{ "cells": [ { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from happypred import whdata_to_csv" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "X_train_csv, y_train_csv, X_test_csv, y_test_csv = whdata_to_csv('WHR20_DataForTable2.1.xls')" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'X_train.csv'" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train_csv" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "X_train_df = pd.read_csv(X_train_csv)\n", "y_train_df = pd.read_csv(y_train_csv)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Log GDP per capitaSocial supportHealthy life expectancy at birthFreedom to make life choicesGenerosityPerceptions of corruption
07.1449160.45066250.7999990.7181140.1789930.881686
17.3147880.55230851.2000010.6788960.2012280.850035
27.4215250.53907551.5999980.6001270.1315780.706766
37.3943490.52110451.9199980.4959010.1734520.731109
47.4802960.52063752.2400020.5309350.2469430.775620
.....................
15047.8266390.76583952.3800010.642034-0.0677430.820217
15057.8276430.73580053.7999990.667193-0.1170350.810457
15067.8196750.76842554.4000020.732971-0.0884880.723612
15077.8510420.75414755.0000000.752826-0.0915400.751208
15087.8967040.77538855.5999980.762675-0.0632820.844209
\n", "

1509 rows × 6 columns

\n", "
" ], "text/plain": [ " Log GDP per capita Social support Healthy life expectancy at birth \\\n", "0 7.144916 0.450662 50.799999 \n", "1 7.314788 0.552308 51.200001 \n", "2 7.421525 0.539075 51.599998 \n", "3 7.394349 0.521104 51.919998 \n", "4 7.480296 0.520637 52.240002 \n", "... ... ... ... \n", "1504 7.826639 0.765839 52.380001 \n", "1505 7.827643 0.735800 53.799999 \n", "1506 7.819675 0.768425 54.400002 \n", "1507 7.851042 0.754147 55.000000 \n", "1508 7.896704 0.775388 55.599998 \n", "\n", " Freedom to make life choices Generosity Perceptions of corruption \n", "0 0.718114 0.178993 0.881686 \n", "1 0.678896 0.201228 0.850035 \n", "2 0.600127 0.131578 0.706766 \n", "3 0.495901 0.173452 0.731109 \n", "4 0.530935 0.246943 0.775620 \n", "... ... ... ... \n", "1504 0.642034 -0.067743 0.820217 \n", "1505 0.667193 -0.117035 0.810457 \n", "1506 0.732971 -0.088488 0.723612 \n", "1507 0.752826 -0.091540 0.751208 \n", "1508 0.762675 -0.063282 0.844209 \n", "\n", "[1509 rows x 6 columns]" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:.conda-happy38]", "language": "python", "name": "conda-env-.conda-happy38-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" } }, "nbformat": 4, "nbformat_minor": 4 }