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Preface

This book makes an effort to reconcile two different attempts to come to
grips with the foundations of mathematics. One is mathematical logic, which
traditionally consists of proof theory, model theory and the theory of
recursive functions; the other is category theory. It has been our experience
that, when lecturing on the applications of logic to category theory, we met
with approval from logicians and with disapproval from categorists, while
the opposite was the case when we mentioned applications of category
theory to logic. Unfortunately, to show that the logicians’ viewpoint is
essentially equivalent to the categorists’ one, we have to slightly distort
both. For example, categorists may be unhappy when we treat categories
as special kinds of deductive systems and logicians may be unhappy when
we insist that deductive systems need not be freely generated from axioms
and rules of inference. The situation becomes even worse when we take the
point of view of universal algebra. For example, combinatory logics are for
us certain kinds of algebras, which goes against the grain for those logicians
who have spent a life-time studying what we call the free such algebra. On
the other hand, cartesian closed categories and even toposes are for us also
certain kinds of algebras, although not over sets but over graphs, and this
goes against the grain of those categorists who like to think of products and
the like as being given only up to isomorphism. To make matters worse,
universal algebraists may not be happy when we stress the logical or the
categorical aspects, and even graph theorists may feel offended because we
have had to choose a definition of graph which is by no means standard.

This is not the first book on categorical logic, as there already exists a
classical monograph on first order categorical logic by Makkai and Reyes,
not to mention a book on toposes written by a categorist (Johnstone) and a
book on topoi written by a logician (Goldblatt), both of whom mention the
internal language of toposes*. Our point is rather this: logicians have made

* Let us also draw attention to the important recent book by Barr and Wells,
which manages to cover an amazing amount of material without explicit use of
logical tools, relying on embedding theorems instead.
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three attempts to formulate higher order logic, in increasing power: typed
A-calculus, Martin—-Laf type theory and the usual (let us say intuitionistic)
type theory. Categorists quite independently, though later, have developed
cartesian closed categories, locally cartesian closed categories and toposes.
We claim here that typed A-calculi and cartesian closed categories are
essentially the same, in the sense that there is an equivalence of categories
(even untyped A-calculi are essentially the same as certain algebras we call
C-monoids). All this will be found in Part I. We also claim that intuitionistic
type theories and toposes are closely related, in as much as there is a pair of
adjoint functors between their respective categories. This is worked out in
Part II. The relationship between Martin-L&f type theories and locally
cartesian closed categories was established too recently (by Robert Seely) to
be treated here. Logicians will find applications of proof theory in Part I,
while many possible applications of proof theory in Part II have been
replaced by categorical techniques. They will find some mention of model
theory in Part I and more in Part II, but with emphasis on a categorical
presentation: models are functors. All discussion of recursive functions is
relegated to Part II1.

We deliberately excluded certain topics from consideration, such as
geometric logic and geometric morphisms. There are other topics which we
omitted with some regret, because of limitations of time and space. These
include the results of Robert Seely already mentioned, Gédel’s Dialectica
interpretation (1958), which greatly influenced much of this book, the
relation between Godel’s double negation translation and double negation
sheaves noted by Peter Freyd, Joyal’s proof of Brouwer’s principle that
arrows from R to R in the free topos necessarily represent continuous
functions (and related results), the proof that N is projective in the free topos
and the important work on graphical algebras by Burroni.

Of course, like other authors, we have some axes to grind. Aside from
what some people may consider to be undue emphasis on category theory,
logic, universal algebra or graph theory, we stress the following views:

We decry overzealous applications of Occam’s razor.

We believe that type theory is the proper foundation for
mathematics.

We believe that the free topos, constructed linguistically but
determined uniquely (up to isomorphism) by its universal pro-
perty, is an acceptable universe of mathematics for a moderate
intuitionist and, therefore, that Platonism, formalism and in-
tuitionism are reconcilable philosophies of mathematics.
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This may be the place for discussing very briefly who did what. Many
results in categorical logic were in the air and were discovered by a number
of people simultaneously. Many results were discussed at the Séminaire
Bénabou in Paris and published only in preprint form if at all. (Since we are
referring to a number of preprints in our bibliography, we should point out
that preliminary versions of portions. of this book had also been circulated
in preprint form, namely Part Iin 1982, Part Il in 1983 and Part 0 in 1983.)
If we are allowed to say to whom we owe the principal ideas exposed in this
monograph, we single out Bill Lawvere, Peter Freyd, André Joyal and
Dana Scott, and hope that no one whose name has been omitted will be
offended. _

Let us also take this opportunity to thank all those who have provided us
with some feedback on preliminary versions of Parts 0 and I. Again, hoping
not to give offence to others, we single out for special thanks (in alphabetic
order) Alan Adamson, Bill Anglin, John Gray, Bill Hatcher, Denis Higgs,
Bill Lawvere, Fred Linton, Adam Obtulowicz and Birge Zimmermann-
Huysgen. We also thank Peter Johnstone for his astute comments on our
seminar presentation of Part II. Of course, we take full responsibility for all
errors and oversights that still remain.

Finally let us thank Marcia Rodriguez for her conscientious handling of
the bibliography, Pat Ferguson for her excellent and patient typing of
successive versions of our manuscript and David Tranah for initiating the
whole project.

The authors wish to acknowledge support from the Natural Sciences and
Engineering Research Council of Canada and the Quebec Department of
Education.

Montreal, July, 1984

This reprint differs from the original only in the correction of some
typographical errors. July 1987

In this reprinting we have repaired various minor misprints and errata.
We especially thank Johan van Bentham, Kosta DoSen, and Makoto
Tatsuta for their careful reading of the text. '

Since this book was first published, there has been a tremendous
increase of interest in categorical logic among theoretical computer
scientists. Of particular importance has been the development of higher-
order (= polymorphic) lambda calculi (see Girard’s thesis). In the
terminology of Part I of this book, such calculi correspond to the
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deductive systems associated with the intuitionistic type theories of Part
II(cf. alsoR.A.G. Seely, J. Symb. Logic 52 (1987), pp. 969-989).

The equational treatment of weak natural numbers objectsin Part I has
been extended to strong natural numbers objects (see J. Lambek,

Springer LNM 1348 (1988) 221-229).
Montreal, March, 1994,
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Introduction to Part 0

In Part 0 we recall the basic background in category theory which
may be required in later portions of this book. The reader who is familiar
with category theory should certainly skip Part 0, but even the reader who
is not is advised to consult it only in addition to standard texts.

Most of the material in Part 0 is standard and may also be found in other
books. Therefore, on the whole we shall refrain from makihg historical
remarks. However, our exposition differs from treatments elsewhere in
* several respects.

Firstly, our exposition is slanted towards readers with some acquain-
tance with logic. Quite early we introduce the notion of a ‘deductive system’.
For us, this is just a category without the usual equations between arrows.
In particular, we do not insist that a deductive system is freely generated
from certain axioms, as is customary in logic. In fact, we really believe that
logicians should turn attention to categories, which are deductive systems
with suitable equations between proofs.

Secondly, we have summarized some of the main thrusts of category
theory in the form of succinct slogans. Most of these are due to Bill Lawvere
(whose influence on the development of category theory is difficult to
overestimate), even if we do not use his exact words. Slogan V represents the
point of view of a series of papers by one of the authors in collaboration with
Basil Rattray.

Thirdly, we have emphasized the algebraic or equational nature of many
of the systems studied in category theory. Just as groups or rings are
algebraic over sets, it has been known for a long time that categories with
finite products are equational over graphs. More recently, Albert Burroni
made the surprising discovery that categories with equalizers are also
algebraic over graphs. We have included this result, without going into his
more technical concept of ‘graphical algebra’.

In Part 0, as in the rest of this book, we have been rather cavalier about
set theoretical foundations. Essentially, we are using Godel-Bernays, as do
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most mathematicians, but occasionally we refer to universes in the sense of
Grothendieck. The reason for our lack of enthusiasm in presenting the
foundations properly is our belief that mathematics should be based on a
version of type theory, a variant of which adequate for arithmetic and
analysis is developed in PartII. For a detailed discussion of these
foundational questions see Hatcher (1982, Chapter 8.)

1 Categories and functors

In this section we present what our reader is expected to know
about category theory. We begin with a rather informal definition.

Definition 1.1. A concrete category is a collection of two kinds of entities,
called objects and morphisms. The former are sets which are endowed with
some kind of structure, and the latter are mappings, that is, functions from
one object to another, in some sense preserving that structure. Among the
morphisms, there is attached to each object A4 the identity mapping 1 ,:
A — A such that 1 4(a) = a for all ac 4. Moreover, morphisms f: 4 — B and
g:B— C may be composed to produce a morphism gf: A — C such that
(gf)a) = g(f(a)) for all acA. (See also Exercise 2 below.)

Examples of concrete categories abound in mathematics; here are just three:

Example CI1. The category of sets. Its objects are arbitrary sets and its
morphisms are arbitrary mappings. We call this category ‘Sets’.

Example C2. The category of monoids. Its objects are monoids, that is,
semigroups with unity element, and its morphisms are homomorphisms,
that is, mappings which preserve multiplication (the semigroup operation)
and the unity element.

Example C3. The category of preordered sets. Its objects are preordered
sets, that is, sets with a transitive and reflexive relation on them, and its
morphisms are monotone mappings, that is, mappings which preserve this
relation.

The reader will be able to think of many other examples: the categories of
rings, topological spaces and Banach algebras, to name just a few. In fact,
one is tempted to make a generalization, which may be summed up as
follows, provided we understand ‘object’ to mean ‘structured set’.

Slogan I. Many objects of interest in mathematics congregate in concrete
categories.
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We shall now progress from concrete categories to abstract ones, in three
easy stages.

Definition 1.2. A graph (usually called a directed graph) consists of two
classes: the class of arrows (or oriented edges) and the class of objects (usually
called nodes or vertices) and two mappings from the class of arrows to the
class of objects, called source and target (often also domain and codomain).

source

_—

Arrows Objects

————inn s sl

target

One writes /f: A — B’ for ‘source f = A and target f = B’. A graph is said to
be small if the classes of objects and arrows are sets.

Example C4. The category of small graphs is another concrete category. Its
objects are small graphs and its morphisms are functions F which send
arrows to arrows and vertices to vertices so that, whenever f: A — B, then
F(f). F(4)— F(B).

A deductive system is a graph in which to each object A there is associated an
arrow 1 ;: A — A, the identity arrow, and to each pair of arrows f: A — Band
g: B— C there is associated an arrow gf: A — C, the composition of f with g.
A logician may think of the objects as formulas and of the arrows as
deductions or proofs, hence of

f:A-B g:B-C
gf:A-C
as a rule of inference. (Deductive systems will be discussed further in Part 1.)

A category is a deductive system in which the followmg equations hold,
forall f:A—B,g:B—C and h:C—D:

fla=f=13f, (hg)f=hgf).

Of course, all concrete categories are categories. A category is said to be
small if the classes of arrows and objects are sets. While the concrete
categories described in examples 1 to 4 are not small, a somewhat surprising
observation is summarized as follows:

Slogan II. Many objects of interest to mathematicians are themselves
small categories.

Example CI'. Any set can be viewed as a category: a small discrete
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category. The objects are its elements and there are no arrows except the
obligatory identity arrows.

Example C2'. Any monoid can be viewed as a category. There is only one
object, which may remain nameless, and the arrows of the monoid are its
elements. In particular, the identity arrow is the unity element. Compo-
sition is the binary operation of the monoid.

Example C3'. Any preordered set can be viewed as a category. The objects

- are its elements and, for any pair of objects (a, b), there is at most one arrow

a— b, exactly one when a <b.

It follows from slogans I and TI that small categories themselves should be
the objects of a category worthy of study.

Example C5. The category Cat has as objects small categories and as
morphisms functors, which we shall now define.

Definition 1.3. A functor F: of — % is first of all a morphism of graphs (see
Example C4), that is, it sends objects of .o to objects of # and arrows of .o
to arrows of 4 such that, if f: 4 — A’, then F(f): F (A)— F(4'). Moreover, a
functor preserves identities and.composition; thus

F(L)=1pay, Flgf)=F@F(f).
In particular, the identity functor 1_:.o — .o/ leaves objects and arrows
unchanged and the composition of functors F: .« — # and G: & — % is given
by

(GF)(A)=G(F(4)), (GF)(f)=G(F(f)),
for all objects A of & and all arrows f: 4 — 4’ in of.
The reader will now easily check the following assertion.

Proposition 1.4. When sets, monoids and preordered sets are regarded as
small categories, the morphisms between them are the same as the functors
between them.

The above definition of a functor F: o/ » & applies equally well when o/
and # are not necessarily small, provided we allow mappings between
classes. Of special interest is the situation when 2 = Sets and < is small.

Slogan Ill. Many objects of interest to mathematicians may be viewed as
functors from small categories to Sets.

Example F1. A set may be viewed as a functor from a discrete one-object
category to Sets.
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Example F2. A small graph may be viewed as a functor from the small
category -=3- (with identity arrows not shown) to Sets.

Example F3. If # =(M,1,-)is a monoid viewed as a one-object category,
an .#-set may be regarded as a functor from .# to Sets. (An .#-set is a set A
together with a mapping M x A — A, usually denoted by (m, a) = ma, such
that la =a and (m-m')a = m(m’'a) for all ac A, m and m'eM.)

Once we admit that functors &/ — & are interesting objects to study, we
should see in them the objects of yet another category. We shall study such
functor categories in the next section. For the present, let us mention two
other ways of forming new categories from old.

Example C6. From any category (or graph) & one forms a new category
(respectively graph) &/°? with the same objects but with arrows reversed,
that is, with the two mappings ‘source’ and ‘target’ interchanged. o/°" is
called the opposite or dual of 7. A functor from &7/°? to 4 is often called a
contravariant functor from &/ to %, but we shall avoid this terminology
except for occasional emphasis.

Example C7. Given two categories o/ and %, one forms a new category
& x B whose objects are pairs (4,B), A in & and B in #, and whose
arrows are pairs (f,g):(A, B)—(A4',B’), where f:A—> A" in o/ and g: B
B’ in #. Composition of arrows is defined componentwise,

Definition 1.5. An arrow f: A — B in a category is called an isomorphism if
_ there is an arrow g: B— A such that gf = 1, and fg = 1. One writes A @ B
to mean that such an isomorphism exists and says that A is isomorphic
with B. \

In particular, a functor F: .o — 4% between two categories is an isomorph-
ism if there is a functor G: # — &/ such that GF = 1 and FG = 1,,. We also
remark that a group is a one-object cétegory in which all arrows are
isomorphisms.

To end this section, we shall record three basic isomorphisms. Here 1 is the
category with one object and one arrow.

Proposition 1.6. For any categories </, 4 and %, _
A x1z2d, (AXBXEC2AXBXE), A XB=RxA.

Exercises

1. Prove Propositions 1.4 and 1.6.

2. Show that for any concrete category .« there is a functor U: .o/ — Sets
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which forgets’ the structure, often called the forgetfil functor. Clearly Uis
Jaithful in the sense that, for all f,g:A3B, if U(f)=U(g) then
S=g. (A more formal version of Definition 1.1 describes a concrete
category as a pair (o, U), where o is a category and U: .o - Sets is
a faithful functor))

3. Show that for any category «f there are functors A:of —of x of
and O_:/—1 given on objects A of o by A(4)=(A4,A4) and
0O,(A) = the object of 1.

2 Natural transformations
In this section we shall investigate morphisms between functors.

Definition 2.1. Given functors F,G: o/ 3 &, a natural transformation
t:F—G is a family of arrows t(4): F(4) - G(A) in %, one arrow for each
object A of o7, such that the following square commutes for all arrows
[iA->Bin «:

1(A)
F(4) G(A)
£f) G()
F(B) B G(B)

that is to say, such that
G(f)(A) = t(B)F(f).

It is this concept about which it has been said that it necessitated the
invention of category theory. We shall give examples of natural transform-
ations later. For the moment, we are interested in another example of a
category. ‘

Example C8. Given categories o/ and 4, the functor category #* has as
objects functors F:.of -4 and as arrows natural transformations. The
identity natural transformation 1 r F = F is of course given by stipulating
that 1;(4) = 15, foreach object A of . If t: F — G and u: G — H are natural
transformations, their composition uct is given by stipulating that
(u°t)(A) = u(A)t(A) for each object 4 of .

To appreciate the usefulness of natural transformations, the reader should
prove for himself the following, which supports Slogan 1L

Proposition 2.2. When objects such as sets, small graphs and .#-sets are
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viewed as functors into Sets (see Examples F1 to F3 in Section 1), the
morphisms between two objects are precisely the natural transformations,
Thus, the categories of sets, small graphs and .#-sets may be identified with
the functor categories Sets!, Sets ™ and Sets”respectively.

Of course, morphisms between sets are mappings, morphisms between
graphs were described in Definition 1.3 and morphisms between .#-sets are
-homomorphisms. (An -homomorphism f: A— B between #-sets isa
mapping such that f(ma) = mf(a) for all meM and acA)

We record three more basic isomorphisms in the spirit of
Proposition 1.6. ’

. Proposition 2.3. For any categoriqs &, B and %,

A 2o, G (G, (oA x B = A x B
We shall leave the lengthy proof of this to the reader. We only mention here
the functor % — (%), which will be used later. We describe its action
on objects by stipulating that it assigns to a functor F:.of x B —% the
functor F*: o/ - %% which is defined as follows:

For any object A of ., the functor F *A):#B—%¥ is given by
F*(A)(B) = F(A, B) and F*(A4)(g) = F(1,,9), for any object B of # and any
arrow g:B—B' in 4.

For any arrow f:A— A", F "‘(f\);\F *(A)— F*(A') is the natural transform-
ation given by F*(f)(B) = F(f, 1), for all objects B of 4.

Finally, to any natural transformation t: F — G between functors F. , Gt
o/ x % 3% we assign the natural transformation t*: F* — G* which is given
by t*(A)(B) = (4, B) for all objects A of o7 and B of .

This may be as good a place as any to mention that natural transform-
ations may also be composed with functors.

Deﬁnition 2.4. In the situation

VENL YR
G

if £: F — G is a natural transformation, one obtains natural transformations
Kt:KF - KG between functors from « to € and tL: FL— GL between
functors from 2 to # defined as follows:

(Kt)(4) = K(t(A)), (eL)(D) = t(L(D)),
for all objects 4 of & and D of 9.

If H: of — 4 is another functor and u: G » H another natural transform- -
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ation, then the reader will easily check the following ‘distributive laws’:
K(uot)=(Ku)o(Kt), (uct)L= (uL)o(tL).
If we compare Slogans I and III, we are led to ask: which categories may

be viewed as categories of functors into Sets? In preparation for an answer
to that question we need another definition.

Definition 2.5. 1If A and B are objects of a category o/, we denote by
Hom_,(A, B) the class of arrows 4 — B. (Later, the subscript « will often be
omitted.) If it so happens that Hom (A, B) is a set for all objects 4 and B, o/
is said to be locally small.

One purpose of this definition is to describe the following functor.

Example F4. 1f of is a locally small category, then there is a functor
Hom ,: o/°" x .o/ — Sets. For an object (4, B) of &°P x o, the value of this
functor is Hom, (A4, B), as suggested by the notation. For an arrow
(g,h):(4,B)~ (4", B)) of o°® x o/, where ¢:A'> A and h:B- B in o,
Hom_/(g, h) sends feHom (4, B) to hfgeHom (A, B)).

Applying the isomorphism Sets”” > — (Sets*)*" of Proposition 2.3, we
obtain a functor Hom%: o/°? - Sets¥ and, dually, a functor Hom¥op:
o —Set””. We shall see that the latter functor allows us to assert that
& is isomorphic to a ‘full’ subcategory of Sets”".

Definition 2.6. A subcategory % of a category 4 is any category whose class
of objects and arrows is contained in the class of objects and arrows of @
respectively and which is closed under the ‘operations’ source, target,
identity and composition. By saying that a subcategory € of B is full we
mean that, for any objects C,C’ of @, Homy(C, C') = Hom,(C, C)).

For example, a proper subgroup of a group is a subcategory which is not
full, but the category of Abelian groups is a full subcategory of the category
of all groups.

The arrows F — G in Sets”” are natural transformations. We therefore
write Nat(F, G) in place of Hom(F, G) in Sets*™.

Objects of the latter category are sometimes called ‘contravariant’
functors from .o/ to Sets. Among them is the functor h 4+ = Hom (-, 4)
which sends the object 4’ of .o onto the set Hom_/(A’, A) and the arrow
J:A"> A" onto the mapping Hom_,(f, 1 ,): Hom (A", A)— Hom (4’, A).

The following is known as Yoneda’s Lemma.

Proposition 2.7. If o is locally small and F- /" — Sets, then Nat(h,, F) is
in one-to-one correspondence with F (A).

Proof. 1f ae F(A), we obtain a natural transformation & h 41— F by stipulat-
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ing that d(B):Hom,(B,4)—>F(B) sends ¢g:B—A onto F(g)(a)
(Note that F is contravariant, so F(g): F(4)— F(B).)

Conversely, if t: h , — F is a natural transformation, we obtain the element
t(A)(1 )€ F(A). It is a routine exercise to check that the mappings a - a and
t —t(A)(1,) are inverse to one another.

Definition 2.8. A functor H: o/ — A is said to be faithful if the induced
mappings Hom (4, A') > Homg(H(A4), H(A)) sending f: A — A’ onto H(f):
H(A)— H(A') for all A', Ae o/ are injective and full if they are surjective. A
full embedding is a full and faithful functor which is also injective on objects,
that is, for which H(4) = H(A’) implies A = A".

Corollary 2.9. If o is locally small, the Yoneda functor Hom¥.,: of —
Sets”*” is a full embeddmg

Proof. Writing H=Hom¥.,, we see that the induced mapping
Hom(4, A") —» Nat(H(A), H(A")) sends f: A — A’ onto the natural transfor-
mation H(f). H(A)— H(A’) which, for all objects B of .o, gives rise to the
mapping  H(f)(B)=Hom(l,, f): Hom(B,4)—»Hom(B,4). Now
feH(A')(A), hence f: H(A)— H(A'), as defined in the proof of Proposition
2.7, is given by
J(B)(g) = H(4)(g)(f) = Hom,, (g, 1,)(/)
= fg =Hom,, (1, /)(g) = H(f)(B)(9),

hence f'= H(f). Thus the mapping f +~ H(f) is a bijection and so H is full
and faithful.

Finally, to show that H is injective on objects, assume H(A4) = H(4"), then
Hom(4, 4) = Hom(4, 4'), so A’ must be the target of the identity arrow 1,
thus A’ = 4.

Exercises ,
1. Prove propositions 2.2 and 2.3.

2. 1f 2 is the category - — - (with identity arrows not shown), show that the
objects of o#2 are essentially the arrows of s and that ‘source’ and ‘target’
may be viewed as functors §, 8" /2 3 .

3. If F,G:of =3 # are given functors, show that a natural transformation
t: F > G is essentially the same as a functor t: o/ - %2 such that 5t=F
and 't =G.

4. Show that the isomorphism in Yoneda’s Lemma (Proposition 2.7) is
natural in both 4 and F, that is, if f: B— A and t: F — G then the relevant
diagrams commute.
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3 Adjoint functors

Perhaps the most important concept which category theory has
helped to formulate is that of adjoint functors. Aspects of this idea were
known even before the advent of category theory and we shall begin by
looking at one such.

We recall from Proposition 1.4 that a functor o/ — % between two pre-
ordered sets & = (A4, <) and # = (B, <) regarded as categories is an order
preserving mapping F: A — B, that is, such that, for all elements a,a’ of 4, if
a < a' then F(a) < F(a). A functor G: # — &/ in the opposite direction is said
to be right adjoint to F provided, for all aeA and beB,

F(a)<b ifand only if a< G(b).

Classically, a pair of order preserving mappings (F, G) is called a covariant
Galois correspondence if it satisfies this condition.

Once we have such a Galois correspondence, we see immediately that
GF: o/ — & is a closure operation, that is, for all a,a’e A,

a< GF(a),
GFGF(a) < GF(a),
ifag<d then GF(a)<GF(a).

Similarly, FG:% — % may be called an interior operation: it satisfies the
conditions dual to the above.

In a preordered set an isomorphism a = o’ just means that a <a’ and
a’ < a.(In a poset, or partially ordered set, one has the antisymmetry law: if
a>~da then a=d.) We note that it follows from the above that
GFGF(a) = GF(a) and, dually, FGFG(b) = FG(b), for all acA4 and beB.

The most interesting consequence of a Galois correspondence is this: the
functors F and G set up a one-to-one correspondence between isomorphism
classes of ‘closed’ elements a of A such that GF(a) = a and isomorphism
classes of ‘open’ elements b of B such that FG(b) = b. We also say that F and
G determine an equivalence between the preordered set &7, of closed
elements of &7 and the preordered set %, of open elements of %. The
following picture illustrates this principle of ‘unity of opposites’, which will
be generalized later in this section.

X4 B

G

inclusion inclusion

'MO . ‘@0
equivalence
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Before carrying out the promised generalization, let us look at a couple of
examples of Galois correspondence; others will be found in the exercises.

Example G1. Take both &7 and 4 to be (N, <), the set of natural numbers
with the usual ordering, and let

F(0) =0, F(a) = p, = the ath prime number when a >0,
G(b) = n(b) = the number of primes <b.
Then F and G form a pair of adjoint functors and the ‘unity of opposites’

describes the biunique correspondence between positive integers and prime
numbers.

Many examples arise from a binary relation R € X x Y between two sets X
and Y. Take o = (P(X), <), the set of subsets of X ordered by inclusion,
and # = (#(Y), =), ordered by inverse inclusion, and put

F(A) = {ye YlvxeA(x’ .V)ER}a

G(B) = {xeX|V,p(x, y)ER},
for all A = X and B < Y. This situation is called a polarity; it gives rise to an
isomorphism between the lattice &, of ‘closed’ subsets of X and the lattice
B, of ‘closed’ subsets of Y. (Note that the open elements of 4 are closed
subsets of Y)

Example G2. Take X to be the set of points of a plane, Y the set of half-
planes, and write (x, y)eR for xey. Then, for any set 4 of points, GF(A) s the
intersection of all halfplanes containing A, in other words, the convex hull of
A. The ‘unity of opposites’ here asserts that there are two equivalent ways of
describing a convex set: by the points on it or by the halfplanes containing it.

We shall now generalize the notion of adjoint functor from preordered sets
to arbitrary categories. In so doing, we shall bow to a notational prejudice
of many categorists and replace the letter ‘G’ by the letter ‘U”. (U’ is for
‘underlying’, ‘F” for ‘free’)

Definition 3.1. An adjointness between categories &/ and % is given by a

quadruple (F,U,n,¢), where F:of - % and U:# — .o/ are functors and

7:1,— UF and & FU — 14 are natural transformations such that
(Ue)o(nU) =1y, (eF)o(Fn)= 1.

One says that U is right adjoint to F or that F is left adjoint to U and one

calls 7 and e the two adjunctions.

Before going into examples, let us give another formulation of what will
turn out to be an equivalent concept (in Proposition 3.3 below).
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Definition 3.2. A solution to the universal mapping problem for a functor
U: % — o is given by the following data: for each object 4 of .o an object
F(A) of # and an arrow n(A): A — UF(A) such that, for each object B of #
and each arrow f: 4 — U(B) in &7, there exists a unique arrow f*: F(4)— B
in % such that U(f*m(A4) =f.

F(A4) ~ _
- S
UF(A) T~ -

A -~ ~p

U(r+)
n(4) U(B)
f
A

Example Ul. Let # be the category of monoids, </ the category of sets,
U:#— o/ the forgetful (= underlying) functor, F(4) the free monoid
generated by the set A and 5(4) the obvious mapping of A into the
underlying set of the monoid F(A).

Definition 3.2'. Of special interest is the case of Definition 3.2 in which 4 is
a full subcategory of .« and U: % — o is the inclusion. Then 7(A4): A — F(A)
may be called the best approxzman\on of A by an object of # in the sense that,

for each arrow f: 4 — B with B in 4, there is a unique arrow f*: F(4)— B
such that f*#(A4) = f. One then says that % is a full reflective subcategory of
&/ with reflector F and reflection .

Example U2. Let of be the category of Abelian groups, # the full
subcategory of torsion free Abelian groups and F(4) = A/T(A), where T(4)
is the torsion subgroup of A.

Proposition 3.3. Given two categories o/ and %, there is a one-to-one
correspondence between adjointnesses (F, U, #, ¢) and solutions (F, 7, *) of
the universal mapping problem for U: & — 7.

Proof. If(F, U,n,¢)is given, put f* = g(B)F(f). Conversely, if U and (F, 5, *)

are given, foreach f: 4 — A4', put F(f) = (n(A") f)* and check that this makes
F a functor and # a natural transformation; moreover define &(B) = (1 va)™

It follows from symmetry considerations that an adjointness is also
equivalent to a ‘co-universal mapping problem’, obtained by dualizing
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Definition 3.2. (A left adjoint to % — </ is a right adjoint to #° — &/°P)
In view of Proposition 3.3, Examples U1 and U2 are examples of adjoint
functors. We shall give other examples later.
There is yet another way of looking at adjoint functors, at least when oA
and # are locally small.

Proposition 3.4. An adjointness (F, U, 1, ¢) between locally small categories
s/ and # gives rise to and is determined by a natural isomorphism
Hom,(F(-),—) & Hom /-, U(-)) between funetors .&/°° x £ 3 Sets.

We leave the proof of this to the reader.

Even if 7 is not locally small, there is a natural bijection between arrows
FA-B in # and arrows A— UB in /. Logicians may think of such a
bijection as comprising two rules of inference; and this point of view has
been quite influential in the development of categorical logic. An analogous
- situation in the propositional calculus would be the bijection between
proofs of the entailments C A A B and A+ C=> B (see Exercise 4 below).
Inasmuch as implication is a more sophisticated notion than conjunction,
the adjointness here explains the emergence of one concept from another.
This point of view, due to Lawvere, may be summarized by yet another
. slogan, illustrations of which will be found throughout this book (see, for
instance, Exercise 6 below).

Slogan IV, Many important concepts in mathematics arise as adjoints,
right or left, to previously known functors.

We summarize two important properties of adjoint functors, which will be
useful later.

Proposition 3.5. (i) Adjoint functors determine each other uniquely up to

natural isomorphisms.
(i) If (U, F) and (U', F') are pairs of adjoint functors, as in the diagram

U U
€ i o,
- F " F

then (UU’, F'F) is also an adjoint pair.

Exercise

1. If(F, G) is a Galois correspondence between posets <7 and %, show that F
preserves supremums and G preserves infimums. If .o/ has and F preserves
supremums, show that its right adjoint G: & — &/ can be calculated by the
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formula
G(b) = sup {ae o/ | F(a) < b}.

2. In Example Gl, show that the two sets {F(a)+ alaeN} and
{G(b)+ b + 1|beN} are complementary sets.

3. Givenacommutative ring C, take X to be the set of elements of C, Y the set
of prime ideals of C and define R< X x Y by writing (x, y)eR for xey. If F
and G are defined as for any polarity, show that, for any ideal 4 of C,
GF(4)={xeX|3,x"e A}, the so-called radical of A. Also show that the
closure operation FG on the set of subsets of Y makes Y into a compact
topological space called the spectrum of C. The ‘unity of opposites’ here
describes a one-to-one correspondence between closed subspaces of the
spectrum and ideals which are equal to their radical.

4. Take o and # to be the preordered sets of formulas of the propositional
calculus, the order being entailment. For a fixed formula C, show that
F:of — % and G: B — & defined by F(4)= C A A and G(By=C=Barea
pair of adjoint functors. What is the ‘unity of opposites’ in this case?

5. Prove propositions 3.4 and 3.5.

6. fof =B = Sets, C a given set, let F(4) = C x 4 and Ul (B) = Bt for any sets
A and B. Extend U and F to functors and show that U is right adjoint to F.

7. Show that the forgetful functor from Cat to Sets which sends every small
category onto its set of objects has both a left and a right adjoint.

8. Show that the forgetful functor from Cat to the category of graphs has a
left adjoint, which assigns to each graph the category ‘generated by it’.

4 Equivalence of categories

We shall extend the ‘unity of opposites’ to general categories, but
first we need to extend the notion of ‘equivalence’.

Definition 4.1. An adjointness (F, U, #,¢) is an adjoint equivalence if y and ¢
are natural isomorphisms. More generally, an equivalence between
categories o/ and 4 is given by a pair of functors F: of —» B and U: B — o
such that UF =1, and FU = 1,,.

The extra generality is an illusion: given that #:1,— UF and &": FU — 1 g are
isomorphisms, one obtains an adjoint equivalence by putting

&(B) = £(B)F(Ue'(B)jyU(B))~ 1.

Proposition 4.2. An adjointness (F, U, 7, ¢) between categories &/ and %
induces an adjoint equivalence between full subcategories o/, of o7 and &,
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of %, where

oA =Fixn = {Aesl|n(A) is an isomorphism},
A, = Fix ¢ = {Be#|e(B) is an isomorphism}.

Moreover, nU is an isomorphism if and only if ¢F is.

The significance of the last statement is this: if nU is an isomorphism, .=,
"“becomes a reflective subcategory of o, if ¢ F is an isomorphism 4 , becomes
a coreflective subcategory of 4. (See Definition 3.2, ‘coreflective’ being the
dual of ‘reflective’.)

Proof. Only the last statement requires proof. It is a consequence of the
following.

:Lemma 4.3. Given an adjointness (F, U, #, ¢) between categories </ and 4,
the following statements are equivalent:
(1) nUF=UFn,
(2) nU is an isomorphism,
(3) eFU =FUs,
(4) &F is an isomorphism.
Proof. We show that (1)=>(2)=(3)=(4)=>(1).
(1)=>(2). Suppose for the moment that n(A) has a left inverse g, we claim
that, in the presence of (1), g is also a right inverse. For
n(A)g = UF(gimUF(A) by naturality of »
= UF(g)UFn(4) by (1)
- =UF(gn(4)) = UF(1 5} = 1y
Now, by Definition 3.1, nU(B) has a left inverse Ug(B), hence nU(B) is an
isomorphism, which proves (2).
(2)=>(3). Assume that nU(B) is an isomorphism, then its inverse is Ug(B),
by Definition 3.1. Hence
eF U(B) =¢gF U(B)F (1(/1:'0(3))
= ¢FU(B)F(nU(B)U¢(B))
=eFU(B)FnU(B)FUé¢(B)
= FU¢(B).

(3)=>(4). This is proved exactly like (1)=>(2). In fact, we may quote
(1)=>(2), since there is an adjointness between #°° and /.
(4)=-(1). This is proved like (2)=-(3) or by duality quoting (2)=>(3).
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Examples of Proposition 4.2 abound in mathematics. The main problem
is usually the identification of s/, and %,,. The following examples require
some knowledge of mathematics that has not been developed in this book.
(The same will be true for exercises 2 and 3 below.)

Example Al. Let o be the category of Abelian groups and £ the opposite
of the category of topological Abelian groups. Let K be the compact
group of the reals modulo the integers: K = R/Z. For any abstract Abelian
group A, define F(A4) as the group of all homomorphisms of 4 into K,
with the topology induced by K. For any topological Abelian group B,
define U(B) as the group of all continuous homomorphisms of B into K.
Then U and F are easily seen to be the object parts of a pair of adjoint
functors. Here </, is &, while @, is the opposite of the category of
compact Abelian groups. The ‘unity of opposites’ asserts the well-known
Pontrjagin duality between abstract and compact Abelian groups. The
last statement of Proposition 4.2 tells us that the compact Abelian groups
form a reflective subcategory of the category of all topological Abelian
groups.

Example A2. Let o/ be the category of rings and & the opposite of the
category of topological spaces. For any ring A, F(4) is the topological
space of homomorphisms of 4 into Z/(2), the ring of integers modulo 2,
the topology being induced by the discrete topology of Z/(2). For any
topological space B, U(B) is the ring of continuous functions of B into
Z/(2) (with the discrete topology), with the ring structure inherited by that
of Z/(2). Here </, is the category of Boolean rings and %, is the opposite
of the category of zero-dimensional compact Hausdorff spaces. The ‘unity
of opposites’ asserts the well-known Stone duality. Both o/ o and # are full
reflective subcategories.

We summarize the ‘unity of opposites’ principle in another slogan. (The
reader will have noticed that a duality between categories .« and & is
nothing but an equivalence between o7 and B

Slogan V. Many equivalence and duality theorems in mathematics arise
as an equivalence of fixed subcategories induced by a pair of adjoint
functors.

Exercises

L. Prove the statement following Definition 4.1 that every equivalence gives
rise to an adjoint equivalence. (Hint: first show that nUF = UFy.)
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2. Givea presentation of the well-known Gelfand duality between commuta-
tive C*-algebras and compact Hausdorff spaces in a manner similar to
Example A2. (Let & be the category of commutative Banach algebras.)

3. If o is the category of presheaves on a topological space X and 4 is the
category of spaces over X, show that there is a pair of adjoint functors
between &/ and # which induces an equivalence between sheaves and
local homeomorphisms. (See also Part II, Theorem 10.3)

4. Prove that U: % - o is (half of) an equivalence if and only if it is full and
faithful and every object of ./ is isomorphic to one of the form U(B), for
some object B of 4.

Limits in categories

In this section we shall study limits in categories. They contain as
special cases many important constructions, for example products,
equalizers and pullbacks, as well as their duals. Moreover, they serve as an
illustration of Slogan I'V. We begin with the following special case.

Definition 5.1. An object T of a category < is said to be a terminal object
if for each object 4 of & there is a unique arrow O, 4 — T. (Later, we
shall usually write 1 for T)

‘We note that the uniqueness of O, may be expressed equationally by
saying that, for all arrows h: A—>T,h= Q.

It is easily seen that T is unique up to isomorphism: if T’ is another
terminal object, then T’ T. Hence, one often speaks of the terminal
“object. For example, in the category of sets, any one element set {*} is
terminal and, in the category of groups, any one element group is terminal.
A terminal object in 2/°? is also called an initial object in «. In Sets, the
only initial object is the empty set 5, while, in the category of groups,
any terminal object is also initial.

As an illustration of Slogan IV, we note that to say that o/ has a
terminal (respectively initial) object is the same as saying that the functor
Oy« —1 has a right (respectively left) adjoint.

Definition 5.2. Given a set I and a family {4,]iel} of objects in a category
</, their product is given by an object P and a family of projections
{pi: P— A4;]iel} with the following universal property: given any object Q
and any family of arrows {q;: 0 — A,|iel}, there is a unique arrow f:Q — P
such that p,f= g, for all iel.

We may also say that the family {p;: P— A,|iel } is a terminal object in the
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category of all families {q;:Q — A4;|iel} (with appropriate arrows).

It is easily seen that the object P is unique up to isomorphism. Hence,
one speaks of the product. It is often denoted by []i;4;. In the category
of sets, products are ‘cartesian’ products. In many concrete categories,
products are constructed on the underlying sets with an obvious induced
structure. This is true for the categories of monoids, groups, rings etc., in
fact all ‘algebraic’ categories (that is, varieties of universal algebras), as
well as for the categories of posets and topological spaces.

A product in &/ is also called a coproduct in <. There is no one
preferred name for coproducts in the literature; in Sets, coproducts are
disjoint unions, while, in the category of groups, they are free products.

What if I is the empty set? Then the universal property asserts that,
for each object Q, there is a unique arrow Q — P, in other words, that P
is a terminal object.

Again we have an illustration of Slogan IV: to say that all I-indexed
families in &/ have products (respectively coproducts) is the same as saying
that the functor o/ - ¢! which sends an object 4 of &/ onto the constant
family {A[iel} has a right (respectively left) adjoint.

It may be worth looking at the product of two objects 4 and B of &/
in some detail. It is given by an object A x B with projections 7, z:4 x B
— A and 7 5:4 x B— B such that, for all arrows f:C— A4 and g:C— B,
there is a unique arrow {(f,g>:C—A4 x B satisfying the equations:

74,8{fs9> =1, . 5<f,9)=9g.

Note that the uniqueness of < f, g> may also be expressed by an equation,
namely:

{Ty,ph Wy gh> =h,
forall hC— A x B.

Evidently, the defining property of 4 x B establishes a bijection between
pairs of arrows (C - 4, C— B) and arrows C— 4 x B. To say that all such
products exist is the same as saying that the diagonal functor A: o/ —
s/ x o/ has a right adjoint. Dually, all binary coproducts exist if and only
if A has a left adjoint.

Definition 5.3. A pair of arrows f,g:4 =3 B is said to have an equalizer
e:C— A provided fe = ge and, for all i: D — 4 such that Sh=gh, there is
a unique arrow k: D — C satisfying ek = h. Another way of expressing this
is to say that e:C— A is terminal in the category of all arrows h: D — A
such that fh=gh.

It is easily seen that the equalizing object C is unique up to isomorphism.
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In the category of sets or groups, one may take C = {aeA|f(a)=g(a)}
and e:C— A as the inclusion. As is the case for products, equalizers in
many concrete categories are formed on the underlying sets. An equalizer
in &/°F is also called a coequalizer in /. In Sets, the coequalizer of two
mappings f,g: B3 A is given by e: 4 —» C, where C is obtained from 4 by
~ identifying all elements f(b) and g(b) with beB, and where e is the obvious
. surjection. (More precisely, C = A/=, where = is the smallest equivalence
relation on A such that f(b) = g(b) for all beB.) In the category of groups,
the coequalizer of two homomorphisms f,g: B33 4 is obtained similarly
from a suitable congruence relation on A (or normal subgroup of A).
While it was evident how finite products could be presented equationally,
it is by no means obvious how this can be done for equalizers. The
following discussion is our version of Burroni’s pioneering ideas.

With any diagram A_‘g{ B we associate another diagram

E(f.q) o_cgf_,g’) A which is to serve as its equalizer. Clearly, we must stipulate
the equation

- (BY)  fa(f,9) =g 9)

| Next, let us consider the universal property of a(f,g). Given an arrow
h:D — A such that fh=gh, we seek a unique arrow B(f,g,h): D — E(f,g)
such that
*) £, 9)B(f, 9, 1) = h.
While (*) is an equation, it depends on the condition fh = gh, which we
would like to get rid of. We shall consider two special cases of B(f,g,h)
in which the condition fh = gh is automatically satisfied.

First special case: consider any arrow h: D — A, then surely

S ho(f b, gh) = gho(fh, gh).
Hence we stipulate an arrow y(f,g,h) (= B(f, g, ha(fh, gh))): E(fh, gh)—
E(f, g) satisfying as a special case of (*): .
(B2)  «f,9)(f. g, h) = ho(fh,gh).
Second special case: consider any arrow f: A — B, then surely f1,=f1,.
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Hence we stipulate an arrow ) (=Bf, f,1)): A—E( [, f) satisfying as
a special case of (*):

B3)  «f,NH(f)=1,.

From the two special cases we can define B(f,g.h) in general:

Assuming fh = gh, put
**)  B(f.9. W =f.9,W(fh).

Then
o f, 9B, 9. B) = o f, gy f, 9, W)O(f h) = hau( f b, gh)S(f hy),
by (B2). As it so happens that fh = gh, this becomes equal to
hl D= h
by (B3), and so we recapture (*).

It remains to express the uniqueness of B(f, 9, W) equationally. So suppose
that a(f, g)k = h, we want this to imply that k = B(f, g, ). This is evidently
done by
(B4)  B(f.9,4f,g)k) =k.

Here f can be eliminated in favour of y and § using (**),
We summarize the preceding discussion of equalizers as follows.

Proposition 5.4.(Burroni). Equalizers for all pairs of arrows f,g: A3 B are
given by the following data: an arrow o(f,9) E(f,g)— A for each such
pair, a family of arrows y(f, g, h): E(fh,gh)— E(f, g) one for each h: D —A,
and an arrow &(f): A — E(f, f) satisfying (B1) to (B4) (with § eliminated
from (B4) by (**)).

Definition 5.5. A pullback of a diagram g>€ is given by a diagram P<:;1

S . . . A

which is terminal in the category of all diagrams D\B such that

A——m——C

D —————sp

commutes. In other words,
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A C

P

B

commutes and, for any other commutative square as above, there is a
unique arrow D — P such that the two triangles

A
> P\
It is easily seen that P is unique up to isomorphism. A pullback in #°°
is called a pushout in /. In a category with a terminal object T, binary
products are special cases of pullbacks, namely when C = T. Instead of

describing pullbacks in other special categories, we shall show how, in
general, they may be constructed from products and equalizers.

D B commute,

Proposition 5.6. If a category has binary products and equalizers,
pullbacks may be constructed as follows:

h N
a

Ta, B g

)  AXB———= B

y n,A'B
P = E(fn, gn’)\,/

Proof. Note that fra(fn,gn')=gn'a(fr,gn’), by (Bl). Suppose h:D— A
and k:D—B are such that fh=gk. Then there is a unique arrow
{h,k>:D—A x Bsuch that n{h,k) = h and n'(h, k) =k, hence a unique
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arrow s: D —P such that na(fr,gn’)s = h and n'a(fr,gn’)s = k, that is,
a(fr,gn’)s = (h, k).

Definition 5.7. Let there be given a category # (the index category) and
a functor I':.# » o/ (called an S-diagram). A limit of T is given by a
terminal object in the category of all pairs (4, t) with 4 an object of &/
and t: K(4) — I a natural transformation, where K(A): # — & is the functor
with constant value A. In other words, (4o, to! K(Ay)—T) is a limit of I
if for all (4, t: K(4)—T) there is unique f:A— A, such that to(I)f = o)
for all objects I of 4.

It is easily seen that A4, is unique up to isomorphism. Special cases of
limits are products (# discrete), equalizers (4 is -33°) and pullbacks (#
is "3). Limits may be constructed from products and equalizers as are
pullbacks (Proposition 5.6). Limits in «/°° are also called colimits in <.
If £ is a directed poset, limits are usually called inverse or projective limits,
while colimits are called direct or inductive limits. The limit of I (or rather
the object A,) is sometimes denoted by lim I’ and the colimit by limT..

The following connection between limits and adjoint functors illustrates
Slogan IV.

Proposition 5.8. To say for given categories .# and & that every #-diagram
I % — o has a limit (respectively colimit) is equivalent to saying that the
constancy functor K: o/ — «/”, which associates to every object A of o the
functor K(A): .# — o with constant value 4, has a right adjoint (respectively
left adjoint).

Proof. One way of asserting that K has a right adjoint L:o/” — &/ is by the
solution to the universal mapping problem (dualize Definition 3.2): for each
object I' of &/ there is an object L(I') and a natural transformation
¢(N): KL{T)—-T such that, for every natural transformation ¢ K(A4)-T
there is a unique natural transformation t*: 4 — L{I') satisfying
g(IK(t*) =t. But this says precisely that (L(I), &I’)) is a limit of T (see
Definition 4.7).

Many functors occurring in nature preserve limits (up to isomorphism).
We shall mention two examples.

Proposition 5.9. 1f A is an object of the locally small category </, then
Hom(A4,—). & —Sets preserves limits: if I:.# » &/ has limit A, then
Hom(A4, I'(-)): # — Sets has limit Hom(A4, A,).

Proof. Write h*=Hom(4,-) and assume that (A, to: K(4g)—=T) is
terminal in the category of all pairs (4,t: K(4)—-T). We assert that
(h*(Ao), hAty: hAK(Ag)—h4T) is terminal in the category of all pairs
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(X,7: K(X)—h*T'), X being a set. (Note that h*K(4o) = K(h*(A4,)).) In
other words, we claim that there is a unique mapping y: X — h*(4,) such
that (h*to)eK() = 1. To see what this last equation means, apply it to
any object I of .#, then it asserts

~ Hom(1 ,, to(N))y = (I).
Again, applying this equation to any xe X, we obtain

to(DY(x) = t(I)(x).
If t: K(A) T is defined by t(I) = t(I)(x), we see that this means

toe K(Y(x)) = tr.
The existence of a unique y(x): A - A, with this property is assured by the
fact that (A4,,t,) was terminal. :

Proposition 5.i0. IfF: of — A is left adjoint to U: # — o/, then U preserves
_limits and F preserves colimits.

Proof. If o/ and & are locally small, this is an easy corollary of Proposition
'5.9. However, one may just as well prove the result directly, without
assuming local smaliness, and we shall do so for U.

While it is easy to give a precise argument as in the proof of Proposition
5.9, the reader may find the following sketch more intuitive.

Let ¥ (respectively 2) be the full subcategory of </ (respectively #”)
consisting of those # -diagrams which have limits. Evidently, € contains all
constant #-diagrams K (4), with 4 in &, such that K _(4)(I)= A for all I
in #. Hence we may factor the constancy functor Ko/ —.o/* through
K. o/ —-%. As in Proposition 5.8, we may regard lim, as right adjoint
to K/,. Now F”: o’ —» B’ (respectively U”: B’ — o) factors through
F:4— 9 (respectively U2 — %) and U’ is right adjoint to F’. Then,
clearly, F'K', = K}F.

o £ e
Ky | Kg
€ ﬁ, 2
inclusion inclusion
I F*

MJ__________,QJ
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Taking right adjoints, we obtain, in view of Proposition 3.5,
lim, U’ = Ulim,. Applying both sides to any diagram A:# — % and noting
that U'(A) = UA, we finally obtain lim(UA) = U{(lim(A)).

Definition 5.11. A category & is said to be complete (cocomplete) if it has
all limits (colimits) of diagrams I': # — &/, .# being small. This means that
products (coproducts) and equalizers (coequalizers) exist.

Assuming compieteness of &/ or # one can prove a kind of converse of
Proposition 5.9 and of 5.10. For example, if U: % — of preserves limits
and & is complete, one can construct a left adjoint F:.&/ - %, as in
Exercise 1 of Section 3, provided a certain ‘solution set condition’ holds;
this is the content of Freyd’s Adjoint Functor Theorem. These converse
results will be brought out in the exercises; they depend on the following
lemma, the proof of which is a bit tricky.

Lemma 5.12. If o is complete, then o/ has an initial object if and only
if it has a small pre-initial full subcategory ¥, that is to say, for any object
A of o there is an object C of ¢ and an arrow f:C— A in &/.

Proof. The necessity of the condition is obvious. To prove its sufficiency,
let (Ag,u: K(Ag)—T) be the limit of the inclusion functor "¢ — .«/. In
particular, for each object C of € there is an arrow u(C): A, — C. Take
any object A of &, then, by assumption, we can find C in % and an arrow
f:C— A, hence an arrow fu(C): Ao — A. It remains to show that there is
only one arrow Ay, — A.

Suppose we have two arrows g,h: 4,34 and let k:K — A4, be their
equalizer. It will follow that g = h if we can show that k has a right inverse.
By assumption, there exists C' in € and an arrow f": C' — K. It will suffice to
show that kf'u(C')=1,,.

Now, for any object C of €,

WOl u(C) = u(C),
by naturality of u and because u(C)kf': C' — C is an arrow in the full sub-

category €. Since (A, ) is the limit of the inclusion % — 7, there exists a
unique arrow e: Ay — A, such that u(C)e = u(C). Hence

kfuC)=e=1,,

and our argument is complete.

Exercises

1. Prove that limits can be constructed from products and equalizers,
generalizing the proof of Proposition 5.6.
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. Deduce from Proposition 5.10 that, in the propositional calculus
regarded as a preordered set (see Exercise 4 of Section 3), the distributive
law holds: pA(avb)=(pAaa)v(pab)

. Given two functors F, G: o 3 4, let (F; G) be the category whose objects
are pairs (4,b: F(A)— G(A)), A any object of o, and whose arrows
{4,b) > (A, b) are arrows a:A— A’ in o, such that G(a)b=b'F(a).
Assuming that & is complete and that G preserves limits, show that (F; G)
has an initial object if and only if it has a small pre-initial full subcategory.
(Hint: Use Proposition 5.12.)

. If o is locally small, a functor U: .o/ — Sets is said to be representable if _
U = Hom(A, -) for some objects A of /. Show that U is representable if
and only if the category (K({*});U) has a small pre-initial full sub-

- category. (Hint: Use Exercise 3 with % = Sets.)

. Let .o/ be a complete category. Show that a functor U:.o/ —» & has a left
adjoint if and only if U preserves limits and, for each object B of 4, the
category (K(B); U) has a small pre-initial full sub-category.

. Let of be a complete category. Show that a functor I': .# — .o has a colimit
if and only if the category (K(I'); K) has a small pre-initial full subcategory.
(Here the first K denotes the constancy functor o —(=#”)¥, while the
second K denotes the constancy functor & — /)

. Given a small category o and any functor F: o/°P — Sets, show that Fisa
colimit of representable functors as follows. Let £ be the category whose
objects are pairs (4, t), 4 an object of o and £: Hom (-, A) > F a natural
transformation, and whose arrows (4, t) —»(4',t') arearrows a: 4 — A’ in o
such that t'oHom (—,a)=t¢. Then F is the colimit of the functor I'y:
# ¢~ Sets”™" obtained by composing the Yoneda embedding o — Sets”*
with the obvious forgetful functor #,— /. (The associated natural
transformation £,: I', — K(F) is defined by ty(4,f)=1t.)

6 Triples

We recall that a closure operation on a preordered set .of -
(], <) is a mapping T: |/ | —|.o/| with the following properties:

A<B
T(4)< T(B)’
for all elements A,B of || The first of these says, of course,
that T is order preserving. This notion has been generalized from pre-
ordered sets to arbitrary categories and is then called a ‘standard construc-
tion’, ‘triple’ or ‘monad’. Reluctantly, we choose the second term, as it
appears to be the most widely used.

A<ST(A), TT(4)<T(A),
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Definition 6.1. A triple (T,n, p) on a category &/ consists of a functor T:
s/ — of and natural transformations #: 1, — T and u: T? — T satisfying the
equations

peTyn=1p=penT, popuT=p°Tu.

These equations are sometimes called the unity laws and associative law
respectively and are illustrated by the following commutative diagrams:

T T

T L T? T a T

nT lr n Tu m
T " T T m T

The reader will recall how natural transformations are composed (see
Example C8); for example, the associative law asserts that, for every object
A of o,

AT (A)) = W(A)T(u(A4)).
Proposition 6.2. (Huber). If F:o/ - % is left adjoint to the functor
U: # — of with adjunctions ;1 ,—» UF and &: FU — 14, then (UF,n, UeF)is
a triple on &.

Proof. For example, let us prove one of the unity laws:
ueTy=UeFoUFn=U(F°Fn)= Ul =1y,
“by Definition 3.1, and since

(Ulp)(4) = U(IF(A)) = 1U(F(A)) = 1y(A).
We leave the proofs of the other two laws to the reader.
We shall see that the converse of this proposition is also true; but first we

shall look at a number of examples of triples, which, on the face of it, do not
seem to arise from a pair of adjoint functors.

Example T1. Let there be given a monoid .# = (M, 1,*). For each set 4
define the set T(4)= M x A and the mappings
A A->M x A, wA:Mx(MxA)-Mx A4
a(l,a) (m,(m',@)) > (m-n, a).

One easily makes T into a functor Sets — Sets and checks that # and p are
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natural transformations. Moreover, one obtains a triple (T, 5, 1) on Sets, the
unity laws and associative law here following from the equations
ml=m=1m, (mm)ym' =m(@m m
for all m,m’ and m”"eM, which will explain their names.
Example T2. Let T =P be the covariant power set functor Sets — Sets,
that is, for any set A4,
P(A)={X|X c 4}
and, for any mapping f: A — B, and any subset X < A4,
P(IX) = {f(x)|xeX}.
Furthermore, let the natural transformations n and u be given by the
mappings #(A4): A — P(A) and p(A): P(P(A)) - P(A) defined by

nA)a)={a}, wAX)=x=)X,

Xed ]
-for any set 4, any element ae 4 and any set & of subsets of 4. The reader is
invited to show that (T, #, u) is a triple by verifying the unity and associative
laws in this case.

We now return to the question: does every triple on & arise from a

. o, F U . -
pair of adjoint functors .o/ ——%—s/ as in Proposition 6.2? The
answer is ‘yes’, but the category 4 is not unique. In fact, we shall present two
extremes for the construction of 4.

Definition 6.3. Given a triple (T,n,u) on a category &, the Eilenberg—
Moore category /7 of the triple is defined as follows. Its objects, called
algebras, are pairs (4, @), where ¢: T(A) - A is an arrow of = satisfying the
equations

on(A)=1,, ou(Ad)=oT(p)
for all objects A of . Its arrows, called homomorphisms, (4, p)— (A, ¢')are
arrows oz A— A’ of of satisfying the equation

@' T(a) = aep.

These equations are illustrated by the following commutative diagrams:

y A T
A" "2 T(4) —2_, a1y
D ¢ T 4 4 : ¥
A T(A) ———— A A —— &

a
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Example T1 (continued). Anelement of T(A) = M x Ais a pair (m, a) with
meM and aeA. One usually writes ma = ¢(m,a). The equations of an
algebra then read

la=a, (m'm)a=m(ma),
for all acA,m and m'eM. In other words, an algebra is an .#-set (see
Example F3in Section 1). The equation satisfied by a homomorphism reads
afma) = mo(a),

for all ac A4, so we recapture the usual homomorphisms of .#-sets (see
Proposition 2.2). ‘

Example T2 (continued). The algebras of the power set triple on Sets are
sup-complete (hence inf-complete) lattices and the homomorphisms are
sup-preserving (hence also order preserving) mappings.

In view of these examples and many others like them, we enunciate our final
slogan.

Slogan VI. Many categories of interest are the Eilenberg—Moore
categories of triples on familiar categories.

In both examples above, the familiar category is Sets, but in Exercise 2
below it is Ab, the category of abelian groups. Categories, on the other
hand, may be viewed as algebras over Grph, the category of graphs.

Definition 6.4. Given a triple (T,n, ) on a category <, by a resolution
(@, U, F, ) of this triple we mean a category 4 and a pair of adjoint functors

of —Er% —U—».ﬂ such that UF = T with adjunctions # (as given) and ¢
such that UeF = u (as in Proposition 6.2). The resolutions of the given
triple form a category whose arrows @®:(%,U,F,e)—(#,U’,F,¢) are
functors ®: & — £’ such that ®F = F', U'® = U and ®¢ = ¢'®. In particular,
the following two triangles commute:
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Proposition 6.5. The Eilenberg—Moore category T of the triple (T, 7, 1)
on &7 gives rise to a resolution (™, U™, FT, ¢), which is a terminal object in
the category of all resolutions. Thus, given any resolution (4, U, F, ), there
is a unique functor K™: 8 — o/, called the comparison functor, such that
KTF = FT,UTKT = U and K"e =¢"KT. Moreover, UT is faithful.
Proof. (1) We define UT: /7 — o/ by ‘

Ul(4,9)= 4, UT@=q,
for any algebra (4, ) and any homomorphism a. Evidently, U7 is faithful.

(2) We define FT: .o —» /T by

FY(A)=(T(A), l(4)), FT(f)=T(),
for any object 4 and any arrow f of . It is easily checked that (T(4), u(4))
is an algebra, that T(f) is a homomorphism and that UTFT=T.
(3) We define the natural transformation " from FTUT to the identity

functor on T by its action on the algebra (4,¢) as follows: the
homomorphism ¢7(4, ¢) = ¢. Indeed, the square

7o) —— 2 74y,
H(4) @
T(A4) A

]

commutes by Definition 6.3. To see that UTeTFT = y, one calculates
(UTeTFT)(4) = (UTe")(T(4), w(A)) = UT(u(4)) = u(A).
We let the reader check that
E"FToF™n)(A) = 17¢0), (UTeTonUTY(A, 0) = (14),
for any object 4 of o/ and any algebra (4, @), whence it follows that
(T, UT,FT,¢") is a resolution of the given triple.

(4) Let (#,U,F,¢) be another resolution of the same triple, we shall
construct the comparison functor K*: #— .o/T and show that it is the
unique functor with the desired properties. For any object B and any arrow
g of B, we put

K*(B)=(U(B), U&(B)), K"(g)= U(g).
Thensurely UTK™ = Uj in fact, this result forces the definitions of KT(g) and
of the first component of K*(B). Moreover, eTK”(B) = Ue(B), and this forces
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the definition of the second component of K”(B). It remains to check that
KTF = FT. Indeed, for any object A of &,

KTF(A) = (UF(A), UsF(4)) = (T(4), W(4)) = F"(4).
This completes the proof.

We remark that, in view of Slogan VI, it is of interest to know when the
comparison functor is an equivalence of categories. Conditions for this to
be the case were found by Beck. Without going into these conditions here,
let us only mention that a functor U: 8 — &/ is called tripleable or monadic if
it has a left adjoint and if the ciomparison functor K7 is an equivalence.
Examples of tripleable concrete categories U: % —Sets are all algebraic
categories, that is, varieties of universal algebras, and the category of
compact Hausdorff spaces.
The category of resolutjons of a triple also has an initial object.

Definition 6.6. The Kleisli category o of a triple (T, #, u) on a category &/
is defined as follows. Its objects are the same as those of .&7; however, arrows
A— A’ in o are not the same as they would be in &, instead they are
arrows A4 - T(A') in «/. How do we compose arrows f: 4 - T(4') and
g: A’ = T(A")? Denoting their composition in &/ by g*f: A — T(A")in &,
we define

grf = wANT@g)f.
In particular,

frn(A) = wA)T(MA) = fAMTA)f =14A)f = f
and

n(A)x f = A Tn(A) f = 1AV f = f,
hence n(A): A — T(A) serves as the identity arrow A— A in o/ 7. We leave it
to the reader to check the associativity of composition in o/ ;.

Example T2 (continued). What is the Kleisli category of the power set
triple on Sets? An arrow 4 — P(B) in Sets may be regarded as a multi-
valued function from A to B or, equivalently, as a relation between 4 and B.
More precisely, let f: A — P(B) correspond to R, < 4 X B, where (a,b)eR,
means bef(a). What about the composition of f with g: B~ P(C)?
According to Definition 6.6,

(g* (@) = W C)(P(g)(f(a))
= J{g®)bef (@)},
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_ hence

" (a,c)eR, <>ce(g* f)(a)

< Jyepbef(a) A ceg(b))

<> 3e5((a, b)eR, A (b, c)eR,)

<>(a,c)eR,R, ,
according to one way of defining the ‘relative product’. Moreover, the
identity arrow 1, in the Kleisli category is represented by the mapping
n(A):A—>P(A) in Sets, which sends ae4 onto {a}<A. Hence
(a,a)eR,4<>a'e{a}, s0 R, is the identity relation on 4. We conclude
~ that the Kleisli category of the power set triple on Sets is (isomorphic to) the
category whose objects are sets and whose arrows are binary relations.

- Proposition 6.7. The Kleisli category <, of the triple (T, #, ) on & gives
rise to a resolution (&4, Uy, Fr,er), which is an initial object in the
category of all resolutions. Thus, given any resolution (%, U, F,¢), there
is a unique functor Kr:o/r— % such that K;Fr=F, UK;=U; and
K er = eKy. Moreover, Fr is bijective on objects.

Proof. (1) We define Uy: o/ 1 — o by

UrA)=T(4), Uf)=uB)T(f),
for any object 4 of &/ 1, that is of o/, and for any arrow f: 4 - Bin &/ 1, that
is, f:A— T(B) in of. It is easily verified that U is a functor.
(2) We define Fy:of — o/ 1 by

FA)=A, Fi(f)=nB)f,
for any object 4 and any arrow f: A — B in &¢. Evidently, F is bijective on
objects and it is easily checked that U,F, = T and that F; is a functor.
(3) We define the natural transformation ¢; from FUy to the identity
functor on & by putting e(4) = 15, in . To see that Uye,Fr = p one
calculates
(UrerFp)(A) = (Urer)(A4) = Urllgyy) = w(A).
We let the reader check that
(erFroFn)(A) = 1rray=n(A4), (UrerenUg)(4)= 4,
for any object A of #, hence of o7, whence it follows that (&, Uy, F1,&7)
is a resolution of the given triple.
(4) Let (%, U, F,¢) be another resolution of the same triple. We shall

construct a functor K,: &/ — % and show that is the unique functor with
the desired properties.
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For any object 4 of o/, and any arrow g:A— A’ in o/, that is, g:

A—T(A) in &, we put

K(A)=F(4), Kqlg)=eF(A)F(g)
Then surely K F1{(A4) = K(A4) = F(A), and this forces the definition of K1
on objects. Moreover, for any f:A—B in o, KyF(f)=K(n(B)f)=
eF(BYFn(B)F(f)=F(f). Thus K Fy=F.

Conversely, K;Fr = F implies that K{(n(B)f) = F(f); in particular, it
implies for g: A — T(A")in o that K [(yT(A4)g) = F(g). We shall see later that
this forces the definition of K on arrows, once we know what it does to the
arrow 1r.q-

We calculate

Kre(A) = K(ly ) = eF(A") = eK1{(4')
as required, and this forces the definition of K 1{l74). Nowifg: 4 — T(4') in
&of is any arrow A— A" in &,
g =wAMT(A)g = WA) Tz T(A)g = Lrcay*nT(A)g,
where * denotes composition in &1, hence
K(g) = K{l741)K(nT(A)g)
= eF(A)F(g),
which finally establishes the uniqueness of K.
It remains to check that
UK {A) = UF(A)=T(4) = U(A4),
UK 1{(g) = UeF(A)UF(g) = l(A)T(g) = Ur(g),
and this completes the proof. '

Corollary 6.8. Let Ly: s/ — /T be the special case of the comparison
functor K7 when # = o 1 (or of K when # = o/7), then we have functors

T
MFTm{TLT:dTU:M
with FT = L F, left adjoint to U” and Uy = UTL; right adjoint to F.
Moreover, F is bijective on objects, U7 is faithful and Ly is full and faithful.
Proof. In view of Propositions 6.5 and 6.7, it only remains to show that Ly

is full and faithful. This follows from the following calculation: for any
g A-T(A) in o,

L(g) = K"(g) = U{g) = w(4)T(g),
hence

g = WA MT(A)g = W(A)T(gn(A) = L{g)n(4).
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Corollary 6.9. The Kleisli category of a triple is equivalent to the full
subcategory of the Eilenberg-Moore category consisting of all free
algebras.

Proof. The full and faithful functor L, establishes an equivalence between
/1 and a full subcategory of /7. Since, for any object Aof o,

Li(4) = K"(4) = (U(A), Urer(A)) = (T(4), (4)) = F(A),

it follows that the objects of this subcategory are precisely the ‘free’ algebras
of the triple. ' '

Example T1 (continued). The Kleisli category of the triple associated with
amonoid ./ is equivalent to the category of all free .#-sets regarded as a full
subcategory of the category of all .#-sets.

Exercises.

1. Complete the proofs of Propositions 6.2 and 6.5 and the proofs in
Examples T1 and T2. ‘

2. Given a ring R (associative with unity element), construct a triple (T, 1, 1)
on the category Ab of abelian groups with T(4) = R® 4 for any abelian
group A. What is the Eilenberg-Moore category of this triple?

3. Prove the associativity of composition in the Kleisli category of a triple.

4. (Linton). Show that the Eilenbefg~Moore category may be constructed
from the Kleisli category as a pullback:

AT Sets udd
Fa
ur , | Sets ¥
o Sets ™"
Yoneda
7 Examples of cartesian closed categories

In Part I we shall talk at length about ‘cartesian closed categories’,
which will be defined equationally. In preparation, it may be useful to
give a less formal definition and to present some examples.

A cartesian closed category is a category ¢ with finite products (hence
having a terminal object) such that, for each object B of %, the functor
() x B: ¢ — % has a right adjoint, denoted by (—)?: ¢ — €. This means that,
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for all objects 4, B and C of %, there is an isomorphism
(*) Hom,(4 x B,C)3 Hom (4, Ch)
and, moreover, that this isomorphism is natural in 4, B and C.

Example 7.1. The category Sets is cartesian closed. Here A x B is the usual
cartesian product of sets and C? is the set of all functions B— C. The
bijection (*) sends the function f: A x B— C onto the function f*: 4 — C8,
where f*(a)(b) = f(a,b) for all ac4 and beB. (See Section 3, Exercise 6.)

Example 7.2. More generally, for any small category %, the functor
category Sets® is cartesian closed. Also cartesian closed is the category of
sheaves on a topological space and, in fact, every so-called topos (see Part
II, Sections 9 and 10, even without natural numbers object).

Example 7.3. We recall from Section 1 that a poset (P, <) (that is,
preordered set satisfying the antisymmetry law) may be regarded as a
category. As such, it has finite products if and only if it has a largest element
1 and a binary operation A suchthatc <a A bifandonlyifc <aandc<b
for all elements a, b and ¢ of P. In fact, (P, 1, A ) is thcn a monoid satisfying
the commutative and idempotent laws:

anb=bAa ana=a.

Such a monoid is usually called a semilattice, and one may recapture the
partial order by defining a<b to mean a Ab=a. For (P,1, A) to be
cartesian closed there must be another binary operation <= such that
a A b<cifandonlyifa < c<bforallelementsa,bandcof P.(P, 1, A, <=)is
then called a Heyting semilattice.

Example 7.4. A Heyting algebra (P, 0,1, A, v, <) also has a smallest
element 0 and a binary operation v suchthatav b<cifandonlyifa<c
and b < ¢ for all elements a, b and ¢ of P (hence (P, A, V) is a lattice),
it being assumed that (P, 1, A, <) is a Heyting semilattice. When the
underlying poset (P, <) is viewed as a category, V becomes a coproduct
and the category is called bicartesian closed. Incidentally, the distributive

law an(bve)=(aab)vianc

then follows from general categorical pringiples (see Section 5, Exercise 2).
A typical example of a Heyting algebra is the lattice of open subscts ofa
topological space X, with the following structure:

1=X,0=0,UAV=UnV,Uv V=UuV,
Ve<Us=sint((X — U)uV),
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r all open subsets U and V of X, where ‘int’ denotes the interior operation.
Another example of a Heyting algebra will be the lattice of subobjects of
an object in a topos (see Part II, Section 5, Exercise 3). Many other examples
are found in the literature (see the books by Balbes and Dwinger and by
Rasiowa and Sikorski).

Example 7.5. Cat, the category of small categories, is cartesian closed. For
any small categories o/ and &, &/ x 4 is their product and A7 is the
category of all functors & — %. (See: Section 1, Example C7; Section 2,
Example C8; Proposition 2.3.)

_ Example 7.6. Although the category top of topological spaces and con-
_tinuous mappings is not itself cartesian closed, various full subcategories of
- top are. For example, the category of Kelley spaces (that is, compactly
_generated Hausdorff spaces) is cartesian closed if products are defined in the
usual way and ¥ is the set of all continuous functions X — Y with the
- compact—open topology. (See the book by MacLane for more details.)

Example 7.7. The category of w-posets is cartesian closed. An w-poset is a
poset in which every countable ascending chain a,<a;<a, <...of
elements has a supremum. Morphisms of w-posets are mappings which
preserve supremums of countable ascending chains (such mappings
necessarily preserve order). The product structure is inherited from Sets and
B4 is Hom(A, B) with order and supremum being defined componentwise.
(For details see Part I, Proposition 18.1. For related cartesian closed
categories see the book by Gierz et al.)

Example 7.8. The category of Kuratowski limit spaces is cartesian closed.
A limit space is a set X with a partial w-ary operation (that is,.an operation
defined on a subset of X", the set of all countable sequences of elements of
X) satisfying the following conditions:

(i) the constant sequence (x,x,...) has limit x;
(i) if a sequence has limit x, then so does every subsequence;
(iii) if every subsequence of a sequence has a subsequence with limit x,
then the sequence itself has limit x.

A morphism f:X—Y between limit spaces is a function such that,
whenever {x,|neN} is a sequence of elements of X with limit x, then
{f(x,)|neN} has limit f(x). The product is defined as for sets, with limits
given componentwise, and Y¥ is the set of all morphisms X — Y, where the
limit of { f,;|neN} is said to be f provided the limit of { f,(x,)|neN} is f(x)
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whenever the limit of {x,|neN} is x. (For details see the book by
Kuratowski, Chapter 2.)

Exercises

1. Carry out the detailed proof in any of the above examples.

2. Show that Heyting semilattices may be defined equationally.
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Introduction to Part I

A-calculus or combinatory logic is a topic that logicians have
studied since 1924. Cartesian closed categories are more recent in origin,
having been invented by Lawvere (1964, see also Eilenberg and Kelly, 1966).
Both are attempts to describe axiomatically the process of substitution, so it
is not surprising to find that these two subjects are essentially the same.
More precisely, there is an equivalence of categories between the category
of cartesian closed categories and the category of typed A-calculi with
surjective pairing. This remains true if cartesian closed categories are
~_provided with a weak natural numbers object and if typed A-calculi are
~ assumed to have a natural numbers type with iterator.

. This result depends crucially on the functional completeness of cartesian
- closed categories, which goes back to the functional completeness of
combinatory logic due to Schonfinkel and Curry. It asserts, in particular,
that every arrow ¢(x): 1 — B expressible as a polynomial in an indetermi-
- nate arrow x: 1 — 4 over a cartesian closed category 7 (with given objects

f

A and B) is uniquely of the form 1 ~, 4-L5 B, where fis an arrow in &
not depending on Xx.
" Functional completeness is closely related to the deduction theorem for
 positive intuitionistic propositional calculi presented as deductive systems.
In our version, it associates with each proof of THB on the assumption
- THA a proof of A-B without assumptions. However, functional com-
pleteneés goes beyond this; it asserts that the proof of THB on the
assumption THA is, in some sense, equivalent to the proof by tran-
sitivity: '
THA AFB

THB

- Deductive systems are also used to construct free cartesian closed
categories generated by graphs, whose arrows A—B are equivalence
classes of proofs.
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We present a decision procedure for equality of arrows in the free
cartesian closed category (with weak natural numbers object) generated by
the empty graph; equivalently, for convertibility of expressions in the pure
typed A-calculus under consideration. This is the coherence problem for
cartesian closed categories, the solution of which goes back to early work in
the A-calculus.

Finally, we study C-monoids, essentially monoids which may be viewed
as one-object cartesian closed categories without terminal object. The
category of C-monoids is shown to be equivalent (even isomorphic) to the
category of untyped A-calculi with surjective pairing. Again, this result
depends on functional completeness of C-monoids.

It is shown that every C-monoid may be regarded as the monoid of
endomorphisms of an object U in a cartesian closed category such that
U x U= U = U". Anexample of such a category with U not isomorphic to
1, due to Dana Scott, is presented.

The reader who wishes to see these results in their historical perspective is
advised to look at the following comments.

Historical perspective on Part 1

For the ‘purpose of this discussion, it will suffice to define a
cartesian closed category as a category with an object 1 and operations
(-) x (=) and ()" on objects satisfying conditions which assure that

(i) Hom(A,1)={x},
(i) Hom(C, A x By~ Hom(C, 4) x Hom(C, B),
(iiiy Hom(4, C?)~Hom(4 x B, C).

Here {*} is supposed a typical one-clement set, chosen once and for all.

It will be instructive to reverse the historical process and see how
combinatory logic could have been discovered by rigorous application of
Occam’s razor.

Condition (i) says that, for each object A, there is only one arrow A — 1,
hence we might as well forget about the object 1 and the arrow leading
to it. However, the arrows 1 — A must be preserved, let us call them entities
of type A.

Condition (ii) says that the arrows C — A x B are in one-to-one corres-
pondence with pairs of arrows C— A and C — B, hence we might as well
forget about the arrows going into 4 x B. :

Condition (iii) says that the arrows 4 x B— C are in one-to-one corres-
pondence with the arrows A — C?, hence we might as well forget about

B
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the arrows coming out of 4 x B too. Consequently, we might as well
forget about 4 x B altogether.

We end up with a category with a binary operation ‘exponentiation’

on objects. Of course, this will have to satisfy some conditions, but these
may be a little difficult to state. It is interesting to note that Eilenberg
and Kelly went on a similar tour de force and ended up with a category
~ with exponentiation in which some monstrous diagrams had to commute.
* We may go a little further and forget about the category structure as
well, since arrows 4 — B are in one-to-one correspondence with entities
of type B4, which we shall write B<= A for typographical reasons. Composi-
tion of arrows is then represented by a single entity of type ((C=A)<=
(C<=B))<=(B<=A). However, we do need a binary operation on entities
called ‘application’. given entities f of type B* and a of type A4, there is
an entity f‘a (read f of a) of type B.
- We have now arrived at typed combinatory logic. But even this came
rather late in the thinking of logicians, although type theory had already
been introduced by Russell and Whitehead. Let us continue on our journey
backwards in time and apply Occam’s razor still further.

An arrow A — B in a category has a source 4 and a target B. But what
if there is only one object? Such a category is called a monoid and, indeed,
the original presentation of combinatory logic by Curry does describe a
monoid with additional structure. (The binary operation of multiplication
is defined in terms of the primitive operation of application.) Underlying
untyped combinatory logic there is a tacit ontological assumption, namely
that all entities are functions and that each function can be applied to
any entity. ‘

To present the work of Schonfinkel and Curry in the modern language of
universal algebra, one should think of an algebra 4 = (| 4),, 1, K, ), where
|A] is a set, / is a binary operation and I, K and S are elements of |A] or
nullary operations. According to Schonfinkel, these had to satisfy the
following identities: :

Ia=a,
(K’a)’b = a,
(8" fYg)e=(f'cV(g’c),
for all elements a, b, ¢, f and g of | A|. (Actually, he defined I in terms of
K and S, but this is beside the point here.) The reader may think of I as
the identity function and of K as the function which assigns to every entity

a the function with constant value a. It is a bit more difficult to put S
into words and we shall refrain from doing so.
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Schonfinkel (1924) discovered a remarkable result, usually called
‘functional completeness’. In modern terms this may be expressed as
follows: every polynomial ¢(x) in an indeterminate x over a Schonfinkel
algebra A4 can be written in the form f/x, where fe|A|.

From now on in our exposition, the arrow of time will point in its
customary direction.

Curry (1930) rediscovered Schonfinkel’s results, but went further in his
thinking. He discovered that a finite set of additional identities would
assure that the element f representing the polynomial ¢(x) was uniquely
determined. We shall not reproduce these identities here, but reserve the
name ‘Curry algebra’ for a Schénfinkel algebra which satisfies them.

Using the terminology of Church (1941), one writes S as A, ¢(x), which
must then satisfy two equations:

Gy (A0(x)) a = ¢(a),

() Affx)=f.

(Many mathematicians write x — ¢(x) in place of ,¢(x).) A J-calculus is a
formal language built up from variables x, y, z, ... by means of term forming
operations (-)/(~) and A(-), the latter being assumed to bind all free

occurrences of the variable x occurring in (=), such that the two given
identities hold. The basic entities I, K and S may then be defined formally by

I=A.x,
K =24,x,
S = A, A4/ 2) (' 2)).

(Actually, Church would have called such a language a AK-calculus and
Curry might have called it a Afn-calculus, but never mind.)

Both Curry and Church realized the importance of introducing types
into combinatory logic or A-calculus. To do this one just has to observe
that, if f has type B< A and a has type 4, then f/a has type B, as already
pointed out. In particular, the basic entities I, K and S, suitably equipped
with subscripts, should have prescribed types. Thus I,, K, p and S, ¢
have types A<=A, (A<=B)<=A and ((4 «=C)«=(B<=())<=((A<=B)<=C()
respectively.

As pointed out in the book by Curry and Feys, these three types are
precisely the axioms of intuitionistic implicational logic. Moreover, the
rule which computes the type of f‘a from those of f and a corresponds
to modus ponens: from B <= A4 and A one may infer B. In fact, Schonfinkel’s
definition of I in terms of K and § is exactly the same as the known proof
that A<= A may be derived from the other two axioms.
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Incidentally, several early texts on propositional logic used only
implication and negation as primitive connectives, having eliminated con-
Junction and other connectives by suitable definitions, again inspired by
Occam’s razor. The observation that it is more natural to retain conjunc-
tion and other connectives as primitive is probably due to Gentzen and
was made again by Lawvere in a categorical context.

Curry and Feys also realized that the proof of Schénfinkel’s version of
functional completeness was really the same as the proof of the -usual
deduction theorem: if one can prove B on the assumption A then one can
prove B<=A without any assumption. In fact, it asserts that the proof of
B on the assumpnon A is ‘equivalent’ to the proof by modus ponens:

B<=A A
B .

From our viewpoint, Curry’s version of functional completeness, which
insists on the uniqueness of f such that ¢(x) equals f'x, then presupposes
that entities are not proofs but equivalence classes of proofs.

In connection with cartesian closed categories, the analogy with
propositional logic requires that 1, 4 x Band B4 be writtenasT, 4 A Band
B <= A respectively. (For other structured categories, the senior author had
pointed out and exploited a similar analogy with certain deductive systems,
beginning with the so-called ‘syntactic calculus’ (see Lambek 1961b,
Appendix II), which traces the idea back to joint work with George D.
Findlay in 1956.) The relation between A—calci‘gli with product types and
cartesian closed categories then suggests the observation: types = formulas,
terms = proofs, or rather equivalence classes of proofs. Independently, W
Howard in 1969 privately circulated an influential manuscript on the
equivalence of typed A-terms (there called ‘constructions’) and derivations
in various calculi, which finally appeared in the 1980.Curry Festschrift (see

.also Stenlund 1972).

Up to this point we have avoided discussing natural numbers. In an
untyped A-calculus natural numbers are easily defined (Church 1941).
Writing

fog=24f"(g’%),

one regards 2 as the process which assigns to every function f itsiterate fof,
s0 2/ f=fof. Formally, one defines

O0=il l1=lx=I 2=l(xx),....

The successor function and the usual operations on natural numbers are
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defined by

S'n=Aye(n’y)),
m+n=A{(m'y)o(n'y)),
mn = meon,
m'=n'm.

Unfortunately, there are difficulties with this as soon as one introduces
types. For, if a has type 4, then f and g in (fog)‘a both have types A* =B
say. For n’ f to make sense, n will have to be of type B®, and for nfm to make
sense, m will have to be of type B. If m and n are to have the same type, we are
thus led to require that B® = B, which is certainly not true in general,
although Dana Scott (1972) showed that one may have B® = B.

One way to get around this difficulty is to postulate a type N of natural
numbers, a term 0 of type N and term forming operations S(—) (successor)
and I(-,—,-) (iterator) such that S(») has type N and I(a, &, n) has type A for
all n of type N, a of type A and & of type A“*. These must satisfy suitable
equations to assure that I(a, h, n) means h*/a.

The analogous concept for cartesian closed categories is a weak natural
numbers object: an object N with arrows 0: 1 — N and S: N — N and a process
which assigns to all arrows a:1 — A4 and h: A — A4 an arrow g: N — 4 such
that the following diagram commutes:

0 S
1 N > N
j g g
1 ! A 7 > A

Lawvere had defined a (strong) natural numbers object to be such that the
arrow g: N —» A with the above property is unique.

‘For us, a typed A-calculus contains by definition the structure given by N,
0, S and I. In stating Theorem 11.3 on the equivalence between typed A-
calculi and cartesian closed categories, we stipulate that the latter be
equipped with a weak natural numbers object. Such categories were first
studied formally by Marie-France Thibault (1977, 1982), who called them
‘prerecursive categories’, although they are implicit in the work of logicians,
e.g. in Godel’s functionals of finite type (1958).

We would have preferred to state Theorem 11.3 for strong natural
numbers objects in Lawvere’s sense. Unfortunately, we do not yet know
how to handle the corresponding notion in typed A-calculus equationally.
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As far as we can see, the iterators appearing in the literature (e.g. Troelstra
1973) mostly correspond to weak natural numbers objects. See however
Sanchis (1967).

For further historical comments the reader is referred to the end of Part I.

1 Propdsitional calculus as a deductive system

We recall (Part 0; Definition 1.2) that, for categonsts a graph
consists of two classes and two mappings between them:

source
—————— it it et . .
Arrows Objects

—ee .
target

In graph theory the arrows are usually called ‘oriented edges’ and the
objects ‘nodes’ or ‘vertices’, but in various branches of mathematics other
words may be used. Instead of writing

source(f)= A, target(f)=B,
S

one often writes f: A — B or A B. We shall look at graphs with addi-
tional structure which are of interest in logic.
A deductive system is a graph with a specified arrow

Rla. 1" —4, 4,

and a bmary operation on arrows (composition)

4L 3Lc
gf

Logicians will think of the objects of a deductive system as formulas, of the
arrows as proofs (or deductions) and of an operation on arrows as a rule of
inference. .

Logicians should note that a deductive system is concerned not just with
unlabelled entailments or sequents A4 — B (as in Gentzen’s proof theory),
but with deductions or proofs of such entailments. In writing f: A — B we
think of f as the ‘reason’ why A entails B.

A conjunction calculus is a deductive system dealing with truth and
conjunction. Thus we assume that there is givenaformula T (= true)and a

- binary operation A (=and) for forming the conjunction 4 A B of two
given formulas A and B. Moreover, we specify the following additional

R1b.
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arrows and rules of inference:

R2. 42T

R3a. AAB-T4E, 4

R3b, AnB-TA,p

f g
R3c. C-—54 C->HB

Here is a sample proof of the so-called commutative law for conjunction:

AAB-T4B, B 4B T4B, 4

AnBSTanTan) g, 4

The presentation of this proof in tree-form, while instructive, is superfluous.
It suffices to denote it by {7/, g, T4 5> Or even by (', m ) when the subscripts
are understood.

Another example is the proof of the associative law a4 5 c:(A A B)A C
— A A (B A C). It is given by

ta,B,c= a8 npcr STABTanB,0 TanpC)? (1.1)

or just by a = (nn, {n'm, 7' ).

If we compose operations on proofs, we obtain ‘derived’ rules of
inference. For example, consider the derived rule:

Ancac, 4 4 LB anclac,c cLp
AAnC—-B AANnC—-D

arcL29BAp
It asserts that from proofs f and g one can construct the proof

fng=L{fm4cdmTac
Thus we may write simply

4LB c4p

AncI29. 8D

A positive intuitionistic propositional calculus is a conjunction calculus
with an additional binary operation <=( = if). Thus, if 4 and B are formulas,
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soare T, 4 A Band A< B. (Yes, most people write B=> 4 instead.) We also
specify the following new arrow and rule of inference.

Rda. (A<B)AB-f4B 4

caB-lg

h

R4b. —_—
C—— A<B

Actually we should have written h* = A§ 5(h), but the subscripts are usually
understood from the context.
We note that from R4b, with the help of R4a, one may derive

R'4b. C-ll¢B,(C A B)<B,
D44
(DcB)m(AcB)

R'4c.

To derive these, we put
flc,p = 1:/\3’ g<=1p=(gep p)*

Conversely, one may derive R4b from R'4b and R'dc by putting
h* = (h<= I, p-

For future reference, we also note the following two derived rules of
inference:

4L T-9Be4

rfa ? g’
T——-—»Bcf——A A*-B

2

where

= (r )% g'= €p,4<90 4, 14).

An intuitionistic (propositional) calculus is more than a positive one; it
requires also falsehood and disjunction, that is, a formula 1 (=false) and
an operation v (= or) on formulas, together with the following additional
arrows:

Rs. L-Da,,

Réa. a4, 4,p
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R6b. B-AE 4V B,
C
Rée.  (C=A) A (C=B)~42,C=(4v B).
The last mentioned arrow gives rise to and may be derived from the rule

i g
Riée. ALsCc B-5C

AvB—————->[f’g] C'

Indeed, we may put
[f,g]= (%< gD
If we want classical propositional logic, we must also require
R7. le(l<=Ad)—A

Exercises

1. For the appropriate deductive systems, obtain proofs of the following and
their converses:

AAT»A,A<T>AT=A4-T,
(AAB)=Co{A=C)A (B<=C);
A<=(BAC)—»{4=C)<=B;
AAL->L, A=loT Av 14
(A/\C)V(B/\C)—*(AVB)AC.

2. For the appropriate deductive systems, deduce the following derived rules
of inference:

alp cLp  alip ¢

4ep =9 pec avedY9Bup

3. Show how (§ 5 may be defined in terms of the rule R'6c¢.

4. Show that, in the presence of R1 to R6, the qlassical axiom R7 may be
replaced by

ToAv(L<=A)

2 The deduction theorem
The usual deduction theorem asserts:
fAABFC then AFC<=B.
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This result is here incorporated into R4, with the deduction symbol
replaced by actual arrows in the appropriate deductive system .

hAAB-C

h*A->C<«B’
However, at a higher level, the horizontal bar functions as a deduction
symbol, and we obtain a new form of the deduction theorem. It deals with
proofs from an assumption x: T-» A. In other words, we form a new
deductive system .#(x) by adjoining a new arrow x: T— 4 and talk about
proofs ¢(x): B— C in this new system. More precisely, .#(x) has the same
formulas (= objects) as & and its proofs (= arrows) ¢(x) are freely
generated from those of % and the new arrow x by the appropriate rules of
inference (= operations). Clearly, if & is a conjunction calculus (positive
calculus, intuitionistic calculus, classical calculus), so is the new deductive
system .Z(x).

Proposition 2.1. (Deduction theorem). In a conjunction, positive, intuition-
istic or classical calculus, with every proof ¢(x): B— C from the assumption
x: T— A there is associated a proof f:4 A B—C in £ not depending on x.

We write f= k. ¢(x), where the subscript ‘xe A’ indicates that x is of
type A.

Proof. We shall give the proof for a positive calculus. The same proof is
valid for a conjunction calculus, if * is ignored. The proof goes through for
an intuitionistic or classical calculus, as the additional structure is
presented in the form of arrows rather than rules of inference.

We note that every proof ¢(x): B— C from the assumption x: T~ 4 must
have one of the five forms: '

(i) k:B—C,a proofin Z;
(i) x:T—> A, with B=T and C=4;
(i)  {Y(x), x(x)>, where Y(x): B—C’, (x): B—C", C=C' A C";
(iv)  x(xW(x), where y(x): B— D, x(x): D— C;
(v)  Y(x)*, where Y(x):BAC' - C", C=C"<C". _
In all cases, Y(x) and x(x) are ‘shorter’ proofs than ¢(x), and we define
inductively:
(l) KxeAk = knil,B;
(") KxeaX = nA,T’
(1) reee 4 CYX), 1X)D = {Hge qW(X), Ke g2(X) ;3
(IV) KxeA(X(x)w(x)) = KxeAX(x)<nA.B’ KxeA’/’(x)>;
(V) KxeadW(x)*) = ((Krea¥(x))0a,8,c)%;



52 Cartesian closed categories and A-calculus

where o, 5 c:(AAB)AC >AA(BAC) is the proof of associativity
discussed in Section 1.
The above argument was by induction on the length of the proof ¢(x).
Formally, this may be defined as O in cases (i) and (ii), as the sum of the
lengths of x(x) and ¥(x) plus 1 in cases (iii) and (iv) and as the length of y/(x)
plus 1 in case (v).
Remark 2.1. Logicians don’t usually talk of an assumption x: T — 4 if there
is a known proof a:T— A or another assumption y: T — A4; but from our
algebraic viewpoint, this does not matter. '

The reader is warned that we do not distinguish notationally between
composition of proofs gf in £ and in L(x). In &, Ksealgf) = g fr'4.p and
in £(x) it is ‘gn;,B(nA,B,fn'A,B)

Exercise
Prove the following general form of the deduction theorem for the positive
intuitionistic propositional calculus: with every proof ¢(x). B—C from
the assumption x: D — A there is associated a proof f:(4<=D)A B—C.
Hint: writing f = p,@(x), put
(1) ka = kn:ieD,B’ (ll) PxX = 8A,B9
(i) p Y0 x(x)) = pY(x), p:X(X) 75
(iv) pLtCW(x)) = pt(X) Ty s PY(X) D

V) PAW(xX)*) = (pY(X)0ty o 5, 5)*, Where Y(x): B' A B C.

3 Cartesian closed categories equationally presented

A category is a deductive system in which the following equations
hold between proofs:

El.  fly=f, 13f=f (hg)f="h(gf)
forall f:A—B, ¢gB-C, hC-D.

Thus, from any deductive system one may obtain a category by imposing
a suitable equivalence relation between proofs. ,

A cartesian category is both a category and a conjunction calculus
satisfying the additional equations:

E2. f=0Qy4 forall f14-T;
E3a. m,s{fi9> =/,
E3b. 7 5<fi0> =0,
E3c. {myph,nyph)=h,
for all f:C—-»A, g.C—-B, hC—-AAB.
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E2 asserts T is a terminal object. One usually writes T = 1, and we shall
do so from now on. An equivalent formulation of E2 is
E"2. =04, 0pf=0, forall f:A—>B.

E3 asserts that 4 A Bis a product of 4 and B with projections ., 5 and
74,5- We shall adopt the usual notation A AB=A4 xB.
As a consequence of E3, let us record the distributive law:

{fig>h=<fhgh) (3.1)
forall f:C—A, g:C—.»B,_ h:D—-C.

Proof. We show this as follows, omitting subscripts:

Logdh=L{a({f,9>n, 7 ({f,9>h)> ‘
=L@ {9 (7 fo90)h)
=(Sh.gh).

We shall also write

Sxg=fnrg={ryc, g4
whenever f1 A — Band g: C— D, and note that x :o/ x o/ — .« is a functor
(see Part 0, Definition 1.3). Indeed, we have

Lyxle={lmyelemyc)
={ g0 Mg,
={mgclyxeTaclaxe)
=1,.c

and, omitting subscripts, by the distributive law,

(S xg)={frgn' 3 f'mgn')
=l f'mgn' )y, gn' {f'm, g7 )
={ff'mg9'n">
=ff"xgq.
A cartesian closed category is a cartesian category .« with additional
structure R4 satisfying the additional equations
Eda. e, g<{h*ncpmcp) =h,
Edb.  (e4,5<knc 5 mc 50 )* =k, ‘
foral hCAB—-A4A and k:C— A<B.
Thus, a cartesian closed category is a positive intuitionistic propositional
calculus satisfying the equations El to E4. This illustrates the general
principle that one may obtain interesting categories from deductive systems
| by imposing an appropriate equivalence relation on proofs.
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Inasmuch as we have decided to write C A B = C x B, we shall also write
A<B= AP The equations E4 assure that the mapping

Hom(C x B, 4) == Hom(C, A)

is a one-to-one correspondence. In fact, one has the following universal
property of the arrow ¢, 5 A% x B— 4:

given any arrow h: C x B— A, there is a unique arrow h*: C — A?
such that
g4 p(h* x 1p)=h.

The reader who recalls the notion of adjoint functor will recognize that
therefore Uy =(—)? is right adjoint to the functor Fy=(-) x B:of - o
with coadjunction g5: FyUp— 1, defined by ex(A4) = ¢, 5. Thus, an equiva-
lent description of cartesian closed categories makes use of the adjunction
ns1,,— UgFgin place of *, where #5(C) = 5 5: C - (C x B)%, and stipulates
equations expressing the functoriality of Uy and the naturality of eg and 5,
as well as the two adjunction equations. Here

Uf)=fP=f<=15=feq )"
for all f:A— A'. (For ny see R'4b in Section 1))
We shall state another useful equation, which may also be regarded as a
kind of distributive law.

h*k = (h{knp, g, 7p,))*, (32)
where h: 4 x B> C and k: D — A.
Proof. We show this as follows, omitting subscripts:
h*k = (e (h*km, ' H)*
=(e{h*n, 'y (km,n' H)*
= (h{km, 7' H)*.

Quite important is the following bijection, which holds in any cartesian
closed category.

Hom(A4, B) = Hom(l1, B4). (3.3)

Proof. As in Section 1, with any f: A — B we associate f : 1 — B4, called
the name of f by Lawvere, given by

=7 4%
and with any g: 1 - B4 we associate g’: 4 > B, read ‘g of”, given by

g’ =65 4$90 0 1 4.
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We then calculate
i"f"l!____f, l_gf’l___g.

Exercises

1. Show that in any cartesian category
Ax1=A4A, AxB=BxA, (AxB)xC=Ax(BxC)

2. Show that in any cartesian closed category
A'=A, 1M1, (AxBCxA°xBS, AP*Cx (AL

3. Write down the equivalent definition of a cartesian closed category in
terms of Uy, Fy, 75 and &,

4. Prove the last two equations of Section 3.

4 Free cartesian closed categories generated by graphs

Given a graph %, we may construct the positive intuitionistic
calculus 2(Z) and the cartesian closed category (%) freely generated
by &.

Informally speaking, 2(%) is the smallest positive intuitionistic calculus
whose formulas include the vertices of & and whose proofs include the
arrows of . (Logicians may think of the latter as ‘postulates’, although
there may be more than one way of postulating X — Y, as there may be more
than one arrow X — Y in Z.) More precisely, the formulas and proofs of
D(Z) are defined inductively as follows: all vertices of & are formulas,
T(=1) is a formula, if 4 and B are formulas so are A A B(= 4 x B) and
B <= A(= B%); the arrows of & and the arrows 1, O ,, Typ Ty pande, gare
proofs, for all formulas 4 and B, and proofs are closed under the rules of
inference—composition, (-, - and (-)*.

We construct # (%) from 2(Z) by imposing all equations between proofs
which have to hold in any cartesian closed category. Another way of saying
this is that we pick the smallest equivalence relation between proofs
satisfying the appropriate substitution laws and respecting the equations of
a cartesian closed category. The equivalence classes of proofs are then the
arrows of #(%); but, as usual, we will not distinguish notationally between
proofs and their equivalence classes.

Let Grph be the category of graphs, whose objects are graphs and whose
morphisms F: & — @ are pairs of mappings F: Objects(%) — Objects(#) and
F: Arrows(%) — Arrows(@) such that f: X — X’ implies F(f): F(X)— F(X).

Let Cart be the category of cartesian closed categories, whose objects are
cartesian closed categories and whose arrows are functors F: .o/ — % which
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preserve the cartesian closed structure on the nose, that is,
F(1)=1, F(A x B)=F(A) x F(B), F(A®) = F(A)"®,
F(O4) = Oruy F(ryp)="mru,re)» el
F({f.g>)=<F(f), F(g)) etc.

Let % be the obvious forgetful functor Cart — Grph. With any graph & we
associate a morphism of graphs H,: % — U F(¥) as follows: Hy{X)= X
and, if f: X - Yin &, then Hqr(f) = f (the equivalence class of f regarded as
a proof in 2(Z)). We then have the following universal property:

Proposition 4.1. Given any cartesian closed category & and any morphism
F: & - U(s#) of graphs, there is a unique arrow F': #(Z) - & in Cart such
that (F')H, =F. '

F(Z).
UF(X) .
%(FI) — F' \\\
-
K4
Hy U(A)
F

Proof. Indeed, the construction of F’ is forced upon us:
F(X)=FX), F(T)=1, F(A4 A B)=F'(A)x F'(B), etc,;
F(f)=F(f) forall f:X—=Y, F(O,) = Opetc;
F({f.g2)=<F(f), F(g), etc.

We must check that F’ is well defined, that is, for all f,g: A - B in (%),
[ =g implies F'(f) = F'(g). This easily follows because no equations hold
in #(Z) except those that have to hold.

The above universal property means that # is a functor Grph — Cart which
is left adjoint to # with adjunction H ,:Id »#%.

The reader will have noticed that the objects of the category Grph and
Cart introduced here are classes. These may have to be regarded as sets in
an appropriate universe.
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Exercise i )
Show that the deductive system Z(x) in Section 2 is 9(2,), where L, is

the graph obtained from % by adjoining a new edge x between the old
vertices T and A. ’

5 Polynomial categories

Given objects A, and A of a (cartesian, cartesian closed) category
&, how does one adjoin an indeterminate arrow x:Ag— A to o7 One
method is to adjoin an arrow x: 4, — 4 to the underlying graph of .« and
then to form the (cartesian, cartesian closed) category freely generated by
the new graph, as was done in Section 4 for cartesian closed categories.
Equivalently, one could first form the deductive system (conjunction
calculus, positive intuitionistic calculus) o7[x] based on the ‘assumption’ x,
as was done in Section 2 in the special case Ao =T. The formulas of /[ x]
are the objects of .7 and the proofs of .« [x] are formed from the arrows of
«/ and the new arrow x: 4, — A by the appropriate rules of inference.
. To assure that «/[x] becomes a category and that the inclusion of &/
into /[ x] becomes a functor, one then imposes the appropriate equations
between proofs. If equality of proofs is denoted by 5, we may also regard
& as the smallest equivalence relation = between proofs such that

gf=hin o implies gf=h,
Y(x)=y'(x) and x(x) = x'(x) implies x(xJ(x) = ¥ (x)y'(x),
P01 = o(x) = 1c0(x),
(O (x))p(x) = ¥ (X)W (x)ep(x)),
for all p(x):B—>C, (x), Y'(x):C-D, x(x),x(x):D—E.

Note that, in view of the reflexive law, = and = extend equality in /.
Arrows in the category .«/[x] are proofs on the assumption x modulo =,
they may be regarded as polynomials in x.

The same construction works for cartesian categories or cartesian closed
categories, only then 5 must be such that </[x] becomes a cartesian or
cartesian closed category and that the functor o — o [x] preserves the
cartesian (closed) structure. That is, the equivalence relations = between
proofs considered above must also satisfy:

if {f,g> =hin & then {fig)>=h,etc.
if Y(x) =¢'(x) and x(x) = ¥'(x) then {Y(x), x(x)> = {Y¥'(x), x'(x) >,
g, {Y(x), 2(%)) = Y(x), etc,,

for all Y(x), ¥'(x): D - B and (%), ¥'(x):D-C.
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By a cartesian (closed) functor we mean a functor which preserves the
cartesian (closed) structure on the nose. Let H,. .o — &/[x] be the
(cartesian, cartesian closed) functor which sends f: B— C onto the ‘const-
ant’ polynomial with the same name. This possesses the following universal

property.

Proposition 5.1. Given a (cartesian, cartesian closed) category ./, an
indeterminate x: A, — A over &/, any (cartesian, cartesian closed) functor
F: o/ -+ 2 and any arrow b: F(A,)— F(A4) in %, there is a unique (cartesian,
cartesian closed) functor F': o/[x]— % such that F'(x)=b and FFH,=F.

Xx:Ay—> A
A[x]
b N
\\ F/
\\
~
H, SNy b: F(4y)> F(A)
F
oA

Proof. Every proof ¢(x) on the assumption x has one of the following
forms:

ko x, 20(x), Px),a(x)>,  Ylx)*
where k is an arrow in 7, that is, a constant polynomial. The crucial step in
the argument is to define F'{¢p(x)). We define inductively:

F'(k) = F(k),

F'(x)=b,

F'(x(e(x)) = F'(x(x))F (Y(x)),

F(Y(x), 1(x) ) = <F(Y(x)), F'(x(x)) 7,

F'y(x)¥) = (F'((x)))*
It remains to show that F” is defined on polynomials, not just on proofs, that
is, that ¢(x) = ¢'(x) implies F'(¢p(x)) = F'(¢'(x)). Write ¢(x) = ¢'(x) for the
latter, then it suffices to check that = has the substitution property and
respects all the equations of a cartesian closed category.

For example, to check that {n; px(x), 7c px(x)) = x(x), we calculate
F'({mc, px(x) e, px(%) D) = {mpcy, ey (X(%))s Ty, pemy F (X(X)) >
= F'(x(x)),

Corollary 5.2. Given a (cartesian, cartesian closed) category ./, an
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indeterminate x: A, — A over &/ and an arrow a:A,— A in o, there is
a unique (cartesian, cartesian closed) functor S3:./[x]— o/ such that
SUx)=aand S{H, =1,.

Proof. Take F=1_ in Proposition 5.1.

S may be regarded as the process of substituting a for x. One usually writes

S3(e(x)) = ¢(a).
The corollary shows that, in presence of an arrow a: 4, 4, the functor
- Hg o — [xX] is faithful.

Exercise

Adjoining an indeterminate arrow x:1— (¥ to the cartesian closed
category & of sets one obtains the degenerate category %[x] in which

Ix@.

6 ‘Functional completeness of cartesian closed categories

If A is a commutative ring with unity, then any polynomial in an
indeterminate x over A has the unique normal form a, +a,x + -+ + a,x".
For cartesian or cartesian closed categories one has an even simpler normal
form (see Corollary 6.2 below). The following result, called functional
completeness, refines the deduction theorem of Section 2.

Proposition 6.1. (Functional completeness). For every polynomial ¢(x):
B—C in an indeterminate x:1— A4 over a cartesian or cartesian closed
category ./ there is a unique arrow f:4 xB—C in & such that

J<xOp, 1) 5 0(x).

Proof. Let K, 4¢(x) be defined as in the proof of the deduction theorem
(Proposition 2.1). We check by induction on the length of the proof ¢(x)
that

Kxea®(x){xOp, 15> 5 @(x).
Indeed, '
kny p<xOp, 15 T klp sk,
74,1{xO1,1;> = x0; Fx1, 5%
e atl(x), e q2(%) > {xOp, 15
5 (KxeaV(X)<XOp; 157, Kueax(x){xOp, 15> > T {Y(x), 1(x)),
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KreaX(X) T 4,5, Ke aW(x) > {xOp, 15> T KreaX(X){xOp, Y(x))
F KeeaX(X){XOp, 1p ¥(x) 5 x(x)(x),
(Kea¥(X)og, 5, V¥ {xOp, 15
T (Keea¥(x)a {({xO, 1w, ' H)*
5 (Kyeap(X)a (KX O, 1), ' H)*
F (KeeaP(X){x O, (m, 7' » > )*
T (KeeaW (X)X O, 1D)* 2 (Y(x))*,

using (3.2) for h*k and a{{f,g>,h> = {f,{g,h>>.
We next verify that k. ,(x) depends only on the polynomial ¢(x), that is,

on the equivalence class of the proof ¢(x) modulo =. Let us write
o(x) = Y(x) for K, ,0(x) = K, 4¥(x). Then it is easily checked that = has the
substitution property and satisfies all the conditions which equality in
/[ x] should satisfy. (See the sample calculation below.) Since = was
defined as the smallest such equivalence relation, it follows that = is
contained in =, that is, that
* @(x) = Y(x)  implies K. ,0(x) =t e P(),
as claimed.
For example, let us check that, if (f,g>=h in &, then {f,g>=h.
Indeed,
KxeA<f5g> = <KxeAf’KxeAg> = <f7I’,g7T,,>
= <f’g>7tl = hTE’ = KxeAh‘
As another example, let us check that
e () n, ') = x(x),
to take the worst case. Writing x,. ,x(x) = h, we have
KxeA(LHS) = EKyeq < X(X)*TC, 7[,>
=8 < KxeA(X(x)*n), KxeAn/ >
= g{ KxeAX(x)* (=, KyieaT p2 xxeAn,>
= g{(ho)* (m,nn’ >, w'n’ )
=el(ha)*n, 7' Y <{m, ' ), w'n’ )
=hal{{n,nn' Y, n'n >
=h{n,{nn’,7'n'>)
=hi{mn)
=hl=h.

Finally, to prove the uniqueness of f:4 x B—C, assume that
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f{xOp, 15> = @(x). We claim that then f = i, ,¢(x). Indeed,

KxeaP(X) = Kye y(f{xOp, 1))

= fea{xOp, 1)

= f{Krea(¥Op) Kreqlp)

= [ KxeaX{ Ty, K2eaOn)s Krealp)

= f< 4,1 4,8, OpTa 5, Wy p)

=f{ 45 TWyp)

=flygs=1.
Corollary 6.2. For every polynomial ¢@(x):1-C in an indeterminate x;
1 — A4 over a cartesian or cartesian closed category «/, there is a unique
arrow g: A— C in & such that gx = ¢(x). Over a cartesian closed category

s, there.is a unique arrow h: 1 — C4 such that ec,al{h,x) = @(x).
Proof. To derive this from Proposition 6.1, merely put

g = Kyeea@(x)< 14, Q4> h=Tg"

and check that x,.,(gx){1,,0,> =g and h/ =g (see the proof of (3.3)).
Later we shall write 1,_,¢(x) for the h such that h/x = ec,aCh x) = o(x).

Actually, over a cartesian closed category, the corollary is no weaker than
the theorem, since the polynomials B — C are in one-to-one correspondence
with the polynomials 1 — C®. Usually, it is this corollary, which is referred
to as ‘functional completeness’.

Exercises

1. Prove the following general form of functional completeness for cartesian
closed categories: for every polynomial ¢(x): B— C in an indeterminate
arrow x: D — A over a cartesian closed category &, there is a unique arrow
J: AP x B— C such that

SLxmp p)*, 1) = ().
Hint: see the exercise in Section 2, which establishes a general form of the
deduction theorem.

2. If o/ is cartesian closed and .o/[ x] is the cartesian category formed from &/
by adjoining an indeterminate x: 1 — A4, show that </ [x] is also cartesian
closed.

3. Instead of adjoining a single indeterminate x: 1 — A, one can also adjoin a
set of indeterminates X = {x,,..., x,}, where x;: 1 - 4,. Show how to do
this when n =2 and also that

xy,x,] = A[x,]1[x,] = (2],
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wherez:1 - A, x A,. Prove directly that ¢(x, , x,) can be uniquely written
in the form g{x,,x;) or hf{x,x;).

4. Fill in the details in the proof of Proposition 6.1.

7 Polynomials and Kleisli categories

In this section we take another look at the polynomial
cartesian or cartesian closed category «/[x], where x is an indeterminate
arrow 1 — A, to show that its construction could have been carried out
with tools familiar to categorists.

A cotriple (S, e,J) on a category o/ consists of a functor §: .o/ —» o7 and
two natural transformations &: S — 1, and é: S — S? such that, for any object
B of «#,

eS(B)S(B) = 155, = Se(B)o(B), 0S(B)3(B) = S6(B)6(B).

Of course, a cotriple on & is just a triple on /°P (see Part 0, Section 6).
Accordingly, the Kleisli category s/ of the cotriple has the same objects
as o/, but arrows f: B C in &/ are arrows f: S(B) - C in «. In particular,
the identity arrow 1 in &/ is &(B) in &/. Moreover, if g: C - D in </, the
composition g*f in o/ is defined by gf = gS(f)3(B). One easily verifies
that /5 is a category.

With any object 4 of a cartesian or cartesian closed category &/ one
may associate a cotriple (S,,¢,,9,) as follows:

Si=Ax(=), eB)=nyp, O4B)={Typ,lyxp)-

Thus SyB)=AxB and, for f:B—C,S(f)={m,p, fryp>. The
routine calculation that this is indeed a cotriple is left to the reader.

The functional completeness of cartesian or cartesian closed categories
may now be interpreted as follows:

Proposition 7.1. The category «/[x] of all polynomials in the indetermi-
nate x:1—> A4 over the cartesian or cartesian closed category &/ is
isomorphic to the Kleisli category o/ , = o/, of the cotriple (S 4,84, 4).

First proof. Consider the functor P:.o/ ,— o/[x] defined for objects B of
o 4, that is of &, and arrows f:C— B in &/ 4, that is, f:4A x C— B in &/,
by

PB)=B, P(f)=f{xOclc>-

" To check that this is a functor, we apply it to 1z in & 4, that is, e ,(B) = 7y p
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in o7, as well as to the composition

g*f = gS(f)d «(B)
= g<nA,AxB’fn:4.AxB><nA,B’ Vyup) =9<{myp f>.

Indeed ,

P(e(B)) =7y p<xOp, 15> = 1p,

Plg+f)=g<{m [ >{x0,1) =g<{x0, f{xO,1>)
=g{x0,1>f{x0Q,1) = P(g)P(f).

Finally, Proposition 6.1, tells us that P has an inverse K, where K(B) =
and K(f(x)) = ke f(x).

It may be of interest to point out that the curious definition of x_ AOn(x))
given in Proposition 2.1 is related to the curious definition of composmon
in a Kleisli category.

While logicians may favour the proof just given, confirmed categorists
will undoubtedly prefer another proof which establishes directly that the
Kleisli category </, has the universal property of Proposition 5.1, and
which therefore allows them to bypass the constructions in Sections 5 and 6
altogether.

Second proof. We shall confine attention to the case when o is cartesian,
leaving the cartesian closed case as an exercise to the reader.

We first show that M 4 1s a cartesian category by defining Og:C— 1,
npc:B x C— B and mjfi:: B x C—C as follows:

— A ’ A ’
OC = Quxcr TBec=TpcMapxcr TBC= g, c4,BxC

and by taking {-,~) as in &/. The equations of a cartesian category are
easily checked, for example:

w4 f,g) = 1w’ {n,{f,9> > = n{f,9) =,
{rxh, w'Axh) = (' {m, h), n'w'{m, h) > = {mh,n'hD> = h.

Now define the functor H ,: &/ — o/ , for objects B and arrows f: C — B of
&/ by

H B)=B, H,(f)=fryc.

It is easily checked that H , preserves the cartesian structure exactly. We
claim that H, has the same universal property as H, in Proposition 5.1,
with 7, , serving as the indeterminate.

Let F: .o/ — 2 be a given cartesian functor and b: 1 — F(A) a given arrow
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in . We want to show the existence of a unique cartesian functor F':
o/ 4— R such that FH, = F and F(n, ;)= b. Define F' on objects B and
arrows f:B—C in o/, by

F'(B)=FB, F(f)=F(f)<{bOxp lrs)-
We check that F' is a cartesian functor:

Fi(n')= F(n)<bO,1> =n'<(bO,1) =1,

Flgxf)=F(g{m f>)<bO,1> = F(g){m,F(f)><{bO, 1)
= F(g)<bO, F(f)<bO,1)>> = F(g)<bO, 1) F(f)<bO,1)
=F(g)F (/)

F'(n*) = F'(nn') = Frn'){bO, 1> = ax'(bO, 1> =,

F'(n'*) = o’ similarly,

F({f,g%) = F(<£,9>)<bO, 1) = F(f), F(g) y<bO, 1)
=CF(f)<bO, 1), F(g)<bO, 1)) = F'(f), F(g)).
Moreover, F’ has the desired properties:
F'(H (B)) = F'(B) = F(B),
FHAf) = F(fr)= F(f5)<bO, 1) = F(f)n{bO, 1)
=F(/)1 = F(f),
Flr,,)= F(nA,l)<boF(1)’ 1F(1)> =7,,{bOy,1;)
=bO;=bl1,=b.
Finally, to show uniqueness of F’, assume that F’ has these properties,
then
F(f)=F(fn'{m,1)) = F((fr)x1)
=F(fm)F(1)=FH(f)F({nn'))
=F(/)F({nm, O 7)) =F (f)F'({n+O,n’>)
=F(/)XF(mMF(O), F(n)) = F(f)<bO, 1.
This completes the proof.

Exercises

1. Given an indeterminate arrow x: 1 » A over a cartesian closed category
&, show that #[x] is isomorphic to the Kleisli category of the triple
(Tas14 14), where T, = (-)*, N4(B)=n} 4, u(B) = (e(e, ' ))*

2, Show that the Eilenberg—Moore category of the cotriple (S,,¢,,d,) is
isomorphic to the slice category «f/A4 whose objects are arrows B— 4 in
#f and whose arrows are appropriate commutative triangles.
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3. Complete the second proof of Proposition 7.1 in case .« is cartesian
closed. (This will give another proof of Exercise 2 of Section 6).

8 Cartesian closed categories with coproducts

Cartesian closed categories were defined as positive intuitionistic
propositional calculi satisfying certain equations between proofs. To
complete the picture we define a bicartesian closed category as a full
intuitionistic propositional calculus satisfying the following additional
equations:

ES. f=0, forall f:1 - A4;
E6a. [f,gle 5= f;

Eéb.  [f,glkss=9;
EBéc.  [hi,p, b, p]l=h;

forall f:A—C,g:B—~C and h: Av B-C.
We recall that the operation [~,-] was defined in terms of the arrow
(8.5 CA x CB- C4V8 Thus

Lf91=Cas<"fTg™)". _

It is customary to write O for L and A + Bfor A v B. The equations assert
that 0is an initial object and A + Bis a coproduct of A and B with injections
k4. and K g. Thus Hom (0, A) has exactly one element and

Hom (4, C) x Hom (B, C) =~ Hom(4 + B, C).

Functional completeness holds for bicartesian closed categories. More
precisely, we have:

Proposition 8.1. 1f o/ is a bicartesian closed category and «/[x] is the

cartesian closed category of polynomials in the indeterminate arrow
x:1— A over o/, then &/[x] is also a bicartesian closed category.

Proof. We refer to the one-to-one correspondence between arrows B— C
in #/[x] and arrows A x B—C in «. Thus 0 is an initial object in &/[x]
because

Hom(A4 x 0, B) = Hom(0 x A4, B) = Hom(0, B"),
which has exactly one element because 0 is an initial object in .o¢. Again,
B+ C is the coproduct of B and C in &/[x] because

Hom(A x B,D) x Hom (A x C, D)= Hom ((4 x B) + (A x C), D)

>~ Hom(A4 x (B +.C), D).

This uses the fact that (4 x B) + (4 x C) is a coproduct in &7 and also the
distributive law
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(AxB)+(AxC)=Ax(B+ (),

see the exercises below. A slightly longer argument avoids the distributive
law:

LHS = Hom(B, D*) x Hom(C, D*) = Hom(B + C, D4) = RHS.

It is an interesting consequence of Proposition 8.1 that the identities ES and
E6 can be stated as equations between constants, that is, without
quantifying over arrows f,g and h. For example, in E6a, we may replace
f by (nw)’ and g by (n'w)’, where w: 1 - C4 x CB Now, regarding w as an
indeterminate arrow, we have

Law), (m'w) Jic 4 p = (mw)’.

By functional completeness, w may be eliminated from this equation.
Writing 2 =1+ 1, we may think of arrows p:1 -2 as propositions or
truth-values. In particular, we put

K =1, Ky =4
We shall also introduce the classical propositional connectives
13292, A,Vv,m,e12X2-52

(The arrows L and p A g should not be confused with the objects L and
A A B= A x B.) For example, we shall exploit functional completeness to
obtain the definition of p A q.

We want

pAT=p, pal=.1.
By functional completeness, we have
pAx=fx
for a certain arrow f:2— 2, where x: 1 — 2 is an indeterminate proposition.
Then
f=lfu.fKel=lpAT,pALl=[p L]
hence
prq=fq=[p,L]q.
In this fashion, we arrive at the following:

Definition 8.2. If p and ¢ are arrows 1 — 2 in a bicartesian closed category
and T = Kl,l’ .L = Kll,l,

a=[1,T1
prq=[p, 11q,

FRR—
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pv4q= [T,p]q,
p=>q= [Ta—]p]q’
p<>q=_[p,"plq.

Somewhat surprising at first sight is the following observation about
bicartesian closed categories.

Proposition 8.3. In a bicartesian closed category there is at most one arrow
A 0. Thatis, in an intuitionistic propositional calculus there is at most one
proof 4— L, up to equivalence of proofs.

Proof. In a bicartesian closed category Hom (4 x 0,C) * Hom (0 x 4,C) =
Hom (0, C*) is a one-element set. In particular, the composite arrow

|ij()

Ax0 —40 g Ax0

must be theidentity 1, ,. Now suppose there is an arrow f: 4 —0. Then the
top arrow of

S La

N
o
)

is the same as

aldad2, g Tao, 4

namely 1. Since also
04,410

is 14, it follows that 4 = 0.

We have shown that either Hom(4,0) = & or else A =~ 0, in which case
Hom(A4,0) =~ Hom(0, 0) consists of a single element.

Proposition 8.3 tells us in particular that it is futile to try and define
‘Boolean categories’, that is, bicartesian closed categories in which the
obvious arrow A4 — (L <=(L <= A)) is an isomorphism. Up to equivalence of
categories, there are no Boolean categories other than Boolean algebras.
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Exercises
1. Establish the following isomorphisms in any bicartesian closed category:
A+0=A, Ax0=0, A°x1;
A+BxB+A4, (A+B)+C=A+(B+C);
(A+B)x Cx(AXxC)+(BxC), AB*Cx A48 x AC.

2. Write down explicit equations between arrows to replace E5 and E6, that
is, eliminate f, g and h.

3. Give a detailed justification for Definition 8.2, as was done for P A qinthe
text.

4. What can be said about those objects 4 of a bicartesian closed category
for which 04 = 0?

9 Natural numbers objects in cartesian closed categories

A natural numbers object in a cartesian closed category .,
according to Lawvere, consists of an initial object

1 LN SN

f

in the category of all diagrams 1 Laliging. This means that, for all
such diagrams there is a unique arrow h: N — A such that

h0=a and hS=fh,

as is illustrated by the following commutative diagram:

0 S

1
4
i
=

>
=~

Y
Mmoo
P

a S

Sometimes we merely wish to assert the existence of , never mind its
uniqueness. Then we shall speak of a weak natural numbers object. Cartesian
closed categories with a weak natural numbers object have been called
‘prerecursive categories’ by Marie-France Thibault. (See Exercise 2 below.)

For example, in Sets, the set N = {0, 1,2,...} of natural numbers together
with the successor function S(x) = x + 1 forms a natural numbers object.




Natural numbers objects in cartesian closed categories 69

More generally, all toposes considered, in Part II have natural numbers
objects.

If ILN —S—>N is a weak natural numbers object, we shall write

h=J (a,f). Thus

J sHom(l, A) x Hom(4, A)— Hom(N, A)
satisfies the equations

Jaa, f0=a, Ja,f)S=1Jaf)

Proposition 9.1. If the cartesian closed category .« has a natural numbers
object (weak natural numbers object) and if x:1— 4 is an indeterminate
arrow over &, then the cartesian closed category =/[x] has the same
natural numbers object (weak natural numbers object).

Proof. A short conceptual argument goes as follows. A (weak) natural
numbers object in & gives rise to one in the slice category <//A, hence in
/[ x], which comes with a full and faithful functor K,: #/[x]— «//A. For
the more meticulous reader, we shall now give a detailed computational
proof.

First, assume the existence of a weak natural numbers object in <. Let
p(x):1—>B and ¢(x): B— B be given polynomials in o/[x]. We seek a
polynomial y(x): N — B such that

x(x)0 = B(x), 1(x)S = @(x)x(x).

In view of functional completeness, these equations involving x are
equivalent to the following equations not involving x:

KxeA(X(x)o) = KxeAﬂ(x)’ KxeA(X(x)S) = KxeA((p(x)X(x))'

Writing ,
. KeeaB(x)=b:Ax1-B, k,0(x)=f:AxB—-B,
we seek
KeeaX(X)=h:AXxN—-B
such that

h{mn,0n'>=b, h{m,Sn'>=f<{mh).
With b and f we may associate b’: 1 — B4 and f': B4 — B given by
b =(b{n',np)*, ['=(Kne))* '
Then we may find #": N — B4 such that
Wo=b, WS=fW,
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as is illustrated by the following diagram:

0 N S N
l i
' i
! I
: W ih
|
|
| |
*A 'A
> B
% B 7

Now put h=¢{h'n’,n), then routine calculations show that
h{m,0n'>=b, h{m,St')=f{mh},

as required.

If we have a natural numbers object in <7, not just a weak one, then the
arrow h': N — B* is uniquely determined by the equations 0 =)' and
H'S =f"l. From this it easily follows that h is also uniquely determined by
the equations it satisfies. For we may calculate A’ in terms of h as follows:

(W', mp)* = (e<hm,m)y{n', m))*
=(e{Wmn'H)*
=M,
and then transform the equations satisfied by A into the equations satisfied
by K.
In what follows we shall write, for indeterminate arrows y:1 - B,v:1 — B?
and zz1-N,
JB(.V’ U!)Z = 1B<y’ U,Z>,
where (y,v,z) is short for {{y,v>,z).

Corollary 9.2 A weak natural numbers object in a cartesian closed

category is given by an object N and arrows 1 ﬂ»N i>N and I
(B x B®%) x N - B, for each object B, satisfying the identities

Ig<y,0,0> =y, I1p<y,0,52) =0/ 1p<p,0,2),
where the subscripts y,v,z on the equality symbol have been omitted.

Proof. We use Proposition 9.1 with A =B x B%. Adjoining a single
indeterminate x:1-— A is equivalent to adjoining two indeterminates
y:1—>B, and v:1 - B5,
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Corollary 9.2 may also be stated in terms of an arrow N — (B%)®")in place of
Iy.

Exercises

1. If a cartesian closed category has a natural numbers object, then this is
unique up to isomorphism.

2. Determine all weak natural numbers objects in the category of sets.
3. Carry out the routine calculations mentioned in the text to show that
h{m,0n'y=b, h{mSn')>=f{mhd.

4. Show that a natural numbers object in a cartesian closed category is
equivalent to the following condition: for each g: 4 — B and f:B— B there
is a unique k: N x 4 — B such that the following diagram commutes:

00,4, 1, Sx1
A AVN A A

L
P4
N

e — e e = X

k

=

X
|
|
1
|
|

5

g f

The same assertion without uniqueness holds for a weak natural numbers
object. This suggests how to define (weak) natural numbers objects in
cartesian categories which are not cartesian closed.

5. Show that, if a cartesian closed category < has a (weak) natural numbers
object, then so does o/A for each object 4 of o.

6. Verify the remark in the proof of Proposition 9.1 that, if A is an object of a
cartesian closed category ¢ and x: 1 - A an indeterminate arrow, there is
a full and faithful functor K,: o/[x] - o//A.

7. (Lawvere) Given a category ¢, let s#"°°P be the category whose objects are
‘endomaps’ f: A — A and whose arrows are commutative squares.
There is an obvious forgetful functor U: o7 o7,

(a) Show that s7'°°" is equivalent to o™, where N is regarded as the free
monoid on one generator.

(b) Assuming that <7 is cartesian closed, show that U has a left adjoint F if
and only if .« has a natural numbers object. (Hint: In one direction
define F(4)= S x 1,: N x A~ N x A and use Exercise 4 above. In the
other direction consider F(1).)
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8. Consider the cartesian closed category of limit spaces (Part 0, Section 7,
Example 7.8). Show that the natural numbers object is the set N of natural
numbers with the ‘discrete’ convergence structure: a sequence {x,|neN}
converges to xe N if it is eventually constant with value x.

10 Typed A-calculi

The purpose of this section is to associate a language with a
cartesian closed category with weak natural numbers object, which will be
called its ‘internal language’. The kind of language we have in mind will be
called a ‘typed A-calculus’ for short, although it might be known from the
literature more fully as a ‘typed Ay-calculus with product types (surjective
pairing) and iterator’. This association will turn out to be an equivalence
between appropriate categories.

A typed J-calculus is a formal theory defined as follows. It consists of
classes of ‘types’, ‘terms’ of each type, and ‘equations’ between terms which
are said to ‘hold’, all subject to certain closure conditions. We shall write
aeA to say that a is a term and is of type 4; the symbol € belongs to the
metalanguage.

(a) Types: The class of types contains two basic types and is closed
under two operations as follows:

(al) 1 and N are types (these are the ‘basic’ types).

(a2) If A and B are types so are A x B and B,

There may be other types not indicated by (a1) and (a2) and there
may be un-expected identifications between types.

(b) Terms: The class of terms is freely generated from variables and
certain basic constants by certain term forming operations as
follows:*

(b1} Foreach type 4 there are countably many variables of type A, say
xfed (i=0,1,2,...). We shall hardly have occasion to refer to a
specific variable, instead we shall frequently use the phrase ‘let x be
a variable of type A’, abbreviated as ‘xe4’.

(b2) =*el.

(b3) If acA,beB and ceA x B, then (a,b)eA x B, n,z(c)eA and
7y glc)eB.

(b4) If feB* and aeA, then g5 4(f, a)eB.

(bS) If xeA and @(x)eB, then 4,.,¢(x)eB*.

{(b6) OeN; if neN, then S(n)eN.

(b7) If acA,he A* and neN, then I ,(a, h,n)e A.

* There may be other constants and term forming operations than those specified.
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We shall abbreviate &5 ,(f,a) as f’a (read: f of @’) when the type
subscripts are clear from the context. There may be other terms not
indicated by (b1) to (b7). Intuitively, &5 , means evaluation, {— ,—~» means
pairing and A,.,¢(x) denotes the function X = p(x). A, acts like a
quantifier, so the variable x in A, ¢(x) is ‘bound’ as in V,_, ¢(x) or
_[,, f(x)dx. We have the usual conventions for free and bound variables and
when it is permitted to substitute a term for a variable. The term a is
substitutable for x in ¢(x) if no free occurrence of a variable in a becomes
bound in ¢(a). A term is ‘closed’ if it contains no free variables. We usually
omit subscripts in 7, g(-), I ,(-,~,-) etc.

(c) Egquations:

(c1) Equations have the form a 5 a’, where X is a finite set of variables,
aand a’ have the same type A, and all variables occurring freelyin a
or a’ are elements of X.

(c2) The binary relation between terms g, a’ which says that a 5 a’ holds
is reflexive, symmetric and transitive and it satisfies the rule when
X < Y thenifa 5 b holds one may infer that a 5 b holds, which will
be abbreviated:
azb
asb

It also satisfies the usual substitution rules for all term forming
operations, in particular the following:

agb Pz, @' (%)
f!a f’b 'q'xeA(p(x) AxeA(pl(x)

from Wthh the other substitution rules follow.

All these are obv1ous substitution rules, except perhaps the rule involving
4, which decreases the number of free variables.
(c3) The following specific equations hold:
a3 * for all ael;
n({a,b))5a for all acA,beB,
w'({a,b>)5 b for all acA,beB,
“Kmle),mw'(c)) ¢ forall ced x B;
Area®(x)fa s o(a) for all ac 4 which are substitutable for x,

Awea(f'%)5 f for all feB*, provided x is not in X
(hence does not occur freely in f);
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I(a,h,0) 5 a, for all acA, he A*
I(a,h,S(x)) = h’I(a, h,x); provided x is not in X (hence does not
Xuix}
occur freely in a or h);

Aeea®(X) T Avea@(x), if X' is substitutable for x in ¢(x) and x’ is
not free in ¢(x).

There may be other equations not indicated by (c1) to (c3).
The last equation listed under (c3) may be omitted if we are willing to
identify terms which differ only in the choice of bound variables.

One of the rules listed under (c2) allows us to pass fromas btoa = b,
Xuix}

even when x is not in X . Under certain conditions one can go in the opposite
direction, as we shall see. Of course, if this were always the case, there would
have been no point in putting the subscript X on the equality sign.

Proposition 10.1. Inany typed A-calculus, one may infer from ¢(x) = (x)
Xu{x}

that ¢(a) 3 Y(a) for any ac A, provided x is not in X and all variables

occurring freely in a are elements of X.

Proof. From (x) = Y(x) wWe infer A, 0(x)% Awa¥(x) hence
Xy

{x}
Awea®(x) a5 A 4¥(x)’a, using (c2). In view of (c3), we then obtain

@(a) % Y(a).

Corollary 10.2. If fand g do not contain free occurrences of the variable x

of type A, then from f = g we infer / 5 g, provided there exists a term a of
Xuix}

type A such that all variables occurring freely in a are elements of X.
Proof. 1f x is not already in X, this follows from Proposition 10.1.

Unfortunately, it may happen that A4 is ‘empty’ that is, no closed term of
type A exists (see examples 10.5 and 10.6, below). On the other hand, if there
are closed terms of each type, the proviso of Corollary 10.2 is always
satisfied. This is the case, for example, in the ‘pure typed A-calculus with
weak natural numbers object’ to be discussed presently. In such a situation
the subscript X on = is redundant and one may replace = by just =.
Sometimes one may argue differently, but with the same result. Suppose

S/ r; ‘g, then f/x -—; }g’x, hence A, 4(f'X) 5 A,c4(gx). In view of (c3), it
Xulx Xuix

follows that f 5 g. The assumption here is that f and g have type B4, We
shall sum this up:

Proposition 10.3. 1 f and g are of type B* and if xc A4 does not occur freely
in f or g, then from f = g one may infer f = g.
Yurdx}
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We shall consider three examples of typed A-calculi with weak natural
numbers object.

Example 10.4. Suppose there are no types, terms and equations other than
those indicated by the closure rules (and also no nontrivial identifications
between types), then we obtain the pure typed A-calculus with weak natural
numbers object called Z,,.

Example 10.5. Given a graph ¥, the A-calculus A(%) generated by ¥4 is
defined as follows. Its types are generated inductively by the type forming
operations (~) x (~) and (-)") from the basic types 1, N and the vertices of %
(which now count as basic types). Its terms are generated inductively from
the basic terms x#,0 and * by the old term forming operations (-,-», n(-),
(), &(—); Ageal-), S(-)and I(—,—,~) together with the new term forming
operations: if aeA then faeB, for each arrow f: 4— B in 4. Finally, its
equations are precisely those which follow from (c1) to {c3) and no others.
Note that there are plenty of empty types, for instance, all the vertices of 4.
Clearly, Example 10.5 includes 10.4 if ¢ is the empty graph.
We now come to the principal example of this section.

Example 10.6. The internal language L(s/) of a cartesian closed category
& with weak natural numbers object is defined as follows. Its types are the
objects of o7, with 1, N, A x B and B* having the obvious meanings. Terms
of type A are those polynomial expressions ¢(x,,...,x,):1—A in the
indeterminates x;:1—A4; which are obtained from variables, namely
indeterminates, and basic constants, namely arrows 1 — A in ¢, by the term
forming operations:

al—-A bl1-B al-A4 o(x:1-B
{a,b}:1-Ax B’ fa:1-B A, ,.0(x):1->BY

where f:A—B and A, ,0(x)= "k, ,0(x){1,, O, as in the proof of
Corollary 6.2. Moreover, we write * for O, n, g(c) for n, gc, €5 4(f, a) for
eg.4 {f,a), etc. Finally, if a and b are polynomial expressions whose free
variables are in X, a 5 b is said to hold in L («) if a < b as polynomials in
A[X].

We shall no_w’introduce morphisms ®: & — &’ of typed Ai-calculi, to be
called translations.

(d1) @ sends types of &£ to types of £ and terms of & to terms of &’ so
that if ae 4, then ®(a)e®(A); but we insist that if a is closed, so is
®(a) and that @ sends the ith variable of type A4 to the ith variable of

type ®(A).



76 Cartesian closed categories and A-calculus

(d2) @ preserves the specified type operations on the nose, for example:
O(1)=1, O(4 x B)=D(A) x D(B),...;

and the specified term forming operations up to ‘equality holding’,
e.g. the foillowing equations hold in #"

B( 4 p(c)) = nQ(A),O(B)((D(C)); DA e 40(x)) = l@(x)eou)d)(‘l’(x))-
(d3) Moreover, ® preserves equations:

ifag b holds in .# then ®(a) = ®(b) holds in &".
[P ¢}

In view of (d3), ® really acts on equivalence classes of terms (modulo the
equivalence relation described in (c2)). We shall say that two translations
are equal if they have the same effect on such equivalence classes. Thus
® =¥ provided ¢(a);{)‘l‘(a’) holds whenever a % @’ holds.

We thus obtain a category A-Calc whose objects are typed A-calculi and
whose arrows are translations.

Let Carty be the category of cartesian closed categories with weak
natural numbers object and cartesian closed functors preserving weak
natural numbers objects on the nose. The proof of the following is left to the
reader.

Proposition 10.7. Let L(s«/) be the internal language of &/ and, for any
morphism F: o/ — o', let L(F) be defined by L(F)(4) = F(A), L(F)(x,) = xi,
L(F) (¢p(X)) = Fx(e(X)), where x; is the ith variable of type F(A) and Fy is
the unique arrow in Carty such that the following diagram commutes:

AH)-= = =S5 ~ o' [X]

7 o

Then L is a functor from Carty to A-Cale.

%, is aninitial object in A-Calc, that is, for any typed A-calculus & thereisa
unique translation %, — %. In particular, for any & in Carty there is a
unique morphism %, — L(«/). This may be called the interpretation of %,
in /.
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The reader may have noticed that the languages discussed in this section
‘may be proper classes in the sense of Godel-Bernays. If necessary, one may
work in a set theory with universes, in which ‘classes’ are replaced by ‘sets in
a sufficiently large universe’.

Exercises

f. Verify that A: Grph — A-Cale (see Example 10.5) is a functor left adjoint to
the obvious ‘forgetful’ functor ¥: A-Cale — Grph. (The underlying graph of
a A-calculus has as vertices the types and as arrows A — B suitable
equivalence classes of pairs (x, (x)), where ¢(x) is a term of type B with no
free variables other than x, which is of type A4.)

2. By a classification we mean two classes and a mapping between them:
Entities —_ Types

The mapping assigns to each entity its type, and we write ‘ae A’ for ‘the
type of a is A”. Morphisms ® between classifications are defined in the
obvious way:aeA4 should imply ®(a)e®(4). The category of small
classifications is thus equivalent to Sets?, where 2 is the category consisting
of two objects and one arrow between them. Show that the obvious
forgetful functor from A-Cale to the category of classifications has a left
adjoint.

3. f % is a Heyting algebra considered as a cartesian closed category, show
that there may be unexpected identifications between types in L(%).
4. Verify that L{.) in Example 10.6 is a typed A-calculus.

11 The cartesian closed category generated by a typed A-calculus

To show that the functor L in Section 10 is an equivalence of

categories we shall obtain a functor C in the opposite direction.

Given a typed A-calculus .#, we construct a cartesian closed category
C(£) with weak natural numbers object as follows:

The objects of C(Z) are the types of &.

The arrows A — B of C(%) are (equivalence classes of) pairs (xe 4, ¢(x)),
with x a variable of type A and ¢(x) a term of type B with no free variables
other than x. (Think of the function x - ¢(x).)
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Equality of arrows is defined by: (xe 4, ¢(x)) = (x'e 4, y(x')) if and only if
@(x) = Y(x) holds, where = abbreviates =

The identity arrow 4 — 4 is the pair (xe 4, x).

The composition of (xe A, ¢(x)): A~ B and (yeB, Y(y)): B— Cis given by

(xeA, Y(p(x))): A— C, ¢(x) having been substituted for y in ¥(y).
The cartesian closed structure of C(%) is obtained as follows:

Oa=(xe4, %),
48 =(z€4 x B,n(z)),
yp= (264 x B, 7'(2)),
((zeC, 0(2)),(zeC,¥(2))) = (26 C, { 9(2), Y(2) )),
(ze4 x B, 2(2))* = (x€ 4, 4,ep (<X, yD)),
&c,a = (yeC* x A, ec 4(n(y), w'(¥))).
C(#) has a weak natural numbers object:
0=(xel,0),

S =(xeN, §(x)),
Iy =(we(B x B?) x N, I(n(n(w)), #'(n(w)), '(w))).

It is easy to make C into a functor A-Cale - Carty. Indeed, suppose
O: L — & is a translation, define C(®): C(#) - C(") as follows:

If A is an object of C(&), that is, a type of &, C(®) (4) = ®(A) is the
corresponding type of .#”, hence an object of C(%").

If f=(xeA, o(x)) is an arrow 4 — B in C(%), that is, o(x) is a term of
type Bin &, C(®)(f) = (P(x) € ©(A4), ©(p(x)))-is the corresponding arrow
®(4)—» D(B) in C(L).

To sum up:

Proposition 11.1. C is a functor from A-Cale to Cart,,.

Instead of adjoining an indeterminate arrow x: 1 — A4 to the cartesian closed
category C(%), one may adjoin a ‘parameter’ x of type 4 to the language &.
To be precise, if & is a typed A-calculus and x is a variable of type A, one
may form another language #(x) by adjoining the parameter x as follows:

<Z(x) has exactly the same types as % and also the same terms, except
that x is no longer counted as a variable. In other words, the closed terms of
Z(x) are terms ¢(x) in £ which contain no free variables other than x. In
the same spirit, 5 in #(x) means = in % just make sure that x is not

Xufx}
in X.
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Some dictionaries define a ‘parameter’ as a ‘variable constant’. For us it is
a variable kept constant.
Proposition 11.2. C(¥)[x] = C(ZL(x)).

Proof. We show that C(#(x)) has the universal property of C(¥) [x] (see
Section 5):

C(Le)_

H \\ b: 1--F(A)

C(¥)

The indeterminate x:1—>4 is defined by (yel, x). H, is C of the
inclusion of % into #(x), which may necessitate some relabelling of
variables. Suppose F: C(£)— ./ is any cartesian closed functor preserving
the weak natural numbers object, and given any arrow b: 1 — F(4) in <,
we claim that there is a unique such functor F': C(#(x)) - < such that
F'H,=F and F'(x)=b.

Indeed, put F'(B) = F(B) for each object B of C(2), that is type in .&.
Suppose f = (yeB, ¢(x,y)) is any arrow B— C in C(Z(x)), that is, o(x,y)
is any term of type C in & with free variables xe A and yeB. Define F "f).
F(B)— F(C) in o as follows:

First note that ¢(x, y) zl/(y)f x holds, where y(y) is A,_,¢(x, ). Thus

f=¢ec 4{g,x O,,),where g = (yeB, ¥(y)): B> C4 in C(#). Now define
F'(f) = epic),ray<F(9); b Oy -

That this definition has the right property is easily seen. Moreover, it is
clearly forced upon us, since F'(g) = F(g) and F'(x) = b. We now establish
the main result of this section.

Theorem 11.3. The categories A-Cale and CartN are equivalent, in fact
CL=zid and LCx=id.
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Proof.’ (i) Consider the natural transformation &: CL —id defined for each
& in Carty by &(f): CL(of) — o as follows:

An object of CL(«) is a type of L(«), that is, an object of .«/. Put
gAY A) = A.

An arrow B— C in CL(#) has the form f = (yeB, ¢(y)), where ¢(y)eC
in L(«/). Put &() (f)= the unique arrow g: B— C such that gy 5 o
using functional completeness.

It is easily verified that ¢() is an arrow in Carty. Moreover, in view of
functional completeness, it establishes a one-to-one correspondence
between Homgy,,, (B, C) and Hom,, (B, C). Thus &(«/) is an isomorphism.

(i) Consider the natural transformation #: id — LC defined for each % in
A-Cale by #9(&¥). & - LC(Z) as follows:

LW A) = 4;
LN p(xy,...,x,))=(zel, p(x,,...,x,)) in C(&L(x1s-.. 5 X))

Note that we have identified C (%) [x,, ..., x,] with C (Llxy,...,x,))asis
justified by Proposition 11.2. It is easily verified that 7(.%#) is an arrow in -
Calc. To see that n(#)is an isomorphism, construct its inverse, which sends

(ze1, (z)) onto e(*).

Corollary 114. C(¥,), the free cartesian closed category with weak
natural numbers object generated by the pure typed A-calculus, is an initial
object in Carty.

The initial object of Carty may also be obtained by the methods of
Section 4. ,

We end this section with a remark concerning the problem of how to
interpret languages in categories. In the present context this is explained
quite easily: an interpretation of a typed A-calculus % in a cartesian closed
category «/ with weak natural numbers object is just a translation & —
L(s/). By Theorem 11.3 (or just by adjointness, see Exercise 3 below), this is
essentially the same as a cartesian closed functor C(ZL)— . As already
observed after Proposition 10.7, %, has a unique interpretation in any
cartesian closed category with weak natural numbers object.

Exercises

1. Show how to obtain the free cartesian closed category with a weak
natural numbers object generated by any classification. (See Exercise 2 of
Section 10.)

2. In the spirit of this section, find a new method for constructing the free
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cartesian closed category with a weak natural numbers object generated
by a graph.

3. Show that C is left adjoint to L with adjunction 5 and .
4. Prove that I5{<{y,v>,x)> =(tel, I(y,v,x))in C(L(y,v,x)).

12 The decision problem for equality

Let us look at the cartesian closed category with weak natural
numbers object freely generated by the empty graph, as in Section 4, but
with weak natural numbers object, or as in Exercise 2 of Section 11. Since
both are initial objects in Carty (see Corollary 11.4), they are isomorphic.
We shall write €, for this initial object. €, is of interest to logicians, as it
gives a version of Godel’s primitive recursive functionals of finite type, and
to categorists, as it is related to the so-called ‘coherence problem’ for Cart,,.
This problem asks when diagrams in a category commute or, equivalently,
when two arrows between two given objects are equal. Indeed if one wants
to compute Hom(4, B) in %, two problems arise:

(I) Find an algorithm for obtaining all arrows 4 — B in €, (that is, all
proofs A — B in the corresponding deductive system).

(I) Find an algorithm for deciding when two arrows A4 — B are equal
(better: when two proofs describe the same arrow).

We shall here address ourselves to the second problem. Looking at the
proof of the distributive law

fr9>h={fhgh)
for cartesian closed categories given in Section 3, we note that both sides
must be expanded to be shown equal. It seems easier to consider %, as given
by C(%,) rather than as constructed by the method of Section 4.

Two arrowsf, g: A — Bin %, are thus given by two terms @(x) and (x) of
type B in %, with a free variable x of type 4. We want to decide whether
¢(x) 5 ¥(x) holds, or equivalently, .. ,0(x) = A, ,¥(x) holds in Z,,. Let us
call two terms g and b of ¥, whose free variables are contained in X
convertible if the equation a 5 b holds in Z,,. Terms of .#, are, of course,
defined inductively, as the reader will recall. Thus Problem (II) has been
reduced to deciding when two closed terms of type B in £ (x) or &, are
convertible. In view of the fact that there are closed terms of each type in
<o, we need not distinguish between = and =, as was pointed out in
Section 10.

Actually, we shall solve the decision problem for convertibility not in .Z,
but in £, which is like £, but without type 1. In other words, Z, is a
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variant of pure typed A-calculus in which the only basic type is N. This may
be done without loss in generality for the following reason: a closed term of
type Bin £ or £ o(x) corresponds to an arrow 1 — Bin %, or %, [ x], where
the object B is canonically isomorphic to either 1 (which case may be
dismissed as uninteresting) or an object whose inductive construction does
not contain 1 at all. This is so in view of the canonical isomorphisms
Cx1=Cx=1xC, C'=C and 1°= 1. The last mentioned isomorphism
presupposes that Hom(1, C) is not empty, which is the case in %, as there
are closed terms of each type in %,.

‘To solve the decision problem for convertibility of terms in &, we shall
replace convertibility by a finer relation, that of reducibility. However, it
becomes tedious to distinguish between terms which differ only in the
choice of bound variables. We shall call two such terms a and @’ congruent
and write a=4'.

First we shall define a relation a > ' between terms of type 4 in Lo Or
Z'p (actually, congruence classes) and say ‘a basically reduces to a”. There
are eight basic reductions; in each of the basic equations of typed A-calculus
the left hand side basically reduces to the right hand side:

Bl a>x (acl,a # *); (not used in &)
B2. n({a,b})>a (aeA, beB),

B3. n'({a,b))>b (acA, beB);

B4. {nfe),n'(c)> >¢ (ced x B);

BS.  Awea@(x)a>¢(a) (acA);

B6. Aea ffx)>f (feB4,x not free in f);

B7. I(a,h,0)>a (ae A, he A%

BS. I(a,h,S(n)) > h' I(a, h,n) (acA,he A%, neN).

We shall say that b reduces to b’ in one step and write b 5 b’ provided b’ is
obtained from b by replacing a single occurrence of a subterm ainbbyd
where a > a'. For example,

AreaSTRX YD) YD 3 Axea{%, YD
because n({x,y>) > x.
We shall say that b reduces to b’ in n steps and write b > b’ provided
bEbo?bl?m >b,=V.
In particular, b > b’ means that b = b'. We shall also say b reduces to b’ and

write b > b’ prov1ded there is a natural number n such that b >b.
The convertibility relation between terms is of course the smallest

s

s
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equivalence relation containing >, that is, the equivalence relation
generated by >. This takes a particularly simple form in view of the
following:

Proposition 12.1. (Church-Rosser Theorem). In %}, ifb > cand b > d then
there exists a term e such that c> e and d > e.

We postpone the proof of this until later and only note its consequence:

Corollary 12.2. Tfband b’ are terms of type B, thenb = b' holdsin &£, if and
only if there is a term deB such that b>d and b > d.

Proof. 1t suffices to check that the relation between b and b’ which holds
whenever there exists d such that b > d and b’ > d is an equivalence relation.

We shall call a term b irreducible, or in normal form, if there does not exist a
term b’ such that b > ', that is, if for no subterm a of b there exists a’ with
a> a'. Another way of saying this is that b > b’ implies b = b’ for all terms b'.

Remark 12.3. In £ there are irreducible closed terms x(A) of each type A,
defined inductively as follows:

k(1) = *,k(N)=0,1(A x B) = {k(A), k(B)>, k(B4) = 1,_,(B).

We shall leave the easy verification of this to the reader and pass on to some
further obvious consequences of the Church—Rosser Theorem.

Clearly, a sufficient condition for b = b’ to hold in £, or %, is that b and
b’ reduce to congruent irreducible terms (or have congruent normal forms).
Call b normalizable if there exists an irreducible b* such that b > b*.

Corollary 12.4. In &, if b is normalizable, then its normal form is unique
up to congruence. Two normalizable terms are convertible if and only if
they have congruent normal forms.

One might think that this gives a decision procedure for convertibility of
normalizable terms: reduce each to normal form and see whether these
irreducible terms are congruent. Unfortunately, there is still a problem of
how to reduce a given term to normal form. While one sequence of one-step
reductions may end up with an irreducible term after a finite number of
steps, it is conceivable that another sequence of one-step reductions will
never terminate, and we may have no way of telling beforehand whether we
are on the right track.

We shall call a term bounded (some authors say ‘strongly normalizable’) if
there is a number n so that no sequence of one-step reductions has more
than n steps. The bound of t, written bd(t), is the smallest such n. For
example, the bound of an irreducible term is 0. Clearly, if a term is bounded,
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every sequence of one-step reductions will terminate after a finite number of
steps. (The converse of this statement is also true, in view of Konig's
Lemma; but we shall not need this.) In particular, every bounded term is
normalizable. Note that if ¢ > t' then bd(t) > bd(t).

We thus have an algorithm for deciding convertibility of two bounded
terms in £ just reduce both of them at random until irreducible terms are
reached and then compare these to see whether they are congruent.

We shall prove in Section 13 that the Church—Rosser Theorem holds for
bounded terms and in Section 14 that all terms are bounded. We shall thus
obtain an algorithm for deciding convertibility of terms in %}, and therefore
for deciding equality of arrows in €, = C(%,).

For the moment, let us just make an observation that will be useful later.

Lemma 12.5. Suppose ¢(x) is a term in .%#,, with no free variables other than
x of type A and a s a closed term of type A such that ¢(a) is bounded. Then
@(x) is bounded.

Proof. If ¢(x) > ¥(x) by virtue of B2 to B8, then surely also ¢(a) > vla).
However, when the basic reduction x > is used, then @(*) = y(*) arc the
same terms. This unfortunate exceptlon complicates the proof somewhat.
Still, o(x) = y¥(x) implies ¢(a) = Y(a). Consider the set I of all terms Y(x)
such that ¢(x) > y(x). For any y/(x) in I it thus follows that ¢(a) > y(a).
Since ¢{a) is bounded, the set A of all terms b such that @(a) > b is finite.
(Remember that we do not distinguish between congruent terms, that is,
terms that differ only in the choice of bound variables.) Moreover, for each b
in A, the set T, of all y(x) such that y(a) = b is finite. Hence I’ < U I'yisalso

beA
finite, and therefore (x) is bounded. '

Exercises

1. Show that all irreducible closed terms of £, have the form x, $%(0), {a,b)
(where a and b are necessarily irreducible) or 1,.,(x) (where ¢(x) is
necessarily irreducible). Thus closed terms of the form n(c), 7'(c), f/a or
I{a, h,n) are never irreducible.

1

2. Show that {a,b) is bounded if and only if @ and b are bounded.

13 The Church—Rosser theorem for bounded terms

In this section we shall prove the Church-Rosser Theorem
(Proposition 12.1) for the special case when b is a bounded term of &Ly or,




The Church—Rosser theorem for bounded terms ‘ 85

more generally, of £, but without any subterm of type 1 other than *. As
we shall prove in Section 14 that every term is bounded, this will establish
Proposition 12.1.

Proposition 13.1. 1f b is bounded and b >cand b>d, then thereisa term e
such that c2eand d>e.

Proof. We argue by induction on the bound of b and reduce the problem to
the case m<1,n<1. The case m=1, n=1, is handled by Lemma 13.2
below. If m =0, or n =0, there is nothing to prove.

So suppose m> 1 or n> 1. We then have

b?c1 > ¢ b?d1 > .4,

m—1
; where m—1>0 or n—1>0. By Lemma 13.2 below we find e; so that
_ ¢;>e, and d; >e;. Now ¢, and d, have smaller bound than b; so, by
inductional assumption, we can find ¢, and d, so that c>c,,e;, >c,,
. e; = d,andd > d,. Again, e, has smaller bound than b; so we can find e such
that ¢, > e and d, > e. By transitivity, czeand d=e.
This proof is illustrated by the following diagram:

7N X
NN

b

N
s

7 \,@
N \

It remains to prove the lemma.

Lemma 13.2. Ifb >c and b > d then there is a term e such that ¢ > ¢ and
d>e.
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Proof. The reduction of b to ¢ depends on the basic reduction of a subterm
a of b to @, and the reduction of b to d depends on the basic reduction of a
subterm f of b to f'. If a and f do not overlap, we have

=...a...f... ,
=...da...f...,
=...a..f..

If we now take

e=...da...f...,

then clearly c ze and d > e.

If the subterms a and f of b do overlap, one of them must be a subterm of
the other, say f is a subterm of a. Without loss in generality, we may assume
that a = b. So b reduces in two ways: an ‘outer’ reduction on the whole term
b and an ‘inner’ reduction on the subterm f. Thus we have achieved a
reduction of the problem to the following special case:

Ifb >c (outer reduction) and b > d (inner reduction) then there is a term e
such that ¢ >e and d > e. (Recall that b > ¢ means that there is a basic
. reduction of b to ¢.)

There are now eight cases for b >c according to the eight basic
reductions in Section 12. The following diagrams illustrate what we do in
these eight cases. We always put the outer reduction on the left and the
inner reduction on the right.

~

*

B2. n({a, b)) n({n(c), ©'(c)))
|
a

n(a', b)) m(e) (c)

\Gl/\/

n(c)

i
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In the first subcase of B2, the inner reduction takes a to g "(whence b’ = b) or
bto b’ (whence a’ = a). In the second subcase of B2, the inner reduction takes
{a,b) to ¢, provided a = n(c) and b = n'(c).

B3. Similar
B4. {me), m'(e)y {n(a, b)), m'({a, b)))

c/ }n(c)) <ab>/ >a b))
\ / \(a’ b>

In the first subcase of B4, the inner reduction takes ¢ to ¢’. In the second
subcase of B4, the inner reduction takes 7(c) to a, provided ¢ =(a,b).
There is another subcase of B4, not shown, in which the inner rcductxon
takes 7'(c) to b.

BS.
xeA <P(X) a zeA (fjx)‘a\
(p(a)\ e \ /fla

P'(a’ )
In the first subcase of B5, the inner reduction takes (p(x) to @'(x) (whence
a'=a) or a to a (whence ¢'(x) = ¢(x)). Note that if o(x)> ¢'(x) then
¢(a) > ¢'(a). In the second subcase of BS, the inner reduction takes Axeq @(x)
to f, provided ¢(x) = f'x and x is not free in f.

Area (') Aiea (kyeAQ
a:eA (f*x)y - Ayea (p(y) .teA P(x)

/ AN

xeA ®(x)

/ \’
\
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In the first subcase of B6, the inner reduction takes f to f”. In the second
subcase of B6, the inner reduction takes f x to ¢(x), provided f = A, ,0().

/ \

Ka', i, 0)

\ al /

'Here the inner reduction takes a to @’ {whence h' = h) or h to i’ (whence
a =a).

B7. Ka, h, 0)
a

B8. Ka, h, S(n))

PN

h'Ka, h, n) Ka', i, S(n))

N

KiKa', W, n")

Here the inner reduction takes a to a’ (whence ¥ =handn'=n)orhto i
(whence a'=a and n' =n) or n to n’ (whence @' =a and h' = h).

The proof of Lemma 13.2 is now complete, hence so is the proof of
Proposition 13.1.

Exercise

(Obtutowicz). Show that the argument in case B4 breaks down if n(c) or
7'(c) is of type 1 and that the argument in case B6 breaks down if f/x has
type 1. In particular, show that the Church—Rosser Theorem fails for £,
by taking c or f to be a variable.

14 All terms are bounded

One wants to prove that all terms of &, are bounded. Clearly all
irreducible terms are bounded, in particular variables, 0 and *. We may list
the following partial results.
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Remark 14.1. ,
(1) <a,b) is bounded if @ and b are.
(2) m(c) and 7'(c) are bounded if ¢ is.
(3) Axea(x) is bounded if ¢(x) is.
(4) S(n) is bounded if n is.

Proof. We shall prove (1), for example, the others being similar. We argue
by induction on bd(a) + bd(b). Clearly, it suffices to show that ¢ is bounded
whenever {a,b) > c.If c = {(a’,b) witha Faorc={ab)withb>¥,cis
bounded by inductional assumption. The only other case is a = n(c),
b = 7'(c), but then ¢ is bounded because it is a subterm of a. |

Unfortunately, this kind of argument does not extend to terms of the form
b’a and I(a, h,n). Note that in the basic reductions

Aea®(X) a> (@), 1(a,h,S(n))>h’I(a,h,n)

the right hand side may be more complicated than the left hand side, -

We shall follow Tait and replace boundedness by an apparently stronger
notion, that of ‘computability’, which is defined by induction on types. We
first confine attention to closed terms.

Definition 14.2. A closed term c is computable provided one of the following
cases holds:
(i) cel or N and c is bounded;
(i) ceA x B and =n(c) and ='(c) are computable;
(ili) ceB“, cisbounded and ¢’ a is computable for all computable closed
acA.

Here are two immediate consequences of the definition.

Lemma 14.3. Assume ¢ and ¢ closed.

(1) If ¢ is computable, then ¢ is bounded.
2 If ¢ is computable and ¢ > ¢/, then ¢’ is computable.

- Proof. We shall prove (1) and leave (2) as an exercise, as it is never used.
The proof of (1) goes by induction on types. We need only look at the
case ce 4 x B. Since ¢ is computable, so is n(c)e 4, by Definition 14.2. By
inductional assumption, the result holds for A, hence 7n(c) is bounded.
Therefore c, being a subterm of n(c), is also bounded.

Lemma 14.4. (I) A closed term c is computable if one of the following three
cases holds:

(1) ¢=<(a,b) and a and b are computable;



90 Cartesian closed categories and A-calculus

(2) c¢=24,49(x) and ¢(a) is computable for all computable closed
acA,

(3) c is neither of the above and, for all closed ¢/, if ¢ > ¢’ then ¢’ is
computable.

(IT) For all types C, k(C) is computable.

Proof. For the purpose of this proof only we shall make two definitions.
Call a closed term a pre-computable if it satisfied (1), (2) or (3) above. Call a
type C nice if all pre-computable ce C are computable. We may thus restate
(I) as:

(I') All types are nice.

Before proving this, let us make an observation:

(1) If C and all subtypes of C are nice then x(C) is computable.

‘Being a subtype’ is of course the transitive relation generated by: Aand B
are subtypes of A x B and B4,

Indeed, (II1) is easily shown by induction on the type C. By Definition
142, x(1)=%* and x(N)=0 are clearly computable, because they are
bounded. Moreover, k(4 x B) = (k(A),x(B)) is computable by (1} if x(A4)
and x(B) are, and k(B4) = 4, ,x(B) is computable by (2) if k(B) is, so that the
induction hypothesis applies.

As we are planning to prove (I'), (I) will follow immediately from (III). It
remains to prove (I), which we shall do by induction on types. To this
purpose, let us adopt the following assumption:

(A) All proper subtypes of C are nice and the closed term ceC is
pre-computable.

We wish to establish the following conclusion:
(C) ¢ is computable.

We shall look at the cases C = 1, N, A x B and B“ separately, but first let us
note this preliminary conclusion:

(P) ¢ is bounded.

Indeed, by assumption (A), ¢ satisfies (1), (2) or (3). In case (1), ¢ is bounded
by Remark 14.1 and Lemma 14.3, because a and b are bounded. In case (2),
it will follow from Remark 14.1 that ¢ is bounded if we show that ¢(x) is
bounded. Now x(4) is computable by the assumption (A) and (III).
Therefore, ¢(x(A)) is bounded by (2) and Lemma 14.3, hence o(x) is
bounded by Lemma 12.5. In case (3), ¢ is evidently bounded, because,
whenever ¢ > ¢, then ¢’ is bounded by Lemma 14.3.
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We are now ready to prove the conclusion (C). When C=1 or N,
computable means bounded, and so we refer to the preliminary conclusion
P).

Suppose C =4 x B. According to Definition 14.2, we must show that
n(c)eA and 7'(c)e B are computable, for example, the former. We shall
proceed by induction on bd(c). By assumption (A), 4 is nice, so we need only
show that n(c) is pre-computable. Since n(c) is neither a pair nor a A-term, we
only have to check (3).

So suppose n(c) > a', we must show that a’ is computable. There are two

cases. If ' =n{c) and ¢ > ¢, @' is computable by inductional assumption,
since bd(c')<bd(c). If @ =a and c=a and c={a,b), a' is computable
by (1). .
Next, suppose C = B4. According to Definition 14.2, we must show that
c‘aeB is computable for all computable closed ae 4, as we already know
that cis bounded by (P). We shall proceed by induction on bd(c) + bd(a). By
assumption B is nice, so we need only show that c‘a is pre-computable.
Since c’a is neither a pair nor a i-term, we only have to check (3).

So suppose cfa > b', we must show that b’ is computable. There are two
cases. If b’ =¢'fa with ¢ > or b'=c’d with a>a', b is computable by
inductional assumption, since bd(a’) < bd(a) and bd(c’) < bd(c). If b’ = ¢(a)
and ¢ = A, ¢(x), b’ is computable by (2).

We have thus established the conclusion (C) and the proof of Lemma 14.4
is complete.

Lemma 14.5. If ac A, he A* and neN are computable closed terms, then
I(a, h,n) is computable. '

Proof. We proceed by induction on bd(a) + bd(h) + bd(n) + a(n), where
a(n) is the number of occurrences of the symbol S in the normal form of n.
(Recall that n computable implies n bounded.) Since I(g, h, n) is neither a
pair nor a A-term, we need only check case (3) of Lemma 14.4.

So suppose I(a, h,n) > d; we must show that d is computable. There are
three cases. If d=I(d’,h,n) with a > a or d=I(a,W,n) with h > W or
d=I(a,h,n)withn > ', d is computable by inductional assumption, since
bd(a’) < bd(a), bd(h') < bd(h) and bd(n') < bd(n) but o(n)=0c(n). If d=a
with n=0, d is given to be computable. Finally, if d=h'I(a,h,m) with
n = S(m), we have o(m) < o(n) and bd(m) = bd(n), so I(a, h, m) is computable
by inductional assumption. Since h is given to be computable, d is
computable by Definition 14.2.

. We now extend the notion of computability to open terms.
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Definition 14.6. A term t = ¢(x,,...,X,), with no free variables other than
X1,...sX,, 18 computable provided, for all computable closed terms a4, ..., a,
of appropriate types, the closed term = ¢(a,,...,qa,) is computable.

Theorem 14.7. All terms of £, are computable, hence bounded.

Proof. We proceed by induction on the length of terms. For the constants *
and 0 and for all variables the result holds trivially. It remains to prove the
following six statements.

(1) If a and b are computable, so is {a,b).

Indeed, let @ and b be computable, then so is {a,5), by Lemma 14.4.
(2) 1If ¢ is computable, then so are n(c) and #'(c).

Indeed, let ¢ be computable, then so are n(¢) and #'(¢) by Definition 14.2.

(3) IffeB* and aeA are computable, then so is ffa.

Indeed, let f and a be computable, then so is f’d, by Definition 14.2 and
Lemma 14.3.

4 If o(x,xq,...,x,) is computable, so is 1., ¢(x,X1,...,X,).

Indeed, let @(x)= ¢(x,a,,...,a,) for computable closed a,,...,a, and
assume that @{a)eB is computable for all computable closed ae A. Then
A4 @(x) is computable, by Lemma 14.4.

(5) If neN is computabile, so is S(n).
Indeed, let 7 be computable, that is, bounded. Then so is S(7).

(6) If acA, he A* and neN are computable, then so is I(a, b, n).
Indeed, let @, it and 71 be computable. Then so is I1(a, h, 1), by Lemma 14.5.

The first person to prove Theorem 14.7 in essentially the generality given
here was R.C. de Vrijer. Our proof is closer to Tait’s original proof, but
depends crucially on an idea of de Vrijer, which is here embedded in
condition (3) of Lemma 14.4 and the use that is made of it.

Exercises
1. Prove (2) to (4) of Remark 14.1.

2. Prove (2) of Lemma 14.3.
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15 ‘C-monoids

A small category with one object is a monoid, that is, a semigroup
with a unity element. (See Part 0, Section 1, Example C2') If a small
cartesian closed category has only one object, it is a rather uninteresting
monoid. For, if 1 is the terminal object, Hom(1, 1) has only one element.
However, if we delete the terminal object, we obtain an interesting class of
monoids.

A C-monoid (C for Curry, Church, combinatory or cartesian) is a monoid
A with extra structure (r, 7', &, %, { »), where 7, 7, and ¢ are elements of .#
(nullary operations), (—)* is a unary operation and {(—,-) is a binary
operation satisfying the following identities: :
Cl. nla,b)=a,

C2. n'{a,b) =b,

C3. {me,m'c) =¢,

C4. eh*rn, ') =h,

Cs. ek, W' Yy =k, _

for all a, b, c, h and k. These are the axioms of a cartesian closed category

without terminal object, with the type subscripts erased.
~ We list some easy consequences of the above definition:

C3a. <a,byc=<{ac,bc),
C3b. (mn')y=1,

Cda. e(h*a,b)=h<{ab),
C5a.  h*k=(h{kn,n'))*,

C5b. ¢&*=1,
for all a,b,c,h and k.
Proof.
{a,bYc=<{nla,b>c,n'{a,b)c) by C3,
= {ac,bc) by C3.
(ma'd={nl,w'l)=1 by C3.
e(h*a, by =e¢(h*nla,b), 7' {a,b} ) by C1 and C2,
=¢gl{h*n, 7' Y{a,b) by C3a,
=h{a,b) - by C4.
h*k = (e h*km, 7' D)* by C5,

=((h*nlkn, 7' >, 7' Ckn, 7'y 3)* by Cl and C2,
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=(e{h*n,n' ) km, ' H)* by C3a,

= (h{km, 7' ))* by C4.
g =((m,n'D)* by C3b,

=(e(ln,n'))*=1 by C5.

Definition 15.1. In any C-monoid we may write

axb={anbn'), ¢ =(gemfn'>)*
for all elements a,b,f, g.

Of course, this definition is motivated by the corresponding equations in a
cartesian closed category. The following consequences of this definition are
left as an exercise to the reader.

Cé6. {a x b){(c x d)=ac x bd,
C7.  g'h=(ge<hn,fn'))¥,
Cs. g’ kt = (gk)®.

C-monoids are the objects of a category whose arrows are C-
homomorphisms, that is, mappings which preserve the operations w, 7', ¢, *
and (.

Given a C-monoid o7, we may form the polynomial C-monoid </[x] by
the usual construction of universal algebra: the elements of /[x] are
polynomials, that is, words built up from x and the elements of &/ using the
C-monoid operations modulo the smallest congruence relation which
satisfies C1 to C5 and which assures that the mapping h: o — &/ [x] which
sends every element of .o/ onto the corresponding constant polynomial is a
C-homomorphism. In particular, if {a,b) = c in & then also {a,b) =cin
o[ x], etc.

The canonical C-homomorphism h: o — /[ x] has the usual universal
property: for every C-homomorphism f: o/ — % and every element be4,
there exists a unique C-homomorphism f;: o/ [x] — 4 such that f, s = fand

fy(x)=>.
(x]
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In particular, when & = o/ and f=1_, f,(¢(x)) = p(b).
C-monoids have the important property of functional completeness:

Theorem 15.2. If ¢(x) is a polynomial in the indeterminate x over a
C-monoid &, there exists a unique constant f in ./ such that

fLxm)*, 1) = (x) in L[x].
Proof. Define p,@(x) by induction on the length of the word ¢(x):
(@) p.k=kn' if kest;
(ii) PxX =8
(i)  pY(x), 2(x)> = (pP(X), p2a(X) D5
(i) p (X)) = px ()<, pY(x)D;
V) p(x)*) = (oY (X)),
where « = {nn, {n'n, ') ). (We have written = for identity of words, while
= is reserved for equality of polynomials, that is, equivalence classes of

words. See also the exercise at the end of Section 2.)
We next show that p, really applies to polynomials, that is,

*) if o(x)=y(x) then p.p(x)= p.Y(x).

Now = is the smallest congruence relation between words in x satisfying C1
to C5 and the conditions assuring that 4 is a homomorphism. Therefore it
suffices to show that for each of these p,LHS = p,RHS, e.g., for C4 that

px(e{x(x)* n, 7' >) = p, x(x).
This is shown by routine calculations, which are left as an exercise to the

reader. Note also that, if (a,b) =c in &, then p,{a,b)> ={p,a,p.b> =
{am',bn' ) ={a,b)n’ = cn’ = p,c. Equally routine is the verification that

Pxo(x){(xm)*, 1) = o(x),
so that the existence part of the theorem has been established.
Finally, to show the uniqueness of f in the theorem, we suppose that
f{(xn')*, 1) = o(x)and wish to show that p, ¢(x) = f.Indeed, a straightfor-
ward calculation gives

px(f {(xn)*, 13) = fp L (xn)*, 1) by (iv) and (i),
=1 {px(xn)*, px1 by (i),
= f {lpx(xn)o)*, 7> by (v) and (ii),

= f{lpxx{m p, ' day*, 7' by (iv),

= f(e{m,n'w Ya)*, w’> by (ii) and (i),

= f{(e{ma, W' Tad)*, > by C3a,

= fL(enm, ' D)*, 7' ) by definition of a,
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= f{m,7') by C5,
=f by C3b.
This completes the proof of the theorem.

If we now define
g'a=elglan’)* 1),
we have the following immediate consequence:

Corollary 15.3. If ¢(x) is a polynomial in the indeterminate x over a C-
monoid .#, then there exists a unique ge.# such that g/x = @(x).

Proof. Take g =f* = (p,¢(x))* and use C4a.

It is suggestive to write
A p(x) = (P @(x))*,

then the corollary may be expressed by the equations:
A@(X) x=0(x), Alg'x)=g.

Of course, the universal property of .#[x] allows us to obtain from the first
of these that, for all ae.#,

40(x)'a = p(a).
Let us also mention the following ‘fixed point theorem’ for C-monoids,
which is behind Russell’s paradox.

Proposition 15.4. For every polynomial ¢(x) in .#[x] there exists an
element ae.# such that ¢(a) = a.

Proof. Put b= 1,¢(x'x) and a=b’b, then
ola)= @b’b)=b'b=a.

This result explains why C-monoids cannot incorporate propositional
logic. For, if we had an operation 7 of negation, if would follow that
7p = p for some element p.

For future references we shall list some further derived identities of C-
monoids:

C9 (an'Y*k = (an')*;

C10.  (fg)fa=f"(g"a);

Cll.  A(f'a)=fA.a, if xis not free in f'q;
C12. ta=a;

C13. (Aak=Aa, if x is not free in a.
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. Proof.

(an’'y*k = (an’ Ckm, 7' H)* by C3a,
= (an')* 4 - by C2;
(f9) a=ed fglan)*, 15,
= e fle{glan')*n, ' H)*, 1) by C5,
=&l fedglan’y*n',n' H)*, 1) by C9,
=¢e{ fle{glan’y*, 1>n)*, 1) by C3a,
=e{f((g'a)n)*, 1)
= f"(g"a)
(A:(ffa))'x=f'a,
= f((.a)x),
=(fA.a) x by C10;

a=e(an)*, 1) =e(an)*n, 7' >{1,1)
=an'{1,1>=aq
(Ac@k) x = (A a) (k' x) = a = (4,0) x.

Exercises
1. Prove C6, C7 and C8.

2. Define a weak C-monoid like a C-monoid, except that C3, C4 and C5 are
- replaced by C3a, C4a and C5a respectively. Check that C6to C8 hold in a
weak C-monoid.

3. Fill in the details in the proof of Theorem 15.2. Check that the existence
(but not the uniqueness) of f holds in any weak C-monoid.

4. How unique is the C-structure of a monoid? If ¢ is any invertible element
of the C-monoid .#, one can define a new pairing 5{a,b) with new
projections 7o ™! and n'c”!. Show that all possible pairings in .# are
obtained in this way.

5. Evenif the operations {~,~)>, n and n’ of a C-monoid are laid down, ¢ and
(-)* may be changed: if 7 is any invertible element, one may replace ¢ by
e{m, 7'y and h* by t~ ' h*. Show that this is the only way in which ¢ and
(-)* may be changed.

6. If o(x, y)e o [x,y] = o/ [x] [y]is a polynomial in two indeterminates over
the C-monoid &/, show that there is a unique element g of & such that

o(x,y) =g (x,y>.



98 Cartesian closed categories and A-calculus

16 C-monoids and cartesian closed categories

A C-monoid looks like a cartesian closed category, but lacks a
terminal object. Essentially, this is all it lacks, as we shall see.

An element A of a monoid is called an idempotent if AA = A. For reasons
that will become clear presently, we denote idempotents by capital letters. If
A and B are idempotent elements of a C-monoid, so are A x B and B4, as
follows immediately from C6 and C8 of Section 15 respectively. We also
note that the elements 7'* and 1 are idempotents, the former by C9, (We
shall denote them by capital letters later too).

Following Dana Scott, we shall write f: 4— B for Bf4 = f or, equiva-
lently, Bf = f and fA =f. One may note at this stage:

Cl4. Iff:A-Bandg:C—Dthenfxg:Ax C—BxDand f% AP — BC.
But this will become evident later, once we have established the following:
Theorem 16.1. (Dana Scott). The idempotents of a C-monoid .# are the

objects of a cartesian closed category K(.#) with arrows f: A — B given by
elements f of .4 such that Bf4 =f.

Proof. We shall denote an arrow 4 - B by a triple (4, f, B). Then it is easily
seen that K(.#) is a category with identities (4, 4, 4) and composition
(B,g,C) (4, f,B)=(A,gf, C). Actually, K(#) is a special case of a category
K (/) associated with any category .7, called the ‘Karoubi envelope’ or
‘idempotent splitting’ envelope of «7. Properties of this general construc-
tion will be considered in the exercises at the end of this section.
To obtain a cartesian closed structure fo