of a topos is indecomposable provided, whenever
k:D— C and I: E— C are two arrows which are jointly epimorphic, in the
sense that [k,I]: D+ E— C is an epimorphism, then either k or [ is an
epimorphism. The analogue of Proposition 6.6, with projectivity replaced
by indecomposability, is easily stated. «

Proposition 20.7. The object C of the topos 7 is indecomposable if and
only if, whenever 7 FV,.d¢(z) v ¥(z)), then either T EV, ¢(z) or
T szecw(z)-

The proof is left to the reader. (See Proposition 8.6.)

Condition (5) of Theorem 20.1 can now be interpreted as saying that the
‘terminal object 1 of J is indecomposable. Since & is a retract of &, it easily
follows that the terminal object 1 of & is indecomposable. This establishes
the disjunction property for L(#), from which one easily deduces it for £,.

Exercises

1. Prove Proposition 20.7.

2. Carry out the details of the algebraic proof that 1 is an indecomposable
projective in the free topos &.

3. Show that Cisindecomposable (projective, injective)in 7 if and only if 1 is
indecomposable (projective, injective) in 7 (z), where z is an indeterminate
of type C, that is, in J/C (see Exercise 2 of Section 16).

4. Prove that if C is indecomposable, then Hom(C,-) preserves binary
coproducts. (See Remark 17.8 in the supplement for the case C = 1.) Show
the converse if C is projective. '

21  Further intuitionistic principles

While the disjunction and existence properties appear to be basic
to the philosophy of intuitionism, some other principles are less intuitive.
Here are some that will be established as metatheorems about pure type
theory 2, in this section.

Disjunction property with parameters: if -V .pc(@(x) v ¥(x)) then
either -V, pc@(x) or VY, pctf(x), and similarly with PC replaced

by Q.
Troelstra’s  uniformity  rule: if 1V pc3,ye(x,y) then
H 3yeNVer’C(p(x’ Y)

Independence  of premisses:. if F-ag=3,,0(x) then
e axeA(_‘q => q)(x))
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Markov's rule: if FV, (p(x) v 1¢(x)) and F-V,_,1¢(x) then

F3e (). - |
The proofs of the first two of these rules depend on an addition to
Theorem 20.1, which will be displayed as a lemma. ‘

Lemma 21.1. (a) If x:1-Q is an indeterminate over Z then there is an -
arrow %:1—-Q in 7 (x)" such that G: 7 (x)"— 7(x) sends % to x.

(b) If x:1-PC is an indeterminate over 4 and C is an object of
7 (x)"such that G(C) = C, then there is an arrow £:1 - PC in 7 (x)" such
that G(%)-=-x.

The proof of this lemma, like the proof of Theorem 20.1, will be postponed
" to the next section.

Proposition 21.2. The disjunction and existence properties hold with a
parameter x of type A = PC or A=, that is,

(@) if FV. 4(0(x) v ¥(x)) then FV . ,0(x) or -V, (x);
(b) if FVyeq3,ep0(x, y) then V., ,0(x, B(x)), where B(x) is a term of
type B.

Proof. (a) Suppose -V, (o(x) v Y¥(x)), where A =PC or A = Q, that is,
i @(x) v ¥(x), where k7 is provability in £4(x). Now recall (see Example
16.2) that we may define & (x) = T(8,(x)), since F = T(L,), and that #(x)
has the usual universal property in Top,. In particular, the unique arrow
F — F(x)"in Top, may be extended uniquely to an arrow F': & () ~>Fx)
 such that F'(x)-=-%, where % is as in Lemma 21.1. Now & (x)E o(x) v ¥i(x),
hence also #(x)k ¢(%) v y(%), as is seen by applying the logical functor F.
Therefore, by (5) of Theorem 20.1, #(x)'k @(%) or F(x)'k Y(%). Applying
the logical functor G:#(x)"> %(x), we then obtain & (x)Ep(x) or
F(x)FY(x), hence Fo(x) or Fy(x). (See the last part of the proof of
Proposition 20.2.)

(b) First let us prove the unique existence property with a parameter of
type A. Suppose k3!, z(x,y). We then prove that there is a term B(x)
of type B such that k y(x, (x)), by induction on the construction of B. See
the proof of Lemma 20.3, but replace 4 by B. The argument is exactly the
same as that given there; in particular, when B = N, we find that B(x) = Sk
in 84(x) for some keN, :

Now let us turn to the general existence property with parameters x
of type A=PC or Q. Suppose F3yep0(x, y), that is, F(x)k 3yepP(X, ).
Applying the functor F:#(x)>%(x) as in (a), we obtain
F(x)'F3,e50(%, ). By (8) of Theorem 20.1, there is an arrow b:1— B in
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Z(x) such that #(x)k ¢(%, b). Now apply the functor G: #(x)"— £ (x) and
put G(b) = f'(x), then F(x)E o(x, f(x)).

Unfortunately, f(x) here is a term in L(%(x)) = LT(84(x)) and not in
£,(x). Nonetheless, by an easy extension of Corollary 20.4, the canonical
translation £4(x)— LT(24(x)) induces a biunique correspondence f(x)—
B'(x) between terms of type B in £4(x) and terms of type B= {xeB| T} in
LT(2,(x)). It now easily follows that k o(x, f(x)).

Corollary 21.3. Troelstra’s uniformity rule holds for £4: for 4 = PC or Q,if
= vxeA 3yeN¢(x, Y) then = ElyeN‘V,.’ceA(P(xa y)

Proof. Suppose HV, ,3,.v0(x,y). For B= N, the above proof yields
B'(x) = S*0 in L(F(x)), hence also B(x) = S0 in Lo(x). Thus FV,.,¢(x,n)
with n = §%0, and so F3,.yV,c40(x, ).

Corollary 21.4. In the free topos &, every arrow A — N, with A = PCor Q,
. ) k,
factors through the terminal object 1, hence has the form 4—1 E-QvN .
Proof. Let f: A— N be an arrow in &#. Now f is determined by its graph
Ifl={{x,y>eA x N|o(x,y)} such that FV, ,3,y0(x,y). As we saw
-above (in the proof of the unique existence property with parameter x), it
follows that -V . ,¢(x,n) for some n= S*0. It is then easily verified that

f-=-nOA:A—>1—P——>N.

Note that the disjunction property fails for a parameter x of type N, as is
seen by taking

o(x)=x is even, Y(x)=x is odd.

Also the unique existence property fails for a parameter of type N. For
example, one can prove that

FVeenILem(x=0Ay=0)v(x#0ASy= x)).
Yet there does not exist in £, a name for the predecessor function, that is, a
term B(x) of type N such that

= B0) =0 AV en(B(Sx) = X).

Of course, the unique existence property holds in L(#(x)), as in the
internal language of any topos (see Theorem 5.9).

The question remains: does the existence property hold in L(F (x)) when
x is of type N? This is equivalent to asking whether 1 is projective in #(x),
thatis, N is projective in & (See Exercise 3 of Section 20.) The answer to this
question is ‘yes’, but a proof of this fact would take us beyond the scope of
this book. It requires reflection principles and other techniques from proof
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theory, on which the categorical viewpoint does not yet appear to shed any
light.

We recall from Example 16.3 that &/(p) = T(Q/(p)) is initial in the
category of all toposes  in Top, such that F kp.

Lemma 21.5. In 8, if p = 1q then either k-« p or (F(p))Ep, so that there is
a unique arrow F: F /(p)—(F(p))"in Top,. e

Proof. By (6) of Theorem 20.1, we have: J F q iff (i) 7 F =q and (ii) not
Jkq. In particular,

(F /@) Eq iff not(F/(~q))Fq.

Suppose at worst that (#/(nq))'Fq. Applying the logical functor
G:(F [(1q)) = F /(~q), we obtain that F/(1q)Fq, hence that F/(xq)F L,
therefore # F-1q, and so - 11q.

Proposition 21.6. 1f p = ~q, then the disjunction and existence properties
hold in £,/(p):

(a) if pkrvsthen pkr or pts;
(b) if pH3,_,9(x) then pHg(a) for some term a in £, provided
F3,..T

zed £
Here (b) is equivalent to independence of premisses for p:

(®) if =p=3, ,0(x) then —3,_,(p=> p(x)), provided -3 _,T.

We shall leave the proof of this as an exercise, as it is quite similar to that of
Proposition 21.2.

For the proof of Markov’s principle, we need the following generalization
of Proposition 21.2(a). A similar generalization holds for Proposition
21.2(b).

Lemma 21.7. If Q is a type of £, such that Q= {xeQ| T} is injective in
Z, then from -V, o(p(x) v ¥(x)) in £, one may infer that -V, 4¢(x) or
I'_VxEQ‘nb(x)'

Proof. Since Q is injective in &, the singleton arrow 15: Q — PQ splits, so
we can find an arrow e: PQ— Q such that eiy-=-1,. Since F = T(8,),
we have T(24(y))= #(y), with indeterminate arrow y:1-—PQ (see
Example 16.2). Now let us assume that V. ,(@(x)v ¥(x)), then
F(y)FV eolo(x) v ¥(x)), hence F(y)Foley) v yley). By Proposition
21.2(a), ZF (y)Eley) or F(y)F(ey). Now apply the unique logical functor
F(y)— Z(x) which extends the identity functor on # and which sends y
- onto 1px. Then we obtain F(x)F¢(x) or F(x)ky(x). Finally, since the
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canonical translation £4(x)— LT(L,(x)} is a conservative extension, we
have k; @(x) or k ¥(x), hence -V, ,0(x) or -V, P (x).

Proposition 21.8. Markov’s rule holds in £;: if FV,_ (o(x) v 7¢(x)), then
from -V, ,10(x) one may infer that 3, ,¢(x). '

Proof. To warm up, we first give the usual proof when 4 = N, Assume that
@(x) is decidable, that is, -V, y{e(x) v 1¢(x)), and also that VY, _yo(x).
In view of the second assumption, Sets F =V, y~¢(x). Since Sets is Boolean,
we may infer that Sets F3 _yo(x). Therefore, Sets k(1) for some
n = §*0, and so not - -¢(n). Since @(x) is decidable, F¢(n) and therefore
= 3xeN(p(x)'

Next, let us prove the result for an arbitrary type 4 in £,. In F, 4 give rise
to an object A = {xeA|T}, and it follows by induction on the construction

of A that
A=Nx PA, x .- x PA,

for some k, neN. (Recall that Q=>~P1l) Now N:z=1 (if k=0)
or N*2 N (if k > 0). Moreover, PB in injective in any topos (see Propo-
sition 6.4) and any product of injectives is injective. Therefore, A = Q
or N x Q, where Q is a type of £, such that Q is injective. It then clearly
suffices to prove Markov’s rule in the two special cases 4 =Q and 4 =
N x Q, where Q is injective.

Case 1: A=Q. Suppose FV,.o(@(x)Vv 19(x)), then V. ,0(x) or
FVie019(x), by Lemma 21.7. Now suppose further that -V, ,7¢(x),

then the second alternative is ruled out, and so -V, ,¢(x). Let ¢ be a closed

term of type @, then (1), hence 3, ,¢(x).

Case 22 A= N x Q. Suppose that HV,\V,.o(0(x,y) Vv 1¢(x,y)) and
that F-V, yV,c070(x,y). In view of the second assumption, Sets
F3,enT,e0@(x, ), and therefore there is a natural number S*0 in Sets such
that Sets ¥=3yeQ<p(S"0, ¥), hence not FV,.571¢(S*0, ). However, by the first
assumption VY, 5(¢(S*0,y) v 1¢(5*0,y)), and so, by Lemma 21.7,

- FY,.00(5*0, y). Again, let t be any closed term of type Q, then - ¢(5*0, 1),
hence F3,.y3,.00(x, y), as was to be shown.

Remark 21.9. Along the lines of Remark 20.6, we shall discuss the algebraic
interpretations of some of the results of this section.

Lemma 21.1 allows us to infer that, for x of type PC or , #(x)is a retract
of its Freyd cover.

Underlying Proposition 21.2 is the algebraic statement that PC and Qare
indecomposable projectives in #. This establishes the disjunction and
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existence properties for L(#(x)). The corresponding properties for £4(x)
follow easily, but the unique existence property requires an extra argument
as above.

Lemma 21.5 allows one to infer that, for p = g, either - 1p or else F/(p) -
is a retract of its Freyd cover. -

Underlying Proposition 21.6 is the algebraic statement that, for any
arrow p:1-Q in &, the corresponding subobject of 1, Ker D, is an
indecomposable projective in &. This is equivalent to saying that 1 is an
indecomposable projective in % /(p). Thus we have the disjunction and
existence properties for L(% /(p)), from which the corresponding properties
for £,/(p) then follow easily, provided some attention is paid to the unique
existence property.

Lemma 21.7 really depends on the following algebraic fact: if C is an
injective object in & corresponding to a type C of £,, then C is
indecomposable, in view of the observations that the singleton arrow
C - PCis a monomorphism (Proposition 5.8) and that PC is indecompos-
able (see Remark 20.6). For the same reason, we can also assert that C is
projective.

Exercises

1. Give a logician’s proof of Proposition 21.6 analogous to that of
Proposition 21.2.

2. Give an algebraic proof that A= PC and 4 =Q are indecomposable
projectives in the free topos & or, equivalently, that 1 is an indecompos-
able projective in % (x) when x is of type A = PC or Q.

3. Do the same if 4 = Ker(~g), assuming that not F-14. Note that F#(x),
with x of type 4, is then the same as & /(~q). '

4. Show that any injective object in the free topos & corresponding to a type
of £, is an indecomposable projective.

5. Show that (a)=(b)=>(c) for any closed formula pof 8,:
(a) pis hereditary, that is, for any nondegenerate topos 7, if 7k p then
T Ep; '
(b} p is refutable or p is Freydian, that is, (# Ap)) Ep;
(¢) p satisfies independence of premisses, that is, if Fp=3,.,0(x) then
b axEA(p =>(P(x))

6. Show that 1 is hereditary, that p A g is hereditary if p and q are, and that
p=>q is hereditary if q is.

7. Show that p=>gq is Freydian if not (p=q)tp.
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8. If B =V, ot Vi), show that Sets” satisfies neither § nor 1, but that
it does satisfy 11 f.

9. Assuming that 1-f is not a theorem of pure intuitionistic type theory,
show that -1 f = fis Freydian but not hereditary. The assumption follows
from the existence of a non-Boolean topos in which Hom(1, Q) is Boolean,
e.g. Sets* when .# is any monoid which is not a group. (See Section 9,
exercises 3 and 6, and also Exercise 9.)

22 The Freyd cover of a topos ‘

In this section we shall construct the Freyd cover of a topos and
finally prove Theorem 20.1 and Lemma 21.1, on which Sections 20 and 21
depend.

Definition 22.1. 1f 7 is a category with a terminal object 1, its Freyd cover
consists of a category 4 with terminal object and a functor G:J > J
preserving the terminal object constructed as follows.

Write I' =I", = Hom,(1,~): 7 — Sets. Then the category = (Sets, I')
has as objects triples (X, £, U), where X is a set, U is an object of ™ and ¢&:
X - I'(U) is a mapping, and as arrows commutative squares

X g Y

F(U)v"'—'ﬁ;')—’ )

that is, pairs (¢,t) such that ¢: X =Y in Sets and : U -V in 4 subject
to the equation ne =T(t)¢. Composition is defined componentwise:

W, s)e, 1) = (Yo, st).

It is clear that " is a category with terminal object {+} - I'(1) and that it
comes equipped with a functor G:J — 7 preserving the terminal object,
where

G(X,,LU)=U. Glo,f)=t.
It is also clear that there is a functor X: J — Sets, where

X, LU)y=X, Zpt)=o.
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Thus each object A of J has the form A4 = (2(A), A4, A) with
A4 Z(A) - T(A),

where we have written 4 = G(4) for the underlying object in 7. Moreover,
eacharrow f: 4 —» Bin 4 must be such that the following square commutes:

2(4) =) X(B)
Ay A
() — I(B)

where f= G(f) is the underlying arrow in 4. This means that there are
given arrows X(f) in Sets and f'= G(f) in 7 satisfying
ABZ(f) = T(f)Ay,
in other words, for all aeZ(A),
# A(Z(f)(@) = f 4(@).
We mention, in particular, that
I)={x}, 1=1, A= 1,
so that O, A—1 is given by
LO)ZA)>{*}, Opd-1.

Let us now look at an arrow a:1 —» 4 in 9. In view of (#) above and the
definitions of X(1) and 1,, a is determined by arrows (a) in Sets and
d=G(a) in 7 satisfying

A4Z(@)(*)) = dly(+) = d.
We have thus proved the following:

Lemma 22.2. Anarrow a:1— A in the Freyd coverd of a category J with
terminal object is completely determined by its image under X.

This result is easily strengthened to obtain a natural isomorphism
Homy(1,~) = X. (See Exercise 1 below.)
We are now in a position to discuss the Freyd cover of a topos.

Proposition 22.3. If T is a topos, then so is & and G is a strict logical
functor. Moreover, if 9 = T(®) is the topos generated by a type theory,
then J has canonical subobjects and G preserves them.
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Proof. Toassure that J is a topos, we must first of all specify objects N and
Q and operations on objects yielding new objects A x B and PA. Since G is
supposed to be a strict logical functor, these take the following form:

An: Z(N) = T(N),

Ao Q) - T(Q),

A5 (A x By>T(4 x B),
Apa Z(PA) - T(PA),

where we now specify:

I(N)=N, Ayk)=S50 (keN)
IQ=TQU{T}, Adp.)=p (pel'@Q), i=0,1);
Y(A x B)=X(A) x X(B),
Ay @ B) = (A4, A(B)>  (x€Z(A), BeZ(B));
T(PA)y=Hom,(4,9Q), Apf)="f7 (feHomy(4,Q)).
The reader will have noticed that we take the disjoint union I'(Q)U{ T} to
mean I'(Q) x {0} U {(T,1)}. :

To assume that 7 is_a topos, we must also specify the arrows 0:1— N,
SIN-N,T:1-Q,n 5 AXxB—>A, nyg: AxB—->Bande,: PAx A— A
Since G is supposed to be a strict logical functor, each of these arrows will be
determined by its image under X, and so we specify:

Z(0)(» =0,

ZS)k)=k+1 (keN),

Z(M(x)=(T,1),

Z(nyp@f)=0a (xeZ(d), BeZ(B)),

Ly f)=p (aeZ(4), PeX(B)),
Z(e)(f,0)=2(f)@) (feHomy(4,Q), aeZ(4)).

The reader may have to do a little work to check that condition # is
satisfied in all cases, for example, that

T(e ) Ap 4(f> 0) = A (E(f)(@))-

To assure that J is a topos, we must finally specify operations which,
from arrows f: 4 x B—Q, h: A—»Q and monomorphisms m: B— 4, will
produce new arrows and objects f*: A— PB, ker h: Ker h— A4 and charm:
A-Q :

To construct f* it suffices to specify Z(f*): £(4) - Z(PB) = Hom (B, Q),
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which we define by its action on any aeX(A4) as follows:

2D =f,,
where

Z(f(B)=Z(f)e B) (BeZ(B))

and

fa Ef<'1,4(“)03, Iy
Of course, G(f*) = (G(f))*.
The reader is invited to check that the equations of a cartesian category
with power set structure are now satisfied.
Next, we wish to construct the object Ker h and the arrow ker h:
Ker h— A for a given arrow : A—»Q in 5.
We let

Z(Ker h) = {xeX(A)| A (o) factors through ker h},

that is, an element a of Z(A4) belongs to X(Ker h) if and only if there is an
arrow g, 1—>Kerh in 7 such that 1 (@)= (ker h)g,. Since kerh is a
monomorphism, this arrow g, is uniquely determined by a, so we define
Akern DY

}'Kerh(a) = Ga-
We also define Z(ker h) to be the inclusion Z(Ker h) = Z(A).

Finally, we wish to construct the arrow charm:4A—Q for a given
monomorphism m: B— A. It is easily checked that m is a monomorphism if
and only if both X(m) and #i = G(m) are monomorphisms in Sets and I~
respectively. To construct char m, it suffices to define X(char m). For any
aeX(A), we put

Z(char m)(«) = (p,, 1), respectively (p,, 0)
where
P, = (char m)A (o), depending on whether 91 = p, = T, or not.

_ Itis now a routine exercise to show that Q in " is a subobject classifier,
that is,

char(ker h)-=-h, ker(charm)zm.

Thus  is a topos and, if we look at the above definitions carefully, we see
that G is a strict logical functor.

To complete the proof of Proposition 22.3, we need to consider
canonical subobjects in 7. We shall say that a monomorphism m: B— 4 in
7 is canonical if both Z(m) and i = G(m) are canonical. For X(m) this means
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that 2(B)< 2(4) and for m this presupposes that J has canonical
subobjects. It is easy to verify conditions C1 to C3 of Definition 15.1. For
example, condition C3 would require us to check that if £(B) < £(4) and
Z(D)= Z(C) then X(Bx D)= Z(A x C). This is evident, since £(B x D) =
3(B) x (D).

To verify C4 for & is a little more difficult. Given that m: B— A is a
canonical monomorphism in 4, we wish to show that P(m): PB— PA is a
canonical monomorphism in 4, where P is regarded here as a covariant
functor. Since m is canonical, we know that #i is canonical and that Z(m) is
an inclusion Z(B) < Z(A). Since # is canonical, so is P(r1), since  satisfies
C4. Thus, it only remains to show that £(PB) = X(PA4). Unfortunately, this
is not strictly correct, if we persist in defining (P A) = Hom (4, Q). For our
present purpose, we should redefine £(PA) in a more suitable manner.

Let us assume that J satisfies the following additional property for
canonical subobjects: ‘

C5. if A and B are objects of 4, then there is at most one canonical
monomorphism B — A. '

When this condition holds, an arrow f: 4 - Q is completely determined
by the object Kerf, never mind the arrow ker f.

We have previously used the word ‘subobject’ loosely, sometimes for a
monomorphism and sometimes for its source. If 4 is an object of ", which
is assumed to satisfy C5, we may write Sub, A4 for the set of canonical
subobjects of 4 in the latter sense. Now suppose that 7 satisfies C5, then
clearly so does 7. Therefore, we may change the definition of £(PA) to the
following:

T(PA) = Suby(d),

with the result that, when BeSub,(4), then Z(PB) € Z(PA), as required.

How common is the condition C5? It is clearly satisfied by Sets and
functor categories. What concerns us now are ‘linguistic’ toposes of the
form 7 = T(2). An object of T(f) is a closed term a of type PA and a
canonical subobject of « is another closed term f of the same type PA such
that B < «. The canonical monomorphism f—a is given by its graph
{{y,x)eA x Alyef A y = x}, there being no other canonical monomorph-
ism from B to a. Thus T(L) clearly satisfies CS5.

The proof of Proposition 22.3 is now complete.

Remark. In Proposition 22.3, we could have replaced ‘9 = T(L2)’ by ‘J has
canonical subobjects and satisfies CS”. We do not know whether the result
holds without this condition.
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We are finally in a position to prove Theorem 20.1 and Lemma 21.5.

Proof of Theorem 20.1.

In view of Proposition 22.3, we need only verify the clauses (1) to (8),
except for (2) and (4), which hold in any topos.

(1) Anarrow n: 1 Nin J is determined by Z(n): {*} - N, according to
Lemma 22.2. Putting X(n)(x) = k, one easily calculates #- = Ag(k)- =-8%0 in
7, hence also n-=-S*0 in 7.

(3) If 7k L, then surely 4"k p for any arrow p: 1 - Qin 7. Using Lemma
22.2, let p be defined by Z(p)(*) = (T, 0); which differs from Z(TY*) =(T, 1)
Therefore p- - T, which contradicts the assertion that 4 Ep.

(5) will be left as an exercise, to be based on (7), in 2 manner similar to (8)
below.

(6) The necessity of conditions (i) and (ii) is obvious, so let us assume
these conditions and show that J k p=-g. We distinguish two cases.

In case p-=-T, (ii) implies that g-=-T, hence surely that 7 Ep=gq.

In case p- # T, Z(p)(*) # (T, 1), by Lemma 22.2. Hence, in view of (i),

Zp)*) = (3,00=(F A 4,0)=Z(p A g)(%),
since also p A g-#'T. Therefore, p A g-=-p, by Lemma 22.2, that is,
g Fp=>q.

(7) Let @(x) be a formula of L(J") with a free variable x of type 4. By
functional completeness, we have k ¢(x) = fx, where [iA-Qin 7. This
gives rise to the arrow Mf - =-{xeA|¢p(x)}: 1 » P4 in J". By Lemma 222,
- Tf7is determined by X("f7); in fact, since " G( =G f),

) = Ap (S ().

Therefore,

T kY, 40(x) iff {xedlp(x)}-=-{xeA|T}iff Tf1-=-FTQO,
2SN =Z2"TO,MM=2("TO,M)(*and f=T Oy,

Now g=ZX("f7)(x)eZ(P4) = Hom,(4,Q), hence it is determined by
arrows (g): £(4) —» Z(Q) in Sets and §: A » Q in 7. By definition of Apa> WE
have

Apal9) = Ap JZ(TfT)(¥))- =T
So, comparing this with (}) above, we see that d-=-1 Also
h=Z("TO,")(+) is determined by Z(h), which sends ae2(4) onto (T, 1),
and by k=TT O . Therefore JFV,_,0(x) if and only if

@) [f=TO,ing,
(i) Z(g)(@) = (T, 1) for all acZ(A).
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Clearly (i') asserts that {xe A|¢(x)}-=-{xeA| T} in 7, that is, (i). We claim
that (ii') holds if and only if 5 Eae™f for all a:1— 4, that is, (i) holds.
Indeed, a is determined by a = Z(a)(*)eZ(A), and so quantification over
a.1- A is equivalent to quantification over aeX(A). Moreover, (ii) holds if
and only if £,{"f7,a)-=-T, that is, Z(¢,)(Z("f)(x),a) = (T, 1), that is,
X(g)(®) = (T, 1), which is (ii’).
(8) We recall that

3xeA(p(x) = Vteﬂ(vxeA(go(x) = t) = t)'

In view of (7), 7 E3,.,0(x) is then equivalent to the conjunction of the
following:
i) T k3, _6(x),
(ii") T EVY e sl@(x)=p)=>p, for every p: 1 >Q.
We claim that the conjunction of (i”) and (ii") is equivalent to
(iii) J k(a) for some a:1 > A in 7.
Clearly, (iii) implies (i”), as is seen by applying the functor G, and (ii"), by
* elementary logic. Conversely, assume (i”) and (ii"), we shall prove (iii).

As in the proof of (3), let p: 1 - Q be determined by Z(p)(*) = (T, 0), hence
p-=-T. Then surely not J F p, hence, by (ii"), also not I EV,__,(¢(x)= p).
Therefore, by (7), either not 7 kY _ (¢(x)=>p) or, for some a:1 > A in F,
not 4k ¢(a)=>p. Since p-=- T, the first alternative is absurd, so the second
alternative must hold. By (6), this means either not 7 k¢(a)=>p,
which again is absurd, or J F(a) but not J Ep. Thus (i) holds, as
remained to be shown.

The proof of Theorem 20.1 is now complete.

Proof of Lemma 21.1. In case x:1—Q is an indeterminate over 7, let £
1-Qin J(x) be given by G(£)-=-x and Z(X)(*) = (x,0).

In case x:1 - PC over 7, let £:1 - PC in I (x)" be given by G(£)-=-x
and Z(X)(*)=f:C—-Q, where f-=-x' and Z(f)(y) = (x/A(»),0) for all
yeZ(0).

Exercises
1. If 7 is a category with terminal object, prove that there is a natural
isomorphism Homg(1,-) = X.

2. If 7 is a topos, show that the construction of products, equalizers,
exponentials and Q in J" follows from the assumption that G is a strict
logical functor.

3. Fill in the missing details in the proof of Proposition 22.3.
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4. Write out a proof of (5) of Theorem 20.1 based on (8).

5. ’(Lawvere and Tierney). If (C, ¢,0) is a cotriple on the topos &/ (that is, a
triple on &7°P) and if C: o — & is left exact, show that the category of
coalgebras of C (that is, algebras of C°P) is a topos.

6. If 7 and & are toposes and I 7 — & is a left exact functor, consider the
functor C: 9 x & -7 x & defined on objects (4, X) by

C(4, X) = (4,T(4) x X)

and on arrows similarly. Show that the category of coalgebras of C is
isomorphic to the category (&, T), called the topos obtained by gluing
along T. (The Freyd cover of 4 is a special case of this, with
I' = Hom(1,-): 7 — Sets.) Since the forgetful functor from coalgebras to
g x & has a right adjoint, show how colimits are constructed in (%, T).

7. (a) Prove that an arrow (¢, t) in 4 is an epimorphism if and only if ¢ is
surjective and ¢ is an epimorphism in 7.
{b) Conclude that 1 is an indecomposable projective in .
{c) Let M = (7, 1y, 1) be the object of J given by the unique mapping
Ay & — T(1). Show that M is the largest proper subobject of 1 in §~ and
that /M = 7. Verify that ' -9 /M~ is the functor G of the text.
(d) Conclude that 1 is an indecomposable projective in the free topos.
(This is Freyd’s original argument.)

8. Show that the isomorphism of Exercise 6 together with the dual of
Proposition 6.5 in Part 0 allows one to obtain a right adjoint H: 7 — 7 to
the strict logical functor G such that H(A)=1y,, Prove that 1 is
projective in' 7 if and only if H preserves epimorphisms.

9. Check that the Heyting algebra Hom (1, Q) is obtained from the Heyting
algebra Hom (1, Q) by adjoining as new largest element (T, 1).

Historical comments on Part II

Section 1

A theory of types was introduced by Russell (1908) as a safeguard
against paradoxes in set theory. In Principia Mathematica (1910-13), he
and Whitehead used type theory as a foundation of mathematics. Later,
Church (1940) developed a system of type theory based on the A-calculus
(see Section 1, Exercise 4). For a more detailed history and a comparison
with other systems of set theory, see Hatcher (1982).

While the systems of type theory mentioned so far are based on classical
logic, intuitionistic type theories are a relatively recent phenomenon.
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Interest in such theories accompanied the trend towards proof-theoretical
investigations in intuitionistic set theories (e.g. Girard 1971, 1972, Fried-
man 1973 and Myhill 1973).

Asin Part I, our formal languages have a deduction symbol ;, where the
subscript X = {x,,...,X,} in @ g contains all variables occurring freely in
o and . This notion appears to be due to Mostowski (1951). Here it takes
into account possibly empty types in the internal language of a topos. Also,
as in Part I, we allow our languages to be large, so that we can discuss, for
example, the internal language of the category of sets.

Section 2

The presentation of intuitionist type theories based on equality
follows (Lambek and Scott 1981b). A somewhat similar system, partially
based on equality, was given by Boileau (1975) and Boileau and Joyal
(1981). Already Henkin (1963) discussed a classical type theory of pro-
positional types (Q being the only basic type) based on equality, and his
footnotes acknowledge some even earlier sources. (See also Tarski 1923).
However, a detailed comparison of type theories with and without equality
probably appears here for the first time.

Section 3

The observation that one can do logic inside a topos was of course
known to Lawvere (see also Freyd 1972). The first to publish a formal
description of the internal language was W. Mitchell (1972), who exploited
it successfully to replace arguments about arrows and diagrams by the
familiar set-theoretic reasoning. The internal language was also discovered,
apparently independently, by several people, including Bénabou and Joyal.
It is called the ‘Mitchell-Bénabou language’, in the book by Johnstone
(1977). For other expositions see (Osius 1975a, Coste 1972, 1973, 1974 and
Schlomiuk 1977). The language of Fourman (1974, 1977) involves a
description operator and an existence predicate (see the discussion in
Boileau and Joyal 1981). In the spirit of Lawvere’s algebraic theories, type
theories may themselves be viewed as categories, as was done in (Volger
1975b) and (Lambek 1980a, preprint in 1974). A topos then does not just
contain, but actually coincides with its internal language.

The key natural isomorphism in toposes

Sub() =Hom (-,Q)

allows two equivalent ways of interpreting closed formulas in a topos, either
as subobjects of 1 or as arrows 1 — Q. Most authors have chosen the first

i
!
i
i
i




246 Type theory and toposes

interpretation; we prefer the second, perhaps influenced by Church (1940),
but mainly because subobjects are really equivalence classes of monomor-
phisms, hence more complicated than simple arrows.

While this choice may be a matter of taste, there are two divergent
generalizations to topics outside the scope of this book. On the one hand,
categories with a distinguished Heyting algebra object Q (and suitable
machinery for handling quantifiers) permit interpretations of type theory,
thus the ‘semantical’ categories of Volger (1975b) and the ‘dogmas’ of
Lambek (1980a). On the other hand, in many categories the subobject
lattice carries a suitable logical structure, for example, in the ‘regular
categories of Reyes (1974) and the ‘logical’ categories of Makkai and Reyes
(1977). The last mentioned work also introduces ‘coherent’ and ‘geometric’
logics, often infinitary multi-sorted first order theories, which are parti-
cularly suited for the study of Grothendieck toposes with geometric
morphisms.

Section 4

The relation between Lawvere’s natural numbers object and
Peano’s axioms in the internal language has been studied elsewhere (e.g.
Osius 1975a), but is here worked out from first principles. Other interesting
observations about the natural numbers object are found in (Freyd 1972).

Section §

Treatments of equality, characteristic morphisms, singletons and
description in the internal language may be found, with obvious variations,
in several of the above references. The proof that description holds in a
topos follows (Lambek 1980a).

Finite coproducts, as well as equalizers, were originally part of the
definition of a topos. Mikkelsen (1976) was the first to show that these were
dispensible, and Exercise 2 contains a linguistic proof of this result. A neat
categorical proof of the same result based on the tripleability of the
contravariant power set functor was discovered independently by Paré
(1974) and Rattray (Lambek and Rattray 1975b).

Section 6

The treatment of monomorphisms and epimorphisms is standard
(e.g. Osius 1975a). The injectivity of PC, though not its linguistic proof, was
known since the beginning of the subject. The internal characterization of
projectives is due to Freyd (1978).
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Section 7

The fact that choice implies the Boolean axiom was discovered by
Diaconescu (1975). The linguistic proof given here was inspired by that of
Beeson (1982).

Section 8

The use of generalized elements seems to be due to Joyal (see Kock
et al. 1975) and the inductive truth definition of Theorem 8.4 as well. The
latter first appeared in print in (Osius 1975b) under the name ‘Kripke—J oyal
semantics’ (see also Johnstone 1977), as it generalizes Kripke’s original
semantics for first order intuitionistic logic (Kripke 1965). However, the
clauses for v and 3 involves the notion of ‘covering’ and are closer to the
semantics of Beth (see Dummett 1977). We regret that time limitations did
not allow us to rewrite this section in the spirit of Exercise 4.

As stressed by Lawvere (1971) and also Joyal, topos semantics provides a
common, natural generalization of many proof-theoretic and semantical
notions (see also S¢edrov and Scott 1982, Lambek and Scott 1983, S¢edrov
1984).

Section 9

The topos semantics for functor categories contains, as a special
case, the higher order analogue of Kripke’s semantics for first order
intuitionistic logic (see Kripke 1965).

Section 10

For a thorough treatment of sheaf semantics the reader is referred
to the pioneering paper by Fourman and Scott (1979) and also to (S&edrov
1984a). An interesting generalization of sheaves are Q-valued sets due to
Higgs (1973, 1984) and discussed in the above articles.

Section 11

Dogmas (=semantical categories) were discussed by Volger
(1975b) and Lambek (1980a). Freyd's theory of allegories is unpublished.

Section 12

The topos generated by a type theory was discovered independ-
ently by many people. The first to publish it were Volger (1975b) and
Fourman (1977), but it also appeared in the theses of Fourman (1974) and
Boileau (1975) and in preprints by Coste (1974) and Lambek (1974).
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Section 13

That every topos is equivalent to the topos generated by its
internal language appears in Volger (1975b), Fourman (1977) and Boileau
and Joyal (1981). That the power set structure suffices in the definition of a
topos appears in (Mikkelson 1976).

Section 14

Unfortunately, not every type theory is the internal language of a
topos, unless we make some additional demands on a type theory (see
however Exercise 4). This was known to Volger (1975b) and is discussed by
Fourman (1977).

Section 15

That there is a pair of adjoint functors between toposes and type
theories was first shown by Volger (1975b); but some logical morphisms
appearing in his argument were only shown to be pseudo-functors. To
make this argument more precise, one apparently needs to confine
attention to toposes with canonical subobjects, not a serious restriction,
since every topos is equivalent to one such. This step was taken by Lambek
(1980a). Coste (1974) discusses a pair of adjoint functors between toposes
and what he calls ‘formal toposes’.

Section 16

Several of the constructions presented here were first carried out by
more categorical methods. Thus, the construction of 7 (x) mentioned in
Example 2 is due to Joyal in this generality, having originally been done for
Grothendieck toposes in (Artin, Grothendieck and Verdier 1972). The
result of dividing a topos by a filter is called a ‘filter power’ in (Johnstone
1977) and is considered there as a special case of a ‘topos of fractions’,
whereas here the latter is treated as a special case of the former. (Of course,
our construction does not work for arbitrary categories of fractions.)

Section 17

The completeness theorem for classical type theories with choice is
due to Henkin (1950). The categorical treatment presented here follows
(Lambek and Moerdijk 1982a).
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Section 18

This entire section is based on the last mentioned reference. The
proof is quite analogous to that of the well-known theorem that every
commutative ring is isomorphic to the ring of continuous sections of a sheaf
of local rings. The first author had noticed this analogy, but was using what
is here called the ‘cospectrum’ of a topos, and it was the second author who
realized that it was more natural to use the ‘spectrum’ instead.

Section 19

The use of Henkin constants comes, of course, from Henkin (1949,
1950). A categorical proof was first contained in an unpublished manuscript
by Lambek and Moerdijk (1982b). The present argument follows the proof
of the completeness of first order intuitionistic logic by Aczel (1969), which
result had also been proved by Beth, Kripke and others (see Smorynski
1973). A related categorical construction appears in (Freyd 1972).

Section 20

For an excellent introduction to intuitionism we refer the reader to
(Dummett 1977). The treatment of the internal logic of Freyd covers follows
(Lambek and Scott 1983). The inductive clauses in Theorem 20.1 are a
higher order version of the ‘Aczel slash’ (see Aczel 1969, Smorynski 1973).
Note that the Freyd cover proofs of the existence property for €,
(Proposition 20.5 or Exercise 2) merely witness existential formulas by
arrows in the free topos. To replace these arrows by actual terms of the
appropriate type in the language requires a syntactical argument, the
unique existence property (Lemma 20.3).

Section 21

Most of the intuitionistic principles discussed here are well-known
from the literature (e.g. Troelstra (ed.) 1973 and Beeson 1982). The
disjunction property with parameters (that is, the statement that objects
corresponding to a type of the form PC are indecomposable in the free
topos) was introduced in (Lambek and Scott 1983). In (1981¢) we had also
studied the existence and disjunction properties modulo p (Proposition
21.6). (See also Troelstra 1973.) Underlying Proposition 21.6 is the open
problem how to characterize projective subobjects of 1 in the free topos (see
Remark 21.9). Moerdijk (1982) discusses existence and disjunction pro-
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perties for more general theories using a construction somewhat similar to
the Freyd cover. :

The question in the text concerning the projectivity of N in the free topos,
equivalently, the countable rule of choice in pure type theory, has of course
been solved by proof-theoretical techniques (see Friedman and S¢edrov
1983). Makkai in unpublished notes (1980) cast the logician’s proof into a
categorical (actually 2-categorical) mould. ’

Section 22

We had originally proved the existence and disjunction properties
of pure type theory in 1978 (Lambek and Scott 1980) using an extension of
Kleene-Friedman realizability (Friedman 1973). When we presented these
results at a New York/Montreal topos meeting in October 1978, Peter
Freyd immediately realized that they showed that 1 is an indecomposable
projective in the free topos. Soon after (Freyd 1978), he gave the elegant
categorical proof sketched in the exercises. (In fact, this entire section
consists of detailed verifications of his calculations.) S¢edrov and Scott
(1982) showed that the proofs by realizability and by Freyd’s method were
essentially the same. The version of the argument using the Aczel slash
presented in Section 20 is a bit more direct.

Supplement to Part II, Section 17.

Remark 17.8. On second thought, we can say a little more about the
functor I' = Hom ,(1,-):.# — Sets discussed earlier. It is not only left exact
but also almost right exact: it preserves finite coproducts (essentially
because 1 is indecomposable, see below) and (regular) epimorphisms
(because | is projective). Such a functor is called near exact (see Barr and
Wells 1985). Thus, every model .# comes equipped with a near exact
functor into Sets. In case .# is Boolean, this functor is also faithful. Why
does I preserve finite coproducts? It preserves nullary coproducts, because
by MO’ there are no arrows 1—0, and it preserves binary coproducts,
because every arrow ¢: | — A + B factors through A or B. Indeed, it follows
from Part 1, Section 5, Exercise 2 that

/ N o
AN f €= K4 pX V yep ¢ = K}y py.

Hence, by M1, .#k3 4 ¢=K,yx or MFIyepe =Ky py. Since K, 5 and
Kap are easily seen to be monomorphisms, we may apply Part II,
Lemma 5.2 to infer that ¢ factors through 4 or B.
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Introduction to Part 111

After a brief review of recursive functions, we discuss which of them
can be represented by arrows in cartesian closed categories with weak
natural numbers object, by arrows in toposes and by elements of C-
monoids. These problems are translated into related questions about typed
A-calculi, type theories and extended A-calculi respectively.

1 Recursive functions

In this section we consider number-theoretic functions which
conform to our intuitive notions of being effectively calculable or, to put it
in different terms, which can be computed by some kind of algorithm or
program. This notion was made precise in the 1930s by the logicians
Church, Godel, Kleene and Turing. We recapitulate some relevant
definitions.

Let % be a set of functions N* — N (in the category of sets), where N =
{0, 1,2,...} is the set of natural numbers. Such functions will be called
numerical. Not to be too fussy, let us write h(a) = h(a,,...,a,) for such a
function instead of a— h(a), where a=(ay,...,a)eN* We say that € is
closed under

substitution if, whenever g,(a), ..., g,(a) and
h(by,...,b,)e%, then hig,(a),...,g.(@))e¥,
primitive recursion if, whenever g(a) and h(n, m, a)e¥,
then also f(n,a)eé4 where f(0,a)=g(a) and f(S(n),a)=
h(n, f(n,a), a);
(restricted) minimization if, whenever g(a, n)e® and,
for all aeN¥, there exists neN such that g(a, n) =0,
then f(a) = u,(g(a, n) = 0)e¥, where u,(---n---)
means ‘the least n such that ---n---’

By ‘a basic numerical function we shall understand one of the
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following:
the successor function S(n) =n+1,
the zero function O(n) =0,
the projections piny,... n)=ni=1,...,k).

The set of primitive recursive functions is the smallest set @ containing the
basic functions and closed under substitution and primitive recursion.
The set of (total) recursive functions is the smallest set containing the
basic functions and closed under substitution, primitive recursion and
(restricted) minimization.
Soon after Dedekind had introduced the primitive recursive functions in
1888, it was realized that they failed to capture completely the notion of
. ‘computable numerical function’. There are numerical functions comput-
-able by some algorithm which are not primitive recursive. One can show
this either by Cantor’s diagonal argument or by exhibiting a concrete
example of such a function. The first such example is due to Ackermann
(1928), and we present here a simplified form due to Rozsa Péter.
Let «:N x N — N be defined by

a0,n)=n-+1,
oc(m + 1:0) = a(m, 1):
alm+ 1,n+ 1) = afm, a(m + 1, n)).

Although a(m, n) is easily seen to be computable, it can be shown that
a(m, m) grows faster than any primitive recursive function. Thus ofm, m) is
not primitive recursive, hence neither is om, n).

Recursive functions however did turn out to capture our intuitive notion
of what computable numerical functions should be. In a pioneering paper,
Turing (1936-7) showed that these functions are precisely the ones
computable on an abstract machine described by him. At about the same
time, Church (1936) showed that the recursive functions were precisely
those definable in untyped A-calculus. These observations led to the so-
called Church—Turing Thesis:

(CT) The (total) recursive functions exactly capture the intuitive
notion of ‘computable numerical function’.

Thus (CT) identifies a vague intuitive notion (computable) with a precise
mathematical one (recursive). Although not amenable to direct proof, its
validity is not seriously doubted. Indeed, various other attempts to define
computability led to the same result. Thus the recursive functions also turn
out to be the numerical functions calculable by Markov algorithms, by a
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finite program on an abacus or register machine or, for that matter, on a
modern computer (provided we allow unlimited storage).

One may also consider the computability of partial numerical functions
from N¥ to N, that is, functions f: D — N whose domain D is a subset of NF.
A set € of partial recursive functions is closed under unrestricted minimiz-
ation if, whenever g(a, n)e%, also f(a) = p,(g(a, n) = 0) is in €. If, for some
particular k-tuple g, there is no n such that g(a, n) = 0, then f(a) is undefined.

The set of partial recursive functions is the smallest set of partial numerical
functions containing the basic functions-and closed under substitution,
primitive recursion and unrestricted minimization. The Church-Turing
thesis, extended to partial functions, identifies computable partial numer-
ical functions with partial recursive functions.

We end this section with a technical result (see Kleene 1952, Mendelson
1974, Shoenfield 1967). It uses the fact that, for given k, all partial recursive
functions from N* to N have been effectively enumerated in a sequence
S1:f2,...,for example, by enumerating the programs which calculate them.
We say that a k-ary relation R(ay,...,a,) = R(a) is a primitive recursive
relation if there is a primitive recursive function g(a) such that, for all ae N¥,
R(a) if and only if g(a) = 0.

Kleene Normal Form Theorem. There exists a primitive recursive function
U(m) and a primitive recursive (k + 2)-ary relation T, (e, a, n) such that, for
any partial recursive function f from N* to N and all aeN¥, there is a
number eeN such that f(a) = f,(a) = Uy, Ti(e, a, n)).

The idea of the proof of this theorem is roughly as follows. Consider a
program with code number e calculating the partial recursive function f,(a)
for the input aeN*. For each n=0, 1, 2,..., let g, encode the stage of a
calculation, that is, the contents of all the registers (all but a finite number of
which will be empty) and the node of the program at time n (a program is a
labelled graph). Thus, the passage from g, to o, , represents one step in the
calculation. Let U(n) be the content of the output register at time n and let
Ti(e, a, n) be the statement which asserts that the node of the eth program
with input a at time n is ‘stop’. Then U(u, T, (e, a,n)) is the content of the
output register when the calculation stops, that is to say, f,(a).

Exercises

1. Show that the following numerical functions are primitive recursive:
m+n, mn, mt, nl, pre(n), m-=n, min(m,n), max(m,n),
o(n), |m—n,
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where

ifn>0

m={"""
PEW=Y0  ifn=o,

m—n fmzn
m—n=

0 if m<n,
1 ifn=0
o(n)= .
0 ifn>0.

. Show that the following numerical functions are recursive:

[n/2], [\/n], [ogyo(n + 1)1,

where [£] denotes the greatest integer not exceeding ¢.

. Show that for any ke N the set of recursive (primitive recursive) numerical

k-ary relations is closed under the Boolean operations: conjunction,
disjunction and negation.

. Show that the following numerical unary and binary relations are

recursive:

nis odd, nis a perfect square, m<n, m#n, m divides n, nisa
prime number.

. Show that the following numerical functions are recursive:

p(), w(n), exp,(n),

where

p(0) =2, p(n) = nth odd prime (if n> 1),
n(n) = number of primes < n,

eXp,(#) = largest k such that m* divides n, unless m =1 or n = 0, in which
case it =0.

. Show that the following numerical function due to Cantor is recursive:

m+n
Fmn)=m+ ¥ k =m+[3(m+n)(m+n+1)],
k=0
and prove that #:N x N-»N is a bijection. Letting
(k)O = #mgkauskj(m7 n) = ka
(k)l = ﬂnskamgkf(ms n) = k,

show that (k), and (k); are recursive and that (F(m,n))g=m,

(j(mv n))l =n, f((k)()’(k)l) = k

. If R(a,n) is a primitive recursive relation with aeN* and neN, show that

the relations
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Ju<nR(@,n),V, . .R(a,n)

are primitive recursive. If, moreover V3, R(a,n), show that
Mu<mR(a,n) is a primitive recursive function. Hence re-examine the
recursive functions, properties and relations appearing in earlier exercises
and show that they are all primitive recursive. "

2 Representing numerical functions in cartesian

closed categories

We are interested in representing numerical functions N*— N by
arrows in cartesian closed categories with weak natural numbers object. We
shall write §n = §"0 for the nth arrow 1 N.

Definition 2.1. A function f:N*¥— N is representable in a cartesian closed
category ¥ with a weak natural numbers object N if there is an arrow f:
N¥>Nin®& such that, for every k-tuple (n,,...,m,) of natural numbers,

fT<§n1,"'ﬂ§nk>:§f(n1""nk)7

that is, the following diagram commutes:

N# A - ‘ N
§* §
Hom( I,Nk) Hom(1.7") Hom(1,N)

(We have written §(ny,...,n) = (§ny,...,8m,D>.)

We may also represent numerical functions by closed terms in typed A-
calculi. We write #n = §"0 for the nth numeral.

Definition 2.2. A function f: N*— N is representable ina typed A-calculus
& if there is a closed term F of type N such that

Filfing, ... #n D =#f(ny,...,n)
holds in . for every k-tuple (n,,...n,).

In view of the equivalence between typed A-calculi and cartesian closed
categories with weak natural numbers object established in Part 1
(Theorem 11-3), it is not surprising that definitions 2.1 and 2.2 are also
equivalent. More precisely, we have the following result.
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Proposition 2.3. A numerical function f: N¥ — N is representable in a typed
A-calculus & if and only if it is representable in the cartesian closed category
C(¥) generated by it.

Proof (sketched). By construction of C(%#)(see Part I, Section 11),an arrow
T N¥ = N has the form (xe N¥, ¢(x)), where ¢(x) is a term of type N. In the
same vein one easily calculates that §n: 1 — N has the form (zel, #n). Put
F = A,,0(x), then F has type N4, where 4 = N¥, and

Fid#ing, ... .o = o({#ny, ... 400 ).

A routine calculation, which we leave to the reader, now shows that the
equation appearing in Definition 1.1 translates into

(ZEI’F{<#n1""’#nk>)=(261)#f(n17“"nk))9

which is clearly equivalent to the equation in Definition 2.2. Similarly we
pass from Definition 2.2 to Definition 2.1.

The following result is due to Marie-France Thibault, who established it for
cartesian closed categories with weak natural numbers object, when it had
not yet been shown that these were equivalent to typed A-calculi. In
retrospect, we find it a little easier to work with the latter.

Theorem 24. If & is a typed A-calculus, then
(1) every primitive recursive function is representable in %,
(2) the Ackermann function is representable in .Z.

Proof. (1) The successor function and the zero function are represented by
the ‘closed terms A, yS(x) and A,,0 respectively. To show how the
projection functions are represented, let us look. for example, at the case
n=23. Then p3,p3, and p3 are represented by A,y T(7(X)), deens 7'(n(x))
and A,_ys7'(x) respectively, where N*=(N x N) x N.

Suppose the functions h(b,,...,b,) and filay,...,q) (i=1,...,m) are
represented by the terms HeN™" and F €NV respectively, then their
composite h(f1{ay,.--, ). 5 fuld1.-..,4;)) is represented by the term
A CF 5%, F A XD,

Finally, suppose g(a;, ..., a,) and h(n,m,a,...,a,) are represented by the
terms GeN™ and HeNW*M*N* respectively. We wish to represent
f(n,ay,...,a) by aterm FeNY*™ where f(0,a,,...,a,)=g(ay,...,a) and
fSm),ay,....,a)=hn, f(n,ay,...,0), Ag5...,%).

Let x be a variable of type N* and put

a,=G'x, g, <u,v>=H'{{u,v),x).

Applying Lemma 2.5 below to the language £(x) with parameter x, we
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obtain a term ¥ (u)e N such that

.0 =a, =G x,

Yl#n + 1)) 5 g.” Hn b Hn))> = H CHn b#n) ), x).
Replacing x by #a = <#a1,.._.,#ak>, we obtain

V4 (#0) = G (#a) = #g(a), ’

Yy #Sn) = HS (K tn, o (Hn) ), #a).

It follows by induction on n that y, (#n) = #f(n, a). (For #/(0, a) = #g(a),
#/(Sn,a) = #h(n,f(n,a),a) = H' { {#n, #f(n,a)),#a).) Now introduce F of
- type NNXNkby ‘
FIu,x) = . (u),
’ funx}
then

Fi{fn,#a) =#f(n,a)

and therefore F represents f(n, a).
This completes the proof of (1), provided we establish the following
lemma (cf. Proposition 3.3, p. 141).

Lemma 2.5. If £ is a typed A-calculus and aeA and geAV*1 are given
terms, we can define a term W(u) =¥ ,(a, g, u)e 4, where u is a variable of
type N, such that ¥(0)=a and W($"*1(0)) = g* {S"(0), ¥(5"(0))) for all
neN. ,

Proof. Given terms ce Nx 4, ke(N x A)”** and a variable ue N, we have
Iy, 4(c,k,u)e N x A such that the following equations hold in %:

(i) Iyaalek,0)=c, Iy, c.k,SW)=k'Iy, ,(c,k,u).
‘Now let ¢ = {0,a) and suppose k is defined by the equation

ki u,xy = (S(u) g’ <u, x> ).
{u,x}
Write I, ,(c, k,u) = {D(u), ¥(u) ), then (i) becomes:
(ii) ©(0) =0, D(Sw)=S(Pu),
(i) WOy =a P(Sm) =g {OMm),Ywu>.

Unfortunately, as long as only a weak natural numbers object is postulated,
we cannot infer from (i1) that ®(u) =u holds in .. However, we can use



260 Representing numerical functions in various categories

induction on n to prove the equation ®(S"(0)) = $™(0), hence (iii) gives rise to
(iv) PO =a, P(S""1(0))=g’<{S"(0),'¥(S"(0)),
as was to be proved.
Now let us return to the proof of Theorem 2.4.
(2) To represent the Ackermann function a(m, n)of Section 1 we seck aterm

FeN"*Nsuch that F/ {#m,#n)> = #a(m, n)holdsin &, where #fm = S™(0) as
before. Define F by the equation

FI<M,U> = \PA(a5gsu)!va
{uv}
where A= N", a=1,.yS(x)eA and ge A¥*“ is given by

(gf<u,z>)fv = lPN(ZI lﬁlwsNxN(Z;n,N,N(w))! U).

{u,z2,0}
Note that g does not really depend on its first argument.
A routine calculation now shows the following equations in %:

® Fi{0,#n) =#S(n),
(ii) FIC#m +1),0) = F/ (fm #1),
(i) F/CHm+ D), #0n+ 1)) = F/ CEm, FS Gim+ 1), 8n) .

The reader may have to do a bit of work to establish (iii). Here is a hint: first
reduce the LHS to

WY 4(a, g, #m) ¥ (b, h, #n),
where
b=V (ag,#m) #1,
h= Ay n(Pala, g, #m) 'y n(w)),
then show that this is equal to
Y a(a, g, #m) (g’ <#m, 'Y 1(a, g, #m)>) #n),
since g does not depend on its first argument, which is finally reduced to the

RHS.
It follows by multiple mathematical induction from (i), (i) and (iii) that

FI{fm, #n) = #a(m, n)
holds in %, as was to be shown.

Corollary 2.6. The set of numerical functions representable in a cartesian
closed category with weak natural numbers object properly includes the set
of primitive recursive functions.

To state a converse of this, we have to specify which cartesian closed
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category we are talking about. For example, all numerical functions are
representable in the category of sets. On the other hand, the set of numerical
functions representable in C(%,), the cartesian closed category with weak
natural numbers object generated by the pure typed A-calculus £, is a
proper subset of the set of recursive functions. This result is also due to
Marie-France Thibault.

Theorem 2.7. If a numerical function N* — N is representable in pure typed
A-calculus &, then it is recursive; but not every recursive function is
representable in Z,,.

Proof (sketched). The proof uses familiar techniques of arithmetization.
We shall present the main line of the argument, but omit some of the more
gory details. '

We begin by enumerating all terms of type NV, say Fo,, F,, F,,.... Given
a=(ay,...,a,)eN*and e,neN, let S(e, a, n) be the (k + 2)-ary relation which
asserts that, for some beN, n is the G6del number of a proof that the
equation

Fef(#al""a#ak) = #b
holds in .%,. »

Since b is uniquely determined by n, S(e, a,n) is seen to be a recursive
relation (even a primitive recursive one). Let us write U(n) = b if nis such a
Godel number, U(n) = 0 otherwise. Then U(n) is also a (primitive) recursive
function.

Now suppose f(a) is any numerical function N*-» N which is represent-
able in &#,,. Then, for some eeN,

#f (@) = F /(#a,,....#a,),
hence
f(@) = U(u,(S(e, a,n))).
This is clearly a recursive function (even in Kleene normal form), hence the

first part of the theorem has been proved as we show totality below.
To prove the second part, take k=1 and write

fda) = U(u,(S(e, a,n))).
To show that f(a) is a total function, we must verify that, for any eeN and
aeN, there exists neN such that S(e, a, n), that is to say, there exists beN
such that the equation F,/(#4a) = #b holds in Z,,.
In fact, if t is any closed term of type N in &, an equation of the form
t = $%(0) holds in .#,,. To see this, we cite Theorem 14.7 of Part I, according
to which ¢ is bounded. Consequently, there is an irreducible term ¢, such
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that the equation ¢ = ¢’ holds in &, By Exercise 1 of Section 12 of Part I,
t' = S%(0) for some beN.

Then, evidently, fo(a), fi(a), f»(a),... is an enumeration of all
representable numerical functions N — N. The usual diagonal argument
now gives a recursive function f,(a) + 1 which is not representable. For, if
there is an eeN such that f,(a)+ 1 =f,a) for all aeN, we obtain the
contradiction f,(e) + 1 = f (e).

For further details, the reader may consult Thibault (1977, 1982) or the text
by Shoenfield (Chapters 6.6 and 8.4).

Corollary 2.8. The set of numerical functions representable in C(%,), the
free cartesian closed category with weak natural numbers object, is a proper
subset of the set of recursive functions, which properly contains the set of
primitive recursive functions.

Let us take another look at Lemma 2.5 and its proof. Suppose that C(%)
contains a (strong) natural numbers object. Then, from (ii) in the proof of
Lemma 2.5, we can infer that ®(u) 5 u holds, hence (iii) becomes

YO =a, WEW) =g u V).

Now look at the proof of Theorem 2.4. In particular, suppose we are
given GeN™ and He NV *MxV The argument in #(x) then produces a
term ¥, (1) such that the following equations hold:

¥i0)5 Gx, W Sw) 5 H ((u, V), x).

If we wish, we may replace ¥ (u) by F' <u x>, where FeNV*¥ and we
obtain the equations

FIC0x> = G PSS = HIC B Capx 53,5,
{u.x}
Note that this equation holds for a variable u, not just for a numeral. This
result allows us to do primitive recursion within %, as we normally do in the
language of set theory. (See also Part I, Proposition 3.3.)
For example, we can now define a term + e N¥*¥ such that the following
equations hold:

+I0,x> =% +I{SW), x> = S(+ {u,x>).
o}

Adopting the more common notation x + u for + /<u,x», we obtain the
usual Dedekind-Peano axioms for addition;
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x+0=x, x+Su) = S(x+u).

{x.u}
A similar generalization may be carried out for all primitive recursive
functions as well as the Ackermann function. Summarizing this discussion,
we obtain the following result.

Proposition 2.9. All primitive recursive functions and the Ackermann
function may be defined by their usual free variable equations inside any
typed i-calculus & for which C(#) has a strong natural numbers object.
We end this section with another application of arithmetization, which is
essentially Godel’s incompleteness theorem for pure typed A-calculus.

Proposition 2.10. In ¥, there is a closed term F of type NV such that
F'#k =0 holds for all keN, yet F = A,,0 does not hold.

Proof (sketched). We consider all terms ¢(x, y) of type N in the variables x
and y of type N. They may be enumerated effectively, say ¢q(x,y),
@4(x,y),.... Let R(m,n) mean that m is the Godel number of a proof of the
equation ¢@,(x,#n) = 0.

The binary relation R(m,n) and its complement may be shown to be
primitive recursive, hence representable in #,,. Therefore, there is a term
@.(x, y) such that

(*) 2AR(m, n) if and only if ¢ (#m,#n)=0 holds in &,

We shall prove that ¢ (#m,#e) =0 holds in &, for all meN, but that
@.(x,#e) =0 does not hold. The proposition then follows if we take
F= j'm:e}\r(»oe(xo #e)

Suppose ¢ (x,#e) = 0 holds in Z,. Let k be the Godel number of its
proof, then R(k,e). Now substituting #k for x, we obtain the equation
o (#k, #e)=0 in &, hence “R(k,e), by (x). We have arrived at a
contradiction, so we may conclude that ¢ (x, #€) = 0 does not hold in .%,,.
But then no k is the G6del number of its proof, hence v, R(k,e) and
therefore, by (»), for all keN, ¢ (#k,#e) = 0.

Corollary 2.11. In pure typed A-calculus one cannot infer that F/x =0
holds for a variable x of type N from the fact that Ffa =0 holds for ali
closed terms a of type N.

Proof. Allclosed terms of type N are provably equal (convertible) to terms
of the form #k = S*0.

Corollary 2.12. In the free cartesian closed category with weak natural
numbers object, the terminal object 1 is not a generator.
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3 Representing numerical functions in toposes

Which numerical functions are representable in a topos? We can
reformulate this question linguistically, since every topos is equivalent to
one of the form T(), the topos generated by an intuitionistic type theory £.
Translating Definition 2.1 into linguistic terms, we obtain the following (for
total functions):

Proposition 3.1. A function f:N*— N is representable in T(£) if and only if
thereis a formula ¢(x, y)in €, with x a variable of type N* and y a variable of
type N, such that

(a) for all aeN*, + o(#a,#/(a)),
(b) i—_vxeN"a!yeN(p(x’ .V), ‘

where the turnstile denotes provability in .
The proof of this will be left as an exercise.

In the literature (e.g. Mendelson 1974), a formula ¢(x, y) satisfying (a) and (b)
above is said to strongly represent f in the language L. Our question then
becomes: which numerical functions are strongly representable in a
type theory?

- If £ is consistent, we can rewrite (a) of Proposition 3.1 as

(@) for all aeN* and beN, f(a) = b if and only if, I ¢(#a, #b).

The ‘only if part’ of () is clearly equivalent to (a). To deduce the ‘if part’, we
use (b). Then from k- o(#a, #b) and (a) it follows that -#£(a) = #b. We need
consistency of € to infer that f(a) = b.

This argument also tells us that if fis strongly represented in a consistent
type theory £ by a formula ¢(x, y), then, for all aeN¥, there exists a unique
beN such that - g(#a, #b) in £. In the case of pure type theory %, we have
even a stronger result.

Proposition 3.2. Suppose ¢(x, y) is a formula of pure type theory £,, with x
a variable of type N* and y a variable of type N. If, for every aeN¥, there
exists beN such that o(#a,#b), then there is a recursive function
f:NE— N such that, for all aeN¥ o(#a, #1(a)).

Proof. Let Proof (g, p) be the (primitive) recursive relation asserting that p
is the Godel number of a proof of a closed formula in £, which Godel
number ¢. Thus

- @(#a, #b) if and only if Proof(q(a, b), p) for some peN,

where ¢(a, b) is the G6del number of the formula (#a, #b). Let (-),, (-),:
N2 N be primitive recursive inverses of a pairing function (see Section 1,
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Exercise 5) and suppose that for every aeN* there is a beN such that
F @(#a, #b). Then Proof(q(a, b), p) for some peN. Define

J(@) = (i Proof(q(a, (K)o), (k)1))o-

In view of the assumption on ¢, for every a there is a k such that
Proof(q(a, (k)o), (k),), hence f is a total recursive function. Moreover,
F @(#a, #1(a)), as required.

The crucial fact about £, in the above argument was the existence of a
recursive proof predicate. In fact, Proposition 3.2 may be generalized to
other ‘recursively axiomatizable’ type theorles, as may be the following
result.

Corollary 3.3. If a numerical function is strongly representable in £,, then
it is recursive.

Proof. Suppose f is strongly represented by ¢. By (a) of Proposition 3.1, for
every aeN¥ there is a be N such that - ¢(#a, #b). Hence, by Proposition 3.2,
there is a recursive function g:N¥—N such that - o(#a,#g(a)). It now
follows from (b) of Proposition 3.1 that —#f(a)=#g(a). Since £, is
consistent, we may infer that f(a) = g(a) for all a, hence f is recursive.

Unfortunately, the converse of Corollary 3.3 fails.

Proposition 3.4. Not every recursive function is strongly representable in
pure type theory.

Proof. We consider unary functions f: N — N. We shall diagonalize over
the set of V3!-proofs.

Let E be the recursively enumerable set of Godel numbers of proofs of
formulas of the form V3!, v ¢(x, y). Thus, for each e € E there is a formula
@.(x, y) such that '

}_VxeNa!yeN(Pe(x’ )’)
By the unique existence property for £, (Part II, Lemma 20.3), for every
aeN there is a beN such that ¢ (#a,#b). Therefore, by Corollary 3.3,
there is a recursive function f,:N— N such that - ¢ (#a,#f.(a)) for all
aeN.
Let h: N — N be a recursive function which enumerates E. Thus, ecE if
and only if e = h(m) for some meN. Consider the function

g(m) = f, h(m)(m) + 1
Clearly, g is computable, hence recursive. On the other hand, g is not
strongly representable. For, if it were strongly representable by ¢ then
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FV cen3en@(x, y), hence @ = @4, where h(k) is the Godel number of the
proof of this theorem. Moreover, since ¢ strongly represents g,

g(m) = fyqy(m) for all meN.
But then,

Suao(k) + 1= g(k) = fruk),
a contradiction.

Translating Corollary 3.3 and Proposition 3.4 into statements about
arrows in T(2,), the free topos, we obtain the following.

Corollary 3.5. Every arrow f:N*— N in the free topos T(L,) is sent by
the functor I' = Hom (1,-): T(£,) - Sets onto a recursive function N*
I'(N¥) - T'(N) = N, but not all recursive functions arise in this manner.

Proof. The isomorphism I'(N)= N was established in Part II (Lemma
20.3).

Remark 3.6. If a numerical function is representable in every cartesian
closed category, it is representable in every topos. Hence the primitive
recursive functions and the Ackermann function (Theorem 2.4) are strongly
representable in every type theory (Proposition 3.1). Since type theories are
more powerful than typed A-calculi, one expects more numerical functions
to be strongly representable in pure type theory than in pure A-calculus. (See
Fortune et al. 1983.) '

Actually, the primitive recursive functions and the Ackermann function
are more than representable in a topos: their definitions may be carried out
in the internal language of the topos, in view of Proposition 2.9.

The situation is radically different in classical type theory, in which the
Boolean axiom f=V,q(t vt) is assumed. As we shall see, every total
recursive function then becomes strongly representable. First we shall look
at a weak form of representability called ‘numeralwise’ representability by
Kieene.

Definition 3.7. A numerical function f:N*-sN is numeralwise represent-
able in a type theory £ if there is a formula ¢(x, y), with x of type N* and y of
N such that

(a) for all aeN¥, Fo(#a,#f(a))

(b') for all aeN¥, 3! yo(#a,y)
Here (b)) differs from (b) in the definition of strong representability
(Proposition 3.1} in that functionality of ¢ is proved only for k-tuples of

numerals and not for variables of type N*. For classical type theories, it
turns out that numeralwise is not weaker than strong.
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Proposition 3.8. (V. Huber-Dyson). A numerical function is numeralwise
representable in a classical type theory if and only if it is strongly
representable.

Proof. Suppose f: N¥ - N is numeralwise representable by ¢(x, y), we shall
find another formula Y(x, y) which strongly represents f.
First consider the formula

@'(x, y) = zene(x, 2) = 0(x, y)).
By classical logic, we have FV, 3, y9'(x, y). Now define

lp(xs y) = (QDI(X, y) A VzeN((pl(x’ Z)=>y < Z))
(For the meaning of < see Remark 3.9 below.)
Applying the (classical) least number principle to ¢, we deduce that
FV ene 3 en Y(x, y). It remains to prove that, for all aeN¥, -y (#a, #f(a)).
Now F o(#a,#f(a)) by (a) above, hence clearly - ¢'(#a,#f(a)). It
remains to prove that =V, \(¢'#a,z)=>#f(a) < 2).
We argue informally. Suppose ¢'(#a,z). Since 3,.yo(#a,y) by (b),
therefore @(#a, z). But since I, yp(#a, y) by (v'), z = #f(a), and so #f(a) < z.

Remark 3.9. The above proof made use of the symbol < and its properties
in the type theory L. This is defined easily enough: for terms a, b of type N,
let a < b mean that {a,b) belongs to (the intersection of) all ueP(N x N)
such that

Vieen X, X DEU
and

VxevaeN( < X .V>€u = <X, SY > eu).
However, it may be a little tedious to derive the usual properties of < from
this definition, for example, the transitive law, not to speak of the least
number principle (assuming the Boolean axiom of course).

An alternative approach is to introduce function symbols + and - into

the type theory € to satisfy the usual Peano axioms:

x+0=x, x0=0,

x+8y =8x+y), x8y=(xy+x,

{xy} {xr}

and then refer to the book by Kleene, where < and < are defined as follows:
' a<b=3,(Sz+a=bh),

as<b=(a<bva=h)
All necessary properties of these symbols are then derived in the book by
Kleene, including the least number principle if the Boolean axiom holds.
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How do we introduce the symbols + and - in a type theory £? Since the
topos T(£) generated by Lis cartesian closed, we may use Proposition 2.9 to
find an arrow +:N x N— N in T(£) such that

+<{x,0>=x, + {x,8ud> =S+ {x,u).
{xu}

If we write a + b for + {a,b), this shows that the statements
VxeN(x + O = X), VxeNVueN(x + Su = S(x + u))

are satisfied in T(), that is, provable in LT(£). (See also Exercise 4.)

For terms a and b of type N in LT(L), we may now define a <b as above
in terms of addition. Now recall from Section 14 of Part II that the
translation n,: 8 — LT(£) given by

nol@)=a, laj={{xa)}
is a conservative extension. We may therefore define a < b in £ to mean
a<bin LT() and infer all the expected properties of < in £.

The proof of Proposition 3.8 used classical logic in two places: to show
-V genic 3yen®'(%, ) we made use of independence of premisses for 3, y@(x, 2)
and we applied the least number principle to ¢'. Intuitionistically,
independence of premisses is known to be applicable only when the
hypothesis is a negative formula (see Part II, Section 21). The least number
principle is only known to be valid for decidable predicates (Kleene 1952,
§40, *149°).

In his famous paper of 1931, Godel characterized the representable
functions of pure classical type theory, in our notation 2./8.

Theorem 3.10. A numerical function is numeralwise (or strongly) repre-
sentable in pure classical type theory if and only if it is recursive.

Proof. If f is numeralwise (hence strongly) representable in 8,/B, then it is
recursive by the generalization of Corollary 3.3 to ‘recursively axiomatiz-
able type theories’ (discussed just prior to Corollary 3.3).

In the converse direction, we already know that all primitive recursive
functions are strongly representable in €, hence a fortiori in £o/8. It
remains to show that the set of numeralwise representable functions is
closed under the minimization scheme.

Suppose f:N*¥— N is defined by

f(a)= pgla,b) =0),
where for every acNF¥ there is a beN such that g(a,b)=0. Suppose
furthermore that g:N* x N - N is numeralwise represented by o(x, ¥, 2).
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Put ‘
"P(X, y) = (p(x’ Y, 0) A VweN(W < y‘_“"—l(p(x: w, O))
A straightforward calculation then shows that ¥ numeralwise represents f.

Theorem 3.10is even valid for very weak fragments of first-order arithmetic
(see the books by Kleene and Shoenfield).

What goes wrong with the diagonal argument which was used to prove
that not every recursive function is strongly representable in £, (Propo-
sition 3.4) when £, is replaced by £,/8? The point is that, having proved
classically FV,.y3!,ev@(x, y), we cannot guarantee that ¢ represents a total
function, as the unique existence property fails for £o/8.

For example, let y be an undemdable sentence in £,/ and consider the
formula

ox,y) =@ Ay=0)v(yAy=_50)
in £,/p. Classically we have -V, 3!,.y0(x, y); but, since ¢ does not contain
x, any total function represented by ¢ would have to be constantly O or 1. In
either case we would be able to decide .

Taking k=0, we see that the above formula ¢(x,y) defines a ‘non-
standard numeral’ in T(8,/p), that is, an arrow 1 — N not of the form §"0
with neN. This shows that the canonical mapping § N - Hom(1, N) such
that §n = S"0 is not surjective. Hence an arrow g: N*— N in T(£,/f), the free
Boolean topos, gives rise to a function

k& Hom (1, Nk)—H—Q—IM—)»Hom(I N)

which, in general, yields only a partial function from N* to N. If it so
happens that g represents a total function f:N*—N, then f must be
recursive by Theorem 3.10.

In pure intuitionistic type theory £, all numerals are standard, that is, all
terms of type N are provably equal to terms of the form §"0. This suggests
- that we may do better in representing partial recursive functions in £, than
total ones.

Definition 3.11. A partial function f from N* to N is numeralwise
representable in a type theory £ if there is a formula ¢(x, y) in £ such that

(l) - VxeN"VyeszeN(((p(x’ y) A (P(x, Z)) =y= Z)
and, for all aeNF¥, f(a) is defined and equal to b if and only if
(ii) = o(#a, #b).
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Theorem 3.12. A partial numerical function is numeralwise representable
in pure type theory £, if and only if it is a partial recursive function.

Proof. Suppose a partial function f from N* to N is numeralwise
representable in £, by a formula ¢(x, y). As in the proof of Proposition 3.2,
we have

J(@) = (u, Proof (q(a, (k)o), (k)1))o,

where g(a, b) is the Godel numbser of the formula (#a, #b). Thus fisseento
be a partial recursive function.

In the converse direction, it suffices to show that, if gla,n) is a
numeralwise representable partial recursive function from N* x N to N,
then f(a)= p,(g(a,n) =0) is also numeralwise representable. In view of
Kleene’s normal form theorem (Section 1), we may assume that gla,n)is a
total function.

We may write the definition of f(a) in the language of set theory thus:

9(a, f(@) =0 AV, (b <f(a)=g(a, b) # 0).
Now g is representable by ¢(x, y, z), hence
9(a,b) = ce>F o(#a, #b, #c).
We claim that the following formula represents f:
l»[’(x! y) = ((p(xa Vs 0) A VzeN(z < y=>1¢(x, z, 0)))
We must show two things: ’
(l) hc- vyeszeN((!//(xa y) A ll/(x’ Z)) =>y = Z)s
(i) Hy(#a, #f(a)) whenever f(a) is defined.
To prove (i), we argue informally as follows. Suppose W(x,y) and ¥(x, z).
It follows from the second assumption that ¢(x, z,0), hence from the first
that (y > z). The law of trichotomy then yields y < z. Similarly we obtain
z <y, hence y = z. This shows (i).
To prove (ii), assume that f(a) is defined. Then g(a, f(a)) =0, hence
F o(#a,#f(a),0). It remains to show that also
FV.en(z <#f(@)="10(#a,z,0)).
Again, we argue informally as follows. Suppose z < #f(a). Then it is easily
seen that z = #b for some b < f(a). Therefore g(a, b) # 0, say g(a,b) = ¢ + 1.
(Remember that g is a total recursive function.) Therefore

@(#a, #b,#(c + 1)) and so, “p(#a, #b,0), that is, “p(#a, z,0). (Recall that,
if ¢(x,z,1), t is unique.) This completes the proof of (ii).

For additional results along these lines, see Coste-Roy et al. (1980).
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Exercises
1. Write out a proof of Proposition 3.1.

2. Using the first definition of a < b suggested in Remark 3.9, prove some of
the usual properties of <.

3. Using the definition of a <b in terms of addition given in Remark 3.9,
show that, for each neN,

FVn(x <#n=(x=#0vx=#1v--vx=§@n-—1))).

4. In a type theory £, let e P(N x N x N) be the intersection of all ue
P(N x N x N) such that V_,<0,x,x>eu and VeenVyen(<x, y, 2D €u
=(x,S8y,Sz)eu). Show that FYenVyen 3w, o 2>€a. Infer that
this also justifies the introduction of a function symbol + satisfying
the Dedekind—Peano axioms.

4 Representing numerical functions in C-monoids

We recall from Part I that an extended A-calculus is an untyped -
calculus with surjective pairing, that is, with term-forming operations 7(-),
n'(—) and (-, -) satisfying

n(a,b)=a, 7w(a,b)=>b, (n(c),n(c))=c.

It was shown there that the category of extended A-calculi is isomorphic to a
certain equational category of monoids with additional structure, called
C-monoids. Moreover, C-monoids are in bijective correspondence with
cartesian closed categories which have, up to isomorphism, only two
objects 1 and U such that UV U~U x U.

One of the earliest results in the A-calculus was the identification of
recursive functions with A-definable ones. This result had also been
extended to partial functions, and here we shall re-examine the result for
partial functions in the context of extended A-calculi.

In an extended A-calculus %, natural numbers are not given as in typed -
calculus but may be defined according to Church as follows. The idea is that
2 is the function which to any function f assigns its iterate 2 = fof. Here
feg is defined by

feg=2f"(g'x)).
The reader will recall the underlying implicit ontology according to which
all entities are functions. In general, n f=f" which is defined in the usual
way by induction. We are thus led to define 0’x as I and (S/y)’ x as x°(y'x),
that is,

0=, S=AA(x(y'x)).
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As usual,
1=80, 2=8/1,...

and it is easily verified that 1 =1 holds in Z.

From now on we write #n = §"/0, to distinguish the natural number n
from its representation in . Note however that #0 = 0. Mimicking the
definition in typed A-calculus, we say:

Definition 4.1. A numerical function f: N*— N is represented by a closed
term F of an extended A-calculus % if the equation
F{(#nl, «e .#nk) = #f(nl, .o .nk)

holds in & for all k-tuples (n,,...n,) of natural numbers. We shall also say
that f is represented in a C-monoid 4, if # corresponds to %.

Proposition 4.2 (Church). All primitive recursive functions are represent-
able in any extended A-calculus, hence in any C-monoid 4. -

Proof. The zero function is represented by 1,0 and the successor function
by § as defined above. We illustrate the representation of the projections by
an example: p3 is represented by A (' (r(x))). If g(ay,..., @), ..., gm@s,...a)
are represented by G,,...G, and h(b,,...,b,) is represented by H,
hg(ay,...,a0s...,gmlay,...,a)) is represented by A, H(G,’x,...,G, x). It
remains to prove that the set of representable functions is closed under
primitive recursion.

Suppose g(a) and h(n, m, a) are represented by G and H respectively, where
a=(ay,...,a). We claim that f(n,m), defined by

JO,q)=gla), f(n+1,a)=h(n, f(na),a)
is also representable. We seek a closed term F such that the equations
F'(0,#a)=G'#a, F'(#(n+ 1),#a)=H'(#n,F'(#n,#a),#a)
hold in . Our argument follows the treatment in Hindley, Lercher and

Seldin (1972). Suppose for the moment we can find a term ¥(z,u, v) in &
such that the following equations hold in &:

YO,u,v)=u, W(S'#n,u,v)=1v#n, Y(#n,u,v)).
Then we define

B(x)= A H (n(2), n'(z),x), F = A, ¥(n(w), G n'(w), B(r'(w))).
We then calculate

FA(0,x) = ¥(0, G’ x, B(x)) = G'x,

F/(S'#n,x) =Y¥(S #n,G'x, B(x))
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= B(x) (#n, ¥(#n,G'x, B(x)))
= H'(#n,¥(#n,G'x, B(x)), x)
= Hf(#n, F5(#n,x), x).
Replacing x by #a, we see that F satisfies the claimed equations.
It remains to construct ¥ with the required properties. Let
0, =S n(x), v’ x)
and write
(z76,) (0, u) = (®(z,u,v), ¥(z, 4, 1)),
that is, ®(z, u, v) = n{(LHS) and ¥(z, u, v) = #'(LHS). In particular, when z is
replaced by #n, we have
627(0, u) = ((#n, u, v), Y(#n, u,v)).
Now
65(0,u) = (0, u),
hence
O0,u,0)=0, PO,u,v)=u
Moreover, .
65+ 1(0,u) = 0,7 63(0,u)
= 0,5 (D(#n, u,v), P(#n,u,0v))
= (S ®(#n,u, v), v* (D(#n, u, v), Y(#n,u,v))),
and therefore
O(S #n,u,v) = S'O(#n,u,v).
W(S'#n,u,v) = v/ (Q(#n, u, v), ¥(#n,u,v)).
By induction on n, we see that
O(#n,u,v) = #n,
and so we obtain
W0,u,v)=u, P(S'#n,u,v)=0'(#n V(#nuv)

as required.

Actually, not only the primitive recursive functions, but all recursive
functions are representable in any extended A-calculus. However, the proof
of this involves partial recursive functions, so we may as well state the result
more generally.

Definition 4.3. A partial numerical function f from N* to N is represented
by a closed term F of an extended A-calculus if, for all k-tuples ay, ..., a; of
natural numbers such that f(a,,...,a,) is defined,

Fit#ay,....#a)=#f(as,.... ).
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Theorem 4.4 (Church). All partial recursive functions are representable in
any extended A-calculus, hence in any C-monoid ..

Proof. Since we already know that all primitive recursive functions are
representable, in view of Kleene’s Normal Form Theorem (Section 1), it
suffices to show that the minimization scheme when applied to a primitive
recursive predicate will yield a representable partial function.

Suppose g(a,n) is a primitive recursive function with aeN¥, neN, and
suppose the partial recursive function f(a) is defined by

f(@) = p,(g(a,n) =0).
We claim that f(a) is representable, and more generally so is the partial
recursive function

f@,b)=p(n=b A gla,n)=0).

of course, f(a)=f(a,0). _

Since g is representable, there is a closed term G such that #gla,n) =
(G'#a)'#n holds in #. We seek a closed term F such that #f(a,b)=
F'(#a,#b) whenever f(a,b) is defined. ‘

Suppose for the moment, we can find a term P(u,v) in & such that

P(u, #n)=4#nif u'ffn=0, v
Plu, #n) = P(u,#n + 1) if u'#n = #(m + 1) for some meN.

Let

F'(x,y)=P!(G'x,y),
then

Fi(#a,#b)=#b if (G'#a)'#b = 0, i.e. g(a,b)=0.
and

F/#a,#b)=F'(#a,#(b + 1)) if g(a,b) 0.

We claim that F represents f. For suppose f(a, b) is defined and = ¢, then
ga,c)=0 and c > b, but g(a,n) #0 for any n such that ¢ >n>b. Hence
Fi(#a,#c)=#c and F'(#a,#n) = F'(#a,#n + Dforallc>n>b.Ifc=b,
we get Fl(#a#b)=#c=#f(@ab). If c>b we get F/(#a,#b)=
- F'(fla,#b+1)= - = F'(#a,#c) = #ic = #£(a,b). Thus F represents f.

It remains to construct the term P(u, v) with the required property. Let us
assume for the moment that, for any terms « and B, we have a term Qfe, B)
such that

Q(a, B)fo = ﬂa Q(aa B)‘#(m + 1) =0

for all meN. We shall specify o = «, and f presently, but in the meantime we
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define
P(u, v) = (Q(t,, B (")) (Q(es B), V)
If u'#n=0, we get
P(u, #n) = B'(Q(a, ), #n) = #n
provided we stipulate
B'(u,v) = 0.
If u'#n=#(@m+ 1), we get
P(u, #n) = o,/ (Q(o,, B), #n).
Since we want this to be equal to
P(u, #(n + 1)) = (Q(ew, ) (W #(n + 1))/ (Q(e,, B), #(n + 1)),
we stipulate that ‘
o, (x, y) = (x @ (S'y)Y (x,5'y).

It remains to find Q(x, f) with the desired property. Consider the
numerical function é(n) given by

80)=1, S(m+1)=0.

This is clearly primitive recursive, hence representable by a closed term A.
Thus

AO=#1, A'#m+1)=0.
Define
R, Y x = (x"(K'B))'a,
where K = 1,4,x, so (K‘x)'y = x. Then
R(@,p)0=(0"(K'p))a=Ia=aq,
R(o, B)"#1 = (I'(K/B)Y o = (K'B)f o= B.
Now let
Q(x, B)x = R, B (A" x).
Then
Q(x, B)'0 = R(x, §)(A'0)
=R(, p)'#1=4,
O, B) #m+ 1 =R, B/ (AT #m+ 1)
= R(o, B0 =,
This completes the proof.
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The above proof, which is presumably of some antiquity, was influenced by
that in the book of Hindley, Lercher and Seldin, but we hope that our
presentation is a bit more transparent. Even so, we feel that we have not
fully exploited the possibilities of simplification due to the presence of
surjective pairing.

We cannot expect a converse to Theorem 4.4 unless we restrict attention
to pure extended A-calculus, the language corresponding to the free C-
monoid generated by the empty set.

Corollary 4.5 (Church). A partial numerical function is representable in
pure extended A-calculus, that is, in the free C-monoid generated by the
empty set, if and only if it is a partial recursive function.

The proof in the converse direction is the same as that already used for
Theorem 3.12 and Proposition 3.2. v
The following exercise, adapted from the book by Barendregt
(1981), where further references will be found, were added as an
afterthought. They give alternative and easier proofs of propo-
sitions 4.3 and 4.4.
Exercises
1. Show that numerals in an extended A-calculus can also be defined by
#n = $™0, where
0=(4n(x), 1), S=2,[4,7(y),x),
and that n’ acts like a predecessor function:
n'(S'x)=x, butn'(0)=1.
Infer that
a ifn=0,

ni#n)’(a,b) = {b ifn>0

2. Suppose the numerical functions g(a) and h(n, m, a) are represented by G
and H (as in the proof of Proposition 4.2, but using the numerals of
Exercise 1) and that

J0,a)=g(a), f(n+1,a)=hin, f(n,a),a).

Show that f(n, a) is represented by F provided F satisfies

Fi(x,y)= n(x)"(G'y, H(%'(x), F¥(w'(x), y), )).

Such an F may be constructed using the following ‘fixpoint operator’
Fix(z) = R(z) R(z), R(z)= A (z'(x'x)),

which satisfies z/ Fix(z) = Fix(z).
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3. Taking ,
K, =4,0((n(G (x,2))! (z, y* ($'2))),
and H, = Fix(K,), verify that

¢ ifG'(x,c)=0
HJe=(KSH)¢c=
we=KH)e {H,’(Sfc) if G (x,c) = S'd,

from some term d,.

4. Consider the partial function f(a) = y,.(g(a, m) = 0), which is defined for a if
g(a, m) = 0 for some m. Suppose g(a, m) is represented by G in the sense that
#g(a,m) = G'(#a, #m). Show that F = A (H,/0) represents f(a) (see Defi-
nition 4.3),

Historical Comments on Part ITI

Section 1. For the history of the primitive recursive and recursive
functions, along with the Church-Turing thesis, see Kleene (1952) and
Mendelson (1974) and their references. Of course the first person to define
precisely the abstract notion of calculating machine was Turing. A more
recent approach, dealing with calculability on an abacus or register
machine, was discovered by Melzak (1961), who influenced Lambek (1961),
by Minsky (1961) and again by Shepherdson and Sturgis (1963). See also the
paper by Dana Scott (1967).

Section 2. The fact that the numerical functions representable in. pure
typed A-calculus are properly contained between the primitive recursive
and recursive functions was known to logicians in the 1960s. Our proof
“follows Shoenfield’s text, chapter 8, which in turn appears to be based on
carlier work of Tait. This entire line of research stems from Gédel's
influential Dialectica paper (1958). Gregorczyk (1964) elucidates many of
the finer points of Godel's remarks. See also Troelstra (1973) and
Barendregt (1981, Appendix A), for surveys. v
Independently from the logicians, M.-F. Thibault (1977) investigated
functions representable in free cartesian closed categories and obtained the
results mentioned in the text. Our results in Part I on the equivalence
between A-calculi and cartesian closed categories complete this circle of
ideas. Once again this illustrates our main theme: the close connections
between natural categorical questions and central results in logic.
The representability of the Ackermann function is in both (Thibault
1977) and (Barendregt 1981, Appendix A), although a related result seems
to have been published first by Gregorczyk (1964, Theorem 6.2).
~ Finally, what are the numerical functions representable in the pure typed
A-calculus? Godel (1958) remarks that they are the go-recursive functions
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(see Péter, 1967), while Shoenfield (1967), following Kreisel and Tait, proves
they are also the same as the provably recursive functions of classical first-
order arithmetic. For a recent survey of these results, see Fortune et al.
(1983). Note however, that none of these authors use product types with
surjective pairing.

Section 3. The representability of functions in formal systems comes from
Godel’s famous 1931 paper. Many of the results in this section are standard
(see, for example, Kleene, 1952) although the notion of strong representa-
bility (which is the natural notion categorically) appears only in
Mendelson’s book (1964). Huber—Dyson’s result (Proposition 3.8) answers
a question posed in early editions of Mendelson.

A stronger version of Theorem 3.12 (the numeralwise representability of
partial recursive functions) using variables rather than numerals is in Coste-
Roy et al. (1980), but their proof uses reflection principles (which were also
mentioned in connection with the projectivity of N in the free topos).

Section 4. We only represent the partial recursive functions in the untyped
A-calculus in a ‘weak’ serise. What happens if f(a,,...,a,) is undefined?
Church (1940) proposed in his version of Al-calculus that f(a,,...,a,)
undefined should imply that the term F/(#a,,...,#a,) has no normal form.
However Barendregt (1981) argues persuasively that this was not a good
definition and discusses numerous recent results on these matters. For us
the issue is further complicated by the fact that the original Church~Rosser
theorem fails for untyped A-calculi with surjective pairing, as we remarked
in Part I. We feel the final story here has not yet been written.
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