{ "cells": [ { "cell_type": "markdown", "source": [ "Line Modeling simulation with [PowerSimulationsDynamics.jl](https://github.com/NREL-SIIP/PowerSimulationsDynamics.jl)" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "**Originally Contributed by**: José Daniel Lara" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## Introduction" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "This tutorial will introduce the modeling of an inverter with Virtual Innertia in a multi-machine\n", "model of the system. We will load the data directly from PSS/e dynamic files" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "The tutorial uses a modified 14-bus system on which all the synchronous machines have been\n", "substitued by generators with ESAC1A AVR's and no Turbine Governors." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "In the first portion of the tutorial we will simulate the system with the original data and\n", "cause a line trip between Buses 2 and 4. In the second part of the simulation, we will switch\n", "generator 6 with a battery using an inverter and perform the same fault." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Load the packages" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: Precompiling DisplayAs [0b91fe84-8a4c-11e9-3e1d-67c38462b6d6]\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "Plots.GRBackend()" }, "metadata": {}, "execution_count": 1 } ], "cell_type": "code", "source": [ "using SIIPExamples # Only needed for the tutorial, comment if you want to run\n", "import DisplayAs # Only needed for the tutorial\n", "using PowerSimulationsDynamics\n", "PSID = PowerSimulationsDynamics\n", "using PowerSystems\n", "using Logging\n", "using Sundials\n", "using Plots\n", "gr()" ], "metadata": {}, "execution_count": 1 }, { "cell_type": "markdown", "source": [ "Create the system" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: The PSS(R)E parser currently supports buses, loads, shunts, generators, branches, transformers, and dc lines\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: angmin and angmax values are 0, widening these values on branch 4 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 1 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 12 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 20 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 2 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 6 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 11 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 13 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 5 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 15 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 16 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 14 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 7 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 8 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 17 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 10 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 19 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 9 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 18 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 3 to +/- 60.0 deg.\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 4 to 651.7693\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 1 to 1943.3753\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 12 to 1340.1421\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 20 to 686.916\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 2 to 527.2551\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 6 to 658.7239\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 11 to 1099.9023\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 13 to 404.9974\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 5 to 661.3166\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 15 to 406.1471\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 16 to 312.073\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 14 to 579.3328\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 7 to 2739.0808\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 8 to 548.9677\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 17 to 578.6164\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 10 to 828.1844\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 19 to 480.1216\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 9 to 426.3491\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 18 to 217.5559\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 3 to 594.6825\n", "┌ Info: Constructing System from Power Models\n", "│ data[\"name\"] = \"14bus\"\n", "└ data[\"source_type\"] = \"pti\"\n", "[ Info: Reading bus data\n", "[ Info: Reading generator data\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-6-1 (ThermalStandard):\n", "│ name: generator-6-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 06 (Bus)\n", "│ active_power: 0.15\n", "│ reactive_power: 0.14800000000000002\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.12))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -16.258536585365853\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-1-1 (ThermalStandard):\n", "│ name: generator-1-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 01 (Bus)\n", "│ active_power: 1.9333000000000002\n", "│ reactive_power: 0.01121\n", "│ rating: 100.48880584423323\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -10.0, max = 10.0)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 615.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.23))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-8-1 (ThermalStandard):\n", "│ name: generator-8-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 08 (Bus)\n", "│ active_power: 0.1\n", "│ reactive_power: 0.22292\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.12))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-2-1 (ThermalStandard):\n", "│ name: generator-2-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 02 (Bus)\n", "│ active_power: 0.3\n", "│ reactive_power: 0.27015999999999996\n", "│ rating: 99.99125011719775\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.4, max = 0.5)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.13))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-3-1 (ThermalStandard):\n", "│ name: generator-3-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 03 (Bus)\n", "│ active_power: 0.2\n", "│ reactive_power: 0.21719000000000002\n", "│ rating: 99.99080007680706\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = 0.0, max = 0.4)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.13))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "[ Info: Reading branch data\n", "┌ Warning: Rate 651.77 MW for BUS 02-BUS 04-i_4 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1943.38 MW for BUS 01-BUS 02-i_1 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1340.14 MW for BUS 09-BUS 10-i_12 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 527.26 MW for BUS 01-BUS 05-i_2 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 658.72 MW for BUS 03-BUS 04-i_6 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1099.9 MW for BUS 07-BUS 09-i_11 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 405.0 MW for BUS 09-BUS 14-i_13 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 661.32 MW for BUS 02-BUS 05-i_5 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 406.15 MW for BUS 12-BUS 13-i_15 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 312.07 MW for BUS 13-BUS 14-i_16 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 579.33 MW for BUS 10-BUS 11-i_14 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 2739.08 MW for BUS 04-BUS 05-i_7 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 548.97 MW for BUS 06-BUS 11-i_8 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 828.18 MW for BUS 06-BUS 13-i_10 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 426.35 MW for BUS 06-BUS 12-i_9 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 594.68 MW for BUS 02-BUS 03-i_3 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "[ Info: Reading branch data\n", "[ Info: Reading DC Line data\n", "[ Info: Reading storage data\n", "[ Info: Generators provided in .dyr, without a generator in .raw file will be skipped.\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "System\n======\nSystem Units Base: SYSTEM_BASE\nBase Power: 100.0\nBase Frequency: 60.0\n\nComponents\n==========\nNum components: 77\n\n\u001b[1m11×3 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m ConcreteType \u001b[0m\u001b[1m SuperTypes \u001b[0m\u001b[1m C\u001b[0m ⋯\n\u001b[1m \u001b[0m│\u001b[90m String \u001b[0m\u001b[90m String \u001b[0m\u001b[90m I\u001b[0m ⋯\n─────┼──────────────────────────────────────────────────────────────────────────\n 1 │ Arc Topology <: Component <: Infrast… ⋯\n 2 │ Area AggregationTopology <: Topology …\n 3 │ Bus Topology <: Component <: Infrast…\n 4 │ DynamicGenerator{RoundRotorQuadr… DynamicInjection <: Device <: Co…\n 5 │ DynamicGenerator{RoundRotorQuadr… DynamicInjection <: Device <: Co… ⋯\n 6 │ Line ACBranch <: Branch <: Device <: …\n 7 │ LoadZone AggregationTopology <: Topology …\n 8 │ PowerLoad StaticLoad <: ElectricLoad <: St…\n 9 │ TapTransformer ACBranch <: Branch <: Device <: … ⋯\n 10 │ ThermalStandard ThermalGen <: Generator <: Stati…\n 11 │ Transformer2W ACBranch <: Branch <: Device <: …\n\u001b[36m 1 column omitted\u001b[0m\n\nTimeSeriesContainer\n===================\nComponents with time series data: 0\nTotal StaticTimeSeries: 0\nTotal Forecasts: 0\n", "text/html": [ "

System

\n", "

Base Power: 100.0

\n", "

Components

\n", "

Num components: 77

\n", "

11 rows × 3 columns (omitted printing of 1 columns)

ConcreteTypeSuperTypes
StringString
1ArcTopology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
2AreaAggregationTopology <: Topology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
3BusTopology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
4DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,GasTG,PSSFixed}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
5DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
6LineACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
7LoadZoneAggregationTopology <: Topology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
8PowerLoadStaticLoad <: ElectricLoad <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
9TapTransformerACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
10ThermalStandardThermalGen <: Generator <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
11Transformer2WACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
\n", "\n", "

TimeSeriesContainer

\n", "

Components with time series data: 0

\n", "

Total StaticTimeSeries: 0

\n", "

Total Forecasts: 0

\n", "

Resolution: 0 seconds

\n" ] }, "metadata": {}, "execution_count": 2 } ], "cell_type": "code", "source": [ "file_dir = joinpath(\n", " dirname(dirname(pathof(SIIPExamples))),\n", " \"script\",\n", " \"4_PowerSimulationsDynamics_examples\",\n", " \"Data\",\n", ")\n", "\n", "sys = System(joinpath(file_dir, \"14bus.raw\"), joinpath(file_dir, \"dyn_data.dyr\"))" ], "metadata": {}, "execution_count": 2 }, { "cell_type": "markdown", "source": [ "Define Simulation Problem with a 20 second simulation period and the branch trip at t = 1.0" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: Serialized time series data to /var/folders/27/2jr8c7gn4j72fvrg4qt81zrw8w_711/T/jl_aUiH7Q/sys_time_series_storage.h5.\n", "[ Info: Serialized System to /var/folders/27/2jr8c7gn4j72fvrg4qt81zrw8w_711/T/jl_aUiH7Q/sys.json\n", "[ Info: Loaded time series from storage file existing=sys_time_series_storage.h5 new=/var/folders/27/2jr8c7gn4j72fvrg4qt81zrw8w_711/T/jl_hcqhnK\n", "┌ Warning: Rate 2739.08 MW for BUS 04-BUS 05-i_7 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 406.15 MW for BUS 12-BUS 13-i_15 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 661.32 MW for BUS 02-BUS 05-i_5 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 527.26 MW for BUS 01-BUS 05-i_2 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 579.33 MW for BUS 10-BUS 11-i_14 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 828.18 MW for BUS 06-BUS 13-i_10 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 405.0 MW for BUS 09-BUS 14-i_13 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 594.68 MW for BUS 02-BUS 03-i_3 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 548.97 MW for BUS 06-BUS 11-i_8 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 651.77 MW for BUS 02-BUS 04-i_4 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 658.72 MW for BUS 03-BUS 04-i_6 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 312.07 MW for BUS 13-BUS 14-i_16 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 426.35 MW for BUS 06-BUS 12-i_9 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1340.14 MW for BUS 09-BUS 10-i_12 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1099.9 MW for BUS 07-BUS 09-i_11 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1943.38 MW for BUS 01-BUS 02-i_1 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-3-1 (ThermalStandard):\n", "│ name: generator-3-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 03 (Bus)\n", "│ active_power: 0.2\n", "│ reactive_power: 0.21719000000000002\n", "│ rating: 99.99080007680706\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = 0.0, max = 0.4)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-3-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.13,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-8-1 (ThermalStandard):\n", "│ name: generator-8-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 08 (Bus)\n", "│ active_power: 0.1\n", "│ reactive_power: 0.22292\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-8-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.12,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -16.258536585365853\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-1-1 (ThermalStandard):\n", "│ name: generator-1-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 01 (Bus)\n", "│ active_power: 1.9333000000000002\n", "│ reactive_power: 0.01121\n", "│ rating: 100.48880584423323\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -10.0, max = 10.0)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 615.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-1-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,GasTG,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.23,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-2-1 (ThermalStandard):\n", "│ name: generator-2-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 02 (Bus)\n", "│ active_power: 0.3\n", "│ reactive_power: 0.27015999999999996\n", "│ rating: 99.99125011719775\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.4, max = 0.5)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-2-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.13,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-6-1 (ThermalStandard):\n", "│ name: generator-6-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 06 (Bus)\n", "│ active_power: 0.15\n", "│ reactive_power: 0.14800000000000002\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-6-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.12,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "[ Info: The System has no islands\n", "[ Info: Initializing Simulation States\n", "[ Info: Unit System changed to UnitSystem.SYSTEM_BASE = 0\n", "[ Info: The System has no islands\n", "[ Info: PowerFlow solve converged, the results have been stored in the system\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "[ Info: Attaching Perturbations\n", "[ Info: Completed Build Successfully. Simulations status = BUILT\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "Simulation()\n" }, "metadata": {}, "execution_count": 3 } ], "cell_type": "code", "source": [ "sim = PSID.Simulation(\n", " file_dir, #path for the simulation output\n", " sys, #system\n", " (0.0, 20.0), #time span\n", " BranchTrip(1.0, \"BUS 02-BUS 04-i_4\");\n", " console_level = Logging.Info,\n", ")" ], "metadata": {}, "execution_count": 3 }, { "cell_type": "markdown", "source": [ "Now that the system is initialized, we can verify the system states for potential issues." ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Voltage Variables\n", "====================\n", "BUS 01\n", "====================\n", "Vm 1.06\n", "θ 0.0\n", "====================\n", "BUS 02\n", "====================\n", "Vm 1.04\n", "θ -0.0711\n", "====================\n", "BUS 03\n", "====================\n", "Vm 1.01\n", "θ -0.1787\n", "====================\n", "BUS 04\n", "====================\n", "Vm 1.0129\n", "θ -0.1458\n", "====================\n", "BUS 05\n", "====================\n", "Vm 1.0165\n", "θ -0.1235\n", "====================\n", "BUS 06\n", "====================\n", "Vm 1.06\n", "θ -0.1949\n", "====================\n", "BUS 07\n", "====================\n", "Vm 1.0438\n", "θ -0.1812\n", "====================\n", "BUS 08\n", "====================\n", "Vm 1.08\n", "θ -0.1656\n", "====================\n", "BUS 09\n", "====================\n", "Vm 1.0263\n", "θ -0.2102\n", "====================\n", "BUS 10\n", "====================\n", "Vm 1.0245\n", "θ -0.2125\n", "====================\n", "BUS 11\n", "====================\n", "Vm 1.0384\n", "θ -0.2059\n", "====================\n", "BUS 12\n", "====================\n", "Vm 1.0436\n", "θ -0.2105\n", "====================\n", "BUS 13\n", "====================\n", "Vm 1.0372\n", "θ -0.2119\n", "====================\n", "BUS 14\n", "====================\n", "Vm 1.0126\n", "θ -0.2291\n", "====================\n", "====================\n", "Differential States\n", "generator-1-1\n", "====================\n", "eq_p 1.0604\n", "ed_p -0.0111\n", "ψ_kd 1.0563\n", "ψ_kq 0.1134\n", "δ 0.1684\n", "ω 1.0\n", "Vm 1.06\n", "Vr1 0.0049\n", "Vr2 1.951\n", "Ve 1.4049\n", "Vr3 -0.0585\n", "x_g1 0.3144\n", "x_g2 0.3144\n", "x_g3 0.3144\n", "====================\n", "Differential States\n", "generator-3-1\n", "====================\n", "eq_p 1.0649\n", "ed_p 0.1243\n", "ψ_kd 0.9872\n", "ψ_kq 0.2132\n", "δ 0.034\n", "ω 1.0\n", "Vm 1.01\n", "Vr1 0.006\n", "Vr2 2.419\n", "Ve 1.791\n", "Vr3 -0.0726\n", "====================\n", "Differential States\n", "generator-8-1\n", "====================\n", "eq_p 1.2657\n", "ed_p 0.0462\n", "ψ_kd 1.1584\n", "ψ_kq 0.1748\n", "δ 0.019\n", "ω 1.0\n", "Vm 1.08\n", "Vr1 0.0097\n", "Vr2 3.9162\n", "Ve 2.8839\n", "Vr3 -0.1175\n", "====================\n", "Differential States\n", "generator-2-1\n", "====================\n", "eq_p 1.1038\n", "ed_p 0.1491\n", "ψ_kd 1.003\n", "ψ_kq 0.2748\n", "δ 0.1963\n", "ω 1.0\n", "Vm 1.04\n", "Vr1 0.0071\n", "Vr2 2.8613\n", "Ve 2.1338\n", "Vr3 -0.0858\n", "====================\n", "Differential States\n", "generator-6-1\n", "====================\n", "eq_p 1.167\n", "ed_p 0.0955\n", "ψ_kd 1.08\n", "ψ_kq 0.3084\n", "δ 0.1387\n", "ω 1.0\n", "Vm 1.06\n", "Vr1 0.0082\n", "Vr2 3.2875\n", "Ve 2.4472\n", "Vr3 -0.0986\n", "====================\n" ] } ], "cell_type": "code", "source": [ "print_device_states(sim)" ], "metadata": {}, "execution_count": 4 }, { "cell_type": "markdown", "source": [ "We execute the simulation with an additional tolerance for the solver set at 1e-8." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "PSID.execute!(sim, IDA(); abstol = 1e-8)" ], "metadata": {}, "execution_count": 5 }, { "cell_type": "markdown", "source": [ "Using `PowerSimulationsDynamics` tools for exploring the results, we can plot all the voltage\n", "results for the buses" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "DisplayAs.Showable{MIME{Symbol(\"image/png\")}}(Plot{Plots.GRBackend() n=14})", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd1gU1/rHz8xsB5bdZWlL70UEEQEbWEEMtliwG03UaBKvPolRY37JNZpm4o0pllhjTNRYY4kdSyxYABUQ6b0uy8KysH1mzu+P9a4EFlgNaryez/PoM3v2vGfOnB3Od06Z98UghACBQCAQiJcV/HlXAIFAIBCI5wkSQgQCgUC81CAhRCAQCMRLDRJCBAKBQLzUICFEIBAIxEsNEkIEAoFAvNQgIUQgEAjESw0SQgQCgUC81CAhRCAQCMRLDRJCBAKBQLzUvGBCWFpa2tTUZGFmmqafamUQZqEo6nlX4WUENftzATX7c6Hb+/YXTAiXLl16/vx5CzNrNBrkSfXZo1arn3cVXkZQsz8XULM/eyCEGo2me8t8wYQQgUAgEIjuBQkhAoFAIF5qkBAiEAgE4qUGCSECgUAgXmqeihBWVFR89NFHI0eOHDRoUPtvd+zYERQU5OHhsXz5cuOeq+rq6ilTpri7uwcGBq5cuRJtxEIgEAjEM+OpCKFMJtNoNFFRUffu3Wvz1c2bN5ctW/bzzz9fv3797NmzGzduBAAsWLCAwWDcv3//9OnTv//++48//vg0aoVAIBAIRHueihD27t173bp1iYmJ7b/atm3brFmzoqKiXF1dV6xYsXXrVgBAbm7upEmT+Hy+l5fX0KFDc3JynkatEAgEAoFoD+MZny8nJ2fBggXG4/Dw8Ly8PIqi5s2b9+233zo5Ocnl8jNnzuzZs+cZ1wqBQCAQLy3PWgjlcjmfzzce29rakiTZ1NQ0bty4ffv2zZs3r6mpKSYmJjQ0tCNzpVI5Y8aM1157rXXipUuXgoKC2mcuqtJtv0B0V83nDCP9XdDr+V3T0tLyWPkbW7BGFbBiAwcBxB7zXA3NWHUjptICRwGUiCDrMW9nCEBTC8AwYM0FxAu+b+xxmx3RLaBmf/YYX6i33LkMj8cjiC6E4FkLoVAobG5uNh4rlUqCIPh8fnR09PLly+fOnUvT9LRp05YuXbpp0yaz5jY2Ntu3bx83blzrRB6Ph+NmujEfV/zL11kY9ri9qxk2/WFgc3g2Nv/czpKmQUMztOFhbObjGUII7hZRGcW0Rg+cRVj/IMJRaGmLaXQg+S55I4eqbYQMAng74YNDiSAXYGNj03WFIbh6nzqXTqp1QMzHmjVQZwCxIUR8BGHF6boCGcX0mTSypgF6OmHWHCwlF9YrYWxPYmQfi8zzK+lLGdS9YorHxmgI9CQMciMGhRIhnrglF18qpe8W0SW1dIsGsBjA2Q4LcsN7ehFcVte2NASF1XReJS1thM0ayGFiYlvMyxEL9sB5bItavloOcyvoinpapQUsBhDZYN5OuIsQs7GxtsQcQiBVwDoF1BkgAIDPwxwEmNDa0h9dZwCV9XR9E9TqAYYBoTXmJMLsbR/vr4ymgVoPtXpgw33sO9ZortFDAsc4FjR4N1JfX19QUNA6Ra1W83i8Z1qJl5vo6GgMwwiCsLKy6sZin7UQ+vr6PnjwwHj84MEDLy8vtVpdWFgYHx8PAMBxPC4ubtu2bR2ZYxjG4XCsrS36g8cxwONg3SKEz2a4AAFQNEOB9WNX+eI96tgNks0EKi3s408kxTIsEQMAgKwJbj1lAAD0DyasuaBUCr/Yr48OxMcPYHbZPd0vpX86Zwj2wN9MZLo74AYS5JbTp9LIU7cZryfQno6dNVl5Hb3jrMGai702nOnv+jBnbSM8m05+uEv/an9GbCjR0QXUNsJ9lwzyZvhqf0YvH8L009Q3wTNp5Ie79KOiGUPDCHOPRgAAUCGDB64Y6pUwrjdjxrCHDdWihfeK6ENXDb9fxyYMZPTwMG9MUuBmLnXuDqk3gEh/Ylgvhq2VURhgSg61O9kQ6k0M7EEEueHtf0EIQHENfeMBlVZA2/GxQDc82B235mJaPZQ1wWvZ1E/nDQEueL9gIsybMDu0lSvhjRzqZi6l04MenrinI27NAQYK1CngxQyysIrwdtZH+BFh3rjIxkzj1TTA7DI6u4zKr6JtuJijAOOwMABAkxrWNkAAgJ8LHuCKB7jiLmKszeOAngSF1XR2GZ1TTtc00BI73MEW47ABTYPGFlgth3oS+LvgAa6YjzPuIsbb3Dw0DaQKWFJLl0rpKjmskEG1FnLZGIcFWjQQx4CTCHcVY272uKsYcxZhtlZYa9t6JaxpgFX1dEU9rGmAciXU6CGXhZEUpGggsMYcBZjEDnexw5xEmKMAs+E9qn+LBtYrobQR1jRAqQLWN8HGFqjRQY0esJmAzcRsrYAdH3MU4PYCzN4WE9lgNlzAYWEMAhizKVpgQzOsb4L1SnjujxMndy/z9PJ9dG0YwADATP9jxjTjPwAgME4iQQiM3h7hf1MeFYA9zI+1OjbdNNBk8t/j9rYPT2ruD6YTW5NJlyW0KafVpT+qNmhT+b9euOnssJVt60YzFfXf62517a3M7929vXJbPYttNW0Q5tudOgiwp+GNkyTJ8vLyjIyMWbNmZWRkMJlMNze3Dz74YMKECQqFYtasWTdv3hSLxQkJCSNGjPjwww99fX1nzpz58ccfq1SqV1991d/f37ibtD0TJ06cMmXKxIkTLamGSqXi8XjdIoTfHNHH92aEeD5FPaysh5tO6NU6wGKCeQlMPxdLz7X3kqGgCr6ZyHQSYhodOHrDcK+IXvIqy1nUxYUX19A/HDckRjGGhT9SHZUW7rtMlkrpt0d3WAKE4NgN8lo2NTeBGejWtp6X76mO3mQM6kmM7stgtJuQoGhw6jZ54R41ZRCjb5CZ+YrKerg72QAhmD6U0UZNNXpwJo28nEElRhHDwhlmn05qGuDeSwZFC3x1ACPc9y9qWqeAx2+S2WX02H6M2BAzSgkBSMunfr9OCqyxxChGsPsjPVO0wGvZ1KUMykWMjYhgBHuYGTi2aOHNHDrlAdXYAkO9cG9n3M4GwzDQpILFtXRmMc1kgH5BRL8gwo5vpmF1BnCnkLqRQ5XUwmB3PMAVdxRiVhygaAFldfT9UlqqgFH+eL9gwtvZzNkbFC2l9dw7hXRmCW3NAZ6OuB0fwzCgMwCZgi6uhSwG6OGB9/DAA9xwG27bAhqaYX4lnVdF51fSjS3QWYSLbDAOC2j1QKaAUgXt7oAHu+PBHri3E96+5RUtMK+KLqiki2pgTQNtw8XsBQ/VqKEZypuh0BrzcsQ9nTBXMe4q/ovUqbSwthFWyGCFjK6qh7WNUK2DPDbGZgK1Dmj0UGSDOYswFzvcVYxJ7DAxH7P+b/1JCjQ0Q6kCVsvpajmslsN6JVSqIYcJcBxTaaE1FxNZY45CzEmEOQsxsS0mssG4LIzLBjoD0OphkxrWN8E6BaxTQFkTbGiGzRqgN0ADBXhsjMMEAmtMZIOJbTExH0tJ3pNz9/yvv/7S/udDPAN4VlZp92u5XJ6AqxXadqcSPhUhrKqqio2NNX309PS8cOFCTEzM8uXLR40atWbNmvXr15MkOW7cuK1bt3I4nPT09EWLFuXn52MYNmzYsM2bNwuFQrMl/68KYZMKrt6jnxTL6BtIZJXSO84YFo1l+jh3fbozaeStXHpZEqv1pNz1B9Shq+TSiSwXuw6vvaCa3njc8PoIZqiXmbNcy6YOXiFnDGNE+rfVqhYN3H7GoCfBgkQmn2em/ObmZhq33p1skCpgUiyzp9ejXvt+KX3gqkFkjc2OYwo6nouDAFzPpn5PIV3tsD7+hLMI0+jAnUIqrYAO9cInxTA6sTWSWUwfvUE2a2CoFy7mY2odKKimq+VweDgR15vR+QQmTYMbOdSFe1RjC3R3wAgcyJqgogVE+uNDwhhu9l3fTrImmFVCl0rpxpaHc4+ejliQO+EqtuhWbNbAzGK6sIaWKaBaB2ytgIsdHuSOB7qZUaBHVs3NxhlpCEG1HJbLaLkSAgBYDCC2xTwdzQ8TzaLRgeoGurEZag2AywJ2fExih1u+/goBkCthfROkIQAA2FphjgKs/SNRJxhIoNZBPQl4bMBjP8lfsEYHaAh5nO7442/FL7/8cu7cuV9+QUL4fLCysqqrq+PxeGq1ununRp+KEFoChPAJbvD/VSHc/IfBUYiNH/Cws8kspndfMKyaybLudIazsJreeMLw8TSWsF0fdyuX2n+FfH+i+VFdQTW94Zhh/ivMjuYAAQBldfSWkwYvJ3zCQIaxD4UQ3M6jDlwhowOJiQMZHc09mnrkjGL69xRSrYNGRS+ppZkMMK4fI8LPok6RpEBaPpVZQsuaIIcFAlzxmBCi9UiiS6rkMKecliuhFQe42+PBHvhjdcdyJayshzQEQmvg7oBbtHj4/DA1O+LpgYTw+fL0hPBZrxGa6BZ9+sfS2AKtORjTstYtqqGLa+i5CWxTSqg3HllB7LlAvpnY4UqdzgC2nzHMGs5sr4IAgOhAgobg60P6xeOYHg5/kazsMnrb6S5UEADg4YD/ewb75G3y4906FzHO52GF1bSYjy1ItHTaNswbD/NmVdbD8joax0BiFMPCIZERBgH6BhFmp08txMUOc7F7cnM7PmZ2DhOBQPyP8dyE8MUCA22XuDth7yXDzRyawwbLJrLEFuym++MWmRjNaKOarw5grPpFd6eQ6u1rvis/eNXg54KH+3SoSf2CCDYTrD9iGNf/4ZKYngSnU8nLmdQ7Y5i+kq7FjM0E4wcwRkUzCqtptRZOimE4CB5bGFzFmKu4215iQSAQiG4HCWE3c7+Uziqlv5rLvnqf3HLKsHIKq/Ohb20jLJXCt0a1lQoWA8yOZ245aQhwxdtvAc0pp+8V0atndbF5vLcv4STE91wyHE0h7W2x2kYY7I5/PJ1l+V55Y02C3f+5740gEAjE3wQJYTfzx21y/AAGhwWG92bcztPfyqU6n9y7eI+MDSHMTqL6u+ARfviv7SZIWzRw51nDnHimJa+dSeyw9yey5M2wsRk6CrH22wURCATiJQc96XcndQoobYQRvgQAAAPg1QGMP26Tncyp6klwM4ceFNqhUk6MYVY30OfvPArHQVJg80lDdBDR+QpfG+xsMF+JmU3zCAQCgUBC2J2kFVARfo+83AS74ywGllXSoSug1DzKV4J1sq+dxQD/Gss6l07+cYskKSBXwm9/11tzsAkD0FAegUAgugckhN1JRjHdy/svw7vh4cSFu2RH+S9nUrGhXUiaHR9bOYVVVEO/s1G76ld9gCv+ZiLzf3rLLQKBeCFRKpWPlV+n0xkMhqdUmccCCWG3odWDChkd4PqXJo30J8rqYJ3CzPxoZT1saIFm32dvg9AGWzyO9f1bnO8Xskf3ZfzDX2hDIBDPhsGDB4tEIpFI5ObmNnbs2Nzc3O4q+dq1a8aS7ezsQkJCVq9eDSGsq6sTiUT19fWmbPPmzfv000+1Wu0bb7whEAgCAwP5fP706dPblHbs2LGRI0dKJJIZM2YYU86ePRsWFiYQCAQCQVxcXGVlZXfV/MlAQtht5FfRXk54m20vTAaICSEu3KPa57+UQcaGEJarGoth3hkgAoF4OVEqlV988UVRUVFqaqpEIpk1a1Z3lWwwGAiCKCoqKiws3L17948//rh//36aphsbG1v7YFGpVFqt9uuvv87JySktLa2urq6trW0vhFwud9asWRMnTlSpVMYUHMd/+OGHlpYWuVwuFArffvvt7qr5k4GEsNvIr6L9zb1pPiSMuPGA0uj/kqjSwtt59OCOt8kgEAhEl/B4PKFQ6OTkNGHChLKyMgDA6tWrT58+bfw2JSXl3XffVavVc+fO9fLy8vT0TExMtNCbGIZhQqFQKBT27t07PDy8tLS0o5wPHjyIiYkRCATG+rzyyittMsTHx0+dOlUikZhS4uLiYmNjCYLgcDhJSUnPPRg72nPRbRRW02P6mmlPkQ0W4olfziBHRj769lIG1csHfyyHYQgE4h9IjRq0CynxVBCxMU67J+fbt29zOBy5XL5jx44lS5YAALKyskySI5PJ0tPTN2/e3NjY+ODBAxzHb926ZaFXL51Od/DgQYPBkJOTk5eX98MPP3SUMz4+/l//+hdN04MHD46NjX1cV39HjhwZPHjwY5l0O0gIuweaBuV1tJeT+RH2qGjGVwf1g0IJ45t/Ki08f4f6YMqzjaWGQCCeAn2Pkwb6WQjhT7GMEa5tNSw7O1uv1xt3nXTkfhPDMKlUmpmZGRUV1TocghHjALG9Our1+uTkZABAdXW1s7NzJ+PIOXPmODg47N69e/78+XK5fOXKlR9//LGFF7Vly5br16+np6dbmP8pgYSwe6iU03Y2WEdhDSR2WB8/fN9l8o0RTADA3ktkdCDuZHH8WwQC8Y+lbMrz7EXnzJkzc+ZMAIBUKnV1dTUGdm3DwoUL6+vrZ8yYoVQq582bt2bNGpPsnTlzJikpCQDQs2fP69evt7aysbHZsmWL8XjlypWLFy/++eefAQB6/aNlHp1Ox2QyAQCJiYmJiYkAgJMnT44bN27kyJGRkZFdVv7XX39ds2bNpUuXxGLxE119t4HWCLuHkhro2cFw0MikWGZFHdx6yrDlpKGmAU4Y+PhhuREIBKIDxGIxk8msrKw0BmcwJlZXVwMAuFzu559/XlBQcO7cuZ9++unixYsmq4SEBKVSqVQq26hgG1xcXCoqKuzs7KytrYuKikzphYWFnp6erXMmJiY6OzsbVys75/Dhw8uWLTt79qyfn9/jXOhTAY0ILaMrr9uldV3EZGczwYrJrMuZJADgtbiu478jEAhEl2RnZycnJxsMhoMHDwqFwsjIyNzc3N27d48bN66urm7jxo12dnYnTpxwcnIKCQlhs9kAAFtbW0tKNk2NSqXSdevWGcedr7/++vLlyzdt2mRvb793797q6uoxY8Z89tlnLi4u/fv35/F4+/btUygUffv2bV1UdXX1gwcPCgsL6+rqkpOTXVxcSktLp0+f/sUXX9TU1NTU1BAEMWTIkKfQPJaChLB7KJPCgT26mOrksEBCH9TgCASie4iOjk5PT09PT+fxeEFBQTdu3LC1tZ07d25OTk58fHxAQMBHH31069YtrVa7fPnyiooKe3v7zz77rE+fPl2WLBKJIiMj165dCwBwdnZetWqV8RXAr776at26dW+99VZTU1NoaOiVK1eM20p37dr1n//8h6bpwMDAc+fOubq6ti4tKytr3bp1AAAej7d27drExERra+uYmJhTp06dOnUKAMDlcp+vED63wLxPxvMKzLv+d/3wXoyeHbz8TlLgnY3a79/iWB7F+38YFCH2uYCa/RmAAvM+X55eYF60RtgNVDfQYlsMqSACgUC8iCAh7AbK62CbKPAIBAKBeFFA3Xc3UF5HuzugdyEQCATihQQJoUUQOCA7DKYEyuuguz1qSQQCgXghQd23RQissCaV+V1FEICKejQiRCAQiBcVJIQWIbTBGprNC6FMAXlszIqDhBCBQDxTpk+f3qdPnz59+gwcOHDRokU1NTXdVXJaWlqf//LKK6/s3r0bACCXy/v06dPY2GjK9uGHH27atImiqFWrVgUEBIhEoh49erz//vttSqMo6r333nN2dvbw8Pj+++9bf5WXlxcZGfntt992V82fDLTT0SLsbLDsMvNzo2V1NNopg0Agnj05OTkzZswYN25cY2Pj559/PmPGjAsXLnRLyc3NzSUlJampqSRJ5uTkzJ49287OLiIiIj09nSQfRRovKSnBMGzDhg2HDx8+evSon59fSUnJ5cuX25S2efPm5OTkO3fuNDQ0DB06tGfPnsa3BmmanjdvnsFgqKqq6pZqPzGoB7cIsS0mazI/Iiyrgx5oXhSBQDwP7O3tvb29IyIi3n777czMTADAN998Y3KilpaW9u9//5skydWrVw8ePHjQoEELFy60sGSCILy9vf39/ceOHTtw4EBj4Wa5efPm6NGjg4KCGAyGn5/fvHnz2mTYvn37+++/7+zs3KNHjzfeeGP79u3G9O+//75Pnz4RERGPfdndDRoRWoSjAJM2mhfC0lo6vjdqRgQC8RwwuljT6XTffvvtlClTAAA3btzg8/lDhw4FAFRVVV2+fNnJyenPP//cvHkzk8lMSUmBEFriZsTkYq2kpCQtLe3TTz/tKGd0dPSXX37p7Ow8ZMiQHj16tC88Pz8/LCzMeBwWFnbu3DkAQGlp6bZt227durV48eInvfpuA/XgFmFrhdEQtGih9V/XAiEEJVLaW4JGhAjES0rV+2MgRXad729j9/rH3JC+bRL/+OOP9PR0g8FQUVGxYMECs4aNjY1cLtfW1lYikfj6+lp4Oo1GY3SxJpVKIyIinJ2dadr88tCiRYtYLNYvv/zy3nvvicXiTz/99PXXXzd9q1KpNBqNye0Rn8+XyWQQwvnz53/55ZfW1tYW1uepgoTQUiR2WKUMBrr9RfOq5dCWh1mjnTIIxMuKy9qjXbjk7y4wMytZy5cvN7rDLigoCAkJyc/Pb59n4cKF2dnZQUFB/v7+8+fPbz11eeHChTlz5gAAgoODz5w509rK1tb2/PnzxuO333570aJFGzZsAAC0XiM0GAwEQRAE8dZbb7311ltqtfrnn3+eP39+dHR0jx49jHmsrKy4XK5SqTR+VCqVYrH4l19+0Wg0EokkPT29vr5er9fn5uYGBgb+jdb5WyAhtBR3e6ysjg50+8u9WCLtMBgvAoF4KcD/ET2Ar68vk8nMy8vjcDhardaYKJfLAQBCoXDPnj16vf7s2bNz5swJCQnp16+fMUNsbGxGRgYAgMHoTAtCQ0M3bNggFou5XG55ebmzs7Mxvby8PCEhwZSNx+MtXLjwiy++yM7ONgkhAMDHxyc7Ozs0NBQAkJ2d7efnZxwmvvnmmwCAsrIygiAYDMZPP/3UjQ3yWCAhtBRvZ/xeUduZAeRTBoFAPEdkMllxcbFOp9u3bx+TyQwPD7979+7x48fnz5/f0NCwefNmHo+XkpLi6+vr4OAQGxvL5/MNBoPJnMlkCoVCsyVTFFVcXAwAqKqq2rRp0+DBgzEMmzBhwpo1a3bv3s3n8w8fPpyTk5OQkLBlyxY/P79+/fqxWKzDhw/X1dWFh4e3LmrOnDnffPPNyJEjFQrFzp07d+zYMWLECNO2nTfeeEMkEn399ddPrZG6Bgmhpfi74AeukBCA1rpXVAP7+BPPrU4IBOIlxsXFZePGjRs3buTz+UFBQRcuXLC3t1+4cOG1a9ccHBy8vb1nzZp169atzMzMGTNmaLVaLpc7Z86c2NjYLkvmcrkCgSAuLg7HcYlEMnHixKVLlwIAvv/+++XLl4eGhqpUqqCgoBMnTri4uPB4vJUrV+bm5gIA/Pz89u/f3ybW7qJFiwoKCry9vZlM5pIlS0aMGNH6W3t7ewtDJD49UBimx2DFTt3bo1lu9g8LVOvg+9t03y3kMJAUtgLFA3ouoGZ/BqAwTM8XFIbpH0GoF55ZQpk+5lbQPhIcqSACgUC80CAhfAx6+xJp+Y+WCe8W0qFeSAYRCATixQYJ4WPg74or1bCqHgIAVFp4r5iOCkANiEAgEC82qB9/DHAMDA4jzt0hAQC3cumenjifh7aMIhAIxIsNEsLHY1gvIquUvphBnU4lY0LQvCgCgUC88CAhfDx4bGzRGObdQioxmhHkjloPgUA8N5YvX56UlJSUlDRz5syvv/66ubm5u0rOzs5O+i8LFy40evFWKBRJSUkmHzEAgO++++63334DAPz0009xcXG9e/dOSEgwG1Ppu+++i4qKGjRo0JEjR4wppaWls2bN6tOnz6RJk4qKirqr5k8Geo/wsfFywt+bwHretUAgEC8758+fj4+PHz58uFKpXL9+/Y0bN0wy8zepq6s7d+7coUOHaJrOyckZM2bMqVOn/P39Dx48uHHjRlO2W7dueXt779q1a9WqVVu2bPH19S0pKUlJSWlT2q+//vrtt9/u379fLpdPmzbNw8MjODh4+PDh06ZNW7Vq1aFDh0aMGJGbm9u5d5unChJCBAKBeFHp0aPH8OHDAQACgWDy5MkAgD179vj7+0dGRgIAHjx4cPXq1fnz5+/evfvixYsQwuDg4BUrVlhSMovFMpYcHx+fnJx8/fp1f39/sznPnTs3ffp0o681X1/fuLi4Nhk2bdr0wQcfREVFAQBmz579448/Tp8+vbm5edWqVTiOL1u2bPv27SdPnhw7duyTN8TfA03uIRAIxIuK0cVadnb29u3bjaGXjh49anQfCgAoKCjYu3fvnj17fvjhh2nTpr322msGg8FCJypGF2vFxcVnz55NTU2NiYnpKGdgYOCBAweOHz/e1NRkNkNWVpZRmAEAkZGRmZmZGo2Gw+Hg/3XTyuPxTHV+LqARIQKBQDw5M08sJGmq63x/m/ei3urj3KtN4g8//LB3716FQqFWq/ft22fWsLCwMCAgYNCgQRwOZ9iwYRaeTqlUJiUlURRVXl4+ZMiQ3r17t14dbM2yZctUKtWCBQukUmlkZOQnn3zS2omaWq1uaWkRCATGj0Kh0JhNoVAcPXp03LhxFy9ezMrKGjBggIUVexogIUQgEIgnZ+2Qfz+bE4k4Zrxjr1692hiGKSUlJS4uzuyuk7lz506dOtXZ2Xno0KHz5s1rHS8iJSVl2bJlAABfX99du3a1thIKhWlpaQAAkiRnzpy5ePHizz77DADQOiohRVEYhnE4nLVr165du7awsHDHjh1jxozJycnx9vY25uFyuSwWS61WGz8aRVEsFu/fv3/JkiULFiwIDQ2Ni4tzcHD4W63z90BCiEAgEE+OxNrpeVcBAAD69++P43hGRgaTyTTFlzCO4VxdXa9evVpdXX3kyJGkpKSrV6+a4sWHhIQYN79wudyOSmYwGEOGDPn+++/t7OxYLFZNTY2jo6Pxq+rq6iFDhphy+vr6fvHFF3v27ElLSzMJIYZhHh4eBQUFxsBMBQUFnp6eAICEhASjn24IYVBQ0Ny5c7u5RR4HtEaIQCAQLzYajWbbtm0kSYaEhF6sQnEAACAASURBVPj5+V26dAlCqNFojBH+cnNz9Xq9RCJZsGCBi4tLXV2dyZDP54eFhYWFhXW0EQYAUFZWtmfPnoiICIIg4uPj169fb4zNe/369fT09GHDhh05csQ0Er1x44ZUKg0KCmpdwvTp0zdu3EhRlFKp3LVr1/Tp0wEAFRUVAACapr/88kuSJEeNGvUUGsZSkBAiEAjECwmfz1+8eLFIJPLw8Ni1a9eRI0dcXFzeeuut3NxcHx+f8PDwyMhIGxubI0eOuLu7h4eH+/r6DhgwwLinpnOYTCZJkiKRSCQSDR482NfXd/369QCAzZs319bWOjk5eXp6Tp48eefOnX5+fmVlZQMHDnR0dPTy8ho3btz69et79uzZurT33nuPyWRKJBJPT89hw4ZNmDABALBw4UIHBweBQHDs2LFTp05xOJyn1EqWgMIwIboZFA/ouYCa/RnwAoVhqqurEwqFTCbT+NFgMNTX14tEIjab/fcL1+l0LS0tdnZ2rRMVCgVJkmKxuCMruVzOYrFa36VyuRwA0KacTnh6YZjQGiECgUD8r9Fm7wmTyXR2du6uwtlsdntBNe0L7Yj2gme5BD5t0NQoAoFAIF5qkBAiEAgE4qUGCSECgUAgXmqQECIQCATipQZtlkEgEIgXku+//766uhoAwGQyQ0JCJkyY0F0BHIqKirZt22Y85vP548ePDwwMbG5u/uyzzz766CPTjs19+/aJRKIRI0ZcvHhx79699fX1Dg4OcXFxkyZNalPg0aNH9+zZw+Fw3nrrrX79+ul0uoMHD168eLGpqSksLGzRokVCoRm/Oc8MNCJEIBCIF5Jdu3bV1dV5e3sLhcJPPvlkwYIF3VVyeXn5pk2bvL29vb29ZTJZ79697969q1Kp1q5da3KWBgA4ceLE1atXjx07lpSUFBUV9c4770RFRSUnJ7cp7eTJk/PmzZs8efKAAQMSEhLy8vIKCwt37drVt2/f11577ebNm8OHD6eoZ+GvtSPQiBCBQCBeVIYMGWL0NdqzZ0+jx5bz58+7ubkFBgYCAMrKyjIzM0ePHn3p0qXLly/TNB0cHDx16lRLSuZwOPPnzzce5+XlnT17dvbs2WZzHjp0aO7cuabM7Z2lrV+//sMPPzS+/3337t1NmzZ99913Jr0cOnSora1tUVFRJ95tnjZoRIhAIBAvNi0tLSdPnjR6EN26deu1a9eM6ffu3Vu3bt2JEyfefPNNV1dXHx8fY1RCy0uGEObk5GRlZYWGhnaUx9nZ+dy5c53EUUpNTR04cKDxeODAgampqa2/LS8vx3Hc3t7e8lp1O2hEiEAgEE/O/R9LIf0s/HN5jHTke/HaJC5cuHDx4sUqlUogEJw6dcqsYWpq6rBhw+bNmwcA6GhU1x6jJxoIoUKhmDx58ogRI2QymdmcH3zwQXl5eXR0tJWV1fDhw1euXGly6g0A0Gg0SqVSJBIZP9rZ2dXU1Ji+1ev18+fPX7p06fNdI0RCiEAgEE+O23D7Z+Onkutgxjva5s2bZ86cCSE8cOBAQkJCfn5++zxTp0595ZVX/P39R40aNXv27NZju7t3765btw4A4OHh8fnnn7e2EovFRvfcRiFcsWLF0qVLAQCtB5TGkExCofC3335raWm5ffv2jh07YmJicnNzJRKJMQ+bzWYwGDqdzvhRo9FYW1sbj0mSnDp1qr29/Zo1a568XboDJIQIBALx5Nj6dqfTyycDw7DJkyfPnTs3NTWVIAjTxhPjxpagoKCioqLU1NTDhw8PGDAgPT3dtBonkUgmT54MALC1te2ocIFAMHHixO++++7zzz9nMBgymczkv00mk5nmPK2trYcOHTpkyBAXF5fr16+bNo7iOC6RSEpLS40hKUpLS93c3AAAFEXNmjVLq9UeOXKkuza7PjFojRCBQCBeeM6dO6fRaHx8fDw8PO7cuQMAoGn60KFDAACZTIbjeHR09FdffeXt7d06eK+jo+OYMWPGjBkzaNCgjkrWarWnTp3y9/dnMpn9+vUzxe8tKCi4ceNGTEzMlStXTMHrS0pKGhsb3d3dW5cwadIkY0AovV6/Z8+eSZMm0TQ9Z84cmUx2+PDhbvED/jdBI0IEAoF4UVm6dOmqVataWlqYTObWrVt9fHzefPPNmJiYQYMGKZXKkJAQAMCXX3558uTJoKCg6upqBweHwYMHW1JyQ0ODj48PhFAmk/Xt23fHjh0AgB9//HHSpEmnT58WiUTZ2dlr1qwJCwtbuXLl2LFj/fz8uFxuRkbGkiVLoqOjWxe1bNmyYcOGRURENDc3+/r6Tps27datW7/88ouNjY1pBvXYsWMxMTHd3DoWg8IwIboZFA/ouYCa/RnwTwvDpFQqjbOgLBardVgilUqVm5vr5uYmFAq1Wq2NjU11dXVFRYVYLPbx8bGkZJIkm5ubjcc2Njatpy4piiotLVUqlb6+vqZbrrm5uaSkhCRJb29vs2EoKIrKyMjgcrnGCdLW5Zs9i1lQGCYEAoFA/AU+n2823crKKiIiwnhsDEkokUhMYy9LYDAYHW3jJAiivZra2Nh08n6F0ap3796WlP9cQGuECAQCgXipQUKIQCAQiJcaJIQIBAKBeKlBa4TdzIP8w3czd2I4EdlroZ/3yMcvAFKUgSBY3V8zBAKBQJgDCWF3knp384P8Q8NjPycp/YU/P9Bo5aHBMyy2hmn3tqbe3UhSej/vhCED17BZaBMgAoHokF27dkmlUgCAra1tr169+vbt210ll5eX79u3DwBAEISzs3NCQoKdnZ1KpdqwYcOiRYt4vIee3o4fPy4QCGJjY/Py8g4cOCCTyRwdHQcNGmR6y95IS0vLvXv37t27J5FIxo8fb0rcunVraWnpgAEDkpKSnu/2/qcyNarValNSUjZu3Lh58+b232ZlZb377ruLFy++deuWKbG2tnbNmjVvvvnm559/3pFHu384ldU3793fNXH0PhfnaA/XmAlj9t1IXS+t69ARbRuu3vwyv/jktIknF8y+w2JaHz4xzUCquzb7L4UlZ37eP2z9j557j4ypqLrxBPWnaANNk09giEAgngvff//9tWvXGhsbc3Jyxo8f/8EHH3RXyUVFRatXr25sbKyvrz9y5Iivr29BQUFzc/OKFStUKpUp22+//Xbu3LkrV65ERUXp9fpevXrpdLovv/yyTWmffvrpwoULt2zZ0vrNk4SEhMuXL4eEhHzyySfP3cUagE+Bffv2BQUFxcTEuLu7t/kqLy+Pz+d/+umn33zzDZ/Pv3XrFoSwsLDQ0dFx7ty5W7du/eCDD9LT0zsqecKECQcPHrSwGi0tLTRNP/FVPBYkqdu5d1Bx2cXWibmFx3fvj6coQ5fmBcWnd+6N1WgVppSzl5aeSv6XhWdPvfvjjj0DK6puUJShsOTs1t2R93P2W175qpq0/UcnfbfV9/tt/sfOzGtoLLLcFkLYopKm3dty9tLS67fXNTQWKZXKxzKHEFKUQa9veVwrRGueoNkRj8vu3btnzJjxvGvxiPDw8N27dxuPT5w44eTkBCHMyMiorKw0JtbV1aWmpkII8/Lytm3bZgxMYUnJFy9etLe3N30cOnTo2rVrjc6y6+rqTOlTp0798MMPZ8+e/e6773ZZ5hdffDFu3Djj8eXLlx0dHfV6PYQwLS1NKBSq1eouS+DxeMZevaWlm7uLpzI1OmXKlClTppw9e9YUocrEhg0bpkyZ8uGHHwIAGhsbv/nmm99+++29996bMWOG0ffrC8rdrJ/sRP5e7kNaJwb4jM7O2Z/5YE+vkNc6sdXqmi5e/Wj0iK0c9iN3f0MHrtlzOLGg+JSf9yudnzq/6I/M7F+Sxh22tnIEAPh4xtsJ/Q4en8zl2nl7DOuy5hnZu2+l/zCo//9NHL2XovVZD/buPzphaMyn/j6JXdoCAO7d//lm2re+3gnODuEKZdmBY5O83BOGxn7MICxym1RSfin17uYaaTqBs3g8cc+gaeE9ZzMYXEtsSVKbkb27oPi0VJbJYQvsxT3Ce85p8xN0CqyquV1cdqFFJWWz+W6S/t6ewwmcabE50BtUDY35Gk2jtbWzWOSPYYTltqYSaJrksPkAILcPiL9FVlaW0bHZmjVrRowYYQwKmJKS8s0336xZs2bq1Kmvv/46QRCHDh06c+bMY81DKhSKioqKNl7TWmNtbX3nzh25XG5nZ2dhmVevXo2NjTW+4xgREYFhWFZWVlRUlOW16l6e9RrhtWvXli9fbjweNmzYzp07IYTnz59fvHjxxo0bVSrV2LFjAwICnnGt/iY6nTItY8vksYfafxXb//8On5ge7D+BxbLuyDwldZ2f90hnx/DWiQwGJ37w13+cW+juGtPJYqFCWXbx2scTRu0xqqARga3X6BFbjp1+Y/K4wwJbr05qnvlgz52M7VNe/Z1v4woAwHFG79C5bi4Djp6aTZKa4IDOPPhASF+8+n810jtTxh8V8D2MiZHhb529+P6h41PGjtzB5Yg6MTeQ6uQ/V0jrsgZEL5sweg+BM+rqH6Te3fTLwYSEod+2aY32lJRdvHjtIyeHXgOi3nd2itDrm8srr129+cW9+7uGx35hY93Fu8N19fcvXfu3Tq/09xnl6TZYra3PyN595caa/pFLg/zHd24LAJDVP0i9t7m04rKA78nlipqbq9TahgCfUeGhb5iaohNqpHeycw+UVV7VaBoIgknRpKN9T3+fxCC/8Z3cJybqG/LyCo+XVVxpVBRBAHgckZNDL2fH/j0Cx1hiDiEtlWVW16Ypm6sMpJrJ4ImEPk4OvRzEPSzRY4rS10jv1NVnK5SlNE1y2AIB38PZsbedyM9yOVepZYqmEpVahmEYj2dvJ/DlcCx9vRpCWqWWqjVyCCFBMK15jpbbmi5Bp1diGI5hROunzyfjzvmlNHwWawq+veYKHELaJBpdrDU1NREEcebMGbOGycnJU6dOfdzpR6OLNYqiamtrx40bN3nyZON6ZHtWrFgxadIkR0fHkJCQuLi4JUuWuLi4dF54bW1t6wCE9vb2rWMzPXuetRDW1taKxWLjsb29vVQqrampUavVS5YsSUpKUqvV0dHRp0+f7tevn1lztVr9zTffHDhwoHXimjVrjO7M21BfcI88crC7as4ZO0YYZH4tOvXeRg+XwWyWk9HXe2t4HHc3ScyNtB8iey02a9ugKMgvPDl53Kn2trY2gW4usVdvrO0fudKsLYT06eQl4SHzrbgebcz51gERYe8cP7tg3MjfOhqclVf+eTPt2zEjfmUQotbmVlyPxOE7/zg/m6JwH8+EDk5NXbr+gUpdN3rEr0wGr5U5s1/EmpyCnb8dGZ8Yt8PaytmseYuq5vTFhQ7inuNHHWEQbJ3WAIDBmuc1ZMDXJeXJx06/HhH2do+AaWZtaZq8feeb4vKzQwZ86ewYCQDQ6ygAeO4u8a7OQ+9lb99zaFRs31We7sM7qvnd+9vu5/wS3fs9f59xGPZwmTzId7pUdu/ardXZuUdi+33SUc1V6tqb6etqpKlhPd7o1+dDNuuha4/mlurcwoP7jozzcBnUO3Qh38bMDQkALKu8fDdri06nDPKfNHLYVgHfEwDMYFDVSNMKSk5cv/2fQN/xocFzeFyxWfPyqqsZ2TublKV+3mP6RiwXCfwwnFCppHXyzILiMzfSvvBwHRLoN9HZMcKsJsnk2QXFx4tKT7PZAolTpK2Nhw2Dqze0VNXcTb+3XW9o9nQb5uURL3GMwvG2PYPBoCqr+rO0/Hx51VWhrY+DONSW70ngTK2usawi5fbdTSSpcZPEuLnEShz7cMw9Aymaiqtqb9ZIU6trb0MAbG3crXiOENIabX2DopDDFjjZ95Y4RTk59Lble7Spf4uqplZ2t052TyrLaFDks1l8LscOw3CS0qvUtTjOFIuCHcQh9nY97YQBNtaS1uYGg0rRVFzfmCtvyG1sKlQ0Fet0TSyWDYSQhiRFaq2tJQK+l1DgJxL4CWy9+NaubPYjJ2EabUNLS1VTc3mjovBO5nmSbHtpdi5RENLmfq9uhsU1o/erV69OSkrSaDR79+6dMGFCVlZW+zyJiYkjR47MyMgYNWpUUlKSs/Ojezs3N3f37t0AAGdn50WLFrW2EgqFaWlpAICKiop58+Z99dVXr73WdmYLQggAcHFxSUlJKSwsvHr16s8//xwREfHgwQNTAEKzMJlMjUZj+mgwGFisrrfK0zS1+8AIFgvERn/lIunVZX4jHA4Hx7vYDfPodv/999+NM5aWcPr0aQ+Prp9828NisQwGg/FYr9czmUyj6/H58+e//fbbAACSJNetW3f48GGz5kwmMyoqqs0I2sHBgcPhtM9sLZY09wntlr1IRPId2FRv9iwabUNO/oEprx43+y0AYED00r1HRvUOnWPFc2j/7a07X0dHLLLlm/kKABDb74NfD8aHBCU5iNs+CQIA7mRuZzBYkeHzzPZ6vUNnS2V3bqZ/MTy27do1AKBenvPnjQ9Hj9juYO/X/lsnTtC4kbuOnn7Nimfr2W6ykabJc5eX63SNr76yi8Foe9UGgyGm33Jra/GJczPHjNhpJ/Jvk6FGeudU8tsRYfN7hcxpf+og/1HOTj1PnV8ok2e23zrb0Fh47vK7VjzHaRNOcthmXBr2j1zi7THozMUlVdKUmL4fsph/cUioaCo9/+f7BM6aNuGP9lLn4dbXzeV4esaWI6cmRYW/3TN4RuuZUr2+JT1za9aDPT2Dp48Y8nWb+VsOx9tevDyq91t3s3YcPT3F3TUmJHCKxKmPUVG02sbC0rOZ2bsBhkWFv+PjOcIkwAAADodjYzPC33dEc0v13awdB4+P9nIfGuQ/XuIUaXyRRtFUWlyefD9nH5PBiwib5+v1SmuhsrEWOTkGebm9wmSSOQW/X0/91GBo8XIf7uzY24rngOFES0tNbd3d0orLAGCBvmMnjdlvdp6gSVleWHLmTuaGC4piiVOUg7iHFc8BAtjcUi2ty6iV3XN2jPDzfmV47OdmR2AKZVlp+aWC4t+v3Pg/Hs/e0T6UxbJhMa30+hZFU6m8MY9BcFwkfX294gcP+Lhd48MGRXF1bWpl9c27WT9qtA0CW0+jGul0iqbmCiaD6yAOlTj1CfAb7WAXzPzrz6pS19XV35fWZeQWHpA35Gu1DTyemMm0IkmtwaDSG1Qiga9YFGgvDg70GyWw9bK2cjLZUpRe2VzZqCisb8yvrLl2P3e3srlCb1AZ7xy9QcVm8W2sJQJbL5HQ19khVFZT1/a2CU5q3xrPDB6PJxQKhULh0qVLP/nkk5SUFBzHjWECAQDGKIDR0dHFxcXnzp07fPjwJ598kpGRYRo5cDgcoy62DxCPYZjRC5pQKHzjjTc2bNiwZMkSHMcbGhpMmeVyucm/tq+vr6+v74wZM1xcXC5dujRhwoROqi2RSP7880/jscFgkEqlXQ4iAQA4jifGbbK2ssExfkf9rVmrLvM8+nNSKBRyuTw+Pr5Lmz179piiLD4uLi4ulZWVxuOKigoXFxeRSMTlck3xsQICAkwN1B4mkzlw4EALnW5zhA6i0XO6ZVduyfV7LAwz26B3Mrf6+4wS2JodAQAAgC3fNSQw6Wb6+rhBa9t8VVyW3KKqCesxs6OfiscVDYxeceHKB1PHH2vzkC5vyE/L+HHq+GM43uHSVPzgtft+H5eV82tYj1mt05tbqo+fnTtk4GqJU++ObB3se4xN2HH09OuDB64K8BltStfrW05f+BeE9NiROx6qoN5AlVVCjQ53dcJFAhzHcRyPCJtnxXM4cnLaoP4fB/qNM9pCSKVnbE/P2BI/5D/GxTy6Tk6mZ9F19ZCGDF8PRmQYxmGLBF5TXv39yo3P9xxK6Bux2M8nkc2ykcoys/MO5hedHBC5tGfwNAAAVVqpT75GFZbScgUuFhK+nqzhAwkPF4lTxIxJZ/5MWb17/5CIsPk+nvEcjrBJWZ6TfyS34Gh0xKLwnnMABGROoeHGHbqsEhpIXCQggv1YAyMZtjbREYv8vEdeufHpncztAb5jRAIfijbUSO8Ulyb7eMZNn3jSxloCIKQKy8j8YihvBBDg9iIiyJfwdOVybPtHvtsnbP793P1Xb37aoCi24tlDSOl0SjeXATF9P/BwiwUAgzod9SCPqqyBDU0Aw3AHEeHlRvh62vJdBw/4d98+i7NzD95MXy+VZXE5Qq1OyWHzPd2HxA/+WuLUBwAAdToqO48qqYBNSkAQmNCW8HbHHe14tnYRYXMjwubWN+SVVfxZXHZeramHNGVt5eToEDoqbrO9OPjhD6HW0LUy2NwCKBqztsKd7DG+tVDgGRm+IDJ8gVpTX1l9s74ht05+HwBgYyUJD53jJun3UH4gpGvq6Do5VDYDADABH3dywB3sRAIvkcCrd+jrENLyxvw62X29QWUwqG2sJT5ecSKBH9/mLz0dVGugSo3xuJgVDwAgFvmJRX6hwdMAADqdUqEs0+maAABsNp9v49p2mp2moUYHAMB4HIBhNtZONtZOPp4P5wBIUqvWyA0GFYPBYTC4Vry2XXxrcJxjJ/K1E/n6gkeTHzRN6g0qAACLadX6764w55eszHOdlPYcyczMVKlURp+ieXl5xsTk5GQAgF6vFwgESUlJSUlJERERrYXQ09OzzUCwPRDCmzdvSiQSNpsdFhZ2/Pjx999/HwAgk8lu3ry5atWqBw8eBAQEEAQBAGhqalKr1aZpv44YM2bM6tWr6+rqHBwcTp06ZZxWteAqMTuhj9HptiXyZjmPok/89NNPP/3005UrV7q0IQgiJyfHJF0dYdwsU1ZWZvx45syZiIiIXbt2nT179vz58xiGTZ8+3cXF5auvvpo5c6aXl9fq1asBALNnz2Yymdu2bTNb5vOKPlH6wWJ8WJT78Olt0ptbqn899MqspHNmR3smdPrmn38bOiZhm5PDo+G8gVT/sj9++KAv3V0HdmILADx6ao6DfUj/yKWPbA2qfb+/2idsfufLeACApuaKA0cn9o98r0fgw+dWRVPJ7ydfCw99vVfIbGMKXd9gSEmn6+S4gM/o05PwfCTq9Q15x06/7ubSv3fP1614DuVV167fXufpNmjwgFU4zoA6vf74ef2ft3Bne4zNpsqrCVcn6pXBNiGBRnNZ/YOzl97FMMLDLZYktUWl54QC7+GxX/BtXKFKrT3wB3knmxndC3d1AhBSDwrJ3EJWwmD2iFjAYAAAaqR3U+9urKhKwTCcyxEFB0zsEZhkbeVENyi0v/5OV9Sw4mIYIf6YWATrG8h7D/QXrhO+Huyk0bidAAAgk+fczdpZXnnNYFDxuGJfr4Tw0Nd5XDFVUKLdewxQFHNQX8LXE2OzaGk9mfHAcDuD2TecPS4es7YCANQ35BYUn25ursIw3EEc4ufzCo8rhjqd4dJN/cXrGIdN9PDHHcSApmlpPZmdD3R6ZkwkMzYaF9qafmKVWoZjhI21M4YRAEIyK89w9TaZnU94uxOerpidEEBIS+upwlJaKmNGhjFjogjvh7sSaJpUa+qN4yoAAICQzCk0XLlFZuYSXm6EnydmywcURcsbqaIyqqKGGRLAiAxjhAViZgO8kRRZUEJm5JD382CDwih+AMdhi4qurgMsJiPAmxHkRwT74mIzk1p0fQOZlUtm5VG5RRjfGndywGxtAICwUUlXS6FORwR4MwJ9iQBvQuIIiLYPZ1Cro0oqqKIyuqyKKquiGxQYi4lZW0GVGpIk4WSPuzoTHq6EhwR3dTZK4yNbnY6uklLl1XR5FVVZS0vrYYsK47IBAFCjw2xtCCd7XOKIu0kIF0fcUYzZtFoopSharqBrZXS1lKqpo6Uy2KCALWqo0QIMw6y4GN8GtxPiDna4kz3uIMbFQsyWj1lxjQ0OW1RQ2ULXN9IyOV0n33Pm5GWd8pf9v3X+R/fM6N27t16vd3Z2VigU+fn577333scff5yZmTl48OBXXnlFLpdzuVy5XN6jR4+ioqLg4OCKioqcnJyUlJROwvAauXTpUkJCQmxsLEVRJSUlHA7nwIEDPXv2TElJmThxYq9evcRi8YULFyZNmvTtt9/Onz//7NmzUVFRXC43OTl58ODBv/76a2uhOnHixCeffFJbW6tSqXx8fMaPH79y5cp33nnnzJkz/fr1O3PmzObNmy3p1a243JJ3P7FiscD0sVa+ne1+eFweCWFaWlpaWtqCBQu6tFmxYsXSpUs70fz8/Pxp06YplcqysrKePXv26NHj559/trW1PXDgQN++fQcNGmRtbc3j8YqLi69evers7FxQUDB06NCIiAiVSlVeXn7hwgVXV1ezJT8vIaxd9e8yP1X09Lb7Wk8l/0to69kv8t0uS8grOnEz7dtpE04wGQ//yM//uRzSVPyQrvfKqjXyvYdHDYh637iPgyS1J86+aWPtPHzQf+c8KUp/+SaZngUYDEbvEFZsFGh1FzYqio+eft1B3MPHM66+Ie9+7v6Y6BUPdRFC3R8X9OeuMvv3JtwktLzRcDWV8PHgTB+H8R/2JnqD6vadDQXFp3W6Jgf7kIjQuR5ugwAAdGWNesPPhI8HZ1IiJuADAABJGW7e0Rw6xYruxZmYCJjGR2lYVnG1VpbBINiukr6O9qEAADKnULttH6NPT/arCRj30RQHLZNrfztB18q4cyYRvp6mizOQmodbKyHUX0zRHTvPGj6AnTi0bYerN+hOX9YnX2O/MoQVFwMY7brjpmbtgT+o3CJ20ihmVBj4670BW1S648mGm3fZCYNYwwcC1l92kEKVRn/hmv7CdUaQLythUOvHhYf1rKg2/HnLcPMu4ePBjAojgv0eKiJNU6WV5L0HhpR0jG/NjI1mRvdqfdUPy29s0qekG67eBgwGs284IySAcHMGBAH1BrqsiszKNdy4g1lxH5r/VSoAAM21dZzCMkNqBlVQSni7E74euIMYMBnAQNIyOVVcQRWW4k72jF7BjJAAwsMF/PWBmpbJ+lkCRwAAIABJREFUqbxiMjufzC3CCBz3dMPFIszGCqo1sL6RKqmAOj2jZwAjNJAR7Gd8UPhL5RVKMreIyisi80vo+gbcQYw72mE4AYyjT2k9bFbhHhLC24PwdCHcXXB7O9OvA3V6uqaOLq+myiqp8mq6qhbgGMa3wdgsaCChsgXodLjEEXd1JjxccFdnwskes7V5+NvRNK1Q0rUyurKWqqyhq2rpunqo02M8LsZkQo0G6vS4wBZ3FOMujrizI+4oxsVCzNoK43IAhFClgcpmur6Brq2na2W0TE43KKBCCdUPl68wayuMb42LhbhYhDvY7b2dciE3+5c9v4J/Bjk5OcbleQ6H4+npaYpMVFlZmZqa6uPj4+7uLpVKvby87ty5YwzDNHDgQONezc5pbm7Oz883Hjs4OLi4uJiErbm5OS0tTalU9ujRw9fX15hYUFCQm5tL03RAQEBgYGCb0uRyeWlpqemjvb29cQ9qampqWVlZZGSkhQttVjxeTdo9HperFdhYC82sjDwxTyUeoVqtzsnJMX20srIKDAw0xseysrLS6/XXrl0jSTImJobLfbjQolKprl69amVlFRUV1UnA4uclhM1fb7rAODx07s/G3ZVGSsovXbr60azJ5y3c7n/+z+UtLbWJ8ZtYTN7NtO/yi09NefX31otYUKOlcoswoS3h2fY5oKGx8MjJme4uA+zFwVk5vzmIe8QP/to4aQPVGvV3OzEWixUXAyhKn3wN6vW8d2Zjto9W1wyk+n7ObzXSe3wbSc+gabZ8dwAAoGnN9t/o+gbeW7MeKhkAwEDqjp413LzLXTiT8O3w7iQzcjQ793OmjGH2azu52iyVMY6coWvquG9Ox12c2lrStO7Yef2VW9x5UxnBZpYnAQCGtEzt3mPMsCD22PhHFQOAyivSHj4NAMadMwl37nAITtfJtfuO0VVS1ohYZnQ4Zs0DANA1dYZrqfort1ix0awxcRi7w5V5ulamO3yazC9m9osg/DwxLgc2NpHZBWTmA0Z4CDtxKO7U2VQb1OnJu9nknftkXjHUajEmA2p0hKsT0cOf2a834dZVKBwIqcJSw+0MMreIrpZiTAakacLFmdHDjxHdqxNzUzxCqNFS+cVUcQUtawAkCRgM3E5AeLoR/p5/GSp1DC2tp8oqoVwBW1SAx8XFQsJNgkscu7Y0QpJUlZSWyQGEAACMw8Yd7XGxEFg8lwVb1FDZDPUGjEFgNtat72SL0BugWgMNJMbjGudOH8+8Y/5p8QhfNp5ePELzQhgdHV1fX2/WoKioqBtP/7g8LyFU/2dbma8qg748YdQe40pJo6L44PGkxLhNLs6WvvtC0+Sla/8uKD7FZPJsrJwT4ze3Xr2gyqrU3+0kXJ1pqYzw8eC+PrnNgEanU97P/U3ZXOnhNujRC4IkpVq3hXCXcKaOffgHD6HuRLLhehpv2ULjDKF5INRs2Qs1Gt47s/87dHsEmfFAs/MAZ1Iic2Bke1P9+au6U5d4i2abJvFaY+yRDVduaw+dYg3txxoxyDT6ofKKtfuOYbY23DcmY/zOejeo1uhOXDBcuUUEeBMersBgMNzNBhjGjo9lxkRa0rVRBSX6CynkvQeAywY6PeCwmVG9WPExuMiiB0m6rt5w4y5VVgl0eoxvTQR4M/uEth8JdQ7UG4DegPE4lmtA2xK0Ooxj0RuZKDDvMwAJ4fPlWQfmjY2NVSqVpo9qtTolJUUmk02ePLkbz/0igWF+3iNqFPK9R8ZEhM03GFSpdzfH9F1puQoCAHCcMSz2s+iIRXqDSiT4S2RL2Nyi+W4nd/qrjIgQYCDVW37VbP+N++a01j0+m82PCGvroEB74A/MivdIBQEAGMYeE4dxOOqvf7Ra8VbrEVWr80Ht7iOwuYW35I32KggAYIQFWy1fqN7wM5lfwpk8+uGSCQCwuUX76+90jczq/xbhdp29vMWMjSJ6BugOnWp5/zPC2wPjsKmqWkBS7HHx7QeR7cF4XM7kUewxw8l7D+haGWAxubMmEAHeXRqaIPy8uH5eAADY2AQ47PZTkZ2DO4jZY+Mey6Q9GIvZZn71sUuwTAURCMTfwbwQfv31121SDAbDzJkzLXnV438XbGjMmqLS8wXFJwmcNTZhu6ND2BOU0nrrtgnt/j8Y0eGMiBAAAGAyeG/OUH2xUX/hOmt4Z/toyPv55J37VqvfbT9CYsXHQINB9fUWq2UL2s4sQaj97ThVUc17f75ZFTSCSxytPl6sO3Sq5YO1zD49MbGIltaTd7KYAyOt5k7txPBRCUJb7ryp8P/ZO+/AKIr+/8/uXu8lucul90YaCVJCgAAmgBRRlI4UBVGkfkHAR5CfFRRpyoOi2EBaaCIiSuiRFnpJQsqlXpLLJbnet/z+WDxCckkOhAQf9vXX3ezM7Nze3b53Zj7FZMZKygmHk/FcfyTI74HWqSA2yxPVbKcT8T/1mKagoPjfxlOHejqd/t5778XHx7/33nsyWVsWkv/bhAVnhAW3M1HAG7TOnFwkMpQWE+5Jn1hFNXq7kLdy8b0iOo09c6L5wy9oXSJb2wwjrDbbD7tZ08ZAHPc7lMyhAwBBmD/eyJk79d4GD4paf9qHq2o5/zfdvW1hEyAWkzXxBcbgfuilm7jRhAQomCMy2lpuddsJj0tLjH2gJhQUFBQdyQNEluHxeBiGqVSqp1kI24UwmS2fbKQldbF9s4M5dji9e/vhDxy/ZjOf699MlmCZlDky07plF/edWW53mOy7fqXFx7Rmb0LCHDYQFgvNKzfRe3ejxYTjDVrH0TNIgC/n7ZltWIs0A/aSMAb387AyBQVFh3H06FGdTgcA4HK5CQkJrRnbPwR1dXWkPzcEQQqF4plnnmEwGDab7ddffx0xYoTLnvHChQtcLjcuLq6+vv7w4cNqtdrHxyctLS0kpLlvQ3l5+cGDB5lM5ksvvUQGnbl8+fKVK1cMBkN4ePjQoUNptM7MCejpHr7RaHzvvfcQBHHZy1K4xb7/D1pKPGviC+z5r9q2HSD0xrbr43UNaKGS3rdHy0OM/r0gBt1+xE14AfRGAXq7iDm6/bjY9N7duCvmQQjsOHoGKy5jTRjJfmOi5ypIQUHxxLJ48eLVq1dnZWVt3rw5Pj5+w4YNj6rn27dvT5o0KSsra/fu3fPnz4+JiamurtbpdKNHj25qPrJ+/fqdO3feuHEjKioqOzvbYrEcO3Zs9OjmoXZu3ryZlJRUVFR06tSprl27kpaYCxYsuHLlilqtfv/99/v06eNwOB7V4B8C9yLczGrUbrer1WoMw5YvX05ZprUBYbY4L1zlrVwCAEACfOm9u9l/Ocp6pa0gzo5jOYw+3d0rEwSxXh1rfn89LSoUCbvnyUBo9dbvd3NmTvTQAASWiJgvtZPCgoKC4t/IW2+9NWnSJABAVlbW/Pnz58yZo1arORwOeaO2WCw6nc7X11er1V66dAnH8S5dung4cRQIBK6ozqmpqTt37hw/3n343y+//HLMmDH//e9/ybcYhjWrsGrVKjJaKQBg2LBh33zzzdKlS10RxGw2m1wuv3TpUmpq6gN//keE+xlh3759n23CCy+88PHHH1+5cmXFihUdO7x/Gc6L12hx0S4je+bQAc7ca4RW31p9wu5wnr1MH9Dq1w9LRexpoy1f/oj/HeGQMJkta7cwM/s+kAklBQXF/zZ6vZ4MDfrWW2/t2rWLLDx69Oi4ceOuXr3apUuXrVu37tix49lnn31Q33EURS0Wi0jUqnEAjuPV1dWuINJIi7hCf/755/Dhd8M0jhgx4o8//mh6tLa2FkVRX9/2XGwfJ55ajVJ4App7g5HRx/UW4nHoqSn27BzWy+7XMJ3nriBRoW17ttESY1ijh5pX/pfRPxViMhzH/qKnpjCGpD/akVNQUDwc7+cVYI8hLElLxgX6R7dYkFu1atVPP/3U2NioUqkOHjzotuH+/fsnTpxITsg8R6/XZ2RkOJ3OoqKitLS0SZMmNTQ0uK25cOHCIUOGKBSK3r17Z2RkTJ48uenCocPhqK+vd6W8UCgU1dXV5Ov58+efOHGivLz8u+++Cw4OfqDhPVpa3Z/MyclZtWrVtWvXqquryYio8+fPHzJkSEcO7t8FYbVhZVW0LveFYGVk9DH/v/XMEc+6NdF0Hj/LHDu8ZXkz6L1SkCB/x5mLhMXCfn08EvEog+xRUFD8E2AI6ggZBAByl2RmzJgxzz33nN1u37Vr16xZs86ePduyTlpa2pgxYxobG4cOHTpo0CAO5158voqKit9//x0AIJVKmwUq4XK5K1euBABUV1e//fbbP//88+DB7pOyRUdHFxYWnj59Oicn58svv/zyyy8vX77scniHIAiC7kVuIQjCFeRk1qxZY8eOzc7OnjdvXmpqqttseh2DeyHctWvXhAkTvLy8hg4dKpfLGxoa/vzzz+eee279+vVz5szp4CH+W0DzipDw4GYO1LCXhBYT7jyT29IjELujJFDUQxcL2FfOGtO+ZFJQUHQw78Z0ZiLx4ODglJQUAECvXr14PF5OTg74O00gAABFUQBAZmZmbm7u/v37V61aNX/+/NzcXFceJZPJVFRUBAAwm83NeqbRaGTPKSkpVVVV69evHz16NARBer3e1Vyn05Hxu+l0+sCBAwcOHLhw4cKAgIDs7Oznn3+erEOn0yUSSW1tbUREBACgtrbWNTskMzf16NHj+PHje/bsmT9//uO7UG3jRggxDJs7d+7gwYP37NnjyvmEoujMmTOXLFkyZcoUgcBdsJKnHiy/2K0zA2NQX+vXPzMGpDbzgrAfPc3ISHuEgRApKCieWlQqlc1mEwgEcrm8oqKCLDx//jz5Ijw8fNGiRYsWLeratev58+ddO3axsbGrV7cf97+kpEQgEHA4nIiIiFOnTpG+AxaLJTc3d/78+RqNxiWN5OTPFUSaJDMz89ChQ3369AEAHDp0KDMzE8dxVxRvh8NRVVXVuV55boSwrq5OrVavWLGiaeZDGo32wQcfbNmypbCwsFu3bh04wicDCID2lj/QghL2a26uDBIWBEnEzgtX6b1SXIV4tRorKmfPaJ7XiYKCgsJzvvzyy19//dXpdP71119TpkxJTk62Wq0jRozAcVyj0Vy/fp3FYr399tuNjY3x8fHl5eVNU+m2jcFgIB0hamtr8/PzyWTpn3/++eTJk8k55cGDB/v27ZuRkTFu3LiysrLevXtzOJxffvklPj4+PT29aVeLFy/u16+fzWZraGi4fv36d999d/369RkzZqSmpiIIcuzYMalU2nYi38eNGyEUi8VMJtOV49gFWeLj4yZCGAVhthCNOiTQfZJl5shM2/e76c8kgr+dRm37jjCH9IP+WSBKCgqKp5lVq1aRDvUcDufzzz8PDQ0FAKSlpWVnZ588eTI1NXXFihWFhYUxMTEnTpyorKxMTExctmwZaVzaNqSVKflaoVAkJSXxeDwAwLBhw65evXrs2DGDwbBu3br+/fsDAH744YecnJy8vDwcxz/77LNnn322WdbchISEa9euHTx4sEuXLhs2bJBIJCKR6PPPP79+/TqO459++mlGRsajTbT7oLjPPjFnzpyCgoL9+/e7NjwdDserr75qNpv37dvXsSO8j07LPrH2W8bANFpC8zxbLtDr+Y4/T3MWvd5qD1/+gPj6MF8cDABAr+XZdvzC+3CRJxE7/3VQaRA6BeqydwBU9onOpaOzT0il0suXLwcGBg4aNMjHx6e+vv7YsWM6nW769OlLliwh64waNeqZZ9zk6Hk6wUrKkYjgNiqwXxllfn89YNBhqdi28yBn9tT/SRWkoKCg+Nfh/l68fft2cqZ45MgRVyGTyfzpp59cb7t06UIJoQuspJwxqG8bFSABn7N0lj3rMFZYynlrShs5bykoKCgoOhL3Qnjnzp0OHseTDgSDFpum9yAIrKwKCW1H22CpmD2Tso6hoKCgeLK4tz954cKF9evXe9Jm7ty5Go3msQ3pSQQS8vHWw2fjtRqIx4V4nNYqUFBQUFA8sdybEebl5e3du3fu3Lnttvnyyy9nzZrlchx5GoAlQqJR19pRTFmBhHRaTAQKCoqnk/z8fIvFAgBgsVihoaHNvPf+CUajsbCwkHwtk8nImC9Op/PGjRuJiYmulEmlpaVMJtPX19fhcJw9e1aj0SgUiuTk5KbBa0gMBsPJkyeZTGb//v3JBO95eXlWq5U8yuPxoqI6My7BfUuj+fn5L7/8crttWnpW/M8DS8VoQUlrR7HSSiSUEkIKCooOZcKECQ6HQ6FQNDY2lpaWfvXVVy1TID0cly5dGjx4cN++fZ1OZ3FxcVBQ0G+//Waz2bp161ZXV+eaBf3nP/8JDQ2dPn16enp6QEBAeHh4aWlpXV3d7du3m/ZGehmmpKTodLqlS5eePn2ax+ONHz/earWSps4JCQnffffdIxn5w3FPCL28vIKCgkpLS9ttk5KS0tTX/mkA9pbgpy+2dhQrraT3aD8BLwUFBcWjZfHixWQapm+//Xbx4sWjR482m800Go3Mnet0Om02G5/PR1G0pKSEIIiQkBCmu7jHLREKhUePHgUAoCjarVu3rVu3tjZN+uyzz9LS0lxeJVqttlmFVatWDR06dPPmzTiOp6enf//997NnzwYAfPXVV6QnYqdzTwiHDx/uirtD0QxY5oXX1bs/hmK4qhZuxZWegoKCogMQCoVk/qMpU6YMGjTotddeAwAcPnx4zZo1W7ZsGTx4sK+vL51Ov3PnTmVl5QN5V9NoNA6H04bDu9FobJp6qaXD/i+//ELKJAzDo0ePPnDgACmExcXFdDo9NjaWzFnfiVCubB4BiQTA7iCstpa5cLGqGlgmpXK+U1A8nTjO5D9ohr+Hg94lAJY2j5lAhliz2+23bt3avHmz24Y///zziBEj1qxZAwCw2WweqqArxFppaam/v//kyZNNJpPbmm+88caQIUMSEhLS09MzMjKGDBni2kQEAKAoqlarXZkl/P39VSoVAIDJZH7//fcAgBs3brz//vsLFizwZFSPCUoIPQOCYF85rlK39P/DSitgylKGguJpBS2uJbCOMJugBXmDFkLYvXt3ciePRqOtXbvW7UpjbGzsnDlzRCLR0KFDk5OTmx7SaDSXLl0CAAgEgt69ezc9xGQyybVQtVq9Zs2akydPthZlumfPnsXFxb/88ktOTs60adNiYmKOHTtGp9+NH4miKI7jrikjnU53OBwAgNOnT5OLtBcvXuzXr9/gwYNjY2Mf/Ko8Gigh9BTYzwerqnYjhCUVVIJACoqnFs7Uztzl6t69OylXL7/8skAgOHfuXNOjpGHjyy+/LJfLs7Kynn/+eV9f32PHjrmi8VVUVJDTsuDg4NaEkOznww8/JLcMTSaTy1jGaDSSoc6kUum0adOmTZumVqvDw8Ozs7NdyWtZLJZYLNZoNGFhYQCAuro6Mhm9a6uye/fuMTExV65c6UQh7Mw4p/8ukCA/vLy6ZTlWXEajwsRQUFB0KkajEUVRCIKkUmltbS1ZeOPGDfJF3759v/jii4qKCrPZfOrUKVerlJSU3bt37969u+389Y2NjRAE8fl8f3//3NxcstDpdF69ejU2Npac4ZFIpVI2m41hWNPmffr0OXbsGPn62LFjZD4mFwaDoby8nFTHzoKaEXoKEhLgPNPccJQwGAmTBfaVd8qQKCgonnJ27959+/Ztu91+5MiR/v37d+/evbGx8bXXXpPL5Wq1OisrSyqVrlq1yul0xsbGVlVVNTQ0JCQkeNKz2WwmI0urVKpffvnlhx9+AAB88MEHs2fPViqVUql07969AQEBw4YNmzx5MoqiqampHA5nz549Uqm0WRqmhQsXDhs2jM1mNzQ0/P7771evXs3Ly1u2bFlaWhpBEFu3bk1ISOjXr9+jvzoe06oQWiyWAwcO3L59G0XRVatWAQByc3P5fH50dKsZGP63QQJ98dp6wmaHWPeMj9GiMiQ8iEquS0FB0fHMmTNHrVYDAAQCwfPPP9+vXz8IgoYNG/bNN99kZ2dHR0dnZWVdvXo1KSnp4MGDx48fl8lkZ86cCQwMbLfnsLCw5cuXAwBgGI6Pj//4449Ja5cpU6bExsYeOXIkPz9/zJgxEydORBDks88+O3LkSF5eHoqio0aNGjduHJmzyUWfPn2OHj26a9cuNpt98eLFwMBAk8k0ePDg/Px8GIYXLlw4ZsyYpnanHY/7NEylpaWZmZnFxcVSqZTFYlVVVQEAli5deuzYsYsXW3Wn6wA6Kw3T3Q5X/pc57FlaXKSrxLbrV4jLYQ4b+KhO8T8AlQ+oU6AuewdApWHqXB5fGib3e4TTp09nsViFhYV79uxxFb700kuXLl1q6Sz59ECLDkfzi5qWYAVKWmRoZ42HgoKCguKf40YIjUbjiRMnPv/884iIiKbTqbCwMIIgyNnh0wktLhK7eS8vB2Ew4XX1SFj76wwUFBQUFE8s7oUQx3F/f/9m5TabDQCAomhHjOuJBAkNxHUGvL6RfIveyKfFRoBOXdqmoKCgoPiHuBFCmUwmEAhycnIAAE1nhIcPH6bT6RERER03uicNGKanxDsvXCPfOc9doT2T2LkjoqCgoKD4h7ixGqXRaFOnTl26dKlYLBaJRAAAq9W6b9++hQsXTpgwoZk50NMGvW9366atzMH9MJUaq6njJHfp7BFRUFA8pRgMBtJjj8lktsx89E9AUdRovJuBVSAQkCadOI7r9XqRSOSaIJnNZhiGyfRPpaWl9fX1crm8NatUMkJbUwVxOp0mk0koFLYRyLRjcH/6lStX9u7de/To0YMHD66trRUIBBMnTuzSpcu6des6eHxPGkhIAOwrt+3+zb7rV2ZmX0CjHDEpKCg6h/T09Ojo6G7dugUFBUVERJw8efJR9XzmzBlvb+9u3bp17dpVKBSOHz/eZrPV1dVJJJL6+nvpB6ZPn/7RRx81NDSkpqYOGDBgyZIl6enpPXv2bNbbt99+GxwczOfzyUQZAACtVtujRw+BQCCRSDxJefS4cX8fZ7FYBw8ePHny5J9//qnRaPh8fnp6+rBhwzpdt58E2NNGW3/aC/vJGRlpnT0WCgqKp5rVq1eT6vLxxx+/8cYb+fn5rdW02WwEQXievFcikZSUlAAAdDpd9+7df/rppxEjRrituXLlSqlUmpOTQwrEnTt3mlXo1q3bgQMHDh06dPnyZbKEyWS+//778fHxfn5PRN6ee0J48+bNw4cPNzssFAqFQiEAID8/n7zEixcv7sjxPYFAAj7nrSmdPQoKCgqKeyQmJm7atAkAMGXKlIEDB5Lq+Pvvv2/cuHHLli0vvviiSqWi0WgQBBUWFj6Qd7VIJCJd4FurUFNTExwc7Jomtcw1n5SUBAA4cuSIq4TD4QwaNKhpbLbO5Z4QXrp0iQyo0zaUEFJQUFC40JedBx2Shokrj6Zxmqf6I0OsWSyWU6dOkfFCzWaz3W4njzocDqPR+M0338TFxf31118AgOrqag9V0BViraioCMfxV155pTWXgQkTJrzwwgulpaX9+/d/9tlnExP/fSaE94Rw6tSpU6dOJV+fPXt27Nix8+bNe+mll+RyeX19/eHDhz/66KMNGzZ00jgpKCgonkSq/9pM4B3hVBaQPo/fQgi9vb1DQ0P1ej1p6j9u3LiWDRUKxbZt23788cchQ4Y0i21tMpkqKioAACwWKzT0vtggCIKEhoZiGIbj+IEDB4qKikJC3KfZGTJkyLVr13bt2nX48OF33nnnxRdf3L59+yMM6dUBuNkjJAhi6tSpK1asmDZtGlni5+c3ffr0gICA8ePHV1dXs1jNk9NSUFBQPJ3ETPiuE8/ev39/chX0zTfflEgkrps2CRlBc+rUqQwGIysr68033xw8ePCOHTsYjLuJxK9du/Z///d/AICIiIht27Y1bctisWbMmEG+lkqlS5Ys+eWXXwAAVqvVVcdisZByEB0d/d577wEACgoKunbteuLEiQEDBjy2D/3ocWP8otFoCgsLm+WmAgCkpaVptdqCgoIOGRgFBQUFhaeQMzDSG8EVCLO4uBgAAMPwpEmTDh48WFNTc+PGDTKtIElaWtqFCxcuXLjQTAWbAcOw2WwWiUReXl43b94kC3Ecv3XrVjPP8qioKLFYbDAYHu2ne9y4mRGyWCwYhnNycprteZIu9o821CkFBQUFxUNz4sQJq9VKunpHR0f36NGjqqrqvffeS0xMVKvVW7Zskclk33zzDYvFioqKqqmp0ev14eHhnvRss9k2b94MAKioqNi4cePKlSsBAAsXLpw7d67BYJBIJLt374Zh+Pnnn3/zzTcFAkHPnj25XO7OnTshCGqWcfDOnTunTp26ePFiWVnZ5s2bY2Ji+vTp8+OPP5rNZgDAzp07vb29p06d6kpq3/G4EUKBQPDCCy/MmTNHq9WOGjWK3CP8/fff33333dTU1Kc6sgwFBQXFE8OUKVOqq6uVSiUZBWXMmDEsFmvcuHFarXbTpk2RkZE//PDDtWvXoqOjd+zYkZWV5e3tvW/fvpZWnS0JDAx88803lUolAEAgEBw5cqRHjx4AgMWLF4eHhx8+fFin08XHx1+4cIHFYs2cOXPv3r07duxAUTQ6Ovr8+fNSqbRpb0ajUalURkZGRkZGKpVKMsF9WVmZ1WpdvHix0Wg0Go1u8yB1GO7TMOn1+kmTJv36669NC/v06bNr1y6FQtFRY3ND56ZhovAEKh9Qp0Bd9g6ASsPUuTy+NEzuHeqFQuHBgwdv37599epVlUoll8sTEhKSk5Mf4YkpKCgoKCieBNwL4aJFi5rudiqVynPnzpGvv/76644YFwUFBQUFRYfgXghPnz7dNKCcwWCor6/ncDg+Pj4dNTAKCgoKCoqOwL0QXrhwoVlJXl7e+PHj33777cc/JAoKCgoKio7D0yDasbGxGzZsmDlzpsVieawDoqCgoKD41+F0OtVqtdPp9LyJVqsKP5a0AAAgAElEQVR1uTx2Lg+QTSIqKspoNLaMLE5BQUFB0fGkp6dLJBKJRCKXywcOHOhydf/n5OTkSP4mJCRk6dKlOI67TcP04YcfWiyWsWPHent79+7dWyqVjho1qllve/bs6devn0wmmzhxIlly/fp1uVweExMTERERGRl59uzZRzXyh+MBhJD0puhc9wkKCgoKChKDwbB+/frGxkalUhkfHz9lypRH1bPT6aTRaI2NjY2NjYcPH962bdv27dtxHNdqtU097sxms81mW7VqVU1NjUqlKi4urq+vf+utt5r1JpVKFyxYMGnSJNKDHgAQFBR07dq12tpajUYzadKkZpHhOh6PrEZRFC0uLj5z5kxGRgZlL0NBQUHxRMHlcocOHbpz504AwOLFi3v16jVy5EgAwKlTp7Zt27ZmzZoZM2acPXsWx/Hw8PDjx48/kHd1TExMfHy8SqVqrUJRUVH37t1Jxz4Gg9G/f/9mFciS/Px80kMfACASiUQiEQCADEPzxRdfPNgHftR4ZDVKo9H8/f1XrlzZUuopKCgonmaKTToCdERUFF8Wj0trHoSMDLFmMpl+/vlnMkeeUql0xf/S6XSFhYWbNm0iCKK4uJhGo+Xm5nqogmSINYIgCgoKysvLx44d21rNYcOGvfbaaxaLJT09vX///l5eXp70TxDEN998o9Fo9u/fv2bNGk+aPD48tRqloKCgoGjJiL8OOHG8A060KfnZZ+WBzQo1Go1SqSSXHF1pCJvBZDKVSuVff/2VlpbWvXv3pocwDLPZbAAABEGapRXCMEypVBIEUV1dzePxLBYLk8l02//48eN9fHy2bt26dOnSsrKyhQsXkoFJ20WpVDY2NhqNRnIMnYh7IRw9evSKFStiY2ObFubl5c2dO7dp5HIKCgqKp5y8QVM68eyjR48m0zDV19crFIoRI0a0rDNz5kyj0Th37tzy8vJp06atXr3alU3++PHjZPMuXbocO3asaSsul+vSs+XLly9YsODnn38G98ut3W4nI2UPGDCAzLt08uTJzMzMkSNH9uzZs+2RQxBE9n/z5s2UlJQXXnihWYTSjsS9sczp06d1Ol2zQp1O1+xKUVBQUFA8CYhEIjqdXlNTw+PxTCYTWVhVVQUAYDKZ77777vXr13Nzc/fs2dP0Np6RkVFbW1tbW9v2vd3b27umpkYikQgEgqKiIlf5nTt3mqXzTU9Pl8vl5Hk9JCgoCEVR15g7BfczQreUl5d7uPj7hGDHiVqz/VEF3Vaw6GzkAYxsKSgoKB43t2/fzs7ONhqNu3btkslk3bt3Lyoq+vrrrwcNGqTRaL766iuJRLJ3714vL6+YmBiTyeR0OsnkD+3icDiys7MJglAqlatWrZo5cyYAYMaMGYsWLVq/fr1EItm5c2d9ff3zzz+/fPlyhULRs2dPFou1e/duo9GYmpratKuysrLc3NybN2+qVKqsrKzQ0FCVSmW1WuPi4hobGz///PPu3bsHBQU9lgvkGfcJ4d69e7/66isAgFarnTdvnlAodB2yWCxXrlwZNmxYRw/wH3Cx0Tnuctkj6cqEOb9ODp0WJmy/KgA4SuBOnMZGHsmpKSgoKNySkZGhVCo3b97MYDBiY2PXrVvH5/OnTZumVConTZoUERGxZs2anJwcBEE+++wzlUollUrXr1+flJTUbs8ymSwzM5PMRyiVSteuXUt6B37yyScbNmxYsWKFXq+Pi4s7e/asQCDo16/f1q1bf/rpJwzDoqOjT5486evr27S3srKyrKwsAEBwcHBWVtazzz4bHR29devWlStX8vn83r17b9my5fFcIU+5Lw2TSwhPnz6dmJjYVAi5XG58fPy8efM6cRkXPGAaptIGy65K5iOZEX5wp/idWPk7ce0LYd1lnXJ/DcCBJJ4fMdoPQp66JFBUPqBOgbrsHQCVhqlz6aA0TKNGjSJlPzMzc/Xq1QkJCY/wTB2PjEUsToQfiRCuLvGomrbAVHZInTA7lCWh39lWVbRbFTnO3/OzNNwyaPNNLAndp7eExqImlBQUFBQdwT0hPHLkyMqVK2fMmDF+/Hgejzdnzhy3DU6ePNlBQ/u3gdnx4t2qqAn+HDkTABA1wf/qmpKGWwZpnMCT5soDNbo7JkVvibHSen1tSdwbIUxRc5+hJxOMAHf0hAUFUUKI/4BDbrSD3yrxPC3BREAPbzjDD6J5vA9bYSK+LsAv1BEVZhDEA71k0Ixo2J/r6XNPgY7YqcSvNgArSgTxoP6+0AtBMNvjTfNKM3G6hqgyA4wAYQLQTwH7sD1tCwC42UjcaCSqzACGQAgfdPOCgvkP8MSWpyNyNUSdFSAQ8OeCZ7yhB929r7MCjY3ACCBlAl/ugz0tmlFQZiTUVgAA8OWAED7EpB7bKP7N3PvfIwjCZrNpNBoAgMVisdkP8remAEB1sl4YxhWG352wwww4/CXfol0qcTQfprVzn6nJaTCUmBPnhiEsWAGA6mR93rfliXNDYbqnsmAoszTcNMAI5JUk5Pqy2m/QhGoLsaOEKNITCg70UgjURezpXdGOgbW38C9u43w6YNOA0kBk+sNvR0PPeLBEZ0HBB1exzQX4AF+4qxSyYsRH17AZOeC9ZHhaJAy3OQStHSzNxfaU4pMj4bcTkUAuKDeB3yrxpH3opAh4eVdE7N7f6S539MTbF/GLdfikCHhKBMSjw4V64udifP55bF4cMq9LW3KIEWC3Ev9vPn5HR6Qr4FABIAiwswS88ZczVgRNi4JHh8C81p8GbjYS3xfiu5QElw5SvKAALsAJcK4OvHUWkzKhcWHw5EgooHUtL9AR3xfiO5UEHQa9ZJCCA1Ac/KUG88/jLJj5Qgj2UgjcQ9aqqhXpicOVRHY1flZNwBCQsSAEBvU2wugEiRKorw/U3xdOk0NuP74FBSdqiD+q8JM1hNJABPEgORsAAFQWUGUmYkVQHx8oXQGl+cCSVi5+kZ64qCGuNhDXGohKM6izEjoHEDKAHweKEkFxYtBVCiVJoRB3DwS1VnC9gbjWQNzWEsUGotoCDE4CACBiQH5cECGAYsVQggSKEYGWV8+OgSIDUaAj7uhBkZ6oMhMaGzA5AQBAwgRyNgjkQaECKEIAIoRQMA/i3P/xjU5QYSJKDESpEfxejPOx1r4ciscORoBJJzEaC18WB8U/ypXR+/cIn3weaI/QbDZzOJxHsjTqva9wfmRbe4SoFbv8cWHi/DCWhNG0PO/bcnE0T5HW1saqVWO/8UVp4txQlvRe2zs/V9HYSNiL7Ud2JXCiaH9N1XXTabmQThC9a3XBaZLgQTLgwecmAPjsBv7pdeylEDhJCpWZiK1FxLN+0JqeiLRNLQEAFOqJl45hoXxo5TNwtAgCABidYMsd/KOr6BuxyLKuSBsinqshxp/AesigT7vDvhyoafmCCxiKg81pSLzE/QfYpcQXnMdfDIY+7IYI77vYoN4Gll/G9pfhHz+DTI5wo6YGJ/jgCvZjEb40CXkzBm42j7mjJ5Zdwi9oiP+XDE+KgJtt79ox8GMR/ukN3I8D5sfDwwLgppNXFAdHqogtd/DTtfjIIHh0KJzmA3H/vqWWGonfKoltxXi1GUyJhCaGw5HC+3rHCXBRQ2wtxncr8WQpNDYMzvSD/P6+p5cYiCNVxPYSvMwIXomAJoTDcS0eVv6qMP2pYe8tI7R2kOEH9ZJD4QJIxAA6B1AaiNx64kQ1YcXAEH9okD/UxweWN3nQNTjB5XriVA1+rJq41kAkSqBkLyiUD3FoAMVBiZG4pCGuNBDdvKDB/vBAPyhRAjX9cm0YuFJPnKolTtfgZ9WEiAl1EYNoIcRAAACgzgqKDcRtLcGjQz28oWQvUu2AFwuSMoHOAVRmIl9H3GgkrjYQ1xuA1kGE8CEZC/DokBklGmyg3ETAEEiUQElSqIsYihRCfhwgZEAAgEY7obKAQj1xW0vcbCRuawm9E/hxIPKHgRFAYwMNNiKIB3URQ1FCEC6EArmQNxvw6YAgQKMd1NlAmZEoNhCFekJpBBUmAoGAmAnRIODEQYOdgCEQyIVC+CBMANWf/Bm/dXTHz9QeYefA5nC/ya1lsDlpEruviPMIe3YvhARBHDp0aP/+/dXV1Rh23yNQ5zrUd5YQBuzKf6OLbxtCWHVMY1HbI8c33xE0VVnzv6tIeSeyjUnh7c1loiieXz+vKjNxqIII4EFD/CHchl35tDj6lQBBSJvfNwFublflKh2Hu/m/nkBz4mDLVfuoy1VxcdyEl9sRURQHU09jZTp8E1tnv6qzNThYUob4GfF/2aI9FWD3QKS7d6tj/lNFTDqJfpiCTI9uLnfFGtPcK6x6G9iWjkQIm/eAE+CzG/jaW9jGVGRUiBupJAD4tgD/zyVsSiS8NPG+ud2VemLZZazKDDanIT1krY7tSj0x+xxmdoJFCfCLwXend9UWYmsRseYWNjwQ/uQZxLv1OfO5OmLJRazSDF6NgnvLIT4dVFuIbBWxU4l384KWJiJpPm39oqotxM4SYn85frWekDAhHh1obAQdBs/6wuPC4Ez/dsynbBj4tQLPUhKna3EHDsQMqM5GCOhQhh80OhTObH3p2GUsU2wgjlUTuRpCaSAMTiCggxA+1NUL6usDJbTybNEUCwouaIir9USFmbCiAIFACB9KkkKp8nu63gYEAGVG4paWKNQDFAcAACkLhAugGBEk92yNSe8A5SaizgpMKMGjQSImCOZBXh6vcVhQUGUmjE4AAEAg4M0CPpwHM1kzOkGjncAIQIeBhHnfp6aMZTqXDjKWcbFgwYJ169YFBASEh4cjCLX8DzhOrI2JM4ER1Wcaurwe3PIQz5/N9WWpL2oVqRK3bbX5RrvW6dtHelRFTDiBDg2EvyvE194E+zNooSMVJXurkxaEQa0vFJYdr79ZZFUOCtrT6+563HMBrDV+QdD+MiCsT8hsdecII8CEkxhscqwvqUbE9KgJ/hwFy1JtqzhaN1GvT8/wG/4nseoZZEqkm/vuhtv4J9ewvQNpaT6QpdZedUKju2PC7DjXj61IlcjD4UODaP/Nw1N/RefFIXO6wK6Nw/N1xILzGBMBuSNpTZewUCsGIxDMgAEAEADTo+HhQfCKy1jYbucQf7irF2RDwcEKXGMDs2Ph2V3aWTBO9oL+Gk47WI5/VYBPz8GCeJDZCcwo8XwQfGIoLVbUzk2xlww6NYyWqyG2l+DLL+MWFHizQB8f+OxwWpig/RuqLwdaEA8tiIcdOKixEEYn8GJBnm8fshDwcgj8cggAAKm3AYOTkDKhZhPftgkXQOEC6PXoB2jSFA4N9FdA/RUP+fgIARDCd7+86SFCBvhbsB+mEw4NRLZ4/Hog+HTAp/87jL2HDx+el5cHABAKhUlJSStWrAgMbB6D7eE4f/78hAkTAAAIgigUirFjx77xxhsajaZnz565ubkSyd272bx58wICAubOnfvOO+/s2LFDq9VKJJIRI0Z8+eWXTXtzOp1z5szZuXMng8GYP3/+kiVLAABff/31kSNH8vLyFi9e/CRmn8Aw7Ouvv37rrbfWrVtHqSAJA8Uhe6ubA5qreo6CxVW4f2oNyJQV/Fjh00Pc8rmUwInSX2uDh/uUmsHEk+j+DFpvOYQT4M2/sBez0d8HCWrPN1afafDr517PDKWWouz6032Dv+p1367UghT6D0RgRVYpU8aMSnKzX4cT4NXTGNDbF9yukqVK/Afc7Z8XyI59Naj6TINjX3n2uMCxN6Dj1cTnPe/Nn9RWMPssVqgnzo6ghfCgymxN9ekGv/5eQYPlCBs2lFgqs+vAWSLmFfasWNrQAOidS3jwTmdPGcSlQQV6wugEy7rCUyPvCrvTjKlO1Ndd1mF2jMABx4fp20cqSxYBCPiwwVdpyPspyMEK/LaW4NDA+ylIpl/zRwJ9idlQarE3OlhShiCU23T2PCIIHhEE2zFQYiR4NKDgQB7vtwIAwDPe0DPe/+jHz4BBEO8f3U+9WMCL9e+4I1N0CiqVatasWSNHjrRarR999NGkSZNOnTr1SHq2Wq06nS43NxcAUFRUNGHCBNJlXqlUNl0jrKur4/F469atO3r06NmzZwMCAqqqqloaVG7cuDE3N1epVOp0urS0tOTk5MzMTKvVOmLEiOrqar1e/0jG/E9wI4T19fVWq3Xq1KmUCrqAAIDrWg0LW32qPmhoq9mp+IFsjpypvqj16dV8Uqi+oKXzaJJY/oQj6KIEpLccAgDAEPhvb+S5P9AVV7D/vOh7Y0OJV6KwpQUpasGu/lD5TajP9xluBHhKN+aPej9ohwqWhEQE3rfdhxPg9Ryssd6xLL/KP91LkdZ8VL59pAw+Tflz+elXgz+qpsdkOYcFwhFCqEBH/F6JvxoFb02n0XG84KdKhwHtujCcIbj7K5J04YtjeCWHVdfXlcRMDQwOYG/vj9RZkfN1uB0HgVy4m/e9h4H663rlvhppoiD+zWC2N5PACF2RufLPutqzjZHj/FleDACAjA1ei3IvX7oiU/lvasyOS2L5XD+2Xeso2qmicZGwFxS8gHvzLyYC3E8BCaAtMNZe0BrLrbgDZ0ro4mi+orfkgSx1rXV2a70DEIDlxeDImA81gaGg+Ed4e3uTQc5ee+21MWPGAADWrFmTlJRERv68dOnSr7/++u677y5btuzEiRMEQcTGxv7www+e9IwgCNlzaGhor1698vPzWwsfevny5SFDhgQEBAAA/P39Xdl3XXz33XdLly4Vi8VisXjatGnfffddZmbmvHnzAACko32n40YIvby8fHx8Kisrk5OTH7pfMjCPw+GIiYlpdshms+Xk5NBotNTUVAbjvkWf69evi8XiRzW7f7QgaveR3XVFJhwjxFE8V8nvlcS6W1gfH/idpLv2GkGD5XnfV3iniBDGvds6asUq/qiLnR58VEWUmcC8LvcOwRD4qR8tab/zuQB6QD+v4t2qLtOD77vPEuDmtqrDHP6ikcLWdm4mD+Tv1ntf/qpc83poatDdSnoHmHoaw03OZXeqfPtIWqogiVeSEIKh4i1l/+/VoIUJrIPlRKWZ6KeAPu1OV3CAw4je/K6C7c2IfzOk2TQXgiF5P6E4WHD7m/Lwl32l8QIZG4wIuk/McJRQHqjRF5ljXwtyiRaEQOJonjiKV/NXw/UNytCRCu9k9zuyqA0rO1irvWMKeV7hFS9wXZbgoT51l3V535bLuokCh8jb2JQ1q2zFe6pxJ+7bVxoywofGRqx1jvrr+qufF8ufEQcOkiHMtiaPqBWrPdtYe15L4ATHhwVBwKK2ExjhnSLyTZMwhO1JKQF0xaaGm0ZThcXW4IBgiOXNFASzvZKEPH+PllBRG6YrNBvLLA4DCsGAKaLzgzk0nwezekPNmMOEEhhB59FcjzIP1oMVAwDQWMhT/gSA42jHpGFCYFrL5WIyxJrBYFi7du3UqVMBAOfOnRMIBKQQqlSqkydPenl5Xbt2bc+ePQiCnDt3jiAITywnyBBrGIYVFBRcuXKljYQSvXv3XrFihUgkSk9PT0lJaTaDIgiiqKgoLi6OfBsXF3f48OEH/eyPGzd/AARB1q1bt3z58oSEhJCQkIfodNeuXTNnzrRYLPHx8ZcuXWp6SK1W9+nTx9/f3263WyyWkydPuuLXHDhwYNSoUTNmzNi0adNDnPRxA9eYcZRoeXutytb49/d2/T6vNxJTTqMbeiEb83ATSqx8BgEA8ALZwnBu5Z+a4GFyV8OyX2ul8QKeH+uDQ+jyrnAzIwgZG/y3NzLlNHb1eS9tvrEyWxOQcS9CYNlvtXfUGGuw3zOt27MAAEa/KD1mQ4u/KfuxT0DXQHqtlfj2DjFZ4hh5u0qRKmltxZVEmiCA6VDet+WhI31mJotc5boic9HOKp8e4oCMVg1TpXECpoie/32FqdIaOEjWVCzNKlvhjiqOnJm0IMyN3kBAkSYVhHILfqrUFhhDRyponPv+VA23DMp9NeJYfvKiCIQFN2sr6yYSx/CLd6uuryuJGOvXUldwB17xR536ki74Obm8u9g1fn4Qmx/E9h/gVfpr7ZVPi0JfULj1/sRsuOp0fc2ZBkmsIHpyQNP+LbX22vONV1YXS+ME/v292DI3RreoFas9r639q5HGQbySBN7JCrYXg8CBRW3XF5sKfqyksRHfvlLvrsLWrDv0Jebac43aPBM/hCMM4/D8WQQGbA0O1cl6U6VV0oUvSxGJonitbSpjDlybb2zMM+qLzJgNpwtoMAI5jCiBEfwgtiiKJ+0iIOfibsEduLbQpLtjMpRZrGo7TIMBBHAnzpYx+UEcUSRXFMFr9n01g8AJc43dVG6x1NmdRtRpxmA6xBDSOXImL4DN82e37WiEO3Bzjc2ittu1TtxJAABgOsQU0dkyJteX1fbjC3l2u9Zp1zodBidmxwEACBNmCOhMMZ0pprexE3+vB8KN5G38Lg7Hne22/ecMy/wqLDijWeGJEyeUSqXVatVoNK2FQDGbzTiOO53OgIAAMmSKJ5D5CAEAlZWVcXFxYrG4tZqzZs3i8Xhbt259//33mUzm+++/P2vWLNdRi8Vis9lcYY8EAkHTZLdPCO6fBPfu3atWq6OioqKiopqlpPfEarRXr15Xr17NyclZt25ds0Nr165NSkravXs3QRBkLLtFixYBAPR6/Xvvvffyyy8/7AfpCOpymy9v6ovNdp3TO+Xe3OXtC9gHKciYUPhZPzh+r3N0CJzsBQEAQkf4XP28WBTFFUXwAAB1l3W6YnPX/ws/X0eozGB0qJv/8MggeF8psSgXXzc58MYXSgCA/wAvAiPKflOX3TZ/ERlwIqX9B/mB4+VFv0MBZ0pvhEkEEuY+mpX4Sxc0wkfWTdRuW3EMP25m8J2tlbXntV5JQggCjXlGs8oWPtpPHM1ruy3Pn500P6xop+rq6mJFHynPj4VasPprhsZ8Y/BwufyZVv9UAACuLytpQVj5b+rLK4sUqRJxDI/GQbQFprpcHebAIyf4C8NaNRijc5GYqYF1l3R535RLuvB9+3pxfJgAANSKaa7qq7I1wjBu8qJwOs/NpaPzaJHj/PXF5pK91TVnGvwHegvDueT90apx1OVqa89rxdG8xHlhTR1dSDg+zNCRisBBsuozDTc3lnJ8Wd5JQn4QhyGkoVbMXGVruGVovG2UdOFHTw5oungLAGAIaKIIbtBgeWO+sfp0Q9mhWnl3sTRBwPVlQTAECGBR2xvzjXUXtQAARW9J2Iu+LfVGq9bbSrCKo5qinSpJvEAUyeP5smhchEAJu85pLLfoCs26YhM/iCONFwRmyJoKntOEGkot2gLTjRNKhIVIYniCEC5bzmQIaLiTsNXbjZVWXaHZWGrhBbLFMTxZNzFXwSSNm3AnbqmxG8otdZd0xbuq2TIGP4jDC2BzZEwaFyGvvK3eYa61G5RmU6WVKabzgzgcHyY/iEPnIriTsGudllpb3SWdVW3n+LL4AWyOgsUU0uhcGo4RTjNqa3BYqu2mKqutwcGWMzk+TJaEQeOQZycMSkvtuUaL2s4Q0rm+LK4Pkylh0Hk0CAaAAA4Tatc6rWq7pdZmqXPQeQhLymAIaAgTAQBgdsxhQG0NDqcJY3sz2N5MtjeDIaLTuQiNhaB2HHfgDgNq1zmsGoet3lF8thrjNU89OPu1gjZ+zI+bt956i8yjVF5eHhER0SzaNcmbb76pVCq7d+8uk8lef/31uXPnug798ccf48ePBwDExcU1218UCAS7d+8mX8+fP3/OnDlkAE6n857qO51OBEEgCJoyZcqUKVOcTueOHTumTZvWp08flypzuVw2m20wGMi3er3ew6jfLSEw4tySPBadHfW6Lzfq8VuNAgDi4+MfulNybTMnJ6flof37969atQoAAEHQuHHjvv32W1II58yZs2DBgitXrjgcjoc+72MFjRRU/FHnlSAk/96ANHU5VBs4SO56lszTEbe04NAgGAAgZYIVyciSXOzPITQAAJ1Pi5oUUPBjpW9fKWbF6i7r4maGIEx43S1sTpfmLmsuvkhFUg6ge33gUbNDi3apLiwvIAgCChe8FuB/aBCD4Zn1R8QQmSKeH3BOa1dbuL5sxfwwptjTnTCuL6vrovD6awZ9sQkAII0TRL8S4KGbP51Hi30tSFdoUufq6nJ1CAsWRfJSRvp4Eo4cYcChLygUaZKavxpL9lSjNlwQzAkeJhdF8DxZiJN1E0m68KtPN9z+pgx34AgTcVpQcSQvZkogL7Cd5UdhOLfrovC6S7qyQ2pbg4PGQTA7DsHAu6swcU5oGxMmAACNjQRmyvwHeDfeMjTcNFSdqHcaUYQJc31ZoiheyAgftwJ8FwhIYvmSWL5Fba+7qC3crrLV22lsBLViDCFdHMULH+3Xhi8NjQMrUoWKVImtwdFwy1CXqy2rtaMWDEIgppDG9Wd7JQkjxvm5vfh0Hk0aL5DGC8BLviaVVXfHpL6otTU4HAYUpkFMKYPnx5J3F0dN8m8Z+Q+mw7xANi+Q7dtHSmCEsdxirLRqC0zVpxvItVOECbO9GGw507+/Fz+E00bsQMyBmyqtpiqrqcLSoEedJhRCIDoXYUkY/GC2oo+Eq2C1NlcmcMKitluqbRa1XXvHhJpRAgcAADqfxhTRhZFc375SjvyueLcEd+AWjcOqttsaHGaVDbVgqA2jMWGYAdP5NLY3UxLDZ3kx8/x9S7Nvtzb+ziUwMJDBYJSUlLBYLFeeW41GAwAQCASbN2/etGnTiRMnxo8fn5yc3KdPH7JCZmZmTU0NAMCVodAtUVFR2dnZUqmUw+GUl5e7YmqXlpYOGTLEVY1Op7/yyivvvvtuQUFB0+lpZGTkjRs3yJKbN29GRUU93GeEEKjXyljSfeLhemgN939L14PAI0elUrm2AAMDA8m0Vb///ntlZeUrr7xy5cqVtps7nc6cnJxmYjlkyJCm8cHvVbagmkLdI/EjRHACEzK9k+kFP1fGTA0g/42Vf6hPoNoAACAASURBVGoQBiRN5ON/56feWohPCAMIuFswORx8ch2cq8VIpzd+CLvLG0Hqc1qYDifMDWEI6ZVG7KgK/6o3greS4ZpPA3sHQJl/YJze8PBXA5xm7LaBGH4K3tALihYQOO7pzgTHlxk66t7MvrXTtYY0iS9tYn3adnMcx5tWEIRzBOGcZhU8PC9TSg8eIW9aghO4h9sxMBPyz/Dyz/ByGFAcxRkCOrns5uHZvbsJvbsJUTOG2jCYDrt20TxqDgNJAl+S4M5e14PmLG964FBZ4FAZjhKoBaNxENeCYRvNXZedIaYp+kgUfdzv/rY7AI4vk+PL9O3vPgREO80hwAtm84LbetRooweIBvghbH5Iq80JQBCt/+bZcgZbzmg7J0CrZ6cBjoLBUbTnp/Lk7YaSGep1Ot327dtZLFZycvL169f37NkzZcqUhoaGjRs3CgSCEydOBAcHh4SEJCUlcTicppoHQVAzQw0XZIZ6DMNKSko2bNgwZMgQCILGjh27fPny7777zsvLa8eOHcXFxUOHDt2wYUNoaGhqaiqbzd65c6dGo+nWrVvTrl599dXVq1dnZGQ0NjZu2bJl+/btAICysrKGhga9Xl9VVXX58uWQkBCXV0Yb4E3w8BK1rfEk7oUwMzOzsbGxZblYLA4ODh41atTgwYM9HERTCIJwOBxkRmMAAJ1Ot9lsBoNh/vz5v/32myeK5XQ6L168WF1d3bQwJSWFyXSzJWPRWxuvWB+JEDoRCKPhsgGC0p11N78qlaeJTEqb/o454jVfm/2eNeneUtoPvTGb7d5/dXYU/OkN+Oc0lHwLC4FisAgAgAPMZsP+exseHQQxMKet9bhNERywpy80IYe2KQ/n0aFTtWDtM84hcsLWqhFrJ+NKWv2kwACAARyoHaAP3hYBgAtwgNtsD9H4UcAADhT1ZORP3GX/X6TpquCTQExMzPbt20kJjIqKOnXqlFQqnTlzZm5ublhYWFhY2BtvvJGbm1tWVjZv3ryGhgYulzt79uzevXu32zOfzw8JCRk9ejQAQCaTTZs2bfbs2QCAdevWLVu2bMCAAUajMS4u7siRI3K53MfHZ82aNTNmzMBxPCoq6sCBA82y9b755ptlZWVdu3ZlMBhLly4lDXl++OGHQ4cOAQBOnTp16tSpDz/80BNZsdlsMAzbbDbPnRpYLFb7Wki447XXXhOLxUwmMy0t7YUXXujRoweCIP7+/sOGDSPTJy5btsxtw6Zs3bo1JSWlWaG/v//x48fJ11lZWYmJiWvXro2Pj1+8ePHixYtTUlKSkpLWrFnTWp+jRo3Kyspq99QkJpMJx3EPK7eN1947H97UEQSBY7jqVP3Nr0qLs1QOg7NpnUId7r/d2ex8JifhvdVRYnAzDBtKKH525Gs9GqHJSewqwX4qwuqsD/0hOgiDwdDZQ3gaoS57B/DTTz9NnDixs0fx9MLhcMi7uslkerQ9u58RBgcHR0REHDhwQKG4G6arqKhoyJAhY8eO3b9//9tvv/3JJ5/MnDmzWfZFT+jdu/fx48f79+8PADhx4kRqamrPnj3t9rueCUwmE8MwgcCjdA0dDDnLg2DIt6/Ut6+bBZg/VESmX/PpJ5cGpkfDa2/iX6Q2f37ZqcQTJFB0e4FOXP24Nah5hFgwnIM8zCnsOJGntzpwIk7I5nqePOJvyi2OIqONg8DJYg7rAQegtjmv66zVNmcIl5Es5vBpD+z5Wmtz4gTwYtIYHhgNUlBQ/E/iRggdDseqVasOHz7sUkEAQERExHvvvffhhx9OmDDhk08+2bRp07lz51qzxC0uLv72229v376tUqmWLFkSFRU1ceJEBoNx+fLl+fPnZ2ZmymQyq9W6bdu28+fPx8TEuPw0q6urHQ7Hq6+++jg+6j8BAqDdranj1cTLIW5uprO7IF32OJd1RWRN9j4IAFbfwD/ved+NW2V1Hq8zJAg5iaIHS/1RZ0dX5tdmqw0iBjIxSPpqiBTxeEG41uZ8/3bNrkqtBcOFdGRsgPg/sQpvpkeOZY0O9IO8mh/LGvzZDAYMFZnsw32Fi4KFiZ4liN1Tpf04v7bG6owVsEwoXmC0jQ4Q/ydGEcxtP6TYZa3lk/zaE3XGZDHHl03fYrLfNljHBEjejVX4sdtfISw02r4o0mRVaTGCoEOQCcVTvbjTQ71e8BN7IoiVFseeKm1OvanS4qRBIJzHSpfxhvuKPLxuhUbbUbXxtt5a70AhAEK4zBQxJ9NHIKR7JORqmzNbbbyqs6htTgYMB3EZKWJOChvyPC1vvR29Y7TV21ECAC8mLZLPknk2cgAAAUCJyV5qtuscGABAxqJF8lkK1gOvytow3IoRbAR60KcfCopHjvvIMkajUSRqbl4vEolKS0sBAEwmMyAgwGw2t9opjSYWi9PS0tLS0gAAPB4PQZCPP/7Y19fXx8fnjz/+2LZtG41GO3PmTDN3++HDhzeL8f1vgQDgTC2+MdXN7cCHDcaFwZ/dwD7rce82t7cUZ9NApt+9m+6+Kt3rl8sHyPj/uVk9wle4oWugh1OU6zrrsDPFLweIf+weXGdHVxXUbitv2Jsa5slNOVttmHShbHKw9MagWD82vdRs31BUF/9H3sbkgFH+bXk4AACO1xknXygb7iu8NaiLL5sOANA7sU0lmoHnKhZGOxZFydsQ40qL47VL5XU29ON438GKu6Eh6+3oxmLNM9n5syNkS6J9WpuiaR3Yu7dUB1S6d2IUP3QP5v09B1XbnBuK6pL+zJsXKVsY5cNspbnGji6/Vb2vSjszzPv8wGhSdPVO7EitYfUd9fJb1asS/If5thpd/YzG9Omd2nP15pcCxKMDJMEcBkoQ+QbbH7WGhder+sv400O9M+UCtyevt6Nbyxt+LGuot6ODfITJYo6MScMIotTs+LGsYfql8nQZf0qwdKhCSHfX3ozie6q0P5U1XNNZ02W8HhJuoohtx4hSs33NHXVuo7m3F++lAPGIVvTYiGLH1Mbfa/Qn6oz1DjSKz5Ix6RAENHa0wGBjI1Bfb35/Gb+/jB/Oc7PjXmSy/1lr+LPWcFpjFNKRSD5LxEAAALU2Z77BxoLhPt68vt68NC9etIBFa/HVG1HscqPlYqP5qs56XWepsDicOMGlwRYU59GQSD4zXsjuKuYkiThdhKxmM3srhucbbDf11pt66y29VWmyq6xOC4YDAAR0xJ9Nj+CzYgWseCE7ms+K4LN49y9LqKzOIqOtwGi7Y7SVmOxVVqfWgeqdGAJBIjoiY9GDOIxQLjOCzwznMYO4DDmT7rr+NgxX29EKs0Nptpea7SeU9d7YgxmaUTxCMIIYnlOCsNifxnh1faRBt91kn3A4HF5eXpMnT/7iiy9chTiOjxw5sri4OC8vjyAIkUi0c+fOpoazHUNnZZ+Q7SucEyF/N77V++NtLTHyKFY02r321FhAwj7nuRG0cAEEALBhIGEfujEVyfhbCK9oLUNOF/3RLyJJxDGi2PM5JfFC9vquAe0OTGm2px27syE54KW/dYsA4N2bqn1VuuP9I9t+Tt9VqZ17tXJ3r9C+3vc5BV5qtIw+p3w5QPxxvG9rYrb6jnptoXprj5ABsubzkHyN9s3bGpwgfuoREsRxM7fbUdE472rlvEj529FuxLLK6ph1ubLYZNuYHJh+f+cEAFvLGpbcUL3oL/ow3k/kbv5UbnHMv1p5S2/9OMFvlP99yYosGL6xWPNZQe2EIMmyWIWE4ebL+q1Gv/i6SspE3o1VPCu/F2PbgRMHq3VrC+s0NueiaJ9JQZKW8xgjiu2s0G5WamqszlH+4nQZP4LH5NDgOht6WWv5vUb/V73peT/R1BBpHy9+S6UzotjeKt33pfX5BttIP9GzckGCiM1B4EYHel1n/aPWcKRWn+bFmxLsNdRX2FLma3T600Z8X5X2z1pDGI/ZU8oN57E4NNiC4kqz/VKj+Zbe1lPKHaIQZMoFsUJ2s/alZvspjem42niizogRRFcxJ4TL4NEQB04Um2xXtBYYgjLkgkwfQX8Zv+X0UWm2n9aYTtUZzzWYKyyOCD4zjMukwRAAQOvAik22ejuaKOJ0l3C7itmJQk4Ij+FSO1KJb+itV7WW63pLvsHGRWBvJp2FQE6C0NjQRgcaJWDFCdiJInackB3OY/pzGOQyvs6JVVkcd4w2UinzDbZik50GQVImAgPIguFaBypm0CL4zGg+K5LPiuAxAzgMCYMmpCMYQTQ6UI0dLTM7ik32IpOt1OwoN9vr7CgNglgIZMMIAgAZkxbIYYRwmSFcRvWfB0xXzu7Ytq3lL4eiA+BwubtvlTDZ7AQOLBd4vgLSPu7TMK1atWrJkiVpaWnDhw+XSqU1NTVZWVk3b97csWPHmDFjsrOzBw0aVFtb+9B+kQ/NAwlhfenlom3jHsl5F/gvHh4S8066G2dVks0F+Fk18UM/BADwUX7Nt8r6531Fnyf5u27062/hO5T48edoHBp44y9Mawc7B9y9EWAEkXI0f1GUz4Sgu9bDeifWPbvggzjf0QFtTcusGN7rWMH0UO9Z4c2/iI/za38ubzjZP6q1eeGOisaF16v+6BsRJ3SzDNvgQMecU9IhaGuPEK/7ezCi2IxLFcUm2/7eYf5sNzpnNBq5PP7nhepPC2qXxvi8EebN/lsz8g3/n73zDIjq6Pr4bO+Vhd2l9w5SBAW7Yu9Yg70mJhpj1xQTW2ISNfauMTH2EnuMXSwIKKD03hd22d77fT/cZIOwICYKvo/392mZe2d2dnaZc2fmnPPXL39RU642Hu3iGclqTV7qfI186fMaHyphuqdDJItstFqv1SkPl4sdCdidUe7RrdYFANwUKj/PrpUbLePcWMF0ksFqTZNofq+V93GirQl1DqS1JupjgaDfKqU/FQmVJmtXBwoNixboTY/E6kgmeZ6vY2Ib9k4LVPrfa+QPxeoKjUFvgdgETCcGOYFLG+bMpLbhDLVCYzxfK3vYoM5V6jVmiwMBG0wn9XWijXZhclpe5dtkmIxWKE2qeSrVlmsMeouViEF7UQiRLFIMm9LGM+BKrTFLpq3WGTVmKx6N8qIQIpjktuxXw+gt1nylvkxjgCMd6DgMvNJqvkxsiXq9SWwwG6wQFoVyJGB5RLsr5BZRmiwSoxkCgIRBs/HYlvYGWkFrsRosEBGDIr08YogMU8fy9mSYWhTmPXjw4I8//lhUVAQAQKPR4eHha9asGTFiBABAr9fr9frme6ftQEetCDsdPT/BjdeKIZyRbOnqhPowEH2iSrohr/63rp7Ln9dGssjfh7vAN0AAzHlgeSSEuCSgM4ObQ7D0v1drh8rFv1VK7/b2b9zgM5l26IOSjP5Bzi2feH2SUSUzWo53tZ8Gb3WO4JJAfquXf/PZ81ildNnzmhu97FtBGDMEfZUtOFop+S7cZYIbG49GWSFwrka2/EXNQB5ja4RrS0c7thm5SKVf8aL2kVjdy5HGwmNylfoytWGRv9Nn/ty2eKYYrdCZatnZGlmBUo9Fo7pzqLO9Oa80gY1Jl2quCBQlagMRgw5lEEe7sNo+mwMA8pT6DJlWa7E64DHdOFTe6x+DtSe2YUd4e7xrhnDevHklJSUAAAqFEhUVtWDBglYSob0Wz58/X7p0KQAAhULx+fzx48cPHTpUKpVOmDDh7Nmztrjtb7/9ls/nT58+fffu3SdOnBCJRDweb/DgwatWrWrcGgRBGzduPH78OIFAWLRo0aRJk4RCYZPc3PPnzx85cmTrvWpvPUIAwOzZs2fPnq3X6+vr652dnRsHXRKJRCKxzUKZ7wdPRNCiULTJCq16UXsizjuCST4R5xV6PW+SOzucSQIAoAA42ANzvw6SGaEhbv8kuDBZoQ159b918WzSYDSL/JEP56NnlZe6+9p9x2t1imt1iqwBwS11aW2oMwRAz7uFl7r72k59IAB+KKjfVdJwq7d/ML21LxGLQn0X7jLKhbkqu3ZhZrUnhVCmNoQySAc6eyRw2+TW608j/t7Np0ZnfNCgVpmtE93Z8Q6UtntG4NGoSR5s2yr5XxDDpsSw//1/SzCd2PoQISB0LKmpqQMGDEhISDAajT/99FN6evrly5ffSMtSqTQ9Pf3s2bMAgPLy8okTJ168eDE4OPjWrVuN85nk5ORotdqDBw9u2bLll19+8fb2rqioaJ5T7MiRI4cPH/79998lEsno0aN9fHwiIiJWrFgBXxWJRJMnT258Etf+2DeEEATt37//xIkTZWVlarW68SW7gfb/86BQoGU5QiA3AoEGCmGhLtbKPSj4OAcKAMABj/0imPdlTm1jS9aLj2qSneJUtcyLgo/n2End+XkQP/ZW/q8VkqmeTaM1RAbznKeVJ7p6t+5nuC7U2Y2Mj79d8JGP4wAeXaAz7SgWWQF43C/A7q5mc7o4UO709m8wmKu1Rjcyvo1ekY1xJeE/cP/3xgwBAaEVQkJCEhISAABEIhGWYTp27Ji/v39MTAwAIC8v78GDB3Pnzt27d++dO3esVmtISMjatWvb0jIej4dbBgBcunQpNTU1ONj+Y/fdu3cnTpwIu0Y6Ozs3z3e6Z8+eVatWwQIUM2fO3Ldv388//2xrfPPmzfHx8YGB/1ZL+k1gf15bt27dN998M2LECCaT6erqGhQUdPv2bYlEMmfOnHbu339BZNCdqsp9I1ujDRh8taHFJKjpDVAUB4VBgaOVkhle/0g6zPF23Jhf/0KuC285HGJzofC7v7dPm4BHo36N9ep/vyiOQ/Vr5MhngaDJT8pnenGaOLnYZa43J4FL21EsWvGiloPHfujj+IE7q+3BFTCOBOy/MIEICAhvGzjFmlQq3bVrF+y9eOHChYEDB8KGsLi4GN6Q/PXXX3/88Uc0Gp2amgq1TYYJTrFmNpvz8vLS09O/+OKLlu4MDQ3dv39/WFhYnz59uFxu8xtyc3Nton7R0dFbtmxpfPXw4cPwNmwHYn9227Vr16pVqzZs2DBjxgwXF5f169cbDIakpCSRSNTO/fsvWCCr3GxfRPB1kWDw1foWDWGqCIp1RGnM1rsi1c+xnrZyAhr1qZ/TliLhkUaFjbkrUhmt1oG8Fncaw5mkdWEuIx6UJPf9y+3FCoF5z6rQKPBNCL+lWk3wphB+ini1AyoCAsK/wP1KtqnNWX//Cz/Heg5qNlfs2LHj+PHjBoNBJpO1pLhbVVXl5ubWqVMnGo1mV57CLkqlEk6xVldXFx8fHxwc3FKq66VLl5pMpi+//LK0tDQsLGzdunWNT/u0Wq1Wq7UdKzKZTDgVOExKSkpVVVUb3T7eHnYMoUwmE4lE8BCg0WidTgcAIBAIP/zwg7+//5YtW5ycnNq7m/8KPpHyXWj3N7Ii3Jt/XW1usZ20BmiaH+q2SBnDpjTx6Z/j7eh7LadOb7IbybC1SLTQn9t6/+Z6c+p0pq63Cr7v5OKAx24qFGrM1ss9fF53VYeAgPA2SEsIbA8zCIDdgJ+1a9fCMkwZGRndunUrLS1tfs/cuXOnTZvm7OzcvXv3OXPmJCYm2i49ePAAVmXy9/c/efJk41osFgtWk7VarTNmzPj0009/+OEHAEDjUG+LxQKn7f7666+//vrrurq6AwcOjBs3Ljc318/PD76HRCIRCARb3LlKpWrs0XP48OEJEyZ0uJ+XnZGF85PCKU25XC4cRA8A4PF4Vqu1urr6/4shfIOgAFC2nG43vcG6qxt2Y6Gy+fMaC49JcmfvKm5YH9Y0HV2RSv9Eoj4Z92rp469D+J3Z5J3FIpXZOtqF+amf0+u5kyMgILw13hF34qioKCwWm52djcfjbf4sCoUCAACnMZHJZBcuXJg5c6aHh0d0dLSt1qlTpwAAdnULYNBodLdu3bZv387hcAgEgkAgsInU1tTU9OvXz3Ynn89fvXr1wYMHMzMzbYYQhUJ5enoWFhbCZ4SFhYW2lNwajeb06dN//PHHmx2Kf4EdFz4Gg+Hk5AQHTkRERPz5559lZWUAgL1796JQKDe393GTDQWA1gSZ7OWUqFRDKBRwo6BuC1V23Sk/83faX9agNjetvLlQOM/XkdQ2L8qhfMYfPf0e9g1YEsBFrKANrcWcLq0/U5WXLq3XmF9bGcACQflKaYZMJDbo3kb3EBDeNlqtFt7D2759u9VqDQ8PDwwMvHnzJpyZ+sCBAwCAFy9eaLVaFouVlJTE5XLlcrmtOoVC8fPz8/Pzs6nj2YAgSCaTyWSy/Pz8X375pUuXLmg0esiQIT/++CNsaG/fvp2VldW/f/8TJ05kZ2fDte7cuSMUCmGbZ2PKlCk7duwwGo0SieTIkSPwEhYAcPr0aT6fHxcX9/bGp43YPyMcNWrUlStXEhMTExMT16xZ4+fnx2AwZDLZzJkz38PlIAwVhypWQsHNcmSnNUBdHNF1epPYYA6zF5bnQyX049J3l4iWB/6jCFipNZ6vlRcMDnm7nW4zRqulUl7PoznQcK8XMCA36g5m3bgrLNdarKF01uzw/t6EFvPvNEFk0H6fful3YXW5FYMDUDgWPdM3cnZIDzz61Sk3K7WKDWmXTzXUuxgVjkalEM+ox9M/4Lp+HTucR3x1yES2XLTx2fUL0gZHq45kNddiKK443If+0bMDulKwr37Af9RQ82vh44diQa3ZCkGQJx7X29F1nH9sN47rKx9SlCbjpdrCK2VZL5SyerMJhUJ54vCdHXgjvCL78zxf+dk1ZtMlQfG1sqxn8gaRxYIBwBmPj2HxenP9R5CCqG3ofL5S+khckyuulOo1RouFQ6QGcdwi2fzOLC7uVWo1arPpobg2XVRZKKsVGvRENJqDJwc6uHZxcotl88mYV3tUGa2WHIWkWqcSG3Ryk4GJI/CJFH8ay5vCQLdht1+o1xapZQ0GrcxogADkgCfxiRQ/GssB36bfbYNBV6tTiw06ldmIR6PJGByXSPYg09vypQMALBAEtVEPs12g0+mrVq1atWoVmUwOCgq6cuUKn8+fN2/esGHD+Hw+m80eN25cRkbGzZs3+/fvz+Fw5HL5mDFjYM2D1sHhcBaLxcfHBwDA5/P79eu3bt06AMDu3bs//vhjJycnIpFIp9OPHz/u5eV17dq1xMREoVBIJpOJROLevXub+JcuXrw4MzOTy+VCEDRz5kzbCeL58+c/+uijtp9eQQCUa5QkyMS0ot5kFGErAfU2ZDLZqVOnysrKoqKixo8f3xaRw7dHRwXUs09fD0Gh5kf3n9BMAmJJqsWRiPJiK05WSX/v5mO3er5S3/tuYd7gEIe/d/knPSn3pRLWhL62fEdL1IlKrxbcx2PwQ0P7OTDa6kcDAKhR1C+599sVg5Vh0SvQhFgc9H3s8FjXNlnoA1nXPy96HmOSDHHg0bDYNKnwjJXclUzZmzDDmfwKc7gr6+bqooz+RuFcr9Ao50C92XSjJG1fQ0Mt2XFH5wHDPTu1VNEMWTdmXN9SmpNoEHwW0s3fryee5mRQ1OUX3t1SkHqZ6LrEO2xF1MCW5nShXrvs8dk/GgRTjII5AV3cPaIxWKJaWnm78ME+iTSP4vJ1SNycwK5YlJ3qFgg6Ufb82+z7er1ihEHY18nVn+1itkKFkurb4to/CXxApM3xjpgeENvcGFshKLmhak/2/etSUaRW0BttjmbzPBkOVqu1SF6fIhXdw7EqCQ4TnL3mBveIYDZNFQQB8FBceyA3+aJIEKar6wN0cQ7OrjQHk8VYrpSkyoUP0IxcklMvBnucb/RAvk+TDkiN+nuiqsvlmddFtRiLsZO62heY2VgsDo2SmIxlVnQRmV+JpcVQqf1dA3vxfSOYjjbbYLBaMmWiO4Lia1V5mVpNkFEaohP64fGOWIwBhRIbDSUmaz6FX4RlhJHIPXle0VyvELpDAI0NfwVig65YLc9RiFJqi9Jl9SUGo6tV52xU0I0qmlmvxhAkRFYVnilD44KJpAgWN4Lr7UVl8olUOg6vMBkkBn2FRp7TUJklFWRrNZDV4mHWsIwqqkWHgiAlntKAo1djyHg0OoRMDWVxAxzc3Mh0KhYPAIAAJDJoK5SSAklNnlJaYtCjICvPqmeatWTIbAZoHRonw5JqUQQaGu1DJPrSWF4MJz7VgUMgwV+3xKAVqqSlClGZRl5h0DfcfTpCbD5/4lTrv+13AbVaTaFQGs9+CoWCRqO9kQncarUaDAYS6aXnfoPBYLVamxQ2RqfTYTCYlnSA2wKBRHLcvwpFwJ/o1Kd7QJd/3U5zXjKEe/bsUSqVrVewRUF2CB1oCLsT0cH8fhtjmj6wx18yfxuDOVdX40HBLw2w4zoMsyirul5vPt7VCwXAxVr5oqya7IHBTUSLTBpJTfF9FtuT6R71Or2DNl7fvlGujcGhjJA12wxWcdjLEj5si5z2rcKHH2QmjyOivuo2ke/opVIKdz4+uUmhmeng9H2/Wa08oRuslunX96bKxYcDwnpH/3P2LhWXrby5/3cMa0dY/MSgHnbrivWayTcPVSlF+3yDe3T5oHE/LUbNiTt7Vsl0MSyn3b0n8YhN40NSRBWzHp5jaoTbAiNjYiY2+YyQ1ZKWdmxpUXYdhfdD9IBEz7DGV7UW89YXdzaXZA3XVq+NHekelNCkcbNecf3+/m9EEjmFu7pT7wle4YS/12dyk+FIUdrWwnSWpmE+FT2h6wdUfmiT6pr6vD+fnv+lof4e1TOUROrL9wt0dKNgcCKd+omg4E+xgGpQjjY1TA/o4hs+AktqmphJL63MzLr4S2XuFbIHAU/u7+QazvVxJFLqtYpndSU3JfVkg3KEoX6aX3Rg+HA8rekvTSooElU+/L0045YF95TswsRgvElkJo6oMOnL9Tqx2RymF3W3KIc4e0X6dqe5RaFx/0xYkNWsERYIytNuV+Ukq9XZVJcyDJWKRpNRKDOAJBarp0XTSVPTl0br7xXF84ojcbwajzwEWXSiEmFlWnJVdopCWoKhlZEcq9BE2KeCAaxuFo2HThSOMsewnKL4fixeSc/rLQAAIABJREFUMJHlhiUx0VgCZDUblUKdpLS+Lv+psDxbKS22oOqJbAmWqkVjaJCZatFzdRJvlCmUyojiuHny/IlsTzzNCY0jwz8Yo7JeL60oqy96LhXka5RVFiDGM/RYAgqFgaxmpkntZNJ4E3BBVGaIgxvPwYPAcMaR2QCNAQBYzXqTRmKQ15SLK4vlwjKNssZkaoAwKhwZAIBCAYZB7YABrjicF5nmw3BKTylNK1T8duw4QOgIKGRySfplEomIYfvTmj0s/hdeMoSenp6VlZWtV3jlCvKt0oGGcCQTXWXue3vIS5s/WjNw+s3UMBnX/W7+zih3OJTeLjqLtffdIj8aIZxB2lwovNzDN/blpCdlJQ+mplzKIPJIVtNSjGrFqNVobIvH141ZcWnjWZ3lSt8Pghy9AQDPa/PHPTwXh0P9PHolGtXaPtuF7Juzcp/u9w0c03l04/LKuoKxd4+TCeTfh3zMJtk59RRqFcOu7WEZVScHfchmNz1aUKlUj3IuzC0vj2Nxdved7kB4KSna+ZL0jzPuDDVLtg3+lMpytduxhrq8z28fPIvnznT2nNMpIZDmYIGgq9X5u3LuZqqUn+N1nwxYiKPYkYSEMWmlv93a8Z3aYiUyx7v4hnB9jGbT49q830WCCK3ga6+A7t1mojAtboUZFLXH7+7dpzQUkLkRJBITi680aIsMxu6a6jkcx+HdpxOY9rsNYzXp6gtuXyt69FghrQFYPZbAMGpC8NgEnmdc+DAKL6iVugAAAFkVlWn3c24+lAiKjRYVlsSw6Pzx2P48z9jQwVTnsJbq2VKsmbRSedmT3NqcMqVYYTbQsAQfukOwcxDLIwZPf/VWAWS1aIUFivpcgaxOa9Jj0Vh3tiuTF0jhh6LasGUNADBrZRpRoUFWDUFWAACGQCWxPYgOXhh8m3azIIvJoKg1aaRWsx6FweFILALTpbHZfkV1yGJSi816JWQ2YIh0LJGBJbV1r97WAYvprzgBDJ7a+FO/aynW3jfaKdeop6enSCQaNWrUtGnTbD4/TbA5/HQIHWUIOaevTHYi/lzZSzIF13gVd0cAffnUcnMImnfpuXhUROvpfTVm66ZCYZ3eNN/XsUmST4WkIv76of4eYT/Gjy1UNgy/9UsSUG4Yu+6Vq7rDyYe/qqtLHTzHlf7P2a1cq0i4vN0Piz6euAplb4sPAHA1587UnNQToZ0HhPZvftVo1Hx4edNtM+5U3PA495cm3+TKFx+kXh2F1m8fuRJjb3qCZ2SxqHTRrf1XsezpXJcxQT04JHqaoGBf/pNqnXILzzGx94eoVo00gKyZmb9vznlwC++kwODNABVokCQRUTOih/O8urY+JjB6acW1tNN/CKsrLBABWAPwuLGeoTGdJ2CJbcoPZ1I3FOVcT60vVltMPDy5m0cnXmC/Nk7lNqwWo9WkwxJfbyJujMWgwhDa5FmO5BptBxBD2LG0kyEUCARnzpw5dOhQdnZ2dHT0lClTpkyZwma/Q/mxOsoQupw+N8iR/VTW42APTIzjPw2uz7QqTdAQT+0XOYJHfQNs5QaFAE/jtvEJGgDw0cmV1VTXq8Pmw39WqWQxf+zb7sSe0HtuK7XyqzK7P75+JW5wnEdEk0tKvar3xa3BOPTR0XZs4c38+xOfP/4tKGJwp1aEtKADdw+sFEpGMGifRg/1ZbsUSWu3Pr36h1L5I9dhRp+5LRnpRjMy9Czr0s78x6kWjBaN9zSrRzBZH/aYQmE1XUS2gq6hRCIuw6ExbNeIVlaBCIghbAcQQ9ixtFPSbWdn54ULFy5cuPDZs2e//vrr2rVrV65cOXz48ClTpgwZMgSOLHw/IQBdgwnTm4+6LYAaG8Lkeuv8YPQTqabr3/ucEGS5d3bxGbmyM0o/ecLW5mc5zXmed/MUmpXXd6qtxJ3GOhozcHLqtW61Oa4uTc+iYMxmw5RHv3/K925uBQEAdCLtzvBP+1zePu7chmMjlxEa+YKezbr2YcHzwwFhrVpBAABqTp+5Q4VFax+eHHHrVzGGxLNohuDBi14Tnfmv2t/7u4XoiJE/R4z8LwsjkqOvq6P9tOMICAgIbwT77s7R0dHR0dHffffduXPnjhw5MmrUqDFjxpw+fbqdO/fuQAA6kRnzoSt60wvLyk5/LbC0ZpAqgs4loA+naSb9nVc6O+XXDyDnMVHDvqjMkV9Ys3jyTtDC5qSNtZm357iG8MkvbdkN8IocV/ps1v1j1yeuQ6HtfE3r/tyJwhK/6jWtpWaZZEbyyEWJV7Z1Pvf9j6HxA4L71shq1z8+fUFjPBUelxD8ahdqAIAz13/vmNVWi9GiV2FJzLavcRuDxuDRmH/vKoaAgGCX9evXV1dXAwBIJFJERERSUtJ/8clsTGFhoS0jKJfLTUxMjIiIUCqVy5Yt27Rpk23v4eDBg46OjiNHjrxy5QoswwTHWkyb9tK8VF5efuvWrRcvXgQHB8+bN6/xpTt37pw6dWrp0qUtHca1D63N0SgUCoPBYLFY0NE+Mh0OEWjqTZi+fFSGGJL+nb70Zq01xhFFw4FUiaarAwUAYDUbVhdlJLkH7oru/0ffSesJHjkZZ1tvubD4wW0ca2XXMc0vbe4zvRTH2HXDjjpJesH9HWrjb72TWg+9ohGpN8Z+MdfVZ0HOE8y5baG3jmvNpsyBU9toBW2gMXgcxeHfWUEEBIS3xPnz52GNiKCgoK1bt86ePftNtSwQCE6ePJmQkNCrVy8IguLj49PT07Va7f79+/V6ve22O3fuwGpNs2bNGjx48Lp16wYPHpyRkdG8nzdu3MjLy7tx40bjcoVC8dlnn/322291dXVvquf/DvsrQnhr9NixYxqNZvjw4RcuXIDzmr+3kIAm34QlYMBAV/S5cuucQDQA4EQpNMYLXa4xoFHAjYwHABTkXLtHcT8SPQgAEMF0mubi83XOw7ORiXaXdDBbMv8cz/RgE+zozRIx2BPdEwfdP9ct/1ZkI19/maIuKePuWp/wAEfPV/YcBcCC7pMXvP5HRkBAePeJjY0dN24cAMDHxycpKQkAcOHCBW9v7/DwcABAcXFxenp6UlLStWvXbt26BUFQSEhIG+0lgUCAWwYAZGRk3Lp1a8aMGXbvhDO3wUK7Xbt2/eCDD5rcsGTJEgDAxo0bU1NTm5QvWrRo+fLlr/WR3wYvrQgFAsG2bdvCw8M7d+786NGjr776qqam5vTp08OHD4fXhe8tGGCho60VWsMMf/TeAisEQJUaulVrTfJBP5Fo4hz+Cnf7pShtGJPFxP0V9vBVzLA7JOesrAstNSsTl52BKMu6jGjphhi+/9d+oYmZj8rK0+EStUo08uquGIbD/C6JLdVCQEB4T4BTrNXX1587dw6WXjp27FhaWhp8NS8vb9++fefPn1+6dGl0dHTXrl2zs7PbuL1nS7GWkZGRlZXVuXPnlu50d3e/evVqSkqK2Wxue8/v3LlTVlY2ffr0tld5e7xk3uLj44VC4ciRI7///vuAgAAAgEKhgNO22ujY8IkOxJ1gfiHXjXAlfPUM7MmzpoigOYFoBh6k/L0vajFqrxrRWxpFkbPxxGk8t815j3+LGmPXx3L/kzPRRLwfozWHmk+jhzfotN2f/Lko+yYdT9whkXrTOb8M/uSNf0AEBIR/wZXDMqu9LMRvnNj+VJ5H0/jXJUuWrFq1ymQykcnkluTps7Ky4uPjP/jgAzQaDYv3tgWJRAKnWFOr1YmJib1795ZIJHbvXLlypVAo7N+/PwRBffv2/eqrr2JjY1tvXKPRfPrppxcuXHgjXv3/nabrPL1ef+rUKTgfuV3e28NCL4IpU6Yd5cI82hsz7rbFlQJ2xmMBAA/F6l1R7gCAkpLkGgKzr8tLR77LY4YF11dVFiV7+Pdq0qDFoD6k1GyLGw1exbruE7pXvNiZc09vtHwW1ntWeMI78dtBQEAAoMtAavtMigwHO9tye/bsgXNYX716deDAgSUlJc3vmTp16vDhwz09PQcPHjxr1qzGVurp06cbNmwAAHh5eTXRy+VwOLAArVarnThx4tKlSz///HMAgLWR2Ydf0+n0Q4cO7d69OyMj49ChQ3369CkoKGhdnmHlypVTp0719X1XHMJfGtkVK1a8MsXae4svwZQq1QAAgpionDF/jZvMaClVGzqzyACAyyUZPUi0JjkqnUm0QQzWtoyrW5oZwt9TTkB46iCvyLa8+0DP8IGe4W/gYyAgILxRHF3eCRmmoUOHms3mp0+fYrFY2xYlrALo6+ubn5//4sWL8+fP9+vXLy0tLSjorwgoT0/PTz75BADQShAqmUwePnz4tm3bNm/ejMPhGhoabDL0QqGwR4+/9sAIBEJcXFzXrl3/+OOPlJSU1g3h/fv3s7OzbQk7e/Xq9e23365ateo/DcF/4CVD2MSxFcEGCgA/omFvjcYCQY0VcR+IVXEOFFgX6Z5SNigkunndL2JH9P3z8Oe1zzku/ySStlqMW2tKPgvti6ztEBAQ/jsXLlzQ6/UBAQFeXl6pqakfffSR2WyGtXZra2udnZ3Dw8PDwsLOnTtXWVlpM4QcDichoWnS3Sao1eoLFy4EBwdjsdgePXrs379/27ZtKBQqJycnNTV1x44dt27dioiI4HA4AIDCwkKJRPLKE7QXL17YXjs6Op47d65nz57/6fP/NzpSSuL/F3SM1YWEz5K/JFz3SKyJ51ABACaN5CmWMdDXznlyGIvXmcbY+uBY48IbKUdL8Q6zw1/xE0RAQEBohXnz5rHZbBqNtnz58l9++cXT0/Ojjz66e/duTExMZGSkp6cnAGDXrl1eXl4DBw4MDw/39vZuiwwTAEAsFrPZbDab7ezsjMPhtm7dCgDYu3fvo0ePfH19Y2Nje/fuvXnz5tDQ0EePHvn5+YWFhXXp0iUuLu6LL75o4llz/PhxNpu9du3aq1evstnsxYsXv4WR+E+8176gr0s/Lu2mUBnN+ifU4Z5I9X24CwAguzQFwuD9aPZzgH0XNybh5pFZeX96BQ8EABjVDavLi1eFJxCQyDwEBIR/y7179ywWCwCAQqHYQund3d2LioqKi4vd3NxIJJJer6fRaEuWLKmtrXVycrKJy7dOjx49YNcYNBrNYPyTE8rPz+/Zs2f19fVyudzb2xt+06+//nrVqlWVlZUWi8XDw6O5EtPYsWMbB+ARCC/JCRQXF1OpTXVm2hnEEL4Gg/mMDXl1K//W1xXqTcVqfTcOFQBwvzqvC6lFsYgINm+Ms9fH6dfPsFyJLNf1F9braZ4fh/dtp34jICD8L0Kn288gj8fjQ0L+khTF4XAAAAcHBweH10jVi8ViWSxWS1d5PF4Tg4rH41tJDYPH41tJecNkNpUka38QQ/ga9HGiJT0pq9ebeEQcAOCSQDGIx4APCFMVkm4+raki/BQ/pqdCNvrGQb5R+Scr+GHCNLvSrwgICAgI7QwyF7cJFApjsRgIaNRoF9ZvlVK48GCZeJIHGwBgtRgzrbheXq2p6ZIx2OTBs/vFTuTHTk4fMteP+g5peiAgICC8z7S4IqysrDxw4EBubq7BYLh27RoA4Pjx4ywW6/3MtUbB4RVqKQDgIx/OuMdl830dH4jVGrN1MI8BAGiozanBM6I4rem1AgDIGOzKoC7t0V0EBAQEhDZj3xCmpqYOGDAAj8e7u7sLhUK4sKamZu3ate+nIXQjUqrUcgBADJvS1YEyNa0iV6H7PIgPC/E+qsgMwEB4xPMFAQEB4f8h9g3hRx99FBsbe/78+WfPnsGpVAEAQ4cOXbFihVAotEVTvj940FgFgnr49cEYz2/z6wZw6fC+KADgSUNVLL216FEEBASEN86RI0fghQoej+/UqVPfvm/M/66qqurEiRPwazabPWzYMD6fr9Fodu7cuWDBAjL5L8/5S5cuMZnMnj17ZmVlnTx5UiKRcLnc3r17N49NTE5OPnHiBJFInDNnTnBwMABArVYfPHgwPz+fzWZPnz4dTurZUdg5I5RKpVlZWWvWrKHRaI0TwXl4eAAABAJB+/XuncGH6VxlMsGvqVj0t2Eus705tqsZOl28i38HdQ0BAeE9Zfv27ZmZmQAAsVg8Y8aMNxifV1paum7dOgCA1Wp98OBBQEBAfn6+SqVauXIlnK0G5uTJkzdu3Lh9+3avXr3odHpCQgKVSt23b1+T1u7duzdixIjw8HAHB4du3bpVVFQAAEaMGPHnn38OGDCAQCDExMSUl5e/qc7/C+ysCI1GIwCgeWAHHFbyfspQBPF9K5/jIMiCQjXd/zRppTlYenf3sA7pGAICwvvM0KFD4Vyj3bt3nzFjxpYtW1JSUng8npeXFwBAIBAUFRX17t37xYsX9+7dgyAoODi4f//+bWmZTCbbUqANGDDg8uXLU6dOtXvnr7/+OnfuXDgTqV02bdq0cuVKOHNZcXHxnj17Vq9efffu3fLyck9PzzFjxly/fv3u3btwnzsEOytCJycnJycnOJF54xXh8ePHqVRqxy5gOwp/BrcOS9NIKptfKql4asLgvaktxtwgICAgvFWsVuuTJ09gsYgtW7bcvn0bLk9PT//6669v3bo1bNgwtVptNBp37dr1usIJIpGotLS0laxpLBYrJSWltra2pRsePXpk27bt06fPo0ePyGRyYGBgcnIyAKC2traioiIiIuK1evVmsbO8Q6PRS5Ys+eqrr8xms6urq9VqffHixcmTJzdt2rRs2bJW4iL/hyFisFyUNbcmpwun6a/hYXVuxHs5JggICACAfddM7SPDNKgzxovXdOkyb968hQsX6vV6Op3+xx9/2K2YnJw8ZswYeMW2bNmyNr4dnGINAKBQKMaNGzdmzBib42QTVq1aNXnyZDc3Nz8/v4SEhKVLlzZe2+n1erlcDmciBQA4OjoKBAIUCnX27NkBAwasXLlSJpP9+OOPUVGthZ+9bezvcy5btkwqlW7YsMFkMgEAOnXqhEKhZs2a9c0337Rr794lgoiEDGFJ8+iHVKkwzr1NChIICAj/e0T7ottHmo5FtZOiH5Zhksvlx48fHzFiRH5+fvN7Ro0aNWDAgLS0tKFDh06aNAn29oDJzc09cOAAAMDFxaWJjYRlmCwWS3l5+YwZM9atWzd37lzwshIf/JrL5d68eVMgEDx48ODIkSMxMTH5+fmOjo7wPTgcDoPBwCduAACj0UgikXQ6XWJi4oIFC6ZPn15QUJCUlBQeHt6BebftG0IUCrVx48ZPP/307t27AoGAzWb37NmzlQw67wNRLH5mdWaTQshiemoGP3p25KIeAQGhA+ns3/FxU0wm8+OPP16xYkVKSgoajbZJBur1egBAVFRUVVXVnTt3zp07Fx4e/vz5czgZNwCATqeHhYUBAFpKwIbBYHx9fadMmbJjx46VK1diMBipVOrk5ARfFYvFXbv+lVHL2dl5woQJY8eOdXFxuX///tixY20tcLncmpqawMBAAEB1dbWLi0t6enpDQ8PKlSsBADweb9SoUSdPnnznDOGyZcuaCBOmpaUBAKhUqpeX19ChQzvwVLOjiHcPWVv2DLJaUI3iBcU1z4sJDvHcV2iOICAgILxV0tPTNRqNm5ubq6trbm4uXAjnQtFqtWQyediwYcOGDXv+/Hlubq7NELq5uc2aNav1lq1Wa3Jysru7Ox6Pj4qKOnfu3BdffAEAEAgEKSkpGzZsyMrKCg4Ohk/NGhoaVCpVkxC70aNHHz9+PCEhwWKxnDp1atKkSVwuV6VSVVdXu7m5QRCUm5vbr1+/Nz0kr4F9Q5icnJybm6vRaGg0mqOjY11dnU6nYzAYNBpNIBAsWbLk0KFDtvjC94R4nm8+kaOoy2W6/COQ+6A0LQCHomDfCWVOBASE943Vq1dv27ZNp9PV1tZ+//33gYGBs2bN6tmzZ21tbUNDA5zPetmyZS9evAgICKivr0ehUG1ceMlkMlhNqbq62tnZGQ4r3L17d2Ji4s2bNx0cHB49erRw4cLY2NgFCxacPn06OjqaTCbfv38/KSmpe/fujZtasWJFz549Bw4cKJPJMBjMtGnTKBTKxx9/HBsbm5CQkJ+fbzAYYH3gjgJl14Po5MmTX3755aFDh3r16gUAgCDo0qVLn3zyyfHjx4OCgmbPnn3nzp3q6ur2zxo+duzYiRMn2hbdraPRaMhkcmPH1/9I0LnNWxzIg3v/I1/82alVJqfAXX2mvam3+B9ApVK1onaN8JZAhr0dOHr06I0bN44ePdrRHfmL2tpag8EAAMBisXw+HxaaAACIRKKMjAwfHx8XFxe5XM7lcrOzs2tqahwdHWNiYtDoV6eY1ul0dXV18GsGg9F441Sr1WZnZysUiuDgYFdXV1tPCgoKzGZzYGBg4zPIxg0+ePCARCLFxcXZYvDKysoKCgo4HE50dDQG8+odZgqFIhKJyGSyVqulUCivvL/t2FkRWiyWzz777PDhw7AVBACgUKiRI0dWV1cvXbo0LS3tyJEjTk5ODx8+HDZs2BvsyrtPbw7vZm2mLcWc1axPNZiXeiGeMggICB2Ai4uL3XInJ6dBgwbBr+EsMBEREa8Vn0AikVqKlyCTyV26NPUadHFxaakztgYHDBjQpNDb2/uVWvbtg51HA5FIJBQK4ZCUxvj6+mZnZwMAWCyWh4cHHF//XjHMJybZgjVp/1KfqC99nENy6u8S2LG9QkBAQED4L9gxhAwGA4/HX7p0qUn5xYsXbc5CCoWiFdnG/1X68b2LiI4lOdfgPy/l3Iwkkug4JIgQAQEB4f8xdrZGyWTyzJkzP//884qKimHDhsHxj6dOnTp+/PjGjRsBAJmZmWKxuFOnTu3e2w6GiMH2Zzsey32wPibJoBCcV+smdI3p6E4hICAgIPwn7HuNbtu2DY/H79u3b/fu3XAJjUZbv3798uXLAQBsNvvOnTt2T0T/5/kotNd8cfVHj/YX1xc9pbif8UYiCBEQEBD+f2PfEOLx+G3btq1bt66wsLC+vt7V1TUgIMAmveHh4fF+WkEAQALXg8ly3Vb5PI/AnucXxcAROrpHCAgI7yk3b96Uy+UAABwOFxIS8gZznohEovv378OvGQxGjx49SCSSXq+/fPnyiBEjCIS/5r3U1FQKhRIaGioQCC5evCgWi52cnHr27BkUFNSkwaKiovPnzxOJxA8++MAWZSiRSM6cOSMSifz8/BITE23Ntj8tSkk8evTo1KlTZWVlsHuujZs3b779Xr0ZGnSSszlH3lRrYwNHeDLcUAAcix+ZlIpzJlJWhsS/qcYREBAQXpcVK1YwmUw/Pz+1Wj1z5syVK1fCm3b/ndzc3KlTp8JyE/n5+WVlZY8fP8bj8ePHjxeJRLb0adu2bfP29h49enS/fv0mTJjg4+OTlZV19OjRhw8fNm4tIyOjT58+H3/8cWlpaWRkZGZmJpfLzcvL69u3b+/evQMDA8+fP9+tWzd3d/c30vl/gX1DePTo0WnTpvn6+up0OjKZzGAwsrOziURiG/U73hEIGLw/2+eNxBGeLbjU0z3Ok+EGAPClMtP6Jf33NhEQEBD+IzNmzIBlmM6fP79gwYLly5eXlZXR6XQ4ybVcLhcKhXAofVpamtVqDQ4O9vdvk3gqjUazKQv26NHjzJkzkyZNsnsnnO90x44d8J/NY9N/+OGH+fPnb9iwAQCQmJi4b9++1atXf/jhh/Pnz//yyy//1ed+w9g3hF9//XVSUtKvv/46a9YsFxeX9evXV1dXjxkzpvmC912GjqcN9x34RgxhclXKf28EAQEB4S1RX18PL9RWrFgxcODA2bNnAwDu37+/ZcuWTZs2jRw5csSIETgcbu3atc+ePXutWdFgMMhkMpt8RHMwGExZWZlerycSieBl8T6YW7duLViwAH49ePDg33777ZNPPnn48OGRI0fOnDmDQqEGDBhAp9Nf9yO/QewYQo1GU1FRcfLkSTgBAZw13M3Nbd++fXFxcYsXL2YwGO3dTQQEBIR3EsOZq5C1PfQn8N07o114TQrhFGtqtVoul1+5csVuxcuXL0+ePPmHH354rbezpVgrKyvr37//pEmTxGKx3TuXLVsGxxfExcUlJCTMmTOncXCd0WiUSqW2c0EejycQCMrLy4lE4sSJE7t3715RUbF06dLU1NQmGUrbEzuGUKfTQRAE22cOh9PQ0ACXBwYGGgyG0tLSjhWOQkBAQHh3QNGpqHYxhABnZ7pesGDBqFGj1Gr1sWPHZs6cmZ6e3vyePn36JCYm1tTUDB06dPjw4Y3XXmVlZRcuXAAAODo6wlusNuh0+unTpyEIqqioWLhw4aFDh0aOHGm3X76+vnl5eampqQ8fPjx27Ni+ffuysrJsCf9QKBQKhbIJYlitVgwGY7Va9Xr98uXLx40bBwAYNmzY9u3b4b3TDsHOyDo4ONBotIqKisDAwICAgJMnTyqVSjqd/ueffwIAWlkgIyAgILxv4Af26sB3d3R0hLOUhYWF7dq16+HDhyjUPxmkYUHZPn36vHjx4vLly4cOHVq2bBnsqwLfYDabFQoFAIBEIjVpGYPBwC37+PjMnz9/z549U6dORaPRcrnc5iwjlUqjo6MBAGg0Oi4uLi4ubv78+a6urrdv3x41ahR8Dw6H43A49fX18NlkXV0dn893dnYGAERG/pWfMioqqqio6O2N0iuxk1kGhUIlJCScO3cOADBx4kSDwRAYGNirV68JEyb07du3Ax17EBAQEBDsUlFRodVq2Ww2l8stLy+HC2HvTQiC3NzcPv744zt37vB4PFhTD8bf33/NmjVr1qyZN2+e/XYBAADk5eWx2WwSiRQQEHDr1i24UKlUpqenR0ZG1tTU2O40m80Wi4VKpTauPmjQoIsXL8KvL168OHjwYFdX106dOmVlZcGFmZmZHat3a99Z5uDBg1qtFgBApVLv37+/Y8eOysrKJUuWwDqK/1/QKMpTLy55I02FqQQGJz/AR/aEERAQ3iF27tx5+fJltVr95Mnmhv9uAAAgAElEQVST+fPnR0ZGTp48edCgQXq9XiQSlZeXY7HYxYsXi0SioKAggUAgk8ni49sU96VUKsePHw9BUHl5uUAgOH/+PABg69atSUlJT548YbPZ165dGzJkSN++fSdNmpSbmxsXF0cika5duxYbG2sTbICBZZhUKpVYLC4pKTl27BgA4Ntvv50xY8aTJ08qKiry8/N//vnntzE+bcS+DFNycnKnTp2aOMUoFIr09PSEhIT26psdXkuGSakQm3W1b8Rr9NKFqV6x83tGzv7vTf3Pg+gBdQjIsLcD75oMU2pqqkqlAgDg8XhfX194vxEAkJeX9/DhQ19f37CwsMrKSm9v70ePHlVXV3M4nCFDhjRZrtlFJpM9e/YMfs1ms4ODg2GPUABAXV3dgwcPlEplaGgoLE9vsVhSU1MLCwthGabu3bs3n3Xr6uquXLlCIpFGjBhhO6QsKSm5ffs2h8MZPHiwLWFLK7SrDBMAYPz48efPn2/y4JCXl9e/f3+7hvPdBIMl0bjhb8QQmjGI9C4CAsK7RXM5JJjg4ODg4GD4NXyeN3z48NdqmcVitbTm4fP548ePb1yCwWDi4+NbX2jy+fw5c+Y0KfT19fX19X2tjr0lXq3QaMMWJoKAgICAgPA/w0srwqqqKth1x2g0Pn36FD4mhDGZTAcOHPDy8mrvDiIgICAgILxNXjKE586dW7x4Mfx64cKFTW6lUCiHDh1qp34hICAgICC0Cy8ZwqSkpJ49ewIABgwYsGnTpvDwcNslAoHg6enZllNWBAQEBASE/0f8Ywjr6ury8/Ph14sXL2axWHCgpQ2RSAQA6Nu3b3v2DwEBAQEB4a3yjyG8fv36zJkzX1nh/5HXKAICAgICwiv5xxAOHz68ccYBBAQEBASE94F/DCGHw2mSRxSCoJqampqaGj6f7+bmhsFg2r17CAgICAgIb5cWFeq3b9++fv16m/QEg8FYtGjRl19++f6aQ2RLuAWsECTUiPQWgxvNBYt+7Z+HVCerUFQTsQQ/ljfuNRMXSHWyEll5g07Cozj5sb3p+NdLrQIBSKCqR6FQDAKdgnt1YgsEhMLCwp07d3Z0L95TzGbzW2rZviHcunXrokWLevTosXr1aj6fLxaLL126tGbNGq1W+/3337+lriAAADQmLQlLQr9mNhwrBN2tfJBen0XCEvq4dw93Cml7XaPFeKHo2q3K5DqVkE/j9nbvNtp/KAnbpswJBovxTMGlC0XXUAAQsYQGraSvR48x3sPamOsrpfbpb7mnqxS13ixPnUlXrart4959Suh4PvXVsmSF0pJjuWczhdn+bB9HksNNzb1iWVkP165TwyY4U5tqtjWnXF55tvDy3cqHVDwVg0LLDQpvpscwnwEJnr3aYoyrlDV3Kx8+F+U2aCUoFMqFyuvEDe3h2tWFxn9lXQhA+eLip/WZ5fIqhUEJAOBRnPzZPl2co9vyweF3T6/LLJKWSvVyLArrSHYIcvALoPm2cditEFSpqKpU1qiMagAADU91ofE9Ge44dIuPxY3RmfXF0tI6tVCql6NQKA6J7UZz8WZ5trE6jMakVRiUKqOaiqNwyA4EDL7tdeHqGpMW7nwbf6tNsEJWNOo10onAjB8/vri4uKCgwFZiMplwOCTtVDsxZ86ctzTadnKNWq1WPp8/cuTI/fv3Ny5fs2bNd99919DQ0IEpDV8r16hGoyGTyW8kxdqhgzF+UR/2jHqLuUaFmoZ1jzaXyMpIONKn0XP6eHRvY0WlUfXV/e8skGWQdz+1SXOx6I9OTiGLYue1ZXKpVFR/9WCjB911bOAIT4ZblbLm96JrOQ0FK7t+GsULb71usaxszcMffZieM8KTPBluAAC5QXGh6Nq5giuTQ8eNCxzZijmX6eWb03ZXKmpmd5rcwy0OvhOufr7w6mj/oZNDxrZkkNRGzYHnRx9Up0wOGT/Yp59tHlQaVL8XXTtXeHmoT/9pYROILcyPEp3s4POjTwTPxgQMH+zdz4HEAgCYLKYM4YuzhZfhLiV49rLbeQhAqYJnJ/J+r1HWJnj2iuKF8yhOEABVypqndVnJ1SludJfhvgN6uXezO/h1auEfZbf/LLtDwhJjnaP82T4sIhOCoHqNMEdc+KT2qTOVN9C7Tz+PnlS8nTyKUp3sZsX962W31UZNV5fOwZwAByLLZDXXa0T54qI0QYYjhdPTLa6HW1dvpkfz6kKNKK0uM1XwLEuYwyQyPBnuTAIdAKAwKGtUAoFa6MfyjuKFR/HCgx388S/332Qx5UmK0usyn9ZlVSiqvJjubnRXFoEBAUislVQqa2tUAj+WdwQ3NMwxyIflxSGxG1e3QpBAXVcgKc6XFJVIy4tlZVbIyiDQGQS6yqgW66RMAt2L6eHH8vJj+3gw3FyoPFsHzFaLSNtQoaguk1eWysorFFU1qjosGkPBUVAAKI1qNArlQuV7Mty9WR4edDcXGp9DYsMDaIWscr1CqG2oUQkqFTXVylqBur5BK5HrFSgUsEIQDo1lEpk8iqMzje9K4ztTeVyKE4vIYBDocHWlQSU3KOo1onq1SKCuF2nFEp1MbdTozXoAAA6Do2DJTCKdTWI5kNhMAoNNYtLwVCqOYpt2tCat2qRVGJRyvUKuV6iMaq1ZpzH+lauEiqcQMAQGkc4k0FlEJpNAJ+PIZBzp789u1vxVV6kwKOUGhdKgMlvNerMBAEDBkyk4Cg1PgStS8BQKjkzAEPAYnAWyaE06vdmgMWmVBpXCoFQalCqjRmvWmix/LaowaAwJS6ThqXQCjY6n0gg0Ko5CxVOIWAIOjQMAqIxqk9WkNKjVRrXcoFQaVCqjWmvSGS1GAABAASqOQsIS6QQak8CAB61x57Umnc6sl+vlYp1UplfAndeatGarBQBAw1NpBCqbyHQgsTkkBwcSi0GgU/BkGp5qtJgMFoPWpFMaVBKdTKaXN2jFMr1CZVRrTBqjxQQA+CJ2USg/qPmP/F9jxxDW19fz+fxnz541EeAVCoU8Hq95uV3Wrl2bnJxcXl6+e/fugQMHNr6UlpY2c+bMkpKSgICAI0eOREZGnj179vvvv8/JySGTyaNHj96+fXtLCVj/Vw2hyqj+8PqSEX6DxgeOKpaVfpW8cXrYxCE+r85vrjPrF978PIIb+lHkDHju1psNP6TuaNBKvu+92vajtEuuuOCL+99+GDltsHe/xuVP67K+S9maGDAsKWQMCtgfvRvl93ZnHPq089y+Hj2aXCoRlm1/cQCFQn8e9xmX4ti87sOa1C1pu4f49J8WNrH5MkKslWx9ur9SUf1ZzIfRvE6NL0EAulF2d1/WLz3d4md3mtyStdiTeSRLmD0zPGmAdx8M6p+tWo1Je7bg8rnCy8N8B0wKGWt3LzS7IX9v5s86k35K6PgebnG2nV6dWX+38uHZgksoFDopOLG3R7fGLcOYrZaU2vQrJTdyxPld+FER3DB3hisRQ5AbFIWS0rS6ZzXKuv5evQb7JPgwPZu/tRWyptdlXi+7kyp41skptDO/kxfDg4InKwzKUlkFvATs7tpliE9CmFNw8+9FoVRW6quTq1Me1aQZLIZgTiCfysWiMGbIItI0FEiKDRZjDD+yi3NUNC+CRWQ0qa4z63MbCjKEL7KEOaXycleaM5fiSMGRDRZjvVpUpazxZLh35kd05keEOAQ0f0bRmw254oLnotychvwyeaXZauZRnNAoNBVPadBK6jUiBxIrgO0bxPH3Y3n7srxgS2P7WoWahjJ5RZG0tFRWUaGoqlOLcBgsBoWBAKQz6Z0oHDe6iw/T04fl6cVwd6U5N37K0Zi0NUpBuaKqQlFVLq+q0wjFWgm8XkSjUEwi05Hs4ELlezLcXOkurlS+I9mBSWTC/ywmi0mqlws1ohpVXa1KIFALG7RiqV6uNKgAAPCeOZNAd6I48ilOfCqXS3FyILFpeArcAaPFVC8TWnGQVCcT66QKgwI2k/BSG4aMI1NwJDrhL1NHw1PJOJLtp6s2avRmg8KglOnlcr1CblBqTVqdWQ9fxaAxZCyJSWQwCHQmgQHbSywaS8QS4Loak1ZlVEt1MqVBpTZptCadwWIwWkwYFIaMIxGwBAqORMfTGQQ6nUCl42kkHAn/93cHG1SlQaU0qpQGldKo1hg1GpNWZ9abrWYAAA1PxaKxdAKVhqfS8XQGkUbDU8lYEgFLAABAEKQxabUmndKokunkcoMCbsHWeRKWSMaRmEQmh8RmERlMAoNGoFJwZCwaCwCAzapMLxfrpGKtVKqXyfUKjUmrNmrwGBwBQyDhSDQ81ZHMZhGZjiQHFgkeOjIBg4cgiAKRmHRm83+if40dQyiXy1ks1s2bN5skXc3Pzw8ODs7NzbWlc22FDRs2+Pv7r1ixYtOmTYmJibZyi8Xi6+u7YsWKuXPn7tixY8+ePfn5+ceOHXNxcYmPj5dKpSNHjuzdu/cPP/xgt9kOM4SHYv0i5vSMbpo01i45DQW3K+93de7cxTm6je1vePwTFU9Z2Hku/GeNSjD/xspve30RzAlopRYEoG8e/EDFU5Z1md+k/Ke0vWXyyk19v2lpYZTdkP9V8refxy+KtactJdZJv0r+1onsuLzrgiYGw2Q17838+Unts/W9Pvdi/CNOaTHrMVgiAEClUlGolBN550/lX5gSOn6k3yDb032dWrg/69dCacnncYtCHQPhQqvFqFPXoTF4EvWffcVHNWm7Mw5zSOzBPgn+bB+T1fSk9ukfZbdZROZnnT8McPgrUa/ZqFZKCnXqOjLdle4QgMH+ZfjzxIX7s36tUtb0co/3ZLibLOZCafGT2mdxrjHTwyY23jvVa0SQ1Uwgc9CN1kCPa9PPFFwskZUHsv3IOJJEJy2RlXfmR470GxTDj2zlG4GR6RWPa9OyRXkCdb3ebGAQ6D4szyheeDSvU3Pz2RyNSfuk9ulzUW6lskZn0tEIVHe6SzQvIoYf2coqv7H6RJ1aWCApFmnFFsiCQWE4ZAc/lrcb3bmlx5omGC3GckWVSCPWmrQELIFHcfJguL3WDqTSoKrTCAEAaqOGTWS60Pj419/8tEJWAAAVT2ljtzsERPSj/YEg6I2rT9iXYercubPJZLpy5YqbmxtcIpFIxo8fX1RUVFlZiUa3dW89JCRk3bp1jQ3h7du3p0yZUlNTg0ajLRYLl8u9ePFit27dbDds3rz5zz//vHHjht0G331DWCQtXX73m/FBo34vvPpx1My27HDmNBSsffTjr8N2ww96MA+qn+zOOHx46PZWJqDfi67+UXZ7V//vcRicUS+T1KZhsEQHl64YLAEC0I9PdgrU9Rt7f9XcFr4Q5a5+sPHL+CWd+REAAIkgvargnEZRRaG7ufgNdXLvCQAwWow7nx1Kr8v8JHpWvEss/ASdKcze+ewgn8pd2XUh/FRbW3ylNOuwuDYNjcGSaa7uweO4vuNZbD4AoEpZszfzSJ64MJIbTsGRa9V1ZbLK0QFDPggeA0/oMuHzwvQdwoq7BDLHYtYDgPIMmegbNZdAYgMALJAluSrlfvXjcnklFo0NdQwa4p1gM4FqeVnR0921xVcoDC8SladV1WiVte5BYwNiPiFS/jppq1LWPqlNr1LW4jF4D4Zrd9eu8EYoAEAjryjJOlxTdBGymtEYgsmgZPEivcImufoNQ/29SJXqZEWyUr3ZQMfTgjj+jb8IjaKypuiyuCZFpxECyEplenFc45x9BpHprq/8ugGAZMIXosr7CkmhQSsGKBSF7sp0Cud59m1bdaCSlYoq78lE2QZNAwqNJVF5LF4kxSHKkeffluoQZFFKilTSEpNBAQDAEehUpjfdwR/dNltlMqrkohytstqgbQAAEClcKsuHwQnGNPr1vhKjXm7USU1GNRZPIVF5WNzrTWpGvcxkUAIA8EQWrtHisu2YDEo0Bmd7cvrXIIaw/XkbhtD++fbOnTsTEhJ8fX3j4uJgZ5mUlBSj0Xj+/Pm2W0G7FBUVBQcHw41gMJjAwMDi4mKbIYQg6I8//mhsF5sAQZBer1er1Y0LyWTyf+zVG2Tb030fRc4Y5N03lh+59M7XEdyw5ttQTTj4/OjM8ElELKGu7GZ9+S0Kw907fFoPt64ptel7Mn5eHGtfObpCUX3kxcndA3/AYXAlGQfyU39i86PMRo1aXh7RZ72L37ClXeZvSt25+PbqDb0+ZxH/2Ua4V/Voa/re1d2WRfHCzUZ1xq3lUmGmd/hUvld/tbzs+b3VRCovOuFHMt1tcey8Z/XP92X+8lPaHje6S51aiMfgpocn9fPoAQDQa4Tp1z816mVBXRd3TzyJQmPkopzSrEMlZwdH9v3WxXeIO931215f1mtE2Q15erOhh1vXTk4hsFU2m7TZD9YJSq8Hxn7aecBWLJ4KAFDJSksyD9z8pWdQ3BLv8GkYFKaPR/fmTxIWs74gbVv5i6O+kbMHTH9M+Ps4SqeuK8k4cPPXPn7RH/pHz0Nj8O50F3e6S5PqRr0sL2VTTeFFr/DJvSdcojA8AABmk0ZYeb8082De4x9Du69y8RsKAIpNYnUldW5SXVT1oOjpbnlDjqv/CK/wKWSaK0ChVNJiUdWDgtSfGI4hnqFJLr5D7BoVraq2MvdkZf5ZNBrL9ezD8+xLpDhCEKRRVEnrnual/EhlerkHjXMLGGl3cjdoG6ryz1fmnzHqpDyvfhyXrkSKk9Vi1KlqG6oeZCevI9P4zn5DnX0GMTh2jk+0yur6invCijsNNY+JFCc62x9PYsMDopaVaxQVDMcQJ7fujm7d2PxozMsPTxazQVr/TFh5X1R5XyUrZXCCqEwvAtkRAEjRkFeSeUApKWY6hXJcujo4xzAcg8m0l4YdsprV8gqZMEtan6VoyJY35KFQaAKJgyNQTUa1TlWHI9DpnECWUxjDMYTu4E9heGL/3oewWowaZbVKUqSQFCga8pSSAo2iEouj4AgMAIBRJ7VaTVSmN83Bj+EQRHPwozK9iBQunshEodAWs96ol2uV1WpZmUpWopKVauSVOnWdUS/D4WlWq9lqMRLIHDLNhcLwoDI9KUwvCsONQOLg8FQ0lmS16I16hUHboFUJNIpKrbJKq6zVa0VGnQyC4JM2NBbPIFIcCGQOicojkDgEMgdP/D/27jtAi+J+GPhs36f36/0Ojt57kyYSCxZqjOUXu0ZNoomJ3SRG08S8FlRiwRIUsaKIgvQOxwEHx91xvZenl+27s+8fD4Hz6oMiGDOfv+52d2bn2Wef/e7MzszaKdqCExQAQNehIkVVOSrxPknwS0JAFoOqHNNUIf7pCJIlKTNtcDIGJ2NwMSYPSZlpxgowLP4zUWVOFgOS4Jd4n8T7VYVXpAgAEACAEwzN2inGFk9LsXaasQEMpxiLIkUBAIoUUeWoLIYkwSeLIVkMqXJUh5qmySRlAACQtJWizTRrp1kHzdop1kHRJgw/0+6tylFFjsliUBaDshCQxbAqR3Vd+0/hDSRtYQwOmnUwRjdtcFK0NV54Xdfje5d4n8j7JN4ncm2KHIvfvgAASMpEs3bG5GFNSUZzGmP0sEY3yVgwLB6SYPxWSeL9QqxV5L0S75XFoCJFdR0CAEbNfcFk6vrb/C6+USPcsWPHlClTSJIEAFRVVT3zzDM7d+70+XwOh2PSpEm//vWvO88+mojuNcKnn3563759n376afzfSy+9dO7cuadn+n7qqafeeeedoqKi3p4Rzps3b8eOHV2GcGzdunXw4J5++TxvMBjOSY1wzZrZOUP/b+KwG/rerCxQ+c8jr7w06+/x+tOrx99Rde2O4Tf2keRE4OTy4pdWznmm9vALrdWfZw+9PtRxNOI7PvYnb0LG+outv79n1M1jPF0Pu6Ip9+964vLci+dlzTx54O/+5l2jL17BmtMBAGFvScnW+9IKFuSPuVcH+rsVH31Vv3XpwKtGuofGFO7z2k0nAhUPjf9Vvi1H4r3FX95sSxpZOOmR07fzOlTrj79Rd+yNYTOedmeees10G9/RznldBme6OSXeThVqLy7Z8sv0wqV5o+/Evtnc11q/p/rAE/akUYOmPEZSPUxOG/YePbb1t46UsYWTHiK7DXiIBavKdj8GoTp4yhNWd9dGeG/D1vK9f7IljS6c+DvGmNQ9cyHaVLHvqViwasD4+5JzLwGdWtU0VWwqe7e2ZGVy7qX5Y+6mWUf35P7mPZUH/w4Anjf6Tk/WrNMfTVOljvqN9cfegJqYM/yWlPwr8G7PyaAmd9R/3VSxNuo77s68yJk2yWjNIUiDIgUj3uO+ph1cqDo57/KMwoUWVw8PF3So+pt3t1R+7Gva6Uid4E6fanIMICmzIoWigXJ/066wtyQp5+K0Adc4UsZh3Xo8RqMRlTvZUbexo34z1ESbZ6TBkoETNISKxLWFOkqgJrkzprkzZzjTptCss0tyTRVC7cXB1gOB1v0R3wmTLZs1pxOUQdcUPtrEh+vMzoGu9Cmu9Gm2pJE43vWza6oY9h4Nth4MtRfHQpWazBmtmQDDAQCqzEl8K21MtrlH2JJGWJyDLK4hXSK9GGuNBU9GfKWxYEUsWC1EG3QdECStQwg1iTWnmex5ZsdAi3OQ2THAaMvpfJ+hqTwXquPC1bHASS5UzUfqJd6rSGEAdIJkSMZuMKUZrJkme77JlmuwZhvMqRRz6r5Q1zWZ9wlcixBp5CN1fKRBjLXIgl9VeagKOMFSjJVmXYwpxWjNNJgzWHMabXDTrCMeLXRdiwRbKUKWBJ/EdciiXxYDihRSpTPRgmKsBGmiDU6adVKsk2btBGUiSOPpw64pnCwGFTEoCT5FDGgqfzpa4CRLkkaKdVCsg2ZdjMFFUEaStsRPS00VVTmsSGFFDMpiUJXDihQBQFekSPzwkpSFoE0UbaNYB806KMZG0laA4QRBa6oIAFCksKbyihRSxJAihRUppCo80M8MUSBIE0GbKMZOMXaasVOsnaTN/4lVQFN5VY4pUuhU4aWwppwJdac+uNHNGFy0wUUbkkjKdPp7V+WYIoUlwScLPpFrlQW/JPi1M1EWIxkbzTppg5M1pTAGN21wUUx874Su6zpuN5kTbQkwGo39jvr7RiDMycmRJGnJkiU333zz2ca8HnUPhCtXrnz33Xe3bt0a/3fKlCl33nnn9ddfDwB48cUXly9fvn379oyMXhuILmjT6C0zxt7W92Z/3/9CpjV92eCr4/+Gpch1n935xqXPuY2u3pI8vP3PE9LGjMexkh1/mP3TL+JX54qDLzSWfzxz2WfHAtVP7ln+6k+e7VylAwAsP/BSWIr8Yfrvakreqj7y+kVLPqU71Tslwb/ro2XJ2TOHTXsYAFDur3yv7OOTgWojaZiRNXnxoCsNJCvG2nZ8sChr8OJBE7u+ZgQA4G85uH/97XkjbiyccE/3a25NyVsn9v5j/PznkrNndk8bjUYNLHFsxxNttVtGzvxTWsH809FIkSJl+5c3ln88evZf0gp+0vuB1OtK3yvd/VdX2vjsIUscScMhVFprN9eXvqsq/KhZTyVlde2h00VHw47ju56WpVDGgMutrkEQysG2w81VG9zpE4dMfsDq6rsJUW+uXF9ZvJIL1ztTx5KkQeA6Qu1HXWnj80bemJp3MejvkZXItbdUb/Q37+MijVCTKMZucw9KypqRlDWje/jsTpEirbVf+5v3R/wnNZWnGJvFOSApa3py9kyi93byzm10fKQx0HZEiLZAqOA4yZpT7EnDLY68fkseBzUl4i8Xoi2qKuA4ZbRmWF0Dz6oVURbDfKQxfvNOUkaTLSvBdtfTVIWHmoJh2Ldr+TxvUNPo+fd9NI0CvZN333131qxZ8cgxefLklStXhsNh/TsYMmTIhx9+2HnJ9u3b3W63qqq6rsuybLPZDhw4oOv6a6+9lpWVVVNT03eGCxcuXLt2bYJ7j8ViEMJvVfCuXn11/PaiV/reRoXq5Wuv7eC8pXv+9vkrI4q++pWmSi8UvfpS8Ru9JWkIN135wfUxIbB+5Shf84HOqw5+eW/RV7/Wdf2NktV3ffVbQRFPr1pbtu6Gz+6KyVywveSzl4fFgrXdc5aEwKa35xzf/Zce9ytEW796Y2r5gef7+DhCtHXbmqt2fLAkGqw+vZCPNO9dd9Omt2ZHg71+U5FIJP5HR8Our9+es/HNmSU7/lR+4LmDX96zbsXgQxvvF3lfH/s9TZG5qiOvb1+76PNXRqxfOXr/+jva67ZBqCWSNi7QduTE3mcOfHFX0cb7Tha9FAvVJZ5W13Uu0tRYsa6+7MO22i2SEDqrtOff6cOOnE/osJ9/EMJYLHZu8wTdFzU2Nv7lL3/Jz88HALAsu3jx4k2bNp1tRKmoqCgqKsrNzf373/9eVFQUjUZXr179xBNPQAgHDRr05z//ORwOP/744yNHjtR1/e233zaZTGvWrCkqKioqKiotLe0t2x9yICxuK7l9w/11pe/H48SedT8/tOn+tlj7FWt/FpO5HpM8s3/Fa0f/fWLvMwc23N1llSLHvnx9cnPVBqjDv+597rYN953wVbTFOl4oenXZJ7e2xTpUhf/qjamNFZ/2Vh6R9216a/bR7U90CR7RYPWXr0+uOPhCv58aasrJopfWrRi888NlxZt/v+vj69atGFy652+aKvWRqsulwdu0v2zfP4/tfLKm5B0+2trvTpFvB12RLwh02M+/7yMQ9txrNO7QoUMrV65cvXp1LBbLzMy89tprb7/99gRfUn/HHXcUFRWd/ve1116LR7jly5eXlZX94he/KC0tHTFixIoVKwYMGPDggw9u2rTp9Mb5+flr1qzpMdsfctPoy4dXsTiZdPDZyVe85kgepSrcprdmjp//woq6nYOcBUsGX9Vl+7AUuW7dna9f8tf9qy+ZtWy9qdvYMn/LwX3rb5t73de0wbmu8ssPyj+LKdyU9PG3jbrBxlgPb/6dpgrjLnmujyLJYmjfZzfhBDNy1pMWRz6ESsOJtcd3Pz1s6oM5w2Ncw/0AACAASURBVK5N8LNrqtBWt1WMtRrMae6MKXR/fX9QY9EFgQ77BYEO+/mnn7fhE51Fo9G1a9euWrVq165dGIZpmnYOd3+2fsiB8OYvfnVLcqFat3X6wvfjSxrKP6o5uirt4mcf3v7n1Veu7DJ4/PWSfweE0AICC3tLx//kxR7zPLbzyViwevKC17s83Wmp2lCy4w9zrttE9Te7pg7Vk4derix+hSAYRY46kkcOn/G43XMWc7CdLXRpuCDQYb8g0GE//76PQNj/qIN4VTTexnhOgsqPUkSKtsbaYNOe7KHLTi/MLLxKFoMOri3HlvVlzebO20fl2CcnN/x08IKqw68OHHdXb9kOnfI7kWs/WbTiG/vyVxRvfmDiZS/3GwUBABhOFo6/+7Lbjly05JP5Nx2YvvD97zUKIgiC/NfpNRBCCHft2nX77benp6ffeuutDQ0Nv/vd76qqqs5n4X5AdKzvivPRjuMjXfn+pv1pefNOL8QwfOC4u04Wrbhp5LVvHlsj/mfyIQDAW8fWXJQ1RWs5aHEW2HqPTDhBTbri9eqjq6oO/yv+/otge8muj5aNnPlHR/KoxIuPYYTRmtFvqyaCIMj/oB4G1Dc2Nq5evXrlypU1NTUsy15xxRW33XbbnDlzUHWwDyUdJ0ZgmCttfHxs+GlZgxaW7v7rcB2OSxm54j+j40t95Zvqtq+6/PniD5cMmfzbvnM2mFMuWvzRvs9vrTv+LmP0hH1lY+b8tc+xBwiCIMhZ+EYgXL169SuvvLJz505d16dOnfrQQw8tWbIEtYAnosR7YrEcSsmd3WU5TtD5o35+svjle2Y9dddXv33+0L8GOvJfPvLm7yffq3QcVxUhJXdOjxl2ZrRmzvrpF4HWQ4ocdadN6BJrEQRBkO/iG02jDz30UGVl5T333HP06NFdu3bdfPPNKArGUTgRU7je1oqqVBduVHzH4rN0dpE34v9aqzdiYvC5i5/WINzZtP/xab+dlDau/MBzheN+keAYZwzDXWnjU3JmoyiIIAhybn2jRvj2229Pnjw5PsUa0hlN0uH/TB3UXXmgcojJDcMnLc6CHtKytrwRN5Tvf3bM3H/8avzt8YXepr1cuD5z8DXdt0cQBEHOp2/UCKdPn46iYI8YggkIwd7WlnrLh+GEO2NSb9W7gePuaqneGOo4Hv8XQqVk26PDpj7Yfc5GBEEQ5Dz7UYc9SVFqG89JH5+kYOpJMtrb2lJf+VQ55M6Z2dsGFGMdcdETBzbcOXPpOpp1HNvxR9acmlF45XcvGIIgCPId/agDYUSUvzh8TnIaWDmyaNiRHlfpQD/hq5gRrXWl/a6PHLIGXRMLVm96e7bBlIxhxNSrV5+TgiEIgiDf0Y86EHospt8uOCc1wsiDf8M0MSZz8bfRdtYSbTNjmMx12Dw9vAqqsyGTf5sx8EqRa/dkTMbwH/WRRxAE+e/xQ3mf7Q8cTjAegq4N13dfddxbNoY2O1JGdXktX4+sroFJWdNRFEQQBPnhQIEwIQTJ2gA4GajpvuqYtyxbl52pY89/qRAEQZDvDgXChBCkwaRJ5f7K7qtKvCfMXIcrddz5LxWCIAjy3aFAmBCSMmJSpNRX3mW5XwgGxaAUqHCmjrkgBUMQBEG+IxQIE4ITNAagIoZ8QqDz8iMdxydZUlijh2YdF6psCIIgyHeBAmGiTNbM8WZPcVtJ54VH248PxDBnGmoXRRAE+W+FAmGijLacQoI60FLceeHB1sMuMeBKHX+hSoUgCIJ8RygQJsriyHPI4f2th1SoxZfUhhs0HUre4+6MSRe2bAiCIMi3hgJhoizOAbH2o9nWjIOtp2ar2Vq/a5anEELV4si/sGVDEARBvjUUCBNlMKfoOpyfOvKzqi8BAKIqfV711XjG6EmffKGLhiAIgnx7aIqTs5CUMcWuK6sCNSUdpaW+iuGeIVigypU+4UKXC0EQBPn2ftSBEELIx87JXKO6pulQS86Z1VL95QMT7354+1M0ST8754/H1iwoHH/Pd88fQRAEuVB+zIFQbmlqeOtf5yQrKljgaXAkz519ZOvDl81/8d8LXiZxUgpUULTZ7Mg7J7tAEARBLogfcyCUjJknsx85J1mFSGFqrLnA4HSkjG6t2Zgx8AoAQFXFp+kDLjsn+SMIgiAXyo85EFqc2IJbHeekafTzR069jDBn6LKakrcyBl6hSJGGE+/P+umG7545giAIcgGhXqNnJ33AZUK0paX6y4qDz6fmzTPZsi50iRAEQZDv5MdcI/w+4Dg1fv5zuz+5njUlTUNvmUcQBPnvhwLhWXOmjr389hKAYYm8iRdBEAT5gUOB8NtAr5hHEAT50UDPCBEEQZD/aSgQIgiCIP/TUCD8oYC6/szJykmbty3bd7Aqxp1t8qiqbvP6jocj30fZEARBfsTQs66E6YltJauta3a11rb6ZxTOmzkm8ex/s/vgnE0nv2iMRK3sY4V1v7n2kuE2a4JpV1TXrDh47KchGJWVshznX2dNHGSxJJhWgfCt+sa1Tc3tojjQYr4xO+vS1JTEix2Q5X83NO72BSSojXU4/i8ny5Z4YgB8kvxlW/uJSMRCUTM97kku51mN+tzrDxQFgy2CmGcyzfC4Cy3ms0kNQopyLBzRdD3XZMw2Gs8qLYIgPxo/5kBYHuOWbN99TrL6A5bWoPAFCWzpXfHVro4OcVT21PcOvsbxN182LZH811TWXv/+0fwpQywPT7TWe59+ccNzb3754J1X2yiq37SPHj/BbC7dfjLEjs7DaCyyofLVE20zb54/zePuN20Nx/109/6l1ZFXa6NGb0Q0M+vSqq6bkLl82oQkhuk3+au1dU8dPv77IPaHDoERlBpL0+3O4wNH5j41eqSB6KdLbVRVHy8te7em7naFncbBGIDPk+V3JZv/PHxIIpH44+aWP54oNwjKUpWZwqtVFPgpdiw51fX08KGj7P3H4m1e39/KT+72+0cbzWYdK5F4M0PfmZ97S25OvyXXAdjW4f13Q+M2r6+RF3AMK7SY5yYlLctKH+dw9LtrTde3dni/au84Fo74JAnHsAKzabLLuSAtNZFgrAOwzx/Y1N5RHAx1SJKBIHJMxolO5zSLaUhidz+iph0Khk5EogFZxjHMwzCDLOYRdpuxvw8eF5DlQ8FQLccHZRkAkMyyhRbzaLuNTSw5AECBsFUUW0Upqigmksw0GtINhsRvgCQI20UxoqgYBhwUncwyxFlOmhFVVRXqAAADgSdebORHDNP1xGo6PwyLFi1atmzZokWLEtk4EI0GMeyczCyz7+kaV0Hkkv+b2vdmypG6ilVfb7xt+n1DCn3H6vwvbgg8cvXkjH4u6xFF/fwP70zJScu5ZV58CfRFmx57998XFzx49ey+075V3xB4b9cNUcx+3xW40wwAgGG+6Z+f7ZL5Qb++cozb2UfaI6HwzzftXFscSnFZ2SvHk3nJmjcifF0S2lP+yGj3LxfPHm2395aW17RbioqdJ1qfOOIzDEyjJg7ALQatwct/few4pT8xxvP83KlDrL1el7d7fT8/cOjhDu2aI21kkk3PScOgqp9sjgnSHwstweEZL4we6eklEtdx/D2Hj8rtoedboedEq5SVKdqdBi5M19Q3Z9juyKJGD8l5avhQC9nzTV49z//6yLGT3uBLAju8tE1rj0KKojQ5luN+Pcv4ug08OWzotVkZeE+nDdT1D5paniwrxwB4GLNMaRdsQR6qWsDG7nZQf8EFo5m9uyBvaWYGg/fw0KGe51+prl1V15BpNPwfaR4fVR2iBnXQTOmbDeAVKTLMZr0lN/ua9LQer84NPP9GXcOqunoTQS6xOS+K6R5RlXS9gcE2sfD9oD/TZFySkX5NRtoAcw8143qe/7ylbV1L6x5/YKjVMsxmTSEoTIONuno8HKmIxsY67POSk+YmJ4112LuEFgnCvf7Ahta2je0dNRw32m4vtJiTAY4BrFZTTkQiZZHoGId9VpJnuts1ym7r8t1BXa+KcXv9gX2BwMFAsCwSdTF0CsvaKCqmqg08H1XUkXbbeKdjrMM+3GYdaDafPgIyhLUcfywcPhIKHwmFj4cj7ZLkYWgrSelAD8pKQJazTcbhNusIm22o1TrAYkpjDS6GxgDgNc0vybUcdzIWK4/ETkQi1RzXyAsEhlE4BgDgVc1AENkmY4HZNNBsLjCbs03GNJY1k6SZJDlNDStKiyA28EJ1LFbD8Y083ySIEUUJKQoAwEKSVpJ0MUy6gU1mmVSWTWZZG0XZKDJ++kVVVdSgX5Z9kuST5XZRCspySFEiiqrpOoVjZpK0UpSbppNYxsMwHoa2U5SZJI0EoQMQ3zIgy+2i5JUknywHZFmGMCQrDpoCANgoyk5RKSzrYWgHTdsoykSeOm4q1MOKElQUryT5JNknSQFZDiuqDGF8AxLHLCTpoGk3TbsY2kXTTpo2EEQ8ZwAAp2qCpvllOSDLPkn2y3JQliOKKmgaAADHgI2izCTpZugkhvEwjJuhbRR1+j5S1LSIonZIUqsotolihyj5ZDmsKJquAwCsJOWk6RSWSTOwGQZDmsGQxDAOmjKTZDxtQFaCitwsiK2C2CwIbaIYVJSgrEhQAwB8Nn7s1LTU7if5t/ZjDoQcxxmNxnMSCFc/ciyRQNj62HuPZNIv33wVheMAgGMvfL6Hj932wLK+S/DmZzsnbz454O//h1FnLn+xYw3NL65v+/2Ci3LSe0tYFom+sOqLJ5pk92OLMTN7ZoWqVf/tkz1ibOoDi/LMph7THg2Fb9+w7eN9AcfFI4i5YxqrpFgIGi145gCaaPV6/9/nKzINE342+4q0HqJ4Iy9cs2ffAydCF9dH1KXzKn3m1noFarrdQxYMY+zlxeKW0l+NsM+bN+Gm3OwuaWUIHy8t+7qs5sMTHEOaawdNrG/EJQHqOnAkk/nJYtq+7dWUfvNQ833jR16fndk5IEkQPldZ/Wx5xesBatRhX93gCdVRO0njJiseC2s61AsckezDu/flm3+Twz42eniXeBZT1eUnq16orH5JMk3d21qfNrSBSOYEHMcBBkCyTc72llvE9j8Otx1MMj46eNAVaSmn4wGnau81Nj1zsjIFI5aHiNQDbc3mDL89VcBYDAMmTHLF2pKbK0NDXP9Ipz/FpMUZ6fOSkwdbLRaSbBPFfYHAx82th4Ohe51JP28W9UO+dsodtXtEnAUAmHTB7m9JUv0tw53PJpFfytzlaSlzk5IKLWYHTTfy/KFg6PPWttJI5CZP8u1e1VDsbY0aws5UiWQxoBtUzuZr85i4yBDXu8n0q0LIRJBT3M48k4nBcQnC6hi3PxAIyMoVyUnXKfTopkjsZCTshxJGARyjZdFqAeZMti7Dst5BfiBE63huuM2WYzSaSILXtJPRWFkkOsRqWeB0LQjrGfVhf60QC0GRYAAABlWwWoEti61LN2+ykxtk7mg4TOP4IIsl/ivoEKWTsVgKy0x2OS8ymidHYa6P19p4IazKnEzSuNlOwmRTnZ3ZayW3a8KxcKQmxjEETmE4BHpUUXNMxqFW62irdYqCD44qTh8vBiRF0AAAFIvRDsZrYyqs9B5GPyZwVTGuTRR9kgwAMBCEk6ZzTMaBZvMwk2mUjOXFFDcnY2FJESGGYzQDRBPTYSSrjUSJAa8Q+XpeaBPFqKJymmokSDtFpRrYTIMhz2waDPFcQUuWoFFQDZIKAJBxLKCrstXYRmMtLFlP6q2yFFKUsKLEVA0AYCaJeBncNJ1MUmmK7lF0mwZMAOAAaCoUMD1C4e0k1kpirbrqlaSQosRUVdAgAMBBURaKjNd6UwGRKkMnBIyomkkipqoAYGEKC5JYA4m16WpQUcKKwqta/IwlMMxGUQ6acjN0CiBSFN0lQYsGGVnToQ4A0AicJ7AAhXkprJ0E7ToMyjKvaSFZiedgJAkDQcQDZDLAU2ToVIFZ1lgAgKRCmuCAHqOIdhprJkC7rvkkKayoonaqAAyB2ygqiWHSKTpTxZIF1a5AkwoJDAcA8DqM0HgbhdWzeJ2mtIhihygFFYVTVQAAg+MOmnbRdJqBTWXZXEikyppd0a2yRkGg6zpZ4LEmu3q7MH4LKBAmZPUjx5wFkfl9BkKtzlv7zCfr7r7ovsKBp5aEuKYH3iq7/5L5hb2+oSIsSlW/WZV0w8zMCYUAAC6ssSacIDEAQOmrX5U2tF/5xHU9Vi9kCG9Y+9Wz2xuTHlvCUZYDm2LN1TJBgpzB7NjZJpaGlX96/2uDvvC+Rcls16pVSTh82xfbP9nrdSycXGPMLd7GJWVQdg8RDWotNfKQCcbhw3Xfs+vW02rbwvG/HzqI7HQM17e2/WrfobUnuByCLRs8o7ZSHTrRkFHAEBTma1bKDgqKok4dqxPvrl+balg/MfOPI4aOcdgBAFDX17W0PXS89Hqveuu+lvpRM8oD9oGj2QGjDXY3oal6e4Ny4oDgb1PH2NscB/e+MML1ca7157nZ4xwOBcLPW9veqW+8TqZ+d8jbaBtYDrLzR7JDJhqtzlN3D8EO9fhevvGkNJRsSmko+ccIx0fJ7LVZGcNsVgnCff7AB00tt2Cme4sDNSCzls7KG2UYOMrgSCZxHAgcbK6STxwQlIg01HuEcPKP5Zu203CSy2kmyWZBKAoGL7M6Hu7QDAeClZ6hXmDPHsqm5VBmOwEACPu1lhq5qVJ00UJ2S5nLwe8rdK22YUc1KayoySwzzWRZGoIDT4Rq2w2NjjzA0umFBncqabIROgSRoNbRqDRXSlaMy/BWpiTLRQNsHzqJY7IYVpR0g2GcwbQoBgpKA/X1WIOzQCTZzEKDJ5MyWnCogVhI8zapzZWCEZdSQw0ZZFAfbD2aZCw3kxyJsxgYoOCjwrK5KtJSp7Wb0zoIp8GIOVJog5UEAAicFulQomFoJ3hPuCUJD9sLjC2ppkYLHTZQZlXLlUF6Ox+o4NrCtNeaFgUmhxOzpdAGK6kDwIfUUJscDup2gndG29wg7ExlQAbbamMllgQA2BWYHJH5ZtHXrPoVY8TsDmMmHAc0A2gGVxRd4ACBQ5vO2TifTQk7PKQ1lYUOWjfQmAapmBppl0IdSihKREzOMGXjIUNTMF7hVxRM1YAJl61q2Brx21jF7CTNbpq2kCRLypwmxtSYX46EYFSkYyZHjDLzOg11jCJ0qANFw1lSNQLJKMdMsZCFkk1WzGglSZbAjRSUocKrfAxyMcjxBM+YedosEowMzjywoIDGAIXRREbmWSHGkJChdJICNIsDABQFaBCIEpAVTAKUQhslilUICgAMYEDTCQJoFFQYVaQkntEkhtJpBlA0IAlMB0BWMEXFZEkXVEImGIUxKgSl4uTpXyMNZVqVKIlnVJGmAM1gBA4AQwIIoQJViEsKJiuYRDAybVBIBuKEgpE6wOIlJ3SV0mRakShZoKFCUzpJAYoAgMABgUNZUyGQZUxUcYWgZcaoELSGkzqGKYAkgUboOgklRhEpiWd0haF0mgU4fap4mqwqKi7KQIKUwJplyqBglIadupThQKd1mVElVoywqmQ06IwB0CwR/1ohwCVRl2XAC0BQCJEySLRRxWkZO3UpmnoFlTHqLLoy9AsFwoQkEgjDb+1Y3tJ4968XdW4XOvrKhkPhyE0PLO0t1adrtiWXNEz68w3RoLZlbZiLQKjpY2ebB4836LJa8ZtVRbMLr7tqeveEfzxUsnjVgfzrZwaSsresDY+YZiwcY1AVvXQfX3lUnL3YluSG1Y+/+0myYdkvFmQYDKcT7vb5f7Nx10f7fParpxwIpQc71JkLbXb3qXDCR+DeL6ORgDZ7gUl5b2NFu//xyalLRxSOsNuaBWFVXb1W53vtaBAfmL9bGWz3kFMvt9BspyOsg9KDoaM71EHDqbwTu/xt/t8PshQlG100Xcfxs1XyqWrOGMSKMqbSVnraFZZ4IOmsrV7Zsz5qZrQRrQc0PvTFYPcGG64TxKKYfnF1KBqgjqRNMCexk39isbp6aD8Mdqj7NsSEoDTMf9Sq+3YVuvfaKYYgxolgak2oxWsusw/JHGIcO9tstPRwe9FQIRV9HSNFvrC1xOGS67IdAkPYNT29JdZar9d4hsqsafgM84CRLEF1Pa80Ra8tk04WC4EWOQ0LuLwNFkIijJQkgaBiaLdnRAhL3nB2wGijJ6OHR79QA01VUuVhoaVacuuhJH+TzSDTDCZKICTSHY6MIGbNKmQGjjOl5NDdT+pIOMqH2Loyqf44r0qaE0aMfIjQVA0jBNYcIh0aQWQU0JlDjGm5NGvq+tlVWe9oUlrrlJYKLuDTjZhs0jhClXWc5AhjDBicTj19sCl9AOtJp/BuB15TdW+z2lond1TzQa8mScCMSbiuAQBkjBYgZTZo7jTak29wpdLOFPIb5wwAfAQGOlR/m+pvEMPtcjQGNIiTuAYhrmPAbIA2F+7MMDgzGIeHsDoJnDiTXFP0cEALedVguxpsFqJ+jReArOBQBzQBKUo3m4DVTdozjDY3aXURJitxZu86EDgYC2uRgBbxq5E2iQupQkxXVV2HAMMBSQKTCRhtpDmZsXpos40wmHHWiAFwKoegP0pgBoGDIqfzUU0MyiKnKSJUJAgAIEmMpDHGRBhsFGMhWSPOmnCKwXAcwzCA40BVdVnURR6KvC5FVT6kyLymSJqmAgAAw2IUg9EmymCnDFaSNWI0i5P/OfEg1GVRl3go8lCMalJMkXlNU3SgQYABjMBpFqONBGujWQvJGDDGgJMURtJYvPFSFnVV0WVRlwQoCVCKaWJEViWoSDrQdQB1nMIpGqPMJGuhDBaCMeIUg9EMjmGAZjFF0jVNl4T/FCCiCmFFETSoQB3oAACcJGgWN9op1kGbLDhrwmkWO134+K5FDnIRyIdULiCJMVURdVUFAAACBzQDGANudFBGF22wkiYLQTFY/IvTdR0jRYv17HrG9Q0FwoSsfvSYOzc876bee77oets9rz30k7zXL/vGUz3FH235/Tttj101MbOHFm1JVqp+9Rp5+8U5A3M/XRkcOsk4dKIhEtC+fi+cP5wdOd3YWloffW6D/MhVwzK/cfuzw+tr/n+fz8vLxC+7aMNboVmLrKm59Om1zdXy9o8iM662pnnU+j+9/7GDTLp2+jVZGWFFWVFVc+RA2WuHQ9bFU3e1pOo6mL3I2v2aXl4kFG/lpl1hTqoqjXxxaNsA9zY3nYITC9rFnLpgZN5Fu8pto6abhkw0gG6i0SgBTDvXRUQOTsgOm7bukWVFdlvYmITFpLqRU0/4naNnmoaMN4BevhmogeP7+JLdfFaSkh2stjTWaRB0pBXUG7OjCj3xEnPOkH468tSXSYe2crqoZIAOS9CrASxkcjcCjzuTGTvb4krtq4+YroOa4+LxPRwXUjwkR+kap1MByejJoAZNMGUPZvo9obgIbKiQ2uvlmF9RZMgYcFcGk5pHZ+TTna/gvZFFvbFSaq+Xg81SPLk9lUnLZzLy6e7f1GnRaNTyn84ysbDma1ZjYQ1qACeAyUq4UsnTVed+QQ2EfCoXhqqi4zgwOwi7myDIs/gdKZIeDWrxp1E0i5ntRE+NGn3RVF1VAEEAkj4Hv9/vT+fDjpwfuq7zPG8y9fzQ59tBgTAhqx4/lpUcmH3XRb1toFa2lr284eDdc27KzYYQBNpUu5uI/4aL/vnpCUK74Z5ruqfa9v52WNIw+8nrt30UYY34pPmn7nGEGFz3r+Dky8xZA5l9qzZxJ5om/OlnFuZUqGvkhX+t+OS2IPT8fum6N8JjZ5vyhrFdcm5vVDa/F77oGmtaCmx+bn2HL/R8ukE0UDeF4dgWznTLxTtKrTgOZi2ydb+7j/M2KVs+iGQX0qNH6nB3qVbbAWgSG5BehudWlimzFtpSsnvu0Xrq0qCDqhLx4OaYw0OmeRRCljmZqmnAXSnUxPnmRC7KEg/LDwl1ZVKwQ8MJkJxFFY42ZBUmFEsAAEAH7Y1KY6UUCWgEidlcRM5gxu45i27SkYDma1EUSTdaCU86yRp/0INu0RX5gkCH/fz7PgLhj3n4xDkk44DmlT42EA/VfOymb09N0RR9w1shkYeaBn5yg93qJAYvme54Yk2VL1jg/kbfek1S0raUBW6b1d6gtNcrC+8+08PTYMZnLrJuXhO+6nZq0o1z9/7xva1/eX/Kbxa6TYaKaOyd17+4rYFP+8OyHRv59Hy6exQEACRnUnOW2javCU9bYMn6/cLk4poXiqp1QSZHpBJ3DNnyuUjRYObCXqMgAMCTQV11u/PAxuiHq+XcIcNsF5GRoFZzXEzLxa6+3dm9ba0rDBSMZPOGMfXlcnsDoWGs0YPPm844kxM95RgjPnK6aeT0b3u6YyA5i0rO6n/8SW+sTiLxWhSCIP+9UCBMiExgFK/2sUG0uLpqfFIyyxzcFDPZiMtvcpQfEja/H77yVqcpzdlWkNT8/o6Cu67snOTw2p2tyaYrxhR+sSo0ZpaJ/GarV3ImNWicYde6yLxr7RMeXHzwHx/W/+6tT7Ns6e2xm0k6/bHFtY1EoF268tZeB64lZ1EXX2v7+r1wYLw6YmquaWweACDQrm5/N+JJp6Zcbum3tYoxYNOvtEYCWl2ZFParJitx6Y32s6pU4QSWO5TJHdr/kEQEQZALBQXChEgEYMNyb2uhLwpj4oAh2RIPK4rFa+5yAgwMGmeoL5fKDvJDJxkHXz8z9fE1NY0deZlJ8SSyN+LaURH71SXtDQoX0QpG9FCrGzXd9NlrgfJDwqBxhkkPLe0oqTWWN6VdlGwbVxCN6Pu/Cl5yvb2Ph0YAAE86deWtzt2fR9f8P39SBiXxesinjptjHji6h931xuokRkxFs64gCPKjhQJhQhQcULwKNAiIHqpRyrH6nUmGS1JTqkrEzIH06e6IE+aZN7wVKhxjcKa6Dk3KZ1dsyHvyekDgQNWqn/tsy4iUXwzJ2/RuePgUI9ZT5QwnwMyFts9fD3rSKVcqmTQiJScaWAAAIABJREFUN2lELgBAVfTN74dGzTC5Uvr/+oxW/OJrbWGfFmhXKQZLzab6jp0IgiD/a37Qz/9/OBgM8iyhtYd7XBs9UrvRQ4912KuPSQNGnqlsOZLIlCyqolgAAMy8YS6P68VPrVWO1tX/9eMSTb70/+aF/Zq3WemcpAubi5h6uWXTe6Gw/9QwVU3RN78fdqWQPfbY7DUfN5E7lMko6KvbIYIgyP8mFAgTYgKww0hqDd4e1mkQlrfgQzPECIyGtJQcuvPKEdNMx/cJEAKKJEY+uHi7Gft69dZ/MUr6Ly/PNZtK9/GDxhr6Dk45g5mxs8zrXw8e3s6VHRQ+/VeQNeJTr0h0Pm4EQRCkb6hpNCFmXTtpombVecGkgV1WqVVtLVZ6SnZGY6WcUUB36YHiTiOtDqL2uJg/gk0xm375q8WVMW6W0cAShMTDmuPSwl/0NR1o3IBRrCedrCgWY2F1/Fxz5kC63yQIgiBIglAgTIhZh18ZMLmytXtzpFxSv95J35CcVHFAzh3cQ/fI4VONBzbF8oezAAPxNxXEl5ceEHKGMAZzQpVyu4eceMm5nEkBQRAEiUNNownBgK44DWqjX5e7DqKIFFeXZNkyWENbnZKW10NdLaOAJghQVy51XiiLetlBAfXGRBAEueBQIEzUACPV7jZpVW2dF0JvRAvzWUOzA+2qwYz3Vr0bO9t8aHMMameWHNnBZQ9i0HhtBEGQCw4FwkSNNjBb3IxyrKHzQuVw7fZU02XpqW31cm9TjgEAMgpoq5M8soOL/+ttVqpKxLGzzuUUQQiCIMi3gwJhooYw5IdOQjhc03lh5EDlp0nMNLervUHpezavaQsslUfEIzu4ujLp6/fC066wJPh0EEEQBPleoWtxQnAd4DqWNThb4EStyR9fCL0RtTngGJVDYlh7o5LSZyA0mPHLbrKHvFrZQWH6ldasQjTrGIIgyA8CCoQJYYmYIBI/y8n8JMsi7TgRXyhtPvZ5jnVhTlY0qAEMdH+1XhdmGzFzofUnN9gzCtD4BwRBkB8KFAgTYiCiHE/MTfK8k2vhd5fDIAe9EW5n2WsF1jlJno5GJbmnV60iCIIgP3xoHGFCjETEF6NwDLtx9OAPWoVrn1kHoP7ecPe1IwpxDOtoUpIyUSBEEAT5r4QCYUJMZKgmSgIAbs7NnjiozpxJkDjxL1Y6mJ8LAOhoUvKHn8X7HBAEQZAfDtQ0mhAzEY7FSKADCsfXTZv0npt6ww4+njqRxnFV0UM+zZV6Lm4pdF31NuuScA6yQhAEQRKDaoQJoXCJpGAsrJntRIbB8Pm0yadXeZsVZzJJkGcmzhYriuW6ctP4uYQzKfFdKC21/jef0hVJF3nLnKWWOYsTT6vLUmzHJ0LpAYzADSOmmaZehhFn8c3qsiSeOKD6Wwmrkx0yATed3YzekI/JtaVQ5KmULCo9/6zSAgAA1NRgB0ZQhN191mkB0BVZC/sImxujUBckBEG+DRQIE+WwKYF2tXvX0I5GJalTTxlu/8boV/9mh03q+Ocv3Xf9lUrJSiRzNdDue/lh21W3GcfM1EJe36t/0EXeetmNiaTVQl7fK4+SKVm2y27UVSW24xPuwCb3LY8Tdk8iyfmiLeFP/0VlFFBpOXJTVejjl80XXWOZuySRUAr5aGT9m3zxNjpnEM6aIl++g5EUPWcpGDcrkV2rHU2Rr9eIJbtxo0VXZQCAccI8y6yFiURiXVOF4m2xneuU1jrcYofREJWSbZp6uXH8nARvAuS6cr5os9xUBTQVN9uYAaOM4+cQFkciaQEAMBaWqktUfzuAGuFKYfKHE9b+508/U35FVtsb1EA7RtKEw0MmZZzVvQvQdTXQDiN+QJCEzU3YXGeRFkGQb0KBMFEOu+JrVbuP/2tvUAaOOTUXtxYJhte9mnTvM2RyJpWeH3jr6aT7n+//AqfrwXf+Zp610DhmJgCAsHs8dz7V8ewvqYw8w8jpfSeFXMT74u9NUy61zFoYX8IOGhvd8oH3ud+47/4b6Uzue7+hj18WKw6773jydE1OC3mD7z/vff63rp8/0vflVa4t9b/5F8PwySmPvoEbLfEMxfJDgQ9X6Cf225fci7O9z6QKtcjGd2O7PrPMvMb+6Kp45FO9zbHtH7c9fZvtshtNk+YDrNe3U0mVR4LvP084kqw/uYEZOAojSAChWHkktvXD6Ja19qvvYAeP66vkjZXhT1dqIZ9p8qW2MRdhFKOFvOKJg+1P32ocM8s6/zrcbOsjuVhWFNv5qVxzgs4fTiWlAwyTGypCa18gk7NMk+cbR1/UR91UV2Th6C7+0BapppR0p5LOFF1TVH87DPuZwtHGsbPZoRP6OmGgJpYf4g9tEysOYSRNOJKApqiBdgwn8Lzh5JgZ7ODxfdeM1UC7VH5Iqi1V2xogF9FVBTdayKQMKqOAKRhOZw/qa++6LjdVSpUlckOF6mvRBR4AgLFG0p1GZw1k8obS2YUA73MQEYRKR5PSVKX622AspMVCOGMkbE7Sk0Gl5VIpWX0nh0JMaa1Tvc1ayKfLEgAAo2jC7ibdaVRqTr/3T5CPqb4WLeSDsRAUOAB03GDGLQ7C7ibdqbihv0ntoaaF/FrYB4VYfO8Ax1UdVzwpuNlOWOx9nLGnc4B8DIo8FGLxBbjBjFE0brJiZP+97XRZhHxUV2Qo8gAAnDFgrAk3mBJpC9FlCfIRKPK6Ip9eiBtMGG3ATZZEbsJ0WYJCDAqcrkidkrO4ydpvcl1VYCwEuQgUeABVAADGGuMHv6+rxJn0uhYL6QIHJUFXJF2RdU8WMJ3LmbkwXdfPYXbft0WLFi1btmzRokWJbMxxnNFoxPo9OxPge+XRUMHS6taMS66zd14OIfj337yL73WxRhwAEP7sNV1V7FffcSrVyw+zQyeapy/op5z7N3J7NyT9cnnnH5LcWOl75dHk37zQV4Mh1LwvPURnD7Jd/vMua2K7Pott+9hz7z96raZAGHh3uRZsd93yBM5+85TS9ejXa2J7vnDf8nhvTZ3cni8iG952XHsfO3h8l1WRgB9uflesKHbe+CCdOaB7WtXbHHj7b7jZ5lj2q+7FU1rrgu/9E6NZx9Jfku7ULmu1SDC87l9yTal94Z3s0EndMxfLDoY+XEFlDrAvuIVwdG2ahrFweP0qsXS/9dIbTBMv6XLlglwk8tW/+UNbLbMXmWdc1fX6AqFwdFdk8xqg65aLrjZ0CXhQE8sOxvZskOvLjWNnm8bPodLzv/GF1pXzh7bwxdvo7ELT+IuZweM6XwIgFxGO7+MPbFK9TcZxc4xjZ1PpeWcy13WlpYYv3sYXbSGcKcaxswzDJnU+MVR/W+jILnCyWK6vYAaNMQyZQOcNJZ0pAMfjmcsNFVJViXjioBYNsYPHMvkjqLTc+PUX8lG1vTG+gdrRTOcNZQpG0FkDSU86RjFAh2qgTWmqlqpKxIpiwmxjBo6mswdRyVmYwQgA0AVO6WiS6yuk6mOar4XKGkhnFFCpuWRSOsAJnDVq0ZDma1HaG+T6crmxirA66YwCMikdN9sJsx2KnBb2qx2NcnOtFuygUrKp9DzSk05YnfHYoHFhLehV2xuU5hqNi1CpOVRSBuFIwmgGAKDLohbyqd5mpa0eI2kyJZtKSsdtLsJkix83LRbWQl7V26y0NQBVJtxppCMJt9hx1ggwDHJRGAupIa/qbcEomnSnka4UwuLATBYMJ+KHTouFtaBXC7RpYT9uthN2F260xvcOoKZEw5jEw1gIclHcZMUtdtxowVkTIE5FdF0SochBLgJjYShyuMGMsybceCroxmMq5CKApAiLA7fYccaAnT4xdB0KHOSjMBaGXBhgGG60YBQTP3OgyOvxmEqQhMWOGy0Ya8IZFsTDkqbFIy7kIpALA13HTVacNWLUmVt5KMSgKEA+gtMG3GzDjWaMNeGsIX47osuSrsiQj0I+eiqH+C5o5j/JOV0WtFgEp1ncYsfNtnhoPFV2RdElHsZCWiSoyyJutuOm+JEhAQC6yEE+pkWDQNcJh4ewOAiLAzOY4rcjuiJBkdf5qBYJamEfjIUxgxk3mE6Vn6TYy26yZPdwbfnWUCBMiO+VR6kJV637Kuu6BzxYpw5G3mZl17ro1Xc6AQC6qrQ+cV3Sr/9Juk5dvpXmGt/KR1MeeaPvKkLbn29y3fQYndX1TYeRje/KtaXu2/7U251mZP2bcuNJ9+1P9rhBdNN7fPE2z91/6+FOGcLA6n9okaD71j/0Vjbh6K7g2uft19wZr6eeKbAshT5aIdeVu255nHSn9bDfaNRisQhHdwbXvmiedrll9qIzvw1Vie34NLplrXX+9eapl/V6Bw1hdMcn0U3vGcfNMU+7nPSkAwCU1jr+4NfcgU2mSfOt867F6F6n5tEVObr5/djOdcbRM4zj51IZBRiGKS11fPFWbv9G0/i5lvk/6xr7O1G9zeH1q6SqY6bxc5gBI3GLA0aDUk0pX7SFcCRZ5y5hh0zo495f9bfxBzbyxdt1kSdTs3GjBfJRpbkGN9uMY2aaJs7ru8la9TZz+zcKh7frikyl52GMQRc4pbUWo1nDqBmm8XPJ5MweE8YPO+QiwvG9UkWxVFcGI0GMZnRVwUiKSs9n8oezg8fRWYV9FB7yUanyqFR9LF5p0xUJYDjhSKLScpn84Wzh6L4LD4WYXFemNNcoLTWqrxXoOhR53GQl3alkciadOTDehN5bcl0SlJYapaVO9TZr0ZCuKQAA3GghHB4qKZNKzyNdqX0UXgt5lbYG1deihf2Qi8QXEhY7YXOT7jQyObPvFg4tElB9rVqgXYuFIBcBEAIAcKMZtzgIm4t0pRCOpO5Vn/hhBwAAqGmxMIyGIB+v95yaYh+jWYw1EiYrbrb1UWeFIg+jQRgLQVE4010OA7jBjLEmwmzHzbbeznkocjAagkJMF3koCUDTAADxuxDMYMJNVsJsO/0b7DkHPga5MBQ4XeSgyMc/O0bRGMXgRgtutOBmax85QD4Go0HIR6DAnaorAwBICmeNuNlOWB2nWox6okuCGvLCaEiLBHSBgyIHAMBIGjOYcKOFsDoImxs32zofeV3XeZ43oRrhBQmE5hkLvtiaP+MqqzvtzFdybA8fC2uTf2IBAAgle2I713l+8ZfOCf2v/5EpGGmecWVvOce2fSTVlLpuerSHdVDrePZXpqmXmyZd0n2ldPJwYPUzyb95ATfbu6+NC3/+hlhW5L7jyc6PvnRFDrz9V12RXDc91nejitJc43/zKSot13rxMio9X1dk4dieyBdv0rlDHYt+gTHdX84IQKdLgxb2hz9dKVWWsEMnkp40NdAuHttDZxXarrq9e1WvOy0SjG37kC/aomsqRhCAoEzj5hgnzkskLQBAiwS4vRuEIzvVjiYdaqQn3TB8inn6ggS75Ki+Fr5oi1RTqgsx3GSlswcZRk2nUnMSSXuqAMEOpaNJFzjMYKJSss/2MZ4W7FBaaqEs4qyJSs7qt+PVmSvyf+iqossSRpJ9XwSR76L7YUe+b99HIETPCM9CWh7dXC13DoStdfKAUafigXBkh3H0jC5JLHOX+Vc9aZ52eY8PP3RFjm75wH3nUz3vDyccP/uN94UHmILhXepeWtgf+Pc/nNc90EcUBADYLv85RrMdy3/pWHw3O3g8wDC5tjS49gUqPd9544P9tuxT6XnJv10R2/6x//U/aZEAAIDOHWpffA9bOKbvhHGEzeW84UHV1yqeOKCF/VRyluWiq8mkjETSAgAIq8O24Bbbglu0SBDokLA6+38G843kTuslP7Ne8jNdU8+uHwoAAADSnWadf93ZpvpGARxJ3dtmz1tyAABGUok8eUIQBAXChGA0o8tSRgF9ZAc3cvqpFnxV0dvqlZnX2AAAuqaK5UW2q2/vkpDOGki6Uvni7cZxs7tny+1ZT+cO6aOeQaVk2y690f/aHz2/fOZ0m5IuCf5XnzDPuJIZMLLfklvn/ZTOLgyvezWw+hkMJzCasf7kBuPYhHp1AgAwirbMXWqZu1SXRYyk+ukK0RPSndpHhTgRhDXRnpw9+hZREEGQ/ynoGpEQwubSQt60YdS2D1U+Co0WHADQXC170imaxQAAcs1x0pPRY+d7y5wl4U//ZRw7q0uF5lR18LY/9b1r05RLlbZ634qHXD9/mHAkqYH2wKqn6OxCy5wlCRaeLRzD/naFFgkACL/dWD0AAGpeQxDkxwoFwoQQzmQ10IETWPYgpvqYOHyKEQBQeUTMH3bq8bVYVsQO6dp/Mo4dNDbyxVtCya4uYyFiOz6lc4Z8o3NgL+xX3xHd8kH73+8ibG4t7LfMXXp6sMRZfISzGeWGIAjyv+N7CYSRSGTr1q1Hjx7FMOzRR7t2A9mzZ89LL70kiuLPfvazq666Kr7wnXfe+eijjxwOx7333jtyZP8tfucZ6UyWq48BAAaNM2xZGxkywRDxax1NysyFp7qBiRXFjsX39pbcetmNoQ9XsMMmn26m06LB6NYPkn65PKHdY5hlzmLz9CtUbwvpSe+jwySCIAhytr6XuUb37t27fPnyI0eOPPfcc11WVVRUzJ8/f8qUKUuXLr311lvXr18PAHjrrbceeuihG2+8cciQITNnzmxpafk+SvVdkO401dsCAPCkU+40cs/66O710RFTjSSFAQC0aFALdtBZvY5rYQvHUEkZ0U3vnV4SWvuCadL8+MCABGE0S6XnoSiIIAhybn0vgfCSSy7Zvn37fffd133VihUrli1bdueddy5atOiRRx559tlnAQDLly9/+umnr7zyyvvvv3/27Nmvvfba91Gq74J0p6mBtvjwmukLrDiBpeXRQyae6jUjVR5l8kf03ZHEvuRebt+X3L4vdUUOfbJSC/m+Y6dEBEEQ5Jw432+fOHjw4NSpU+N/T58+/eDBg7Isl5SUTJs2Lb5w2rRpBw4cOM+l6hdGM4TZrgbaAQA0i0293DJmpgn/z8GTTh7ptwMnYXW673yK2/1F8++u0vyt7jueRF3bEQRBfgjOd2eZ9vZ2l+vUyGKXyxWJRGpra3Vddzqdpxe2tbX1lpzjuMcff/z555/vvPDFF1/MycnpvjHP8xDCczKgHgAAPBnR2jKK7WHwrFBxGJ9wSSwW6ycHk9N4+1PxWiQPAeh3+/9OHMeds2OOJAwd9gsCHfbzT9d1QRASnwrGaDTieD9VvvMdCI1GoyiK8b8FQSAIIh4CJUmKT9AgCILZ3OvstwzDLF68eMaMb4xbz83N7XGWAQzDztXMMgAALWsA5m/pXjY10B7VZFvuoLMa7v0jput6H98g8j1Bh/2CQIf9/NN1Hcfx/+6ZZTIzM+vq6uJ/19XVpaenu91uk8lUV1fndrvjCzMze55NEQBAkuSwYcNmz+5hcPr3jc4cwO3f1H25VHmEGTAKRUEEQZD/UufvGeHq1avr6uoWL168evVqSZIAAG+88cbixYsxDFu0aNHrr78OAIjFYmvXrl28+CzeSXve0FmFcn159+VSRTEzcNT5Lw+CIAhyTnwvgbCmpsbpdF566aV+v9/pdE6ZMgUAcP/99xcXF1977bXJycnDhg0bN25cWVnZAw88AAB44oknNm7cOHny5GHDho0fP/6yyy77Pkr1HRF2N0ZSqrf5G0shFCsOs4VjL1ChEARBkO/qe2kazcnJqa6uPv0vQRAAgNLSUrP5/7d3pzFNrAsYgD8YoNDSDgVsBYJUi6AibgfBHc09Imq8iIhL3GL0DzHGxBgXjBoVNG4x6pFoMLnEKAnuG0IMICZGCeAFmloElKgFZRErUltKgd4fk3AbT67KLfLRmff5NTMdpi/NpG+ms3zeHh4eeXl51dXVZrN54sSJ3Esqlaq6urqqqsrHxyc0NPR3RBoQIvV4yxut/c1/Xe9rGNbv/35uGQAAUPdbitDV1VUu//6pm33XhRJCxo4d+92r7u7uUVE/GlV8KBCFTbLU/Nt+UKTO6vK/j0wLAABOZLDvI3RqnuF/dNZUcLfVc8zaEs+IaIqRAADAQSjCfmB8/N18h1veaLhZa/P7XuMX0cgIuqkAAMARKML+8fpj7rfSAm762/N88dQ/ceMEAIBTQxH2j2Tqn5260p7PLT2GFlNZgffsf9JOBAAADsF4hP3jKpFJ5yW1/SuNMK7esYkM60c7EQAAOARF2G/Sf6xw9WaJzSaJWfDztQEAYGhDEfafi4tkWjztEAAAMDBwjhAAAAQNRQgAAIKGIgQAAEHjcxGWlJR8+PCBdgrBKSws7OjooJ1CcO7cuUM7guAYjcaCggLaKQSnqanp+fPnA7tNPhfh6dOny8rKaKcQnJ07dzY2Nv58PRhQGzZs6LV7+B8Mgo8fP+7YsYN2CsF58eLFyZMnB3abfC5CAACAn0IRAgCAoLnYbDbaGfohJSWlsrLSz++Xnufy8uXLgIAA++GfYBCUl5dHRER4eXnRDiIsT58+nTVrFu0UwmI2m1++fDn0x4/jGYPB0NjYOH78+F9c/9y5cyNHjvzxOk5WhB0dHU+ePKGdAgAAnMOcOXNkMtmP13GyIgQAABhYOEcIAACChiIEAABBQxECAICgoQgBAEDQ+DkMU09PT3p6em5uLsuyqampc+fOpZ1IEPbt21dTU8NNh4SEnDhxgm4eHquvr799+3ZVVVVQUNDRo0e5hXq9fteuXbW1tZGRkceOHVMoFHRD8k9dXd3du3c1Gk1ISMjhw4cJIRaLZd26dX0rLFmyxH4WBkROTs6NGzfevn0bEBCwdevW+fPnE0K0Wu3evXsbGxtnz56dlpYmkUgceQt+HhGePHny9u3bFy5cWL9+fUJCQkNDA+1EglBUVKRWq5OTk5OTk+Pi4mjH4bPy8nKdTtfd3V1YWNi3cOnSpQqF4vLlywzDrF69mmI8viotLX316pXFYnn8+DG3pLu7+/r160uXLuV2+4kTJ9JNyEv5+fkJCQkXL15csmRJQkJCWVlZZ2dnXFzczJkzs7Kyamtrt23b5uh72PgoODg4NzeXm05KSjp48CDdPAIxY8aM+/fv004hIJcvX546dSo3/ezZM7lc3tXVZbPZjEajl5eXTqejmo63MjMzZ86cyU0bjUZCSGdnJ91IwrFo0aIjR45cvXo1MjKSW1JXV+fp6WkwGBzZLA+PCL98+aLX66Ojo7nZ6OjoqqoqupGE49ixY4sXL961a1dLSwvtLMKi0WgmT57s7u5OCJFIJOPGjdNoNLRDCcXKlSuTkpLOnDljtVppZ+Gzrq4unU4XFham0Wj6vuFDQ0PFYnFtba0jW+bhOULuK9jHx4eblcvl+FIeHGvXrg0MDHRzc8vKypo2bVpVVZVUKqUdSihaWlr69nlCiK+vb3NzM8U8AuHm5paenj5lypT29vb09PTS0tKrV6/SDsVbO3bsGDFiRGJiYm5urv2zM+VyuYN7Ow+LkGVZQojJZOIeq2M0Gu2/IOD3SUlJ4Sbi4+PDwsLy8/OTk5PpRhIOlmVNJlPfbEdHB3b7QSASiVJTU7npSZMmjRkz5vz58/jkf4fDhw8/fvy4uLjY1dV1wPd2Hv406u/vL5FI6urquNm6ujqVSkU1keAwDKNUKtvb22kHERCVStW3z/f29tbX12O3H2SBgYGEEOz2v8Px48ezs7MLCgq4ERfs93aDwfD582cH93YeFiHDMKtWrTp79iwh5MOHDzdv3lyzZg3tUPz39etXnU7HTd+7d6+iogKDIQymBQsWtLe3P3z4kBCSk5MjFovx+Q+CN2/etLa2EkK6u7sPHTqkVqtHjBhBOxTfnDlzJjMzs7CwUKlUcktWrFjx7Nkz7uKPjIyMGTNmBAcHO/QeA3Ehz5Dz8ePHmJiYoKAgHx+fffv20Y4jCHq9XqlU+vn5KRSKoKCg7Oxs2on4rKioSG5n1apVNpvtwYMHCoVi1KhRgYGBxcXFtDPyUF5env3Hvn79+mvXrkml0qCgIKlUGh0dXVlZSTsjD40ePdr+Y9+5c6fNZsvMzJTL5SqVKiwsTKvVOvgWfB59orm5WSqVisVi2kEEpLW11cXFxd/fn3YQgbJara2trUqlkmEY2lmEwmq1fvr0SSaTOXhPN/SXxWJpa2sLCAhwcXFxcFN8LkIAAICf4uE5QgAAgF+HIgQAAEFDEQIAgKChCAEAQNBQhAAAIGgoQgAAEDQUIYCTqayszM7Opp0CgD9wHyHA0LJ///4rV678r1d3797d0NBw6tSpb9++DWYqAB7j4egTAE5t+vTpHh4e3HRFRcWtW7c2b94cEhLCLYmMjBwzZoy3tze9gAB8gyNCgKErKytr48aNT548mTNnzo/XbGlpYVlWJBJxsz09PQaD4e/PurNarW1tbTKZDI8eBOiDc4QATubEiRNqtZoQkpqaGh4eXlRUpFarlUoly7KHDh0ihPz1118KhWLYsGHDhw/nxqMghJjN5m3btvn7+wcEBMhksoULF+r1epr/BsCQgZ9GAZxMR0dHU1MTIcRsNjc0NGzZsiUtLS00NPTSpUsHDhzQ6/VarTY7O9vb23vPnj1r1qx5+/atTCZbvnx5SUnJ8ePHZ82a9f79++3bt8fFxVVWVvYdRAIIFooQwImZTKaMjIx58+YRQiZMmJCTk3Pt2rX6+npu/NLTp09HRUUVFxeLxeKHDx/eunUrMTGREBIRERESEhIREXH//v3ly5dT/h8AaEMRAjgxT0/P2NhYblokEqlUKl9fX64FCSHh4eGEEL1e/+7dO4ZhRCJRQUFB39/KZDKtVosiBEARAjgxlmVdXf97pt/Dw0Mul9vPEkIsFktzc7PNZlu7dq393zIM097ePmhRAYYsFCEA/7Es6+7u3tTU1HdjBgD0wVWjAPwXGxtrsVju3r1LOwjAUIQjQgD+S0xMjImJSUlJMZlMixYtEolEr1+/vnHjxrJly6KiominA6AMR4QA/McwTF5eXnx8/KZNmxQKBcuyUVFRjx49kkgktKMB0Id/BekIAAAAW0lEQVQnywAMXTabrbe3l2GY7xbabDb7a2R+3devX2tqajw8PIKDg319fQcoJoBzQxECAICg4adRAAAQNBQhAAAIGooQAAAEDUUIAACChiIEAABBQxECAICg/QcbVHnLXrUCWgAAAABJRU5ErkJggg==" }, "metadata": {}, "execution_count": 6 } ], "cell_type": "code", "source": [ "p = plot()\n", "for b in get_components(Bus, sys)\n", " voltage_series = get_voltagemag_series(sim, get_number(b))\n", " plot!(\n", " p,\n", " voltage_series;\n", " xlabel = \"Time\",\n", " ylabel = \"Voltage Magnitude [pu]\",\n", " label = \"Bus - $(get_name(b))\",\n", " )\n", "end\n", "img = DisplayAs.PNG(p) # This line is only needed because of literate use display(p) when running locally" ], "metadata": {}, "execution_count": 6 }, { "cell_type": "markdown", "source": [ "We can also explore the frequency of the different generators" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "DisplayAs.Showable{MIME{Symbol(\"image/png\")}}(Plot{Plots.GRBackend() n=5})", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdZ2AUVdcA4DN1+2az6b0REkIglAAJhB56CQiCgCCIvgg2lKLvZwFRkWIBASkqIEiQJhBeUEKXooSaEEIgIb1vkk2yfXfK92NwiQFBkc2quc+v3buzM3cmIYdz5849GM/zgCAIgiAtFe7sDiAIgiCIM6FAiCAIgrRoKBAiCIIgLRoKhAiCIEiLhgIhgiAI0qKhQIggCIK0aCgQIgiCIC0aCoQIgiBIi4YCIYIgCNKioUCIIAiCtGgtKBAyDHP9+vU/uDHHcQ7tDCJA17l5oOvcPNB1bh6P/Tq3oEBYXV3dv3//P7ixyWRCq7A2A3Sdmwe6zs0DXefmYTQaH+91bkGBEEEQBEHuhQIhgiAI0qKhQIggCIK0aCgQIgiCIC0aCoQIgiBIi4YCIYIgCNKioUCIIAiCtGgoECIIgiAtGgqEzlT7zUcNR7Y7uxcIgiAtGunsDrRo5pyrVH0NDJjg7I4gSItQVFRUWlrquP2bTCaxWIxhmOMO0cKpVKo2bdo89t2iQOg0nNnAGXWMxoH/LBEEaWzVqlU7d+709fV10P55nkdR0HHq6+v9/PyOHDny2PeMAqHTsPU1pIcfW1vJMzaMpJzdHQRpEV566aV58+Y5uxfIozhy5MiyZcscsWd0j9BpOF0doVDhChXbUOvsviAIgrRcKBA6Daevx2UuhEzF6euc3RcEQZCWCw2NOg1n1OEyJW81c4YGZ/cFQRCk5UKB0Gk4sxEXS3mpktOjQIggCOI0KBA6DWfSYxIZztg4o87ZfUEQBGm5UCB0Gt5sJJRqYBjOpHd2XxAEQVouNFnGaTizERdJMImMMxud3RcEQZCWCwVCp+EtJkwsxSUyHmWECIIgzoOGRp2Gt5oxWozzPGcyOLsvCIIgv8tisXAcJ5FInN0RR0EZodNwFhMuEmNiKRoaRRDEoSwWy4wZMxiG+bNfzMnJCQsLU6vV7u7u7du3P3fuXJMNPvnkk549e3p4eKxcufIxddYJUCB0mjsZoUTGo0CIIIgjMQyzYcMGlmX/7Bc9PDx+/PFHg8Gg0+nGjRv39NNP37vB/Pnzo6OjzWbzY+qsE6BA6DS8xYzRYoyWcBaTs/uCIEiz4nn+o48+ioiI6NixY3Jy8tChQwGgqqpq6tSprVq16tKly65duwAgLS3tlVdeWbJkSUhISOfOnY8fPw4AJpNp7ty5UVFR7du3/+STT3ier6ysTEpK2rJlS9u2bZ9//nmtVvvUU0+Fh4eHh4fPmjVLp9O98sorADB06NABAwZkZWXp9fqXXnopPDy8c+fO69evB4Da2tqhQ4cmJydHR0c/88wz9n6qVKrw8HAAwHF88ODBVVVVPM83PpEpU6aMGDFCqVT+qdOfPHnyhQsX7G/z8/NHjhxps9ke+Xr+RegeodPwNgtGizGe4y0oI0QQ5zAyUGflH77dX6OgMMVv19VPTk7esmXL4cOHVSrVlClTjh8/znHc8OHDR48evW7dury8vKFDhwYHB1dXV69fv37p0qUZGRl79+6dPHlycXHxjBkzaJr++eefDQbDE0884enp2bNnz4MHD3p6eh4/fpwgCACYPn36pk2bLBbLrFmz3n///Q8//HDjxo3btm0TiUQKheL555+vq6tLS0srLS0dOnSop6dnXFzc4cOHvby8jh49KuyhsY0bNzY0NGzfvn3JkiV/vbxGWlragQMHvvzyS3tLcHDw9evXDx48OGrUqL+480eDAqHT8DYLRokAx3gzyggRxDn2F3Jzzv/pAcM/6+W2xH9jfjP89t1337366qvBwcEA8N///jc1NfXChQsVFRUvvPCCyWSSSCQjR47cu3dvQkKCn5/f7NmzAWDy5MkvvPBCTk7O9u3b8/LyOI5jGGbixIm7d+/u2bMny7LLli1zdXUV9t+tW7fjx49XVlb6+vqeOnVqwYIFAODq6ioSiViW3bZtW2Zmpqurq6ur68svv7xly5a4uDiO45YsWeLl5QUAQtpnj3mXL1+ur6+vq6sT5ss0+fQB7rvl8ePHu3TpIhaLAaCgoCAwMBDH8YSEhOPHj6NA2OLwVgtGizCc4Kwm4HlAZcwQpNlNCMMnhDnhDpFGo/Hx8RFeC/URi4qKhPtw9m0GDhwIAEJkAgAMw6RSaV5eHoZhzz77rH2z1q1bA4BCobBHwYyMjKFDhw4fPjwoKMhkMtXW/qa+TXV1tc1mCwwMFN4GBQXt3r0bAGiaFo718ccfL1q0CACeeuqpDRs2AMDq1asBIDs7u3379iEhIUK4UqvVBQUFDzjHo0ePPvHEEwAQERHReCC0uLjYz89PeB0ZGVlSUuLu7u7v75+VlfUnruBjhQKhk/A8zzIYQQKGYSTF26wYLXJ2nxAEaSZBQUHZ2dlJSUkAcOPGDQAIDAyUSCQ//PADSd79s3zo0KEmX/Tx8RFSOk9PT3tjQUFB46xry5YtzzzzzIcffggAycnJqampOI4DAMdxAODu7i4SiQoKCiIjIwEgPz/f398fGuVtc+fOnTt37r19Dg0NBQBvb++Ghj+0PHJiYuJ9t3RzcyspKQEAjUZjsVhKS0vd3d1ramrc3Nz+yG4dAU2WcQ7easYokZAFYrSYt6LRUQRpQWbNmvXpp5/u2rUrNTX1gw8+AIAuXbqEhoa+/PLLpaWlNTU1qampaWlp935RLpdPmzZt2rRpOTk5dXV1586d+/HHH5ts4+bmlpaWVltbe+3aNaGSrUQi8fb23r1796VLl8xm8zPPPDN37tyysrK0tLTPP/+8cX7ZxNGjR1NSUnJyctLT059//vnw8HAhAbW7cePG0aNHNRpNbm7u0aNHy8rKHnruAwcOPHHiREZGxldffRUTE7Nx48bbt28fOHBAyICdAgVC52icAuIiCWf5B888RhDkz+rdu/fWrVv37du3a9euN998083NDcfx//3vf8Ldwd69e3/99ddSqdTd3b1Lly6NvyWVSr/44ouEhIQpU6bEx8cvXryYpmmJRNKnTx/7Zi+//LK/v398fPzcuXPffffd7t27A0BycvLhw4fffPPNwsLCFStWREVFDR06dM6cOUuXLh02bJhIJOrXr9+9/RSJROvXrx8xYsS0adNkMllqamrjhBUADh8+vHTpUplMVlBQsHTp0szMzIeee0JCwnvvvTdlypSzZ8/+8MMP5eXlSUlJ06dPHzt27CNfz78IazIX9l+soqKiQ4cOFRUVf2Rjg8EglUr/+vyo38Nqq6o+n+uzYAsAVC59QT3lTcon2EHH+jtz9HVGBOg6C+bNm+fp6Tlv3jxndwQ4jjObzVKpFAAWLlyYkZHx/fffO7tTf3dHjhxZtmzZkSNH9Hq9TCZ7jL/P6B6hc/A2K0bemU+NicQ8yggRpCWxWCytW7cODw/XarUsy6Io6FwoEDoHz9gwihZeY7QE3SNEkBZFIpHk5+fn5+fLZDL7FErEWVAgdA6esWLknUCIi8RocRkEaWkoimoy8QRxFjRZpjlYGxhL3W9WD+IZ292hUVrMW9HQKIIgiHOgQNgcjJWWmmu/eZ6Gt1nvDo1SIt5qcUa/EARBEBQIm4VJ0zQQAmODxpNlUEaIIIjD2Gy2pUuXPkL1CQD45ptvoqOj3d3d4+PjT5482eTTH374Yfr06XFxccLz+/9QKBA2B1OVpSHPyDF3n1RpfI8Qo8UoI0QQxHGsVuubb775CPUIMzMzZ86cuWHDhqqqqueeey4pKalJuaXS0tKoqChvb++ioqLH19/mhgJhczBprDzH23R3fwt/e49QxKGMEEFamOTk5IEDByYlJR07dmzSpEkAYDKZFixY0L9//7Fjx549exYArly58tZbbyUnJ/fp02fUqFEZGRkAwHHcqlWrhgwZMnz4cGGZUI1G88wzzxw9enTo0KFvvfWWTqd74403+vfvn5iYuGTJEpvN9tZbbwHApEmTxo0bd+vWLYZhli1blpiY+MQTT/zwww8AoNVqJ02adOLEiWHDhs2fP9/eydu3bwcEBHTv3h3H8aeeeqqhoaGqqqrxWTz33HNz5swJCwv7U+e+dOnSlJQU+1udTvfUU0/V19c/8sX8i9Cs0eZgMzAYjll1jMj1TvBrHAhxWszo/9DafQiC/DscOnTojTfe+Pbbb11dXWfPnn3u3Llt27aNHj06NDR09erVhYWFY8eOPXnyZHl5+apVq55//vk1a9bs27dv7NixN2/enDt37q1bt5YsWWI0GqdNmyYWi6Ojo7dv324wGBYtWiSVSk0mU2Rk5NSpUy0Wy7x581iWnTx58sqVK+fMmUPTtJ+f3xtvvJGWlrZq1arS0tLJkyfv3r07IiLiu+++MxqNCxcuFB7zF/Tv358kyU8//TQ+Pn7r1q0jR460r9b9yOrr6xctWtR4ATmFQlFYWPjdd9/NmDHjL+780aBA2BxYMyd2o36TEdoaZYSUiLehoVEEcQLD+cPaHSsdfRRl//HKYc80bvn666/nzJnTu3dvAHjnnXeGDBly9erVa9euHTp0CMfxNm3aTJs2LTk5uVu3bkqlcvny5TiOR0ZGvv/++0VFRWvWrCkrKxOWqH777bc3b9788ccf22y21atXe3t7C/ufMmVKdnZ2bW3twIED9+3bJxRy6tSpk0gk4jhu7dq1P//8c0xMTIcOHV555ZW1a9euWLGC47gVK1YEBQU17qdMJnv22Wc//fTT4ODg4uLilSsfw7U6efKkWq1u27Zt48YBAwYcPHgQBcJ/M9bMyvwk1kaBENhGk2VotLIMgjiHrOtAWZdEhx8Ga3oTqqSkJCQkRHgtVHXIzc2tra0VysELxowZAwD+/v5C7QiCIORy+Y0bN1iW7dq1q32z9u3bA4BMJrNHwYKCgsGDB4eGhgYEBFRVVTUZzNRoNCaTKSIiQngbGRl58OBBAKAoSsj2Vq9eLSzVPWbMmO7du69duzY7O1sul9++fTsmJub06dNC0QwAuHbtmouLy++ddGFhYc+ePQGApunc3Fx7e35+vj2tjI6O3rhxY9euXYOCgvbu3ftHrqUjoEDYHBgzJ3alGNPdKVu/eXyCRhkhgjgJhgHWtCB7M/D19S0sLBReC1X9vL29vby8cnNzGy+heejQoSYranp4eADAlStXlEqlvbGgoKBxWfl169YNHTr0008/BYC9e/fOnz9f2ImwsrRarSZJsry8XIjE5eXlQhlCHMeFzZ577jnhnqVIJFq8eHHnzp3lcjkAhIWF+fv75+XlpaenCwdq3Id7BQQECFs2OQWlUmkwGITXlZWVlZWVAKDX61Uq1R+8eo8dmizjcDzH8wxPu1Bs40DIoKFRBGm5pk6d+umnn6alpd26dUsow9S1a1e5XL548WJhbmd2dvZ9C9W6uLgMHz589uzZRqMRAEpLS8+fP99kG4qiiouLWZatra1dvnw5AEilUldX119++UWr1WIYNnr06EWLFtlstrKysjVr1jSuBgwAYrFYKF4vlUq7dOly/PjxmzdvAsDhw4cLCws7duzo+isMw+rq6vLy8urq6hoaGvLy8rRarX0/OI4LmzWJcAkJCdevX79x48bp06eVSuXevXsZhtm7d2+vXr0ey7V9BCgQOhxr5ggRTkpwxvw7gZAWoaFRBGlRkpKS3n333Xnz5r344otTp05VqVQ0TR88ePDKlStBQUFeXl7Tpk1raGiQSqVC/XpBUFAQRVGbN2+maToqKsrLy2vIkCHFxcUkSQYHB9s3e+WVV2pra319fXv37j1x4sSAgAAAWLt27TvvvNO1a9dr16598cUXJpMpMDAwISFh6tSpEydOJAjCPlTbpJ9z5swZNGiQm5vb66+/vmXLFmEg127Hjh0DBgw4efJkWlragAEDNm/e/NBzb9269ZIlS/r37z9t2rQdO3ZoNBovLy+5XH7fasDNA5Vhur/HWLbGorVlrM4LGuJVd1PfepK/0Fi3bwOpcpf3GQ2AWYtv1e1c5Tln1V8/1j8OKg/UPNB1Fvx9yjAJf3iFn8iaNWtSUlIOHz7s7E793aEyTP9grJUjaJyUEI0zQmCsPEGe+G5EdMJbKtqPQw/UI0hLYjKZOnbsGB8fX1tbe/ny5f379zu7Ry0aCoQOx9k4nMIJMc6YOHsjzzAGW1Vt+aWSm3tdO87hbWhoFEFaEKlUeuLEiezsbJlMFh0dLZPJnN2jFg0FQofjbDxOYaSYYC2N7hGyjN5cLpH71Gtu4DRadBtBWhxfX9/G9/8QJ0KTZRxOyAhxGmctdzNCYG1mW61nUC99XT5GiXib1XkdRBAEadFQIHQ4ISMkRDhn+c3QqNlW7+rZjrEZOIxDj08gCII4CwqEDnfnHqHoNxkhzzIWa71I6imR+5qMlRhOoKQQQRAHYRhm165dHMc9fNN7vrhp06aXXnpp3Lhx960vsWfPnjlz5owbN67x2qH/OI4KhKWlpStXrpw6derMmTPv/fS7777r2bNnXFzc2rVrhRaGYRYuXBgbG5uYmHjixAmhUaPRTJs2rVOnTuPGjRMWX0hPT58xY0ZcXFyvXr2WLVtms9kAYN68eeN+9c477zjojB4Zx/A4iRE0zjE82J9VYRmbrUEkUYtlHmaDBi0ugyCI41gslnHjxgl/MP8Us9mckpLi7e29Z8+e+1aH+P7776VS6ZkzZ0pKSh5HT53DUZNlbty4ceXKFeER0SYfnT17dtasWd99951SqXzyySc9PT3HjBnz8ccfHzhwYOPGjVlZWaNGjcrMzAwICJgyZYqXl1dycvLmzZuHDx9+7dq1M2fOhIaGTp8+Xa/Xv/jii3V1dYsXL05NTR09erSwhKu7u7uDzuiRCYEQMMApjLVyhAgHAJ6xWW16WqIWST3MhipCKFIvVTi7swiCNJNTp059++23YrH4P//5z44dOz744AOO4zZv3nzmzBlXV9cXXnghPDz85s2bx44da9u27aZNm1xcXObNm+fv7w8AKSkphw4dIghi8uTJcXFxWq12xYoVY8aM+eKLLyIjI2fMmLFx48aLFy/iON6/f/8JEyZ88cUXAPD2228TBDFr1qzAwMAdO3YcOXJELpdPnTq1Q4cOOp1u6dKlEyZMWLNmTWhoqP3ZdrlcLiwB+t577933LLZt2wYAe/bs+eMnzvP8woULZ8yYYZ8rdOnSpfPnz8+aNesvXM6/hnek1NTUgICAJo2TJk164403hNeff/553759OY4LCAg4dOiQ0Dh27NiFCxfm5OTQNF1XV8fzPMuyXl5eJ06caLyfjRs3durUief59u3bN/novoQl9f5gz/V6Pcdxf3DjBys7XZ27p4zn+fPv3rA02ITGyhWvHVgbbdSVXT72Zu6Vr8vfn2arKnksh/tneYzXGXkAdJ0Fc+fOXbZsmbN7wfM8f/bsWQ8Pjy1bthw4cKB79+4ikYjn+SlTpiQlJf34449r16718fEpKSk5ePCgm5vbpEmTDh48OHPmTOEv3pIlS7p27ZqSkrJ9+/bAwMAzZ87k5+fTND1w4MBdu3adOnWqtLR0wYIFP/744759+zp27Lh69Wqh+N+2bdt27txZXV390UcfRUVF7d+/f82aNa6urpcvXy4rKyMIYsCAATt37rzvn1OSJDMyMn7vdNq0abNnz54/eO5Hjx718vKy2Wz2lpKSEpFIVFZW9uAvpqamJiYm8jyv0+ke7++zEx6fyMjIeOKJJ4TXXbt2XbRokVarLS4u7tKli9DYpUuX8+fPx8TEhIeHC0ub4zgeGxubkZHRp08f+34uX75sX0B9wYIFcrk8JiZm7ty5arW6Wc/nYe5khAC4MF9GyPoYhsH0lMhFJHGzmGrkNJo4iiBOcKLwzIarWxx9lKTWQ55qM7pxy6pVq1577bXJkycDAIZhY8aMyc7OPnTokBASAODmzZubNm3q1KkTQRAbN26kaToxMVEul5eXly9atOjGjRtCAQedTrd69eqPPvrIarWuXbvWvv7ZwoULDQZDZWXlq6++unHjxkOHDgHAmDFjhIi7ZMmSH374IT4+HgAKCws/++yzpUuXsiy7cuXKNm3aOPpq7Nu3b/DgwSR5N/r4+fm1adPm0KFD06dPd/TR78sJgVCj0dgrd7i6utbU1AjLntkXZnV1dRVKhzReqtXV1VVYpFxw7NixrVu3Xrp0CQCef/754OBgHMfXrVuXkJBw6dIliURy30Pr9fom6+nNmDHjpZdeundLo9HIcdxjWcLHbLRwHKfX6zEKdFo9I6YBgGEsPMGYLRzgMkNdnitBGuvrCKX+rx/un+UxXmfkAdB1Ftx7k6ybb+cIt1aOPq6cbvq8fH5+/vjx44XX0dHRAJCVlaXT6aKiooTG+vr6kSNHdurUKTg4mKZpAKBpWqlUXrt2zWQy9e3bV9hMWDIUAKRSqT0K1tTUjBkzpqamJiAgwGq1lpeXNz60RqOpr6/v0KGD8LZTp04rVqwAAJIkhdRiy5YtGzZsAIDBgwe//fbbTXp+4sQJYSpG27Zt169f/4Cz3rNnz2effQYACQkJS5Yssbfn5uYKMbiiomLYsGHCn/HQ0NCcnJyHXUgQ/pYaDAae5//g77NUKhXqWD2AEwKhUqkU1k0HAGHJOCGHMxqNQlEPoR6Hi4uLfTMA0Ol09rj4yy+/TJgwYc+ePWFhYQBgj2SJiYlBQUEnT54cMmTIfQ8tlUqPHj3auEWtVgsVRprAMOxxrc1YixtBCnK5nBKTIlIsl0sBQMubKVoul8sVKm9dTTopdhGTuOh+Pfl3e4zXGXkAdJ0FFEU1aZFSEil1//83O5S7u7u9TKCQCbi6ugYHB2dnZzfeTKjT27hFqVSSJHn9+nWxWGxvLCgoaJxgff75561btxaC2cGDB4WqvHYuLi44jmu1WiFh0Gq1rq6uAEAQhHCswYMHx8TEAMB9R9c6deq0Zs0aAHjoaji9e/du1aqVcMTG7VKpVPgfSUVFxbVr12w2G0VRVqv1jyyvg+O48Bf78a416oTHJ0JCQm7duiW8zsnJCQkJ8fDwkMlkjRuDg4ODg4Pz8/Pt/4MTtgSAixcvjho16ptvvunfv3+TPdM07ebmdt+pTQIcx8N+S/gNcKi7Q6MUztnuTF9mGTNByQGAFqutJi1G0WhoFEFajieffHLVqlUVFRUGg2Hp0qUA0LVrV5PJtHXrVmEDrVZ738cV3N3d4+Li3n//feFZCLPZbP/LaWcymXieBwCLxbJq1SoAkEqlMplMqIAoEon69+8v1JrX6/Vffvnl0KFDG3/d09MzJiYmJiZGKFvRhIuLi/CpEOQewN3dXdiycWUMAIiNjT1y5AjHcUePHlWr1SdPnmxoaPj5559jY2MfvEPHadZAuHjx4pycnEmTJm3cuFGv1zMM88UXXzz99NMEQUyYMEH4gZWVle3evXvSpEldu3b19PQUfi2OHj1aXl4+bNiw9PT0ESNGbNiwwZ7z1dbW2v8PlZycnJ+f37179+Y8qYfiWQ4jMAAgGi0uw/AWkpYBAC1WWc1ajBKj5UYRpOWYPHnymDFj4uPju3bt2qdPH7lcLpPJ9u/f//nnn4eFhbVt27Zjx463bt2iKEqhuDuZXKVSEQSxbdu2y5cvBwcHt2/fPjw8/NSpUziON76RNHPmzJMnT0ZFRbVr165Tp05KpRLDsA8++GDQoEFhYWFXrlxZv3796dOnW7VqFR4eHhsbO2PGDKF24H27Gh0drVarFQpF79691Wp1dXV1409HjhypVqsrKiqee+45tVp9b3HEe73wwgtCTrJx48bk5ORnn302MjJy4MCBgwYNetTL+Zc9xok3jWVmZro20rdvX57n/fz8UlNTGYaZOnWqWq328PBISkoyGo08z1dUVMTFxfn5+alUqnfffVfYydmzZ/39/YWUMSUlhef5uXPnNt5tZGTkrVu3PD093dzc3NzcgoOD9+7d+3tdctas0dw9pWWna3iez95aXHVRKzTeWDj4RPJQnuf1dQU/fN215ttlhrSjj+Vw/yxoNmPzQNdZ8PeZNdrYt99+m5CQYH+r0+lqamoe+i2z2VxeXv57n3IcV15ebrFYHrAHrVb74A0cqqamhmEYnufNZrPwdMBD/fNmjbZt27a2trZJo/2Jy02bNjU0NDAMYx+D9vLy+vnnnysrK5VKpX2qS/fu3QsKCjQajZubmzC4v3z5cqHgcmOVlZUajYYkyWYY53wEPMNjpJARYqztzhP1HG8jSDUAUCKV1VyHydED9QjSgphMphEjRvTs2VOj0ezcuXP79u32j+47a+FeIpHI29v79z7FMOwBnwqaFI5vZvY//iKRSJgo60ROqz4hzItpwsvLq0kLQRAP/XECgIeHx+PplgNwLI8TGADgNM5Zf71HyFkpkQwAKJGCsRmBongrGhpFkJZCLBa///772dnZkZGRb775pvCYPOIsqAyTw/Esf/ceoT0Q8jaSlgMAhuEULWMJIFBGiCAtBoZh8fHxwlMEiNOhRbcdzj40ejcj5HkWYwj6zgAISStZggMrmjWKIAjiBCgQOpx9aNQ+a5TnWA7nSUoqbIBTyjrGhu4RIgiCOAUaGnU4+9AoTv/6HCHLcgTYA+F1vfJsre1VX5QRIgjiECzLnjhxol+/fg9dY6WJioqKbdu2Xbx4EcOw/v37P/PMM42f3AeAU6dOXbx4UaPRzJw5Mygo6LH2uvmgjNDh7t4jpO7MGuU5hsV5kpIBQKaW12NKFxFTWo8yQgRBHMJsNg8YMOARyjDt3bs3MzNz5MiRw4cPX7JkyZtvvtn4U47jXn311aysrJUrV5aWlj6+/jY3lBE6HMcCTgA0vkfIMBzOE5QUAM5U8CqZ0huzVWv+dM1MBEH+ubKzs/fs2SMSiSZOnPjDDz8I600fO3bs7NmzKpVq4sSJ7u7uxcXFly5dioyMFOrWPffcc8J8+8uXLx8+fJggiLFjx4aGhup0uj179gwYMGDLli2BgYHjxo07fPjwpUuXcBzv166DL1QAACAASURBVK9fjx499u3bBwBff/01SZJJSUleXl7nzp07duyYXC5/8skn/f39jUbj9u3bhw0btnnzZl9f3ylTpgidnDlzpr2mrFQqfeWVVz7++GP7KeA4fvXqVQAQ9v8HCcV+J0yYYH9Q5PLly7W1tYmJiY/hsj4SlBE63L2zRnmW4XGeICUAkF7Lq2QKN4lVb0QZIYK0FJmZmT179uR5XiwWjxkz5sUXXwSA//u//3v77bd9fHzKy8u7dOlSW1t77dq1F198cc6cOZ6enqdOnRo1ahQAbN68eeLEicKKM7169crMzKypqZk5c+bEiRNpmpZKpeXl5Xv27PHx8VGpVJMnT96xY0eTo2/atGn8+PFCJYPOnTvn5ubW19e/8MILTz31FEVRUqn0vn0uKiry8/P76+d+8ODBpUuXNl5Z1GAwTJo06RES1scFZYQO95t7hNZf7xHiPEGKASC7jh8mV7pYa7UW4AFa+qLICNK8tDd0JSeqH77dX+PRSeUd95vlPj755JMZM2YItR28vLwmT56cn5+/bt26goICIeerra3duHFjVFSUyWTauXOnTCabMmWKSqWqrq5+/fXXz5w5I9SpoGn6k08+WbBggdlsXrVqVfv27YX9b9q0SXgRGhr62Wef7d+/HwCmT58uPLr+3//+d+vWrQMGDAAAvV6/fPnyhQsXMgyzfPlyezm8JvLz89977717Y+oj2LVr14gRIxovmZ2QkMCy7MmTJ4UuNT8UCB2O53gM/00g5DmGw3iCFAHA7QbwCFIQtWVynsjYWR7UUaEKb3E1KBDEWWR+koABno4+iljdtOrFzZs3R44cKbwWFpvOyMhgGGbMmDFCY2FhIcdxUVFRrVq1EpInuVzu4uKSnp5eX1//6quvCpvV1NQIZSjEYnG7du2ERqPROHPmzLNnz4pEIo7jhOW57WpqaiorK+1rMvfo0WP16tUAQBBEp06dAGD//v07d+4EgISEBGFctKysbODAge+++25iYmJqauo333wDAJ07d3799dcfcNa7du0Shkz79evXuNBgdna2cPTs7OwFCxbs2LEDw7Dw8PAbN26gQPivdZ/JMqwQCCU2DqrMvLtcqdWYFWxkw019zs2G2LdaC4ETQRBHo5UkrXRONTp7nRzhhUQi8fPzEyLQnb7R9KlTpwiCsLdgGCYSiUiS3LZtm72kFEEQtbW1NE3bc6yVK1cajcabN28SBJGamiqMu9pJJBIMw4xGoxBfjUajMBZKkqRwrKioKKFWolB9orKysn///s8995wQfcPDw4VPfXx8HnyO7dq1ExLQJtUnSJIUulpaWnru3LnG7X/s4j1+KBA63H2WWGNZDmMJUlxi4H2kmEikYFgTyQbldXBvc6tGV2BUhj68LheCIP9cQ4YM+eqrr8aPHy8Wi4XCO127dq2pqbly5Uq/fv0AgGXZ+1aU8/LyioiI2L1796xZs4QWjUbTZBuNRhMQEEAQBM/zW7ZsAQCpVCoSiWpqanx9faVSaZcuXbZu3fr6668zDLNt27Yms1TCw8PDw8Ptu0pMTJw4ceIbb7whtISEhDQpb/57IiMjIyMj722Pjo4+d+7czJkzz5w5o9PpCgoK1Gr1tWvX7OO6zQ9NlnG4Rhnh3ckyHMYRpKTUAH5SIEUKG2NkGb8smcS1jaLulsHZXUYQxLFeeOGF8PDwoKCgiIgIHx8fiUSiUqmSk5OnTZvWr1+/oUOHhoWF/fTTT/d+EcOw5OTktWvXxsXFjRw5Mjw8fPPmzU22mTp16rfffjt06NDY2FjhwUEMw15++eWOHTvGxsZeu3Zt/fr1q1atSkxMjImJEYlE9oHWe61du/b69eufffaZWq1Wq9Xu7u5NNoiLi1Or1VqtdvDgwWq1Oj8//6HnPnfu3KNHj/bv33/79u0rVqwYOHBgt27dBgwYkJCQ8NDvOgjKCB3u7mQZkT0jZDhgCVJcWsf7yTCKVtgsBgLDrnOUMkRaerLGyT1GEMTBRCLRpk2brFYrjuOHDh06fPgwACQmJubm5ubk5Fit1rCwMIVCYbPZevbsaf9Wbm6uUqnEcTw9PT0/P7+2tjYsLEytVnMcJxTdFbRv3z43Nzc7O9vf39/T09NgMADA8uXLFy9erNfrFQoFSZK3bt3Kzs5WKBTCuKVEIikvL7+3n/Pnz3/55ZcfcCKpqaksy9rfNilGf1+RkZFC9yIiIuRyeZ8+fUwmU0RExEO/6DgoEDoczwGGAwDgBMZzwHM8zzIsxhGkqNwIPlKgREqrWaeEirwGXhEv1ReXoPmjCPLvZjabZ82a1atXL41Gs3Llyk8//VRopyhKmA5qf2u/FwiNCicJhW3DwsLsb5vUVFIqlV27dhVe24MTRVH2WnUURdkn1wh7uG8ZO7FYLEzG+T33rSP0UDKZrHPnzsLrJncQnQIFQoezZ4SAAU5hnI0HluWAJUhJhYn3kmAkLbdZDRRfVaznSBlNSglTtUXi4eQCXQiCOA5N04MGDbpx44ZUKk1JSRGmayLOggKhw9kfnwAAnMI5G8ezDM9zOCmqMkG4EihawTJ6Cq+jWEu9lZb5iQ1lZhQIEeRfDMdxYe4l8neAJss4nH1oFOyLy3AMBwxBiqtMvKcESFrOcSaS1LeSWIr0vMxHbChHq8wgCII0ExQIHe7u0CgATmGcledYGw+A45TGDJ5iDMNwDESEqCFEbC02gNRHbCxH1eoRBEGaCRoadTAeeJ63P+gqPErI20wY4ABQbQZ3MQAAxskwkSFQZCnS8319RAUoECII8vjwPJ+fnx8SEtJ4YbM/7ueff963b5/NZktISHjiiScaf6TT6a5cuZKenh4YGJiUlPSY+tvcUEboWHei4K+/ewSNszaOs1kInASAajPvLsZ4lsc4CS6y+FOWEgMvdqetDcydBy0aseRlMjX3md+MIAjyYEajMSwszGp9lKKnq1evHj16tEwmCwoKOnnyZJNPFyxY8NJLL61bt27btm2PoaNOgjJCx2o8Lgp3M0IjBqSVAxMLShqsWgbH5RwJvpTlFwNgOCbxoI1VFrm/xP5FW+ntmq/ew0QS7//7CqNoZ5wKgiCPU1VV1eHDh0Ui0ZAhQy5cuCAsKJOdnf3zzz+rVKohQ4aIxeLq6ur8/PygoKADBw64uLgkJSUJT1MUFxf/9NNPJEkOGDBArVabTKbz58/Hxsbu37/f3d190KBBGRkZly9f5nm+d+/eoaGhFy5cAIDjx49TFNWlSxcXF5e8vLzTp0/L5fKBAwcqFAqLxXL27Nlu3bqlpKS4uLgMHTpU6GR5efn8+fPPnz/f+FmLxoQHPxYtWpSZmfnHz/3mzZsAYH920GaznTp1qlevXjTtnD9uKCN0rMYzZeDX5UZZ1kLgZI0Z3ESAAVgbbAQhZyjMm7AW63kAkHmLjb+dL2P4+UdF3zGUd5Ap40wznwKCII9dQUFBp06dTp8+ffHixWHDhgmBZ9WqVUlJSfn5+bt3746PjzcajWlpaePHjx8/fnxOTs4nn3zy9NNPA8DBgwd79uyZnp5++vTpzp07FxYWVlZWDhs2bPjw4efPny8sLLx9+/bs2bNv375948aNhISEI0eO2APh0aNH6+vrDxw4EB8ff/369d27d3fo0KG8vLy2tnbw4MEjRow4d+5c42fzjx8/Hh0dzbLs8uXLt23b9mg55b2eeuqpy5cv299SFDV79uyUlJTHsvNHgDJCx2r87ATYM0LGggGptfIqEQYA1gaGJOUcwbuTlhIjAIDUR2So+M1tQvPNy27PvkO4uJkyfpZ27te8J4Eg/1rVpb8UXP/O0UfxCRngFz6sccvy5cvHjBmzcuVKANi4cWNaWlp5efmCBQuysrK8vb0BYOLEiZs2bQoJCdFoNGlpae7u7rW1tZ6eng0NDTNmzNi9e3dcXBwAeHt7L126dP78+Uaj8cMPP+zRo4ew/+PHjwsvYmNjP/vss127ds2fP/+DDz4QVsHu06fPmjVrxo4dCwCTJ09etmzZ/PnzbTbb22+/LSSmdgUFBRUVFS+99NKoUaM2bty4bt26kydPNl4H/BFkZmZmZmY2uaE4evTo5ORkoUvNDwVCx7rv0CjHWgmcqDWDWgQAYNUxNK1gMaMXZi018AAg9RaXn7m70Bqnr+cM9ZR3EC5V1O3/EngeHumON4IgTYhlnu5+cY4+ilQZ0KQlPT39tddeE1737t0bAC5fvozj+IIFC4TGvLw8pVIZEhISEREhrPCpVquVSuWVK1fKy8s3bdokVBwsKirS6/UAQNN0fHy88F2GYd57770DBw7wPH9vDldXV5efnz9w4EDh7aBBgzZs2AAAOI4Ly7mdPHkyNTUVADp27IjjuEajSU9Pd3V1femll4KDg48dO/bTTz8JpZ3mzZt33/VoBEaj8YMPPhBev/fee/YlcjIzMwMDA4WSFwsXLhwzZky7du0iIyMfS7HDR4MCoWM1HRqlcdbK8TYTjtNaKy8EQpuOIcVyltHTrFlMQI0F5L5iQ9ndjNBakkv5tQIMI1zccIncVllEeQc1+6kgyL+QXBUqV4U2/3HFYrHFcuf2h9l85x+7Wq3+z3/+Y9/Gzc0tKyur8RJrOI7zPE+S5PTp0+1pmRBRxGKxsL42AKxdu/b8+fPHjh1zc3M7fvz4jBkzGh9a+KK9SCHLskL9I/tybnK5XCixpFKp/P39vby8hGgnFotDQ0OLi4t9fHyErz84NcRx3F6qqfFsVY7j7PcCU1JSYmJi2rVrR9N0k7qJzQkFQse6d2iUtXI8Z8UxUmsBVxoDISMUuzCGEt5m8ZdhJQY+Rk1xDG/TM5ScBABbeYHFQ5J/7dvg6Im4fwfjrRwXFAgR5J+sd+/eycnJ48ePJwhi69atABAbG1tVVUXTtH1aitVqzcrKavJFX19fX1/f4uJiewlfq9VaVlbWeJvc3NzY2Fg3NzcAEGrTi8ViiqJ0Op1IJFIoFFFRUSkpKVOmTAGAlJSUbt26Nf56bGysUCsYAKqrq1988cWioqLAwECtVpuVldW2bVthVPahxGLxfRfsbt26dX5+fn19PUmSBQUFFy9eHD169NWrV5247jYKhI7VJBASNMYYOZ6x4hhVZwXVrxkh7aG0GRneavGTQakBYtQg9xPrS8yukXIAsFYUpNfupExqXZHBmN0bsrg2vgaXVqhmIYL8U82ePTspKSk6OlqpVLZt25amaS8vry+++GLQoEEDBw4Ui8WXLl2aPXv2vQOPOI5v3bp14sSJO3bs8PLyyszMTEhIaFz/HQDGjh2blJSk1WpLS0uFdJMgiLFjx/bp06dNmzYffvjh6tWrJ0yYcPLkyeLi4urq6g0bNvzeLBh3d/e33nqrZ8+eiYmJp0+ffuqpp5pEwe+//37x4sXl5eUmkyk2Nnb8+PHz5s178LnHxsb27dt34MCBEolk9uzZ33zzTXl5+d69e7///vs/fR0fExQIHYtnAWs0eEDQuKWOAdaCE5TWAq40AIBNz9DBCnM1w1nN/i5YsYEHwOQBEn2JSQiEVVVpcnVQRLd3zqe8Ju/TXXouNXu7rMt/w3ES3SlEkH8khUJx/PjxwsJCkUh0/fr1ixcvAsDEiRMHDBhw+fJli8UyZ86c8PDw+vp64V6g4NixYwEBAa1atcrKykpLS6uvr58+fXqHDh2sVuupU6fsm/Xs2fPSpUtXrlwJCAiIiooSagQmJycXFhZWV1f7+fm1bt06MzMzLS1NLpfHxcXRNG2z2RoXi2/sjTfeSEpKyszMfPXVV++tnduzZ8/169fb33p6ev6R009JSTl9+jSGYX379n3uuefS0tLeeeedP1jv1xFQIHSspkOjFM5ZuWq+HjCyzsoHyjEAsOlZuVylBRtvNQfIsBIDDwDyQGnVBa3wrWpzjm+rqfr0QKAtb5XZko3nTro+GXypzqvb796mRhDk78xisSxZsqRHjx41NTULFix45ZVXhHYPD49BgwbZN3NxcWlc4S8mJkZ4IZfLG0/vpGm6Q4cOjfffuI58dHS08CIoKCgo6M5dFXd3d/vDggBAUdQDKmD8Xq15ocMeHh4POdt7UBRl77+vr++oUaP+7B4eL/QcoWPx3G9meBIiPLM8e7fpRpqtolJ/W/VrRihWqhjOwlvMwtAoAChDpA0FRuCBt1kbcK3at391ekOxS7/JHpekLqoLKi7np1onnROCIH8VSZISiWTbtm0//fTTsmXLZs2a5ewetWgoI3Qw7jdDo3mGQqPR9Ix7eCEUHaz+kPN7n2cDWCsnVrgwnIW3WQJkWJG+Ib2qVClS0HJSX2rCoYAhmIZMtVsnOFQbN489TPkG9/EoNf3iYdKgsoUI8o9EEMT8+fOd3QvkDpQROlaTodGzlef9xL44x3rRKkz0dMqN9ytqNKSUoMRKhjPVWBuO315lqZv55dWtb5368Jzol0tnM7XFv0hx96pf6orbqHl1rFFzifIJjoeCE0pF1dUGJ54agiDIvwMKhI7VOBCaGfP1umwlruA4K0HQDVjf3kHDFx35xEZbysx1Ddb610RZAQrXdNu61QOXJI9cH9+voymdTb71HcdGqKOUP+rI+JAgnmMZtYuspuiWl6IYBUIEQZC/DAVCx2r8QH161XUfV0+wAsfacIKqt8KIViOntppQzdcsu/g1MOalWv9ZHSfTuFRjBgDo3D46INQ7stLdqo/4zm3H2aIfPIhzNoVvqvbMCV12QITNVmu1NjBOPDsEQZB/ARQIHavxEmsZVdcjvVuxVo7jGBynG2y8ksbCxCGR/q2+HrmOBFCbrAAQKMeK9LzwlcjJgRRV1Lq9S/uQDnWm/LK6s7Wk3GIsSyPqb5S8ckOpq72OkkIEQZC/BAVCx2pclfd69c3WXmGsleN4G07Q9VZwocFmYEkZCQAkLWNsegAIkmOFvwZCQoRbsVKvoLYKWV9X1cz3e70xuOPU1pRojt53Rczsa/LTWRfynHVqCIIg/w4oEDqW/YF6HvhbtbfDvUI5C8dxNh6neR7EBDB6hpIRAECJXBibAQCCFFCov/N1m1XH8TaZV6vzGj7OEwMAF/eo+uosyjsoUK+77jWOL8YKaoqcdXYIgiD/AujxCceyT5Yp11fKKKlKpuQ54DiOAcpFeIjQyIrVNADQYqWNMQJAiBy7rbuTERrqi0SsiHBxP5/FP90KAwCZKthirIFW3rbywhj/3vW5lTtTD86fMNNZJ4gg/yAYhqWmpgrlGpB/nLw8Rw2AoUDoYDwABgBQUF8UqgoGAILGOY5hMZGSxgDAZmDl/gQAUGJXG1cOPB+igCOldwKhXpsnttG4TJmmYT6PJwEAw3ClW2uzHKOzbvdog2V5BnqX5F8svxrr0+F3eoAgyB0ffvjh4sWLHbd/q9VKURSGqqQ5RqtWrRovu/MYoUDoWPbJMgX1xcEuAQCAi3Abx/MYraAAABiDfWhUyZHlvM0apqRv6+58XV+VLcYVxUbgeRDWYwMAF/coI6HHyvJ7eGMfEIq1dZHbMnagQIggD0VRlL3gnyMYDAapVIoC4T8OukfoWPbJMoX1xUEuAQBAiHCW4xhMJARCm4GlZCQI9whpnLMYQxVYgY5neQAAQ02ehHZPq+K7et79SSndI/SmMt5i9gNdg5iiPaR0qSS7JscZ54cgCPKPhwKhY9kny5ToyvwVPgBAiHGOZy1AK+9khCxpzwgpjLeYJSR4Se5MHDU0FEulnuc1fFePu//HdHFvU199g/ILtZbk9vDGykJUA/SJu7MPND6uvtiU/nneufnXs78pZoxs850wgiDIPw0KhI5lzwhLGsr9Fb4AQIoInucsvEhx5x4hIwRCWqRiSeAtRgCIVMHNOgAAk6FCovA7X8V3axQIle5R9dVZdEC4rTinhxeWqlTKq5U3829rzXXCBtps/fUvC30T3Lq934ZWkllfFd5JMBEEQZB7oEDoWMKsUYPNaGEtaokr3MkIOTMmUlDAMTzH8KRImCzjwhAcZzEDQJQKy9TyAGCyVItdgi/X8F097wZCkURNUFLGS20tutXTGztZg/kluD1ZNfZg7hEAqLulv5VcEvVsoEcnF0KEh47yIaVEyYlq55w/giDI3x4KhA7GAeBQrq/wkXsJDYQI54Az8rSS+nWmDAYAQItVDMHyFhMAtFNj12p5q7kOA6ggvFspMWEc1U7lHmWSMNbC7HauWJWJJ+M9vBhPwyEm/2DFzW0lbaYFyrx/3RSDsDG+ZaeqrTq0GBuCIMh9oEDoWEJGWK6v9JXfCU2ECOd4zsSJFBRmnykDQiDEGCEQdnLHLlXzRl2pCFNk2Fx7+zSdhObi0VZnLgMM42rKe3njJ6v4zi9HYlIorS+LniLP+/6JI5/HXPl8OGdoAACRK+UZqyo9rmnG80YQBPnHQIHQsYRFt8sNVd5yT6GFEBE8cEYQKSiwGRhKfqdcIS1WsWDlLCYAaKvCSgx8VU2xiBOd0rkM8Gv6Y1J5RtdVZohatbfkpvf3w46U8qSEaDXCf6fbzts7n62QVXYc/7WGKL2yYdK3t5jbDbxfX4/KC3WMAc2aQRAEaQoFQscSMsIqg8ZLdicQkhKcwzgDRysosOnvLDQKALRIZeMtQkZI4tDdC7tWWkJbiHNGl773ZISunu21VRniiM7mrAtD/LEfSziOh14B3TVVN2/LbseP+dYzqJe5985C/pru1Pb4FOZ7De7SVrZv99EJ+/8z8/C8tLLLzXkREARB/s5QIHQsnuMxHCoMGi+ph9BCSAieZ3WcSCHcI7RnhBK1jTdxJoPwdlQwnl1eSpr5uBA36T3LHshUQRxjhpAQS056qMjsJsLOa3jb9bSRtVUaVaCLR9uL1fx/0oOVQUM6adac7G+e+0vV5/yX6lvuHyW8Mzl63LLzq48WnGqua4AgCPK3hgKhg3EAdzLCO4GQFOMcxuk5kZzCbPq79wgpkYLjbKzlzqIyk8JwpqEIs4pf6yS5334xV++OdXU3ReExhgvHngzF92XVab9fpaC1FyRev5Rdn3CcXdOd6NZvbqWsWnI5uaNoYQYd4xXsLsmVd/fr8nG/91Zd/Cq/vulq3TzL19821OXoOQY9boEgSEuBAqFj3RkaNVZ7St2FFlJC8MA28GIFBVY9Q8nt6R5GkjKroUZ4I6cgXlYkl7q1db3/ck3uvl2ry84rBozXHdk+TZzd/diH2lZuKq+YKXGz3zmzOsHTNCYEV7iGSd1bry3ZNq5VL4YadStCXXKiGngIdgl4vsPkZb98zvF3A179bcOlj3IKDlQU/Vh18YOb2hu6+x4XQRDkXwYFQsfieeCBM9iMKrFKaCHEBGBcPUfLKWB+EwhBRKssprsP/FmNZS5y76Z7/JW7f7ym+Cwd0Fo5+Glq32cGnzYXTXlhHabdMHSt42Jo8/tZ1bdOFZ1L5biOrGFULb24C/HfSgkpJTRX6wFgWKsBOIan5p8Q9lZzrSF7S3HYWN+Y2WHtXw6NfCYwZ2dZ1cU6h1wUBEGQvxMUCB2L53gja3KTuOK/rsNLSggeGC0rZIQsrSDsG9MileXX1WFYxsLYdCKl7+/tWe3d0dhQatZXyOKHeP/3y7gRnW0mzciM3kvSueSh/0kMTvgkbc3+nB/G9lkg4xrqTu/s52HzlEBujEfhoUqO4THAXuz03Nfp31oZS+XBcznf5ga3v+kSeGfnyhBpu5nBBf+rEPJCE2M+dPvo1+nbLlWk37czNj1Tn2uov21gzdzjuGwIgiDNB1WfcDAOjKzRQ+5ubyClBA+slhXJKdDpGErRKCOUqq119cJro65ERKpJhfr3dozhpHdI/9LcQ2EdngUATcba7vHPt/anY90xKQnhypFPRo4UtkwLTawjal3PHVrQKemlc5LvAySFhypDRnpHubeOdA3ds3ZpcNHQgO55Gu3/qj5dVzR4jVtgSJwnJvEUtZkWlPV1oWIisTB7aYQ6LFQVvOrSV75yr7e7z5FSEgDgTHqrniw4VFV3yyDzE/Msb6ywuMcoA4d40Qr0q4UgyD8D+mvlWDzHG1iTu+RuPKNkBOCM1iZWUFjRbwOhWOpptWYJr40NxWJSiStcH7Dz4Lbjr554OzRmar3menXp+c4DP4ui7nNDMSBi1M3aFe7HdvTtNsBTLLoc4R2Rkk+Ica9Y2Yhz7nV1Hd1Gaa9mLiqT9yJlt3yOjXwj4Ade6ZPcl/APkkgHEgVbNC9Peb5nZDcAmNJu3Kdpa+efWPiB/2hLyqbampA6rp9neF2Xt3oTUhEAMAa25ET1leW5oUneHp1VJsZ8IPfwdU02TVDd/br2CeqBAcZoSpmqYkLtr9O61Nysw5h6nMIUARJ1WyUhRkMUCII0NxQIHYvnwWgzNg6EGAE8z9oYSsJxHMeT4rtDo2KFbz17XnhtqC8S81LC5XczQgDwCEigxa5Xj79ZVXS2fa93SUp63828gvtdOvI61iah/sDGj3q9NOEEm/5CSPm+0stHiqSKyFu9Ttdf3XDC78vboh7fPoHlbB/5fvW4X6LOJBxg9/dv+EDz0SuxL8oPuNj8GUpOEhgxt9uLi/bN/eTk6vGyeQ0EdsorI6To8NUlh/b1+GBuF1mMmgge7uXR0eXmtuK8q2WrXVa38g7pE9jDxJh3Zu/blfX9a2USWWGxXppYowFKnOPS2U/m58ZZ+eqMhtvfl7t3dPHv5y5W0wBgYa1XK69VGatllLSzd4yLSMnbrGydhlCqMdF9Z9IiCII8ChQIHYzjDazRTXo3nnEsg2GEG4YxOqbJ+KFE5V/F3XmO0FBXIGJExAMzQgCIG/5ldtrnbeJeC4h84ve2wQnKL3x4nUSkOn6lvc//+vgMXZpe97ppjVd7D/WkOZqdnxwUeZdLWx9IJGkc3CbvObqm84jc+ZJ2S144svSZqEE9O3QuSq1KX5EXNtbXNUJuuHx63EXPEmb8Zd9Ult4SCO282tINRfufvZYzXLPr5fbiee1xmZ/YSjyDXAAAIABJREFUNE57cXfWjIKZrfz8PP1ccRJLlIR+s2PBTqxTPD+6CD9aHpjqxlRHZJh/oVc8079Dmz5g0zFlZ2qufnbbra0yLyxnQ/FmX4VPkNK/zlL/2fm1fVj1E9fKJBIXq85o9eyD+fexGKQWrY21cBiB0UpS4ilSBkldwmUiFWVlrdk1ORWGKhkli/FsK6dl970yjIlljCwhwhtPWUIQpKVB//4di+d4PWMIkHjYWzjGjPGEF7CWehCpfrOWtlQVYMOtPMtgBKmvL3Cx4LjyQRkhAIik7jF9Fj20G0FR4y4cfqXVzF01Xy36yPJ9fYPuaruRiU9PvnJl+8067pbvi23I9RS+AADDKXGXkV+e3vuUzUXmI1d+W/zEM9EQONBT7i8p+F9F9mYzZ1MogkZmu/+kqP5CHv/ek12nAICpofTM5uHfNgx/I+9QZi01NeTCqstrlzz7jp/er/BwVf6BCokKbFVlbYn5mPqXcrdxUt9eT3eYgPHMjXNftcke/XrJksR+Tz7bmgwa4qXuId+z40e/7wPme873a+8hc5Hw2vzS69oznn77XKN8rDVSl1s25rjy1nGtpLtr/xk9g0ie5S31jLHCXHtDl3eg3ESZrsiu1Ptqxf5UraX2g9PLOlokT97WebIkK/Ow+fYhVJ0NGlJXZOI5npKRrJnlbLw8QOLSSiaNoA8bjp4oPJOjzSNxIkIV0sum6pmvxbUaUCgI/2jwG2RqUBgrLZY6G2NkcfJODFYES61+5qOaE+fLLlcYqiSkOFji1dUi7VZu4BoqdYTeIPEiXToppN1tDTTPAiUnxG60IlAiD5TiJAYAWnN9Xl2B3mpwFbu0UoWQlSXWwlu8xUSoPUWh0YSL24N/xDbWVmuuI3HSRaTEdHU8Y8VFUlzu8tDfDQRBUCB0LJ4DA2Nwl0TYW1ibBQPcm2MtdRzt8ptAKJH7WEkbZ9QRCldDXYGHTk48LBD+QWqfzgQhrjXc9pq/1lZVbCHUb50Vz/i25p3apaaOW/cltH3lyJvbMnc/Hf0kALiGdm/wbE/e2rtl6ulZF/AnjzG7E0l1lMLFn6n4dJ583LPvl9a1z1/besimJRlfR4Z0aefRRqL06/v8Tz+t6/VJzRNLqTfeO7fxoz7vRqjDQA1tnw8yFRZWfLnmZtdRm+vSnmC/UHV9c13h2Rj3iAh1K1f/xJq0zXD5jbOnCkcXzlnYofLT8x/GxERPnDrSkGvW3tTXpNyyVtXWKJ4k9bv86f0VEu/QqH6d/DtVFF81p6/THf96lud7Y/o+MSxcpAqX5YfcXqFY34OM78f0wopIw2UDxVWNEffIExszpGelUErhN7iaX+gq0op5NXQe27vv2BCVHAAYM6srMF29kGX4yeKNBf+ndZuAMHdb0albF06nexb9D3JdlWUE2LCSw1jpp5itVY3rCL+4J3u0ciVY3tpgqy6p++WnK5IKub+0VZtW7VzlFkPBmYKG3CJlTgN7S4LVUeZI3MTwdRc46l0TFmPzfTlG2QHTWquv1hurLBYv8zVJRgaZqfCVyiRijSZfoy+JM9YHMSzJmDGepQ7LMTYC5wfIuFgJgeM4RkhwWk5SMtIsNd+y5GaasopshTjNGrl6gtWGmC0BFj5Ej4k5UT0dapFGgTjSiwpUMhjP8DwPBI1RclLkStVL62/yN6+x14vMpRabWcbj/hY+rL7Wt15Lc7yVUDCkNy5qJ1Z1V+PeIgJwEiPEOCUjaSXZQOtybLk5ttxSfYXFZlIwvJcVCzITvhaC50iLSMy6BEjdWrtK/eRWirXemU6MUzglI0Qqqo6uzzXm3dYWNFh1FsYi4Xi1ifWqq1bUVpiNlRaW5XApEJ44FSGTdHaTh0qkpNBnzIUvw8uLzCVVRo2FseLAK02Mh97ooW/AzSYTz/Iid07sL3aL9FQGiXGSY3mCxnESIyQEJSMNpL7MWFFrqmN5FgBELOfKEJ48Jeah3sJgNIkp1ErZ/7d33wFSFHn7wL9V3ZM3zObMwoLknAUBAyCIgphA8BUFFM703unvUEGROxVE0TsFM4fwggiiKHqAiAEVEVgBybIscQmb0+SZ7q7fH6PL7rIEhZltlufz10zNTM932rUfqrq6OoaLCE0Rqk8jIi4xbuSSWeJmKvOVl3jKnAEXEXHGI5kxWmXRCtO0gNfv9TLOYxOY0SZxG2Nc9WqSkRMn2fzbTWaIyKv4/KqfGDFiRslokozV/1f1OVx+p5tLZkkyERE3ctnMuYETUbmvwh3weBQvJ2aSTXZTtNVgET6Pt/xkwFtS4XKpmtEakxwbnyqbzFUbVDTV4Xd4FG9ADRgkg4HLZqdTKzhYUnjA5Sr3M1k1RkUmXxHdqH1qjP2cRxLh96qOMuFxlbmcUnQKj4iJshmlui91rkEVqsSkc7+PSPGqJIhxpshKmbfc6XcF/0sZmByhsUhNYgG3t7LU1qLH+WztPDEhLpc1RPLz8zt27Jifn38+b3a5XFarlbHz+C98VgeWn1hWsGLU6JsaRaUHW7wVx75495p1lg2PtSDVpzUeklT1ZiXg/nx28xtH/SgnZayY06zL0ZYZM/9L/OLMHzm8a/Gx/f+9avjiqpbvv/i71WDset3zRFTsKf3ftZO7JHfoltLxq8Pfn6w8NvTA2hbmvk3GvjnmBzroEO90cSd+8GRJs95/U6/8nxPDrh42N71R959P/vLchpf/X4+HrkrvQUT+8oLl8689ajaWtP/w/w41ntJJGpHFbYW5hW9PfTfrXjffeq322bW3fWCLbvTjsc0vbZr9124Tu8V1tFqtpRuWbf5pysG4jh8aTJ0a3fXPKwdFGYiEyF/zYfn6lc9kDLlJeblxVu9u/SafCHimfj+jdXyLh7vcFyGbDnz4xL5jnx03pq+Nf8QSs88fOPxEz4c6JLYp2berdMXcYp+0PKpVU2ldvLbZEt0zl7HCCOOY7veafeLgtwsDRevLzO5fo4Ynt7+/e2P7+zvfLPOWT+r5cIaSXrhuZ+mWAyWWonLrciG5BRt6zGCtTKa7rx0ex42/rv6X48iqcrNrr3ylN2Ugj3ZvLd9wQ9Z1/9P6lrIffi396RdnoKjIlqsZfxLUyRAx+IhF7DLuuLHLgOubXFO2Z9vhtS8U0e4Tctaq+EdjE0qcZd/3Urr1VLtaCm2efK/fsN0Vudxv2mN091HVDhWSRYqJssdJvOI7xfGVn/t3yjf600d1T73C4tm39+huX7m/ubGx3X0k4PnFa8gJGA4xLY4raVxEqsSEpBJ3cSplVKRITr+IcxuaUXRrgznB72WV5Wq0Jy3Vl2jxBBTpkGLc4TXvUgyHuNLE6GuqUbRfIiZVGOiwKh/UyFwp2rtN3YyGFClgIKffGjDaFcG1EsVwSJMP++V8TS4iXik0GxdWSYsQQiHJqbFKYrLQEjWWRjyVKJEFoiV3VIQvnhPzGYtV+Yhgh1VDniYfEmSU/VeY/C183KpIfs6KDOyQKh1XuM8rmimiiRxIt/iSogJ2Yj6/MU+VD2vyIVU6TtxFWjxXYyQtkphXMI+QSlReRiKKtETSEoVml9QIWYk2aUaFexS5QpFKBasgXiZ4JePlxBQmzKQZiDTGNY05mRbFtGgSdqbamRYtaRGyalOZqnKfwh2CVwheQbySeDkxJ2OCCTMjImJEpJGLkYm0CEmLZGqMpEULYVWZMcBUhZHGPRppnLmJeSXySOTizEXMK7ibCSMjg0Y+YgoTVqZFS4qdRJQmrAozaoyRIGJ+Yi7OnJyXEi8hYeBaFNMsgqmCuzRewbUoWUliahJpsaTZVMYEU4hXaFKBkApIOkkigrQY0qyMiJMmeIUmFXPNxpU0SU0lNVEjOwljgAcU5tN4hcrLuFTKWRlnFRJzEPOSsBDzEBETNqZGMS2KiUgSNhImlZEgTuQTJIi5ianEvEQa4x5BgoRKPPhBouA/BzQLI5lpVq6ZJWEjzaIRcREhCVlhXlVyqcylSRWCO4g7GHMxQQGt6YjHvrnw43MVBGHdLlYQ5n50YkH++4/f/0DVaSpXce5X82/YZfjujmQtspEl+coafb7P/tXk6oHv8bTMH5bd3vFYi5R/vH+BBVTR1MCXC67qMuDlhIyriKjgyLqta/9f/7u/NRgjg29w+J1L9iw/WH60fWLrW1rcWHZ0/ZbPJnY23Bgz8J5VOZUp389bGdX746Yjpjlv6dz59is63Rf81J7inGd/nJVoS2gUlfZLwa5Ybhy07+tIc1z01e+8eshu3/3V/xSumN9yQvfoTxMDOVfdvMj0+wo7+0pyn9vwcozJ3ifjSkUoP+z5b+v8jely5Mr0uctKW3aTi+4/8E6E79jBpoaMQHaP62clZV4d/KBX8b61bcG3R9Zfn3VNy7gr3Ef37d+xMEI9ZiTTr2yApCV0q9hmpdLDMfZo2hcdf0XL9qPSrhgiGyMEic/2fzFv++IBTfrd0uLGRK9WsPy1PWXfFZkLimTTTtMAETUiy1nS4/iKgDh2ItplMstNuj3aq9ONjHFVqCtyvli4+8PWcc37NeqVIkUUbfo859i3DlN5csBl1hShRdpUv4+TKgc8ke2Ssq7v3fW2iMjkqr20eM9HvxTsapvQMj0y1Vlw2Jv3XabvGDHbCenqI4E2LQIn23nWu8z5DqP5ZNIDbTrecV3TKIuBDpUf+Xjff9cd/bFpTJO2cVdYDu9Uj6znrFgSvgoeJYmIGM0tizJFjf/Vdk2gybCrWnW9ulGkkRMR+VX/huPZ3x5ZvyV/e4TBlszNxopCyVPIhCM54IkP+MwiIMhPjAth9Roaq7E94xN7N8/s1igxSrJJe8t/3XAse1vBzkMVRyJka5zPEekqjA9UJAc8Vi0gkyZrRJrFIyU7rG1YTKeEiCaNYzMzYpI0Rgd8B7c6tm+t3H6kIs9uiLAoislbzpSKVL8v2e+JUXwmTWNMU5hBYxGqnK6Zmltju6TEd26SlmaN43nqsR2le/aXHjjhzK/0OUjVEgL+DEdJvKskyu+QNb9gTOVWRUoNWFvJsd1i49pkxGUk2WWX7DzgO3jAcSiv8kSRu9jjqTB7Ku1eV7TXa/d5IzXNrAnGjIocrRniyZRmikyzRTe2W+PjIhM1g1qgFB4LnDypnCj2FZc6SpjbYfP7ovy+qIDXFtAsGlkF0ySrJlmZIVa2pJgj0m1RKTG2JLM5wie5i0VpviffITm9mqfEUaZ5nCafx+B1WwJei6KafAGTxrkwkOCcR2hclo2xzBQtWeOZLYrZTF6L5rEEHH5HwO/SFL9BI+7xWAI+q89n8Pplr5/8flVoxGUhWSRzgjEqxZyQQdHRiuzx8DKH3+lT/UQkKxqvKOXlRcbyYu4uY4pXVYUqmZkpjkc2Nye0T05uGWuW3YHySp+jzFteQZUexeP3exTnkUB5nsFVaPJVGhWPQVMkIQlmFCxWyElkaSpHN420Z0ZHRJrNso+7nZrTyRyV5Xmu8hM+VzH5Kg2Kn6kBoyJxZpDkSFmymSwJRmuk1Rpjs1hNpgjF5/MpAZeXOX1Oh8/jCbgCSsCvlfmYT2Iuzr0WCthI2JgxglTJYGHcZjDaSbZzY6LJmCgb4y2mGJULL3d16twUQfhn1EsQ5izN+0/hopkPP1nV4ji569v3b8tXv+xpVTIHJ0U3qzGP4+vZnVq0f4CnpR/8eW7zE2mJj752gQVUl3/oq23fPNnn1g997uKfPh/X88Z34tN6nuX9276a5M7bfUVlS240RfQdqjTvtmvNREk2dxs0u/rbAmpg44ktpd6yLHtmu4TWirt88wejKspz0twZ0Y26qy2b7t+zICa5Y5cBsyS5xmzPgKas3f9truMwY9QxsV13FvfrR48e0XZYRbTJL3liYrziZJO2o1r1+JtsjKhV23HHya8Of3ew/IiBG1rYs64qE569a4td+9yyn0fFRzdqGxXfMqXxdebTluYp9ZR9sPeTrw9/R0SaEFzTrlSj++Yd8gTynEaXIqvcGBfXpE+zVjcnNb6aqMYfgFfxfXPkh00nthS6i82yqbU9q59ISil3Kj5HwCZLaY3NCY0tkam85mBXlQpf5c6ivccdJ20GS6Oo9CZOpTB7cWHxz261UpNlc2KHxp3vTG/Sh7HaYwDBCbT7SnMdfpeRSakupcXJAl5+0sUkf2wzucMtmRmp9rq/k4hIE1pu4cFKzckYizDY0iNTzG6PUANMknmEncmGM36SiIhUoZZ5K/yq3ySZ4iwxakWJWlnKJFmOSz7n9F1VqMXuErfiNUnGOEus6Qx7psG4WMcNODun02mz2RCEf0a9BOGO9w8sr1wx7S+PVrWU521dv3SkVrEyUVO6PHlFrfmKP7092J7YRkuKVwtPpJUmxI19+gILqOXgjoW71j8nG2yd+7+U3OS6s79ZVXzrl4+wRWd2uPpZVfFs/fpxTfH1GrbgTAf66k4eXHto50JXRV5kbNMm7e6q6s/Vcvp+9hUeKTq8zmtQrVGpCem9DKaoP/L7/oBCd7HMJLvZzi+DwxYO0OGB/RweFz0IMVkmtLwBn9VU4/I+ofg4iQhvwBBnOH3Wvj0qq7x8nz+Qm2npLsVcnJky1WW1/5+s9v9znm+WZFPv4Yt3fDd15TsdOZezOoxpfeUkLp2jAxGUkjUgJWvAn6jQlJiZnjjmT3zwj6paBh0ALnMIwtAKBAJms6l6i6r4iPj+5rHDu9dx/Xt8Qpf9u1czrykqaYAUmxiuMs9INlg795/V6doXiPHTh+wAABqAUB3annjiif79+zdt2jQ7O7vWS+vWrWvVqpXVau3du3dubm6wcfbs2UlJSdHR0aNHj3a73UQUCATuu+8+u92ekJAwffr04NuOHTt23XXX2Wy2Zs2arVy5Mtj4/ffft27d2mq19urVa//+/SH6RX+OX/XbjLV7hCT4kfbx8R3qGPSLSGiebmzf4ernRFmJHJt0+hvqBeMyUhAAGqpQHd0YYxMnTiwrK/N6vdXbPR7P7bff/swzzzgcjquvvnrs2LFElJ2dPW3atG+//fbEiRMFBQUzZswgotdee23Hjh1HjhzJzs5+/fXX165dS0QPPPBAy5Yty8vL58yZM2rUqLKyMp/Pd9ttt02ZMsXhcPTv33/MmHCMqp2/QECxVrumh4g01UeCW0x173nJHp/uadSo1a1K8Qk57oz3YAIAgIslVEE4Y8aM2267TZZrD71+9tlniYmJI0eOlCTpiSee2Lx58/79+997772RI0e2bt3aZrM9/vjj8+bNI6J58+Y9+uij0dHRjRs3Hjt27HvvvVdQULB69eqnnnrKYDAMGjSoQ4cOS5cu/e9//xsbGzt69GhJkh5//PFt27bt3bs3RD/qT1DUgKVmj1BV/IxJZ1rSS4pJUkoLSQil5KSckBaOEgEALm+njsd5eXm//PLLeX7s2muvtdnqXr/x7HJyctq1axd8HBkZmZmZmZOTk5OTc8stvy2V2a5duxMnTjgcjtzc3LZt2wYb27Ztu3r16gMHDtjt9pSUlKrG/fv3l5WVVb3NZrM1adIkJyenVatWZyqgVg9VluXT0/oiCqiqzVCjRyjUgEbMdoYZJ1KknRS//1iuFGFnRnPdbwIAgIvnVAZ89dVXwYHK87Fv377mzZv/ie8rKyuLiDh1TVhUVFRpaWlZWVlk5G+XdQcfHDt2zO/3V28sKSk5/bP5+fmSJJ2+wTN9e2Vlpd1eYxmhxx577Iknnjj9nV+tXqIdn/onfmBtnIoPTXA4OlY1eNyVJCQp4HE46r6HLYtLLV+/kiVnOhyOi1CAvrndblVVMd081LCfwwP7OTxcLpemaee5n61WqySdY3W3Gp2hLl26LFiw4Jzbbd++/fl8fZ3i4uKOHz9e9bS8vDwhISEuLq6ysjLYUlFRQUSNGjUym83VGxMTE+Pi4qpnQ3l5ebDxwIEDtTZ4pm8PZuf51DlwyCirdfyF/0F/+vKVMfH2qkQnolKJCeIJUdbIyLo3rjZr59qwMvrGsRHVPtVQcc5x3VUYYD+HB/ZzeDDGQngdodVqbdOmzcXadJ1atGixcOHC4OOKioqjR482b968ZcuWO3bsCDbu2LGjUaNGNputefPmO3bsCA577tixo3nz5k2bNq2srDx27Fh6enqwcezYsfHx8e+++27wsw6H4/Dhw3+uqxoytZcs0FS/IDnyzBfjRfS6IXD8gLXrtSEvDQAAqk+WGT16dNUFCWdXXFzcrFmzs79nz549W7ZsURRl3759W7Zs8Xq977777muvvXbTTTeVl5fPnTvX5XJNmzbtqquuysrKGjt27Icffrh58+aSkpLnn39+3LhxRDRu3LgXX3zx5MmTu3btmjdv3vjx4xMSEm666aapU6c6nc5ly5bt3bv3jjvuuOGGG9xu99tvv+1yuf7xj3/06NFDV0HIiNRaQagEBPGIMwehnJSR8NCL3BaqFVUAAKC6Uz1Co9FoNP62dNbnn39ea1JJldtvvz0m5hx3iyWif/zjHwcOHMjKynrrrbeIaPny5eXl5S6Xy2QyrVix4pFHHnniiSe6d+8+f/58IurYseO//vWvu+66q7Ky8pZbbnn88ceJ6MEHHzx69GjXrl1NJtPTTz/dr18/InrzzTcnTJjQpEmTjIyMTz75JCoqiohWrFjx8MMPT548uXv37lXdTd3gmqZWfy6EX9UkG1YyAADQh7rXGk1OTi4oKKjzA5fu2qT1stboZ6/0UdNuGj5iUlXLvi+f27X1qx4Pf5tuw4kErM0YJtjP4YH9HB5hWmt006ZNqnqqH+N2u9etWzdz5sxXX331Yn3x5YIxodboEWqqTyXZJuN/FQAAXag7CDMzM2u1tG3bNjY2dtKkSTfffDO/SLeKvRwwYrXOEQpVUUk6yzlCAAAIpz8Qaddee+2BAwf27NkTumoaIqaJGtcLKlpAE5IB/5YAANCHP3A8Di5dZjZjuZM/gDEmtBpB6Av4iWGqDACAXtR9RK41a9Tv9+fk5Lz11ltZWVlZWVnhqq0hYIxpNYNQURTGEYQAAHpR9xH5vvvuqzVr1GAw9O/f/5VXXsEJwj+IC1FjskxAVYjOsd4PAACEzXnNGjUajSkpKedcrg1Ox4ipNc8RBlQ/x9AoAIBunG3W6O7du3/55Zfjx48nJSW1a9euc+fO4a2tITj9HKGqKCQhCAEA9KLuI3JlZeWYMWM+/fTT6o39+vVbunRpUpJebpt+SWCMqTVvMqFqCmOWeioHAABqq/uE37hx49asWTNjxoycnJyKioqDBw/OmTNn586dt956a5jru9RxVvscoaopHJNlAAB0o44jcmVl5fLly99+++3x48cHW6Kioh588MEmTZoMGTJk//79V1xxRXiLvJSdNjSqaQHOcDk9AIBe1NEj9Hq9mqb16dOnVnvfvn2JyOl0hqOuhoIR06jWbZhUbkCPEABAL+oIwoSEhGbNmm3YsKFW+48//mi321u2bBmWwhoIznitlWU0oUiYNQoAoBt1HJEZY/Pnzx81alR5efmtt96anJxcXFy8atWq559/fsGCBRYLJnr8AYxxUXO2jNAUyYggBADQi7ony9x6661Hjx599NFHMzMzTSZTWlrafffdd/jw4WHDhrHfzZ07N8y1XooYP+0O9UKVOc4RAgDoRd1dk6eeesrlcp39k927dw9BPQ0NJ9Jq3X1CqAYZPUIAAL04dURWFEVRlOCa2g899NBZPuN2uy0WC24+eT4Yk6jm5RMkFFk21lM5AABQ26mh0YULFw4cOPB8PhMZGbl///6QldSgcMZq9whJNcgYGgUA0IsaY3Rer/fgwYP1VUqDxHntWaNCU0wGBCEAgF7UCMLs7OymTZvWVykNEmectJpDo6QaJAQhAIBenArCa6655sMPPzzPj6Wmpoamnobm9KFRRqrZgHOEAAB6cSoIGzdu3Lhx4/qrpGHinBHVnjVqNprqqx4AAKgFd9kNLYmYEFpVEgoizjScIwQA0A8EYYgxzpnm+/0soVshEqqMWaMAALqBIAwtxrhMwvt7EDoCxJlgmCwDAKAbCMLQYsQ4004FoV8wUiQJ5wgBAPTi1GQZv99/zmXViCgmJiaU9TQ4jMmMvIogYkTkCBCRIAyNAgDoxqkgfP/998eOHXvOD9RaQhrOjjHGSXiqDY0SU7mEyycAAPTiVBD26tXr7bffDj6urKx8/vnnGzVqNHz48JSUlKKiotWrV2/btm3y5Mn1VOeli8tccyu/PakMCCIhIQgBAHTjVBC2aNGiRYsWwccjRowYNmzYe++9V7Wy9lNPPTVlypRVq1Y99dRT9VDmJYtxzunUOcJKvzCTxiTcfQIAQC/qmCzjdDo//vjjRx99tNb9Jf72t7/99NNPubm54aqtIWCMc9I8v/cIK3wKI44gBADQj7qDUFXVysrKWu3BltPb4ay4zMit/HZi1elXSHBiUv3WBAAAVeoIwqSkpGbNmv31r389fvx4VWNJSckDDzwQGxvbunXrMJZ3yWOMcTp1jtDh9TPGmYSrVgAA9KKOMTrG2Lx582644YasrKzu3bsHJ8ts3rxZUZQlS5YE79wL54kxzpmorArCgMIEEUePEABAL+rumvTp02fXrl2PPPKI2WzeuXMnEY0bN+6XX34ZPnx4eMu75AnOpWo9QqdPYYwjCAEA9OOMszYyMzNnzpx55MgRh8PRvn37cNbUkHDBOdNcvwehy68wwRjH0CgAgF7UfUTWNG3atGl2uz0rK+uGG24INj7yyCMTJ04MY20NAuMSE1WTZRz+ACP0CAEAdKTuIJw2bdoLL7wwceLE6dOnVzUOGDDg/fff9/v94aqtIQheR+gM/PbU6Ve4IIYgBADQjTqCUFGUV199dfr06S+++GKvXr2q2jt27Oh0OvPy8sJY3iWPcYkJzVl9aJQYSQhCAAC9qCMICwsLKysrBw0aVKvdbrcTUWlpaTjqajiYxKiqR+jx+7lgxHCOEABAL+rBuSxuAAAgAElEQVQ4IkdGRnLOT548Wat9165dRJScnByOuhoKxjhjmiMgiEjRSNEUJhhDjxAAQDfqDsLevXs/++yzTqezapW1ioqKJ554okOHDhkZGeGt8NLGuMRJq/QTEZX5KVoKMEKPEABAR+q+fOK1117r169fq1at2rRpU1lZOXbs2C+++KK0tHTt2rVhru9SxxhjJBwBIqISr4gxqlwQ1hoFANCPursmHTt2/Pnnn/v27btlyxaHw7Fs2bIuXbps2LChT58+Ya7vkhdcWSYYhD6KMQRIMMJ1hAAAunHGrskVV1zx/vvvCyEqKiqC02TgT2AkcdJKfYKIir3CbtAYYYk1AAAdOWPXZOnSpd26dbPZbG3btg22TJ069fnnnw9XYQ0E4zw4NKoKKvGRXfYzjeE6QgAA/ag7CN99992RI0empqaOGTOmqrFFixb//ve/VVWt8yNQNyYRaZEGqvBTiZeiDCoTAkOjAAD6UccRWdO0p59+etKkSStWrBg5cmRV+5VXXllcXHzs2LEwlnfJY5wLIWJNrNQn8j0iVlaI0CMEANCRui+oLygoGD16dK32pKSk4KvhqKuhYMQFiRgjlfoo303RhgDXCD1CAAD9qOOIbDKZiMjlctVqP3jwIBHFxMSEoayGg3NGIsFCxV4q8IhoOcDOfF4WAADCr46DckxMTLt27V599VVN06ouqNc07fnnn8/MzGzatGl4K7y0cSYJoaXb2DGXOO6maB6o2qUAAKAHdV8+8dJLLw0ZMiQvL69t27Yej+fFF19ctmzZzz//vHTpUhzH/5DgOcI0K8tziSNOEWPwlRBOEAIA6Ejdw3TXX3/9F1984fV633nnndLS0scff7y8vHzZsmV33HFHmOu79HFBIt1GmwpFjJHJIsARhAAAenLGC+r79++/ZcuWoqKi/Pz82NjYtLS0cJbVcHBOJNrFsr/8KPqlME314xwhAICunDEIc3NzX3311W3bth0/fjw5Oblt27YPPfRQhw4dwllcA8C4LITWIZbJnK5L5cIRYFhxGwBAT+o+KH/zzTcdOnSYO3euxWLp3bu33W5funRp165dP/zwwzDXd6njjAshTBIdHWkY34Krip8jCAEA9KSOHqEQYvz48e3atVuxYkXw2kEiKi8vv+uuuyZMmHDTTTdZLJbwFnkpYxIxjYjizURE+ZqfGM4RAgDoSB29k4KCgkOHDr388stVKUhEdrt9zpw55eXle/fuDWN5lzzGJRKi6qmmqugRAgDoSt035pUkyWaz1WoPtuBOFH8I41xQtSDU/PzM52UBACD86ghCm802YsSIWbNmaZpWvf3FF1/s27dvVlZWuGprCBjjolqPUKgB3J4eAEBX6u6d9OnT5+mnn27duvXw4cOTk5OLi4tXr169b9++yZMnv/POO8H39O3bt2XLlmEs9dLEZGLVe4QBiaFHCACgI3UflKdNm1ZcXFxcXPzCCy9Ub588eXLV43fffRdBeE6MS0Kc6lgLJcCw4jYAgJ7UHYT79u2rNS56OqvVGoJ6GhrGuKj2VNMCOEcIAKArdR+Uo6Ojqx5v2rRp69atkZGRN9xwQ2xsbLgKayAYl2qcI9QU3IwQAEBXagTh7Nmz161bt2zZMv778N3DDz88Z86c4OO4uLivv/4ai8v8IZxLgk71rTUtwHCOEABAT2qcr5o/f35MTExVCn7xxRdz5szp06fPqlWr/vOf/xDRgw8+eP6b1jQtNze3pKSkzlfz8vLy8/OrtyiKcvDgwcrKyuqNTqczNzdXUZTz/1594RKrcfmEwiX0CAEAdORUEAohdu7cec0111S1LFmyxGg0Llu2bPDgwWPHjn3ppZc2bNjgcDjOZ7uHDh1q3br10KFDW7Ro8eSTT1Z/6cCBA+3btx88eHC3bt1GjhwZCASI6JNPPklPTx8xYkTTpk3feOON4Dsfe+yxrKysYOOWLVuIaPz48bG/s1gsLVq0IKIOHTpERUUFGwcPHnzB++RiqnWOUGgKeoQAALpyKgjLy8sDgUBGRkZVy7fffnvllVdWrS/Tp08fIUReXt75bPfJJ58cOHDgnj17du7cOXfu3Ozs7KqXHnjggQEDBuzatSs3NzcvL2/hwoVlZWVjxoxZvHhxdnb2pk2bJk+efOzYsRUrVixduvTXX3/dsmXLM888M2HCBCKaO3du6e+uueaakSNHBrf52WefBRtXr1594TvlImJMqnFBvRqQOIIQAEBHTgVhZGSkwWAoKioKPj169OjRo0d79uxZ9YbgLXn9fv85N+r1ej/55JO//OUvRJSSknLzzTd/8MEHVa9u2LAheF9Dk8l08803L1q0aMeOHSaT6dprryWirKysjh07Llmy5Keffurfv39wes6IESO2bNlSfXW348ePr1279u677w4+DQQCLpfrz++GkOGyofrlE5qmMKw1CgCgJ6eCUJbl5s2bv/POO8ETcv/3f/9HRNVHGnNycogoPT39nBs9ceKE3+9v2rRp8GmzZs2OHDlS9ardbi8sLAw+Dq5rarfbnU6n2+0ONhYWFh4+fLjW24jo8OHDVRuZP39+v379qr7itttuS0pKatas2apVq85SmKqqW2o6ceLEOX/OheFENWaNcm4I8TcCAMAfUGOY7u9///s999zTvHnz5OTkjRs3duvWrU+fPlWvfvbZZ1lZWfHx8efcqMPhkGXZaDQGn1qt1upTYO67775JkyYJIYqKipYsWeLz+dq1a9exY8d777133Lhxa9asOX78uNPpvPPOO6dPnz5z5syOHTvOmjXLZrM5nc7gFoQQ8+fP/8c//hF8umzZsubNmxPRvHnz7rjjjl9//fVMae31esePH1+95Z577hk3btzp73S73ZqmBTvBF8Lr8wsSVZUrql8Vp57CxdrPcHbYz+GB/RweLpdLCHGe+9lqtfJzLWNSIwjHjBmjadqcOXMKCwvvvPPOF198serzbrf7xx9/vPPOO8/ni5OSkhRFcTgckZGRRFRaWpqcnFz16tNPP52Zmfnxxx+npqZOnjz5vffe45yvWbPm3//+98KFC3v27Dl06NDMzMzMzMxNmza9+eabOTk5kyZNGjVqVGZmZnAL69atKyoquvnmm4NPgylIRGPHjn355Zd//PHHESNG1FmYzWbbtm3b+fwExpjVar3wP2hhiyCiiIiI3zZLwmAwVz2Fi7Wf4eywn8MD+zlsbDbbRdzPtSdu3Hvvvffee+/p77NarTt27DjPjSYmJqalpW3cuHHAgAFEVPUgiDE2ZsyYMWPGENHo0aN79+5NRFFRUVOnTiUij8fz3HPPLViwgIhatWr12muvEdH69esDgUDbtm2DW5g3b95dd911+tI2iqKUl5cH01cnGK85WUYoHJNlAAD0JCQHZc75gw8++Pe///2NN97Ytm3bpk2bFi5cSETt27efO3euz+crKipKSEj47LPP1q1bF7wuYtGiRSkpKYFA4JVXXunSpcuAAQMCgcAbb7zRtWvXw4cPP/nkk9OnTw8mX0VFxfLly3/44Yfgdx08ePD999/v3bu3EOKtt96y2Wz9+vULxY/6k7hUfdFtoSnMiHOEAAA6EqreyaRJkyRJevLJJxMTE9euXRs8s9izZ8/o6OjS0tKFCxcWFxe3bdv2p59+Co6aulyumTNnKooycODAv/71r4wxxti+ffs+/vjjmJiYf//737fccktwy7m5uQ8//HDnzp2DTyMjIwsKCp5//nnOeefOnefMmXP6nRTrEWeGmvcjVLmEIAQA0BFWfSXMhi0/P79jx461lrM5E5fLdVHG+j3H93354YBhfzsafLrqjXadom9LGf3MBW62wbhY+xnODvs5PLCfw8PpdF7cc4S4JVBoMUmusei2UJhkrMd6AACgFgRhaDEuC1btgnqhYrIMAICuIAhDizO5xlqjQmUcPUIAAB1BEIYWk2qsLKNpqoS7TwAA6AmCMLSYZKg5HUkl9AgBAPQEQRhqwXlNv2WhpmmSjMsnAAB0BEEYYpwzYr/fgEIQCYbrCAEA9ARBGFqMcWIkNI2INFVhjBPDPgcA0BEclEOMsaoeoaYFGJPYudZBBwCAcMJBOcQYZ4IJoVBwoVHixDFrFABARxCEIcYZI6rqEXKSCJdPAADoCYIwtBjjQhAJQUSaGmCMM/QIAQD0BEEYYiw4a1QlIqEFMDQKAKA3CMIQC06W0VQKDo1isgwAgM7goBxinJOgYI9QUxXGGHqEAAC6giAMLcY4IwqusqZpASbQIwQA0BcclEOMMSZIaMHLJwKMGGaNAgDoCoIwxBgj4sEg1NQAx8oyAAA6g4NyyDHBhBYgIk1TmOAMPUIAAD1BEIYcY6SpGlUNjWKyDACAniAIQ+/3JdY0NcAIF9QDAOgLgjDkGDGhBodGA1ygRwgAoC8IwpBjjIQaXFlGIcFwjhAAQFcQhCHHBNeCQ6PoEQIA6A+CMAxY1eUTjIhwQT0AgJ7goBxyjDGh/tYjZAKTZQAA9AVBGHJM/NYjFKrCiDA0CgCgKwjCkGPs1KxRJhh6hAAAuoIgDAP++1qjCtME1hoFANAVBGHIMUFC04hIVX2MOCbLAADoCg7KIccYF5qfiISmMk1gaBQAQFcQhCHHGNd+mzXq5xquIwQA0BcEYcgxwTQteIf6AAnCyjIAALqCIAw5xvhvt2FSA1wI9AgBAHQFQRhyrOrGvFqANMI5QgAAXUEQhhyjqgvqAww9QgAAnUEQhhxjXNN+nyyjMlw+AQCgKzgohxxj/Le1RtUACVw+AQCgLwjCkKt+jpCrhJVlAAB0BUEYcozxqtswkaahRwgAoCsIwjDg4rfrCP2cODFW3/UAAMApCMKQ44xrVdcRErqDAAD6giAMOUaS9tvdJ3zE5PouBwAAakAQhhzj7Peh0QDHtRMAADqD43LIMZJ+myyj+Dkz1Hc5AABQA4Iw5BhJQvx+h3qGc4QAAPqCIAw5xrmmqkSkqj6J4xwhAIC+IAhDjpOsBXuEKoZGAQB0B0EYcowx0jQKTpaREIQAAPqCIAw5xiU1eB2h5me4fAIAQGcQhCHHmfz7Emt+STLWdzkAAFADgjD02O+XT2gK4xgaBQDQFwRhyHEma5oiNIUY45g1CgCgMwjCkGOck6apql/iBtyDCQBAb9BBCTnODZrm11Q/5zITCEIAAH1BEIYcZ1wTqqb6GTcS7j4BAKAzGBoNOc4NmqZoqp8zmUn4lwcAgL4gCEOOcfm3IOQy4e4TAAA6gw5KyHFmEEJRVR9nBiy6DQCgNwjCkGOSrGkBTQ1wLhEunwAA0BmM1IUc57IQqqp4OZMZR48QAEBfEIQhJzGDpqma4uHMSAhCAACdQRCGHJMMmgioihcX1AMA6BCCMOQ4N2pVk2XQIwQA0BkEYchJklHTFFXxSgyXTwAA6E4IJzEeOHBg+/btLVu2bN26da2X8vLytm3blpqa2rVr16rGbdu2HTlypFOnTpmZmcEWr9e7ceNGl8vVt2/fyMjI4AcLCwurPtK5c2fGGBHt2rUrJyenU6dOTZo0Cd0v+nM4N2ha4LfJMrigHgBAZ0LVQfnPf/5z5ZVXfvTRRwMGDJgxY0b1l+bOndutW7ePP/54zJgxd999NxEJIUaMGHHXXXd98sknPXr0WLRoEREdP368Q4cOM2bMmDdvXqtWrXJycojopZdeGjp06ITfaZpGRFOnTh00aNBHH33Uo0eP999/P0S/6E/jsuW3c4RMxmQZAADdESHg8Xji4+O/++47IcSvv/5qsViKioqCL1VWVloslo0bNwoh3G53RkbGDz/8sGLFioyMDLfbLYTYvHlzYmKi1+u9//7777777uCnnnnmmVGjRgkhHn744WnTplX/ruPHj1ssloMHDwoh1qxZk5qa6vf766zq5MmTSUlJ5/kTnE6npml/4refruLLxR+/krpn4ytbF40pX/HuRdlmg3ER9zOcBfZzeGA/h4fD4bi4+zkkPcL169ebTKa+ffsSUYsWLdq0abN69ergSwcPHlRVtXv37kRksVi6deu2fPnyXbt2denSxWKxEFG3bt0cDsf69et37drVp0+f4Kf69u27fPlyIQQRlZSUbNiw4cSJE8GX/vvf/3bp0iU4Itq/f3+/37958+ZQ/Kg/jXGJMSngLedMIgyNAgDoTEiOy8eOHcvIyKh6mpGRcezYseDj1NTUQCBw+PDhJk2aCCFycnIkSerQocPixYuFEIyxI0eOeDyevLy8tLS0ffv2BT+1b98+r9dbXFxMRN98880vv/zyyy+/DB8+fN68ecePH6/6Ls55Wlpa1XedLhAIzJ8/v3pL+/btO3TocPo7VVVVVTV4AvICaYIkJvu85SaNEZdUVb3wbTYYF3E/w1lgP4cH9nN4/KH9zDk/5ztDEoSBQECWT23ZYDD4fL7g44SEhPvvv3/YsGH33nvvhg0bHA6Hoii33377jBkzbr/99t69ey9dujQxMVFRlMcee2zQoEGSJNlsto8++oiIFEWZOXNmsONYUFDQs2fP9957z+/3n+m7Tqcoypdfflm9xWQytWzZ8vR3+nw+SZIuyh+0KgRnstddahJmRYizlHcZuoj7Gc4C+zk8sJ/Dw+fzybJ8nvvZbDbXTxAmJycHe29BRUVF1113XdXTN998c+XKldu3bx83blx8fLzVarVarT///PPSpUtLSkr+85//DB48OCsrq0ePHtnZ2Z9//rnFYnn11VeHDBmSnJxc9XuSkpKGDh26efPmNm3abN++vfp3paamnqkwi8WyePHi8/kJQgir1XpxeoQms8QMqq/cyDONJovVar3wbTYYF3E/w1lgP4cH9nN4aJp2cfdzSM4Rdu/e/dChQ8EhSqfTuXnz5quuuoqIFEUhIsbYjTfeOGXKlKuuumr58uWDBg0iooiIiHHjxk2aNKmwsNDhcPTo0YOImjVr9re//W3ixIkrV64cOHBgrZ+9Z8+elJSUq666asOGDV6vl4hyc3MLCwu7dOkSih/153GJM9nrLpKYkWFlGQAAnQlJjzApKWnMmDG33377hAkTPvjgg+uuu65169Zbt27t0qWL1+udM2cOY4wxtmDBguuvv37AgAFENHHixA4dOhQUFMyePfv111+32Wzbtm1bsmRJVlZWdnb2ypUr169fT0TDhg3r06ePzWb7+uuvd+zYsWDBgtTU1G7dut1666233Xbb66+/PmHChJiYmFD8qD+Ncc6Z7HYXySZMlgEA0J1QXUf4+uuvjx07duPGjUOGDFm6dCkRpaenv/TSS7Isd+3a9fjx4wcOHJg8efKCBQuC7+/atevu3bvdbveaNWtGjRpFRBkZGTExMVu3bs3Kytq2bVvTpk2JaNSoUQUFBbt37+7Vq9fevXuDo6ArVqy47rrrNm/e/OCDD7788ssh+kV/HpckkpSAmxPuPgEAoDsseE3C5SA/P79jx475+fnn82aXy3WxxqDdm9dm//zPYl9uz8Tx9qZX2Xpef+HbbDAu4n6Gs8B+Dg/s5/BwOp02m03v5wihBi4ZmYWIZE3GOUIAAL1BEIYe5wZmIWKSJuMcIQCA3iAIQ45xyUCmqLgWTCP0CAEA9AZBGHpcMjJTfHpP0lQsug0AoDcIwtDj3EjmhLSeQg0wyVDf1QAAQA0IwpBjXJKFKT6tB6kqYWgUAEBnEIShx7mFIs0RyUJVcGNeAAC9QRCGHJMkpgoiEqqKyTIAAHqDIAw9LpGmEhGpCi6fAADQGwRhyDEuCU0lIqEpWGINAEBvEIShJ8mkKkREqooeIQCA3iAIQ+5UjxCTZQAA9AdBGHqSRCrOEQIA6BSCMPQ4F5pGREIJMBkX1AMA6AuCMOTY77NGMTQKAKBDCMLQq5osoygkIwgBAPQFQRhyTJKFqhAR1hoFANAhBGHInQpCnCMEANAfBGHoSRIpCmkqMU6M1Xc1AABQA4Iw5JhkEJoiFIXhBCEAgP4gCEOOybJQFJwgBADQJwRh6HGJhCYCAVxNDwCgQwjCcGCSLPxeDI0CAOgQgjAsJFn4PBgaBQDQIQRhODBJFn4PrqYHANAhBGE4MFnWfF6srwYAoEMIwrCQDBgaBQDQJwRhODBJ0rxuZjDWdyEAAFAbgjAsJIPwupnRVN91AABAbQjCcGCyrHldWGgUAECHEIThwLgsvG5mQI8QAEB3EIRhIcs4RwgAoE8IwnBgskHzONEjBADQIQRhODCDUXM70CMEANAhBGE4MKNZc1WiRwgAoEMIwnDgRrPmrCAjeoQAALqDIAwHZjRrbgeTEYQAALqDIAwHZjKLgB9DowAAOoQgDIdgBHKLrb4LAQCA2hCE4cCMZiLitqj6LgQAAGpDEIYDM5mJiFsj67sQAACoDUEYDtxsJQQhAIAuIQjDwdioBSEIAQB0CUEYDnJCmhyfgskyAAA6hCAME0vHvsRYfVcBAAC1IQjDxNqpb32XAAAAdUAQhokhrWl9lwAAAHVAEAIAwGUNQVi3jRs3njx5sr6raPiwn8MD+zk8fvrpp/z8/PquouG76PsZQVi3V155JTs7u76raPhefvnln3/+ub6raPhmzZq1ZcuW+q6i4cN+Do9Zs2Zt3br1Im4QQQgAAJc1BCEAAFzWmBCivmsIk5KSkj59+mRlZZ3Pm3fv3p2SkhIbGxvqqi5z2M/hgf0cHrt27UpLS4uJianvQhq4P7SfZ8+e3aRJk7O/5zIKQiLauXPnkSNH6rsKAAAIk759+0ZFnePOP5dXEAIAANSCc4QAAHBZQxACAMBlDUEIAACXNQQhAABc1uT6LkB3FEWZPn36ypUro6Ojp0yZ0q9fv/quqGF6/fXXv/vuu+Bjk8m0cOHC+q2nIXG73YsXL96yZUtJScncuXODU+b8fv8///nPL7/8Mi4uburUqVdeeWV9l3nJ0zRt0aJFW7ZsOXny5IwZM5o2bUpEb7311jfffBN8gyRJH3zwQb3W2BAUFRXNnj17/fr1Xq+3a9euTz31VGJiIhHNmTNn8eLFRqPxf//3f4cPH34hX4EgrG3WrFmffPLJvHnzdu/ePXTo0N27d6enp9d3UQ1Qdna21WodMmQIEUmSVN/lNChFRUVffPFFy5Yt33rrrddffz3Y+Oyzz3799dfvvvtudnb24MGDc3Nz4+Pj67fOS52iKB999FGXLl3efvvtSZMmBRu3bNliMpmGDh1KRJxjyO0i2LdvX1lZ2ZQpU6Kiop577rmbb755w4YNixcvnjVr1gcffFBaWjp69OiMjIyuXbv++e8QUFNGRsaqVauCj2+55ZZ//vOf9VtPQzVmzJhXXnmlvqtoyIqLi4mosLBQCBEIBBISEr7//vvgS9dff/3LL79cr9U1KBEREdnZ2cHH48ePnzlzZv3W04AdPHiQiMrLy3v16vXWW28FG//617+OGzfuQjaLf7DUUFZWlpeX17179+DT7t27b9++vX5LasAWLVo0ePDghx566MCBA/VdSwN38uTJoqKibt26BZ/iDzuklixZMmjQoAceeCAnJ6e+a2lotm/fnpycHBUVtXPnzup/zzt27LiQzWJotIbCwkIistvtwacxMTHBFrjorr/++htvvNFms61atapLly47duxo1KhRfRfVYBUWFprNZrPZHHwaExODm6uESP/+/QcOHBgREbFmzZouXbps3779PJd1hHPKz89/6KGHXnnlFa/X63A4qh+oCwoKLmTLCMIaoqOjicjtdkdGRhKR0+ms2tdwcd15553BB4MHD967d++iRYsmT55cvyU1YNHR0T6fT1EUWZYJf9ihNGLEiOCDwYMH79u3b+HChc8880z9ltQwFBcXDxgwYOLEiXfeeacQwmQyud3u4EsX/veModEaEhISrFbr/v37g0/379/fuHHjeq3ospCamlpRUVHfVTRkqampBoOhaggaf9jhgT/si6W0tHTAgAHDhg176qmniIgx1qhRo4t4oEYQ1iBJ0siRI1977TUiOnHixMcffzx69Oj6Lqph2rhxY/DBzz//vGLFimuvvbZ+62nYrFbr8OHDZ8+eTUSHDx/+/PPPR40aVd9FNUxVf9jbtm1bvnz5NddcU7/1NAAVFRWDBg26+uqrn3vuuarG0aNHv/HGG6qqOhyOBQsWXOiB+iLM42lYTpw40b179/T0dLvdPnXq1Poup8HKzMyMiooK3ktl1qxZ9V1OQ5OQkBDzu7i4OCHEkSNHOnXqlJGRYbfbZ8yYUd8FNhCdO3eOqebYsWNXXHFF8A/bbre/8MIL9V1gQ/Dpp5/G1JSTk+NwOAYNGpSUlBQTE3PfffepqnohX4G7T9QtPz8/KirKarXWdyENWXl5ucfjSUlJqe9CLiMnT5602+0Wi6W+C2nIKioq3G43/rDDoLi42Gg0nvMuS+eEIAQAgMsazhECAMBlDUEIAACXNQQhAABc1hCEAABwWUMQAgDAZQ1BCAAAlzUEIUCDUlxcvGDBggtcgxjgsoJFtwEuJd9888348ePP9GrPnj0feeSRe+65Z926dUlJSeEsDODShSAEuJRkZGSMHTs2+Njlcr3wwgt9+vQZOHBgsCUzMzMjI+PZZ59t0qRJ/dUIcInByjIAl6rCwsKkpKTHH3/8hRdeOPs7KysrhRDBu4wFlZaWRkVFBe/KVF1xcTFjLC4u7uKXC6BXOEcI0KBs3bo1JSVl48aN3377bWxs7OrVqwcMGBAdHW2322+66abKysoNGza0bt06Li4uMjJyypQpVf8UnjdvXuPGjRMSEuLj41u1avXVV1/V7w8BCBsEIUCD4vf78/PzfT5fIBAoKyu7//77r7766s2bN7/55ptr1qwZP378Pffc8/jjj2dnZ//lL3+ZPn36F198QUSzZ88eP3787bffnp2dvXnz5rZt2w4ZMmT79u31/WsAwgHnCAEaspEjR06ZMoWIunXrtnbt2mXLln366afDhg0jok6dOi1duvTTTz/t16/f008/PW7cuIYJrIAAAAFESURBVJdeein4qcWLF7dp0+bVV1+dN29efVYPEBYIQoCG7Prrr6963Lx5c8bYgAEDgk8lSWrWrFleXt6mTZsqKioaNWpUfTi0cePGu3btCne5APUBQQjQkMXExFQ9NplMJpOp+l02jUaj3+8PXnQ4a9YsSZKqfzY1NTVsdQLUIwQhwOUuOJt0yZIlgwcPru9aAOoBJssAXO569OhhNpuXLVtW34UA1A/0CAEud7GxsZMmTXr22WcTExMnTJiQnJycl5f39ddfy7J833331Xd1ACGHIAQAmjZtmtVqfeGFF2bOnBlsycjImD59ev1WBRAeWFkG4BKmqirnnDFWq7HWtJfzpCjK3r17PR5PWlpaampqrc0CNFQIQgAAuKxhsgwAAFzWEIQAAHBZQxACAMBlDUEIAACXNQQhAABc1hCEAABwWfv/uKAy5KboiYAAAAAASUVORK5CYII=" }, "metadata": {}, "execution_count": 7 } ], "cell_type": "code", "source": [ "p2 = plot()\n", "for g in get_components(ThermalStandard, sys)\n", " state_series = get_state_series(sim, (get_name(g), :ω))\n", " plot!(\n", " p2,\n", " state_series;\n", " xlabel = \"Time\",\n", " ylabel = \"Speed [pu]\",\n", " label = \"$(get_name(g)) - ω\",\n", " )\n", "end\n", "img = DisplayAs.PNG(p2) # This line is only needed because of literate use display(p2) when running locally" ], "metadata": {}, "execution_count": 7 }, { "cell_type": "markdown", "source": [ "It is also possible to explore the small signal stability of this system we created. However,\n", "Since a simulation has already taken place, we need to reset the model." ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: Rebuilding the simulation after reset\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "[ Info: The System has no islands\n", "[ Info: Initializing Simulation States\n", "[ Info: Unit System changed to UnitSystem.SYSTEM_BASE = 0\n", "[ Info: The System has no islands\n", "[ Info: PowerFlow solve converged, the results have been stored in the system\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "[ Info: Attaching Perturbations\n", "[ Info: Completed Build Successfully. Simulations status = BUILT\n", "[ Info: Simulation reset to status BUILT\n", "┌ Warning: No Infinite Bus found. Confirm stability directly checking eigenvalues.\n", "│ If all eigenvalues are on the left-half plane and only one eigenvalue is zero, the system is small signal stable.\n", "└ @ PowerSimulationsDynamics ~/.julia/packages/PowerSimulationsDynamics/n4bor/src/base/small_signal.jl:89\n", "┌ Info: Eigenvalues are:\n", "│ -1000.0000000000014 + 0.0im\n", "│ -1000.0000000000009 + 0.0im\n", "│ -1000.0000000000002 + 0.0im\n", "│ -999.9999999999998 + 0.0im\n", "│ -999.9999999999994 + 0.0im\n", "│ -51.807502094887305 + 0.0im\n", "│ -51.66123303723068 + 0.0im\n", "│ -51.49196116847845 + 0.0im\n", "│ -51.48204797296263 + 0.0im\n", "│ -51.38460395958913 + 0.0im\n", "│ -43.606770822347016 + 0.0im\n", "│ -36.89352970900156 + 0.0im\n", "│ -33.31097212895758 + 0.0im\n", "│ -30.40864223348849 + 0.0im\n", "│ -28.01655761625278 + 0.0im\n", "│ -23.88123468187301 + 0.0im\n", "│ -20.770613941795236 + 0.0im\n", "│ -18.298812818468587 + 0.0im\n", "│ -15.817280799219855 + 0.0im\n", "│ -12.4535351731598 + 0.0im\n", "│ -7.386324091020085 + 0.0im\n", "│ -6.703133543800532 + 0.0im\n", "│ -5.276882204482481 + 0.0im\n", "│ -4.5126237915183145 + 0.0im\n", "│ -4.473060547983035 - 10.72465167518535im\n", "│ -4.473060547983035 + 10.72465167518535im\n", "│ -3.7758166100050334 - 10.229252854125122im\n", "│ -3.7758166100050334 + 10.229252854125122im\n", "│ -3.742914873327555 - 9.915880591116311im\n", "│ -3.742914873327555 + 9.915880591116311im\n", "│ -2.6700435249538588 - 8.718145502364601im\n", "│ -2.6700435249538588 + 8.718145502364601im\n", "│ -2.413324071441693 - 7.998019427009456im\n", "│ -2.413324071441693 + 7.998019427009456im\n", "│ -2.3466700384540498 - 8.544936857679344im\n", "│ -2.3466700384540498 + 8.544936857679344im\n", "│ -2.2736098985790534 - 8.930102316891308im\n", "│ -2.2736098985790534 + 8.930102316891308im\n", "│ -1.921996374355548 + 0.0im\n", "│ -1.6595628314344688 + 0.0im\n", "│ -1.568604674011719 - 1.9420692161219602im\n", "│ -1.568604674011719 + 1.9420692161219602im\n", "│ -1.304344028522091 - 8.826562169098914im\n", "│ -1.304344028522091 + 8.826562169098914im\n", "│ -1.2863044260315994 + 0.0im\n", "│ -1.189196636506337 - 0.12712066641976974im\n", "│ -1.189196636506337 + 0.12712066641976974im\n", "│ -0.9782745903713628 - 0.06936177246604834im\n", "│ -0.9782745903713628 + 0.06936177246604834im\n", "│ -0.8488982894117668 - 0.498701658187088im\n", "│ -0.8488982894117668 + 0.498701658187088im\n", "│ -0.6457299452858358 - 0.19425247186886496im\n", "│ -0.6457299452858358 + 0.19425247186886496im\n", "│ -0.49499928165816176 + 0.0im\n", "│ -0.4167034353505496 + 0.0im\n", "│ -0.33954022474042556 - 7.568615170969771im\n", "│ -0.33954022474042556 + 7.568615170969771im\n", "└ 0.0 + 0.0im\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "The system is small signal stable\n" }, "metadata": {}, "execution_count": 8 } ], "cell_type": "code", "source": [ "res = small_signal_analysis(sim; reset_simulation = true)" ], "metadata": {}, "execution_count": 8 }, { "cell_type": "markdown", "source": [ "The eigenvalues can be explored visually" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Plot{Plots.GRBackend() n=1}", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deUBUZfv/8XvYd4ZdUETBNUkUEXFDyzUrNbfMLc3MMrPSXMrdzKVfmWtmVppLaqZoPqaPGiq5pqjgDiguLLLvDAww5/fH9EVyix6PzOB5v/6auedwnWvuiI9nV0mSJAAAUCoTQzcAAIAhEYQAAEUjCAEAikYQAgAUjSAEACgaQQgAUDSCEACgaAQhAEDRCEIAgKIRhAAARatOQZiTk3Pjxo3KL6/T6Z5YL3gopt0gmHaDYNoNQvZpr05BGB4e/uGHH1ZyYZ1Op9Fonmg/uB/TbhBMu0Ew7QbxJKa9OgUhAACyIwgBAIpGEAIAFI0gBAAoGkEIAFA0ghAAYNQKCgo+mja7QVD7xq06frrwS61WK299ghAAYLx0Ot1zL/VdnuAWO/K3K8N2LDxbPHDkO/KugiAEABivo0ePXjP3Lm43SphbCUtbTdfJZ5IKYmNjZVwFQQgAMF6XLl/J9gysOFJUK/DKlSsyroIgBAAYr/r1/BzSL1ccsUq94ufnJ+MqCEIAgPFq3769Z9o506hdQgghSebHf/Qzz2vcuLGMqyAIAQDGy9zc/PDubf0LD9T6qk2tJW2H213dsfEHlUol4yrMZKwFAIDs3NzcNq5efurUqTt37gQEBNjb28tbnyAEABi1xMTE53sOyHBpXOxYy3rm4l6hLVYv/ULG+uwaBQAYtf4j3ontOj9jwMr8blPTxu7beiFj+46dMtav6iDcunXr0KFDg4ODv/766/LBDRs21KtXz93dfcSIEYWFhVXcEgDAaJWUlMTfyZD8WpeP5LQZvWnnXhlXUdVBeOfOneDgYHt7+6SkJP3IlStXxowZ8+OPP8bExCQmJs6ePbuKWwIAGC2dTifdM2RqVlJaKuMqqvoY4XvvvSeEOHXqVPnImjVrevXq1bZtWyHEtGnT+vbtu2DBAnnPCAIAVFOWlpaeapuUy7+L+NMi546o08Ih+ewrg56TcRWGP0Z45cqVgIAA/euAgID09PT09HTDtgQAMB5Txo4y2fCucKsjgl9VpcSI6N9e7ddHxvqGP2s0MzOz/FxYe3t7lUqVkZHh5ub2wIUPHjxoampacWTcuHGffvrp/UvqdLqioiJJuneTGk8U024QTLtBMO1VZuqCxbqPfhdONYUQkl9IsYPrwkVLJ4wbU5mftbGxMTH5h00+wwehs7Nzbm6u/nVubq4kSa6urg9buGPHjtu2bas4YmJi8sD9qDqdztTU1NbWVt5u8WhMu0Ew7QbBtFeNoqKivFKVPgX1iv17/HHq05l2dnKtwvBBWL9+/YsXL+pfX7x40dnZ2cXF5WELq1Sqe7YIAQBPMUtLS5PS4r8N5aV7uD90e+l/UNXHCDMyMq5fv56Xl5eVlXX9+vWcnJwRI0aEhYVFRkYWFBTMmzdv+PDhnCkDANBTqVShIUEWx9b89b5E47R/3luD+8u4iqoOwvXr1w8YMOD27dsnT54cMGDAnj17mjRp8tVXX/Xp06dmzZqOjo5cPgEAqOiHZV92LTzqtqSDx7pBHl+1n/Vmnw6h7WWsr6pGR3rDwsLWrVsXFhZWmYV1Op1Go2H3fRVj2g2CaTcIpr2K5efnp6Wl1apVS6vVyjvthj9GCADAP7Kzs7Ozs9PpdLJXNvx1hAAAGBBBCABQNIIQAKBoBCEAQNEIQgCAohGEAABF4/IJAEA1sOPXXWu3/qotKendpcOoN+S8BxlBCAAwdmM/+mRjZGJ2+3eFJu/o9v/sPjBi56a1chUnCAEARi0xMfHn/UezG70s1o4STt65Wbf3W1icPn06KChIlvocIwQAGLWoqKg8azeREC2mHhfvhYlpJzXeLeYvWipXfYIQAGDUvLy8tLcuin7zham5EEKYmIoBn584e0Gu+gQhAMCo5efn64pyha3z3SFzayHfyTIEIQDAqP0ecUx4NBBXDt0dunW2Zg0PuepzsgwAwKjZ2lipNLnSxnGix2RRp4VIOC+2fbLgl3Vy1WeLEABg1Br41lE5uIupx0Remti/RKTfMK0dIOMjCdkiBAAYteLiYtOGbXU2atH9I/2IKnxZTExMq1atZKnPFiEAwKjVq1fPMeNqxRHH9Ev16tWTqz5BCAAwas2aNfNVZVic+FFIkpAks1ObahfdDA4Olqs+QQgAMGoqlWp/2OYR9rG1l7X3Xtp2kElk+K9bTU1N5arPMUIAgLFzcHD45quFQgidTqfRaGQ8U0YQhACAauHo0aObdvymUqn69ujcsWNHGSsThAAAYzd+6swfD13MDH5DSLqNkxeNefnk3GmT5SrOMUIAgFGLjY1dv+do5vCfRJMuwr9b1ptbv/35PwkJCXLVJwgBAEbt1KlTeQ273b25qMqksGHn06dPy1WfIAQAGDUXFxfL4qyKI5ZFWS4uLnLVJwgBAEatdevW9lf3iYybf71PjbONPyrXU3kFJ8sAAIycg4ND2I+rBr45pMDOSyorsdOkbv/pe2tra7nqs0UIADB2LYNaHAjb5GWSr8tNyy8ze2PcpNjYWLmKs0UIADB2Wq22S59B13p8IeoGCyFSb0d16TP48p+HZdkuZIsQAGDsIiMjs2o016egEEJ4B+T4hh47dkyW4gQhAMDYJScnFzt4VRwptPNKSk6WpThBCAAwds2aNbOJO1xxxOHaocDmzWUpThACAIydr69vr7YB6s1vi1vnxO0ox1/e79KkVpMmTWQpzskyAIBqYPXSL17YsXPdtm9LS0oGv/HSawP6yVWZIAQAVA99evfq3fNl2R/DxK5RAICiEYQAAEUjCAEAikYQAgAUjSAEACgaQQgAUDSCEACgaAQhAEDRCEIAgKIRhAAARSMIAQCKRhACABSNIAQAKBpBCABQNIIQAKBoBCEAQNEIQgCAohGEAABFIwgBAIpGEAIAFI0gBAAoGkEIAFA0ghAAoGgEIQBA0QhCAICiEYQAAEUjCAEAikYQAgAUjSAEACiamaEbEJIkxcfHl791dHR0cXExYD8AAEUxfBAWFhb6+fkFBgaqVCohxJAhQz744ANDNwUAUArDB6HesWPHLC0tDd0FAEBxjCUIr1y5Ym5uXq9ePQsLC0P3AgBQEKMIQltb27feeisjI6OoqGjDhg0dO3Z82JKpqambNm2qONKoUaOAgID7l9T9H9m7xSMw7QbBtBsE024Q/3baTUz++ZxQwwehtbV1WlqatbW1EOLLL7987bXXEhISTE1NH7hwamrq9u3bK4706NGjYcOG9y+p0+mKiooeVgdPCNNuEEy7QTDtBvFvp93Kyuofs1AlSdJjNyabwsJCW1vba9eu+fr63v9pWFjYunXrwsLCKlNKp9NpNBpbW1u5e8SjMO0GwbQbBNNuEE9i2o3rOsKrV6+amJi4u7sbuhEAgFIYftfo1q1bjx07FhAQkJ6evnTp0rFjx9rZ2Rm6KQCAUhg+CIOCgmJiYv744w9HR8fly5f37NnT0B0BABTE8EFYt27dqVOnGroLAIBCGdcxQgAAqhhBCABQNIIQAKBoBCEAQNEIQgCAohGEAABFIwgBAIpGEAIAFI0gBAAoGkEIAFA0ghAAoGgEIQBA0QhCAICiEYQAAEUjCAEAikYQAgAUjSAEACgaQQgAUDSCEACgaAQhAEDRCEIAgKIRhAAARSMIAQCKRhACABSNIAQAKBpBCABQNIIQAKBoBCEAQNEIQgCAohGEAABFIwgBAIpGEAIAFI0gBAAoGkEIAFA0ghAAoGgEIQBA0QhCAICiEYQAgGpg9Q8/+jZrXdM/OOj5Hr//Hi5jZTMZawEA8CSs+n7t5LX7ct7cLazs72QnvfrBkN3f27UKDpalOFuEAABjt3DZqpxB3wgreyGEUHtlvLLo069WylWcIAQAGDuNtkSYW99971H/+vV4uYoThAAAY+doayPy0u6+v3H62SaN5SpOEAIAjN3iz6Y7r3lNJF4UpVpVzB/uuybOnzZRruKcLAMAMHbdu3bZtcpu2oIFt27dbNK40aLdv/j6+spVnCAEAFQDbVq3Dt/ZWqfTaTQaW1tbGSuzaxQAoGgEIQBA0QhCAICiEYQAAEUjCAEAikYQAgAUjSAEACjaA64j1Ol0ERERBw8ePHfuXHp6upmZWY0aNYKDgzt37hwQEFD1LQIA8OT8LQg1Gs2KFStWrFhx48YNS0vLunXrOjs7FxUVnTp16pdfftHpdEFBQePHjx84cKBKpTJUxwAAyOhuEJ49e/aVV14pKSkZNGhQ3759AwMDLSwsyj/Nzc09fvz45s2bR48evXjx4j179jg7OxuiYQAA5HT3GGFaWtqUKVPi4+P/3//7fyEhIRVTUAjh4ODQrVu3NWvW3Lx5s0uXLnl5eVXeKgAA8ru7Rdi1a9fK/ICTk9PcuXOfWD8AAFSpB581umPHjvsHdTrdvHnznnA/AABUqQcH4dtvvz1s2LD8/PzykZSUlO7du0+fPr2qGgMA4F4pKSnFxcXy1nxwEC5atGjHjh0tW7aMjo4WQhw4cKBZs2YXLlzYv3+/vKsHAKAydv22p3aToOa9RzZq/8KLA4ZmZ2fLVfnBQTho0KDTp09bWVm1atVq0KBB3bp1a9q06blz555//nm5VgwAQCVdvnx55OS5t9/anTJqZ9qHR/Y5dXv1jXfkKv7QO8s0aNBg27Zt5ubmmzZtevbZZ3ft2uXu7i7XWgEAqLz1W7anhY4Xtn9dtlfa8tWouFtFRUWyFH9oEO7duzckJEStVk+aNOnSpUvPP//8rVu3ZFklAAD/ys3kFOHw940xW5fMzExZij84CKdPn96jR4+QkJCzZ88uXLjwyJEjiYmJzZs3//XXX2VZKwAAlde5TZDN1f3i+kmx53MRvkIkXjDJuu3l5SVL8QcH4dq1a7/44oudO3e6uLgIIYKDg8+ePduxY8fevXvLslYAACpv6OBB1ue2qX5bIDzqCyt7k1WDBvZ6Qa7iD7jpthBi7969TZo0qTiiVqu3bdu2fPlyuVZcUVxc3PLlyzMzM3v27NmvX78nsQoAQPV15MiRbLta0tgw/Vtd4CvrF3dY8Omse26C9r+5G4RHjhzJzs5+6aWXhBD3pGC5sWPHarXa77//vlevXnJtk2ZmZrZt23bkyJGtWrUaP358QUHB66+//pg1J06cuGzNTyXCtJGn08XzUbL0CQD4t3799dfBI98ulMxdrFR7f92+/2DE1RsJbQL9ra2sDhw5mZacqCnW5uXl6VSmrk5qZ0f79OycnOyckrJSnU6ytba0c1Q38PO7fS12d3hE2YBF4tdPReQ2IVSiSeds54YXL15s3rz54zd5NwhVKtWQIUN8fX2HDx/ep0+fWrVqVVxOkqRLly5t2bJl7dq1ZmZmffv2ffx16/3444/PPvus/p41pqamc+bMecwg9Hsm4HpOqei/SNg6XTq52UTtqctOlqlZAEBlvf/BB0vXbhbdJ4razdPO723R6WWTXjN0bt1+nDVR+LTQXTsh3OqKvHShKxPPviDO7BLWDsLEVGgLhFYjajQQRaXC7+V9308RQiVKS8Svs4WZheg5Q9g6iRObSuNO2Nvby9Ln3WOEbdu2jYuLCw0NnT59ure3t7e3d6dOnQYMGNCnT58OHTq4uLj4+/uvWbNm3Lhxly9flvFSihMnTnTs2FH/ukOHDhcvXnycO3oXFhZeT0oTUyJEiz6i0XPi9VWSf7dnn31Wnl4BAJW2dN0vYuSPovM40aC9SIgW4/fq2r0hMm7rmr6kM7MUnd8T2kKhLRTj94rzv4ku44S7nygpEkKIQUuEJk+887M4tk5Yq4VXYyFUQqsRkw//9bd9+LeiUaewB90N9H/wt2OErq6uixcvnjt37o4dO8LDw6Ojo2NjYy0tLd3d3YcNG9alS5fu3bubmprKsuJyd+7cKQ9CFxcXlUqVnJz8sJyPiorq0aNHxZFevXoNHjy4/O0nn3wivAOEtcPdJYL6XV7/e8XbxeHJ0el0RUVFkiQZuhFlYdoNgml/tNzcXCFJolHHv97npwvPRkIIEf+naPu62Dxe+LUSPi1EVoIoLRZ2buLOVeHqI+xdRfxpkX5DNH1BqFQi/YYo1YqGHUXsUVGvzd/+trcasGXnonfefvvRbdjY2JiYPPRCQb0HnCxjZ2c3ZMiQIUOGVP4LPw5ra2utVqt/rdVqJUmysbF52MI1a9YcPXp0xRE/P7+Ky7dt23bZf0787WcKMi1VpY+oCRnpdDqVSsVsVzGm3SCY9kezsLAQKpXQaoSl7d8+sHESBZnC0k6YWYpSrSjIFlb2oihX2KhFSbEoyhPaQmHjJNLjhRDCxFSYmYvSIiGEKMj4W538TE8353+c/39MQfGws0aFEBERETt37kxKSiorK6s4/vPPP/9j0X+lZs2a5Zfq37p1y9zc3MPD42ELu7q69urV6xHVXn311YGjPxBXI0TDUCGE0OSK3fPffn1QZeYCsjAxMWG2qx7TbhBM+yNYWFiYCqksbIZ49QuhUomGHcS+r0TXD0XzXmL7VBHYW1w+KG6cFpZ2Iv5P4VhDWNqLsztFqVY4e4uCTBG1W7R7Q7ToK45vECc2CXMrkXZDXD0sGnYQQv+3fd6kLd/KMv8PDsI5c+bMnDnT2dm5du3asu8LvUffvn3Hjh07e/ZsOzu79evX9+zZ09zc/HEKrpg3/d2pQ4VTLWHrLBLO1/P2/PLLL+XqFgBQSXFnjvo2byNF7xZez4jECyZlWpdLO1Tufprc29KhZWU26uK8NCkvVVrzpsrWWez/SqhMVdoCXV6qSDivMjWXFnYwcfM1MTMrLcwVJqaiSRexephw9ha2TiLhvMrOxdraWpY+HxCEJSUl8+fPf+eddxYvXizLJRqP1r179xYtWjRv3rxOnTqXLl16/AdcjBkzZsyYMRs3bjx9+vSsWVscHR1l6RMA8K/UqVNHl5V05MiRzZs3f/jhYj8/v9zc3MTERD8/PxMTk2vXrtnb2+fk5AghioqK7OzsHB0d09PTVSqV/kFLlpaW5ubmlpaWarX6tSFDd9s0E8NXi+jfRGmxaN7LesXLcp22qbr/SG9aWpq7u3tkZGRgYKAs66iM6OjorKysli1bPmKHb1hY2Lp168LCwipTUKfTaTQaW1vbf14U8mHaDYJpNwimvSolJyfXC36u8P3/CrWXEEJcDn/2+ILoYwdlKf6ALUJXV1dfX9+YmJiqDMKmTZtW2boAANVLcXGxpZlp4Yp+wtZZaAtNSovqBjeSq/gDglClUn377bfvvPOOh4dHaGjokz5GCADAo63ZuCW761TRsr/IzxAW1joLmxNftdNqtTLfYq2ikJCQFi1aPP/88xYWFvds+Mv12AsAACopJv625NFOCCHsXPQjKrVnamrqPTdB+988OAiHDh26c+fObt26NWzYUK7TcgAA+N+0D2oaduhIcd3gv96XaETa9Zo1a8pS/AFBmJOTExYWtmzZsrFjx8qyDgAAHscbw4ctXd3phpVDsf+LIjfFac+sWZM+VKlUshR/QBDqr6Bv06aNLCsAAOAxWVlZRUbsm79o2YF9Y53U6slfTOrYoYNcxR8QhM7Ozm3atDl06FBVnjUKAMAj2Nrazp0+Zc4TuGrlwccIP/vssxEjRhQUFHTt2tXNza3iR76+vjKuHgAAw3pwEA4cODAlJWXGjBkzZsy45yNutQ4AeJo8OAhXr15dVFRUxa0AAFD1/haEFy9e1N/hTa5zUgEAMHJ/C8IePXqUPxHpYdg1CgB4mvwtCOfOnZuXl2eoVgAAqHp/C8KhQ4caqg8AAAyCZysDABSNIAQAKBpBCABQNIIQAKBoBCEAQNEIQgCAohGEAIDqITs7+8KFCxqNRt6yD77XKAAAxkOr1b42cswf5y6r3OvpEqJHDR4wb8bHchUnCAEAxu6Dj2f+pmtU9P5KIYTQla3c/HbjeluGDnpVluLsGgUAGLtd/z1Q1HHcX29MTLO7TVv90y9yFScIAQDGrkwnCZXq7ntrx6ysTLmKE4QAAGPnU8tL3I4uf2t+/j/Pt28jV3GOEQIAjN36rxeFvtQ/rdWbpW71rW+c8L6+97OIfXIVZ4sQAGDs6tWrd+nEwYUtpDdLDyzq6nn+xCE7Ozu5irNFCACoBtRq9fhxY3U6nUajsbCwkLEyW4QAAEUjCAEAikYQAgAUjSAEACgaQQgAUDSCEACgaAQhAEDRCEIAgKIRhAAARSMIAQCKRhACABSNIAQAKBpBCABQNIIQAKBoBCEAQNEIQgCAohGEAABFIwgBAIpGEAIAFI0gBAAoGkEIAFA0ghAAoGgEIQBA0QhCAICiEYQAAEUjCAEAikYQAgAUjSAEACgaQQgAUDSCEACgaAQhAEDRCEIAgKIRhAAARSMIAQCKRhACABSNIAQAKBpBCABQNMMHoUaj8atg/vz5hu4IAKAgZoZuQOh0uuvXr1++fNnCwkII4ejoaOiOAAAKYvgg1Ktbt66lpaWhuwAAKI7hd43qNWzY0NfXd/jw4Xfu3HnEYmVlZXl/V1xcXGVNAgCePlW3Rbh9+/Zbt27dM1ivXr1u3brt2bMnMDAwOzt74sSJ/fr1O3LkyMOKHDlyxNPTs+LIu+++O3369PuX1Ol0RUVFkiTJ0jwqiWk3CKbdIJh2g/i3025jY2Ni8g+bfFUXhGlpaQkJCfcMOjk5mZubd+/eXQjh7u6+evVqDw+P5OTke9KuXIcOHcLCwiqzOp1OZ2pqamtr+5ht419h2g2CaTcIpt0gnsS0V10Qjh49upJLqlSqJ9oJAADlDH+yzMmTJ/Py8vz9/bOysiZNmtSuXbsaNWoYuikAgFIYPgg1Gs306dNv3Ljh4ODQsWPH7777ztAdAQAUxPBB2LFjx+PHjxu6CwCAQhnL5RMAABgEQQgAUDSCEACgaAQhAEDRCEIAgKIRhAAARSMIAQCKRhACABSNIAQAKBpBCABQNIIQAKBoBCEAQNEIQgCAohGEAABFIwgBAIpGEAIAFI0gBAAoGkEIAFA0ghAAoGgEIQBA0QhCAICiEYQAAEUjCAEAikYQAgAUjSAEACgaQQgAUDSCEACgaAQhAEDRCEIAgKIRhACAaqOkpESr1cpbkyAEAFQDN2/ebNe9t0+Ljo3av9Cq80vXrl2Tq7KZXIUAAHhCtFptl1dei+22QPRrLYRIvXmmS59BF08csra2fvzibBECAIzdmTNnMj0ChF/rv977BGb5tDt+/LgsxQlCAICxS0pK0tjXrDhSaF8zKSlJluIEIQDA2AUEBNhcj6g44nA9olmzZrIUJwgBAMbOz8/vxeBnHH8eKxIviKRLDtsnPNfIw9/fX5biBCEAoBoYPfTVNvbZdXe+1+rI9OVD2mz54Ru5KnPWKADA2H00bfaa8KjM4BGipi7nxOq4mwkqlUqu4gQhAMCoxcXF/fhbROY7e4RKJYTIfLb710s7jRo6sFatWrLUZ9coAMConTp1Kq9hd1G+Cagy0TTqEhkZKVd9ghAAYNScnJysirMrjlgWZTs5OclVnyAEABi1Nm3a2F75r8i8/df7tOs21/8ICgqSqz7HCAEARs3BwWH72pWvjXqt0MFbSGW2eUnbfvrexsZGrvoEIQDA2LUKbnnt3ImbN29KkuTu7m5raytjcYIQAFANaDSapKSk0tJSW1tbghAAoCz7ww8Of/ejYt82ksrEIi7iu8ULX+zeVa7iBCEAwKjl5OQMe3fCndG7hZ2rEEIUZo/8sPvFli1cXFxkqc9ZowAAo3by5ElNo25/paAQwkZd8MyLx44dk6s+QQgAMGrFxcX52rK/3uhKhRDFwqy4uFiu+uwaBQAYtdzcXN253cKjgTj4jTAxE6Xa0sLMZgsPyFWfLUIAgFG7EBMv1WggTmwSH+0XH/8hphwStQPXbtgkV32CEABg1Hy9PVUpsWLE98LSTgghzK2lEd9t/nWvXPUJQgCAUQtt304qyBKONe4OWdnnFxbKVZ8gBAAYtdu3b5s51xTxf94dunPVztpKrvoEIQDAqFlbW9v5NBYbx4no3SInWVw6oPq639tD+slVn7NGAQBGrXnz5jZ3LmQPXyX+/FlEfCecvJ1tLIYMHixXfbYIAQBGzcbGZsvqZTV/GeOqKnSu6euRfGL1V/Nr1Kjxzz9ZOWwRAgCMXbu2beLOHI2Oji4uLm7YcJq7u7uMxQlCAEA1YGVlFRwcrNPpNBqNvJXZNQoAUDSCEACgaAQhAEDRCEIAgKIRhAAARSMIAQCKZoDLJ3Jycq5du1ajRg0vLy/9SGlpaXh4eFZWVocOHWS8RhIA8HRITU39ceOmm0mp7YICXuzxgrzFq3qLcPjw4e7u7qGhoV9//bV+pLS0tEuXLtOnT9+1a5e/v/+pU6equCUAgDE7HRnZNLT7lPM2K0rbvvVTZGiPV0pKSmSsX9VBOGPGjJycnD59+pSP7Ny5Mzk5OSIiYsOGDRMmTJg1a1YVtwQAMGZD3xmfMuJnXZvhokmXvJfnXvXqtOTrVTLWr+og9PX1tbL627Mzdu3a1bt3b0tLSyFE//799+7dq9Vqq7grAIBxKi4uzioqFS4+5SOaZ3v+9/BxGVdh+FusJSYmtmjRQv/a29tbp9MlJyf7+Pg8bOGVK1dWHGnWrFlwcPD9S+p0urKysrKyMtkbxiMw7QbBtBsE0141TE1NVWV/3xFamOXq4lTJmTcxMVGpVI9e5okE4ebNm7/88st712Rmdvz4AzK8tLTU1NRU/1rf8SN2/ubl5UVGRlYccXJyat68+f1L6nS6kpISefcj4x8x7QbBtBsE015lgp5ttOfU5rKWA4UQoqzEcf/CoXPereTMW1hYGCYIO3Xq1LBhw3sGH9ZKjRo10tLS9K/T0tIkSfL09HxY5UaNGn333XeV6UGn00mSdM9uWDxpTLtBMO0GwbRXmc7tWu+d95k4/J1wqSNunJZMtC2DWsg4808kCN3c3Nzc3Cq5cIcOHTZs2Po61bQAABCjSURBVDBz5kwhxP79+4OCgmxtbZ9EVwCA6ujzr78rnf6nKMoXuSnCvV7BuR2Llq+aP3uaXPWr+hjhb7/9FhERcebMmbi4uClTpvTs2XPw4MELFix48803/f39582bt2qVnOcCAQCqtfz8/FJLe2FuLcythb2bEKKsdotTp/fIuIqqDkJnZ2dfX99x48bp3zo4ONjb2588eXLNmjWJiYm//PJLaGhoFbcEADBadnZ2JpocoSsTJn+dTSLuxDzTwFfGVVR1EIaEhISEhNwz6OHhMWXKlCruBABQLbwxaMDSbRPyey8Q5lbiTozb/k8/+G2rjPUNf/kEAACP8Om0yeplX69Y2VlbVlbTw33JD8t8favzFiEAAP+KiYnJ6BHDAv0bm5mZtWjR4h8vh/jX9eUtBwCAvLZs29Gg1XP9lv73lS93NmgZeujwH/LWZ4sQAGC8kpOTx82Ylzr2d2FpK4QQ+elvju8R16G9jBfasUUIADBehyMi8pr2+SsFhRB2rsX1O9xzi7HHRBACAIxXaUmpzsS84ojOxKJ6P4YJAIDKa9u2jcP5HUJX+td7baHF1QPlj2qQBccIAQDGq27dulNGD1mwvGtWs1dNykocz21e8MkEtVot4yoIQgCAURv/7ug+L3b7PfyguZnZ8wu3OTk5yVufIAQAGLs6deqMfGOEEEKn02k0GnmLP7XHCJOSkk6cOGHoLhSHaTcIpt0gmHaDeBLT/tQG4Z9//rlkyRJDd6E4TLtBnDp1avHixYbuQnGYdoN4EtP+1AYhAACVQRACABRNJUmSoXuorEOHDk2YMMHT07MyC2dkZKSkpDzzzDNPuitUxLQbREZGxp07d5o0aWLoRpSFaTeIfzvty5Ytq1u37qOXqU5BKISIiIjIzc01dBcAgOohNDTUwcHh0ctUsyAEAEBeHCMEACgaQQgAUDSCEACgaAQhAEDRqv29RgsKCjZt2hQZGZmRkfH999/b29sLIbRa7ezZs/fv3+/i4jJz5syQkBAhRHJy8uTJky9dutS4ceOFCxd6eXkJIU6ePDl79uz09PTOnTvPmjXLwsLCwN+nuikpKRk8eHDFkVdeeSUkJGTy5MnlI2+99Vbnzp1LS0vnzZu3e/duR0fHqVOndujQocqbfapMmDDh9u3b+teNGzeePXu2EGLfvn2ff/55fn5+7969J02aZGJiIoRYtmzZpk2bLC0t33///d69exuy6epv5cqVe/bsSU5Orlu37qRJk4KCgqKioj777LPyBSZOnNiyZcuioqKZM2eGh4d7eHjMnj1b3mcGKVl4ePj8+fNzc3Nffvnljz/+2NTUVJ66UjUXHx/ft2/fTz75RAiRlpamH/zkk09at24dFRX17bffqtVq/Xjbtm1Hjx598eLFMWPGtG7dWpKkjIwMtVq9cuXKqKiodu3aTZkyxZDfpHoqKyv7+f+sX7/ezMxs3759Z86ccXNzKx+/du2aJEnz5s1r3rz5mTNn1q1b5+DgcPv2bUP3Xr01adJk9uzZ+hk+ePCgJElxcXH29vabN28+ffp0kyZNlixZIknShg0b6tSpc/z48V27djk6OkZGRhq472quV69eW7duPXv27Ny5c+3t7W/evLl3714/P7/y3/aEhARJkj788MOOHTtGR0cvX77cxcUlJyfH0I0/DW7cuGFvb79hw4YzZ84EBAR8/vnnclWu9kGol5qaWh6EWq3W1dX1jz/+0H/UpUuXRYsWnT171tbWtrCwUJKkoqIie3v7yMjIJUuWPP/88/rFjh8/7uLiotVqDfUVngJbtmzx8fEpKys7c+aMj49PxY90Ol2tWrX27Nmjf/vKK6/MmTPHAC0+RZo0aRIREVFxZPLkyYMHD9a/3r59e4MGDSRJCgkJ+fbbb/WD77///qhRo6q4z6dY48aNN23atHfv3pYtW1YcLywsdHBwKP83R7t27b755htDNPi0mTFjRr9+/fSv//Of/9zzR+ZxPIXHCJOTk9PT04ODg/Vvg4ODo6Kizp8/37RpU2trayGEpaVlQEBAdHR0dHR0+WJBQUGZmZkJCQkG67v6++GHH0aMGKHfHZeRkfHyyy8PHDhww4YNkiRlZWUlJCS0bNlSv6T+P4pBm30azJgx46WXXpo2bVpWVpYQIjo6uuIMx8TEaDSa8+fPVxyMjo42WLtPl6ysrFu3bjVo0EAIcePGjR49egwePDgsLEwIcfPmzcLCwubNm+uX5LddLhV/w1u1anXz5s2cnBxZKlebY4QnT54sKiq6Z7B27dr33zsnNTXVxsam/Gifk5PTmTNnUlNTKz7R2MnJKSUlJTU1tX79+voRMzMzBweHlJSUf7wZjzIlJSXFxsbeP15+qC8hISE8PHzVqlVCCGdn57lz5zZu3DghIeHjjz++du3aq6++KoQo/0/g5OSk34jHo8XHx9+6deueQUtLy5CQkFGjRvn6+gohvvnmm/bt258+fTotLa3iDAshbty4UVBQUHEwJSWlCtuvrtLT0y9evHj/eJs2bczNzYUQOp1uxIgRffr0CQwMvHDhwuzZs+vXrx8TE/PWW28lJyf7+/s7OjqqVCr9Tzk5Od28ebNKv8BT6v7f8JSUFEdHx8evXG2CcMmSJff/Pzxw4MBRo0bdM+jo6FhUVFRWVqY/jpqfn69Wqx0dHQsLC8uX0Q86ODiUD0qSVPFPBu5x+vTpBz5f6ffff9e/+OGHH5577jkfHx8hhI+Pz/vvv68fd3d3Hzly5FtvvSWEKCws1J/NpJ//Kmq9OgsPD//pp5/uGXRzc9u8eXP5DHft2rV27doREREVf5/z8/OFEJ6enubm5hUHmfbKuHTp0pw5c+4f37Ztm1qtliRp1KhRubm5mzZtEkL4+/v7+/sLITp37mxlZbVo0aKNGzcWFBSU/xTTLpf7f8PlmthqE4T3/zl4GC8vL1NT0+vXr+u39uLi4urUqePj4xMbGytJkv6fafrBhISEmJgY/U/Fx8erVKpatWo9of6ru549e/bs2fNhn0qStG7duornzpXz8vLKzc11cXGxsbGJjY0NDAwUQsTGxtapU+fJdfvUGDly5MiRIx+9jKWlpaura05OTp06dcq32mNjY52cnNRqde3atWNjY/W3QWfaKyk0NLT8X3j3kCTp3XffjYmJ2bNnj/5QS0VeXl45OTne3t4lJSUJCQn6vydxcXHNmjV74k0rwD2/4XZ2dq6urvKUlutgo2FVPFlGkqT+/fuPHTtWkqTr1687OjqeP3++pKSkZs2aW7dulSQpLCzM09NTq9VeunTJwcEhLi5OkqQPPvigb9++BvwK1dqBAwecnZ01Go3+7YULF/Ly8iRJys/P79+/f/fu3SVJGjFixPDhwyVJSkxMdHNzO3HihAEbru7S09NjYmL0rzdu3GhjY3Pr1q3ff//dy8srJSVFp9MNHDhQ/7/AzJkzu3btWlpampOT06BBA/3/AvifTZw4sVWrVhXPAj137pz+Nz8rK6tz587Dhg2TJOmll16aNGmSJElXr161t7fX/5HBYzpy5Ii7u3tSUpIkSUOHDpXxzK+nIQhdXV2d/o+rq6skSTdu3GjWrJm3t7darV64cKF+sf3799eoUcPX17dGjRr79u3TD37++ef6fzUHBATEx8cb6itUd2+//faECRPK337++ec2Njbe3t42NjbdunW7deuWJElJSUnBwcG1atVSq9UzZswwXLNPg8uXL7u6urq5ubm6utapU2fHjh368YkTJ6rVai8vr3bt2un/XZibm9utWzcPDw8nJ6fRo0eXlZUZtPHqrbCw0OnvVqxYMWnSpPLf9j59+uinPTY21t/f38fHR61W669jgSw++eQTtVpds2bN1q1b37lzR66yT/PTJ5KTk52cnKysrMpHSktLU1NT3d3dzczu7hMuKirKysqq5GMOUUnFxcXp6emurq6WlpYVx+/cuePg4GBjY2Ooxp4akiSlpaWZmZk5OztXHC8oKCgoKHB3d684mJ6ebmFh8Y8Po8H/RqPRZGZmuru760+lKZeUlOTs7FzxTxAeX2FhYV5enoeHh4w1n+YgBADgHz2F1xECAFB5BCEAQNEIQgCAohGEAABFIwgBAIpGEAIAFI0gBJ4qe/bsiYuLe8QCkiRt3749MTGxyloCjBzXEQJGJCoqqk+fPvrX5ubmtWrVCgoK+uijjyp5T8Vjx4516tQpJibG29v7EYu9/vrrubm5+mcGASAIASNy8uTJkJCQPn36BAcHl5aWnj9/fuvWrQ0bNjxz5kxlblASEhISGBj49ddfP3qxmJiYRo0a/fHHH23btpWpcaAaqzZPnwCUo3v37uXPF6tXr95nn312+PDhbt26lS9QXFyclZWlVqsrpuOff/558uTJpUuX/mP9Bg0atGnTZvny5QQhIDhGCBi5du3aCSHKD/ulp6cPHjxYrVZ7eno6OjoOHjy4/CHd69atq1WrVnBwsP61s7Pzjh07yutMnDjR09Pz8uXL+rd9+/bdvn17Xl5elX4ZwCgRhIBRi4qKEkLUrl1bCKHRaDp16nT06NG1a9devHhx/fr1Bw8e7N+/v37J8PDw1q1b618PGzase/fuI0aMiI+PF0Ls3r37yy+/nDp1auPGjfULhISEaLXao0ePGuArAUaGXaOA0YmMjFSr1Vqt9ty5cytWrGjduvULL7wghFi7du358+fPnTvXtGlTIcQzzzxjbW3ds2fPc+fOPfPMM1euXCk/0UYIsXLlysDAwIEDB27atOn1119/8cUX33333fJPGzZsKISIiorq3r17lX8/wLgQhIDRWbVq1apVq/Sv/f399+7dq39w2L59+9zd3VNTUw8cOKD/VKfTCSEuXLjg7u4uSVLFRzI5Ojpu3ry5Xbt2zZs3d3Z2Xr9+vUqlKv9UrVabmprqn2gNKBxBCBidb7/9dtSoUUVFRWFhYW+88cb48eO/++47IURKSkpGRsaAAQMqLuzk5JSZmal/El5paWnFj1q2bNm6devDhw9/+umnarW64kc6nU6n01lYWDz5bwMYO4IQMFJWVlavvfZafHz8tGnThg0bFhoa6ujoWLdu3ZiYmPsXLisrMzMzy8jIqDj4zTffHD582N/f/9NPP+3bt2/NmjXLP8rIyJAkSd6nmwLVFCfLAEZt/Pjxnp6ekydPFkJ06NAhLi7uzJkz9y9mamoaGBh4/vz58pELFy6MHz/+vffei4iIsLW1fe2118rKyso/jY6OFkK0bNnyyX8DwNgRhIBRs7Ky+uijj06cOPHf//737bff9vHx6dev365du7KzszMyMo4dOzZ27NikpCQhRJcuXU6ePKnfO1pQUDBgwID69esvXLjQyclpy5YtJ06cmDNnTnnZY8eOOTo6EoSAIAgB4/fOO+94eXnNmjVLrVYfOnSoQYMGvXr1cnJycnV1DQ0NvXDhgqWlpRDijTfeyM7O1p9HM2bMmNu3b//888/W1tZCiFatWs2aNWvu3LnlZ9ls3bp16NChHCMEBLdYA6qjtLS0+Ph4W1tbb29vBweH8nH95RPbt29/9I8fOXLkueeeu3jxYoMGDZ5so0B1QBACT49r1675+/sfP368WbNmj1isS5cujRs3rszN2AAlIAiBp0piYqKtre09F0tUJElSfHy8p6enfq8pAIIQAKBonCwDAFA0ghAAoGgEIQBA0QhCAICi/X8PP99L+qdYkgAAAABJRU5ErkJggg==", "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "metadata": {}, "execution_count": 9 } ], "cell_type": "code", "source": [ "scatter(res.eigenvalues; legend = false)" ], "metadata": {}, "execution_count": 9 }, { "cell_type": "markdown", "source": [ "## Modifiying the system and adding storage" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Reload the system for this example" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: The PSS(R)E parser currently supports buses, loads, shunts, generators, branches, transformers, and dc lines\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in GENERATOR are missing: O2, F2, O3, F3, O4, F4, WMOD, WPF\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: The following fields in BRANCH are missing: O2, F2, O3, F3, O4, F4\n", "[ Info: angmin and angmax values are 0, widening these values on branch 4 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 1 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 12 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 20 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 2 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 6 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 11 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 13 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 5 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 15 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 16 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 14 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 7 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 8 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 17 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 10 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 19 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 9 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 18 to +/- 60.0 deg.\n", "[ Info: angmin and angmax values are 0, widening these values on branch 3 to +/- 60.0 deg.\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 4 to 651.7693\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 1 to 1943.3753\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 12 to 1340.1421\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 20 to 686.916\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 2 to 527.2551\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 6 to 658.7239\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 11 to 1099.9023\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 13 to 404.9974\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 5 to 661.3166\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 15 to 406.1471\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 16 to 312.073\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 14 to 579.3328\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 7 to 2739.0808\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 8 to 548.9677\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 17 to 578.6164\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 10 to 828.1844\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 19 to 480.1216\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 9 to 426.3491\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 18 to 217.5559\n", "[ Info: this code only supports positive rate_a values, changing the value on branch 3 to 594.6825\n", "┌ Info: Constructing System from Power Models\n", "│ data[\"name\"] = \"14bus\"\n", "└ data[\"source_type\"] = \"pti\"\n", "[ Info: Reading bus data\n", "[ Info: Reading generator data\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-6-1 (ThermalStandard):\n", "│ name: generator-6-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 06 (Bus)\n", "│ active_power: 0.15\n", "│ reactive_power: 0.14800000000000002\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.12))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -16.258536585365853\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-1-1 (ThermalStandard):\n", "│ name: generator-1-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 01 (Bus)\n", "│ active_power: 1.9333000000000002\n", "│ reactive_power: 0.01121\n", "│ rating: 100.48880584423323\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -10.0, max = 10.0)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 615.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.23))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-8-1 (ThermalStandard):\n", "│ name: generator-8-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 08 (Bus)\n", "│ active_power: 0.1\n", "│ reactive_power: 0.22292\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.12))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-2-1 (ThermalStandard):\n", "│ name: generator-2-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 02 (Bus)\n", "│ active_power: 0.3\n", "│ reactive_power: 0.27015999999999996\n", "│ rating: 99.99125011719775\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.4, max = 0.5)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.13))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-3-1 (ThermalStandard):\n", "│ name: generator-3-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 03 (Bus)\n", "│ active_power: 0.2\n", "│ reactive_power: 0.21719000000000002\n", "│ rating: 99.99080007680706\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = 0.0, max = 0.4)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: nothing\n", "│ ext: Dict{String,Any}(\"z_source\" => (r = 0.0, x = 0.13))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "[ Info: Reading branch data\n", "┌ Warning: Rate 651.77 MW for BUS 02-BUS 04-i_4 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1943.38 MW for BUS 01-BUS 02-i_1 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1340.14 MW for BUS 09-BUS 10-i_12 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 527.26 MW for BUS 01-BUS 05-i_2 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 658.72 MW for BUS 03-BUS 04-i_6 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1099.9 MW for BUS 07-BUS 09-i_11 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 405.0 MW for BUS 09-BUS 14-i_13 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 661.32 MW for BUS 02-BUS 05-i_5 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 406.15 MW for BUS 12-BUS 13-i_15 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 312.07 MW for BUS 13-BUS 14-i_16 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 579.33 MW for BUS 10-BUS 11-i_14 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 2739.08 MW for BUS 04-BUS 05-i_7 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 548.97 MW for BUS 06-BUS 11-i_8 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 828.18 MW for BUS 06-BUS 13-i_10 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 426.35 MW for BUS 06-BUS 12-i_9 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 594.68 MW for BUS 02-BUS 03-i_3 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "[ Info: Reading branch data\n", "[ Info: Reading DC Line data\n", "[ Info: Reading storage data\n", "[ Info: Generators provided in .dyr, without a generator in .raw file will be skipped.\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "System\n======\nSystem Units Base: SYSTEM_BASE\nBase Power: 100.0\nBase Frequency: 60.0\n\nComponents\n==========\nNum components: 77\n\n\u001b[1m11×3 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m ConcreteType \u001b[0m\u001b[1m SuperTypes \u001b[0m\u001b[1m C\u001b[0m ⋯\n\u001b[1m \u001b[0m│\u001b[90m String \u001b[0m\u001b[90m String \u001b[0m\u001b[90m I\u001b[0m ⋯\n─────┼──────────────────────────────────────────────────────────────────────────\n 1 │ Arc Topology <: Component <: Infrast… ⋯\n 2 │ Area AggregationTopology <: Topology …\n 3 │ Bus Topology <: Component <: Infrast…\n 4 │ DynamicGenerator{RoundRotorQuadr… DynamicInjection <: Device <: Co…\n 5 │ DynamicGenerator{RoundRotorQuadr… DynamicInjection <: Device <: Co… ⋯\n 6 │ Line ACBranch <: Branch <: Device <: …\n 7 │ LoadZone AggregationTopology <: Topology …\n 8 │ PowerLoad StaticLoad <: ElectricLoad <: St…\n 9 │ TapTransformer ACBranch <: Branch <: Device <: … ⋯\n 10 │ ThermalStandard ThermalGen <: Generator <: Stati…\n 11 │ Transformer2W ACBranch <: Branch <: Device <: …\n\u001b[36m 1 column omitted\u001b[0m\n\nTimeSeriesContainer\n===================\nComponents with time series data: 0\nTotal StaticTimeSeries: 0\nTotal Forecasts: 0\n", "text/html": [ "

System

\n", "

Base Power: 100.0

\n", "

Components

\n", "

Num components: 77

\n", "

11 rows × 3 columns (omitted printing of 1 columns)

ConcreteTypeSuperTypes
StringString
1ArcTopology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
2AreaAggregationTopology <: Topology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
3BusTopology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
4DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,GasTG,PSSFixed}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
5DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
6LineACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
7LoadZoneAggregationTopology <: Topology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
8PowerLoadStaticLoad <: ElectricLoad <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
9TapTransformerACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
10ThermalStandardThermalGen <: Generator <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
11Transformer2WACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
\n", "\n", "

TimeSeriesContainer

\n", "

Components with time series data: 0

\n", "

Total StaticTimeSeries: 0

\n", "

Total Forecasts: 0

\n", "

Resolution: 0 seconds

\n" ] }, "metadata": {}, "execution_count": 10 } ], "cell_type": "code", "source": [ "sys = System(joinpath(file_dir, \"14bus.raw\"), joinpath(file_dir, \"dyn_data.dyr\"))" ], "metadata": {}, "execution_count": 10 }, { "cell_type": "markdown", "source": [ "We want to remove the generator 6 and the dynamic component attached to it." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "thermal_gen = get_component(ThermalStandard, sys, \"generator-6-1\")\n", "remove_component!(sys, get_dynamic_injector(thermal_gen))\n", "remove_component!(sys, thermal_gen)" ], "metadata": {}, "execution_count": 11 }, { "cell_type": "markdown", "source": [ "We can now define our storage device and add it to the system" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "storage = GenericBattery(\n", " name = \"Battery\",\n", " bus = get_component(Bus, sys, \"BUS 06\"),\n", " available = true,\n", " prime_mover = PrimeMovers.BA,\n", " active_power = 0.6,\n", " reactive_power = 0.16,\n", " rating = 1.1,\n", " base_power = 25.0,\n", " initial_energy = 50.0,\n", " state_of_charge_limits = (min = 5.0, max = 100.0),\n", " input_active_power_limits = (min = 0.0, max = 1.0),\n", " output_active_power_limits = (min = 0.0, max = 1.0),\n", " reactive_power_limits = (min = -1.0, max = 1.0),\n", " efficiency = (in = 0.80, out = 0.90),\n", ")\n", "\n", "add_component!(sys, storage)" ], "metadata": {}, "execution_count": 12 }, { "cell_type": "markdown", "source": [ "A good sanity check it running a power flow on the system to make sure all the components\n", "are properly scaled and that the system is properly balanced. We can use `PowerSystems` to\n", "perform this check. We can get the results back and perform a sanity check" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: Unit System changed to UnitSystem.SYSTEM_BASE = 0\n", "[ Info: The System has no islands\n", "[ Info: PowerFlow solve converged, the results are exported in DataFrames\n", "[ Info: Voltages are exported in pu. Powers are exported in MW/MVAr.\n", "[ Info: Unit System changed to UnitSystem.SYSTEM_BASE = 0\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "\u001b[1m14×9 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m bus_number \u001b[0m\u001b[1m Vm \u001b[0m\u001b[1m θ \u001b[0m\u001b[1m P_gen \u001b[0m\u001b[1m P_load \u001b[0m\u001b[1m P_net \u001b[0m\u001b[1m Q_gen \u001b[0m\u001b[1m Q\u001b[0m ⋯\n\u001b[1m \u001b[0m│\u001b[90m Int64 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m F\u001b[0m ⋯\n─────┼──────────────────────────────────────────────────────────────────────────\n 1 │ 1 1.06 0.0 193.33 0.0 193.33 1.12086 ⋯\n 2 │ 2 1.04 -0.0711029 30.0 21.7 8.3 27.0157\n 3 │ 3 1.01 -0.178704 20.0 94.2 -74.2 21.719\n 4 │ 4 1.01285 -0.145825 0.0 47.8 -47.8 0.0\n 5 │ 5 1.01648 -0.123536 0.0 7.6 -7.6 0.0 ⋯\n 6 │ 6 1.06 -0.194906 15.0 11.2 3.8 14.8004\n 7 │ 7 1.04377 -0.181188 0.0 0.0 0.0 0.0\n 8 │ 8 1.08 -0.165561 10.0 0.0 10.0 22.2916\n 9 │ 9 1.02628 -0.210231 0.0 29.5 -29.5 0.0 ⋯\n 10 │ 10 1.02453 -0.212546 0.0 9.0 -9.0 0.0\n 11 │ 11 1.03837 -0.205887 0.0 3.5 -3.5 0.0\n 12 │ 12 1.04362 -0.210542 0.0 6.1 -6.1 0.0\n 13 │ 13 1.03723 -0.211859 0.0 13.5 -13.5 0.0 ⋯\n 14 │ 14 1.01263 -0.229125 0.0 14.9 -14.9 0.0\n\u001b[36m 2 columns omitted\u001b[0m", "text/html": [ "

14 rows × 9 columns

bus_numberVmθP_genP_loadP_netQ_genQ_loadQ_net
Int64Float64Float64Float64Float64Float64Float64Float64Float64
111.060.0193.330.0193.331.120860.01.12086
221.04-0.071102930.021.78.327.015712.714.3157
331.01-0.17870420.094.2-74.221.71919.02.71896
441.01285-0.1458250.047.8-47.80.00.00.0
551.01648-0.1235360.07.6-7.60.01.6-1.6
661.06-0.19490615.011.23.814.80047.57.3004
771.04377-0.1811880.00.00.00.00.00.0
881.08-0.16556110.00.010.022.29160.022.2916
991.02628-0.2102310.029.5-29.50.016.6-16.6
10101.02453-0.2125460.09.0-9.00.05.8-5.8
11111.03837-0.2058870.03.5-3.50.01.8-1.8
12121.04362-0.2105420.06.1-6.10.01.6-1.6
13131.03723-0.2118590.013.5-13.50.05.8-5.8
14141.01263-0.2291250.014.9-14.90.05.0-5.0
" ] }, "metadata": {}, "execution_count": 13 } ], "cell_type": "code", "source": [ "res = solve_powerflow(sys)\n", "res[\"bus_results\"]" ], "metadata": {}, "execution_count": 13 }, { "cell_type": "markdown", "source": [ "After verifying that the system works, we can define our inverter dynamics and add it to the\n", "battery that has already been stored in the system." ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "┌ Warning: struct DynamicInverter does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n" ] } ], "cell_type": "code", "source": [ "inverter = DynamicInverter(\n", " name = get_name(storage),\n", " ω_ref = 1.0, # ω_ref,\n", " converter = AverageConverter(rated_voltage = 138.0, rated_current = 100.0),\n", " outer_control = OuterControl(\n", " VirtualInertia(Ta = 2.0, kd = 400.0, kω = 20.0),\n", " ReactivePowerDroop(kq = 0.2, ωf = 1000.0),\n", " ),\n", " inner_control = CurrentControl(\n", " kpv = 0.59, #Voltage controller proportional gain\n", " kiv = 736.0, #Voltage controller integral gain\n", " kffv = 0.0, #Binary variable enabling the voltage feed-forward in output of current controllers\n", " rv = 0.0, #Virtual resistance in pu\n", " lv = 0.2, #Virtual inductance in pu\n", " kpc = 1.27, #Current controller proportional gain\n", " kic = 14.3, #Current controller integral gain\n", " kffi = 0.0, #Binary variable enabling the current feed-forward in output of current controllers\n", " ωad = 50.0, #Active damping low pass filter cut-off frequency\n", " kad = 0.2,\n", " ),\n", " dc_source = FixedDCSource(voltage = 600.0),\n", " freq_estimator = KauraPLL(\n", " ω_lp = 500.0, #Cut-off frequency for LowPass filter of PLL filter.\n", " kp_pll = 0.084, #PLL proportional gain\n", " ki_pll = 4.69, #PLL integral gain\n", " ),\n", " filter = LCLFilter(lf = 0.08, rf = 0.003, cf = 0.074, lg = 0.2, rg = 0.01),\n", ")\n", "add_component!(sys, inverter, storage)" ], "metadata": {}, "execution_count": 14 }, { "cell_type": "markdown", "source": [ "These are the current system components:" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "System\n======\nSystem Units Base: SYSTEM_BASE\nBase Power: 100.0\nBase Frequency: 60.0\n\nComponents\n==========\nNum components: 77\n\n\u001b[1m13×3 DataFrame\u001b[0m\n\u001b[1m Row \u001b[0m│\u001b[1m ConcreteType \u001b[0m\u001b[1m SuperTypes \u001b[0m\u001b[1m C\u001b[0m ⋯\n\u001b[1m \u001b[0m│\u001b[90m String \u001b[0m\u001b[90m String \u001b[0m\u001b[90m I\u001b[0m ⋯\n─────┼──────────────────────────────────────────────────────────────────────────\n 1 │ Arc Topology <: Component <: Infrast… ⋯\n 2 │ Area AggregationTopology <: Topology …\n 3 │ Bus Topology <: Component <: Infrast…\n 4 │ DynamicGenerator{RoundRotorQuadr… DynamicInjection <: Device <: Co…\n 5 │ DynamicGenerator{RoundRotorQuadr… DynamicInjection <: Device <: Co… ⋯\n 6 │ DynamicInverter{AverageConverter… DynamicInjection <: Device <: Co…\n 7 │ GenericBattery Storage <: StaticInjection <: De…\n 8 │ Line ACBranch <: Branch <: Device <: …\n 9 │ LoadZone AggregationTopology <: Topology … ⋯\n 10 │ PowerLoad StaticLoad <: ElectricLoad <: St…\n 11 │ TapTransformer ACBranch <: Branch <: Device <: …\n 12 │ ThermalStandard ThermalGen <: Generator <: Stati…\n 13 │ Transformer2W ACBranch <: Branch <: Device <: … ⋯\n\u001b[36m 1 column omitted\u001b[0m\n\nTimeSeriesContainer\n===================\nComponents with time series data: 0\nTotal StaticTimeSeries: 0\nTotal Forecasts: 0\n", "text/html": [ "

System

\n", "

Base Power: 100.0

\n", "

Components

\n", "

Num components: 77

\n", "

13 rows × 3 columns (omitted printing of 1 columns)

ConcreteTypeSuperTypes
StringString
1ArcTopology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
2AreaAggregationTopology <: Topology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
3BusTopology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
4DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,GasTG,PSSFixed}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
5DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
6DynamicInverter{AverageConverter,OuterControl{VirtualInertia,ReactivePowerDroop},CurrentControl,FixedDCSource,KauraPLL,LCLFilter}DynamicInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
7GenericBatteryStorage <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
8LineACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
9LoadZoneAggregationTopology <: Topology <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
10PowerLoadStaticLoad <: ElectricLoad <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
11TapTransformerACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
12ThermalStandardThermalGen <: Generator <: StaticInjection <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
13Transformer2WACBranch <: Branch <: Device <: Component <: InfrastructureSystemsComponent <: InfrastructureSystemsType <: Any
\n", "\n", "

TimeSeriesContainer

\n", "

Components with time series data: 0

\n", "

Total StaticTimeSeries: 0

\n", "

Total Forecasts: 0

\n", "

Resolution: 0 seconds

\n" ] }, "metadata": {}, "execution_count": 15 } ], "cell_type": "code", "source": [ "sys" ], "metadata": {}, "execution_count": 15 }, { "cell_type": "markdown", "source": [ "Define Simulation problem using the same parameters:" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: Serialized time series data to /var/folders/27/2jr8c7gn4j72fvrg4qt81zrw8w_711/T/jl_BZOjTb/sys_time_series_storage.h5.\n", "[ Info: Serialized System to /var/folders/27/2jr8c7gn4j72fvrg4qt81zrw8w_711/T/jl_BZOjTb/sys.json\n", "[ Info: Loaded time series from storage file existing=sys_time_series_storage.h5 new=/var/folders/27/2jr8c7gn4j72fvrg4qt81zrw8w_711/T/jl_4doJQh\n", "┌ Warning: Rate 2739.08 MW for BUS 04-BUS 05-i_7 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 406.15 MW for BUS 12-BUS 13-i_15 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 661.32 MW for BUS 02-BUS 05-i_5 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 527.26 MW for BUS 01-BUS 05-i_2 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 579.33 MW for BUS 10-BUS 11-i_14 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 828.18 MW for BUS 06-BUS 13-i_10 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 405.0 MW for BUS 09-BUS 14-i_13 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 594.68 MW for BUS 02-BUS 03-i_3 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 548.97 MW for BUS 06-BUS 11-i_8 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 651.77 MW for BUS 02-BUS 04-i_4 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 658.72 MW for BUS 03-BUS 04-i_6 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 312.07 MW for BUS 13-BUS 14-i_16 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 426.35 MW for BUS 06-BUS 12-i_9 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1340.14 MW for BUS 09-BUS 10-i_12 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1099.9 MW for BUS 07-BUS 09-i_11 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: Rate 1943.38 MW for BUS 01-BUS 02-i_1 is larger than the max expected in the range of (min = 12.0, max = 13.0).\n", "└ @ PowerSystems ~/.julia/packages/PowerSystems/N2l8o/src/utils/IO/branchdata_checks.jl:148\n", "┌ Warning: struct DynamicInverter does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-3-1 (ThermalStandard):\n", "│ name: generator-3-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 03 (Bus)\n", "│ active_power: 0.2\n", "│ reactive_power: 0.21719000000000002\n", "│ rating: 99.99080007680706\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = 0.0, max = 0.4)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-3-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.13,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -399.96\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-8-1 (ThermalStandard):\n", "│ name: generator-8-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 08 (Bus)\n", "│ active_power: 0.1\n", "│ reactive_power: 0.22292\n", "│ rating: 99.99028802838804\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.06, max = 0.24)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 25.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-8-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.12,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -16.258536585365853\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-1-1 (ThermalStandard):\n", "│ name: generator-1-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 01 (Bus)\n", "│ active_power: 1.9333000000000002\n", "│ reactive_power: 0.01121\n", "│ rating: 100.48880584423323\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -10.0, max = 10.0)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 615.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-1-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,GasTG,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.23,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: Invalid range\n", "│ valid_info.struct_name = \"ThermalStandard\"\n", "│ field_name = \"active_power_limits\"\n", "│ field_value = -166.65\n", "│ valid_range = Dict{String,Any} with 2 entries: …\n", "│ valid_info.ist_struct =\n", "│ generator-2-1 (ThermalStandard):\n", "│ name: generator-2-1\n", "│ available: true\n", "│ status: true\n", "│ bus: BUS 02 (Bus)\n", "│ active_power: 0.3\n", "│ reactive_power: 0.27015999999999996\n", "│ rating: 99.99125011719775\n", "│ active_power_limits: (min = -99.99, max = 99.99)\n", "│ reactive_power_limits: (min = -0.4, max = 0.5)\n", "│ ramp_limits: (up = 0.9998999999999999, down = 0.9998999999999999)\n", "│ operation_cost: ThreePartCost\n", "│ base_power: 60.0\n", "│ time_limits: nothing\n", "│ prime_mover: PrimeMovers.OT = 19\n", "│ fuel: ThermalFuels.OTHER = 14\n", "│ services: 0-element Array{Service,1}\n", "│ time_at_status: 1.0e6\n", "│ dynamic_injector: generator-2-1 (DynamicGenerator{RoundRotorQuadratic,SingleMass,ESAC1A,TGFixed,PSSFixed})\n", "│ ext: Dict{String,Any}(\"z_source\" => Dict{String,Any}(\"x\" => 0.13,\"r\" => 0))\n", "│ time_series_container: InfrastructureSystems.TimeSeriesContainer: 0\n", "│ InfrastructureSystems.SystemUnitsSettings:\n", "│ base_value: 100.0\n", "│ unit_system: UnitSystem.SYSTEM_BASE = 0\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:228\n", "┌ Warning: struct DynamicGenerator does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "┌ Warning: struct DynamicInverter does not exist in validation configuration file, validation skipped\n", "└ @ InfrastructureSystems ~/.julia/packages/InfrastructureSystems/lYELp/src/validation.jl:51\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "[ Info: The System has no islands\n", "[ Info: Initializing Simulation States\n", "[ Info: Unit System changed to UnitSystem.SYSTEM_BASE = 0\n", "[ Info: The System has no islands\n", "[ Info: PowerFlow solve converged, the results have been stored in the system\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "┌ Warning: Initialization failed, initial conditions do not meet conditions for an stable equilibrium.\n", "│ Trying to solve again reducing numeric tolerance from 1.0e-9:\n", "└ @ PowerSimulationsDynamics ~/.julia/packages/PowerSimulationsDynamics/n4bor/src/base/simulation_initialization.jl:117\n", "[ Info: Initialization succeeded with a relaxed tolerance of 1.0e-6. Saving solution\n", "[ Info: Attaching Perturbations\n", "[ Info: Completed Build Successfully. Simulations status = BUILT\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "Simulation()\n" }, "metadata": {}, "execution_count": 16 } ], "cell_type": "code", "source": [ "sim = PSID.Simulation(\n", " file_dir, #path for the simulation output\n", " sys, #system\n", " (0.0, 20.0), #time span\n", " BranchTrip(1.0, \"BUS 02-BUS 04-i_4\");\n", " console_level = Logging.Info,\n", ")" ], "metadata": {}, "execution_count": 16 }, { "cell_type": "markdown", "source": [ "We can verify the small signal stability of the system before running the simulation:" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "┌ Warning: No Infinite Bus found. Confirm stability directly checking eigenvalues.\n", "│ If all eigenvalues are on the left-half plane and only one eigenvalue is zero, the system is small signal stable.\n", "└ @ PowerSimulationsDynamics ~/.julia/packages/PowerSimulationsDynamics/n4bor/src/base/small_signal.jl:89\n", "┌ Info: Eigenvalues are:\n", "│ -2274.2469731096635 - 6834.906955025566im\n", "│ -2274.2469731096635 + 6834.906955025566im\n", "│ -2102.367942052154 - 6526.604772269225im\n", "│ -2102.367942052154 + 6526.604772269225im\n", "│ -1605.2364140652458 - 292.66564727922736im\n", "│ -1605.2364140652458 + 292.66564727922736im\n", "│ -1000.0000000000019 + 0.0im\n", "│ -1000.0000000000015 + 0.0im\n", "│ -1000.0000000000005 + 0.0im\n", "│ -999.9999999999998 + 0.0im\n", "│ -984.4496865776403 + 0.0im\n", "│ -499.9999999999999 + 0.0im\n", "│ -471.1000172065674 + 0.0im\n", "│ -223.5344187535209 + 0.0im\n", "│ -56.90237252143276 - 289.0069331376661im\n", "│ -56.90237252143276 + 289.0069331376661im\n", "│ -51.850957867030196 + 0.0im\n", "│ -51.53611019199619 + 0.0im\n", "│ -51.46808432690966 + 0.0im\n", "│ -51.39673994263387 + 0.0im\n", "│ -50.35237722443884 + 0.0im\n", "│ -50.28027586631014 + 0.0im\n", "│ -43.11041307733419 + 0.0im\n", "│ -36.86624945866215 + 0.0im\n", "│ -33.282894532036494 + 0.0im\n", "│ -29.72747872672557 + 0.0im\n", "│ -24.863969940650765 + 0.0im\n", "│ -20.75959462097086 + 0.0im\n", "│ -17.55111757809174 + 0.0im\n", "│ -13.176606398730533 + 0.0im\n", "│ -11.309152064841577 + 0.0im\n", "│ -11.175799031841754 + 0.0im\n", "│ -6.990242772641083 - 0.36003833541758695im\n", "│ -6.990242772641083 + 0.36003833541758695im\n", "│ -6.6266060861059835 - 26.40171512498718im\n", "│ -6.6266060861059835 + 26.40171512498718im\n", "│ -5.259931560308745 - 0.2951150067559041im\n", "│ -5.259931560308745 + 0.2951150067559041im\n", "│ -4.5456315890355015 + 0.0im\n", "│ -3.8538170990752967 - 9.956883765644124im\n", "│ -3.8538170990752967 + 9.956883765644124im\n", "│ -3.623736633935179 - 10.490955827646042im\n", "│ -3.623736633935179 + 10.490955827646042im\n", "│ -2.5283678462231935 - 8.637338206932249im\n", "│ -2.5283678462231935 + 8.637338206932249im\n", "│ -2.48232895553323 - 8.01888176978468im\n", "│ -2.48232895553323 + 8.01888176978468im\n", "│ -2.1885095393369847 - 8.964974627987695im\n", "│ -2.1885095393369847 + 8.964974627987695im\n", "│ -1.8857243578844958 + 0.0im\n", "│ -1.5727319770292052 - 8.983063494425545im\n", "│ -1.5727319770292052 + 8.983063494425545im\n", "│ -1.5289911457134933 - 2.1374714272450563im\n", "│ -1.5289911457134933 + 2.1374714272450563im\n", "│ -1.3085392081119993 - 0.11226039534216448im\n", "│ -1.3085392081119993 + 0.11226039534216448im\n", "│ -1.1909383534665783 + 0.0im\n", "│ -1.076393447516035 - 0.509930089217288im\n", "│ -1.076393447516035 + 0.509930089217288im\n", "│ -0.9264792309277261 + 0.0im\n", "│ -0.7326153100913441 + 0.0im\n", "│ -0.4999860148011016 + 0.0im\n", "│ -0.38896229767346735 - 7.44262461028635im\n", "│ -0.38896229767346735 + 7.44262461028635im\n", "│ -0.32689307331763523 + 0.0im\n", "└ 0.0 + 0.0im\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "The system is small signal stable\n" }, "metadata": {}, "execution_count": 17 } ], "cell_type": "code", "source": [ "res = small_signal_analysis(sim)" ], "metadata": {}, "execution_count": 17 }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Plot{Plots.GRBackend() n=1}", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd0ATZx8H8CcBEvbeG1QcoKICKiqidS+cWBcVt1Xctdoqjhet2r5iHbW1DvDV4qwoHS5ELaJVVFAciIqgIMgwkISRkNz7x9mUKtpWQg54vp+/yHOXu989Hny9e27wGIYhAAAAtOJzXQAAAACXEIQAAEA1BCEAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABAtcYZhA8fPpRIJFxXUScYhlEqlVxX0bChA2tJoVBwXULDhg6sJbV3YOMMwilTpiQnJ3NdRZ1QKpWVlZVcV9GwlZWVcV1Cw4YOrCV0YC2pvQMbZxACAAD8QwhCAACgGoIQAACohiAEAACqIQgBAIBqVAfhyVOnO/Ya7Nam45AxoQ8fPuS6HAAA4IA21wVwJubQkVlf7n45cgsxd3zy6MrVwcG/nzzm4uLCdV0AAKBR9B4Rfrbmq5cf7SMWzoTHJ039X/RdverLzVwXBQAAmkZpECqVyjK5gugaqVoYl3apd+5yWBIAAHCC0lOjfD5fV4tH5BVER/dV0/P7LZo15bQoAAC1ycjIKCws5LoKNXNxcbG3t1f7YikNQkLIollTl8XMLB21megakRePrH7+7PPDe7guCgBAPT7//POUlBQLCwuuC1Gb7Ozs2bNnL126VO1LpjcIw2ZM1RMK128ZXFZZaW9j/U3U1latWnFdFACA2kRERAQHB3NdhdrURQSy6A1CQsiU0JApoSEaW11ubu7RY8fzi0V9A7t269ZNY+sFAIB3oPRiGc07efqMd6+gedf4a543HRq+Y3ToDK4rAgAAQhCEmsEwzOQ5iwumxSm7TiLthxaP2306u/L06dNc1wUAAAhCjcjMzFRYNyOGf45ai1oP/yUhkcOSAACAhSDUBGNjY1Ipqd7CKxebGxu9bX4AANAYBKEmWFpaWvHLyJPrrz7LKyx+3zF8cH9OiwIAAEIov2pUk+JiogYEhxTp2ikNzLSfXItYusDLy4vrogAAAEGoKa6urnd+v/Dw4UORSOTpuVFfX5/rigAA3uX58+dZWVl6enotWrQQCoVcl1OHcGpUc3g8XrNmzXx9fZGCAFCfnTt3rr1fJ3t7+86dO3t7e5uYmU+fMfPly5dc11VXEIQAAPCnXbt29erdO1W7KVlykXydT77MqhyzLerEWW8fv7y8PDWuKDo6ulevXjY2NosWLVLjYt8DghAAAF559OjRjJkfMyPXKSftIU06EX0zYmpHOo+TLb3yXGEwZZo6nwRiZGQ0c+bMXr16lZWVqXGx7wFBCAAAr3z77bd8+xak19zXJ+gZy4M3/vLTiaysrH+7zKKiogEDBqjSLi0tbezYsYSQ4cOHjxgxwtLSstZV1xaCEAAAXjmfeFnm2Z/weDVMa9ZVS8/oypUr/3aZFhYWMpns0KFD7Mft27c7OjrWsk71QhACAMAropISom9W8zQeT8vQTCQSvcdiZ86cuWPHDkJIeXl5TEzMlClTalOk2iEIAQDgFTtbG/LyWc3TqiqrRPk2NjbvsdigoKDs7OyUlJSYmJj27dt7eHjUqkp1QxACAMArA/r0EqQeJ/KKGqbdPEGUioCAgPdYrLa29uTJk3fv3v39999Pnz69tlWqG4IQAABemT59uj5TobVvJlHI/zIh957OoQVhYbPNzc3fb8lTp06NiorKzMwMCgpiWzIzM8+ePZudnf3s2bOzZ88+fvy4lsW/NzxZBgAAXjEzM/v5RGy/gYMrI3xk/pOIfUsiK+fdi+cnRX/wwQfr16177yU7Ojr6+vr6+voKBAK25fLly3v27GF/Xr9+fUhIiLu7uxq24d9DEAIAwJ/8/f3v37m9fsOGI8e+yc3O1BHqtmvvM2vHtxMmTODVeDXpP5OXl3fjxo2dO3eqWsaOHcveR8E5BCEAAPyFvb3915s2fb1pE8MwtQk/ldWrV+/atWvy5Mlubm61X5raIQgBAKBmaklBQsj48ePHjx/P1ZnPv4UgBACAulVvI5CFq0YBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBpunwAAaIQCAgLGjBlTTx7dohZKpXLNmjV1sWQEIQBAIzR79uwZM2ZwXYWaaWlp1cViEYQAAI2Ttjb+wv8jGCMEAACqIQgBAIBqCEIAAKAaghAAAKim6aHUBw8eiMVi9mddXV1PT09CiFKpvHDhQmFhYZcuXezt7dmpUqk0Pj6eEPLBBx8YGBiwjc+fP09MTLSwsAgMDOTzkeIAAFBbmg7Cjz/+ODMz08zMjBDi7Oz8448/MgwzbNiwJ0+etGnTZubMmUePHu3evXtBQUHnzp2bNWvG5/Pnz5+flJRkY2OTmJgYFBTUv3//O3fuODg4xMXFqetdWQAAQC0OLq5dt27dqFGjVB/PnTt38+bNe/fuGRgYbNu2bdmyZb/99tvWrVtbt2597NgxQkhwcPCWLVsiIiKWLVu2fPnyefPmlZWVtWrV6syZM3369NF8/QAA0JhwcHYxMzPzwoULz58/Zz+eOHFiwIAB7MnP4ODgxMTEoqKi48ePBwcHszMEBwcfP35cJBJduHCBbdTX1x80aNCJEyc0XzwAADQymj4iFAgEsbGxP//8840bN8LCwtauXZuTk+Pt7c1OtbKy0tXVzcnJycnJcXR0ZBudnJxycnJyc3O1tLRsbW1VjVeuXHnbWmQyWVxcXHp6evX1hoSE1NlmaY7iD1wX0oChA2sJHVhL6MBa+lcdyOfz/3YQTdNBGBsbKxAICCHp6em+vr79+vWrqqqq/tQcLS0tuVxevVFbW1smk8nlcj6fr7pAhm1821oUCsW9e/devnypatHT0xszZkydbJJmKRQKuVyOB0bUhlwul8vlXFfRgKEDawkdWEv/qgMFAkG9C0I2BQkhzZs379Sp040bN2xtbQsKCthGqVQqlUrt7Ozs7OxUjfn5+fb29nZ2dnK5XCQSmZqaEkJevHihur70TXp6eosXLw4MDKzbjeGCQqHg8/m6urpcF9KAVVVVoQNrQy6XowNrAx1YS2rvQM7uQKioqEhPT7e3tw8ICIiPj2cYhhBy9uzZZs2a2dnZBQQEnD17lp3z7NmzAQEBVlZWLVq0YBsZhmEbuSoeAAAaDY0eEebl5U2aNKl79+46OjqHDh2ytLQMCgoihKxevfqjjz7q2LHjunXrVq9ezePx5s6d26lTJysrKz6fv3v37sTERB6Pt3Tp0jlz5uTn5ycnJ4vF4uqXngIAALwfjR4Rmpubjxkzpri4ODc3d+bMmZcvXxYKhUKh8NKlS56enhkZGTt37gwNDSWEtGzZ8vLlyxUVFWVlZZcuXfLy8iKEhISEREVFZWRktGjRIikpCecWAACg9njsOclGJjAwcOXKlY11jFAmk+np6XFdSAMmkUgMDQ25rqIBE4vFRkZGXFfRgKEDa0ntHYinlAEAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA1BCEAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA1BCEAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA1BCEAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA1BCEAAFANQQgAAFRDEAIAANU0HYS7du1q06aNrq6utbX1ggULqqqqCCEeHh5N/vDZZ58RQpRK5YIFC0xMTExMTObPn69UKgkhRUVFgwYNMjQ0tLW1jY6O1nDlAADQKGlreH0KheK7777r0KFDTk5Ov379HBwcFi5cmJmZmZSUZGFhQQgxMjIihPzwww8///zzw4cP+Xx+t27d2rZtO3HixCVLlhgYGBQXF9++fbtHjx5du3Zt0qSJhusHAIBGRtNBOG3aNPYHNze3oKCglJQU9qOLi4u1tbVqtj179syaNcvKyooQEhYWFhUVNWbMmJiYmMTERIFA0KFDh/79++/du3fVqlUarh8AABoZzsYI5XL5mTNnOnfuzH708/NzdXUdN27c06dPCSEZGRmenp7sJE9Pz4yMjJycHKlU+lrj2xbOMEx5ebmkGqlUWscbBAAADZKmjwhVFi1apK+vzx4g/vjjj76+vhKJZNmyZYMHD75+/frLly8NDQ3ZOY2MjIqLi0UikVAo1NHRYRuNjY2LioretvCSkpLhw4fz+X/GvLGx8YMHD+pygzREoVDIZDJ2bBXej1QqZRiG6yoaMIlEwnUJDRs6sJb+VQfq6+traWm9ex5ugjA8PPz8+fMJCQna2tqEkMGDB7Ptu3btMjU1zcjIsLCwKCkpYRtFIpGVlZWFhUVlZWVlZaVQKGQbq59KfY2pqemvv/4aGBhY51uicWwQ6unpcV1IA8bj8VT/zYL3w47lw3tDB9aSejuQg1OjX3311aFDh06dOmVubl7jDDwer2XLlrdu3WI/3rp1q0WLFnZ2diYmJqmpqWxjampq8+bNNVQxAAA0Xpo+IoyMjFyzZs2+fftycnJycnKMjIzKy8vz8vLatm0rkUiWL1/u6enZtGnTqVOnLliwYMiQIXw+f/PmzV988YVAIAgJCVm1atXevXuTk5Pj4+M3b96s4eIBAKDx0XQQ3r9/v0mTJitWrGA/+vr6Tpw4cfXq1Y8fPzYwMOjSpUtcXJyWltbw4cMfPHjQr18/hmGmTZsWHBxMCFm7du2cOXO8vLysra3379/v5OSk4eIBAKDx4TXKqwYCAwNXrlyJMUKokUQiwRhhbYjFYgxx1QY6sJbU3oF4xBoAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA1BCEAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA1BCEAAFANQQgAAFRDEAIAANUQhAAAQDUEIQAAUA1BCAAAVEMQAgAA1RCEAABANQQhAABQDUEIAABUQxACAADVEIQAAEA17TeblErlxYsXExISUlJSCgsLtbW1bW1t/fz8evXq1bZtW82XCAAAUHf+EoTl5eXbtm3btm3bkydPhEKhm5ububl5RUXFtWvXjhw5olQqfXx8FixY8OGHH/J4PK4qBgAAUKM/g/DmzZvDhg2Ty+Vjx44dMWJE+/btBQKBamppaenly5cPHDgwffr0TZs2/frrr+bm5lwUDAAAoE5/jhEWFBQsWbIkMzPzyy+/7NSpU/UUJIQYGxv37dt3z549WVlZvXv3FovFGi8VAABA/f48IuzTp88/+YKZmVlERESd1QMAAKBRNV81Ghsb+2ajUqlcu3ZtHdcDAACgUTUH4YwZM0JCQiQSiaolPz+/X79+y5cv11RhAAAAmlBzEG7cuDE2NtbX1/fWrVuEkLNnz3p7e6elpZ05c0az5QG8wjDMzz//vGjZqm++21FcXMx1OQCgZnK5PC4ubus32xMTEzW86pqDcOzYscnJybq6uh07dhw7dmzfvn3btGmTkpLSs2dPDdcHQAipqqry7zN47LZT/y1tOzex0tP/g9TUVK6LAgC1yc3Nbd6hy7hdl+Zc1Q5auStgwLCqqiqNrb2GG+pZHh4eR48e9fb2jomJadu2bVxc3GvXkQJozLbvdt4y9Svru5QQUkVIXqs+Y6ZNv/v7ea7rAgD1GDd9btbAL5VN/AkhxWTi9bNfbdi09bNF8zSz9rc+Yu3kyZOdOnUyNTVdvHjx3bt3e/bsmZ2drZmaAF7z6/mksjbD/vxs5V5cLq+srOSuIgBQp/uPMtkUZJX5jDtxOkFja685CJcvXz5gwIBOnTrdvHlz/fr1iYmJOTk57dq1O3HihMYqA1AxMTEiFX+9dbVKpqOjw1E5AKBm/NceVlZVKRQKNbf2GlujoqK++uqr48ePW1hYEEL8/Pxu3rwZGBg4dOhQjVUGoBIaPNTs/EaifDVmoJVyvL1XCz4fj4wHaCR8vdtop8apPhpf+vbDIf00tvaaxwhPnjzp6elZvcXU1PTo0aNbt27VSFVvtX///pMnT1pbW8+ZM8fFxYXbYkBj+vXpvSD1zpbIbkqXDnxRThNj3v6De7kuCgDUJmrbxp5DRj29fbTSsqluZlLv9s1nTAl9c7anT59KpVIbGxv1rp3HMAz7U2JiokgkGjRo0Lu/IJPJdu3aFRQUZG9vr95S/ta2bds2bty4Zs2a5OTkAwcO3L9/39DQsMY5AwMDV65cGRgYqNkCNUGhUMhkMj09Pa4L4YBYLE5PT7exsXFycqrNciQSydv2HHi3uLi40FnzSiuVTayM584JS05Ld3O0nRwyztbWluvSGobS0tJd0f+7npbetUObjyaM09PTq6qq2h9z4OLVlCbO9lM+Gm9tbc11jX+hUChiDh46f+WGq4PN5JBxdnZ2dbq6Y8eOjQ+dUsYTainlbs5OlXJ5RaWcR5SEIWXiEmllFVNRSgQGRNeQVEoi16ycN09NV9Mwf0hMTDQxMWnXrt3XX3/99OlT5q+USmVaWtry5cudnJzc3Nzy8/MZzVIoFG5ubnFxcezHzp0779ix420zd+/ePSEhQUOVaVZVVVVZWRnXVTRsYrGY6xIapDlz5hBzRxK6kyz4ldi1IH3mk0Vn+JN2Wzdvd/XaNa6rawCysrIcWnjrhGwhn8TrfrjB1csnJyfH0y/AYHg4+eQsf9JOm+beKSkpXJf5p8rKyrZdehoO/ZwsOsOfvMe6ebsrv/9ed6uLi4sjJrak/VBi15LYtSTmDsSmGbFuSizdiKk90TMhfC1ibE2G/Yd8Ek/GbyUmdmFhYWpZ9Z9HhISQwsLCiIiIPXv2lJaWOjo6enh4WFhYVFVVFRUV3b59++XLl46OjnPnzg0LC9PkMCYrLy/Pzs6utLTUyMiIELJ06dIXL17s2rWrxplxRAjvgCPC98MzcyCLE4iVGzm7mTAM6T331YSi7BZHJ927eoHT6hqA3sPGxLf4mGnSif2olRrneWNrepNhlQEzXs3x4pHXTx/fTjrHWYl/tT5y86qrFeUfzH/1ufipx+GP0q/9Vker0zIwUfqMJnnppHk3cucsKS8l2jqkvJRYu5PsVFIpIQYWZNR64jf61Reyb5Ktw5jinNqv+i9jhJaWlps2bYqIiIiNjT137tytW7cyMjKEQqG1tXVISEjv3r379eunpaVV+7W+h7y8PIFAwKYgIcTKyuodt1RLJJIlS5ZUf1GUvr5+VFRUXRepAWwQKhQKrgtpwKRSKdclNDwikYgI9ImVGyGEPL5Khq76c5qFc3GZrLi4GLcav9vd9AfMwE6qjwrPvg+OfloZVG00yrrJC5GkpKSEqz+zrzl5/lK534o/P5s7icoVhYWFurq6dbE6pdCQtB9C4taQvAxSLibW7kT6kggNSWUZERqSshJCCGlbrbuc2xEev/qjQGukr6//txfW1XCxjKGh4fjx48ePH/9vN6NOsSfTFQoFu4tUVFTo6+u/bWahUNi/f//WrVurWnR0dN4xfwOiUCi0tbVxRFgbSqWycewMmqSvr0+q/rhx08CcSIsJaaKaylfKTUxM8L7ud9MVCohCTrT+uO2nolQoFFZIi4m5o2oeLaJU/Xefc7bWVkT6l8cZ8hm5mZlZXf1DV8lImZgo5MTAnPD5pFJK5JWExyMGpoRREsIjfC1SJiJCg1fzM0ryD36X/8nl5W99sszFixePHz+em5v72sHHoUOH/n576gA7SJuTk+Ps7EwIyc7OdnBweNvMOjo6Xbt2bZSnRhmG4fP5uHOgNtCB70ebR6ou7iQBU0iHYeTnL8iMA0RbQAgR/P6/rr7t68lBTH02ZnjQptPrpP2XE0IIozT+dfXYoL4Hzqx9+dH/2HQUJu7s2a1z/dk5p44deXrJ+mLnGKItJITo/L7fv33buvuHNjfSL/5pDWniR4QGhK9NpMXEwIKUPCfycqKQE20tIisjRz8jk3YTvhYhhPy0liir1NJdfxkjVFm9evWKFSvMzc2dnZ1f2+zk5OTar/X99OvXr1u3bp9//rlIJPL09IyJiQkICKhxTowRwjtgjPD9PHjwoGWnHko9U2LlTrJu8LW0LNsEMEXZ7Zs6HonegS79WwqFYnLYwl/OJxGbZuT5/fEjBm1cs2r9pq0bt+8kDq1J4RO/Vu4Hd2+vV6crvt7+/dpN24iDFyl+6u1ufyR6R90dsCoUCl1LxyqGR/SMiKKKyMoIj094PKJUEmUVIQyplBA9U6ItJI6tSV46qRCLn2WoZcerIQjlcrmxsXFoaOimTZvq1Un/GzduDBw4sE2bNhkZGd26dYuOjn7bnAjCxkcmk327a8+F328621mHTZ3o7u7+3otCENbG77//fuLEibCwMAsLi0ePHtna2pqamnJdVEMikUju37/v6emp+i2WyWSPHj2yt7c3MTHhtrYayeVyzfxD3717NyLymzv37slELz5ZMN/Pz08qlZaUlOjp6SkUivLy8h9P/HTo8BHJy0KGYYYMGVLje3PfTw1BWFBQYG1tff369fbt26trNeoikUiuX79uaWn52v3+r0EQNjLl5eUdAvo8aTqwvFlPXvEzi3PrDm//KrB7zecD/haCsJbEYnH9GcdqiNCBb7pw8beRMz8pHLiGWDfTephoe/GrG+dPvu2uSrV3YA1jhJaWlu7u7g8ePKiHQWhoaNi9e3euqwBN27h1++MWIyq7zyKEMM7tCt18p8wb/fBmEtd1AYB6zFi0rHDSIWJiRwhR+Ix6ri1ctubLHV9/qZm11zDMyOPxduzYER4enpCQgMv0oT5ISEqubNHnz88mtmIFv7y8nLuKAECdXkqkbAqylM26Xr2puXeO1nzVaKdOnTp06NCzZ0+BQGBgYFB9El4ODppnb2tNxC+ITTNVC7+qoo5uZgIAzRNo8YmyivD/iKTip861e5Liv1JzEE6YMOH48eN9+/Zt3rw5bcNRUA/NCBn9y6zwIqdDRGhICBFc/LZnl464aw2g0Zg0dtR/Y5dIhq4jfG1S9tI8bsmir1dqbO01BGFJScmxY8e2bNkye/ZsjdUB8A7+nTv/d+Hkpf/pqTRzUopyAzt1+P7rSK6LAgC1Cf90oUKxYdfGLgodXX2+cn34pwHdumps7TUEITsu6O/v/+YkAK58NO7Dj8Z9mJuba2lpWa/u6gGA2uPz+f9ZtuQ/y5bIZDLN/4LXcLGMubm5v7//+fPnNVwKwN+yt7dHCgI0Ypz8gtc8RrhmzZrQ0FCpVNqnTx8rK6vqk2pzIzMAAEB9U3MQfvjhh/n5+eHh4eHh4a9NqvGRbAAAAA1UzUH4/fffV1RUaLgUAAAAzftLEN65c6eyspIQ8o4XOwAAADQmfwnCAQMGZGdnv/sLODUKAACNyV+CMCIiQiwWc1UKAACA5v0lCCdMmMBVHQAAAJyoL69CBgAA4ASCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKppa36VWVlZd+/eNTU19fX11dbWJoTcuHGDYRh2qqWlpYuLCyGksrLy0qVLDMN07dpVKBSyU4uLi5OSkmxtbTt06MDj8TRfPAAANDKaDsIZM2YcP368ffv2T58+lcvl586ds7Oz69ixo6enJxuKQ4cOXbZsWXFxcUBAgLm5OY/HKygo+O233ywsLK5evTpo0CB/f//79++3bdv2wIEDyEIAAKglTZ8anTFjxtOnT3/++efU1FRXV9cNGzaw7adPn05OTk5OTl62bBkhZNu2bS4uLhcuXLhw4YKHh8eWLVsIIZ9//vnChQtjY2OvXbuWlJR0/vx5DRcPAACNj6aD0Nvbmz3y4/F4Hh4epaWlbPuDBw9SU1MrKirYj8eOHRs7dix7wDd27Nhjx46VlJTEx8ePHTuWEGJkZDR48OBjx45puHgAAGh8OBgjZOXm5sbExMTExBBC9PX1Fy1aVFpaWlhYuGfPnoEDBz579szJyYmd09nZ+dmzZ7m5uXw+38HBQdV49erVty1cLpefPXs2NzdX1aKjozNixIi63CANUf6B60IaMHRgLaEDawkdWEv/qgP5/L8/3quTIJTJZAMGDHiz/ZNPPunbty8hRCwWDx8+fOLEiR988AEhJDc318DAgBCya9eu8ePH5+TkyGQyHR0d9ls6OjoVFRWVlZVaWlqqTWIb31FAYmLigwcPVC16enoDBw5U3yZyRqFQyGQyDI7WRkVFBXtaAt5PZWWl6tcT3gM6sJb+VQfq6ur+bRbWyZ8DbW1tdqjvNS1atCCESKXSgQMHent7r1+/nm1nU5AQEhoaOnv27PT0dFtb28LCQraxoKDA3t7e1tZWJpOVlJSYmJiwjXZ2dm8rwMDAYOXKlYGBgWrdrHpBoVBoa2vr6elxXUgDplQq9fX1ua6iAVMoFOjA2kAH1pLaO7BOgpDP578thMrLy4cMGdKkSZNvvvnmzcOazMzMiooKGxubLl26JCQkDB48mBCSkJDg7+9vY2PTtGnT8+fPBwUFsY3Tp0+vi+IBAIAqHNw+kZyc3KFDh88++4wQ0mKMB9QAABaOSURBVLRpU3t7+19++cXb27u0tPSbb76ZOHGivb393Llzu3Xr5ujoyOfzv/322/Pnz/N4vE8++WTOnDkikejatWv5+fkffvihhosHAIDGR9NB2K9fv1atWqk+Ghoatm3b9vbt21evXjUwMFi/fv3w4cMJIW3atDl37tzevXsZhomPj2/Xrh0hZNq0aZaWlqdOnbK0tExKSsK5BQAAqD2e6pEujUlgYGAjHiOUyWQYI6wNiURiaGjIdRUNmFgsNjIy4rqKBgwdWEtq70A8axQAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKim6SCcOXOmzx+GDx/ONh45cqRZs2bm5ubBwcEikYgQwjBMeHi4nZ2dra3tsmXLGIYhhJSUlIwePdrc3Lxp06aHDx/WcOUAANAoaWt4fRkZGaGhof379yeE6OjoEEKePXsWGhp64sQJPz+/jz766NNPP/3uu+8OHz68f//+q1ev8ni8nj17tmrVauzYsUuXLq2srMzOzr5x48bAgQP9/PxcXFw0XD8AADQyHJwatba2dnd3d3d3d3JyIoRER0f37NmzR48eBgYG4eHh+/fvr6io2Llz56xZs5ycnBwdHcPCwnbt2iWTyfbt27d8+XJDQ8OAgIA+ffpER0drvngAAGhkOAjCJUuWtGjRYujQoTdv3iSEpKent23blp3k5eVVXl7+7Nmz9PT0Nm3asI1t2rRJT0/Pzc0Vi8WtW7eu3qj54gEAoJGpk1Ojd+/evXz58muNfD4/NDR0wYIFzs7OAoHgf//7X48ePe7cuVNcXOzl5aWax9DQsKioqLi42MjIiG00NjYuLCwsKirS1dUVCARso4mJSWFh4dsKePnyZY8ePaq3GBoaPn/+XG1byB2FQiGTyRQKBdeFNGBSqZTrEho2qVTK4/G4rqIBQwfW0r/qQH19fT7/bw756iQI8/Lyrl69+lqjlpZWaGjogAED2I//+c9/Tp48+euvv5qbm4vFYrZRoVBIJBJLS0tzc/PS0lK2saSkxMrKysLCoqKiQiaTsVkoEomsrKzeVoCZmVlCQkJgYKDaN41zbBDq6elxXUjDZmhoyHUJDRjDMOjA2kAH1pLaO7BOgrBnz549e/b829mEQmFVVZWHh0dycjLbcvfuXT09PQcHBw8Pj7S0tN69exNC0tLSmjVrZmdnZ2homJaW1r59e7ZRdZoUAADgvWl0jLC0tPTHH38sKioSi8Xbtm27efNmnz59QkJC4uPjL168WFZWFhERMWbMGF1d3cmTJ2/bti0nJyc3N3fLli2TJk0SCoXjxo2LiIgoKyu7dOnSqVOnQkJCNFk8AAA0Shq9fUKpVG7atGnq1KkKhaJ169ZxcXHu7u6EkN27d0+aNKmwsLBXr15ffvklIWT06NGqg7/JkyePGzeOELJ+/fqpU6fa29tbWFjs3LnTzc1Nk8UDAECjxGPvVW9kAgMDV65ciTFCqJFEIsEITW2IxWLVtWzwHtCBtaT2DsQj1gAAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqIYgBAAAqiEIAQCAaghCAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIAQAAKohCAEAgGoIQgAAoBqCEAAAqKbNdQEUuXnz5rd7DxQWiwb27Dpxwjg+H/8LAQDgHv4Wa8ievft7hS7cwe/xo8vkecfTu/ULUiqVXBcFAAAIQo1QKBRLItYXTztGWn5AnNuJB6y4LfQ4FhvLdV0AAIAg1IhHjx4RBy8i0Fe1iJv1OpeUzGFJAADAQhBqgpWVFa/0RfUWnviFi70NV/UAAIAKglATzMzMmloZ8FN/evVZ/MLy0rZRw4ZwWhQAABCCq0Y1Jnbfrg+nzLp9/kuevoleefGOLevc3Ny4LgoAAOgOQoZhUlNTnz171qZNG2dn5zpdl6Wl5dnYgxUVFWKx2MrKqk7XBQAA/xy9QVhcXNxz8KgcoX2lubvu48j+HVtHb99U1yvV1dXV1dWt67UAAMA/R28QTpg5747vnCqvAYQQMSGxPy7cFfW/yRMncF0XAABoFL0Xy9y8c59NQVZp15k/HP+Vw3oAAIATlAYhwzAMw/ylSUsgk8k4KgcAADhDaRDyeLymzo68zKuqFoPr+4P69uCwJAAA4AS9Y4Q/7NgcMGB4UdPeElM38+zENvrS+bMOcl0UAABoGr1B6OTklH790smTJ7Of5bSbMq1Lly5cVwQAABygNwgJIQKBYMgQPN4FAIBqlI4RNlxPnjy5ceMG11U0YC9evLh06RLXVTRgYrE4Pj6e6yoaMIVCERcXx3UVDdsvv/yi3msbEYQNTEJCwo4dO7iuogFLTU1dv34911U0YDk5OYsXL+a6igasoqJiypQpXFfRsM2cOVMsFqtxgQhCAACgGoIQAACoxnv9vvJGYdSoUXl5eSYmJlwXon55eXmlpaUeHh5cF9JQiUSip0+ftm7dmutCGqry8vI7d+74+PhwXUhDpVQqr1y54u/vz3UhDdiVK1d8fHy0tf/RxZ5btmz521f9NM4gLCoqunz5MtdVAAAAxwICAoyNjd89T+MMQgAAgH8IY4QAAEA1BCEAAFANQQgAAFRDEAIAANUQhPXUzZs3Z8yY4e/v36NHj8jIyKqqKkKIWCwOCwvz8fEZNmzYvXv32DkfPHgwYsQIHx+fjz/+WCQSsY0nT5784IMPOnXqtGHDBmqvh9q/f//8+fODg4Pv3r3LtkRFRQVXI5fLCSGPHz8ODg728fGZNm1aUVERO2d8fHzv3r07duy4Zs0ahULB2TZwat++fWwHqnY2QsjmzZvZ3TI2NpZtkUql8+fP9/HxCQoKSktLYxsfPXrE9ur06dOLi4s5qL4+iY6OfnPHy8zMHD16tI+Pz9SpU1U73rlz59gdLyIigtod7x2KioqmTp3q4+MzevTozMxMdS0WQVhPnT9/3t3dPTIycsmSJdu2bVu7di0hZNasWdnZ2VFRUb6+vn379pXJZFVVVf379/fy8oqOji4sLJw+fToh5MGDB8HBwTNmzNi6dWtUVNT27du53hpuHDx40NjY+NSpUwUFBWxLamoqwzCj/qClpaVUKgcNGuTu7h4dHV1WVhYaGkoIycrKGjZsWGho6Pbt2w8dOrRp0yZOt4MzBw8eNDExOXnyZGFhIduyb9++yMjIjRs3Lly4cOLEiexjb+fNm5eenh4VFdW1a9c+ffpUVFQolcqBAwc2adIkOjpaIpFMmjSJ0+3gXmpqqlKpVO14fD6fYZhBgwa5urpGR0dXVFR89NFHhJCsrKyhQ4dOnDjx22+/PXLkSGRkJNeF1zsTJ04sLy+Pjo52c3MbNGiQ2v6Xz0C9980333Tu3LmgoEAgEDx58oRtbNGixeHDh0+cOOHq6sq2PH/+XCAQ5ObmLly4MCQkhG08dOhQq1atuKm7frCxsTl//jz787x588LDw6tPPXPmjJ2dnUKhYBimqKhIIBBkZmYuX748ODiYnSEuLs7NzU3DNdcrVlZWFy9eZH/u1KnTjh072J/nzJkzdepUkUikp6eXnp7ONrZt23bfvn2nTp2yt7dXKpUMwxQWFgoEgqysLE6Kryfmz5+/fPny6i1nz561tbVld7zi4mKBQPD48ePw8PBRo0axM/z0008uLi6aL7U+e/z4sUAgKCoqYhhGoVDY2dmdPXtWLUvGEWEDkJKS4uHhcf/+fTMzMxcXF7bRz8/v1q1bt2/f9vPzY1tsbW3t7Ozu3r1769YtVaOfn9+9e/fU+6T2Bi02NrZv374zZsxgz5fevn3bx8eHz+cTQszNzd3d3dPS0m7duuXr68vO7+fnl5mZqd4n/DZc1fc3dg/MyMgQCoWqRx2pdktfX18ej0cIsbCwcHV1VZ0ypZZqx7tz5w75645nZmbWpEmT27dvv7bjZWVllZSUcFl0PZOWlubu7m5ubk4I4fP5Pj4+t27dUsuSqX4fYX1w5cqVysrK1xpdXFxcXV3Zn0+ePHno0KGUlJTr16+bmpqq5jEzM3vx4oVQKKzeaG5unp+fX1BQoGo0MzNjGKagoMDBwaFut4QjaWlpqvEVFQsLCy8vrzdnDggI6Nixo6mpaUJCgq+vb3Jy8osXL97swOqNZmZmhJD8/HwjI6M62wgu3b59+80xvBo7UCqVSqXS6j3zWl+RP3ZLhmHe7NW6Kb8eEYlEqampb7b7+vp269bNz8/P1NT0/Pnz79jxXvvNJYTk5+c3ykdFvp8adza1LBlByLHIyEjVAIzKuHHj2GGVxMTEkJCQ48ePu7i4PHz4sKysTDWPRCKxtLQUCATV/4qJxWJTU1NjY2PVnBKJhBDSiH+XYmJirly58lpjx44d2VHV1wwbNoz9oV+/fo8ePdqzZ4+5uXlGRoZqhrd1YPVfv0bmhx9+uHr16muNnTt3joiIeK1RX19fR0enes+YmpqamJi8tluyjU+ePFE1sr1aJ9XXJ0+ePFm9evWb7bt3766+4z1+/HjPnj2Wlpbp6emqeSjc8d7Dmzubuv6yIQg5dvDgwbdN+v3330eMGLF///6AgABCiKurK/vEbfa5eQ8fPvTx8REKhadOnWLnLy8vz8nJcXV1dXV1Vf1xz8jIsLKyMjQ0rPtN4caaNWve74v29vYikah9+/Y//PAD2yKXy7OyslxdXd3c3Kp3oJGRkYWFhXrKrX+++OKLfzgnj8dzdnbOyMho2bIlISQjI8PV1dXFxaWoqKi4uJg9YfXw4cMBAwZYWVkdPnyY/ZZMJsvOzlad4WjEvL29/8kri9kdz8fHZ9++fWyLasd77TfX0NDQ0tKyDituaFxcXJ48eSKXy3V0dAghDx8+HDVqlHoWrZaRRlC7mzdv2traxsXFVW/s1KnT+vXrGYa5fv26gYFBQUHBy5cvDQwMkpKSGIbZvHlzu3btGIY5deqUo6NjQUGBUqkcOXLkvHnzONmEeqL6xTJXrlxhr+C4c+eOlZVVTEyMWCw2NjY+d+4cwzDff/99y5YtlUrlb7/9ZmNjk5ubyzDM+PHjp0+fzmH9nKt+sUx4eHifPn2qqqpKSkqaNWt2+PBhhmG6d+++evVqhmFSU1MNDAxyc3PZ/66x3f7dd995enpyWH99UH3Hs7a23r9/P3s0Ex8fzzDMzp07mzdvrlQqExMTVTvehAkTpk2bxnHd9YxSqWzRogV7uVZCQoKJiYlEIlHLkhGE9VRYWJhZNd7e3gzDpKSkNGnSxM3NzczMLDo6mp3zhx9+YK/ycHV1TU5OZhhGqVQuWLDA1NTU3t4+ICCAvciKQl27dq3ehw8ePPD29jY0NHR0dDQ2Nl6xYgU725EjRywtLd3d3Z2cnC5fvsw2Ll261NTU1MHBoXPnzvn5+ZxtA6f8/f2rd+DDhw9LS0v79u1rY2NjZmY2ffp09qLHO3fueHh4uLq6mpmZff/99+x3Dx8+zPaqs7PzlStXON0O7rVv316146muWz569Khqx2P/L8swzGeffYYd7x2SkpKcnJzc3d0tLS2PHj2qrsXi7RMNjFKpzMvLY0cHVY0ymaywsNDW1pa9CI0lkUjKysqsra25KLP+Ki0tlUgkdnZ27DWNLLlcXlBQYGNjo6WlpWqUSqUSicTGxoaLMus19o6I6q+2YRjm+fPnFhYWQqFQ1Vhjr1JLLBaLxeJ/suOVlZWJxWLseG+jUCjy8/OtrKzYE6RqgSAEAACq4T5CAACgGoIQAACohiAEAACqIQgBAIBqCEIAAKAaghAAAKiGIARo5CorKw8fPvzy5ct3zCMSiQ4fPlxRUaGxqgDqDwQhQH0XFRXV5A9eXl4DBw7ctGnTP3+11tdff/3555+/++0ZRkZGK1asoPYVxEA5BCFAfVdSUvL48eMhQ4ZMmzYtODi4rKxs/vz57DvN/5ZIJFq7du2yZcu0td/1hH0tLa2lS5d+8cUX7z5wBGiUEIQADcOkSZM+/fTT8PDwhISEXr16HTx4UCQSVZ9BKpXm5eVVVVVVb9y7d29VVdXw4cP/dvkjR47k8XjR0dFqrhug3kMQAjQ8Xbt2ZRjm0aNH7Me0tLSePXsaGxvb2dlZWFgsX75cqVSyk/bu3duvXz/2PVxz5851cHBQveinqqqqV69e7dq1Y199p6en17dvXwQhUAhBCNDwpKSk8Pl8R0dHQsjjx4+7detWWVn566+/pqWlrVq16ssvv1yxYgUhRCQSpaSk+Pv7s99au3atiYnJyJEjy8vLCSHh4eEXLlzYunWr6nWVnTt3Tk1NffNN0QCNG17MC9AwnD59+v79+2VlZfHx8bGxsbNnz2ZfULB69WpdXd1ffvmFfVu3p6dnQUFBZGRkeHj47du3FQqFh4cHuwQDA4NDhw517Nhx8eLFw4cP37Bhw9q1a7t06aJaRfPmzRmGSUtLCwwM5GITAbiBIARoGBYtWqT6OTg4ePPmzezPp0+fbt68+bVr11RTjYyMpFJpZmYme2zHvjue5eXlFRkZOX369L179/bp0+eTTz6pvgoLCwtCyIsXL+p0QwDqGwQhQMNw69at1q1bi0SiyMjI1atX9+7de8qUKQzD5Ofnv3z5Mjg4uPrMZmZmBQUF7JWir10+M27cuKVLlxYXF69cubL6u/EIIXK5nBCixte8ATQIGCMEaEhMTU1XrVo1ePDgxYsXv3jxgsfjGRsbjxw5svgNXbp0Yc+dFhUVVV/C7Nmz5XK5q6trWFjYazcjsnPilbBAGwQhQMOzbt26kpKSdevWEUK6d+9+5syZ126lYLVp00ZXV/f27duqlgMHDkRFRW3btu3IkSOpqamfffZZ9flv3bolEAi8vb3run6AegVBCNDwtGrVauTIkdu3b8/JyVm5cmVJScngwYOvXLlSVlaWm5v7yy+/fPzxx4QQXV3dLl26XLp0if1WRkbGtGnTJk+ePGHChA4dOqxbt27jxo3Hjx9XLTYpKcnf319fX5+brQLgCIIQoEFasWKFTCb76quvvL29z5w5U1JS0rlzZwMDAwcHh1GjRrG3BhJCJk+efO7cufz8/IqKitGjRzs5Oamuspk7d25QUFBoaGhWVhYhpKioKD4+fsqUKZxtEgBHeAzDcF0DAKjBkydPXrx4YWJi4urqKhQK2UaZTObh4TFz5sxPP/303V//73//+/XXX2dkZKi+C0AJBCFAI3fgwIGwsLDHjx+/47nb5eXlTZs23bBhw7hx4zRZG0B9gCAEaOQYhsnMzLSzs9PT03vbPBUVFbm5ua6urnw+hkuAOghCAACgGv73BwAAVEMQAgAA1RCEAABANQQhAABQ7f9x5CImsjLtlQAAAABJRU5ErkJggg==", "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "metadata": {}, "execution_count": 18 } ], "cell_type": "code", "source": [ "scatter(res.eigenvalues)" ], "metadata": {}, "execution_count": 18 }, { "cell_type": "markdown", "source": [ "We execute the simulation" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ Info: Rebuilding the simulation after reset\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "[ Info: The System has no islands\n", "[ Info: Initializing Simulation States\n", "[ Info: Unit System changed to UnitSystem.SYSTEM_BASE = 0\n", "[ Info: The System has no islands\n", "[ Info: PowerFlow solve converged, the results have been stored in the system\n", "[ Info: Unit System changed to UnitSystem.DEVICE_BASE = 1\n", "┌ Warning: Initialization failed, initial conditions do not meet conditions for an stable equilibrium.\n", "│ Trying to solve again reducing numeric tolerance from 1.0e-9:\n", "└ @ PowerSimulationsDynamics ~/.julia/packages/PowerSimulationsDynamics/n4bor/src/base/simulation_initialization.jl:117\n", "[ Info: Initialization succeeded with a relaxed tolerance of 1.0e-6. Saving solution\n", "[ Info: Attaching Perturbations\n", "[ Info: Completed Build Successfully. Simulations status = BUILT\n", "[ Info: Simulation reset to status BUILT\n" ] } ], "cell_type": "code", "source": [ "PSID.execute!(sim, IDA(); abstol = 1e-8)" ], "metadata": {}, "execution_count": 19 }, { "cell_type": "markdown", "source": [ "Using `PowerSimulationsDynamics` tools for exploring the results, we can plot all the voltage\n", "results for the buses" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "DisplayAs.Showable{MIME{Symbol(\"image/png\")}}(Plot{Plots.GRBackend() n=14})", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeUATx/4A8NlNAkkIR8KZcN+nHCKgiAgqiKJoq4L3VbXa1qrVarW/th5tldan9ahXrfq02ireB17giSiCKFju+yYJgRBykWP398e+l1KIGC2HPufzV7K7M5mscb/M7sx8ERzHAQRBEAS9q9D+bgAEQRAE9ScYCCEIgqB3GgyEEARB0DsNBkIIgiDonQYDIQRBEPROg4EQgiAIeqfBQAhBEAS902AghCAIgt5pMBBCEARB7zQYCCEIgqB32lsWCCsrK1tbW3U8GMOwXm0MpJVare7vJryL4GnvF/C094sev7a/ZYFw1apVN2/e1PFgmUwGV1Lte1KptL+b8C6Cp71fwNPe93Acl8lkPVvnWxYIIQiCIKhnwUAIQRAEvdPIvVGpUChMTk5++vSpQqHYsWNHp713797dsWOHXC5PSEiYM2cOAEAikWzbtu3Ro0f6+vrvv//+zJkze6NVEARBENRVrwTC3NzcY8eOmZubX7hwoVMgLCoqGj9+/M6dO9ls9gcffEClUhMSEpYuXVpeXr5582aBQLBw4UIymTx16tTeaBgEQRAEddIrt0bDw8OvXr36ySefdN21b9+++Pj4uXPnjh49+ptvviHCZFpa2ooVK4YMGTJu3LhJkyalpaX1RqsgCIIgqKu+fkaYnZ0dGhpKvA4NDc3OzsZxPDo6+vTp021tbZWVlbdu3YqOju7jVkEQBEHvrF65NdoNLpfLZDKJ1ywWq729XSgUbtiwYdSoUebm5kqlcv78+ePHj39RcbFYvGbNmi1btnTceOjQIScnp64HS6VSDMMQBOnZrwB1TyKRwHPe9+Bp7xfwtPc9YvqE7lPj6HQ6ir6ky9fXgZDBYGimgEilUgRBDAwMIiIiYmJisrKy2tra3nvvvQ0bNqxfv15rcRqNtnDhwhEjRnTc6OrqSqPRuh6MIAidToc/0z6G4ziDwejvVrxz4GnvF/C09z0cx1EUNTAw6ME6+zoQ2tnZlZeXE6/Ly8vZbLZcLn/48OEff/xBIpFMTExmzJhx8ODBFwVCEonk4uISHBysy2fVCZBd/1b0VMs/GkfxtIOzTSAIgv7X9F0gPHToUFhYWEJCwvr161esWGFgYPDLL79MnTrV0NDQzMzszp07s2fPxnH87t27zs7OPfKJbBa+eR6lR3qEey4r1XC9Ngh6tzU1NZWUlHTcIpVK6XR6f7XnHRQSEtIbN/l6JRDW1NT4+fmpVCqxWMxisZycnLKysjZs2JCYmDh58uQLFy64ubkZGxvT6fQ9e/YgCPLrr78uXLhwz549LS0tVCr1/PnzPdIMFAF0KtIjZ40Eu4JvHpUaNLbgIilOIQELE8TY4BX+oduVgNuCieUAAMAyRCxMEFTn0k2tOK8Vl8hxChlhMoC1KUom6VSwuQ0vqcPqm/E2KU4mAZYh4mCJOrNRig7/C0VSvKgWq2vCRVIcAMBkIDbmqJs1YkB9ebvVGKjkYlU8vLkNl8hxQxrCMkRszRFHy5c+OgEAAIUKVPMwbgveKsUBAHpkxNIEsTVHTBg6nbJ2JajmY7z/FqfqIebGiI0ZwtStOI6DZjEuFOPtSgAAoOsDEwPEmPEK/6uVKiCW4SoM4DggoYBBQ/QpOhcGQKkCEjmuVAMAwPkLyeu+WOni4tKhefhLrzDEsyz4hOafe/z4sUgk6o2/PHolENra2jY3N3faWFxcTKFQUBQ9ceJEbW2tVCp1dXUlfkNxcXExMTGVlZU0Gs3GxgY+1XuL8IR4TjnGbcEwHJgbI552qKluv1KRFH9UoH5WjlVxMZkC6JGBtRnqbY+GeJCsTbv7AShUIKtYnVGkLqnDmAyEyUCUKtDQgtP0wEAX0iA31In9wqDGE+JZxersMqyuCbM0QRk0gOGguQ1vleBuNugAB5K/M2pmpKW0RI7/WYU9K8MKqjESCVgxEQYVUapwQRvObcEdLFEfB9TXEbW16PzROADVPCy7FHtaqhZJgas1amOG2JqjagzwW/GnpaqaJszTFh3oSvJ1RA1pnT+6XoA/LVNnl2I8Ie5qjdiZo3YWKI6DFjF+O0d18Cpma44GuKD+TiR6l//KQjGeW4E9K1cX1WKWJqiDJWJqhJgZoWIZXsnF7uTgfBHmaUvycUC97FALk799tFIFKhqxvGosvwqrbcI4piiH9Z8/NVqUWE45Xs3D9fWAhw3qboM6c1BL5t/+07ZK8PJGvLgWK6rFGpoxazOUzUSMDBAEAIEIe1qK1/BxEgm426CuHNTRCuGYonr/bb8aAzwhXsXDyhuw8ka8lo8xaIgJA6FSiH8IIJTgsnaczUJtzBEOC7FkIkwGwqAhAAAcB20yvKUN5wnx+ma8oRlvasXlSpxBRcgkgCBArQZtMpxEAuZGqLkJYm6MmBkhJgxA1UNQBGA4kCtwoQQ0i3B+K85vxZta8XYVTtdHiOY9va+OGBmT9MexF/04oV5FoxscvKrUo6rGBiI9+ogQIG/XstSTJ0+eOnXq5MmTdTlYIpH01GCZbWcV0QPJPg7/gx1DmQI8zFfnValbxMCQBpw56GAPUqfLolaVXOxcuqqKiw90QW3MUAQBXCGeW67GcSwqUC/Mm6T3gr+yeEI8OVP1pAQLcEaD3EjOHISuj8gVoJqP5ZRjjwrVLAYSPoA0yJVE0/9bwWoelpanflSAObGRUC/SAEcSTe+vvTV8PLtU/bhIrVKDQW4kLzvU2hQxZiASGd7QgpfUYk9KMYEIH+SGBrqQXK3/1o2TtuMF1VhuBZZTjtH1gas1am2K6FMQpRrwW/GKRqy2CfOwQf2dST4OKMvwbydHoQIlddjzSiy3XC2WA0crxNIE0SMjKgzwhVhZA07XBwEupIEuqJMV2vXHKG3Hc8qx7FKsoFrNMkJszVATBqJU4S1iUN6IoQjwd0IHupDcbbT03lRqUFCNZZepc8sxHOAOlqiJAQIAaJOB2iZMIgfe9qi/M+pjj2rtOIrleF4l9rwSK6jGlGrAZiJ0KlBjoEWM84W4jTnqaYt627+wz9rQjBfWYMV1WFkD1ibFTY2Ib40L2wBAgKMV4spB3W1RR0vtPWaeEC+uw0rqsCou3tCC6ZMRmj5oVwJpO25qhNiZo05sxMkKtbNAu3bg2pWgXoDV8PGGZpwrxIRiIJH/5zpmSEeYDMTcGGGzEDYLsTBBjOidv7tE/p84xxfigja8VQLkClyNARIK9CnA2AAhbhKYGyPmxv8JsYRjx47duHHj2DEYCPsHnW5w7WEDlUp3NG83Z/VkJISBUCdvfiAUSfEqLo6iwMFSp9tlAAAcgLu56vPpKg9bNNAVNTdGRBKQX4M9KlC72aATh5A5L+iZtUrw0/dV+dVY3GDyUG9Sp8vcs2JxWqF+aT02zIcU6kVis/5TCYaBwlrsbq66oAYb6U8aGUBiaGsnhoPnFVhanjq/Sm1rjrJNESoFaRHjZQ0YCQVDPElhPiRTw+6+YDUPe1aO5Vdj3BZcJMHpVMTCBHFmI/7OJA9t4aTTOanhY+UNeEMzplABCgmwDBFHK9TRCn1RXO9IKMYreThfiCvVOBkFpkaIgxXafWs11Bio4WN1ArxVglNICJMB7Cw6d9S6UVEnbpbS2mQAAGBABUQfTvfffqsE5wlxaTtAUWBigFgxEV1u2Gq0K4FAhCtUOAlFTBiga9e2ezgAYhkuVwB9CmDQXuE2dR+DgbB/GRgY8Hg8Op0ulUrf7lGjUI9rEeOn7qr+rMIcLBEMB1VczNOONHEI2dqsu8tJqwQ/eE0pV4DPp+h1vBXp64S+P5R8O0f1Q5LCxwGNGUS26VCPWI6nPlWnPlOH+5C+n6ev9VmLMxv3d6PwhPjtHPW/zijUGLAwRpRqwG3BrFjoUC/S/NGUbh7SoAjwc0L9nFCFilJajzW24EoVbm+BThhC1sTU7tlZoHYWaNxgXY7tDAHAzhy1MwcA6Pbc7+9MGIi/bo++uiKhwMESdbB8vdLAzAh3tH6dNhOMDV7tIWsn+hTAMUVe+0EYAoAhDTHUMgcKgvoCDIRvt6JabN8VZYQvaW70f8JSuxLce67+8bQixIP0/lCy1pCTW4EdvqGM9CONCyF3/etbjwxGB5KHDyDfeqbaflZhQAOOlqg+BTQ04xWNWKAr6avpeubGL7nkWZggCcPJCcPJAhHe3IaTScDCRNeuqqYZXnaol53uJSAIgl4HDIRvivxq7PR9VRUPszBBRviRR/qTXjqi71kZduSm8sOxf5vgqE8BUQNJQ7zQpHuqdUfa3wslD/EkaUa9trThZx+oimqxJbEUN5vuPoCqB8YGk2OCyBWNWF0TrlABb3vEzQbt+FhOF6ZGiKm24ScQBEFvCBgI3wgP8tVn01SzRlF8HdBqPnYmTZVZrP54PKWbu1XZpepjqaoV71PsLbTEMwYVmRdNKWvAzj1Qnb6v8rJDDaigsQWv5OIRvqRNc7Tf1ewKRYAzG3Vmv/Y3gyAIetPBQNj/Suqx0/dVa+L1rJgIAMDBEv1skt6VDNW3JxTL3tOz0faoL7tUfTTlhVFQw5mNrpqsx2/FS+owaTvwtkc87bSMwYMgCHqXwUDYz9qV4OBV5ZwoChEFCQgA40LIlkxk62nFvGiKn9Pfot295+pz6S+Pghrmxoi58esPo4AgCPrfBgNhP7vwUOVqjfo7aQlpQW4kliGy74oyuxQdHUhmmyK1fPxyhqpOgGm6jxAEQW8IkUhkZGSk+/Ht7e0oilIo/X+T6s2dGPeWwnFw6p5q+b72ny8p22QvmaPZ2II/yFPHh7/wzxFnNrpxtr6xAbL9nOKDbfKfLylszZGvZ+jDKAhBUEREBIvFYrFYtra2EyZMKCws7Kma09LSiJpNTU19fHw2btyI4ziPx2OxWE1NTZrDFi5c+O2338rl8g8++MDExMTDw8PIyGjGjBmdartw4cKYMWM4HM7MmTOJLdevX/fz8zMxMTExMYmKiqqtre2plr8eGAh72KUMVUUj9n/T9SxNkB+SFLJus1+cvq8aE0TquvJFRzQ98P5Q8o8L9A99Rt0yX39cCFmXmd0QBP3PE4lEmzdvLisry8zM5HA4s2fP7qmalUoliUQqKysrLS09evTovn37Tp48iWFYS0tLxzVYJBKJXC7/8ccfCwoKKisr6+vrGxsbuwZCGo02e/bsyZMnSyQSYguKort27RKLxQKBgMlkfvzxxz3V8tcDA2FPahHjKdnqRWMpZkbI5GFkVw569KbyRQcX1WLVfGxUAAxrEAS9JjqdzmQyraysJk2aVFVVBQDYuHHj1atXib3p6emfffaZVCpdsGCBo6Ojg4NDbGysjquJIQjCZDKZTObAgQMDAgIqKytfdGR+fv6wYcNMTEyI9owdO7bTAdHR0dOmTeNwOJotUVFR4eHhJBKJSqXGx8cXFBS82tfuafAq3JNSn6mHeJE0y+pPi6BsPN6eUaQOce88VgXHwR93VJPDyDomLoAg6M3UIAU46IuFKln6CLXL5eLx48dUKlUgEPz666/Lly8HADx//lwTcvh8/pMnT/bu3dvS0pKfn4+iaEZGho4r77W3tyclJSmVyoKCgqKiol27dr3oyOjo6E8//RTDsIiIiPDwcENDw1f6XmfPno2IiHilIj0OBsIeg2HgQZ56TfxfE84pZDB/NGXnBaWnLdrp/ufd52o9CgjqEiAhCHq7DL6oUmJ9EQgPh5NH23SOYXl5eQqFor29XalUvmj5TQRBuFxubm5ucHBweHh4p71EB7FrdFQoFCkpKQCA+vp6NpvdTT9y3rx5FhYWR48eXbRokUAgWLdu3ddff63jl9q/f/+DBw+ePHmi4/G9BAbCHlNYi7EMkU7DWByt0PABpF+vK5dP1NP80gQi/Hy66vMpenDECwS97aqm9udVdN68ebNmzQIAcLlcGxub6OjorscsWbKkqalp5syZIpFo4cKFmzZt0oS9a9euxcfHAwAGDBjw4MGDjqUMDQ33799PvF63bt2yZcv+/e9/AwAUir8GPrS3txNjPmNjY2NjYwEAV65cmThx4pgxY4KCgl7a+N9++23Tpk23b982MzN7rW/fY+Azwh6TXaIe5KrlfE4YTG5XgqT7KuKtTAF+vqQcG/SSrHsQBEG6MzMzo1AotbW1RHIGYmN9fT0AgEajff/99yUlJTdu3Dh8+PCtW7c0pWJiYkQikUgk6hQFO7G2tq6pqTE1NWUwGGVlZZrtpaWlDg4OHY+MjY1ls9nE08runTlzZvXq1devX3d1dX2VL9orYI+wx+RUYCve07IQJ4qCT+Io284od15QeNigd3LVAxzR6EB45iEI+qfy8vJSUlKUSmVSUhKTyQwKCiosLDx69OjEiRN5PN7PP/9samp66dIlKysrHx8ffX19AICxsbEuNWtujXK53K1btxL9zvnz569Zs2bPnj3m5uYnTpyor6+Pi4v77rvvrK2tQ0ND6XT677//LhQKBw/+W/KX+vr6/Pz80tJSHo+XkpJibW1dWVk5Y8aMzZs3NzQ0NDQ0kEikyMjIXjg9uoKX457R0IwDAF6UwI9BRdYm6N3PUzc2Y9MiKAMcYUccgqB/KiQk5MmTJ0+ePKHT6Z6eng8fPjQ2Nl6wYEFBQUF0dLS7u/tXX32VkZEhl8vXrFlTU1Njbm7+3XffDRo06KU1s1isoKCgxMREAACbzV6/fj0xBfCHH37YunXrRx991Nra6uvre+/ePWJY6ZEjR/71r39hGObh4XHjxg0bG5uOtT1//nzr1q0AADqdnpiYGBsby2Awhg0blpycnJycDACg0Wj9GwhhYl6dvDQxb8pTdW0TNjeq/5dI6HdtbW2vOmwM+ufgae8DMDFv/+q9xLywa9IzCmswT1t4MiEIgt4+8NrdA3AcFNdiHjAQQhAEvYXgtbsH1DbhDBroJncgBEEQ9MaCgbAHFNdh7t1me4cgCILeWPDy3QNK6jBXa3gmIQiC3krw8t0DimEghCCoz82YMWPQoEGDBg0KCwtbunRpQ0NDT9WclZU16L/Gjh179OhRAIBAIBg0aFBLS4vmsC+//HLPnj1qtXr9+vXu7u4sFsvb2/vzzz/vVJtarV65ciWbzba3t9+5c2fHXUVFRUFBQT/99FNPtfz1wHmEulKqtW/nt+IAAHNj+IAQgqA+VVBQMHPmzIkTJ7a0tHz//fczZ85MTU3tkZrb2toqKioyMzNVKlVBQcHcuXNNTU0DAwOfPHmiUqk0h1VUVCAIsnv37jNnzpw/f97V1bWiouLOnTudatu7d29KSkp2dnZzc/OIESMGDBhAzBrEMGzhwoVKpbKurq5Hmv3aYD9GV/lV2iNhSR3mBruDEAT1B3Nzcycnp8DAwI8//jg3NxcAsG3bNs0iallZWd98841Kpdq4cWNERMTw4cOXLFmiY80kEsnJycnNzW3ChAlhYWFE5Vo9evRo/Pjxnp6eZDLZ1dV14cKFnQ44ePDg559/zmazvb29P/jgg4MHDxLbd+7cOWjQoMDAwFf+2j0N9gh1giJALNO+Cz4ghCCovxBLrLW3t//0009Tp04FADx8+NDIyGjEiBEAgLq6ujt37lhZWd29e3fv3r0UCiU9PR3HcV2WGdEssVZRUZGVlfXtt9++6MiQkJAtW7aw2ezIyEhvb++ulRcXF/v5+RGv/fz8bty4AQCorKz85ZdfMjIyli1b9rrfvsfAQKgTOwu0iodp3VVUi43wh6cRgt5RdZ/H4WrVy4/7x0znf03zGdxp4+XLl588eaJUKmtqahYvXqy1YEtLC41GMzY25nA4Li4uOn6cTCYjlljjcrmBgYFsNhvDtF8Dly5dqqend+zYsZUrV5qZmX377bfz58/X7JVIJDKZTLPskZGREZ/Px3F80aJFW7ZsYTAYOranV8EruE4GOKKFNVp+BK0SXCwDNmbwASEEvaOsE8+DPknMCxAtd57WrFlDLIddUlLi4+NTXFzc9ZglS5bk5eV5enq6ubktWrSo463L1NTUefPmAQC8vLyuXbvWsZSxsfHNmzeJ1x9//PHSpUt3794NAOj4jFCpVJJIJBKJ9NFHH3300UdSqfTf//73okWLQkJCvL29iWMMDAxoNJpIJCLeikQiMzOzY8eOyWQyDofz5MmTpqYmhUJRWFjo4eHxD87OPwIDoU7MDJEaPiaR4wbUv8W8wlrMzQbtidVMIQh6O6FvxJMRFxcXCoVSVFREpVLlcjmxUSAQAACYTObx48cVCsX169fnzZvn4+MzZMgQ4oDw8PCcnBwAAJncXSzw9fXdvXu3mZkZjUarrq5ms9nE9urq6piYGM1hdDp9yZIlmzdvzsvL0wRCAICzs3NeXp6vry8AIC8vz9XVlegmfvjhhwCAqqoqEolEJpMPHz7cgyfklbwR/4RvPqYhYm2GEikmOsqvgiurQRDUb/h8fnl5eUFBwTfffEOhUAICAnx8fC5evKhQKBobG/fu3QsASE9P5/F4enp64eHhRkZGSqVSU5xCoTCZTCaT2XXFdrVaXV5eXl5efv/+/T179kRERCAIMmnSpE2bNjU3N6tUqpMnTxYUFMTExOzfv//WrVsymUytVp86dYrH4wUEBHSsat68edu2bRMKhZWVlYcOHZo3b96SJUuy/isuLm7WrFn9GAUB7BHqzoqJ1AtwF87fNuZXYzGD4DmEIKgfWFtb//zzzz///LORkZGnp2dqaqq5ufmSJUvS0tIsLCycnJxmz56dkZGRm5s7c+ZMuVxOo9HmzZsXHh7+0pppNJqJiUlUVBSKohwOZ/LkyatWrQIA7Ny5c82aNb6+vhKJxNPT89KlS9bW1nQ6fd26dYWFhQAAV1fXkydPdsq1u3Tp0pKSEicnJwqFsnz58tGjR3fca25urmOKxN4D0zDpKqNQnVGk/nTCX6l36wT4jnOKHxbo90j9/zNgPqB+AU97H4BpmPoXTMPU/zxs0dI6XNVhMuGzMrW/MzyBEARBbzd4HdeVsQHCMUXyq/4aO/q4SB3oSurHJkEQBEH/HAyEr2CIJ+nen//pElZyMVk7gGvKQBAEve3gdfwVDPYkldZjdQIcAHA1Uz3CnwQnTkAQBL3tYCB8BfoU8F4o+UCy4lKGqooHF5SBIAj6XwAv5a9muC9JqQaVXGzFe3p68ORBENR/1qxZU1FRAQDQ19f39fVdvHhxT40czsvL27BhA/Ha1NR0ypQpI0aMEAqFixYtOnjwoJGREbFrx44dlpaWU6dOPXz48IkTJwQCgYWFRUxMzPLlyztVuGPHjuPHj9NotGXLlr3//vsAgMrKyq+//jo/P9/R0XHLli3Ozs490vLXA6/lr2xUAAkAOEYGgqB+dvPmzejo6FGjRolEou3btz98+PDs2bM9UjOPx7tx48bp06cxDCsoKIiLi0tOTnZzc0tKSvr55581h2VkZDg5OR05cmT9+vX79+93cXGpqKhIT0/vVNtvv/32008/nTx5UiAQTJ8+3d7e3svLa9SoUdOnT1+/fv3p06dHjx5dWFjY/eo2vQoGQgiCoLeVt7f3qFGjAAAmJiYJCQkAgOPHj7u5uQUFBQEA8vPz79+/v2jRoqNHj966dQvHcS8vry+++EKXmvX09Iiao6OjU1JSHjx44ObmpvXIGzduzJgxg1hrzcXFJSoqqtMBe/bsWbt2bXBwMABg7ty5+/btmzFjRltb2/r161EUXb169cGDB69cuTJhwoTXPxH/DHxGCEEQ9LYilljLy8s7ePAgkXrp/PnzxPKhAICSkpITJ04cP358165d06dPnzNnjlKp1HERFc0Sa9evX8/MzBw2bNiLjvTw8Dh16tTFixdbW1u1HvD8+XMiMAMAgoKCcnNzZTIZlUpF/7tMK51O17S5X8AeIQRB0OubdWmJCtOetbtnrQz+aBDbv9PGXbt2nThxQigUSqXS33//XWvB0tJSd3f34cOHU6nUkSNH6vhxIpEoPj5erVZXV1dHRkYOHDhQk0Gik9WrV0skksWLF3O53KCgoA0bNnRcRE0qlYrFYhMTE+Itk8kkDhMKhefPn584ceKtW7eeP38+dOhQHRvWG2AghCAIen2Jkd/0zQexqMyuGzdu3EikYUpPT4+KiiorK+t6zIIFC6ZNm8Zms0eMGLFw4cKO+SLS09NXr14NAHBxcTly5EjHUkwmMysrCwCgUqlmzZq1bNmy7777DgDQMSuhWq1GEIRKpSYmJiYmJpaWlv76669xcXEFBQVOTk7EMTQaTU9PTyqVEm+JoGhmZnby5Mnly5cvXrzY19c3KirKwsLiH52dfwYGQgiCoNfHYVj1dxMAACA0NBRF0ZycHAqFoskvQfThbGxs7t+/X19ff/bs2fj4+Pv372vyxfv4+BCDX2g02otqJpPJkZGRO3fuNDU11dPTa2hosLS0JHbV19dHRkZqjnRxcdm8efPx48ezsrI0gRBBEHt7+5KSEiIxU0lJiYODAwAgJiaGWKcbx3FPT88FCxb08Bl5FfAZIQRB0NtNJpP98ssvKpXKx8fH1dX19u3bOI7LZDIit1FhYaFCoeBwOIsXL7a2tubxeJqCRkZGfn5+fn5+LxoIAwCoqqo6fvx4YGAgiUSKjo7evn07kZv3wYMHT548GTly5NmzZzU90YcPH3K5XE9Pz441zJgx4+eff1ar1SKR6MiRIzNmzAAA1NTUAAAwDNuyZYtKpRo3blwvnBhdwUAIQRD0VjIyMlq2bBmLxbK3tz9y5MjZs2etra0/+uijwsJCZ2fngICAoKAgQ0PDs2fP2tnZBQQEuLi4DB06lBhT0z0KhaJSqVgsFovFioiIcHFx2b59OwBg7969jY2NVlZWDg4OCQkJhw4dcnV1raqqCgsLs7S0dHR0nDhx4vbt2wcMGNCxtpUrV1IoFA6H4+DgMHLkyEmTJgEAlixZYmFhYWJicuHCheTkZCqV2ktnSRcwDRPUw2A+oH4BT3sfeIvSMPF4PFrSnlwAACAASURBVCaTSaFQiLdKpbKpqYnFYunr90DauPb2drFYbGpq2nGjUChUqVRmZmYvKiUQCPT09Dr+SgUCAQCgUz3d6L00TPAZIQRB0P+aTmNPKBQKm83uqcr19fW7BlTNuNAX6RrwdA+BvQ3eGoUgCILeaTAQQhAEQe80GAghCIKgdxoMhBAEQdA7DQ6WgSAIeivt3Lmzvr4eAEChUHx8fCZNmtRTCRzKysp++eUX4rWRkdH777/v4eHR1tb23XffffXVV5oRm7///juLxRo9evStW7dOnDjR1NRkYWERFRU1ZcqUThWeP3/++PHjVCr1o48+GjJkSHt7e1JS0q1bt1pbW/38/JYuXcpkalk3p8/AHiEEQdBb6ciRIzwez8nJiclkbtiwYfHixT1Vc3V19Z49e5ycnJycnPh8/sCBA58+fSqRSBITEzWLpQEALl26dP/+/QsXLsTHxwcHB3/yySfBwcEpKSmdarty5crChQsTEhKGDh0aExNTVFRUWlp65MiRwYMHz5kz59GjR6NGjVKr+2K91heBPUIIgqC3VWRkJLHW6IABA4gVW27evGlra+vh4QEAqKqqys3NHT9+/O3bt+/cuYNhmJeX17Rp03SpmUqlLlq0iHhdVFR0/fr1uXPnaj3y9OnTCxYs0BzcdbG07du3f/nll8T876dPn+7Zs2fHjh2aeDlixAhjY+OysrJuVrfpbbBHCEEQ9HYTi8VXrlwhVhA9cOBAWloasf3Zs2dbt269dOnShx9+aGNj4+zsTGQl1L1mHMcLCgqeP3/u6+v7omPYbPaNGze6yaOUmZkZFhZGvA4LC8vMzOy4t7q6GkVRc3Nz3VvV42CPEIIg6PX9ua8Sx/pifS77MZZGjvROG5csWbJs2TKJRGJiYpKcnKy1YGZm5siRIxcuXAgAeFGvritiJRocx4VCYUJCwujRo/l8vtYj165dW11dHRISYmBgMGrUqHXr1mkW9QYAyGQykUjEYrGIt6ampg0NDZq9CoVi0aJFq1at6t9nhDAQQhAEvT7bUeZ9s04lzULL6mh79+6dNWsWjuOnTp2KiYkpLi7uesy0adPGjh3r5uY2bty4uXPnduzbPX36dOvWrQAAe3v777//vmMpMzMzYnluIhB+8cUXq1atAgB07FASKZmYTOYff/whFosfP37866+/Dhs2rLCwkMPhEMfo6+uTyeT29nbirUwmYzAYxGuVSjVt2jRzc/NNmza9/nnpCTAQ9jAcx5pbSvX1DRkGPbagEQRBbyxjl55c9PL1IAiSkJCwYMGCzMxMEomkGXhCDGzx9PQsKyvLzMw8c+bM0KFDnzx5onkax+FwEhISAADGxsYvqtzExGTy5Mk7duz4/vvvyWQyn8/XrN/G5/M19zwZDMaIESMiIyOtra0fPHigGTiKoiiHw6msrCRSUlRWVtra2gIA1Gr17Nmz5XL52bNne2qw62vrlY9XqVQFBQXPnj0jkUjTp0/vtLe0tPTYsWMqlWrq1KmaRcqbm5uPHj1aW1trY2Mze/ZsTT/67dLIe3YtdQUAQK5otbYKiopIpOq/ZP29juTylrKqFEytdLCLMGRweq2ZEAT9r7lx44ZMJnN2dra3t8/OzgYAYBh2+vRpAACfzzc3Nw8JCQkJCbl+/XrHYSmWlpZxcXHd1yyXy5OTk93c3CgUypAhQ44cOfLjjz8CAEpKSh4+fLht27Z79+75+/sbGRkBACoqKlpaWuzs7DrWMGXKlMOHD48ZM0ahUBw/fnzp0qUYhs2bN4/P51+6dKlH1gH/h3plsMzJkydjY2N37ty5du3aTrsqKiqCgoIUCgWNRgsLC3v27BkAoLq62s/P79GjR9bW1mVlZVqTLL/5GrjZF67OHzb4i7nTbi+c+cjI0CbpQoK8vVXH4kWlF478MaKq+m4D7+nx07EZ2bsAeIUbLq2i6ownu1LvrXv6/LC8Xfha3wCCoLfMqlWrnJ2dLS0t58+ff+DAAWdn5w8//PDy5cvDhw8PDAyk0+kAgC1btnh4eLz33nshISEWFhYRERG61Nzc3Ozs7Ozk5GRubi4Wi3/66ScAwL59+5KTk318fMLDwwcPHrxp0yY/P79r167Z29sHBwcPHz584MCBy5cvDwkJ6VjV6tWrCwoKAgMDfXx8rKyspk+fnpGRcezYsYyMDA6HQyR7un//fi+cHl31ShomDMNQFL1+/fqiRYuqqqo67lq5cmVzczORLnLt2rW1tbXHjh2Lj4+3tLTctWvXS2t+Y9MwSaT8E2dio4b/4GAXodl47+G3/Kb898cdQxBS98Wf5594/PTnCWN+NWN5AAAkUt6l6x+asdxHDd8MwEvbjz9+uic791dP1/dMjB0aec8qqm9HhH7t4TpRl5bjOFZYciE3/zce/zmJrG/DGRLou8CaHaxLWUKzsKymLl2hEBvQze1twzE17VXzARGR+5V6z1AnMA1TH3jT0jCJRCLiLqienl7HtEQSiaSwsNDW1pbJZMrlckNDw/r6+pqaGjMzM2dnZ11qVqlUbW1txGtDQ8OOty7VanVlZaVIJHJxcdH85Nra2ioqKlQqlZOTk9Y0FGq1Oicnh0ajETdIO9av9VO0esvSMKHoCzuad+/eXblyJfE6Ojp69uzZOI4nJydfuXLl6NGjUql0zJgx9vb2vdGqXpVyd423R3zHKAgAGDZ43dkrsx492Tlk0IpuylbV3Hv05Kf4CaeNjf5zP8GAbjFp3G9nr8xKy/ghLGRNN2VxXH3zzppmYdnMyVcZBpYAAD/vWU2Cgss3PmpqLgoLWd19HJVIeckpS1Wq9iGDlttwQlQqeWnF9Wu3lttaD40cup5CeclPram58N7D7wTNRY52I6hUE74g/276JhvOsIih63S5tctrynv2/HB5VSqGKQEAFArdxTHG32cu08TppWUlUn5hybnKmrvNLSVqtdLI0MaGM9jbI96U6frSsgCAVlF1bf2jVlE1hquo+iZWFv5sq0ASStGlrETK5/JzJRIuhqsNGWwriwA6TadsMip1e2X1nZq6By2tlWp1O51mxrYMcHaI1vy7dwPDVDX1D6tr7wuai9WYkqpvbGHm42g/gvjL6aXk7cKq2vtcXo5YwgMAGDLYVhb+dtZD9fWNdCmuxpQ8/vPmllKpTEAm6xsxrC0t/BgGVrqUJRrf1FzUIixVKCQISjI0YJubeet40v4Ll7eL2hUifQpDX9/opX9ZviOIu5FdGRgYBAYGEq+JlIQcDkczekUXZDL5RcM4SSRS12hqaGjYzfwKotTAgQN1qb9f9GJiXq09Qg6Hc+zYsZEjRwIA8vLyAgICqqur2Wy2n59fTEyMVCr97bffbt68qflX7GTcuHEymczBwaHjxi+//FLrvzG/qbKs6nRPfR0Pl0kmxo5ad5WUX3725y+Txp1B0c5/WEhlTUkXJ4yO3G1lEaC1bJu47uyV+OjInWyLzl+5vV145krCQN8PPVzef0Gj8NsPvhSL68eM3Esm0zqVvXxzkYWZz7DBX70oFjY1F1xNXeLlFj/QdzGC/PW3i1IlfZDxXSP/6ejI3Uxj7TEJx9XZufufFxwLCvjU03WK5osrFOLMZ/uLy5IG+n3o6zn7RResNnFdemYil5/j5z3HxXGsAd0KANAqqiouu5BX9Lu9TURQwKcvGm0kEtdm5+4rr7zh5BDtaBdlxvJAUUqrqKq67m5hyRkTY6eAAYtsOUO1llWqpCXll/OL/hBLGm2th5oYOaEoWSrjc/nPhKIqZ/toL7d4c7MBWsvK5M3F5RdKyi6L2moszf0YDDYC0DZJHZf3zMTYyc15gqvTeH097X0ykbj2z4LfCkvPmbM87WyHM42cyWSqRMpr4GZVVN80MXby8ZjhaDeq6+8HACCRcvOLThaUJBnQ2Q62EaYsTzJJX97ewuXnVFSn6OsZebtPc3UeL5epu/YIMUxVXXunoORMAzeTYxVsaR5gyGDjOGgT1zbysht52RyrEHeX9+xtIrR+tFIpqay5XVZ5ta7xkbGhvSnTnUYzVavbRW01jfwcOpXlYDvS2THGjOWl9VsrFOKq2jsV1Tdr6h8wDKxYxq56+oYYphJLGnhNzw0Z1vY2EU52o8zNfLT+RNsVrTV1abUND3n8XGFrOZlM09MzVCglKpWUYcAxY3lYWvhbmvmbsTw6/fiJL97SWs4X/CloLmwRlorEtTJZk0IpQVGyvp4xw4BtYuxgynRnMd1NmW5df2ntitbmlhJBS1FzS7FQVCGWNMrlLQCAxw9FcnHQH7/32FUFeiV0Ou3mrR00mr6V+VAWy0bHUnp6et30zQh9HQjt7e0PHDgwevRoAEBOTs7gwYNramrMzc23b9++fPlyAMDKlStrampOnTqltc64uDgrK6uOf1kAACZNmqR1cE2ToLqyRvvEmldVUHx6eOjXdjbhXXfJ24XHT8eMjz5gYa79D6LyqpT7j76d9t5lPT1Gp11qtSLpUry78/iAAR9oLdsiLD9zeeqYkbus2SFd995/9F0j7+nEsUcp5M6ziwAACqXk4rX5Jkb2I4Z93/UyV1lzJ+Xu55Fh3zo7jNb60flFSemZP4SHfuPmNK7TrlZR9c07q8hk6qjhPxLd0I7a2trUePOt++sUSknk0PWW5v6dWpWde+B5/nE/77kDfReQydTOzVaIs58fyM0/7un6vr/PvI49S0Fz4dM/D1dUpfp6zfTzmdv1ViqGqUrKkzOf7UFRkq/XLEe7EQZ0CwAAjqt5Tc+LSi8Vlp63tgoa4DXTlhPaMfYDAMSSxsKSc/nFSSiq5+Y0zs4mzNjQlkTSb5M0cHnPyiqv13OznB1Ge7hMtGYHdwzwOK6urksrKDpTVXfPwTbS2WG0NTuYRmUBAGQyQU3Dw6KS8428Z94e8QM8Z3btKGOYqqzyRk7eUVFblbvLRAfbCFOWO4VMF0u5DY1PSiuS6xuz3F3ifDxnaOvs4jV16Tn5x+obHtvbjHRzGWNu6s0wsJTKBE3NBdU194rLLxkxbL09p7o4jO7av1coJaXlyfnFp1tay53sR9mwBzNNnPT1jKUyPl+QX1OXXlufzrEKcnWKdbAbQdXvNKoQ5/Gfl1ZeK624hmEqO5thluZ+xoa2ZDJNKuU1NRfVNT7m8nOsrYKdHWMcbSNpf+//4TjGa8otr0wpq7ohlwut2SHmpl6GDGsUJUtlTcLWikbeM2FruTU7xNZ6KNsykMV0JZP0NWdM2FrJF+Q18p42cJ82C0sYBmwjQ1t9PQYAQKVqbxPXCUVVhgy2hdkAc1NvM5abIcPGgG6hp8dQY0q5XCiW1DcLy5pbivlN+c3CUnm70NCAQ6HQAQBqdbtEysNxjGniYmbqYcb0YJo4GTI4VCoLAHDixB937zz47bfjXf4hoL5Ap9NOnvtIX5/s4z7P0kKnez8AABRFX/qArK8DYWho6MKFC+fNmwcASE5OXrp0aWlpKZ1Ov3jxYlRUFADg0KFD+/fvz8jI0Fpnfz0jPHtldqDvB/a2w7vuunl3DZlEjQzb0E3xW/e/kskFsVE/d/rLN+XuF/L21nHRe7q5gVlTl56csvS92KMWZt4dNuNpGYmVNXenjD/Zzd0tlUp26cZiHMfHjNiuuRLhuPrx0z25ecfGRe9nW2rvpxJ4TXnJKZ+YsdwHD1phxnIHAMhkgmd//jsn71jwwE8G+s7X2uz/PqzCC4rPPXj8I8vE2dVprLGRnUIpqa1/WFhywdEuMjR4Vff3TiVS/pOc/XlFp02MHExZrmp1O5f/XKWS+3rN8PWe1eWi3AleVZv2Z8Hv1bUPKBQ6ipIlUr6xkZ2b01gv9ylGhtbdl61ryCytuF7XkNHaVoupFXS6uZWFv4NthItjdPf3iuXylqKyy+WVKQ28bAxTIwAgKMnaKsjVOdbNaWzXXksngpaSotIL1bVpLcJypUpmQDe3MBvg7BDl6jTmpfeoxZLG3LykBt6jJkGhVNZEo7JYTFd7mzBX51iWycufCYna6sqrbtY1PBa2VrYr2ug0M1Omqw1niKNdBJX68vtXgpaS6to0flOeSFyrUsnpNDMW04VtGWhnHfrSlhOfXteQ0dRcKJY0YpiKRmUZG9tbWfhbWfjrcrMaw1StompRW027QgwATiZTGQZspomj1r8OtVKpZCJxvVIpBQCQSfoGdPMXfes37Rnhu6b3nhH2XSBMS0vz9vbeu3dvWloasQLC/PnzjYyMfvrpp4SEhAEDBvzf//0fAGDRokVKpZIYTdPVmxYIa+rSr99eOTv+ZtfeXkdqteLUhXh727DQoFWajRnZu0rKkxMmnH7pxaKs4nrKvbWjhm9xdogGALS3i26lfSVsrXpv7OGXXqcwTJWe+a+8wpO+XjMtLXxFbXW5+ccZdIvoyK26PONRqduf5h7KyTuK42oUpbS3t7o6jQ0JXNZNOOk4akOtVpRWXq+sui2WcskkqpWlv4frRGND25d+7n+KY8pGbnZLayUJ1TNjuZubeeowdOgvOI61iRtwXE2nm+l+WewRCqUE4Hj3v4qeBQfL9AEYCPvXWxYIy8rKFi9eLBAICgoKwsLC3N3dd+/ebWxsfOrUqUGDBoWGhjo5OdHp9MePH6enp9va2ubn548cOXLUqFESiSQ7O/v27duOjtqfxvVXIDx3ZY4pyy18yJcdN8rbW4+fHjMy/HsH24iX1iCTCU5fmm5l6R8atBIA8ChrR11DxqTxJ4h7dy/VwM2+fnslhUw3ZLDrGrPcnceHD/my633FFxG0lOQVnmoWlhrQLdycxmrt2nZPLGlQYypDA7bWh0kdwStyv4CnvQ+8aYHwyJEjXC4XAGBsbOzv7z948OCeqrm6uvr3338HAJBIJDabHRMTY2pqKpFIdu/evXTpUmJWBgDg4sWLJiYm4eHhRUVFp06d4vP5lpaWw4cP18yyJ4jF4mfPnj179ozD4bz//vuajQcOHKisrBw6dGh8fLwuF+q3LBBKpdKCggLNWwMDAw8Pj6ysLFdXV2NjY6lUevPmTaVSGRUVpVnOoKWlJSUlhcFgDBs2TLMAT1f9FQjLq1JT7q6ZFX+DePYDAFBjygtX55ux3MOH/J+OlSiUkgcZiYUl5wFA3F3jhgavftHYCq1wXF3f+EQub7G08O/6ZO7NAa/I/QKe9j7wpgXCgQMHWltbe3t7y2SypKSkOXPmbN68uUdqvn379rhx45YuXQoAKCkpuXXr1uPHjw0NDdlsNo/H0yyQPX36dCcnp+jo6PHjx3/66aeOjo6VlZXZ2dmXL1/uWNsXX3xx5coVAICLi8u5c+eIjWFhYSwWa9y4cT/99NPUqVO//vrrl7aq9wIhwN8qkyZNSkpK0vFgsViMYVhPffTd9E2/n53YJm7EcVwibTp7efbFa4swTNVT9f/PEIlE/d2EdxE87X3g6NGjM2fO7O9W/CUgIODo0aPE60uXLllZWeE4npOTU1tbS2zk8XiZmZk4jhcVFf3yyy9EYgpdar5165a5ubnm7YgRIxITE4nFsnk8nmb7tGnTvvzyy7lz53722WcvrXPz5s0TJ04kXt+5c8fS0lKhUOA4npWVxWQypVLpS2ug0+nEVV0sFuvyLXQH0zDpKnzIlw52EcdORf2WFHPkjwgLM+/YqJ/hfCYIgt4Ez58/JxY227Rp09WrV4mN6enpK1euvHfvXmRkZFVVVV1d3caNG/FXvAsoFApramo6rZrWEYPByM7OFggEutd5//798PBwYo5jYGAggiDPnz9/pVb1LLjotu6QwYHLBg74oKW1gmns2JfjICAIemNl31yF4ao++CAX/wUmFj6dNq5atWr9+vWtra0kEunatWtaC6akpEybNu1VMzwQS6yp1erGxsaJEycmJCQQzyO7+uKLL6ZMmWJpaenj4xMVFbV8+XJr6+7HZoPGxsaOCQjNzc075mbqezAQvho9PYalufYJ1xAEvYNMrYNxHOuDD9KjaRkivnHjxvj4eJlMduLEiUmTJmntV8XGxo4ZMyYnJ2fcuHHx8fFs9l8LCBQWFh49ehQAwGaziSeCGkwmMysrCwBQU1OzcOHCH374Yc6cOZ1qJjqX1tbW6enppaWl9+/f//e//x0YGJifn9994gQKhSKTyTRvlUqlnp7eS89A7/krEJ47d+7LL7/s5tCOrl69+jYuhAZBENSz7L3i+/HT6XQ6k8lkMpmrVq3asGFDeno6iqJEmkAAAJEFMCQkpLy8/MaNG2fOnNmwYUNOTg6RCAkAQKVSibjYNUE8giDEKmhMJvODDz7YvXv38uXLURRtbm7WHCwQCDTra7u4uLi4uMycOdPa2vr27duTJk3qptkcDufu3bvEa6VSyeVyX9qJ7FV/BUKhUCgQCKKjo19a5vjx45osixAEQVC/y83NlUgkxJqiRUVFxMaUlBQAgEKhMDExiY+Pj4+PDwwM7BgIHRwcOnUEu8Jx/NGjRxwOR19f38/P7+LFi59//jkAgM/nP3r0aP369fn5+e7u7iQSCQDQ2toqlUrNzMy6rzMuLm7jxo08Hs/CwiI5OZm4rfoPz8A/8bdbo+7u7rqMDD5x4kSvtQeCIAjSVWJi4tGjR4VCYXFx8fr16729vefNmxcREcHlcgUCAY1GAwAsX768rKzMy8urpqZGLpcPGzZMl5pbW1ujoqLUanVFRQWVSiWWvdy9e/fkyZNv375tZmaWmpo6f/780NDQRYsWXb9+PTg4mEajpaSkxMXFdfqIS5cubdiwobGxUSKRDBo06P3331+3bt2cOXNCQ0OHDBly7dq1vXv3vnQ50F71VyAcMGBA1yS6Wn3++edvaeJcCIKg/xnHjx8nctBTqVQHBwdiap2vr29ubm5mZqazs7OdnR2Xy3V0dMzOzibSMIWFhRFjNbs3aNCg9PR04rWFhYW1tTURqEJDQ4uKirKyskQi0ddff+3i4gIAOHDgQElJSWFhIYZh69at8/DonBElNDR0//79mrfEndXdu3dnZmZWVVV9++23/f6grReXWOsNb2w+QkgDzuzuF/C094E3bUL9u6av8xGGhIQ0NTVp3fWWpo+HIAiCIK20B8Lw8HCRSKR5K5VK09PT+Xx+QkJCXzUMgiAIgvqC9kD4448/dtqiVCpnzZrVv1M9IAiCIKjH6TpQh0KhfPPNN/v37+fxeL3aIAiCIAjqS6+wsgyDwVCr1XV1dRYWOmUOgiAIgnrPzZs3hUIhAMDAwMDX19fGxqanaubxeMSEdwRB2Gx2UFCQnp6eXC6/dOlSXFycvr4+cVhGRoaBgYGPj09TU1NycjKXy7WysgoLC+uaR6+qqurixYv6+vqTJ08mJh08efIkOztbJBK5uLjExsaSyf25zJmuPcK2trZvvvmGRCIR42UhCIKg/rVmzZqtW7cmJSUdOHBgwIABO3fu7Kma8/LyZs2alZSUdOrUqRUrVnh6etbX1wuFwvj4+I7DR3bs2PHHH3/k5ua6u7unpKRIpdLU1NT4+M5L7Tx//tzf37+kpOTu3bsBAQHESMzPPvssOzuby+Vu3Lhx2LBhCoWipxr/GnQaNdre3s7lctVq9ddffw2HaEMQBL0hPvnkk1mzZgEAkpKSVqxY8emnn3K5XDqdTlyopVKpUCjkcDgtLS1ZWVkYhnl7e+vYcTQyMiIm0QMAQkND//jjjxdNNN+9e3dCQsKePXuIt2q1utMBiYmJxGqlAIBx48b98ssva9eu1SyxJpfLLS0ts7KyQkNDX/n79xCdRo3q6enZ2dlFRUX5+/v3VcMgCIIgXbW2thJLg37yySejR49esGABAODmzZvbtm376aefYmNjR40ahaLoo0ePCgoKXml2tUqlkkqlJiYmLzoAw7D6+nqlUklM1SfWWuuIWOaUeB0XF3fixIm1a9dq9jY2NqpUKg6Ho3uTepyuo0YhCIKgrjbmF6r7ZFmSaXY2Hl1uyBFLrDU3N9fV1V28eFFrwXPnzs2cOZPokOmOWGJNqVSWlJSEhYXNmjXrRRkHV61aNWbMGDabPXTo0KioqDlz5nS8cahQKJqamjQpL9hsdn19PfF6xYoVt2/frqqqOnTokIODwys1r2e98PlkWlpaYmLis2fP6uvriRVRV6xYMWbMmL5sHARB0BsORZC+WZ0LAVq6cQkJCWPHjm1vbz958uTHH3+sWReto7CwsISEhObm5tjY2NGjR9PpdM2u6upqIouvqalppxW7DAwMtmzZAgCor69fvXr18ePHY2JitDbMw8OjuLj43r17aWlpu3fv3r1795MnTzQrvyAIgiB/LWGG47imP/rxxx9PnTo1JSVl+fLloaGhmqXA+572QHjy5MkZM2aYmZnFxsZaWloKBIIbN26MHTt2x44dn376aR83EYIg6I31f57u/fjpDg4OgYGBAIAhQ4YwGIy0tDTw3zSBAACVSgUAiI6OzszMPHfuXGJi4ooVKzIzMzV5lMRicUlJCQBAIpF0qplMJhM1BwYG1tbW7tixIz4+HkGQ1tZWTXGhUGhsbAwAoFAoI0eOHDly5KpVq2xtbVNSUiZMmEAcQ6FQWCxWY2Ojq6srAKCxsVHTOyQyN4WEhNy6dev06dMrVqzovRPVPS2BUK1WL1u2LCYm5vTp01QqldioUqkWL178xRdfzJ0718jIqG8bCUEQBHWnrq5OLpcbGRlZWlpWV1cTGx89ekS8cHFx+fzzzz///POAgIBHjx6NHz+e2O7l5bV169aXVl5WVmZkZESn011dXe/evUvMHZBKpZmZmStWrODz+ZrQSHT+iKwXGtHR0ZcvXyZSUly+fDk6OhrDME26CYVCUVtb27+z8rQEQh6Px+Vy169fr4mCAAAymbxp06Zff/21uLh40KBBfdhCCIIgSLvdu3dfunRJqVQ+ePBg7ty5AwcOlMlkcXFxGIbx+fycnBwqlbp69erm5uYBAwZUVVV1TKXbPZFIREyEaGxsLCgoIEa7/OtfNX/S2wAAIABJREFU/5ozZw7Rp7x48WJ4eHhUVNS0adMqKyuHDh1Kp9MvXLgwYMCAiIiIjlWtWbNm+PDhcrlcIBDk5OQcOnQoJydn0aJFoaGhJBIpNTXV1NS0+0S+vU1L9gm5XG5iYnLv3r3g4OCO2+vq6mxsbGpqanpw2uargtkn3nwwDUK/gKe9D7xp2Sc0E+rpdLqnp6eTkxOxPTs7+86dO+7u7gEBAcXFxZ6enrdv366pqbGwsIiLiyMGl3ZPM6EeAMBms/39/RkMBvG2uro6NTVVJBL5+vpGRkYCANrb29PS0vLz8zEM8/T0JIandqqw04R6lUqVnp6ek5ODYZiHh0dUVJQu+Qh7L/uE9jRMn376aWFh4blz5zQfplAoPvjgA4lEcvbs2R78+FcFA+GbD16R+wU87X3gTQuE75q+TsNkamr65MkTOzu70aNHW1lZNTU1paamCoXChQsXfvHFF8QxkyZNCgoK6sGmQBAEQVDf0x4IT5w4QfQUr127ptmor69/9OhRzVtvb28YCCEIgqC3nfZAWFRU1MftgCAIgqB+8dfzyYyMjB07duhSZtmyZXw+v9eaBEEQBEF9568eYX5+/pkzZ5YtW/bSMrt37/744481E0cgCIKgvldQUCCVSgEAVCrVycmp0+y9f6Ktra24uJh4bWFhQaz5olQqc3Nz/fz8NCmTKioq9PX1ORyOQqFIT0/n8/lsNnvgwIEdF68hiESiO3fu6OvrR0ZGEgne8/PzZTIZsZfBYLi79+e6BH+7NVpQUDBlypSXlsEwrNfaA0EQBOlkxowZCoWCzWY3NzdXVFTs27evawqk15OVlRUTExMeHq5UKktLS+3t7a9cuSKXywcNGsTj8TS9oC+//NLJyWnhwoURERG2trYuLi4VFRU8Hi8vL69jbcQsw8DAQKFQuHbt2nv37jEYjOnTp8tkMmKos6+v76FDh3qk5a/nr0BoZmZmb29fUVHx0jKBgYEd59pDEARB/WLNmjVEGqaDBw+uWbMmPj5eIpGQyWQid65SqZTL5YaGhiqVqqysDMdxR0dHTVrd7hkbG9+8eRMAoFKpBg0adOzYsRd1k3788cewsDDNrJKWlpZOByQmJsbGxh44cADDsIiIiMOHDy9duhQAsG/fPmImYr/7KxCOHz9es+4OBEEQ9BYxNjYm8h/NnTtXk4YpOTl527Ztv/76a0xMDIfDoVAoRUVFNTU1rzS7mkwm0+n0bia8t7W1dUy91HXC/oULF4gwiaJofHz8+fPniUBYWlpKoVC8vLyInPX96IXZJyAIgqCXUtwv0LosSY+jeNuipp3XTCCWWGtvb//zzz8PHDigteDx48fj4uK2bdsGAJDL5TpGQc0SaxUVFTY2NnPmzBGLxVqPXLJkyZgxY3x9fSMiIqKiosaMGaN5iAgAUKlUXC5Xk1nCxsamrq4OAKCvr3/48GEAQG5u7saNGz/77DNdWtVLYCCEIAh6farSRlzdF8MmyPbmoEsgDA4OJp7kkcnk7du3a73T6OXl9emnn5qYmMTGxg4cOLDjLj6fn5WVBQAwMjIaOnRox136+vrEvVAul7tt27Y7d+68aJXpwYMHl5aWXrhwIS0tbf78+Z6enqmpqUSSXgCASqXCMEzTZaRQKAqFAgBw79494ibt48ePhw8fHhMT4+Xl9epnpWfAQAhBEPT66PP68ylXcHAwEa6mTJliZGT08OHDjnuJgY1TpkyxtLRMSkqaMGECh8NJTU3VrMZXXV1NdMscHBxeFAiJer799lvikaFYLNYMlmlrayOWOjM1NZ0/f/78+fO5XK6Li0tKSoomeS2VSmUymXw+39nZGQDA4/GIZPSaR5XBwcGenp7Z2dn9GAhfvs4pBEEQ9IZra2tTqVQIgpiamjY2NhIbc3NziRfh4eG7du2qrq6WSCSa1bQBAIGBgadOnTp16lT3+eubm5sRBDE0NLSxscnMzCQ2KpXKp0+fenl5ET08gqmpKY1GU6vVHYsPGzYsNTWVeJ2amkrkY9IQiURVVVVEdOwvsEcIQRD0tjp16lReXl57e/u1a9ciIyODg4Obm5sXLFhgaWnJ5XKTkpJMTU0TExOVSqWXl1dtba1AIPD19dWlZolEQqwsXVdXd+HChSNHjgAANm3atHTp0vLyclNT0zNnztja2o4bN27OnDkqlSo0NJROp58+fdrU1LRTGqZVq1aNGzeORqMJBIKrV68+ffo0Pz//q6++CgsLw3H82LFjvr6+w4cP7/mzozPt2ScAAFKp9Pz583l5eSqVKjExEQCQmZlpaGjo4eHRty38G5h94s0H0yD0C3ja+8Cbln3iyJEjXC4XAGBkZOTp6Tl8+HDicnfp0qWUlBQPD4+IiIinT5/6+/tfvHiRSH47bdo0IlN896qrq3///XcAAIqiHA4nPDxcM9rl8ePH165dEwqFAwYMmDlzJoVCaWhouHbtWn5+vkql8vLymjZtmiZnk8bjx49PnjxJo9HmzZvn7OwsFot///33goICFEUDAgISEhI6jq95kb5Ow1RRUREdHV1aWmpqakqlUmtrawEAa9euTU1Nffz4cQ9+/KuCgfDNB6/I/QKe9j7wpgXCd03vBULtzwgXLlxIpVKLi4tPnz6t2Th58uSsrKyukyUhCIIg6O2lJRC2tbXdvn37X//6l6ura8fulLOzM47jRO8QgiAIgv43aA+EGIbZ2Nh02i6XywEAKpWqL9oFQRAEQX1CSyC0sLAwMjJKS0sDAHTsESb/P3vnHR9FtT78M2V7L9lk03sHQkLvvVwEERABBQGBC9i4gAJX7OXiT0XKixSFCyLdYARERHoVQglJSGfTd7NJtvfdKe8f413DZpMsiIA63w9/TM6c58yZ2WGeU55y9CiDwQhko5WGhoaGhubPgh9DHRRFZ82atWLFColEIhaLAQAOh+PgwYNLly599tlnW5sD0dDQ0NA8fMxmM+Wxx2KxWmc++j1gGGaxWKhjoVBIxYUhCMJkMonFYu8EyWazwTBMpX+qrKxsbm4ODg6OjIz02yYVoa2lBvF4PFarVSQStRPI9OHg//KrVq3q27fv5MmTR40a1dDQIBQKn3vuubS0tDVr1jzk/tHQ0NDQ+GXQoEHJycndunWLiopKSEg4c+bMg2r5/PnzQUFB3bp169q1q0gkmjZtmtPpbGxslEqlzc3N3mpz58798MMPdTpdnz59hgwZsnz58kGDBvXq1cunta+++io6OlogEFCJMgAABoOhZ8+eQqFQKpUGkvLoj8a/6wabzT506NCZM2eOHz/e1NQkEAgGDRr0xBNPPHK9TUNDQ0Pj5dNPP6W0y0cffbRgwYLi4uK2ajqdTpIkA0/eK5VK79y5AwAwGo09evT4+uuvx40b57fmqlWrZDLZhQsXKAVRWlrqU6Fbt245OTlHjhy5fv06VcJisd57771OnTqFhYUF2J8/lN8UYUFBwdGjR31Oi0QikUgEACguLqYe8bJlyx5m/2hoaGhoOqRLly4bN24EAMycOXPo0KGUdvzxxx83bNiwdevWCRMm1NfXoygKQVBZWdk9eVeLxeLIyMi2Uk8AADQaTXR0tHea1DrXfEZGBgDg2LFj3hIulzty5MiWsdkeLb8pwmvXrlEBddqHVoQ0NDQ0XkxVv4CHkoaJF5yMcn1T/VEh1ux2+9mzZ6l4oTabzeVyUWfdbrfFYvnyyy/T09MvXrwIAFCr1QFqQW+ItfLycoIgZsyY0ZbLwLPPPvvUU09VVlYOHjx42LBhXbp0ue97fFT8pghnzZo1a9Ys6vjSpUtTpkxZtGjRpEmTgoODm5ubjx49+uGHH65bt+4R9ZOGhobmcUR9cQtJPAynsohBiwStFGFQUFBsbKzJZKJM/adOndpaUKlUfvPNNzt27Bg9erRPbGur1VpTUwMAYLPZsbGxLU8hCBIbG4vjOEEQOTk55eXlMTExfjs2evTovLy8ffv2HT169N///veECRN279795wrp5WePkCTJWbNmvfPOO7Nnz6ZKwsLC5s6dGxERMW3aNLVazWazH24naWhoaB5TUp7d9givPnjwYGoVdOHChVKp1PvRpqAiaM6aNYvJZB44cGDhwoWjRo3as2cPk8mkKuTl5S1ZsgQAkJCQ8M0337SUZbPZ8+bNo45lMtny5cu///57AIDD4fDWsdvtlDpITk5+++23AQAlJSVdu3Y9ffr0kCFD/rCbfvD4MX5pamoqKyvzyU0FAOjXr5/BYCgpKXkoHaOhoaGhCRRqBkZ5I3gDYVZUVAAAYBiePn36oUOHNBpNfn4+lVaQol+/fleuXLly5YqPFvQBhmGbzSYWi+VyeUFBAVVIEERhYaGPZ3lSUpJEIjGbzQ/27v5o/MwI2Ww2DMMXLlzw2fOkXOwfbKhTGhoaGpr75vTp0w6Hg3L1Tk5O7tmzZ11d3dtvv92lSxetVrt161aFQvHll1+y2eykpCSNRmMymeLj4wNp2el0btmyBQBQU1OzYcOGVatWAQCWLl366quvms1mqVS6f/9+GIaffPLJhQsXCoXCXr168Xi8vXv3QhDkk3GwtLT07NmzV69eraqq2rJlS0pKSv/+/Xfs2GGz2QAAe/fuDQoKmjVrljep/cPHjyIUCoVPPfXUK6+8YjAYJk6cSO0R/vjjjytXruzTpw8dWYaGhobmcWDmzJlqtVqlUlFRUJ555hk2mz116lSDwbBx48bExMTt27fn5eUlJyfv2bPnwIEDQUFBBw8ebG3V2ZrIyMiFCxeqVCoAgFAoPHbsWM+ePQEAy5Yti4+PP3r0KJWG6cqVK2w2e/78+dnZ2Xv27MEwLDk5+ZdffpHJZC1bs1gsKpUqMTExMTFRpVJRCe6rqqocDseyZcssFovFYmkrIeDDwX8aJpPJNH369MOHD7cs7N+//759+5RK5cPqmx/oNEyPP3Q+oEcC/dgfAnQapkfLH5eGyb9DvUgkOnTo0O3bt2/evFlfXx8cHNy5c+fMzMwHeOG/MJgNBxBAucij7ggNDQ0NTcf4V4SvvfZay91OlUp1+fJl6njz5s0Po19/TjAnXrFfbSy1AgAkKYL4SaEIm47FQ0NDQ/NY418Rnjt3rmVAObPZ3NzczOVyQ0JCHlbH/nwQGHl7czUvjN3j3WRAkqrvGwo3VaYvjEGYAelCa72z5pjWUuNgy5hhA2TyDNEf3WEaGhoaGtCWIrxy5YpPSVFR0bRp015//fU/vkt/VipzNGwpI35iKIAAAFD8pNDyvfUV++qTpkd0KNt006T6ThM1WhE/KdSmcVUdbjCWWeMmhUJwoBucuJOw1jlgBsQP50AIvS1KQ0NDEyj+FWFrUlNT161b98QTT4wfP/7B5vv4A2nWO/a35xxzT7Ce/gcS3aZKM5bb9MWWzNcSQAsdFDcp9NaaO425RkV3cTst64ssld9rOi2M4YawAABMEUMYG1v835ryvfWJU8NBR0oNdxM1P2q1V43cEBaBkS6jJ3yIPLS/LHAlCgAAJMCcOMpGOrwcDQ0NTWs8Ho9er5dKpYF7QVD+jhKJb7ich0+gihAAkJSUZLFYSktLu3bt+sd16EEi4DP+MfiBWI26Dhwlrfa2zpI4eSdbHTfBd0cQRqHEaeGFm6pECTyW2P/LYde6yvfWp86JorQgBcKEU2dHFm6qqjqqjR4T3E7HnHp30ZfV/AhO1ooEBh8FADgaXXey1YYiS/KMSJTXscGOtdZRd6rJUGyFEIgkSVmaMHxoUMvOBALuJAAA9IYoDc3DZNCgQfn5+QAABoORnp6+Zs2aTp06PZCWL1y44M01IRKJpkyZ8uGHHzY3NycnJ5eVlcnlcurU3Llzo6KiFi9ePHv27GPHjsnl8sbGxuHDh2dnZ7ds7dtvv12/fn1xcfGIESMoz/1bt26NGDECgiAMw6RS6fbt2/v06fNAen5/3IMipLwpHq37xL3BYqKpCQ9EEbr57U2C1Rd0bBlTmubHeJ0Xyg7tL6vYX582N7r1ZAt3ESXba6LHBgsifXOjwAw4ZXbUrbV3OApmcHf/IyZ7g+v2lqrwIXJlv9+8djgKVvr8mKofGm6tV6X/M5olaXN0RmBk1eGG5lumiGGK+MlhKAfxWLHGa8aCjZXB3SVRoxUdLrE69W71WV3zLRPuohQhIu8iFGWxQcBm/CRO2jROzI4jbIQXwoID20+loaEBAJjN5rVr106fPt1ms73xxhszZ8705jn6nXg8HhRFGxsbAQCUAktLSxs2bJjBYGjpcWez2ZxO58cff6zRaOrr63k8ntvtpqJ7t0Qmky1evPjcuXOUYyIAICoqKi8vT6lUkiT5wQcfzJ49+9HGLAvIahTDsIqKivPnzw8fPjxAexmXy1VQUEAQRI8ePXxOmUym48ePoyg6YsQIH1+QM2fOhISEJCcn3+Nd/OGQBEli/v09PVas7mRz55f8h6MFAIQPleevM2su6pX9pHc3Csr31gtjuG3pOQYPSZsTVbChkilgSJL5PmetdY6ir6pjximDMluZ1UAg+okQpoiRv16VOjeKp/QTG9bZ7C7eXsNRsDKXJaCcXyeODD4aNkiu6CauOKC+tVaV/HwEW8b02zfCTdQcb2q4olf2lnZ+KZYtZ1Jtaq8ayjZrQnq6IkcoEFZ7Ws2mdqrP63T5ZpaYwRCgmAN3NrnFyfywATJBdMdr724zpis0W6sdLpMHRiFOMEuSxBcn8ANf2iVx0m3BYBRCuci9LSPT0Dxm8Hi8MWPG7N27FwCwbNmy3r17jx8/HgBw9uzZb775ZvXq1fPmzbt06RJBEPHx8adOnbqn6UFKSkqnTp3q6+vbqlBeXt6jRw/qY85kMgcPHuxTgSopLi72KkKxWCwWiwEAVBia9evX39sNP2gCshpFUTQ8PHzVqlUvvfRSII3u2LFj3rx5PB4vNjb22rVrLU/V1tb27t27Z8+eTqdz2bJlly9f9sYg2LVr18yZM+fMmUNl1XqscOrc+iv6iAw/p6qPahVZIo6izbVECIaSnou4tU7FC2cLW3ziq39qdJk8ic+2qUEBABwFK2VWZNG2moRnwlrOOPVFlvK99T6FPoT2lzEFaOHGqvhJobLOwpanGnONlYcbIkcplH2krQUZfDRlVqTmgu7WWlX0mODgHhIf7aIrNFfmNAhjuJmvJzAFv71CbDkz6h/BwkxW82nbjY/LY54MkXcWtdZM9gZXzTGtucoe2l+Wufy3FjAH3nTDVPpNHUfBjBoVzG81S6YwllvV53TmSrs0VSCK47EkDMJD2tTOqqNazKoO6S0J6SP1qvbW2DTOpusmQ6nF3uBiClDCQxAYyY/gSNME8i6itlawKUicNFfajRU2h9aJOQgIgVhihjCGK0nmU+vS7WOtcxiKLJZah9uMAQiwxQxBDFeWLmxrtHHXpQnSXGm3VNldBg9JAqYQ5UdwxPG8QOfQJLA3uhyNLo8VgxkwW8bkh7Hvdf7tseG4E0e5SDuP929IhdVIgocRFSWUzeehvu8nFWLNarXu2rWLypGnUqm88b+MRmNZWdnGjRtJkqyoqEBRNDc3N0AtSIVYI0mypKSkurp6ypQpbdV84okn5syZY7fbBw0aNHjwYO/CafuQJPnll182NTV99913q1evDkTkjyNQq9F7YtSoUVqt9siRI2vWrPE59fnnnw8dOnTHjh0AgLFjx27cuHHlypUAgKampo8//ridZ/1owV2EXeMiCdJn6mBW2Qwl1szXOwg7x5YzE6eFF/+3JunZcHEin8TJ6qNafZGl04sxMNrBSymI5qbNiSreXqMvEiiyRAQOGnMNpju21BeiBFEdJJuWZ4jYMmbpN3XaXENILylThDq0Ls0lPeEh0+dH80LbyyKi7CcTxfHK99U3XNYr+8kEURxAAkuNo+GyHnPg8c+EiRP8R3ZAeUjC1DBzpV31nabudHNoPxmlJ3AnYbpj0141WKrsYYPlic+Gw4y7PsQoB1H2lYb0kmivGoq313BDWCF9pJIkPlXNZfToCszaXwwkSYYOkCfPiGgpLk0TRAwPstY7Ned11z4qC+oiCu4h4UdwvGrYZfTo8s3aXANmxxVZ4riJoYJIDvVrYk7cUmnXFZhvflohiOQossTSNGHL/U4CI03l1uZ8s67QzJGzxIk8eRcRykVInHTq3Poii+o7jSCKo+gmlqYLW3vLuE2exusm7VUDSZCyTsLgHhKWiEGSwGVwmyps+etUbDkzuJckqIvIr2ayVNsbc41Nt0wcGVMYy+Mq2RAMXEaP+mxz6Te10lRhcE+JON7/b0ESpKnC1nTTpL9tQVgwT8lmCFDCQzgaXXatSxDFlWeI5F2EbSo2EljrHfoii6ncZq1zQDCEchGPDYMgSBDFESfypWkCTlB728kuo8dQYjXfsVnrHC6DB3cTCJtSwxxxAk+c1MEAgnATllqHTe10NrsJD4G7CISNMEUoJ4jFC2VzFawOFgBI4DS4nc1ul8mDWXGSJCEEYvBQloTBCWIxhR2PXdwmj1PvcZs9mB0HAFiq7CThW2fcxRwP0ar0D2Bj5rBhwZE+hU1NTSqVigra6U1D6AOLxVKpVBcvXuzXr5/PEh2O406nEwCAIIhPWiEcx1UqFUmSarWaz+fb7XYWy/9vPW3atJCQkJ07d65YsaKqqmrp0qVUYNIOUalUer3eYrFQfXiE+H8VJk+e/M4776SmprYsLCoqevXVV1tGLm+L4OA27TsOHz78+eefU8eTJk364osvKEW4YMGCN99888KFC49PzmIfnEZPc54pKPM3+0/MgZftro+bGJDXvCSZnzw9omxPHcKEPTZcGMPt9FIsIwBjFgAAP5LT9bX4+jPNlYe1EAykqYK4iaHtLzz+JhvB6fpafONVg/qCDrPhLAkjtL9M3sXPRK01XCW7y6txukJz4zVjzfFGCALcEHboALm8s7BDcWEMN+Nfcbrb5sarRtV3GsyBw0xYEMkJ6ipKeja8nbkIhEAhvaXBPSRNN0zqc7rSr2sZAhR3ExAESZL5MeNDxPFtrn/yw9gJU8KizMHaK4bS3XUeC8YLZUMwcDS7cTchSxPGjPMjjrIRSYpAkiKIfUqpKzA33TBVfKvmBLGo7VW3GbM3OHmhbFlnYdSoeKbId0iu7CcjPISuwNJ43XjnW40ghiuI5FAfWafOY1bZ7I0ueWdhwpQw4d1LvoIojjxDFDtBaSi2NlzWV+Y0iJP44gQeR8GCEMht8liq7LrbFgiGFN3EXRfHt97uxWx4001j5SEN7iCEqWw8HeKGsGEGhNlxm9ppLLPqCswsMSMoUxwxPIgtvWveibsJY4m16aap6lCDMJYrSRUIIjlsCRPAALPhVrXTVG7VF1lgBixNE4QPDRJEcbz60mPBzFV2Q6m1cGMVzIClqXxhHI8XymYKGRAEXCaPXeMyV9oNpRaX0SNJEogTeGGD5WwZE2HBmBN3Nrst1Q5dgfnOQQ1HwRIn8gRRXG4wiwrGhNlwe6PLWuMw3bFZ6xxcJZsfxuYEsWAmjDBh3Im7TB5dvrn6R63HivHDOTwlmxPEYopRagiCOwmnwe1odNvUDnuDC+UiHDmLKUYZPBSCIQIjbPVOl8Fj17pInOSGsDgKFlvGZApR6j8UZsfdZsypczsaXfZGF8KA2XImQ4AyeCgAwFrvJHHfyV/RyJltvcwPgcmTJ1NpmJqbm5VKpdfCpSXz58+3WCyvvvpqdXX17NmzP/30U282+VOnTlHiaWlpJ0+ebCnF4/G8+uytt95avHjxrl27wN3q1uVyUTaiQ4YMofIunTlzZsSIEePHj+/Vq1f7PYcgiGq/oKAgKyvrqaee8olQ2hqSIIu+quawuKGjxQ82+0ObS6NGo9Gn0Gg0+jyp+0CtVoeFhVHH4eHh1LrzgQMHnE7n008/TSW4aAe3233s2LGGhoaWhZMnT/b7BHEcx3H8wcQaJUFQhlD1fQM7hMkNZgHKzmVbrbSTQJTMxXE8kDb4Meyuy+McWjfChqmPWoCCAACICcJHyMNHeNccyMBlAQSCeoqCev62lYgTAcsCIE7liVPveunaF6ce+6+yKTxxiu8LSwbWeVmmQJYpIHHSbcZgBuSdOnTYeYQHhQ6Rhg6ReqyYQ+smSZIlYbClTEr/tScOA2kXgbSLgMRJW73LbfYAEjAEKFfJ8g47/PccBtIufGkXPubAzXfstjqnpdYBAGCK0fARckEMl5r3t3XXomSuKJnrsWKGIqu50t543UjiJFOIcsPYidPDeaGsti4NsYGit1jRW2zXuDTXmmuONzqb3YSHRNgwJ5gljOOmzo/iBDH9iyNAnMYTp/FwF2EotppKbZqLOrcRAwCgHIQTwhTGcJNfiKDedp8WYC5EvRUx44Ntaqex1Kq5pHdoXR4LRi3bchRMfiQn5qkQfgS7xSIKieM4xAAcJZOjZCp6iUicNFc6zCp7/blmV7MHc+DU1VkyhiCSEzpYJojhtBOPAnPgtjqnTeO0ahzuEg/hIQEACAtmSRgcJVOeKeSEMFF2m2NNzIbbtS5Ho8tlwBxNLsrgC+XATCFDEMMJ7iVmK5g+c+Vguxg+8ZhuJ4vFYgaDodFo+Hy+1WqlCuvq6gAALBZr5cqVK1euLC8vHzp06OjRo4cPH05VGD58uM/n1C9BQUEajUYqlQqFwvLy8vDwcKq8tLSU2oz0MmjQoODgYOq6ARIVFYVhmNVq7VARQhCkHCDlsDkw9x4+njAMd6gF7sFqtLq6OsDF37YgSRLDMAT59d1CEATDMJ1O98Ybb5w6dSqQFgiCqK6u9rZAMWbMGKFQ2LqyyegquG75PR32EoYTTCkSkSK7vbE6uK8YZkJNv5iE8dzQERKPx3NPTTHkMADgXqX+RHg8ngd7dzAfAEDeT5sswIn8dRblwe5NnKVEWMpfXzMC4IQnsP91KBAksQVJdy8xkRgeyMVZQNKVJ+nqO24I5MYZcljSl+M36HbH4jAWlNZTAAAgAElEQVQQpXFEaf6X2TsUZyoQhUKk6O8/EBKGY6DdJ8eNYnCjRCHAv3gHTx4F3GgmN7rNHVYSEB5P24uWTMCJYHAi2twVbi1+D6PPh8Xt27dPnDhhsVj27dunUCh69OhRXl6+efPmkSNHNjU1bdq0SSqVZmdny+XylJQUq9Xq8Xio5A8d4na7T5w4QZKkSqX6+OOP58+fDwCYN2/ea6+9tnbtWqlUunfv3ubm5ieffPKtt95SKpW9evVis9n79++3WCw+vhBVVVW5ubkFBQX19fUHDhyIjY2tr693OBzp6el6vf6zzz7r0aNHVFRUx32CACeSweUy7XZ74B8EJpN5b4owOzt706ZNAACDwbBo0SKR6Le3026337hx44knngjw2n6BICgkJIQyyQUANDY2KpXK7du3Iwjy/vvvAwAuXbqE4/i7775LJTtuDZvNnjlzZoDZJ+rdlqlNzR3XC4D1bFyGgn49g0SRAu0Vg8dKxE8KEyf6WnLSAAA8Ho/PZgPNQ4B+7A+BR5gwzy/Dhw9XqVRbtmxhMpmpqalr1qwRCASzZ89WqVTTp09PSEhYvXr1hQsXEAT55JNP6uvrZTLZ2rVrMzL8Wf3djUKhGDFiBJWPUCaTff755xMnTgQA/Oc//1m3bt0777xjMpnS09MvXbokFAoHDhy4c+fOr7/+Gsfx5OTkM2fOhIaGtmytqqrqwIEDAIDo6OgDBw4MGzYsOTl5586dq1atEggEffv23bp1a4C3zGaz2Ww2QRAP9m0PdEYYFBS0dOnSRYsW3feVjEajQCAYOHDg8ePHhw0bBgA4fvz4oEGDhg4d6h3JVlRUYBiWlpZ231dpSSclt/rpzg9kafR8/hmGAAUA8JTs2PF/Hk9KGhqavy4ff/xx60Imk/l///d/3j+pVVCfBcwOSUtL279/f+tyFEUXL168ePHiloVDhw4dOnRoO60NGjRo0KBBPoUDBgy4py79odylCCdOnEip/REjRnz66aedO3e+v0aLi4vXrFlTXl5eXV39z3/+Mz09/Z///KdEIrl27dqSJUsGDBjA5/OplMrXrl2LjY31jlBu377tdrsDnPDR0NDQ0ND8fn5ThMeOHVu1atW8efOmTZvG5/NfeeUVvwJnzpzpsFGhUJiVlZWVlUW5Q0RERKAounHjxqioKLlcfunSpb1797LZ7Nzc3NjY2JaCzzzzzGO4Ck9DQ0ND8xfmN0WIIAiHw0FRFADAZrM5nA581NohLCxs3rx5PoXUXisAIC0tjdoRbM2jDTdHQ0NDQ/M35DdFOHz4cK9N7e7dux9Rf2hoaGhoaB4q/o1lSJI8cuTId999p1arfdYqA3Gop6GhoaGh+bPg31l18eLF48aNO3HixGMb54WGhobmb87YsWPj4uLi4uIyMzNnz55dU1PzoFr+5ZdfqJYTExMHDhxIxX9uamqKi4vT6/XeaosWLfrss88wDHv99dcjIiL4fH5kZGTrkNQej2fBggUSiSQ4ONgbrWbz5s1PPfVUUlLStm3bHlS37xs/M0Icxzdv3vzSSy+tWbPGx3WdhoaGhuYxob6+/sUXXxw/frzD4fjwww+nT59+9uzZB9Kyw+EwGo25ubkAgPLy8meffZZymVepVC3XCBsbG/l8/po1a37++edLly5FRETU1dW1NqjcsGFDbm6uSqUyGo39+vXLzMwcMWKEw+EYN26cWq02mUwPpM+/Bz8zwubmZofDMWvWLFoL0tDQ0DzOBAUFxcbGpqWlzZkzp6ioCACwevVqb6Cua9euvf322x6PZ/ny5T179uzRo8fMmTMDbBlBkNjY2NjY2JEjR/bu3bu4uLitmtevXx89enRERAQAIDw8/LnnnvOpsG3btiVLlkgkkpiYmNmzZ1NTwEWLFs2aNavDsGoPBz8zQrlcHhISUltbm5mZ+fA7RENDQ/MngiCwh5OGCYFR0CrePBVizWw2f/7557NmzQIAXL58WSgUUiGw6+vrz5w5I5fL8/Lyvv32WwRBLl++TJJkIGFGqBBrOI6XlJTcuHGjnYQSffv2feedd8Ri8aBBg7KysnxmUCRJlpeXp6enU3+mp6cfPXr0Xu/9j8aPIkQQZM2aNW+99Vbnzp1jYtrLlkdDQ0PzN2fDtnSCeBihg58YsSkuerhP4enTp1UqlcPhaGpqaisEis1mIwjC4/FERERQIVMCgcpHCACora1NT0+XSPznDwcAvPjii3w+f+fOne+99x6LxXrvvfdefPFF71m73e50Or3hw4RCYctkt48J/q1Gs7OztVptUlJSUlKST0p62mqUhoaGxsvLc0oe4dVfeuklKo9SdXV1QkKCX1fshQsXqlSqHj16KBSKf/7zn6+++qr31E8//TRt2jQAQHp6us/+olAo9EZZ+9e//vXKK69QkahbRrv2eDwIgkAQNHPmzJkzZ3o8nj179syePbt///5erczj8Tgcjtlspv40mUwBRv1+mLSZ4qRTp04DBw700YI0NDQ0NI8hkZGRTCbzzp07bDbbm+e2qakJACAUCrds2aLVatetW/fhhx+eP3/eKzVixAiNRqPRaNpPsZeUlFRaWiqTybhcbnV1tbe8srKyZdYIBoMxY8aM0NDQkpK7BgeJiYn5+fnUcUFBQVJS0u++3QeM/xmh33CrNDQ0NDSPFVSGeqPRuHv3bjabnZmZeevWrW+//XbmzJk6nW7Dhg1CofD06dPR0dExMTEZGRlcLteblRcAAEEQk+k/jxWVoR7H8Tt37qxbt2706NEQBE2ZMuWtt97atm2bXC7fs2dPRUXFmDFj1q1bFxsb26dPHw6Hs3fv3qampm7durVs6oUXXvj000+HDx+u1+u3bt1KBWypqqrS6XQmk6muru769esxMTFSqfQPfVbt4F8RjhgxoqWziBeJRBIdHT1x4sRRo0b9wR2joaGhoWmPlJSU3bt3UyowKSnp7NmzMpls/vz5ubm5lBfgggULcnNzq6qqFi1apNPpeDzeyy+/3Ldv3w5bFggEMTExkydPBgAoFIrZs2e//PLLAIA1a9a8+eabQ4YMsVgs6enpx44dCw4ODgkJWb169bx58wiCSEpKysnJ8QkivXDhwqqqqq5duzKZzBUrVlCGPNu3bz9y5AgA4OzZs2fPnv3ggw8eoVqBSNKPvdPcuXOzs7Ptdnv37t2DgoLUavW1a9eUSmVGRkZBQUF1dfWbb7753nvvPfzuTpo0acqUKQGmp7DZbFwu98GkYVq5ljlyQM/+XX9/U+1BkoTeBPE4EJvVceXW0kYzSZKwxH+O0w4gCNLhgpgMwLiHXM1+sVgsfjPE0vyh0I/9IbBz587jx4/v3LnzUXfkbwqPx2tsbORyuXa7ncfzTWH9e/D/1YuOjk5ISMjJyVEqf829V15ePnr06ClTpnz33Xevv/76f/7zn/nz5/tkX6ShIF1u4HBCYuE9SXku5DoPHoMAIB1OND2J9cwTsDywhQKCcJ+85P75HOnyABgCADAH9mKOHABxAkpciZXccR87ixeXAwYKPBgcrmQO7Mno0w2gHXuRknaH58I17GYhrtYCnIDlEiQ1AXRNBYF9kYlmPXbjNq6qIS1WwGQgYSFIehKaFAsCGLuQDidecgevrCUtVgBBkEyCxkcjCdEAbnPb+y5xq52obyDMFgAALBTAEUqIG3CUeQwjGnWk0wVIEpaKoXsZeRANTXidhtSbAAQgqRiJDIODAl0OIm0OvKae1BkASUIiARymhGXiwC9Nmq1EQxPpcAImA5aIYIUswGf1v64TpMlCYhjEZEJCfiC/kW8HHE5AkACFIdb9jPNoaP44/MwI3W63XC4/evRov379Wpbv3Lnzo48+Ki4udrlcYrH4m2++CdwS90Hx+M8I3T9fcOX8BGAYCQ9hz5ka0KeKJJ17DmHFFZw5U5CoMNLtcf983n38HGfuVDS9g11lwmBybPga4rBYk8YgUWEAAELT6PrhFF5cwZ71dPvipMni2HmQqNWwxg5FszpBHDbAcay4wn38PKFtYj8zFs1Mb1PW5XYfO+M+cQHtnMLomYFEhQMEJrTN2K1i17kraHQ4a9xwJDayLXGssMx97Axeo2ZkpSPx0ZBEBJwuvFaN3bxNWu2Mwb2ZA3tCfH8jPpLECks9565it8uQuCgkPgoSCQFBEE06vFRF6IyM7p0ZfbshMRH+H1edxpObj90sJJoNcIQSFgkBAITBSNRr4WA52ikZzeqERIb6+cqTJF5Zi928jRWV43UaWCqGuBwAQUSzHhAkmhSLdklBM1L995kg8PJKz9Vb2M3bAIbg6HBYKgGAJJoNeFUdhCJo1zRG9wwkLtKvdiHUWs+1fOzmbULbDEeGwnIpgGHSaMZr6iEmE81IYXTrgiREW6zW1jNC0u3BCkqwW8V4URnpcsNKBcThAI+H0BlJkwVJiELTk9CMNDhY7vdxkVYbVlSOF1dgFdVEQxPE50IMBul2kw4nEhaCxEehyfFIclxbYwjSasNK7uClKlxVQ9Q3ABgGMAQ8GEBROCwYiY1Ck+OQhBiI14a4xYrfqcGr6wh1I6E3ArebdLkhDhsSCmCZBA5VwOFKJFwJ8bn+hEmiWU+oGwltM9GsJ81W0uEAGA4YKMTlQhIhLJfAQXI4WA7LxH4GBG4P0aQjGnVEk57Q6UmLHWAYAGB37qUzTuPOPXv8dpjmj4bH5Wqu5XE5HKeIz5e26c5xH/hRhGq1OiwsrKCgwOsCSXH48OGnn36askdKTExcuXLljBkzHmBXAuExV4Sei9dcR05yl8yFZRL3sbPukxe5/34RlnagC13f/4zdKuK+9s+Wczi8osr+/3awp45j9Gzzonh1vX3tNtbw/sxRA32+oVhxhXPrXrR7BnviaL9zO0/uLeeuHObAXqyxQwHquzCAFVc4d+XAEhF7ylg47G7LYYLwXLjmyvkJSY5jTRjVetpqMRhYeSXuH07BSgVzeD80Pcn7oSGdLiz3lvvEBZIgWaMGMnpmtL40Xl3vPnEBu1GIdkpGu3VC46IgsZC0O4k6NZZf4rlyExIJGf17MHpmtJ7yEk16zy83PBeuARhCu6YhMRFU94hmPa6qwfJLgMuNdu/CyOqExEbc9fkjCPxOtSevCLtRSDpdaEoCEhkKifiAIAmThaiqw0ruQCIBIyMVTU9C4iJbdps0mrHbZditYqywFFYqkMRYJDwEEgmAByN0BlxVg90ugyUi6rpwiK/hOFGn8Vwv8OTmk3YHmpaIxEbCUhGAYdJgxmvqscJS4MHQrE6MrE6t57tEncZz8zZ2vYAwmMmkGHZKPCyTAhQBDheubsDLVPidGiQuEs1IQ9MSfS5NTamx/GLPrWKIgSKJsUiEEhKLAARIs5XQNOIVVUSTHkmKRVMSkIRoJFzpfZFIl5uoVeNllVhxBX6nGpZL4JhIJCQIcNgAANJmJzSNeGUtaTAhibFociwSFw2Hh3h/L9Jqx2vVeEUVXqbCK6ohqRiJUMIKOWCzAACk1UY26fEaNWmxInFRSHQ4HB4CSyWAxYSYDNLpIk0WollP1GvxOjVRrwUwBMulkJAPsViAJEmrjTBZiGY9LBLCIUFwSBAcJIUEfIjHBSgCPB7S5iAMJrLZQGibiMZmwmSBhQJIwAMQDABJuj2kxUY6nXCQDA6SwQoZLJdAfB61ZbDryOGT5UU76eQ8jwgeh1O5+F0ekwmeG8+Li36ALbc5I3z++efXr1/vLSQIYvz48RUVFUVFRSRJisXivXv3jh49+gF2JRAeoSLkDOjZbUSvduqQZot15We8ZfO9msN97Iznl5u8f78EmIy2pLAbhc7d3/PeehUS8n1OEfUN9s++ZD45gjmwpx/BwjLHl7s5z09qa95G2uyO/x4gtM2cGRORhOjfmtUZXHsP4/UNnDlT2pm0ARx3n77sOnwSiYlgdOsEhwSRdideUeW5dB0OlrMmjm5L9tfNKgz3XLnpPn2Z0DTCEaGwgEfojYRai6TEMwf3RtOT2l9bI20Oz9U8LK8Ir64jTRaIzYLDQ9CUBEaPLnC4sh3BX/teXY/dKiJqNUSzHgAAySRIVBjaKQmJCu9wTY9obMZLVXithrTaAARBQgESGYokxnY8ucdwrKIKr6giNI2k2QoYKCwRITERSEpCIAsDRGMzdrucqKknDCaAE5BYiEQokaQ4/zNUH9lmvfV6AbOhidAZAY4DFhNWKtD4aCQ5LpAVcqK+ASuvJNRa0mgBAEB8HhwShMRGIDERoMM4iziOV9fjNfWEthk4XQAAiMeFFXI4OhwJD+l49ZUg8PoGok5DNOmByw0AADwuLJciEUo4JCigRXKzldAZSIuVdLkBBEE8LiwSwEGyQHe7cZwwWkirDRAEgCCIgUICHiT0v7ZP7xE+Wh7qHiGTyXzjjTeWL1+el5c3duxYmUym0WgOHDhQUFCwZ88eAMDJkyetVquPgexfHrbB0H4F16ETjD5ZLedPzFGD8Ko6595D7Bn+15CJJp1jRzZ30ezWWhAAAIeFcJcvsH/6JakzsMaP+O2bQpLuExddP5zkvjwTiY9uqz8Qj8t96XnPlTzHlt2QRIimJgAEwStr8fJK5rD+nHnTOvhSIAhzWD/GgJ5Y7i2ssJQ4ewVis5DIUM7LM6k12A5AEUbfboy+3UizFa9vIG12WCyEI0Ihln9b7Vad5zAH92YO7h1IZT99jwoLqJP+gBVyWCFvc+TSDiiCJsehyXH3fV2mwv8SZceycinUJ5N9v8YycFgIM+x+PYYRBImNbG9E1cG1YSQiFIm4f2sDSMhH/P33CRQEgWVicC+7rTR/Pfx/CpctWyaTyT755JNly5YBAGAY7ty5c05Ozrhx4wAA/fr10+l0YvHf69VhmsztnCXNVs8vN/kfve5Tzp75tO3tzz3X8hndWkU/wjDHFztZY4e2taEFAIAVct6bLzs27bK9v545ZjASriTUWtfxc8CD8d54ORA7C0bPDEb3zlhhGa6qBm4Po2cGZ+7UAO1oAAAQk0HpswDr+2lByEeF8fctTkND0xYLFiyoqKgAAPB4vMzMzJdffrmdQGj3xK1bt5YuXQoAgCBIqVROnjx5zJgxer3+mWee+fbbb0WiXw3EPvroI6VSOXPmzC+++GLPnj2NjY0hISGjR49esWJFy9ZIkly1atXu3btZLNa//vWvZ599VqvV+sTmfumll5588skH0vn7oM05wZw5c+bMmeN0OhsaGkJDQ1s6XbLZbDY70C/pXwbE1V5qRveZy4zunVtP7CA2i7Nwun31l0hoMBwa3PKUY0c2rJAxh/UD7QIJ+Nyl8zy5+Z7zV10NzbBCxuzfg9E78x5M/mAY7ZyMdk4OtD4NDc2fgStXrowYMWLYsGFut/vzzz/Pzc09fPjwA2lZr9fn5uZ+++23AIDKysopU6Z8//33qampPklqCwsL7Xb7V199tXr16h07dsTGxlZVVV24cMGnte3bt2/btu27777T6XRPPfVUXFxcRkYGNcsCADQ2Nj733HMtd+IePm1mqN+yZcuePXtUKpXVam15yq+j/d8BGMPaPEcQnjO/cBfP8XsSiQpjT37CvmYr9/X5v5qWkKTz26NEXQN3+YKArg1BjB5dGD26tF+r3uEhARnOCWjt0QtOkkc15mMNpiYXJkCRvnLepHCJkBFQBi6zB/+6Wvd9vanQ5MBJMpbPGqYQTgxidQ1gic6JEwfrjd/VGXP1NjOGs2A4VcgepRRNjZR0eAt6N5ZdZzyqMd0w2NUODxOG4visPnL+hDDx0GAB0u7GkgMnTmgtpxsthSZHg9PDhKEgFpop4Q5RCPsF8Vlwe7LNLux0o+WyzlZudepcGAOGIrjMrmLuwCBBpoTbrigoMDkOqY1nGq0FJkej0wNDUDiH0VXCHRYsHBcqiuC2d8t1DvdhtemE1pxncNQ53CQASjajs5gzWCEYFyqO57fnjeAmyPNN1lON5qt6e6XNpXdjfBSJ4jIzxNxBCv6wYKGo3d/ajhMXm62/6Gy3TQ6N02PDCAkTjeYxu4g5/eT8zqIO7tqOE7/obFf1tmKzU+PwkACwESiCw+ws5vSS8ToU9xBkoclRYnGqHR69GyMBEDGQEDYjmsdME3LkrA52ATGSrLG7a+1ujcNjxggAAAOCZCwklM2M4TNlzA7E3QRZY3erHZ5Gl8fiISAI3NDbcH+O14+QtLS0YcOGAQDYbPYzzzwDANi1a1diYmL37t0BAEVFRefPn583b96mTZtOnTpFEERaWlqALuBMJpNqGQBw6NChK1eupKam+q15+vTpKVOmUF4GoaGhreOdbty4ccWKFZT15ezZszdv3vzf//7X2/hnn33Wp0+f5ORHOVL3/yq8//7777zzzrhx48RicXh4eEpKysmTJ3U63dy5cx9y/x4fIAxv6xR2qxiSSdox4mD07Ua63bYP1rNGD4LkUs+ZX0ink7tkrs+GmcmDF5gcEVxmVLufRR88BLmuvHFteSNGkAAAGAJzY4MWJykEATgCHm8wv3qzVsxEno6QDAoSmDz4DxrT67fqX4wPei05hI+2Oel04sSa8sbPSrXDg4WvJCgyJVwGDJWanYfUxlFX6vrIjW+kKLtJ/dm1A2Bw4+srGjeUN3aVcKdGSj/uEiZhoE6CuGGwH6o3ZvxU3D+I/2J80BCF0OcrSQJwvsm6+U7TUY1plFI0OUKyOiM8nMN0E2SZxXm6yfL2bfWMq+5pkdKpkZJuUl5LaUr/7avVH1GbsiTcocHCpUnBIWyGhyTrHe4bBvubhfXFZucopWiMUjRIwfcqY4wkC02On7WWI2pjvtHRP4jfT84fpJDLmShGgkqb64bBPuNqpcGNjw0VjVaK+sh4wexfdxhdBJmrt/2oMWXXGV0EMT5MvChRkSHmhnIYOEnW2t1X9fZjGtPbheokIfupMPGIYGGaiE0pcpwkC03OnxpM39Ubyy2uMaGiieGSVZ3DI7lMGIA6h/uGwX5CaxlwqjSIjU4Ik/QXov14fOb/Hlmt3X2uyfqDxnSswZQkYI8IFi5OVMQL2HImasFwldV13WDfWqmbdbW6u5Q7SinqJ+enCdnUAMjgxgtNjos66wmt+arOniHh9JHxx4WJwzgMPoro3ZjK6rphsG8ob2pyYQMV/P5yQZaEGy9gSZmomyC0TqzY7MzV2842WW4Y7F3E3F4y3mCFIJTNgCHgxMlKmytXb19b1tjowvrKeX3k/E4iTgyPxUYgAECjE7tjdd002n/R2fKM9lgeK0XIDucwpSwEBpDejReZnSqr67bZwUHgNCEnUcCK4bFkLJSHwB6S1LuxOrvnjtVVYnFWWF0hbDSCy1SyGWIGQv0iBjde53BX2lwAgHg+O5bHDOMwZSwUgQAAwOIhGpyeartbZXWpnZ5QNiOcywhiMYQMmCRBoc4WRTxeipAKsabX6zds2EBZL+bk5IwcOZJShOXl5dSC5Ndff/3JJ5/AMHzlypUA0zBRIdYwDCsqKsrNzX3jjTfaqpmenr5ly5ZOnToNHjw4ODi4dYXbt297k/plZWWtXr265dlt27ZRy7AdgpFkp2NFEJuzOzO050NwqN+wYcOKFSs+/PDDWbNmhYWFffDBBy6Xa9q0aY2NjQ/w2n8uuNo27919/qpfw86WMAf3QWKj3KcukqUqtGsac2DPlvZ4BAn+U6L5rFSbJGBX2tydRJwvsiIT2h3pU9Q53BMuquQs9Ei/+M5iDgCg2OxcVdKQ+mPR5m6R/1C26ettw4jFebU/ay3/LzOiZbU5sfJqu/vNAnXyj4UfdAqbESVrrY0O1hlev1WfIeFcHprccjqiCOL3D+K/FiXY3+yacOlOsoD9YnzQyBAhG/lVoeYZ7dsqdbur9U+Gic8NSUoStFxgR8YoRWOUotUZEbtq9K/n1+td1ePCxN2lXCkTbXZhNwz2I2oTB4Hnxsk3ZEWKW8xjGDDUVcLtKuEuTgyusLq+rtI9f7XK4Ma7SrgRHAZGgjKLM9/kyJRwnw6XfJ4REXT3TCJLwh0XKn4nLbTRhR2qN35Xb1iSV0sAIGEgOAkanJ5oHnNgkGB5csiQYKHPlHFAEP/5aBkAQGVzHVabvlI1z8mthgAQMRAPSTa7sDQRe3iwcGfP6O7Su/7fohAUw2PF8FjPREg8BHm60fK92vjMZVW13R3CZpCA1DqxaB5ziELwblroYIWAcfd1KdmJ4ZINmZGXdNbv642LbusqrtbJWSgDgnRujIPAfeX8kSHCzzPCvYqZQsJEIrnMQQrBkqRgO06c0lp+1ppfuVlTYnZiJCBJkoXAKUJ2bxlvUULw4L4CXuvx0P++dWqH50yT5WKzdX+tvtLm1rsxFgwHsdAkIbubhPtGirJfEJ+LtDmc0jo955qsV/S29eWNtXa3EycBADIWGstjZki476eHdpfy2hmNVdvdxWZnqcVZY3MXmBx2nEAhSMZEQzmMSRGSZAE7WchuZ4rf7MIqrK5Km0vj9DS7qGEk4KNwLxnv6QhJHJ8VxWX6PPadpYrjlb79iTxS4Hko2vG/PaJHhfiG6Vi/fv3u3btdLpfBYNi+fbtfwZqamoiIiC5duggEAr/pKfxiNpupEGsajaZPnz6pqal2u91vzaVLl3o8npUrV965c6dTp07vv/9+y90+u91ut9u924pisZgKBU5x+fLlmpqaAB0BEAg61D+Ow+VKyLbX5+4PshXU4mdeXh5JkrNnz168eDFVXlFRAcOwVqttLfLQmDhx4oEDBwKsbLVaCYJ4INc998Ya08wlhMnS+hRhMJlffJNwuu67cYIkZ16p7HeypM7uJknSQxDryrSKnLwjamP7goVGe8Th/P8raWh96kyjOeZIwbzcKrMHa332qs6afLTw+SuVfs9S/NJs7XeyJOXHwg3ljRUWpwsnqmyur1RNmceLMo8XndSa2xI0m80kSbpw4uuq5sGnS/nZNzodu511vEiekxf/Q8GbBfXUbaF1f1QAACAASURBVHZIgdH+fyUNz/6i+se58um/VH5S0nDLYA9EkKLK5jqiNm6+0/TlnaZTWrPR3ead+kXjcJeaHXesThuG35MgSZJap+eO1Vltc7nwe379HBiusjpVVqfjHq9rNpup3+iO1al33dvNtry68977/Pfh66+/fu6553wKNQ63+qH8a/3TdO3a9euvv6aOr1+/zmaz6+vrJ02a9OWXX1KFOTk5AwYM0Gg0I0aM4PP5o0aNys7ObtnCuXPnunbt2rVr12eeeaZl+alTp4KCgqhjHMdnzJjx/PPPa7VaAIBGo/FWmzx58sqVK71/qtXqd999l8FglJWVeQsJgmCxWAUFBdSf+/bty8jI8J6dM2fOCy+8EODz53K51FfdarUGKBIgfmaEVGxyKstwcHBwZWUlVR4SEkIQRG1trUKheMDa+E8CoTO0NtR2X8hldO/iXeR04sSqkoY8o2NKhGRKZEDRs1YVN5RYnCcHJVJjZxSCXk5Q9JDynrp4Z1XnsBnRMr9S1/T2sRcqPs8I93uVgUGCvBEpS27VpR0rei89dGqklBoa19rdH5c0ZNcZ13aNmBzRnoFZTxnv/JCk042WbZXNH5c0aJyeYBajt5z3XnroP5SiDhdWmDA0PUo2PUpmw4g7VpeHJEM5DCX7HrwS0kWcdFHAYc9aEXWPK8w+hLAZIffS25YoWKiio+2rtmAjcAzvPiOQMWHo99wydfXfI/735L7fkwdLZmYmiqIFBQVMJtNrz2IymQAAISEhP/30k8FgyMnJmT17dlRUVFZWlldq3759AABW23HvYBju27fvunXr5HI5i8VSq9Xe9Hx1dXVDhw711lQqlW+99dZXX3118+bNhIQEqhCCoOjo6NLSUmqPsLS01BuS22az7d+//8cff3ywj+I+8PPei0QihUJRVlYGAMjIyPjpp59UKhUAYNOmTRAERUS0aev/l4fQtXIlJAjP2SuMQb862pMATLqkKjA5pkRIPixuWJZf32GbF5ut68sbs/vE+awg9ZTxTg9OfKtQ/VmptrXUCa15zPnyLd2i2tG1QgbyZbeofb1j99bog7+/lflzceqx212PF7MRuHBUavta0MtghWBnz5jqJzq5J2XWju20v3fsmAC0YEt4KNxZzMmScO9JC9LQ0ASC3W43GAyNjY3r1q0jCKJz587Jyck///wzNW368ssvAQD5+fl2u10ikUybNi04ONhoNHrFeTxeQkJCQkJCZKSvJyhJkgaDwWAwFBcX79ixo2fPnjAM/+Mf//jkk08oRXvy5Mm8vLzhw4fv2bOnoKCAkjp16pRWq/WJSjZ9+vT169e73W6dTrd9+3YqkzAAYP/+/Uqlsnfv+3QXfoD4H7eOHz/+yJEjEyZMmDBhwrvvvpuQkCASiQwGw+zZs/+200ESgjwXcn3cAbFbxZBI4PXd3lbZrHdj54YkoRA0MkTU71RJAp81J7ZNL2k7Tsy8WrWpW2Qox4+SSBKwzw9JeuJCxS2jY03XcCkTBQB4CPKzMu3assZv+8T1D+rYj7i3jHdsQILBjatsLhYMJQvZ6IMItUNDQ/PIEQqFK1asWLFiBZfLTUlJOXLkiFKpXLBgwRNPPKFUKqVS6dNPP33jxo2ff/55+PDhcrncaDROnDhx8ODBHbbMYDBwHI+LiwMAKJXKoUOHvv/++wCAL774YuHChQqFgs1mC4XC3bt3x8TEHD16dMKECVqtlsvlstnsTZs2+diXLl68+ObNm8HBwSRJzp4927uDePDgwfnz5z+Q4F+/E/9pmFpiMBj27dunUqkyMzMnT54M31PE+gfNowqxdm7lOnlyTMSVa/xP/90ydr7tPxuYQ/syemQAANwEGX+0MLtPrNcsoszi7Heq9OzgpBShf7fLxXl1TS7Pzp4x7VzajhPL8+t3V+uHhwg5CHRCa+kk4mzKimzf4P4RQucDeiTQj/0h8CcKsWa1Wnk8Xsuvn8lkEggED+QDThCEy+XicO7auXC5XARB+BS2xOFwIAjSVh7gQHhIIdY2btxoNvuPnyKTyaqrq72xZv5ukBDplEmQuCjsWoE3zApWXEGaLN45YnadIVHAamkcmChgf9ApbMbVyktDkhmtrNcuNVv31erzR/p3zfHCReB1XSOWJ4ecbDS7cHJxYvDv2TmjoaH5O8Dn+y4Xee02fz8wDLdWeO3sMlK0oyMfOXcpwo8//ri6urp9gb+nIsQhmEBQ5pDeroPHflWEBOHad5g1YZQ3wstXquYF8b65BebGyg/VG98r0ryfflc0RStGzLxa9f8yIzv06qUI5TCmR/m3mqGhoaGh+T34foU5HM748eOff/55r80PDQDAyWCA2Eg0Tuk6eMxz8RqjbzfXdz9BAj6j+6/RXuoc7ltGx7hQ3/irEADbekRnHS/uJeON+Z+7HgnAC7lVAxWCp8L+XvFaaWhoaB5D7lKEly5dOnDgwNatW0eNGpWVlTV9+vTp06dLpYFm0P4LczwlbTSfDyCI/cIU+6db3OevkhYbb/kCb5qYA7WG8WFipj/vXQUL/bZP7LgLFV92jxoXKnbgxIs3ahqcnh09oh/qPdDQ0NDQ+OOujdPQ0NBXX301Pz//2rVrffv2fe+998LCwiZPnnz48GEcbzPA2N+BEsWvfjNIhJL/7r9Yowfz314ECX5bhT9YZ5wY3ub0rqeM932/+MV5danHbkcfKXDh5A/9E2ifLRoaGprHAf8bVFlZWVlZWf/5z3+ys7O3b98+fvz4iRMn7t+//yF37rHC7Pl1KACJhaj4rkBHTS7sttkxNNg3+lFLesl4paPTCkwOKRONfFwNPmloaP5EfPDBB7W1tQAADoeTkZExbdq032OT2ZLS0lJvRNDg4OAJEyZkZGSYzebXXnvt008/9donf/XVV0FBQU8++eSRI0eoNEyUr8Xzzz/fsrXKysoTJ07k5+enpqYuWHBXpoFTp07t27dv6dKlj3Yzrr1JCQRBCIKgKAoA6NDL4i/PhWZrW6eOqE3Dg4V+10VbgkBQhphLa0EaGpoHwsGDB6kcESkpKWvWrJkzx38CnPtArVbv3bt32LBhAwcOJEmyT58+ubm5drt9y5YtTqfTW+3UqVNUtqYXXnhh9OjR77///ujRo2/cuNG6n8ePHy8qKjp+/HjLcpPJtGjRom+++Uaj0Tyont8f/meE169f//rrr3ft2mWz2caOHZuTk0PFNf870+RqM8zrEY1xPG32QkND89Dp0aPH008/DQCIi4ubNm0aACAnJyc2NrZz584AgPLy8tzc3GnTph09evTEiRMkSaalpQWoL1ksFtUyAODGjRsnTpyYNWuW35pU5DYq0W6vXr2mTp3qU2HJkiUAgFWrVl25csWn/F//+tfrr/vmM3/43DUjVKvVa9eu7dy5c7du3S5evPjmm2/W1dXt379/7Nix1Lzw74y1jTRMboI8pbWMCnlgPjo0NDQ0AUKFWGtoaMjOzqZSL+3atevq1avU2aKios2bNx88eHDp0qVZWVm9evWigl8H0rI3xNqNGzfy8vK6devWVs3IyMgffvjh8uXLWDtJW1tx6tQplUo1c+bMwEX+OO5Sb3369NFqtU8++eTHH3+clJQEADCZTFTYVi/eeKl/K5gwZMEIv6fONVlShOyg+w2yTEND86fmyDYD4f/b8IDpMZwfEuUbi3HJkiUrVqzweDxcLret9PR5eXl9+vSZOnUqDMNU8t5A0Ol0VIg1q9U6YcKEQYMG6XQ6vzWXL1+u1WqHDx9OkuSQIUPefPPNHj16tN+4zWZ75ZVXcnJyHof4aqD10qjT6dy3bx8Vj9wvf8/NwuejZc/+Uql3Y9JW/u8/aExjQunpIA3N35SeI/kP56MokvkZbW/cuJGKYf3DDz+MHDmyoqKidZ0ZM2aMHTs2Ojp69OjRL7zwQkstde3atQ8//BAAEBMT45MvVy6XUwlo7Xb7lClTli5d+u9//xsAQLRQ+9SxUCjcunXrF198cePGja1btw4ePLikpKT99AzLly+fMWNGfHz8vTyAP5C7nuyyZcvaCrH2N+cfShEHgcssrl6t3sVD9abv+sY9kl7R0NA8coLCHou0KmPGjMEw7Nq1ayiKepcobTYbACA+Pr64uDg/P//gwYNDhw69evVqSkoKVSE6OvrFF18EALQTqJbL5Y4dO3bt2rWfffYZg8FoamrypqHXarX9+/enjlksVu/evXv16vXjjz9evny5fUV49uzZgoICb5yygQMHfvTRRytWrPhdj+B3cNdn3cewlcYLB4FHhghLLc5esrsivRaaHAQgqdTwNDQ0NI+KnJwcp9OZlJQUExNz5cqV+fPnYxi2d+9eAEB9fX1oaGjnzp07deqUnZ1dXV3tVYRyuXzYsGHtt2y1WnNyclJTU1EU7d+//5YtW9auXQtBUGFh4ZUrV9avX3/ixImMjAy5XA4AKC0t1el0He6g5efne4+DgoKys7MHDBjwu+7/9/FX3tnCSWBwgQe1BD1aKT5YZ3j+7jS5B+uNT4UFlNiPhoaG5oGzYMGCV1991ePxKJXKHTt2REdHz58/f8CAAd27d3c6nYMHD75169aGDRt2796dlJSkVqtjY2MDScMEAGhubqbCimEYNmTIkDVr1gAANm3aNGXKlPj4eJlMplKpPvvss/T09Ozs7Keffjo8PJzL5ZaVlb3xxhs+ljW7d+9+6aWXnE4nhmFSqXTmzJk+y7CPnL+yIiw2QaNP3YMVUztYPWD7IP4lXS1Gki3z+R2oNWzO8k1oSUNDQ/MQOHPmDBXzi8fjeV3pIyMjy8rKysvLIyIiOByO0+kUCARLliypr69XKBTe5PLt079/f8o0BobhlmkrEhISrl+/3tDQYDQaY2NjqYu+/fbbK1asqK6uxnE8KiqqdZaJSZMmtXTA88lTUV5e3jpXxkPmr6wI08Wk7jn0gVgljTqGyZhoPJ91utEy/H8RZPKMdhtG9JY/4p+Qhobm74lQ6D+aFZPJTEtLo44ZDAYAQCaTyWT3kL4GRVGJpM21rpCQEB+Fyvz/7J13YFRV1sDve9N7b8lMeu+FFnrvHQUEFgVEXJRvbQiuqItldV3XVbEhoi4sRQUEREA6oYQkQAIhvUzKZDKZ3vt79/tjMBuSScFFouv8/pq8effOfTcz99xz7ilkci+pYchkci8pb7jcgQ/CDqW7vAsekPN2Nxk7/tzWoH84SvCrcP4NESJEiBA/l5AgvAuWRwkOqc0Grx8AoPP49zabHosVDvSgQoQIESLEf0WPgrCpqWnTpk3z5s2bPn164Mru3buPHTt2vwb2a0REIS5W8F8tbwMA/LmsdVkkX0b9VXhOhwgRIkSIn03wM8LCwsLJkyeTyeSIiIj29vbARZVK9eqrr/6Gko5iHpuh8fw9OSNMMWKoawgA4tfSw4adqrpqclp92KXxif99zyFChAgRYmAJLggff/zxIUOGHDhw4Nq1a4FUqgCAGTNmbNiwob29vSOa8lcO5rYaq368J11Na76Kxr4JgFhAJhZPSr6gs48Ts5jEkGE5RIgQA8ZXX30VUFTIZHJmZub48ePvVc/Nzc179uwJvObz+TNnzpTJZA6H48MPP1y3bh2dTg+8dfjwYS6XO3r06NLS0r179xoMBolEMnbs2O6xifn5+Xv27KFSqatXr05JSQEA2O32zz//vLKyMhBQEUjqOVAEEYRGo7G0tPTSpUssFquzOhUZGQkAUKvVvxVBSOaEx89/755ohEUfrJT99JpLIswK5VQLESLEQPPBBx8kJCRkZ2fr9foVK1YsWLDgXsXn1dfXv/baay+99BKO4xcuXHj22WcLCwt5PN7GjRtXrlzZIQj37t0bExPj8/nmz5+/YcOG7OxspVK5devWLoLw3Llzc+fOffPNNw0Gw4gRI0pKSqKiombPnk2hUB599NGysrLBgwffuHEjOjr6ngz+ZxBEEHq9XgBA98COQFhJqAxFiBAhQvxKmDFjRiDX6MiRI1esWPHuu+8WFBRIpdKAUFGr1TU1NWPHjr158+a5c+cghCkpKZMmTepPz3Q6vSMF2uTJk7///vvly5cHvXPHjh2PPfZYIBNpUN55552NGzcGMpfV1tZ+8sknL7/88tmzZ5VKZVRU1IIFC44fP3727NkBFIRBjHtisVgsFgcSmXdWp3bv3s1kMgdWgQ0RIkSIEF3AcfzKlSuBYhHvvvvu6dOnA9eLi4tfeeWVU6dOzZw50263e73ejz766G4LJ2i12vr6+l6ypvF4vIKCgtbW1p5uuHTpUofZdty4cZcuXaLT6UlJSfn5+QCA1tbWxsbGrKysuxrVvSWIeoei6LPPPvvSSy/5/X65XI7j+M2bN/fu3fvOO++sX7++l7jIECFChPi9sfWo7/6UYZo6iBAt7aq6BFKsud1uNpvdk1d/fn7+ggULAhrb+vXr+/lxHSnWLBbLgw8+uGDBgg7HyS688MILy5YtUygU8fHxEydOfO655zrrdm6322w2BzKRAgBEIpFarUYQZN++fZMnT964caPJZPr73/+ek5PTz4H9EgS3c65fv95oNL7xxhs+nw8AkJmZiSDIqlWr/vKXv9zX0YUIESLEr5vcOPT+lKbjMYO4OwTKMJnN5t27d8+ePbuysrL7PXPnzp08eXJRUdGMGTOWLl0a8PYIUF5evm3bNgBAeHh4FxkZKMOEYZhSqVyxYsVrr7322GOPgTsr8QVeSySSkydPqtXqCxcufPXVV4MHD66srBSJRIF7SCQSgUAInLgBALxeL41Gc7lc8+fPX7du3SOPPFJVVbVkyZKMjIwBzLsdXBAiCPLWW2/93//939mzZ9VqNZ/PHz16dC8ZdEKECBHi98mgBMJADwFwudy1a9du2LChoKAARdGOkoFutxsAkJOT09zcfObMmf3792dkZNy4cSMqKipwA5vNTk9PBwD0lICNQCDExcX94Q9/2LJly8aNGwkEgtFoFIvFgXf1ev2wYcMCr8PCwhYtWvTAAw+Eh4efP3/+gQce6OhBIpGoVKqkpCQAQEtLS3h4eHFxsU6n27hxIwBAKpXOnTt37969vzpBuH79+i6FCYuKigAATCYzOjp6xowZA3iqGSJEiBAhulBcXOxwOBQKhVwuLy8vD1w8evQoAMDpdNLp9JkzZ86cOfPGjRvl5eUdglChUKxatar3nnEcz8/Pj4iIIJPJOTk5+/fvf/HFFwEAarW6oKDgjTfeKC0tTUlJCZya6XQ6m83WJbJg3rx5u3fvnjhxIoZhX3/99dKlSyUSic1ma2lpUSgUEMLy8vIJEybc6ym5C4ILwvz8/PLycofDwWKxRCJRW1uby+XicDgsFkutVj/77LPbt2/viC8MESJEiBADwssvv/z++++7XK7W1ta//e1vSUlJq1atGj16dGtrq06nC+SzXr9+/c2bNxMTEzUaDYIg/VS8TCZToJpSS0tLWFhYIKzw448/nj9//smTJwUCwaVLl/70pz8NGTJk3bp133zzTW5uLp1OP3/+/JIlS0aOHNm5qw0bNowePXrKlCkmk4lAIDz88MMMBmPt2rVDhgyZOHFiZWWlx+MJ1AceKJCgHkR79+7dtGnT9u3bx4wZAwCAEB4+fPiJJ57YvXt3cnLyo48+eubMmZaWlvufNfyBBx5YvHhxh9LdOw6Hg06n35M4wn9/sFI29JEJQweydORvBZvN1ku16xC/EKFpvw/s3LnzxIkTO3fuHOiB3Ka1tdXj8QAAiESiTCYLFJoAAGi12uvXr8fGxoaHh5vNZolEUlZWplKpRCLR4MGDUbTvTCAul6utrS3wmsPhdDacOp3OsrIyi8WSkpIil8s7RlJVVeX3+5OSkjqfQXbu8MKFCzQaLS8vryMGr6GhoaqqSigU5ubmEgh9W5gZDIZWq6XT6U6nk8Fg9Hl//wmiEWIY9tRTT33xxRcBKQgAQBBkzpw5LS0tzz33XFFR0VdffSUWiy9evDhz5sx7OJQQIUKECNF/wsPDg14Xi8VTp04NvA4Ev2dlZd1VfAKNRuspXoJOpw8dOrT7SHoaTEeHkydP7nIxJiamz1r294cgWwOtVtve3h4ISelMXFxcWVkZAIDH40VGRgbi60OECBEiRIjfNEEEIYfDIZPJhw8f7nL90KFDHc5CFoull7KNIUKECBEixG+FIKZROp2+cuXKP//5z42NjTNnzgzEP3799de7d+9+6623AAAlJSV6vT4zM7PP3s1mM4PB6LBcd2Cz2ZRKZUxMTEciN6/XW19fz2Qy5XL5PTnVAwBgEJq87nvSmwMh+O8yHUOIECFChPhNENxr9P333yeTyVu3bv34448DV1gs1uuvv/78888DAPh8/pkzZ4KeiHawaNGis2fP6nS6/fv3z58/v/Nb33zzzR//+MfY2NiGhobPP/987ty577333ubNmyUSidVqVSgUBw8elMlkPfXcfyrtxmmFR/77fgAAVmnSG27rlHvSV4gQIUKE+DURXBCSyeT333//tddeq66u1mg0crk8MTGxI+N4ZGRk71IQALBkyZLXXntt7ty5Xa67XK61a9d+8803EyZMOHr06KpVq6ZPn56VlVVVVSWRSPx+//z581966aXPP//8v3+2NJbAMPuP90QjzPj3q/99JyFChAhxDzl58qTZbAYAkEik1NTUe5jzRKvVnj9/PvCaw+GMGjWKRqO53e7vv/8+UDUi8FZhYSGDwUhLS1Or1YcOHdLr9WKxePTo0cnJyV06rKmpOXDgAJVKfeihhzqiDA0Gw7fffqvVauPj4+fPn9/R7f2nx1ISly5d+vrrrxsaGgLuuR2cPHmyP/3OmTMH3Jmzu6M5l8sNxE5Onz6dRCKdO3euw5uISCSOHDnyzJkzd/UMIUKECPE7ZMOGDVwuNz4+3m63r1y5cuPGjQGj3X9PeXn58uXLA+UmKisrGxoaLl++TCaTFy5cqNVqO9Knvf/++zExMfPmzZswYcKiRYtiY2NLS0t37tx58eLFzr1dv3593Lhxa9eura+vz87OLikpkUgkFRUV48ePHzt2bFJS0oEDB0aMGBEREXFPBv8zCC4Id+7c+fDDD8fFxblcLjqdzuFwysrKqFRqP+t39EJTU1Nnf9SYmJimpqaOPz0ez65du9asWdNTcwzDqqurL1++3PliVlZWh7YaIkSIEL8fVqxYESjDdODAgXXr1j3//PMNDQ1sNjuQ5NpsNre3twdC6YuKinAcT0lJSUhI6E/PLBZr69atgdejRo369ttvly5dGvTOQL7TLVu2BP7sHpv+9ttvP/nkk2+88QYAYP78+Vu3bn355ZfXrFnz5JNPbtq06Wc99z0muCB85ZVXlixZsmPHjlWrVoWHh7/++ustLS0LFizorvDeLQ6Ho7P+S6PR7HZ74DWO44899phUKn388cd7au5yub766qsuHq3btm0LmvLN6XRiGHavXG98Pr/NZrsnXf1v0/EPDXE/CU37fcDtdt9tDaP7hkajCShqGzZsmDJlyqOPPgoAOH/+/LvvvvvOO+/MmTNn9uzZJBLp1VdfvXbt2l2tih6Px2QydZSP6A6BQGhoaHC73VQqFQQzBJ46dWrdunWB19OmTfv3v//9xBNPXLx48auvvvr2228RBJk8eTKbze7PYOx2O4ZhLpcL73fJDzqd3me0fhBB6HA4Ghsb9+7dG0hAEMgarlAotm7dmpeX98wzz3A4P78+u0QiMZlMHX8aDAapVAoAgBA+8cQTSqXy2LFjvSQ+YDKZb775Zj8zy6Aoeq8yywAASCTiL5q5w+wFn1bixToopIKlceho6V0MW+MC26vxgnYcB2CQEHkkAY1h9be5DwcHm/AfVbDJDsVUZIQEWRSLCvptq291wB9a4C0T9OMgioVMCEMSmKD/E6VywGId1LkBjQjSeEgGHyH0+7k9GCg3QZ0bEFEQwQBxnLv+T7v8gEoE9+b70W+8ONA4IYIACQ0h953ioytWH8BwwAv2DwpllvmloVKp3dcTz7c/QPx+SEfyyEFouLTLxUCKNbvdbjabjxwJ7hv4/fffL1u27O23376rj+tIsdbQ0DBp0qSlS5fq9fqgd65fvz4QX5CXlzdx4sTVq1d3Dq7zer1Go7HjXFAqlarVaqVSSaVSFy9ePHLkyMbGxueee66wsLBLhtKgMJnMgGD7xTPLuFwuCGFAPguFQp1OF7ielJTk8Xjq6+v/m8JROTk569atC+wd7Hb7rVu3Ar1t2LChtLT0xIkT9/DxdC7Dvltf3aPO3A6fpT/3GTzg/VtYqwMsjkUnhfd3jb2qh/NPYhPDkcWxiNoBVuZjeWLkkxEEZtfAk65AAD6qwP9yDVsYgz6WhBJQ5JwaH3bI/1As+sagvpvvU+LPFeKxbPBANLowBm13wRMq+NI136OJ6J+zCJxeS0+WGeHmEvysGp+hQHOFCAkFtVb40FmcBCjrM/GlcSip51Xe6Qc76/Dt1bjSBoeJkTA6YveBt0pxvQcuiUXXJKFJ3B6nzuUH+xvxPfX4BQ2MZiFSGvBDoLQBuw/OiUQXxaDjwxC054m/pocHm/DzbfCWCbox4PIDPgVkCZCxMnSqHBkk6lGa4hAU6eBpNbyixWssQOeGVAIIoyNZAmSMDJkqR0XUHj/Uh4PTavh9M35WDZU2KKIiEAC9G8ZzkAlhyJxIdJS0tx1AiQEeaYanWvESAwQAEFFg94E0HjJGhsyMQMdIEWLPU233gZOt+Bk1LNJBpe32niOCgWQKkFFSZEo4Es/p7Vtq9oILGrxQC2+ZgNoJfTigEoCcgWTwkTwxMlyC0Ht0M7j96Ze1sEgLK8xQ7YR2H2CRgIKBpPKQoWJkqAih9drcjYFbJlhlhioHMHshAIBKAGIqEs1CkrggitXH1seHg0YbbHaANid0+m9f5JJBGB2JZIFwem/fEwCABwONdtjqAFoXtPoAAKBUC7FuIg9hM5H7IggBfLsLFgAAIABJREFUKchkrVu3bu7cuXa7fdeuXStXriwuLu5+z7hx4+bPn69SqWbMmDFr1qzOuldDQ8PBgwcBACKRKGBi7YDNZn/zzTcQwsbGxj/96U/bt28PeH50Jy4urqKiorCw8OLFi7t27dq6dWtpaWnHtgxBEARBOhQ4HMcJBAKO4263+/nnn3/wwQcBADNnzvzggw8CttMBIcjMCgQCFovV2NiYlJSUmJi4d+9eq9XKZrN//PFHAEAvCnJnjhw5olarTSbTyZMn9Xr97Nmz9+zZU1pa+q9//Wvw4MGrV69es2bNRx99NGbMmMTExL/+9a9btmx59dVXA3ld+Xx+P3W+3qEQyAn82HujEdY0ezBHn3dpXGDU9/6J4cggEfL4RWxRDPLXwX0n0CsxwBk/+reNJMyOvL2ePZaEPnEZG/OD/9gUopjWY0MPBlbmYzUWeGUOMY59+zFnKAgbswjPFWLZ3/l3jSMMEQV/fK0LPH4Jq7XAnWMJo/6jfSJ/iANtTsIr17Hkfb7XcgkrEtDui0WrA750DT/Wgm/MJOwYQ+q8FP5zGPi+zvF+DfpqCf58Bro8Hu2yUGpc4NNK7JNKfLgYfWMQYcKdQqveCr+qxccf9adwkVWJ6KwItEOWYxAUtMM9DfjX9fhQMbIsDt0zHmV3kvTNdrhPCV8oxjQusCgGmR2J5goRBhEAAOw+UKyHx1rwfUpIQsH8KOSlbEKuEOFTAACg3QVKDPCMGn/4PG7zgekKZKwMyRQgUhqCQaBxwusGeEYNj6twMRWZIkdWJqBJXERKQ9wYUDngVT081AT/VOBL5iJT5egoKZLCRcQ04MFAiwMWauGPKni0BU/iInOj0NXj0DTebbnlw0GpAZ5ohc8VYi0OOCcSnRyODBIiCiZCQIDaCa/rwWk1frgJIgiYF4m8mE0YIkK4ZAAAcGOg1ADPqOGLV7E6C5wZgY4RoGMjYUA2uPyg0gwvaOBxFV6ghUNFyGQ5+lAsGstGxDTg8gOlDZYY4Lk2+NYNnE4E0+TIKCmSxkMkNAQAYPLCChO4osXPqGG5CQ4VI8MlyPJ4RM5ASSjwYKDZDksMcHMJXmqAWQJktBTJESCJXIRPARgEejeoscBiHbzYDstNMFeIDBMjMxRIOANlkYDFC5rssMwI/1yMl5lglgAZJkLS+UgsG+FTgB8HRg+otcIyIyzUwTIjTOAgyVxEwQB8CgJ+Eo2Hm/FKMzB5YDIXSeAgMSwgpCIUwu3/dYsDKm2g0gyb7TCcgUQwgIyOdHyRjB6gceFKGzC4YTQLiWWDMDrCowAuGfHhwOqFWjdotkOlDWhcUMFAFAwgot2e9psGGI51/TmQp4wJ+hO7P4hEokCWsvT09I8++ujixYsI8p8M0oGCsuPGjbt58+b333+/ffv29evXB3xVAjf4/X6LxQIAoNG6LjQEAiHQc2xs7JNPPvnJJ58sX74cRVGz2dzhLGM0GnNzcwEAKIrm5eXl5eU9+eSTcrn89OnTHSEDJBJJKBRqNJrA2WRbW5tMJgsLCwMAZGdnB+7Jycmpqanp82H9OJDv8SEU/5FxyPB7qRAGE4QIgkycOHH//v1Tp05dvHjxn//856SkpPj4+CtXrowfP76fjj01NTXV1dWzZs3CcfzatWsTJkyIj48P5Frdt2/fa6+9tnnz5szMzE8++QQAIBKJli9fXldXF2gbFhZ2TwQhm8yaFTflngjCFwvO9ue25ef8S2KRzbkEAMCiGHTCUT+Xgj+f0Zv9q80J5pzAPhnxHykIAKARwRejCa+V4KOO+E9OI0QEK8hp9IB5J/0yOnJhFpF6p7QVUMCXowkHGvHZJ/yPJ6MvZBIod96wpx5/thB7OB7dM45I6SapZXTw2UjCdT361BXs3TL82Qx0TiQqoAAcgusG+EU1/k0D/lgSWr2QxA6mcY6V4LPiiJfb4d9v4i9e9U2Ro4NFCIMItC5wQYMX6+HiGPTCTGJCMEUklo28lkt4KZtwQIn/qxZffQFL4CACKnD4QKUZRrGQB6PR0vlEOSNI2wgm8kw68kw6Wm6C+5RwfSF2ywQDT+fBQAYfmSJHvptEyOR3bSuhgalyZKqc8PYQUGOBR1vg/ka4+TqudUMCAsRUJEuAjJQir+YSI7v9I2R0ZLAI+WMy8OKE823whArfdBWvMkODB5BQIGcgOUJkYhjy1hBiGL1rWxIKBouQwSLkxSxUaYOHm+COWvhsIa5yQBwCMQ1k8pExMvS7SWhGtzFTCWCYGBkmRv6chaoc8HAT3N9E/MstrMUOyQSAAJDAQYaJkVWJ6LcT0C6GAToRpPKQVB6yLA5AAG4Y4IlWuLMOVppxvRsCADhkJIENhoqR1wcRRkiQ7t+QYWJkYQwAADj94HI7vNQO/10Ha6240QOJCMKngHgOkiNE3h6CDhUFaQ5+skY7/OCKFhbp4HEVbLbjRg8gIIBHAXFsJJ2PPBCNDhL2pjKavaDSDGsssNEGaizQiwMAAIMIFAxklBQkcdE4dm/GZ5cf1Nug0gZbHcDiBSYvJKNATEPS+EDBQKNYIILRVdXeqURPtPTY4cDS2NjodDr5fL5EIlEqlYGLAe9NCKFCoVi7du3atWtzcnKKiopmzZoVuCEhIWHz5s19dl5RUcHn82k0WmJi4qlTpwJxGlartbi4+Pnnn1epVB3Zt/1+P4ZhHZlSAkydOvXQoUOBqheHDh2aNm2aXC7PzMwsLS2Ni4sDAJSUlPQnFSoRBbfmk2h0IsHn7f/M9Ifg1SeMRqPT6Qw8W2Vl5ZYtW5qamjIzMzdu3NjPI81fiIGqPpGxc+MYbvSWWT26swIAvmvEN1/Hr84ldvx4Wh1wyCFsx1jChLDgY/DjYPxR/6Rw9KXs4L/XD8rxd27ihycTsgR39FBjgXNOYjMVyNtDeztTUzvhk5fxUgNcl4qOlSFUAriihVurcB8OPhnRo7LYmROt8NNK/FQrTkCABwfRTOTBGOSPyQRJz3pq5zIIbU5wXIWXGqAbA3wKGCJCpsi76oi94PKDcjM0ewCFAFJ4SP9PLgPgEFi8AADAIYPejWD/AwSmHYfAiwPqwFeK/d/k11Z9Iicnh0QiRUZG2u32K1euLFu27IMPPigsLJw6deqKFSu0Wq1SqSQSiTk5OVqtNjk5Wa1WHzt27OrVqz2V4e3g7Nmz06ZNmz17NoRQqVSq1eoDBw4MGzbsxIkTS5YsmTFjBp/PP3r06JAhQ3bu3Ll06dLy8vK8vDwajXb06NGIiIgffvihc0KxioqK0aNHz58/X6/Xl5WVFRYWBpoHXF4bGxtLS0uvXLnSp7nxl6s+EVwQ5ufnZ2ZmdnGKsVgsxcXFEydOvIcff7cMoCAcxIz+Yl6PghACkHXA/9ZgwjTFHR93tg0uO4tdm0eUBpMcG4uxm0Z4ZDKxl2X6WyX+xCVsQyZhbTJKIwI3BrZV4a+VYG8OJqxK7JevxeV2+GUNXqSDXhxk8JGHYpHZEUEMnr1j8gAqAfR+ohMgVA9oQAhN+33g1yYICwsLA67sZDI5Li4uYG8EAFRUVFy8eDEuLi49Pb2pqSkmJubSpUstLS1CoXD69Old1LWgmEyma9euBV7z+fyUlJSARygAoK2t7cKFC1arNS0tLVCeHsOwwsLC6urqQBmmkSNHdl9129rajhw5QqPRZs+e3aFN1dXVnT59WigUTps2rT8hcPdbEEql0gMHDgwfPrzzxYKCguHDhw+s9/AACsIUavTeB3sUhMdV8IVirGReEEGx+Tp+rg0/OY3YxczyXSP+9BX82jxin4pOnRWuL8TPtuFRTKTRDkdJkb8NIaT07E4ysIRW5AEhNO33gV+bIPy9cV/rEfZER5jI7xN/rxuAjyqw/0sNrp+9lI0W6fAnL2OfjPyPGfOKFq65iB2b2lUKYl4HSqIiyB22rTg28t0kgslDUNpgNAsJ6jqPeWwOTQUAgC5OItLuLr4F8zptzVc91jYSnceSZ5OYortq7jIoXfp6iPkoXDlDmnJXbQGAHova7zShRCqVH4kQ+vJzvRPc7/E59AiCkljiLpMWIkSIEP3kDkHY3NwccN3xer1Xr151Op0db/l8vp7i1n8nYD2HbzbZ4RUt/GZ8cEGIImDveOKUY/7l57D38whcMtjbgD9VgO0YS8wV/kerM1adaD77T49FjaAEYepMxbinSHR+5354FMCjBNEC/S5z85l3DRVH6eIEgKDO9ipOzMiIcU9R+VF9PpTfaVJd+Fh38zuGNIXKj/A5jPVHNrHCM+Wjn2SG91FdBPd7tKX7NEU7cL+HIU1BUILb1OyxtLETJkeOXE3l95GN1t52S3v9G2P1KQRFSUwx7nV4be0seY4wfbYgZRpK7E1Ndmgq9eVHzHXn3cZmEoMPcczvsjDDM/hJkwTJU8ms3qKR/C6Lqe6ctanI2V7tc+gRlECk8xmSZE7UME7MiN73ED6H3qK8Ym8tdRmUPqcJJZLJLAlDksyOHMKUZ/YuiV36BlPtGUvjFWd7tc+uBwggsyR0STInOo+fMIHC7a2oqc9pNNeeszRecWgqvLZ2AAGRzqWL4tmRQ3gJ46m8Xv3XIG7XVFiVBXb1TZexEfc6EZRIZssYkiR25GB2VB6B3JtJCkLMqamyq284tbVeWzvmdRIoTAo3nCFOZMqzaYI+FwTo1Nba1TddujqvXQtxDCVSyCwJXZzADM/sY+QAAAC8Nq1LX++1anDMi/tcKIlOZgrJnDCaILr3L0kA3OfymFt9ToPfZYW4HyVSiDQOiSmmcGQI2rcagHmdXmubz2mEmA8A4NLXA9jfOO4QvyHuMI3+85//fOaZZ3q6lcFgbN++fdGiRfdlYMEZQNOoghD9w5LgptG/XMdMHvB+HgEA4LVqWvK3+Ox6UfocQer0jnucfrChCPtXLQ4BSOEiH40gDOokBVvOf6C/9X3MjNc4UcN8TqP60mf6iqMJC95nybN7H5ittbRm358EyVPko54ILOKY19l+dZe6YHvY8NVhw1YApMdzREP5UeWJNwTJU+UjH+/QAnG/R192uCX/Q3ZEbuSE58nsrgG8AAAAoK7scMvZfzKkKWHDV3cepNfa1nJlp6nsACd2ZPiINXRRtyzAEDfV5asvb/NY1ZKcxcLUGRTubX8zzOs0153Tlh5waMrFmQvEWQ9QBVGdm/pdFkPFD+0l+/xOozB9Dj9xAkOaiqAE8JNSa6g8bqw+xZClitJm8eLHEemdonrtOnPtOUPlcZuqlBOdx4nOY8rSSEwhxHGfXevQVFiUBZbGQqYslRs/lhM5hC5ODKinuM8VeNdUe85tbGJHDWEpcmmCGDJTiPu9XqvG3lZmURZ4LGpe3Bhu7ChWxCAK5/ZRDY55Hepb5voLxuqTfreVnzCBEzOCIU0hsyUAQq9VY1eXmRsumqpPU7jh/KTJ3JgRdEnS7QUa4k59vaXhkrH6tLO9khMzkhszghmWQWZLAIL4HSa7ptzaWGCqOUtk8AVJk0myXHHskI7F3ec02pqvmusvGGvOkGhcTvRwljybKogmUJgQ83ksrY62cktTob31BjM8kxc7mhWRSxcnoERqYNguXb29tcSivGJpLCAxRSx5NkOSRGZJCRSG323zmFWO9kpb81WI+djReWxFLiMsncaPJFBYAACfw+A2NtrVZdbmq9bmYiKVw5Jn0cUJZJYEQYm43+OxqJ3aalvLdQAgO3IIMzyTLk6k8iIIFAYAwOcweswtDk2lvfWGrfUGgDhNGEfhyFAiBSVScb/La9d7zCq3sZnCkdHFCVR+FIUrJ9H5BAoDYn6/2+K169zGZrehwaWv97ttFG44iSEgUtkIgYT73H63xWtr99l0JJaYyo+kchVktoRI4wamDvc5fQ6jx9rmMTa7Tc2Yz0XhhJHoPIRABgAcvlBbZpHt2ruvxx9kiF8SOo169p0pNApBPnkzPyL9HvZ8hyBsb29XqVQAgMmTJ7/zzjsZGRkdb1EolKioqP6csv6iDKAgpPqiClY83t1HE4Mg5mv/kcmEdD7itWlvfblQlDGPLklU5X/IiR4eNfnPnW/2YMDp75oWpK3wS23p/tQ/7Oy8cJvr8usOb4id9Vde/LieRmWoPK48tjl29lu8uK6RTB5za92h9QhKjJvzNzK7a00rv8usPLbZoa2Om/M2U5bWvWfc52q9vE1T/G9JziLZkOUdYhJCzFRzVnXhYwQlRE16gaUIklrBZrPRKaim+N9tRTvoojhB8lSGNIVI5XisbdamQv2tIwQqOyxvlSB5akCGdcdtbGq/vldXdphE4zLlWSQaD/M6HO1VTm01L26MOOsBTnReTwIe93tM1acNlcfNDRdJdB6FEw4AcJuaMa+DGzOSnzSZFz8WJQX3ecX9bouywFR73tZy1W1oRMl0AHHc56ZLk9kRg7hxY9gRg3pSI7y2dlPtWXP9RbuqBPM6SQw+7vf6XRa6KI4TPZyXNJEVngl6SGIDIWZtKjZVn7Y0FriNzUQ6DyUQvTYtmSPjRA7lxY/jxIzoUfuBuE1VYqw+baq/4DE2kRh8BCVgHgfE/Ux5FjdmJC9hApWnCN4WANznMjdcsjRcsqmuu/QNKJECAIL7XFR+JCMsnRM1jBszohdTucessjQW2lquOTQVbmMT5nUAAIh0Ho0fxZCmsBQ57MihZJa4p+ZuU4utudjWetOlq3GbW3GvM9A8oHEywtJZ8uyOXUW358ZchgaXrtZlaPRa1T6HEfM6EZRIpHFITCGVF0ETRNME0d2//B3NPWaV29TkMbd6be0+pxlADACAkmgkOp/MllJ5EVSeosuzh84IBxYGg668eZ5Oo0K6jMXtV0R7P/mPIGxra6usrAy8LigoSE1NDRopMX78+Hv48XfLAApCgidqzwNrumc8OdYC/3IdK5xDBABU7V3DkKUpxqwDAGAeW/nO5cKU6WHDV/fSs6XxSt3B59JXftv9F2tvu1W1d03kxOdF6UESOrQV7VAXfJ60+DOGJClozxBi6sufq698ETZspXTQksBuHfe5tKX7VRc+FqbPihj3dEAD6Amvta310mf6W9/TRPFUnsLvttpVpVR+VFjeKn7SxJ6W9Q6vDRzzmmrOmmrPurQ1fq+dzJSwwjP5yVOYYf3bykHc3lbu0FT43RYCiU4TxbHkWb0PuMvje0wqj0UNEITCCafy5D0NuKfmmMsKAOi8O+knmMfmc5pRAonEFPbH/tYZHPP67HqIY2SmsCeBHRSbzcagU3w2HYQ4gUS924PeAH63BQBApLB6MST8ngkJwoHlfjjLHD9+fOXKlX02+NXmnL0P6Nygu8zZVo0/mogCACyNV1xGZeLCjwLXCRRW0sJPyrYvYMqz2BGDg3boc+jrDj4XN/edoPtWpiwtddm/Kvc86jY2y0ev7TiCwv3uxh//amu5lvbInoDGExQEIYSPWCNIntJyfsu198fShDEIQJz6ek7U0OSlX/QkPjtDZsuip70SOWmDTVXqtagJVHb01Jd72qF3ByWQBclTBMk/t54xgjLD0vsrNbu3RghUfmSfR5W9NP8ZIjAAgcIKbDt+BiiB3P8ZDtK217PGPiFSf34a4RAhfrv8RxDOmjWrqKhoAIfyK4cGPSda8VHSO6x5KgfMb8N3jiUBAFovfiIfubazBkBmS2Nnv1l3cH3G6kNBvDAgXntwvTh7ISdqWI8fKopLX7Wv9uD6ss/nSwcto3DDnbratsJ/sRQ5aSu/IZD73hNR+VHx8/6BeZ1ObRWAgC6Ov9s1GiVSexlhiBAhQvzW+c+qLRQKuwT2QwhVKpVKpZLJZAqFos9KFr82nNam68f7zh7UH8gwPB1pOtoCX8u94/qHFfiyeJRBBE5tjUvfIEyb2aUhN3a0IGVa3eENSYs+6WKaU134GGI++egnev9oEkOYsvQLU+05/a0jPoeBwg2Pn/t3liK391ZdIJDpLPnPT5UeIkSIEP/D9HiA8cEHH7z++usdpSc4HM7TTz+9adOm35A4pNCECYPW3pMzQuTcQSlqaXeBm0bYkfjR7AXbq/HiOUQAgLbkG3H2wqAHQhHjn63Yubz5zLsR45/tuGgoP6ot3Ze+8tv+Rb8hvPhxvXjNhAgR4v5QXV394YcfDvQofqf4/f6+b/pZBBeE77333tNPPz1q1KiXX35ZJpPp9frDhw9v3rzZ6XT+7W9/+4WGcs8hkBjiiNH3RBBCcJAEsRUJyLYqfMvw26Lr7zexOZFoFAuBmE9/60j6qv1B2yIoMfHBj8p3/gHzOiPGP4sSyZqineqCz5OXfvnzPBpChAgxICxcuLC2traqqqrjis/n65xUM8QvyurVq3+h2Q4iCHEcf/PNN1evXv3ZZ591XFyzZs3mzZvffPPNTZs2/T4zOVERbHUKIWWfb2MmGs5Abpngtiq8dD4RAGCqPUcXJ/Tip0Ck81If3tX44xtX380DALAVuWkrvu6InwsRIsRvAgqF8uqrr3a+Espsd//5JRw2gzhJa7VarVb7+OOPd7n++OOPezye2traez6IXz8IAATcL6GB/0slLDuHnWyFc09i/xhGCNTW0ZUdFKbP7r0HIpUTN+ftwc8VDnr6UvLSL0JSMESIECF+JQQRhIGEokajscv1wJXfbbpRxKbHfa5N2WieGHnpGvZyNvqHOBQA4HdbrI2F/QwSQIlUAmWAkxKECBEiRIjOBDGNcrnc3NzcZ5999siRIwrF7ZwUBoMhUHo4Kanv+LP/TSDuMjQypMldis4bK09wYkb87Lixzjj8vmqbiUemRDPuOpzL5HVfM2khgFlcsYhyF4HYAAAMwlKzttlpk1DpWVwxnXB3MeBuzF9nN/shjGKwuaS7rBkYIkSIEANN8CXvww8/nDhxYlxcXF5eXsBZpqCgwOv1HjhwAEV/nyknEACAz2no/obu5ndheas6X7H7fVafJ4x2F5ofBuGbVUXv1lyLpLO0Hlc0g70le3w2t8fcVHcMwON6oezCflVtDk8CACgxa8eJFG+kj0hi8fts6/D73qu9/mFdqZBCi2Vw2j3OSqtxXnjcC0lDElh9h5P/qGn8qL70jLYlks4moajSYYljchdL4x5PymERyb23Nfs8e5urD6rrio0ao9dNQQkpbMEkSeSyyOR0Th/Jk1yY/4e2huOaxusmbZvbQULRKDp7mEA2NzwuT9BDEeRO1NvN+frWMou+3e0gIKiESs/gCMeIFBH0vnczrS57gUFdazdbfB4igkqpjCyuaBBPQu1r94BDWGzSnNepbpr17R4HAhAZlZHFFY0TR2Ry+y6R3OS0ntG2XDe1t7udPoiLKLRUtmCMSNGfthiEJWZtsVFTYzM5MT8BQRR0VgZHOFwQxiP3beCBANTaTLes+laX3en3M4ikKAY7nSOMpPe3Rnez01ZhNbS67BjEKSgxnMZM5Qhk1P5mBvFDvN3tdGF+h9/HIpElFDqDeNceE1afF4M4hUC8231eiN8Dd+Qazc/PHz58OJFIBADU1dX94x//uHDhgl6v5/F4w4YNe/rppztnHx0QBirF2uAdzyw13ZoZnRM3+63O192m5ltfLs59Kr8jcOL92uubK64QESSFLdgxZFp/1lY/xBdf+cHodf9r8FQFnYVDuLOp8vmb+W9ljFoRldp723yd6qHCo0sikl5MHhrQxlyY/9P6G29WFT2dkPt84mBCz49/or1pzbWTeYKwl5KHJbNvS02D1/1p/Y33a68viUj+S2peTxreZYP6uRvnbX7fswm5C+TxAbGHQZivU31Ucz3fqH4iLmtdXDY/2DqrdFjerbm2u7lqkiRykSJxhDBMTKG7MH+pWXekrWFHY0UEnfVEXNYCeTylWzLSIqPmC+Wtb1U1uTzJ7LDYYQJZOI3pw/F6uzlfr9qnqrX6PMsiUx5SJKZ1k6a3LPr9rbX7VLV6j2u8WJHDk8ioDD/E21yOUrP2jLZFRKHNCY+bIYseypd1njcPjl3Utx5rUx5pazB63cMFYYksPp9M9UNc7bJfN2srrIbRQvmssJgp0qgu4sGLY/m61gOttQdb6/hk6kRJZDZXHEZjQADULvs1U/uPmiYvjs2Xx88Lj8sTyIidcptBAEpM2sPq+u9a69o9jkmSyFyeJJzGJCFou8cZGLPT758bHjsvPC6TwhZwuJ0/Wu9xnWxvOqSuP9neFE5j5gnCElk8JpHkw/Fmp63ErC00tqWyBTNkMVOkUdlccZevSpXNeFbbcrK96bxOxSFRMjhCBZ3FIJLsfl+D3XLDogMAjBXJx4oUI4XhiSwe2qm5H+LlFsMFfWu+TpWvVxEQNI0tkNNZRAR1Y/4Wl63MoqcRiGNE8pHC8DyBLJklIHXaYbsw/y2LvtCoKTS2XTdp6+1mAYVGJxAZRJLV5213O+hEUhKLn8YRpHNE8UxuBJ0tptB4ZKoL81t8HrXL0eAw19hMlTZjvd3c5LRp3U4agUhEUTfmxyGU0RhRdE4skxPL5MYwOHIaS0ChklECAMDm8+o8rmantcFhqbebG53WZqdN73F5cQwAQEAQIYUmp7GiGOxYBjeawREhxAgun0+mIgjixvxmn6fN5Whx2ZQOS6PD2uZ2aN1Oq98beC4uiSKk0KRUuoLGCqMxw2lMHpnK+Kn0mBfHjF63zuNUux1at9PgdVt9Hid2O2CAhKJMIolJJHNIZDaRQicSeSQqAIBL/k9JGpvf58dxP8RtP31iYDLdGNblt0AnECm/nUC47qwMS0gQ9FZk5m65QxBGRUV5PJ6FCxeuWrVqwGVeUAZOED77EMU7Vlues+5057j45jP/gJgvctLGwJ87myperyw8MXqBgsb6R821j+pKL4xbpOhLFq6+erLN7TgwfBa507pfYzNNv/jdqui0F5KG9NRwZ1PF+pv5O4ZMmyzpmkisxWl7pPhHP8S/Gjylu6HV5veuv5F/XNP4+aDJEyVBSuHoPa6Xyi9911q3IXHwYzEZnTfg100wI41EAAAgAElEQVTa1yuvXDO1v542YmlEMtptem02WzuCvVlVdLC17kF5wgPyhEF8CZdEaXHaLhnUe5qrLhvUq6PT/y8+WxpMJ8Ag/F5d/0n9jaum9inSqGF8mYzGMHs9Ny2645pGBCCPRKU8EpXak8J9y6Lf0VSxT1ULABjEk0Qx2AAApcNaZGwjIOjc8LgH5QlD+dLuw4YAFBs1B1vrjmmUtXZzGlsopNAggGqXvcZmyuCKpkujp8uic3iS7t8ns89zQtN0pK3hRHsjGSWksgUCMs0P8SantdxiSOMI5oTFLZDHxzG53ZoCAEC51bBfVXtIXVdvt2RwhHI6CwWIxu0oNWuFFNqssNh54XHD+LLuYwYAVNmM37XWHWqtL7fos3jiaAaHRiAavK5Kq7HVZR8rks8Ki50hiw461QEhfUyj/FHT2OS0JrMFMioDRRCt21lpM7KJ5HFixSRJ5HixImhzpcNyTqc6p225bFBr3I4YBldMpeEQaD3OBrs5ksEeLggbI5KPFSmC/gRqbKaL+tZ8varIqFE6rDIqg0+mYhDXeVxGrzuJxR/Mlw4TyHJ54iQWn3znlkjncZVb9bcshlsWfZ3d3Oy0aT1Oi89DJRA5JLKMyohmcBJZ/EQWL57Ji2KwxRR6h6B1Y36129HosNTZzfV2S6PTonLaDV6XD8cBAEwiWUShyenMGAY3lsmJZnAi6WwhhRbYk/khrve4VC57g93S4DArHdZGm8ng95q8bgAAhUDgkahSKkNOZ0YzOFF0tozGkFAYHNJt64jJ59F5nO1uZ4vTpnY71C67wetydYg6hMAnU8VUehiVIaLQBRQqm0ju+Ol5cdzh99n8XqvPa/V7HH6f2ecBAJi9no4VnEkkkVCUgKDsTvYYGoFI7SbzHH6fF/+t1pOCED4oiY7l38vYszsE4d69ez/77LNz585BCPPy8lasWLFo0aKgqbcHirsShPaqZt+bh+/J584dYZnPJY81nY+e+jI78rZkwv2e61vGpy3fFagWpPO40n7816kxD3RY9v5Rc21XU+Wl8YtpPVtjPqor3aYsuzRucXdrT5vbMSV//yRJ5DuZY7osgRCA1yuufNlY/sPIeR3KXBdwCN+tufa36uKn4nOeiMsK6HYeHNvVVPlKecFUadQ/MsewSb0ZMG9Z9JsrrpzWNo8VyeOYXIffd1GvNvvcT8XnPB6b2dNDdTiUt7kd/2osP9LWUGbRW33eMBpzEE8yPzz+QUVCf8xTapf9uKbxulmrdTtZJHIqWzBeHJHF7e+3v9JqvGnRNTmtAIBIOjubK+6PsTeA1ee9ZdUbvW4EACmVkcoW9Gn57KDBYamyGk0+NwFB5TRmBkfU+yR3xuR1l5p1bW4HBFBEoadzhP23H7aaDDU+Z4vL5sb8PDI1gclL5QiI/c6dbfF5Kq3Gdo8Th1BEoSWy+Hd10mzxeZQOq97jQhEgotBjGJy7sl56cUzlspu8bhRBRBSajMrsxZLxqyIUPnH/gRDe86TbSPeYDJVKtWvXrm3bttXX11Op1FmzZj322GMTJky4J6rVf8lAaYSjtr01SsB+Ukpy6us7rKPt178xVZ9Memhb4M+nS89BAN7LGtu54bLCY3Qi8bPcSUG7LTZqZl06eHn8QzE9eMeYvO65lw/zSJTtg6cIfjIzGrzuP1471eS0HhoxJ+hWvTMNDssr5Ze/VzcksfhkFC2z6IcKZK+k5OUJgpen6Y7W4zyjbWl2WukEUi5PElSd6kxoaRgQQtM+IISm/f7zSwjCIPtcuVy+YcOGDRs2XLt27bPPPtu9e/e3336rUCiWLFmyZs2a322R+laIibOXlHw4yefQkxhC3O9pvfRJ/Nx/BN41eN07mirKpzzcpdWnuRNzT/17d3PVkoiu3rYGr3vRlR8+zZnYkxQEAPDI1JOjF7x461Ly8S//EJmSyOJVWo27miuXRiTvHDqt+xFad2IYnJ1Dptn9vpsWnQ/H0zhCQT/8IzojptAXKxLvqkmIECFC/IbozXKSm5u7detWtVq9ffv2qKiot99+Oy4u7r6N7NeGCQAijSvKmt90+u8AgOYz7zLDMjsq037eUDYnLLa7fsYkkr7Nm/lU6dkbZl3n6z4cX1Rw5EF5wtzwPqaUjBL+njH68viHuCTKNZNWSKFdHv/QP7PG9kcKdh5G4MDmbqVgiBAhQvzP0/fJB4QQx3EcxyGEv9fYCQAA8EIIAFCM+b/yHctKP5mKoMTU5bsCb+EQbm24+W1e19ITATI4oo9zJsy8ePD46PmpbAEAwI35lxUdY5HIf00f2c9Pj2NyX0oJ1UIKESJEiHtPj4IQx/HLly/v3Llz9+7ddrtdoVBs2LChe9613w9eBAAACGRG2oqvHW3lDFkqSrjtBHFK28wnU3N5PbrzPiBP8OL4uHPfPBKVKqEytivLsrniLwZPubceAQ6fEwEI/W7Kmnc0vKG9ZXCZmCRGmihJRO8jjK8zLr/7muZGs1Xlw3wypjRHkk4B/fUNAQA0W1urjbU6p4FJYkRzI5IFicR+a7pap77KUGvxWBGASBniZGECg0TvZ1scQp1Tb3SbUATlU7l39cgAAIvH6vA5CQiBT+WSCHfhFWJymxvMTTavHQDAo3LjeNH9H7MH8zaYG/VOAw4hn8aL5kQw+1GQsgOr19Zmb7d7HWQCScIQi+/ykXEILR6ry+9ikZks8s/JjuTwOXGIkwlkCuEuviEhQtwHggjClpaW3bt3f/bZZw0NDb82Z5kBRA1vexujBDJLnt35rS+Ut1ZFp/XefElEUp5A9lVjeYvT9l7WuO4BDzjEL6oKqw21fBpvXMRIPq2/Lo44xH+oP7mv6rDGoQMAiOiCmXGT58ZPpxL7TvJi8Vi/KttzQnkuSRAvY0hsXvs/iz+N58c8nLYoQ9xHCKPeZdxVvu+k8lySID6OF00mkC63Fm25ti2GHbk07YEhYb2VP3T4nD/Un/yh7oTT50oXJYsZolZb25H6E2329rERI+bET43jxfT4uU7DsYbTpxvzzR5rsiBBQONhEDupPFdrakgVJo2PHDk6YnhP0sXqtV1sKbyounJDW04n0vg0HoRQ69TjEM+WpA8Lyx0uH8KhBHeTVts1l1XF1zSlZbpKAACLzMQgZnZbwpjSTElaXvigHEkGuYclvtpYd67pUkFrsd5ljONFBz5C7zIozc0KdvhI+dCxESMU7OBJ29V2TX5LwWVVUbWxPpItFzOEKILqnUalpSmcKRsuHzxakdfTdHkw79W20ivqq9c0NwJDZVNYXszbatf4cX+mOG1oWM6wsNye9gFmj+Wa5mZpe1mFvqbJ0sIg0ekkmtVrwyEey41KEyVnS9IzxKk0YnB7u8ltLm2/dUNbXmmoabS0EBAURVAP5qUSKTHcqBRBQpYkLU2U3NM/y+gyleura4z1zVaVzmlw+90ezMsg0QU0noQhjuIoormR0dwINjmIrwoGMbVN02hpbrVrtA690W2yemwAADKBxCIzBTS+jCkJZ8rCWTIxQ0joVgrN4XOq7ZpWW1ubvV3nNJg9Fh/m8+MYjUjhUNkiulDGkISxpGFMadCP1jsNbQ5tu12rcxktbovL7w68xSDRuVSOgMYT04VCukBI41PvnDoP5jW7zXqX0eS2WD02u9fuh7dDABGAMMkMCoHCJNPpJDqNSA1sR6gESmArhkPc4XMGOvFit+MI3X6PHw9euoiAoLR+bJpxiDt9rj5v63+H/z0QQhGRzwC/mNfo7t27t27deuHCBQjhiBEjVqxYsXDhwl+VT9QAeo1e5pINc5/oHmBu9Lrjjn3RMH3Vf5NdTOfUb8p/k4QSh4blttnbL6iuPJK+eH7iTAT0MXiDy/SXi28jAKzO+kOaKBkBSLWhbnfF/mpj3fqhT+ZKM3tpe7rpwpar2yZGjV6a+iCPetthx4f7Tzfmf3lzd6Ig7o/ZK2TMIGqu2+/eW/nd/uojM2InLUya01lm+zDfsZrT3zX8QCKQlqY8MEoxDL3Tg1/vNByo+eFI3YlBsqx5CTPSREmdn1Hn1P/YcPZw3XERXTA9dtJI+dAOseTwOYvbSk4oz5ZpK8dFjpwSMy5FmNi5rdvvuaK+eqoxv6T95mBZ9vDwwQn8OAGNBwHU2LUV+upLrUXluqrBsuzRirwcaWbHIwem8WpbyeXW4uK2kihORLY0PY4bzaawcIjrnYZqY/01TanD58wLHzxElpMhTuFRb0cEYhBTmpuuam4UtF6tNdZniFPSRClRHAWHwvJhfo1DW6GvLmoroRBIYyJGjJIPi+fH3hF4jmNluooLLVfOt1xmkuiDZFmJ/HgRXQAAMLrN1Ybaq22lRrd5lGLYKMWwTHFaZ10Kg1iFvvqSquh882UIYLYwPUOWKmOIyQSy2WNptLTcaC8v01UkCeKHhQ8aLMuOZCs6f7TBZSppv3ml9VpR23U+jZchSonmRgSey+KxKs3Nt3SVbY72LHFajjQjVZgUw43sEPN2r6PO1HBDW17SXlZlqI3kKBL4sXJWWMAaYXZbmq2qKkOd0W3KFKdmSdJThYlRnIgOgWdym+tNjWW6yhvaW1WGWhlTEsONCmNKaSQqAMDkMqvtmlqT0uVzpYoSE/hx0ZwIEV1II1HJKMnpcxncpja7ptHSUm9qbLQ0E1GilCnmUNh0Is2H++xeh95l1DkNIrogkq2Qs2RSpphL5XIpbACAB/PavXad09Bmb2+1t7XaNEaXkUPlcMgsIkoEADj9LqPLhEM8jCkNZ8nCmFIxQ8ihsMkEMgEhuP1us8eqc+rVdo3aplHbNX4c49O4AWHswTw2r93qsXGpXClDLGNKxHQBh8LuEA92r8PsthjdpnaHTu8yGlxGDMc7NqxezAsB4FE5QpqAQ2FzqGwWiUH8KVMHBNDudbj9HofP4fA53X5PwK7gxjw+zAcAQBCESWIAAMgEEoVwu08qkUIMViQVAIDhWIeE7gUUQftpZMIg7uqfyPzveTr78WRpwj3ssGtAvdfrffDBB0MB9V0Yte2ti1zy1YlLu9s/t9SVFBo0/x46LfCnzWvfceubdod2WszEvPBB/enc5Dav/fH5WfFTHkqZH1jZ1XbNXy6+HcWJeH7oul5MhUpL84azr86Mm/SHtIVdRGZxW8nbV7aMiRi+Omt5d0uUzWt/r3hrranhxeFPJ/KDeOt4Me83lYe+rjo4KWrsA0mzOna+dq/jeMOZPZUHMsWpa7IeljCCRPXZbDYmi3mxpXBv5YF2h36EfEg8L4ZGorU7tNc1N6sMtZOjxy1MniNl9JhADof4FfXVHxvOFreVcChsFpnp9LsMLmOaKHlC5OixEcOpPaggAawe2yVV4RX1tQZzo8ltAQBIGKJ4fuywsNyhYbk9qS8BfJjvpq6iTFehNDdbvTYEIAIaP4EfmyFOSeDH9r4vsXntJe1lFfrqJovK5rUTUYKEIUrgxw6SZkVyFL00BABAAGsM9dfbb9aaGowuU2BBjONG50gzkgQJvcerAACU5qbLTcWNjmatQ+/FvVwKR84OTxMm5Ugz+jRj4hCvNTbc0lc2WVQWjxUAwKawItjyFGFCkiC+u7bUBS/mrTbW15uUrba2wMLKobLlrLBEflwUJ6LPkftxrMHcqDQ3aRw6t98NAOBSOVKGOI4XHcaS9rkRBACY3OZ2h87isbr8biJKZJGZAZWR1IMA6AIGMaPLZPFYMYgDAGhEGp/K7b/NWWvS+UlYQCaRCWQWmcmnctF+h296Ma/nJ+2NhBJ7/2KHCPCLxxFeuHAhLy8vkGLt18nACsLvR86dKetqg8o4seOD7HFjRQoAgNvveeLE86nCpDRR0pc398yInbQs7cHee/bj2J9OvTBElvNw+uLO191+z6uX/o5D/C8jNwQ1ct7SVW3K/+uTuasmRo0J2nPAzlllqP1j9iMj5MMCS5IP959Qnv3ixq6xkSMey3q499Mak9vydeV3x+pPc6lsAY3v9LmaraqhYbkPpcxP4Mf21KpzZFWTpaWw7brS3OTxe0R0YZooabAspz822wA4xNV2jcPnpBGpYUxZ/48Pf4eEAtoGhNC033/uU0D9r5m7EoTtTXXl5+9NZpmXPP7rHOI0edyB4XfUHbyob3306onKqSsCwvaT618aXKZNI54BP+l5KzOXTIoa20vPn5Z81WRR/XXsi903vxjE/nZli8qqfmPMi53teACAc82X/ln06aYRzwyWZYNeKW4r2X5jl95lTBLEYThWrq+O58c8lrk8UdDfSBgc4kpLs9ltoRIpsdzoPsVYaGkYEELTPiCEpv3+c58C6v9nUKOk57jx96QrpF05zesvMLS5MX/nbFsf1JY8GZcdkGB6p+Fow6kdMz8OvMWjct8Y8+LTpzYl8uMjevCDKGkvO9WY/8X09xGAQAAOqNRndbpwGu3hyIgwGpWAEF7I+9OXN/c8euypJ3NWjYkYjiKowWX68ubuq5rSdyZsjv/JRaLJ6fy0XllsNNGJhAli8croSNZPav1gWfZgWbbKplaam1CE8OyQtUK64I5Zcrk/bVCebNdq3Z4wGnWyRLw6JkraqeokiqCx3Kig43di2N5m1Xet6hq7HUKQyGJOl0nn8Hn9XBjKrdb9KnWR0aRxuwVkcg6POytMNlzQd9EMAEC1zX6kra3YaDZ4vUQEiWcyx4qF06QSWj9SCTv82GWD4abF0u72EBFEQafn8ri5PG5/nHitPn+BwVBjtzv9GAFB5HTaYB4vltn3bxICUGQ0nW7X3rRYDV4vCkCg7TSZJJLet+NohdV2or39/9k7z8C4jnLvz+l7tvddrXqzZEu2bMu9xi2dNGISEiAkNyG0C1xIcrnwXgi9hBoCFwIhNxAIKSSA48Qtduy4xV2yLVu97Wq1vZ5+zsz7QcaRpbW8hsROuOf3yT5n58yc2dX853lm5nmOpDJhUQQABAyGOQ7bOp+3qYgIiHlV3RmLv5lM9ea5tKJYSbLCyM53Oq7weNzMhTdw5lV1fyJ5IpsdEURe05w0XW0ytjrszVbrBT2fAICsoh5MpU5msmFRRACwBFFlNM5x2Jqs1mI6XEOoj+NCgpiQZACAnaZKDIYak3Fy/Mwp2j8iiDlVBQBQOOaiab/BUPyG7YyiRCUpq6gAACdNexjafDE+s5yq5hRVhJqFJC1kgbCfOu8G/pUtwrfRNbro8R/PM4DTleX3185aX3ZmkbYrl1q+49m+a/9tLKzir44+pUL1U63npGT6a/erG3u3/uLKRya79fIyd88rn31g4ScXlMzlNW39vgMxSbqzorw7n39uOPTonFm3l5/JYt8WPfn4saeGMiErY0lLmWtq1tw9646zWw9+3tP3cMepu6sqV3s9gqa9EBzZEY39dM6s9WWF1fcsGkI/6Oz+QVf3B8vL15eXlrKGfo5/MTjy7HDw47XVX5reYDz/H62G0K/7Br7ecXq+03FnRXmL3YYBcDyTfT4Y2joa+WRdzRca6u3Uec8VbIlEv3Wqsy/P3V5RtsztKmPZmCTtSySfD4ZwgH1uWu2HKsoLDhkShM8NB3/R2z/E8zcFAkvcTh/DKAh1ZLObR6OHU+n3lwXuq66a7yyw51aCcGN49OnB4e3RWIvdNt/h8BoYFcJBnt+fSI2IwvUl/g+Ul632ephJ52UHef6l0MiLwZFj6cw8p2O6xWKhSBWiIZ7fm0gyOH5TacktpYHFLudkbWhLZ54ZDv5xaNhKUlf7ffOcdjdNawgN8sLeROKVcKTGZPxgRfn6stIAO3GJqDOXf244+MxwkFe1a0p8C53OUtYAAAgJ4oFk8tXRiAEnbq8oW19WWo6BCaZJUpZfDo8+Nxx6Ix6f53Asc7vqzWYHTWUVtY/j9ieSb8QTs2zWm0oD7wv4683nLCUiANrTmVdHI6+ER4+lM3Mc9habrczIGgkiKcs9ee5gMhWTpDU+zzqfd6XHPaG4oGkHkqnt0diWSPREJjvHbptlt5WyLA6AoGk9ee5IOj0qiis97tVezzK3q9lqHZ99IiyKh5LpPYnEG7F4WybjYwzlRtZF0wCAtKKMCOIgz5cb2dl2W4vN1mi1VBmNHoYxk6QItaQsD3J8Zy7fkc2dzGa7cnlB0wKswUZRAAAZwoQsxyW5wsjWm82NVkutyTT2cANBaAglZDkiSn0c15XLd+XyPfk8hgEvw9goCgGQkuWoJDE4UWs21ZvNdWZTCUGU2awsQdA4LmhaXJJGBLGP43rzXD/HDwsCiWFWijTgRE5Vs4rCEkQpy1aZjGUsG2ANboYeU0dB07KKmpDlUVEMCUJElKKSlFEUUYOCphkIgiVwC0mZScJOUTaKMpOkg6YAAHaKGhviZAg5VQUA5FRVhQgAkFVVrYjhHQfAQBD8pAwV72YeaZw22/uOBd1+93O5hPDffviTZicqXXvdYz1Hd626bezibftfbrF5vjR9IQBAger6l+75xVXfD5j9Tw0MvRgame90PDCtjiHwL73+rSpb+f1zJkZf++ob33Oxzs/Muw8idMOe/W6G/s28uSSGAQBOZLLX7973UGP9J2vfWpJMiemslAtYSqi3NpKBzx87/lo0+tKSReONkgPJ1IcPHFrt9fx09iz6PDEQQoJwx5uHKAx7Yv7cCRZJSBAebD/xZiL12NyWa/wFdo3uTyQ/dbTNSpI/mT2rxT4xPlxHLPajweENI6P/Xl/7ydpqJ/2WzQER2hiOfOd0Z1ZRvzR92gfKy8hJ3872aOxHXT2HUqm7KivWl5fOtttJDJMhPJxK/zk48oeh4Vk266fraq8t8U2e1I8I4u8Hh37TP0Dh+M2lgVaHvdJoVCA8mc3tjMU3hkdn2ax3VVXeVFoyWaSHeeGl0MjzwdDxTHaJyznHYXdQlILQIMfvSSQionRDwH9LaWCNzztZJtszmReDIy+FwmFRXOp2NlutZpJUEOrK5d+Ix3GA3VZeemdleUHrTUNoWyT6zHDw5ZHRciO7wOkIsCxEaJDn98aTnKa+v7T0joqyhS5nwd/xgWTqT8PBPwdHMASXejyVRpbAsKgktaUzp3K5NV7v+rLS6wN+SyEjRoJwezT2l9DIK+GIhtAsu83LMBpCYVFsS2fcDH2lz3t9iX+lx11wUjIiiFsj0a2R6K54PK+q08xmC0VBhEYEcYjnZ9ltV3jcV/q8S9yuyT0GAIiI0vZobEcsti+R7MlzXobxMDSvaWFBJDBsntOxxOVc7nbNdzomW2AqQl25/LF0uj2T7czlBjg+LsmcpjI44aSpcqOx3mxqtlmbrNYGi9nDTHTmyxD2c3xnLteVy/dz/LDAxyVZhhADmIuh/Qam2mSqM5saLOY6s3nyTyUmSb15riuf781zPZlMGiJJ0yQIWYJwM3TAwFaZjLVmU43JVGFkJ7goUrISEoQBng/yQlgUY5KUVzVR0wwEYSFJN0P7DYYylvUZGA/D2CnKQOAsQQiaJmowqyp5VU3LSkZROE1LyQoAIK0oY2M4heNjHWUhSRLHAABWkizG8IUAiJo2xaz33QZCaCbL+m1vZzYIXQiLYvMXfhqfAW+757ONm/73f+auWeerfDnc99mjO05cdddYEoY3hve90PnyT9d+61unOp8dDn5lRuMzQ8GYJG1esVRWufte/fyn5t6zsmLJ2Qf+sePPrw/u+fmV36MI6tunOrdGoltXLhuvCgMcf8Xrb3ytafpdVQXSJAEAEACfPtJ2LJ3euHzJ5L/VnKrec/DIEM8/u2hBlWmi5+2V8Oi9h45+uq7mi43n3ZG4JRL99JG2GrPpoYb6lR43gWEIgH2J5E+7e/bEk9+b1XRHRXnBkmOrJl25/HdPd70UGlnqds112A043pPntkSiZazh89Pqby0LTO1V687nn+wf/NvIaE8+byQJUYPTLObrS/wfqayYZrnANkgEwKFkakN4tD2dCQoCgWENFstil/OGgL+UvfBG8Lgk70kk2tKZrKJSODYmTnPsRTlOg4KwN548ncvxmkbjeKXRuMTlnG4tylWsInQwmWpLZ8KiiGNYKWtY4HTMtNmK/PkeCIdPy0qQFyAALpputlkXOB0FFagggzzfkc3FJInAMB/DzLTZfIaLOA4Uk6SePMepKo5hJQZDndlEXUwUKhnCUVGMSTJLED4D46LfMyfu9TXCS4++WeZyCuFIo3z3fQ9ujQx+9ODmj9fMeqzn2EtLb1jiCox94KtvfG9BYG6Jc/51u/cdXbfKbzAgAD5y4BAOsKcWtPak+h7Y/vDYDk+I4B9P/vnl3i2Prfuu2+hqz2TW7dxzZN2qyWN0Zy6/6vU3ftk6+4bAxEwRCIDPHG07nEpvXrG04GR/7DOPdvd+61TnfzbW319TPTZb7M1zD3ec2h1P/G7BvOVuV8GCZ5Eh/N+BoV/29vdxnIumU4pcYjDcW131sZpqE3ne+eP4oSGtKK9FYsczGRnCSpNxlcdzQRmb3AZO1YwkUfyY/n8TfUS+LOjdfunRN8tcTtIqBwBY56t8av7VL4f7Xl1+y1zHmZNwgioeDB99YOGnbt3f9rWm6WM7TTAAHm+d07ptx/PB0Pqymh+s/to39/zwyfZnJE2usJaOqaCG0H2Hjn5nZlNBS6XBYt6wbPF1u/ciAG4cp4UqQp86cux4Jvvq8iXnU8GxBny2vvZqv++/T3R8veN0jckkajAhyx+vrf7l3DlTKNlZaBz/WE3Vx2qqkrKcVhQbRV3sVN1OUe8vC7y/LHBRpSa0gaZ1CdTR0XkH0YWwWJS/h1hb66uYkNV9X+hgs2d6D6+ezuXvHufJZAniyfmtN+/Zv9rrqXNUP3n9zwYywzROlVrOqNovevtYgri7emK4tbO0Ouwbly25cc/+/YnkfzZOs1PUkVT6s8fabRS1ZcXSYnavNVjMzy1ekFGU3jzHEHijxfIPBDh10rTzveOt0tHR0bkodCEsFojOu6tq1/C+lRVLft7T94na6glLIwudjtvKy9k2840AACAASURBVD5/7PhTC1oxgFXb3pLJoCB8o6Nz16rlZ3VJFlOZWIfB5LU43zr10eqwH1676j+Pnyh/eROOASdNP9Qw7f6aqvFrbJKQGDz5bCJ8CCDk8M+unL6etZxjhNkoaq7DXrDxuVRv79EnIoOvC/kR2uBwBeZXzrjNX70aFBHUQ8iN9B3/3UjP5lyqB0HVaC33li91V11nsay9YFmoyeG+LSM9ryYjx2QhQZCs1dXgrVxZ3nATa75A0mCoyaMD2yODr6dG2yQhgeGE0VLqCswP1F7j8F04IlIu2R0b3ptNdEpCHADAGD12T5OnbInpPKdExpNNdCXDh/LpfllM4wTNmnw2T5MrMJ86T4TSs2iqFAvuiQ3vzcZPSUIcAMxg9ts9TZ7ype7AAmzKMCgIwXS0PTq0Ox07IeRGEIIGo8fmnu4uW+wuXYRfKOq3ImXjwX2pSBuXGZTFNEmbWbPf5p7hLltksp13EvZWcTmXjrRlE51CPoKgSpAG1hKweWbYPTMvWDUAQFX4dPRELtktcqOaKpKUibWU2tyNVncjjhcTrxwJ+VE+G9RUAQCA4aTB6DVay4niwzJoiiQkVIVTZY5iLBRtZowXseEQaoospsZqxwmGYV3FvPV4FCmLEMIJkqTeTm+eztuIvkZYFJu/8NND1aNf/vR3Jt+SNfnmF+/69bW/aN6259RV6yZvMeBUbfbW137QMnO8exMBcPWuPSs87i9PbwAAIKie3Pv9vvan7J4mLhs0GN1z1nzP7p15TkUQ5lR1snOyr/33HXu/G6i9xle1CmBYbHjv8OkXq5o/OGPxAwQ51d4QVeFO7P5OsOuvtS0fLa1/n8lWIQmJ6ODO3rYnMYyYtfJhd+l5Ez9JfLxj/w9CXRsqpt9a1nCT3dOM4QSXGRjtf6237XckxU5f+B8ltVdhhWJNyWK6t+3Jvrb/tboayqbd6ArMM5j8qpLPxE6Ge7eEeja6SxfVtnzUU7F8cvFMvKP/+B+HT79o88wI1FzlLJnLGD0IqVxmOB7cF+zeABCqmH5reeNNZvvEGEDp2MlQ94Zg1waoyd7yZXbvzLEBUciH09Hj0eHdJGUM1F7jr17jCswbP0Yrci42vGe0/7Vw/zaCYFyB+RZnHcO6oCYL+XAqejwVPmL3Nvtr1vkrV1ndDePnELKYiQ7tDHVvjAy+bvc0eSqW2z1NBpMfACjkR1ORtsjA63x2qKTmqkDdNZ7ypeS4CNSaKsZDb470vjrSs4k22H2VKx2+FqO1HMNwIT+ajh2PDu3Op3p8VWtK664xOuc6XOfMfnLJ7tH+7eG+zenoCWdJq9M/x+yopQ12Vc6PNTsW3EuSrL96rb9qlSswnxwXjE1V+NTokejQ7sjgzlyqx+5psrqnG80lGEFpqshng+loez494PDN9pYvdZUutHubqXHBryU+nooci4fejAX3ZeOnrK5Gq7uRNfsJklXlPJcdzsZPcdlhp3+Ou3Shs6TV5p5uMJ3Zn4ygymeD6djJ5OiRZPhwOnaSpM0mSxlBGQEACCoiF+VzIYPJZ3NPt7oazPZqo62CYZ0EaQAISWJK4qL59EAu1ZNP9eZSfbKYpFkXSRkp2ixLWVXKKXLWaCk32SrM9mqTrdJg9jIGJ0ZQCKqaKklCgs8GucwAlx7kssOymKQY+9j3oqmiLCRp1mG0lJnsVSZbBU65bI5SkjYBABDUZDEl8nE+G+SyQ3w2KHIRiY9TjBXDMKgpmirRrJM1+1hzgLWUGIwemnWSlIkgWU0VNYWXxbQkxEUuKnJRWUyrCqfK2bFuIUgjTtC0wUbSFoq2kLSJIFmCYgnirQEHIaRImbF2Qk0a/2NQpBxCkCAZ4l8iilvt3P9wl0x/Gx+oC2FRbP7CT18r7/vP+x92TUoKsTd04NlTf51Xf/9zw6ENyxZrqtDb9r9CLlwx/RaHb/bYZ/Ylkjfv3b971cq6vx9y+HrH6S2R6OtXLCcxDEJl/8v3IU2Zd/WjDOsCAA2dfql951ebl32pqumDU7QKQuXotofS0eMLrv2lZVzIUImPt+96ODl6dP7Vjzn9hUPPxEMHDm3+jKdsycwVX6ENE4xFFOz82/Hd33T65zQt/eIERVEVrvfoE91HflUx/dbGhZ+jDRM7JJfL5qP7Tr35E1XhamZ9pLT+ujELD0E1ET4yfPqFYNeGQN2101o/YSkU5lRV+OHTL/W1PyULyZLaq5z+OQajRxIS6VhHZGC7ImUrm26vav6g0VL4lGQq0j506vlQ90aSMtq9s4zWUoQglxlMhg8TJBuou7Zs2g3nsxrT0eMjvZtH+1/LJk6b7TWM0Y2gKnIRgYs4/XP91WtKatZO1lfwd2sv3LclOviGJMStzmk064CawmeHRS7qLls0pnMMWzhWgJAbCfVsDPdtTYaPmGwVBrMfA5jIRfLpAbu3yV+9rrT+OrO9umBZkYuO9G4K926Ohw6wlhKTrYIgWYmP5pI9BGXyV11RUnOVp3zZ+eyndOxkpP+1yODOVOQYzboY1olhuCQkRC5m9zZ7ypf6Klc6/a0FbSBVzsdD+2PDexMjBzPxDpK20AYb1BRZTAKA232z3IH5nvKlDt+cgrUrci4ROhAP7U+OHsvGT6lKfmyMVmV+zFZ2+FqcJa0OX8tkaxshjcsMZmId2WR3PtXHZ4dlMaWpEgCAYZ2M0WOyVVqcdRZHrdlRYzD5JsyooCZz2WEuPZBP93PZIZGLykIKQRXDSZygGaPLaCkz2SpMtiqzrcJg9p3rHUEiF+UyQ1xmkMsMZZODUM2qCg8AwDCcNjgYk9toKTNZy43WctbsY4zus8URVCUhIXJRIR/mcyMSH5OEpKbwmirgBENSRpp1MKzbYPIyRg9tsFO0maTPvLumcFCTZSmryllFzqtyXlNFVeHh30OVjjH2t0yQBpw4p88pxoJhuKZKWhGBtt/lIIQsnnl25z++82AyuhAWxZYvPLq5rPujH/rETM+MCbe+u//Rekf1E1HXR6oq1pd43vjzeoPJ6/DN7jn6mxmLH6ie+aGxj/22f/BrHaefWtA6127/XmfXc8PBXatWlBgMAIAj2x4Uucji9/12vH8sn+rb/Zc7q5pub1zw2YJNUhVu/4Z/I0h2wbW/KGj5hbo3HtvxpcoZtzUu/Nx4O0ORsh37fxDs2jB3zfdLatad75U1Vew58nj3kcedJa3+6rVmW4UspmOhfaGuDd6KlTOWPHi+ofnsPrpYcN/gyWdG+7cDAEjaJHJRi7OutP76qqYPGs4fcfss2UTn6MD2TPSEKCQYg8PirPdWLHeWtBa0MieBMrGOTPy0kA9jGGa0ltu9M8/X4ELvLuSSPbKQBBhuMPksjpqpXZfjkYRkPtUriykcp1hLwOKoLb4s1ORsslvkIgAhxuixuuqntunHk8kkgRIRciFVEQwmj9lWZSiUJOh8IKTx2aAsphGCtMFuspYX3+yxB4wZMThB0wbHpKnVhTk7RlO06SKrvpzou0YvPfrxicsmhNs+/+ib1eGZV6+8of7q8dc1pN3857t+sO6RhTsOB6+/pn//9/LpvkXX/xoAjMsM7nzu5jmrv1NSe9XYh/82Ev7i8ZMDHP++gP/R2S1jTtTBjue6Dv181Qdfmbx+IHLR3S9+0FO+dNbKr2LnJgEQucjev97l8M2avfo72PnzA4hctH3X12LDuyubbneVtCIE46E3hzqeD9Re3bz8y5ONucmoCj/S80pseC+fC1GM1emfXTbtRqO1bIoik4cGkYtqqmAw+f413DLvTvQR+bKgd/ulRz8+cTmhDGWvD+2ZIISHR9vKLIFdSelKvxcXo/3Hn173kdfHPCEmW+Wi9z2x968fWe2ZYbSWAwBuCJRMOBGYT/cd3/X1FetfLLiKbjB5V37gpf0v37v7pTvnrfvR2f0vowPbj2x9oLblow0LPjN1mw0m74Jrfp5NdA13vtjX/jsMIxy+litu31C8bURSxorpt1ZML2rmMUUz/pniOjo6Ou8ouhAWBQ3UJLB1JntEVRyfM+y1gV1rqpY/Phy6r6aq+8ivqppuHz/oO/1zGub/+4FXP7Vy/YuTvT0QKgde+dSMxQ9aXefNMEkx1mU3/7Hz4GPbnl7jKV/KWgLJkUOylJl31U+9FcuLbLzVNa1pyRcv5nV1dHR0/g+hH1UuCpeWzyFihrth/8jhsxcFVdwTPDA7sOhAMnWVxz548rna2fdMKFg/9z6SMnXs/+HkZ57Y/W2D2VfT8pGpq8ZwsnHh5666e1+g7lqjpaxp6RevvGtX8Sqoo6OjozM1uhAWhQHJwxo2P7B0a//rZy++NrBrtq95e4y7yu9L9W92+ucUWjzD5l/96GDHcyO9m8ZfHTr94kjPK/Ou/Ekxx/UAALTBXtF4S/3cj3krVkyxKKijo6Ojc7HoQlgUFNJKEW8wN7ZFT8b5BAAAIvRC54ab6q99Zjh4W3npUMfzlTM+ULAsY/Qsft+TR7Y9GOw6kyV44MQfj+/62pIbf/cPbK7T0dHR0Xl70YWwWKah2CujiWtr1/7+5PMAgC39O1jS4LM1tKcza2xUcvRISe2V5yvr8M1advMzHfse2fb7NVueWt7b9uSKW/9sdTVcwubr6Ojo6BRG3yxTLC1w9Psj4W9feevHX/0PHMN3DL7xyOqvPTU4dFt5Wbz3lZLqtWNHvpAgy/u6kKLSi6bhtrdO79m9zes+sjMVacNx0u5tnuwRRaIi7Tihdo3gViO9pIFsuLjjokhStIEYQIgod2Omi0igo6Ojo/N/HF0Ii8UOs/Vm064495O139rU99p3r/hKtb3613u3/HXpouC2b9TNuRcAAJP53HdeIqu9mIHK/fefTJ+8imx8KwAKhuHni/OihZL5n2wka/3M0kaYzHO/3kY1Vxg/tBwUkSMCyar414PSjhNEwAlwTBuKU6017PrFuL2oczYwzUlb25Wj/TDNYQaanF7KrJ5J1hbIx1u4eIZXjvRpwQRQIe6xUs0VwHUxhwU1qIWSMCdgJEGUOTHTRR40hAgJEsBxjNVjguvo6PyD6EJYLJKY+kRt5Y+7e3ZesfyeWXcCAJ4eHK4xGafT8pbYCV/lKqBB7mevMquaDNfOBQCop0P5n2+yPHgjUeGe+skwksl//6/sB5bQS884S+kV07nHt+V/stH0mWsxeqrvCMaz+R9vJMpc1m/fMaZ8SJDFjUdyX3nWePcqas6U5wUREje3iRsO0UsbTB9bh3usiBOVowPcLzaRVV72Qytwx1RSCpN58aUD8uE+qqWSrPUBHIeRdP6xVxFLKbcsukDVAGgDMXFbu3KkD7ebcLsJyaoWTBBlLmblDHrxtKlnADDDy/u6lKP9Wn8UkDiACGAY2RCgF9ZRrbVT9xgAQAsm1JNBdTCKMgJACLObyEoP2VxOlBYOgTbhrdWusDaSRBkeUCTuMJHVXqLOf8FKx15ZOTGkDcRgMg8AwJ1mospDNVcQVReOAQ0zvHpiSO2NwHgWQITZTUS5i5pRTpRfIKnkmarDKbUrDMMpJMiAwHGnmaj0kPUlmKGo+NEoK6hDcZjIAVXDaBJzmskKD2YpdtaCREULJWAij3gJMzK4y0KUOous+gyqhiQVqRpGEZhRd3jovM3okWWKYujf/6vXvWv2J3+z5HDokZbm60v8nKo1b9n21PzWsvAr8dCbC675ubStXTnSb37wxrNeT3l/t/DifuvXb8MM57VXkCDnvvY8c/Vs5oqmc25AxP1mG8oIps9dh1GFVUEbiud/tMFwXSuzbmLwTLV3lPv5ZnpZI3vzAlCoB2Ca4361FWjQdN9a3HNOLEekaNLGw+K24+z7FzJXNE0ujhRNevWouOUYs2qm4ZrZ5wxMCGX3dIBN7ZiBZtcvLujgVbvD4t8OacEEs24WvbTxLQeyBpUTQ9Jrx7XBOLNuFnNFE2aeONSqnSPS9uPK8SFqbg29oI6cVjLWtygrKB3D8t4utWeUXljHrJhBVE88xQ9jWXlvp7y/CykaNbOCrPFhDhPAMBjPaQNRpX0I4Bi9sJ6eVztZmbShuHy4TznUCzMc1VCKl7lwhwkoKozn1N6IFkxQTeXU/DqqpXKybaqFU/L+LnlvF8AwanYlWevHXRaAAZjIqz1h5dgAAIBe3EAvqidKJsb6QTlBPtQr7+/WhhNUUxlZX4L7bADHYSqvDcSU9kGA4/SienrRNN5CTgxxgpDaG1EO9MhH+gACZEOAKHViJgaoECZyal9EG4yRdX5qXi01p3q8G//st6x2hpRjg+qJIZjliUoP4bYCEkeKNtZjuNNMNpdTzRVkQwBjJqoaklW1a0Q9GVRODsNImihx4C4LZjbAvAgTORhO4T47NaOMbCon6/2T/0CQKKs9EbV7ROuNaMEEzAqYgQIEDlQIFBX32oiAk6h0ExVuIuDEXRaAj/uVqpoWyWihpBZKwnAKxrMwxSFeRqKMsTTG0rjLgrsthN+Bl9gJnw13WjDr30PZaRDmBBjLwkhGG03DSBom8jDDIUEGAGAUiVlZ3GUhvDbcb8e9NtFImEs9Z18f8RJMcTCRg9EMjGZhMg8zHJJUxEsYS2MMhVlZ3GHGXWbcacGdZsxiwIwMRhIAISTIKC/CDA/THErzMCcgXgLqW0lvMJYGDIUZGcxIYwYaY2mMIsC5MzDESwABIKtoXEEgnfNfjKEA+R7eHYIQ0maUmHxFTQGLRBfCohj+zP/r9eya/pFvnDI23bH/4C9bZ/+6b8BnYH4zb+6uF9bXzfm3kvK12Qd/b37ghgkzdP7JHUiDpnvXnLeRj23CrKzxIysL3IOI+9UWJMjmz1w72UJSu8LcY6+yH15Bzy8QuhoAgHJC/uebMRwz3rd2gm0nH+gRnt7FrJ1luL71nBFkHFooyT+5A2jQcMtCqrl8TA6RrMr7u8S/HSIq3MY7luHuArmHcrmcxWyW93YKfzmI2430sulkQwC3sDDLq50j8u7TMM0ZrpvLLJ9+PrNPCyWlTcfkQ71kY4BsLMUdZiAp6nBcOTqAUQSzqoleNv18vlCY4uSdHdLeToAQWV9C+O0Ax2Asq/aMopxALaijFzeQNb6Ch1a0gZh8oFs53Ad5iaz24nYTQACmOXUgirEMPbeaaq0h6/wFZgacqBwdkA/2qJ0jRJmLKHfhNhOCEMazas8oUDR6QR29uOF8lp82EJX3dskHezCaJOpLCLcFkARM5bX+qBZOU7Mq6IXTqFkVBbtLG4jK+7rkAz2QwJkZZbjPjrE0yvJaKKl2jmAWlp5fS82rJcoKjBpIVJT2QeVwn3J8EHeYiUoP7jABAkc5QQsltcE4UeGiWqqoWZVEuWviWyOkDcaUE8PK8SFtIIr7HUSJA7exAMNgltdCKRhOEZVuqqmCbC4nq72AOHfk1aDaF1E7gkpHcExTcZ8dt7IAAZgTYDgF0xxR6SEbSslaH1Huwp2Ws18ZklUYzWjBpDYY04bj2kgKZnjcbABj80VZhZxEeKxEqRMvdRIlDtxrxR3mMQlEgox4CSbzMJrVRlMwnNaiGZjMoZw49otCooLbjLjLgntthN+O++24y4w7TBjLjFWNMjxM5LRoBo6mtWhGjaSxnIhkFZAEUDWMpXGHCXdZcI8V99pwlwW3GTGGwkwMEmQkKSgrwGQOJvIwmYepPMqJiJeQqgGAYUYaMxlwmxG3GzGHCTcbMOPfX2rsxXkJSCrkJcRLQFSQKCNZBco56eEwIwMwACjynNkzQ2LjfjxIUoAKC/4U3yvANdPNFRcRSveC6EJYFMnP/jDhGOWvMLRc8Y0NI6M/6Ope5HR8o3kGFOJbf7fi2vva1J1dyslh82eunVAQSUr2v581fmAxNa928mOlbe3S7tPW//f+83oCNcg9vg2mOfO/XzPePJL3dfJ/3G36+JVUU/lU7YZIfPmQuKWNWdlEtdbgJkYdikvbjqO8aLxn9YUXAhGQ3+wSXzmK0hwecAJN04YT5LQSw3WtU+zleSv6IkTKkT75YI/aG0G8hJkNZI2fXlhHtVSdT33PqVyQlWMDau/omBOSKHVSMysu6Gc+ixZMqL0RGM0AAHC3hajyklWegsbxZGCK0waiMMMDAHCbkajyTu0lfqvNsqr1/d2CwXHMaSJrfESpq6jDomiszaMwmQeqhjvMRIWbrPUVs04MEMieHmTCORjLIlHGrCzht5P1AdxdXBhMDWrDcXUojjI80BBmZoiAk6jxTuHJOKdyRdOG4zCcglkBAIBbWbzEQZS7z+fJKFB7OAVjWZjhAYbhVnZMhCZq5xSoGsyJZ4wnmsStxuJO5577FrwExoTkYjj7a0eKVuz76vxz6EG3L6cQIp/9cOlTV961a/z1niO/TsdPzlv3k+x//cF4z2pyWoGMsmpfhPvJRstX1k8YldTuMPezVy3/fesEz+REEBJe2C/vOW143zxyRhlM5qXXjsORlOnTVxec5k8GxrLStnblVAiJMuF30Ivr6QX1FzHKAAATORjJAAInylwX3JKqhyG+LOjdflnQu/3SowfdvpyQyKApfCZ+yuZ+KyHkYMezs1Y+rJ4KAoooqIIAALLGZ7i+Nf/TjZYv3XLWoaeNprnHNhnvXXMBFQQAYBi7fjE1t0backza0oZZWXp+Hf2Jq4qffuIeK/vBZcWm8yn4BJcFd+l/7To6Ov+a6EJYNLxaOu36YNffzgphKnJMkfPusiX8L7Ywq5qnKMpc2aLFs7lvv2i6fx1R6lLaBvgnd7C3LqJmVRZZOVnrIz9x1T/7Cjo6Ojo6k3gP7x26lCCXAIO5Kv9NgyefRejM6nTPkV/XtNwF8pJycphefN4MEmMY71jOrG7OP/K39Md+Kbywz3T/Onr59KmL6Ojo6OhcAv6VLUI+C49tz78tjxKZJdNc0RLVbbZXDZ16sXLG+myiMzK0a/aa70qvnabm1hRzoJtZ1cysakaicnEnqHR0dHR03kn+lYWQoDBnCf62bJZpbwuIFZhyYqhp2X/t3/gxs73q2I4vz1j8IEVZ+B0nTR9bW/yjdBXU0dHReVfxryyEDIs1trJvixB2b8nhZRalrcf1gdtnLH7g8NbPl9W/r2bWh5X2QcxAkXVv54kWHR0dHZ1LyTuyRtjV1XXfffe1trbOmzdv8t2vf/3rLpfLZrPdd999iqIAADiOu/32261Wq9fr/dnPfvZONOmfB3MaUIaHkUx1851X3vXGjCUPAYCJrxw1XD37cjdNR0dHR+cf5x0RQkEQpk2bdueddw4ODk64tWnTpscff/zIkSPDw8Pt7e2PPvooAOCb3/xmMpkcHR3duXPnww8/fOjQoXeiVf8sGEYtqJP3dZ69oHYEYTJHL6y/jI3S0dHR0fkneUeEsKWl5cEHH1ywYMHkW08++eTdd99dWVlptVo///nPP/nkk2MXH3roIaPROH369Ntuu23s4rsQZlWztOMkkhQAAJJV/vc7jbctvaiT6To6Ojo67zYu9SDe3d3d3HzmyF1zc3N3d3c2m41EIjNnzhx/cYonSJLEn8slC45DlDrJpnL+qZ0wnuUe20TU+qnWmktTtY6Ojo7OO8Sl3iyTSqXMZvPYvy0WiyzLwWAQAHA2Xo7FYkkkEucrnslk7rnnnvvuu2/8xR07dsyYMWPyh3me1zTtbdksgxCSZTmXy4FbWuEf9mQefg6fV4Pf1JrL5f75h/+Lkc+/PUdWdC4KvdsvC3q3X3oQQoIgQFhs3HCj0UgQF4jDdamF0OVyZTKZsX+n02mWZauqqgAA2Wx2TCDT6bTXOzGBzllsNtsf/vCHImON4jj+dsUaxTCMpmmLxQIsAHz2+n/+gf/a6NEXLwt6t18W9G6/xCCECIJ4e2ONXmrXaGNjY3t7+9i/29vbGxoajEZjWVnZhIuXuFU6Ojo6Ov9neUeEUJKkw4cPd3Z2qqp6+PDhjo4OAMDdd9+9f//+e++997e//W1bW1soFHrkkUfuvfdeAMC99977zW9+MxaL7d279/nnn7/nnnveiVbp6Ojo6OhM5h1xjUaj0fvvvx8AUFtbe//999fU1Dz33HPxeFySpCuuuOKrX/3qrbfeKorinXfe+fGPfxwA8MUvfjEajba0tNhstscee2zWrIn51nV0dHR0dN4h9HyERbHhOwebFhlrVjUV9WmEkKZi5MWFUtOyydxrz8sDp3CzzbTwSnbW0uLLQpHj39wq9Z0EANCVDaYF63CzrfjiSqhPPHVQTUYIs42pa2HqW4pMYAsAAAjJwW4lPAigRjr9dPWMvChd1KoJzGe0dAxjTaTDC/CLTm2KZAkQBEb8K8dIKgY9Md5lQe/2S4+ej/A9AH9wW/ovjyNFNs5fY7/pfowqKse33N+RePKbxvlr7Dffr6ai2c1/5A9td975AMZcOI2g0L4n/cJjTP0ctmUpwDCp8+jod+6zrL3NcsUtF9QzJTKUeelXSmTYOHs5XVqrZZOZDb+FIme79i52zoqpyyJF5vZuzO18CaMMdGUDhuP8gW1KeIBsXsxefQfpKpyd8SxqIszt2yQc2wX5POHwQiGHBJ5pmGNaeKWhcd7ULYf5DH90p3jyTXmwE6ky0jTC6mRqZrCzVxhmLLjAFAQhOdgtdR1TQn1aJgEIkrDYqbI6w7TZVKDmAj2GkDI6KPedVKJBJOQBAITDS5XVMbUzcaN56vdFmip1t0mdR+RQr5aOAwwj7R6qrM7QMJepm3nBGYAS7BU7j8hDXVo6BiDErQ46UMPUt9C1zRecBCBFlnqPywOn1NgI5DIYbSAcXrq0hqlrIZzn3Zg2vuVKsEcZ6ddSUaRpGEUTDi9dVkuVVAO8iLUVqCnhASU8qGUSSJUxiiEcHqqkmvKVFznfQpKgpqJIEpAsYQYjYXUSFkdRVZ99gixCPo80BSNp3Ggp8q/yreKKjBQZAIARRDF/kjrvOXSLsCiKtAiF4/vSL/6P+/5vEHZ3+rlHIZdzfezrFxynlFBf/JdftxIjlwAAHzFJREFUdtz5gKGxdewK0tT0Cz9XQr3uj38LN04138xuepo/uM1515foirfyQKmJcOqZHwGccH74PwmLo3BJhHI7X8pte9Z61Z2mJdeOb6TU3Zb+y+OE2Wa/9VOkp7Twm7bvyfzlcaq01nLlB+nyt2LraLlUavuL8oHN7Kyl1qvuIOyeAu8bHsht/ZPYddS0YJ1x3hoqUD12HXJZoX0Pt/dVKHLmK242zVszcdBBSOo7we3ZKJ4+ZGhayM5aytQ04yYrQEhNRqTuY/zhHcpIv7F1lXH+2vGtOlNvqI8/upM/sgOjDIbGuXRFA2FzA6hq6bgc7BFPHUKqYmxZZpi5mKluGj/OIlWReo+Lx/cJx/diFMPUziT9FWPfi5YclYe65f4OqryebVnKzlg4QVrG9E84uks4sY/ylTPT59EVDaTdgwDSklF5qFM8eUBNRoyzl7GzVzA1TecoIkJysEdo2y0c3QVw3DBjPl3ZSDr9gMC1TFIJ9oinDqnxEXbmEnbOCtlXbbWf811DLit2HBDa90jd7VRpDV3TRPkqcJMVyaKajCjDXWJXG2Gxs7OWGJoW0mX1E6RFjQyLnUfEjgNSfwfpCdCldYTTh5EkUmQ1EVaGu7VMkqmbyTTMZepmUb6Kc1QNQiU8IPW0iZ1H5b4ThN1NBWoIuxujaCSJaiqmhHohn2PqZjJ1LUxtM+mvHP8LRIqshPrkgQ6p76Q83A25LOn0YjSLMQYocDCXgnyO9JVTgRoqUE35Kginl7A4cKMFKTIUOC0TU2MjamRIGR1Wo8NqMgIQxFkzRtJIkaCQx2gD6fSTnhLSU0a6A4TDi5ttGEUBAJDAa7mkloqp8RE1FlJjI2oqCqA2pp1IVQGChMNLuvykO0C6A7LRZvb4cdYMSBLJEhTyWjquJSNqYlRLRtR0HOaSkM8DAACG4UYLbrYTVifh8JAOL25xEBYbzp6ZQkFJgHweZpNaLqVlEpDLQFFAAjd2FzOwGEFiBhNuNOMGE86aMJrBaMOEHzmCGhIFAACSRaSp4F8UYsn7rGXVb+MDdSEsimKEEIp85Nv3uu75Cl3VCAAAEMaf+Drp8tlv+cRUpbhs9If/brvhXnb28gm3MhueEDuPeD753cJaiFDq+Z8pwR73x75RwBEKYXbz09ybW5wfeoipm7jmqmUSqWd+BCXR+eGHSKevULNgbtdfclv/ZFp0tWX1rbjJevaO1Hcy+8pTkM/Zb/nE5CcDAHK5nInActuf5/a9apgx39i6mq6ajhuMWiYh9R7nD2xVRvrNK282L7v+fJNrqfd4fudfpO42w/RWuqaZMNuhJCihXvHkmxhFm5ZcZ1ywFjcUdoxoqSi3fzN/5HWgqXRlI+H0AQC0ZEQaPIVhBDtnhbF1FVVSVbCsMjoktO0WT+xXosNUSRVhcQAEtWxSGR2kSuvY5oXszCWkt2xyQaTI4unDwvG9YsdBnDFQgWrc4kCqoiVHlWAv6a9gZ68wzllJ2FwF61WTEeHI60LbbjU2QlXUj7mItXRMHu7BjWZ21lLjnBVUaW3h903H+KO7hLbdSniQrphGunwYQUGRU8IDWjLKTGthZy0zNC04O9qe224kD54Wju8TOw5oqSjpryRsboABmM8o4QGcYZlpcwwz5jPTZhfsbZjPiF1Hpc6jUu9xLZeivGUYawYAQC6jxsOE3cPUNhsa5jB1LeN/P2+1PJuSuo9JPe1yf4eaCBN2D24wAgC0XBpyGdJXwVQ10tVNdFUj6fRPsB2RLCmRQSXUp4QH1MiwmorCTBKKHEbROGvCrS7SXUL5Kih/JektJVwlY08e33I1OapGQ2osqMZHtVRU47JAVQAAmMFIWOyEw0u6S0hPKekpJRze8cWRLGmpqJoIq7GQGg+L0RFczEORA6qKUTRuNBM2N+H0kk4/4fITdg9hsZ95fQihkNfyaZhJqOm4loxouRTMpaHIjz0ZZww4a8atTsLqJKxO3GzDGPaspwGJAtIUKHBI4KCQhwKHFAnJ0oRexXACM7AAAIxiLnZ15r0CQgjUzzV7L+Bzuih0ISyKYoQwu+lpLRlx3PGFs1egkI8+8in7rZ8yzCgQbQ4AABCK/+ZrlK/MdsO9Be+f0cKPfws3288pp8jJPzwC+Zz73746ha9G7DySeuZHhhkLrGtvH7NUoMhz+17NvfacefkN1nW3T+2R0zKJ7OY/CEd30TVNlLcMSoLUewJoqmXtbaYF687nmzq7agL5PH9wq9C+Vw72IEnAzXamqpGds4JtWV7Mn6iWS4kdB+ShLshlMdpA+SsNDXOp0mJD+SijQ0qoR0vHAQCE3U2V1VG+iiLLQpFXRvphPg0wjLA4qUA1RjNFlURIjYWU0SGYTwOSIu0eqryusAgVrJfLysEeLR0DmnbWiiqybDYappMjWiqKoIbTLOkvpwI1xS+dQiGvhAdhNgkAwE0W0lt+PtkuXJzPq/EQEnkAAG60kp7ARbkQkaZqyciYJOAmK2l3/wOrxZcFfY3w0vNOrBHqQlgUG75zsGkhW7O6+XwfQLIU/vpd3s/9iHQHxl+X+k4kn/qO76H/KTgpzu/6K39ou+ezP5xiwMpuepo/+Jrzrv866/xU4yPJ33+fdPkcdzxwQUWBQj637Vlu/2bcbMdIUkuMMtPn2a7+MOkrn7rg+CdI3W1qPIzRBrqini6fNvXSjj40XBb0br8s6N1+6dE3y1xOlNFBAM4rhPzR1+nKxgkqCABgapqN81an/vRj1z1fmaAfSrAnu+UZ7+d+PPW03Xr1h6iSqsRvHqYrG6iyejUyJHYesV51p3n5DcXsNcBZs+19/2a77qNKZBho2sVO1ceecFFbWHV0dHTeW+iZE4oF5jNT3OX2bTIvuabgLeu1d2nZVG77C+MvarlU4slvOtZ/mnRf2NPNtizzf/kJtmU5UmVm2hz/l58wr7jxIk44AABwgiqpospq9T1vOjo6OhPQLcJiQcrEdemzqLGQlowYphfIQgwAwAjSdc9/R3/yHxjNmJffAADQUtH4418xLrqKbVlWZO0Ywxrnrf4Hmq2jo6OjMzW6EBYFhmGTN2idhT+4zdi6aorlfcLm8nz6e4nffoM/tJ10+cXOI9YrP2heefM701gdHR0dnYtAF8KiwAxGNTwIuWyBPS8I8Ydfd9395amfQLpKfF94TOw6CnMp2433XdSWPB0dHR2ddw5dCIuCdAdwzqnGQvQkIZQHTwOSosrqLvwUHD97ZF5HR0dH512CvlmmWEhPQBnpn3ydP7zD2Lrq0rdHR0dHR+dtQRfCYmEqG8WOAxMuIk3lj+7St7Ho6OjovHfRhbBYSH+l1N8BIBx/UTyxn/JXFI5SpqOjo6PzXkBfIywW3GQlnT6p7yRTN/PsxfyejabFhY8P/gPwORgfUUxWwuUnwcWcElRk1H9SigYVgIA7QFY3MQxb7BRHFlH3MSHUKwscpBjcW0bVtxhs7qICXEENDXbKQ51SJqEhiMw2oqSK9lShIkNt5DPaUKccH1G4LGQMmN1DltbS3nKqmBOSAgdHeuXEqMrnIIYDi53wllEl1RRBFlEYgXRcTUU1PqcRFGZgcaePtLqKjemVS2nZpCaLCMcBa8EdXpKii/q2FBlFhpRUVBV5CAAwmnGXn/KUkcW0GUGQGFUTYYXLQoQAa8adXtJTShJUcVVLKBFWc2lNFiFJYUYL4fQRJluxrww1kE2qfB4CBHACM1lxs524mFRdgMtofA6qCqJozGQjjBZ9Cq7zLkIXwovAMGuJcGzXWSFURvrVyNDkYNn/AJqKDmzJ956QPKVkPg0xDCy5zuKvLCpmbt8Jcf+mvK+cKq2lAQZGB5RD27nmReyspUacmGqsQhCcfJNv282X1dINc1mTjZBFGOqVN/5vyl9JzVtjtjrPO1BCDXQeEdre4GwusrqJmT6fxXEsl9KGu6XDO6TKxuysZSb7+dQUgeEe+eR+PhFWKxpofwVlshGSAJMRbe/GnCyhhrmGhrksay4wVmoqGjgldR0V4yNKoJr2lFEuPwkhyCa1tt3c6y+q5fVM7SxDaQ2NTSoNNTDSJ/efkoY7JZLG3CWk0YJrKhA4mAirEKKyOrqigSmtoclJwibyMNQjD3fLI/0yTgCbi2RYDELA52A6qtrcRFkdUzGNdpcWUHE+BwdPS4OnpWhQcZWQLj9lNOMIgGxS6z8pJaNqoJqubGQqptGMcWKjFQkFe+TB01KwRzZZcXeANNsJHAPpmNp3XExGVF8lVdXIVDQUCoWKQGJUHeqUhnvkdEx1ekmri6ANuCojLislRlWCxEpr6fJ6OlBNU8zEdmsqigwpI31yeFBJjqomK260EhgGoIbyGSgJ0FtG+SupkiraHSig5YqEokFldFAZHZTjYdXA4kYLTtKYLEIuAyFEnjLKX0H5Kmh3gCQnybkkwFhIjYWURFjNxNV8FqoyAgDgBGBNuMVB2Fykw0s4vKTVSZisxPivW5FQNqVlE1o6rmaTWj6jiRxSZKjKgDZgJI2ZrLjZRlgchNVJWOyE0YIzRnwsdK4iI4mH+QzMpbRcSsulNS4DReFM7QSJGYyYyUqY7YTFgVscBCAQQyHagI31mCwiIQ/zGS2fhvmMxuehyEFJgAAAHMdoA8YYcaMZN1lxo4UwWnCGxQgSow24IkFNBZIIRQ7yeSjkoSQgRUaKdMYFRVIYQWC0AaMNGMXgJIVRNEaQYHzXaRoYa6cswvGRMxEEivTWBZLG3iORXAuDEPJVorc1wpoea7Q4Nj+dblpkLHGlIz/4dMlXfzeW/STxxNeY2pnmK24Z/8lMQju4LS/kYW2zYfoCtpjKNQVt+WOGYbFlN1jH/qKGOqU9L+eaFxtnLjFOURBC8OamXKhPvuIWmzvw1pwmn9b2vZrPZ7QrbrY6fIXnOum4tuulLMVgS66z2M41hlQFndwvnNjH1882tCw3TjQuERg4JR3anjfbiHlrzOPrHSMZzw2fwk++KfjKqenz2ZKqtzRJEmDfCanjgECQoHmxsaaJmSzVibB6+rDQf1LyVVCVjYwnQBpMuCTAVFQL9kiDnbInQE6bw1Y00JMHXyEP+zuknnYxm9TK62hXCWmyEgCAXFqLh5SRftnuIatnMJWNjNk+cSTIJrVgtzzYKcVCitNLOv3k2ItzWS0RVvMZraSaLq+ny2rpCYYUhCA6rAx3S8PdMp+D3jLS7iYNRlzTEJeB0ZDCZ2FZPV09nSmtoyeP+LKIhrqkwVNSqE+2u0lXCWmy4hiO8VktMaomI6qvnKqazlQ0MJNnBmMyOXBKCvVKRgvmK2dMNhzHMVlC6bgaHVJoA1bRwJTX074KanJXp+NaqEca7pajQWUsNZDRggMMCHmYjmmpmOryk4EaOlBFu0snapUkoOiwEh6QRweVVEy1uQirk2AMOACAz8NsQs1nobuELKmi/ZWUp5SaILRCHkaDSmRIGR1SUhHVaMWtDoJiMICAwMFcWpNF5A5Q3jLSVULZ3YTZToyZ3VBDQh5mU1omPpbmSMskVJFDtAGjaAxqSBIRBoDFQdhchNVF2lyE2YYbTDjFYBSNySJSZMRlYT6tjVn2+bTG56DIw7GBkKQwgwk3WXGLg7A4CKuDMFlxxoiP1a4qSBJQPqONFc+lYC6jyAKQxTGRxhgWY0242UaY7bjZToxlTBr7IUGIZBGJPBTykMtCPqvxeSgJSFORLEKKwQkCMCx+Ns+SwYiRNEYzZ750VUGahmQByRJUJKTISFWQpgJVeWsAJwgwNoejGfyckQcDYwPLmUfJCGrgPU19K/AG3s4Qr7oQFsWYEJbV0cnffZf0BKzXfIQ/8np209O+h/5nfNjrfFrb8ERq1lKj008e3s6Z7cTKm60XqB+B7S9kcAKb8EkuC7f8MV1SRS+8ylzwCaqMtr+QQRCsXm+bPJ0HAHQfEw9szTctZGcuMY7XDKih43uFE/v51lWmxlb2fD5YIQ+PvM71d0i1zUz5NMbiIEQeRoeV7mMiQYLW1eayusLZTcfCEKsy6m4Tu44K2aTm9JE4gYk8zKW08nqmsdVQUn2BzKiKjAZPScEeORlRRQ7SLGZzkaU1dNV0xmi9sFeNy2jBXjkVUfk8BACYbYTTT5bW0AWtzAmoMoqPqMmoKgkQw4DRjDv9lNNHFjOJHhvfMwlNEiBBYEYr7vKT7hJqsnk6GU1F8RE1GVG5LEQIGc24w0d6y6jJ2jkZCMFwT0bI0vmMhhAgKczuJr1lZJHOT6ihxKiaiWt8DgIADCbc5iJcJQUMtYKoCkpF1VxKkyUEAGBNuNVB2NxF9Rj4u981n4HK34ub7bjZRhS/OgA1IIlQlRGOA5rFi/RUvy3oQbcvPXr2icsvhFomEf3x56iSSiXU677/WxOyAm36fTpQQ89aagQAaCra/HTGU0rOXzdVFp72Pfzgaenau+yT7RtZRFufSRstxIqbLBPu8lm49U9pp59aer1likzdXEbbvykfH1GnzTX4yikAQGRY6ToquvzkoqvNk62iAk/Iwu5jQnhAyWc0xoC7SsiaZqakaioZmzA0iBxMxzWoIYbFHV5iam+tzj+MPiJfFvRuv/To2ScuP4TN5XvgMam3na5uJqznJAQP9cpcRmtefMaZSZDYmg9Y//J4yldBFV7CASAyrJzYx9/4MWfB7RK0Abv6w/Y3/prb8ERq+Y1Wl//MlzXQIe17Nde00Dhr2VSOUwCAyUasuc2WCKs97eKxN3gAgMtPrr3N5iop9ns3WfHZK0yzVxT58QIYTLjfpO+M0NHRefeiC+FFg5ttbEuBDTLtu/nZK0zj7TPGiK+61brtT5kb/QWcVJKAXv9zdtn7LKbz+/oIErvi/dauo+KWP6QtDsJowZOjKkFhq9fbfBXFpp92lZCukmJzw+ro6Oj8X0MXwmLhs1OtL6djajquVjcZJlz3llEzFxu3v5Cd4PxEEOx8MVM94zz7/c5l2hxD7UwmMqRIAmpZRhRvz+no6OjoXBDdZ1Us6fhUQth5RJw2hy24O2DmEqPJir/x1xw6exYfgb2v5DQNzFtbrKFGkFighq5uYnQV1NHR0Xl70YWwWAQOnu8W1EDvcbF+9kRz8AwYWHmTVRLg5j+ko0ElFlK2/imTjqlrb7NNsc9FR0dHR+fSoJsXxTL+vM4EQr2y1UlMcfycoLB1d9hP7uf3bMghAGqbDTOXsPr+SR0dHZ13A7oQFoumnlcIe4+LtTPPYw7+HRwHM5dc4IC8jo6Ojs6lR/fNFUsmrqFCzlFVRsPdUvWMC+950dHR0dH5/+3daUwTbwIG8BcGKHJ0aMHWwkKrKBARr0W8UTcrXiGAimLwiNEvxBgTY0AxaDzQeMXgFQ1uQoyQgPcBGsNl1qjrEUsXGqHKqgXlEGsplpar+2E2/RP/rkJAXjrz/D7NDEP7tJnMk5npzDsMoQj7qvVLt/HLD34v877aKg90dcetcgAAjgm7775xIoQQs+kHRVj7b+uYX50XBQCAYQtF2CeMi5OLq1P9247vllu+9TTqO1RhOC8KAOCoUIR9ogwV/T2J1eu+L8I3GktQqOjPo/YAAICjQBH2ybjJ7orRbh3tPYamrj+W2v53Hz29XAAAMFAowr5ydiZjItzfaiz2JfW1Hc7OpI/D5wIAwPCEIuyHsKkjatQW+w2FFf80475AAABHhyLsB7EvIwt0rfpXOyHkP1qrxdzzy/voAQBgmMOTZfonaqHX3X8YLN963lRYFq5h+zLyOAAADGfYkfePWMos2eDDuDjFJPuM/AuuDgIAODwcEfabROby17/hewMA4AkcEQIAgKChCAEAQNBQhAAAIGh8LsKnT59+/PiRdgrBKSkpMZlMtFMIzs2bN2lHEJy2trbi4mLaKQSnoaHhyZMng/uafC7CkydPPn/+nHYKwUlNTa2vr6edQnA2bNjQ0/OjATPht/n06dOOHTtopxCcly9fHj9+fHBfk89FCAAA8EsoQgAAEDQnm81GO0M/pKSkqNVqX1/fvqxcVVWlUCikUunvTgW9vXjxIjw8fMQIDMoxpB49ejRnzhzaKYSlvb29qqoqMjKSdhBhMRgM9fX1EyZM6OP6p0+fHj169M/XcbAiNJlMDx8+pJ0CAAAcQ3R0tFgs/vk6DlaEAAAAgwvXCAEAQNBQhAAAIGgoQgAAEDQUIQAACBo/hxPq7u7OzMwsLCxkWTY9PX3+/Pm0EwlCRkZGdXU1N61UKo8dO0Y3D4/V1tbeuHGjoqIiICDg8OHD3EK9Xp+WllZTUxMREXHkyBGZTEY3JP/odLpbt25pNBqlUnngwAFCiNVqXbdunX2F2NjY3rMwKPLz869evfru3TuFQrF169aFCxcSQiorK3fv3l1fXz937tyDBw96enoO5C34eUR4/PjxGzdunD9/fv369XFxcXV1dbQTCUJpaWlwcHBiYmJiYmJMTAztOHz24sULrVbb1dVVUlJiXxgfHy+TyS5dusQwzJo1ayjG46tnz569fv3aarWWlZVxS7q6uq5cuRIfH89t9pMmTaKbkJfu378fFxd34cKF2NjYuLi458+fWyyWmJiY2bNn5+Tk1NTUbNu2baDvYeOjwMDAwsJCbnrFihX79u2jm0cgZs2adefOHdopBOTSpUvTpk3jph8/fiyRSDo6Omw2W1tb24gRI7RaLdV0vJWdnT179mxuuq2tjRBisVjoRhKOpUuXHjp0KDc3NyIiglui0+nc3d0NBsNAXpaHR4Rfv37V6/VRUVHcbFRUVEVFBd1IwnHkyJFly5alpaU1NTXRziIsGo1mypQprq6uhBBPT8/x48drNBraoYRi9erVK1asyMrK6uzspJ2Fzzo6OrRabUhIiEajse/hx44d6+HhUVNTM5BX5uE1Qm4X7OPjw81KJBLslIfG2rVr/f39XVxccnJyZsyYUVFR4e3tTTuUUDQ1Ndm3eUKIVCptbGykmEcgXFxcMjMzp06dajQaMzMznz17lpubSzsUb+3YsSMoKCghIaGwsLD3szMlEskAt3YeFiHLsoQQs9nMPVanra2t9w4Cfp+UlBRuYvHixSEhIffv309MTKQbSThYljWbzfZZk8mEzX4IiESi9PR0bnry5MlhYWFnz57FN/87HDhwoKysrLy83NnZedC3dh6eGvXz8/P09NTpdNysTqdTqVRUEwkOwzByudxoNNIOIiAqlcq+zff09NTW1mKzH2L+/v6EEGz2v8PRo0fz8vKKi4u5ERd6b+0Gg+HLly8D3Np5WIQMwyQlJZ06dYoQ8vHjx2vXriUnJ9MOxX+tra1arZabvn379qtXrzAYwlBatGiR0WgsKioihOTn53t4eOD7HwJv375tbm4mhHR1de3fvz84ODgoKIh2KL7JysrKzs4uKSmRy+XcklWrVj1+/Jj78ce5c+dmzZoVGBg4oPcYjB/yDDufPn2aPn16QECAj49PRkYG7TiCoNfr5XK5r6+vTCYLCAjIy8ujnYjPSktLJb0kJSXZbLa7d+/KZLIxY8b4+/uXl5fTzshD9+7d6/21r1+/vqCgwNvbOyAgwNvbOyoqSq1W087IQ+PGjev9taemptpstuzsbIlEolKpQkJCKisrB/gWfB59orGx0dvb28PDg3YQAWlubnZycvLz86MdRKA6Ozubm5vlcjnDMLSzCEVnZ+fnz5/FYvEA7+mG/rJarS0tLQqFwsnJaYAvxeciBAAA+CUeXiMEAADoOxQhAAAIGooQAAAEDUUIAACChiIEAABBQxECAICgoQgBHIxarc7Ly6OdAoA/cB8hwPCyZ8+ey5cv/7+/7ty5s66u7sSJE9++fRvKVAA8xsPRJwAc2syZM93c3LjpV69eXb9+ffPmzUqlklsSERERFhbm5eVFLyAA3+CIEGD4ysnJ2bhx48OHD6Ojo3++ZlNTE8uyIpGIm+3u7jYYDH9+1l1nZ2dLS4tYLMajBwHscI0QwMEcO3YsODiYEJKenh4aGlpaWhocHCyXy1mW3b9/PyHkzJkzMpls5MiRo0aN4sajIIS0t7dv27bNz89PoVCIxeIlS5bo9XqaHwNg2MCpUQAHYzKZGhoaCCHt7e11dXVbtmw5ePDg2LFjL168uHfvXr1eX1lZmZeX5+XltWvXruTk5Hfv3onF4pUrVz59+vTo0aNz5sz58OHD9u3bY2Ji1Gq1/SASQLBQhAAOzGw2nzt3bsGCBYSQiRMn5ufnFxQU1NbWcuOXnjx5MjIysry83MPDo6io6Pr16wkJCYSQ8PBwpVIZHh5+586dlStXUv4MALShCAEcmLu7+7x587hpkUikUqmkUinXgoSQ0NBQQoher3///j3DMCKRqLi42P6/YrG4srISRQiAIgRwYCzLOjv/caXfzc1NIpH0niWEWK3WxsZGm822du3a3v/LMIzRaByyqADDFooQgP9YlnV1dW1oaLDfmAEAdvjVKAD/zZs3z2q13rp1i3YQgOEIR4QA/JeQkDB9+vSUlBSz2bx06VKRSPTmzZurV68uX748MjKSdjoAynBECMB/DMPcu3dv8eLFmzZtkslkLMtGRkY+ePDA09OTdjQA+vBkGYDhy2az9fT0MAzz3UKbzdb7NzJ919raWl1d7ebmFhgYKJVKBykmgGNDEQIAgKDh1CgAAAgaihAAAAQNRQgAAIKGIgQAAEFDEQIAgKChCAEAQND+C08IlQxXbNPsAAAAAElFTkSuQmCC" }, "metadata": {}, "execution_count": 20 } ], "cell_type": "code", "source": [ "p = plot()\n", "for b in get_components(Bus, sys)\n", " voltage_series = get_voltagemag_series(sim, get_number(b))\n", " plot!(\n", " p,\n", " voltage_series;\n", " xlabel = \"Time\",\n", " ylabel = \"Voltage Magnitude [pu]\",\n", " label = \"Bus - $(get_name(b))\",\n", " )\n", "end\n", "img = DisplayAs.PNG(p) # This line is only needed because of literate use display(p) when running locally" ], "metadata": {}, "execution_count": 20 }, { "cell_type": "markdown", "source": [ "We can also explore the frequency of the different static generators and storage" ], "metadata": {} }, { "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "DisplayAs.Showable{MIME{Symbol(\"image/png\")}}(Plot{Plots.GRBackend() n=5})", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wURfsA8GfL9Vy/9B6SQAIhQAAJRHoIKNJ9kSKICHaKKLZXpP1UROwgTXxVFESkoyJdVIoECEmA9EJ6uSTXb9v8/lg8Y0RAvBCV+f7h53Zvdnf2OPPczM7MQyCEAMMwDMNuV2RbVwDDMAzD2hIOhBiGYdhtDQdCDMMw7LaGAyGGYRh2W8OBEMMwDLut4UCIYRiG3dZwIMQwDMNuazgQYhiGYbc1HAgxDMOw2xoOhBiGYdht7V8bCCsqKmpra2+wMM/zrVoZzAMhhFf1u2XwF/uWQQgJgtDWtbhdeP2L/a8NhMuXL9+4ceMNFnY4HK1aGcyD4ziGYdq6FrcL/MW+ZXiex1/sW8brX+x/bSDEMAzDsBuBAyGGYRh2W8OBEMMwDLut4UCIYRiG3dZwIGwtAs+2dRUwDMOw68OBsLWYq862dRUwDMOw68OBsLXUlv3Y1lXAMAzDrg8HwtZiqbvodprbuhYYhmHYdeBA2FrcjnqrObeta4FhGIZdB93WFfjXcjlqbQ2FpuBenj2Cy0HKlW1YJQy7nVVXVxcWFrbSyXme53leKpW20vkxUUhISGhoqNdPiwNha2Fcjazb6tlEPFez/DH9fXNlMYltWCsMu2199dVXixcvjoyMbOuKYDepvLx8ypQpS5cu9fqZcSBsLTzn5Fi7Z5Mty+fqq5znjuFAiGFtZcyYMatWrWrrWmA3aenSpS6XqzXOjJ8RthaBc3OMzbPJVpVSBj+2srjNKoRhGIZdDQ6ErQIhXhBYnv91NXreXC2P7crVV7ZhrTAMw7Dfw4GwVfCcGwAE7tdWPG8xS0NjBbsFcXjFGQzDsL8RHAhbhbi+Gs83D4QNlM5IavSCpaHt6oVhGIa1hANhq0ACAwBCs65Rwd5IqrSUxsBb6tuuXhiGYVhLOBC2CkHg4Lfrbgt2K6nSUGo9b8UtQgzDsL8RHAhbxZWu0WbPCAWHlVSqSZVWsDa2Xb0wDMOwlnAgbBVIbBEK3C/bSHDaSYWK9NHy9qa2rBmGYRj2WzgQtgpBYOGXJ4UAgBgXIZECSZEqjWC3XvNQDMOwvxebzcZx3PXL/WPhQNgqxK5RzzNCzyqjpEoj2C1tWTMMw24/6enpb7/99k0c+NFHHxmNxpCQEI1GM2LECLP5Nxl1nE7ngw8+2LlzZ4PBcOnSJS9Vtg3gQNgqEOIIkvaMGhVcdkKuAgBKpRYcuEWIYdgtVVBQsHfv3ps4sF+/frm5uY2NjdXV1U6n8+WXX25RICEh4f3337dYLDzPe6OmbQMHwlYhCBxFyz3PCJHLQcoUAEAo1ILDds1DMQz792toaJg8eXJERERaWtqaNWsWLVoEACdOnBgyZEh4ePhdd9118eJFAHj33Xc//PDDKVOmhIaGDh8+vKKiAgAKCwvHjh0bFRWVkpJy5MgRANi1a9eiRYtmzZoVGhq6devWH374ITU1NTQ0tGvXrh988EFNTc3SpUvPnDmTmpo6duxYALh06dLdd98dERExaNCgU6dOAcDXX3+9YMGCuXPnhoWFff755556RkVFGY1GAFCr1X369Kmurm5+FwqFYu7cuX379v1T915SUjJ8+HCW/XVQ/aZNmxYuXHhzn6RX4EW3WwUSeIqWi08KAQC5nYRcAQCkErcIMezvghOgxoVuwYX85AT920bH448/LpFIsrOzi4qK7rrrrh49ehQVFY0cOfKLL77o3bv3jh07hg8fnp2dnZOTs23bti+//HLlypWPPfbYyy+//Pbbbw8cOHDJkiWbNm06ffr0mDFjTp8+ffny5VdeeWXdunULFy6kKKqoqOjtt99u3759QUHBPffcExcXN3fu3I8//njLli0EQTidziFDhsybN2/r1q07duxIS0vLzc0tLy9ftmzZqlWrXnrpJZL8TV3Ly8v37t1bWVm5devWjz/++K9/Ghs2bJDJZBKJxLOnc+fODz300Ny5c7Va7V8//03AgbBVIIGjaDn6pUUouF2kVA4ApNIHOXEgxLC/hUtNaMg3t2IMyPfD6WgN4dnkeX7r1q2FhYUqlapTp07333//pUuXNmzYMGLEiMTExKampu7duysUivT0dAC49957U1JSAOCBBx6YP3/+rl27xNahzWYLCAhITk7+5ptvAKB79+5TpkwRz9+lS5fCwsLdu3fX1tZGRkZ+//33HTp0kEgker0eAL755huFQjF79mwAmDBhwurVq3fu3AkAnTt3nj59ungGhBAAEAQBAFarNT09vaKiQiqVUhTV4t1ru2rJQ4cOiQ1Tl8tlNpuDgoI6duyoUChOnDiRlpb21z7pm4QDYatAiKdoOcdcScOE3E5CpgQAUuGDu0Yx7G+ik56omCi5fjlva2ho4DguICBA3AwKCrp06dLly5d//PHH//znP+LOwMBAcaCmn5+fuEepVDocjtLS0oKCAk8xAJDL5QzDNE9Xu3Llyrfffnv06NFGo5HjuIaG3yziUVlZGRYW5tmMjIwsLy8PCgrynGHw4MFif+lHH300duzYDh06rFmzBgBWrFjx6KOPjh49WswIOGHCBHH/H5k/f/7q1asBYPbs2UuWLPHsv3z5cnBwMAAcO3bspZdeOnHiBACEhISUlpb+mU/Rm3AgbBVI4ClKxghXpgwixkXI5ABASKQAgFhGfIFh2G3IaDT6+Pjk5OR07NgRAMTxlmFhYSRJbtiwoXnJLVu2tDg2LCwsNDR0//79zXeuXLmyeX/m+++//8knnyQnJwNAZmYmAFAUJQiC+G5wcHBxcTFCSGyoFRQU9O3bl+d5zxkOHDhw1WrHxsbW1NTMnz9//vz5N3Kbr7/++uuvv37V2xdjc3l5ufjUEwDMZrPJZLqR07YGPFimVQgCR9GKZl2jTrFrFMRGodP+x4diGPYvRxDEY4899vDDDx89enTDhg3bt28HgOnTp+/YsWPjxo1ms7msrOzDDz+0WK4y1WrkyJF1dXVLly6tra2tqqratm1bXl5eizJGo/HQoUM2m23btm27du0CgIiIiEuXLv34448ZGRn9+/fneX758uV1dXUbNmy4cOHCqFGj/qiq69ev//HHH4uKig4dOvTSSy/9vuSxY8cOHDiAEDpx4sSBAweaD4H5I0OGDPn0008rKio+++wzg8HwzTff7Nixo66u7s8OuvGi1gqEJ0+efPDBB7t27Tpu3LgWb/E8P2vWLKPR6O/v72kvV1dX33XXXWq1OiYmRvyXE0+SmJioVqt79+4t/mg6evRou2YOHjzYSvX/ixDiSVrmCYSIZQipTHxNKFTIiXtHMey29sorr9x7773vvfdeQUHBo48+ajQaw8PDv//++127dvXp02fkyJEZGRkSiaR9+/aRkZHiIVqtNjk5WalUHjt2rLi4eNCgQUOGDNm9e7dCoQgNDe3UqZPn5B988MHhw4e7dev27bffvvbaa7GxsUlJSc8999wbb7yxePFimUx24MCB06dP9+3bd/v27YcPHzYYDMHBwZ07d/59Pd1u9/PPP5+amrpgwYJJkya9+uqrLQqsXLly2bJlAwcO3Lx587JlyxwOx3Xv/cUXX4yJiRk8eHCPHj02bty4ePHi1157bfPmzeLw1LaBWsd33323YsWKuXPnJicnt3hr1apViYmJtbW1xcXFoaGhe/bsQQiNHz9+2rRpLpfru+++U6vVNTU1LMuGhISsXbuWYZjFixd369YNIfT1118nJiYW/MJut/9RBebMmfPmm2/eYG0tFsvN3ujVleXu+WHbxO3vRoibjbs3WPZvFl9Xr5jlLr7o3cv9gzAM43K52roWtwuvf7H/0VauXPnoo4+2dS2usNlsgiAghFwuV58+fdavX9/WNfoHWLJkyYsvvoha4YvdWi3C1NTUp556KiEh4fdvffjhh3PnzjWZTOHh4TNnzvzwww8bGhq2bdv20ksvyWSy1NTUO+644/PPP9+3bx9FUTNmzJBIJM8880xubu65c+cAQC6XR/1CqVS2Uv3/IiRwJC1DwpUZpohxEb92japw1yiG3eaOHDnSrl27IUOGtGvXLiQkxDPgE2sTbTBYJicnx9OK79Sp0xdffFFUVCSTyTw9AAkJCXl5eYIgeIrJ5fKYmJjc3Fy1Wn3hwoWoqCidTjdu3Lhnnnmm+WSUFnieb9FhfY3C3oUQT1HNJtQzrt92jeJAiGG3tbvvvjslJaWqqiogIKCtJs9hHrc6ELIsa7PZ1Gq1uKnRaOrq6sxms4+Pj6eMRqO5dOmSwWBosbO+vr5nz5579uyJjo7OycmZOXOmy+VavHjxVS/EMMyzzz77/PPPN9+ZkZHRfJCxh83m5Yd2TqeD4wWCIC2WRoKgGLsNCSBYrQDAUxJHk5mz3qazCVmWFQSBYZjrF8X+Mq9/sf/RXC7X9QvdQlqtFofAP4thGKvV+qe+2EqlUpz+eA23OhBKJBKNRuMZDdXU1OTr62symazNAkNjY6Ovr6/RaGyx02QyRUREREREAEBQUND//d//vfTSS38UCKVS6RtvvDF37twbrJgnNnuFWSqRyuQESfmolCQlZUBQqDUKtRoAeLWOAsG7l/sHEQOhTCZr64rcLm7bb9rvyeXytq4C9ldJpVLxK+3dL3YbTJ9o3769OLUFADIzM2NjYyMiIliWLSgoaL4zNjY2MzMTIQQATqczPz+/ffv2zc9D07RnZszfDUI8QVAkKbmSj4llCMmVP/2kXIlc1x9YhWEYht0arRUIm5qa0tPTS0pKbDZbenp6QUGBy+UaN25caWnp9OnT33zzzcrKyry8vLVr1z700EPiA7+FCxfa7fY9e/acPn164sSJqampBEGsWrXK5XK98sor8fHxnTt3/vrrr7Oysmw22+nTpxcsWDB69OhWqv9fhBAiCIKkaIHnAAAxbs8MelKuxINlMAy7lS5duvTFF1/cxIEMw8yePTs8PDwwMHDcuHGe+e8eb7311rhx47p373706FFv1LRttFYgzMrKevjhh/fs2SOVSh9++OEPPvgAIVRUVMQwzIwZM4YNG5aUlDRo0KDZs2cPHToUAN555x2HwxEeHv7cc89t2bLFaDTSNL19+/ZPPvkkODj4xx9/3LRpEwDk5eWNHTs2NDR08uTJo0eP/qN+0bblqHbXZZgJkiYICiEeWswjlKtwixDDsFvp/Pnz69evv4kD33rrre+///7kyZP5+flSqfTJJ59sUaCiomLo0KHV1dWNjY3eqGnbaK1nhH369Dl9+nSLneIasnC1pXdMJtNXX33Vony3bt1OnjzZfM/s2bPFtWL/zmrTGxvyLCY/kiBpdKVr1NW8a1Rw40CIYbc1t9u9ePHiY8eOxcXFpaamFhcXP/3004WFha+88kpubm58fPzChQsDAgLWr1+v1WrPnz9/+PDhhISE1157TavVms1mMa1ScHDwiy++GB8fv2/fvosXL/I8v2PHjhdeeCE4OPidd97JyckxmUwPPfRQr1693nrrraKiov/85z9qtfrDDz+sqalZuHBhVlZWdHT0ggULIiIiDh48eO7cOZqmv/rqq6effnrEiBFiPfPz8wcMGCAuizpq1ChxldHmli9f7vnvDWJZdtq0acuWLRNXHAWAo0eP7tu375VXXvHCJ3tT8BJr3uescQPwnAMRJC1OJUQsS9BXukYJ/IwQw257Tz311NmzZ9esWTNixIg5c+YcP368pqamT58+KSkp69evF6cYchx39uzZOXPmiMteFxcXL1y4kGXZvn37GgyGtWvXDh8+fNCgQfX19fn5+S+99JLdbn///fc7d+7c1NQ0bty4//3vf+JCboWFhSNHjgwPD3/22WdnzZrFcdyAAQNUKtWaNWtiY2OTk5OtVmthYeHChQvr6+vffffdbt26eeo5bdq03bt379y58/Dhw2+99dZjjz321+999+7dJ06cCAoK8uyJj49/8803S0pK/vrJbw5edNv73E2sxIfi3YgkaXEqIeKY3zwjdOFnhBjW9tjyguoVLfv6WkPAs2to/18nbgmC8NFHH2VkZMTExMTFxd13331FRUViYHvggQcA4Jlnnvn000/FLrS777570qRJADBnzpwFCxbs3r1bo9H897//BYDY2Nhdu3aJa1LGxsYuWLBAPH9wcLDVas3NzSVJMjk5+eDBg+3atdNoNElJSQBw8OBBu92+bNkykiTj4uK2bdu2bds2AIiIiPj9w6aOHTt27dp1/vz5Go0GAAYOHPjXP41vvvlGHALi2ePr69uxY8d9+/bNnDnzr5//JuBA6H2MhZMGkoKbIAgaIQ4AEPvrYBlCpkAuZ5tWEMMwAABJcLuQN3bfiiuRv5nHZjabXS6XZwmRyMjIoqKi/Pz83bt3Hzp0qHkxAPCkTBInnuXn52dlZbVr185TrHfv3iRJRkdHe/Zs3bp13rx5ffr0UavVRUVFoaGhzcuXlJTExMR4ck3ExcWVlJQEBgZ6zjB69GgxBq9cuXLr1q3ixG6CINauXTtixIjXX3/9iSeeAIAePXr8/nlWcxs2bBDzzg8dOnTt2rWe/UVFRYMGDQKA4uLinj171tTUAEB4eHhRUdENfZitAAdC7+McvFRNuqyIlP4yavS30ycE3DWKYX8T5HWmWrcGg8Egk8lKS0ujoqIAQOwSDAgIuO+++1auXNm85J49e1ocGxAQkJSUdPjw4eY7V65c2XzO+KJFiz766COx9fbQQw8BAEmS4lQ0APDz86usrPQUrqio6N27NwB4zvDJJ5+IqRB9fHwWLFjw1FNPia23AQMGPPLIIwMGDMjIyAAAmr5O+Jg0aZI4sF8q/U3WOa1Wa7fbAUAcYuN2u2UymdVq1el01z5h68HPCL0M8UjgEK0iftMi5FiCluT8/B7PufEzQgy7zZEkOXny5Keeeqq4uPjgwYOff/45AEyePHnTpk3ff/89APA8f+DAATFatHD33XdfvHjxk08+EQPbzz//fPny5RZlpFKp2LpKT0//8ssvASAoKKiwsLC8vLyxsbFfv361tbXiOPwDBw6cPHly+PDhzQ9Xq9V6vV6v10skEjFBhNVq5Xl+zZo1CQkJnnfFKe0VFRWFhYUsy1ZXVxcWFrrdbs95ZDKZWFKlUjU/f0pKyq5du1wu1/bt28W8C2VlZSdOnLjzzju98OHeFBwIvYxz8rScJKXAM0CQFBJ4xLEESTnt1Vk/vNpQnUHKlALjhF9+nWEYdht6991327VrN378+I8++ujBBx/UarWdOnXasmXL/Pnz/fz8wsLC3nvvPYSQyWTS6/XiIXK5PDQ01Gg07t+/f+PGjUFBQQEBAc8++6zb7dZqtZ5E9gDw5ptvvv7660FBQS+88MITTzxhNBqTk5PHjBkzcuTIQYMGqdXq3bt3v/POO35+fvPmzfvqq6+Cg4M1Go2/v//v6/naa6+ZTKaYmJiAgIBz585t3ry5RYGnnnpKfOC3bNmy1NTUixcvXvfeH3744bi4uNDQ0FOnTm3btu2///1v9+7dZ8+eLTZM2wTuGvUy3i1QcoqgkcAARdKCwCGOISQyW2MRALLU55iCexISGWJchEzR1pXFMKxtyGSyFStWAABCaPjw4WlpaQAwePDgwYMHNy+2aNEiz+uuXbt+9913AJCQkCC+8IiOjp48ebJns1+/fjk5OS2u+MYbb3he9+zZ88SJE83fHT9+/Pjx439fT4PB8Nlnn13jRn4fGq9LqVQ2n91/I7GzteFA6GW8S6DkJCUBniVokkYCh1iGkEhd9ioAcNrK4ZfHhBQOhBh2u9q+ffu7774bHR2dkZEhl8vFJ3lYW8GB0Mt4N0/JKCARIRAEkAjxwLJASxhXI0XLXLYauDJw1AHatkvHjGFYmxozZkxcXFxFRcWcOXM6duzoGcOJtQkcCL2MdwuUjERIoKQUQhQSeMSzBC1hnGYfXTu3ywx4cRkMu+0RBBEfHx8fH9/WFcEA8GAZr+MZREkJhHhSIgFEIYETh4yyjFWlDWOcZsCLy2AYhv2d4EDoZTzDk1ISIZ6SUsCTAuIRyxC0lGNsSm0o42oAPJUQwzDs7wR3jXqZwCBKQiIkUBJaEFuEAktIJBzjUOtjGFfTuXokR6owl8NZy9Scbgi60yjxwf8KGIa1osuXLxcVFfXt2/fPHlheXv7ll1+eO3dOpVK1mOwPAE1NTZs2bUpPT29qavr888+vO8X+bwu3CL1MYAVSSgJClJRCAoEEHjgWaAnH2pWaYNbdmPYtt7daVmm2X/pfqbXUmfNpy8mwGIZh3nX8+PElS5bcxIEXLlw4d+6cRCLZu3fv798tLy8/evSowWD48ssv/7Zp0m/EPzWA/20JjEBKCCTwpIwmGEr45Rkhx9ikcj0P9AA/Vwe3KiMPIgE6zgg/83p+U4Fd2051/VNjGPZvgRBat27d999/Hx8ff+edd5aUlEyePLmhoeH999/Py8uLi4ubPXu2UqncsWOHj49Pfn7+sWPHOnfuPHfuXKlU6na7V69eLaZhmj17tr+///Hjx4uLiyUSyY4dO2bOnBkaGvrxxx/n5+cbDIYHHnggKirq888/z8/Pf+6555RK5YIFCxwOx3vvvZednd2uXbtZs2bp9fpTp07l5uaqVKpt27ZNmzbNs7h2ampqamrqvn379u/f//u7iI+P37RpU2FhYYu0etdWUFDwxRdfvPDCC549n332WWBgoFdW9L45uEXoZTyLKCmJQKAlNOIohK4EQp5zUhKlm9Tc5W+N91cyNQpDZw1BEkEpxqrjDW1dawzDbqmXX355/fr1999/v06nmzRp0vbt2y0WS/fu3Xmenzp1akVFxbBhwxBC+/fvnzZtWn19/cSJE7dt27Z06VJBENLS0rKzsydPnqzVapOTk+12+5kzZ+bMmfPtt9+OHz8+ICDg4sWL/v7+Dz74YOfOndPS0sRFTdVqdVJSUmJiIkIoLS0tIyNj0qRJ1dXVycnJbrc7IyNj3rx5O3fuvPfee5snSGoNK1euzM/Pb77HbreL+TTaCm4RepnACqSaRgxPyWixaxRxDEFLONZJ0fImpE7RWH21KgOjNvspwwF8u2pLvqkWJ120dd0x7PZS3HT5+SM302H4Z60YtDjIJ8CziRB65513xEYeAGRlZVVXV69bt65nz55iuoaBAwe2b9/+3LlzANC/f/8XX3wRAARBePXVV5OTkxsbG9esWUMQRGpq6vHjx3fs2AEARqNx3bp14urYsbGxAFBbWxsREXH33Xfv27evV69emZmZ9957LwD88MMP+fn5Bw8elEqlQ4YMSUhI2L59OwBoNJoNGzbcghmNO3bsWLZsWfM9d91118MPP1xVVSVmAL71cCD0MoFDJE2AG5FSCnhKEDjgWKClvNvlRAobaIOkFkKqVHKqn0h5VwBaRWkileYLVt+u2rauO4bdXoLVgSsGtczA1xr8lL7NN+vr661Wa1xcnLjZsWPH6urq7Ozsffv2efIlVVZWFhYWwi9RDQBMJlNDQ0N2dnZ+fr4nZVJ9fX1SUpLBYOjYsaMnw9/Ro0dnzJjh5+dnNBrFDtLw8HDP1fPz8zt27ChmhCAIolu3bnl5eQEBAfHx8WIUfOSRR7KysgBg0aJFYr6k5pYuXfrtt98CwIwZM6ZOnXqNu3766afFhdzmz5/vSXnPMExJSYmYduPzzz8/e/bs8uXLg4OD5XK5WI0/87l6DQ6EXiawAiEhEOIpqQRxxJVFt2kJb3Pm2+WERMMxVrfLh6TtP5iJxwEAwJioqctoah4IXdkn3IXZmiET8XqkGNZ6JCTdvKF2y+h0OoqiamtrxU7I6upqANDr9dOmTRMXIPU4dOhQ8wS2YrE777zzm2++ab5z5cqVEonEszlv3rzly5ePHDkSAB5//HGEEEEQnjRMOp2uoeHXxzFms1lc19tzhqefflpMfNE8fHpMnTr1nnvuAYDAwMBr3+bjjz9+//33A0Bo6K9JiSUSiUQiYRgGAIqKii5dugQAgiCwLKtUKq99wtaDu+O8TGARSZMICZSMEngKCRziOYKiec5ZYJfL5BrW3eSyK+US84maK99LYydNU66dd18Zc8WZq82fv8nVlDd8tart7gPDsNZC0/SoUaMWLlzIMEx+fv7HH38MAGPHjt24cWNeXp5YJjc31+Vy/f7YtLS0U6dOHTlyRNysrKysra1tUcbpvJL6u7S0dMuWLQDg6+tbUVEhZhlMSUkpKCgQ8z1lZWUdOXJkyJAhzQ+Pjo5OTExMTEy8aoLA0NBQ8d3m+S6uKjIyUixpMBg8OwmCSEpKEhcNP3DgQGFhoc1mO3jwoEqlat++/bVP2Hpwi9DLEI9ImkBIoGU0Ysnmg2UKHbJQhYZ1WTirREHVWRhU4wQ/BdAKSh2pNGdbfbtpAcB+/BtVz1TN0MlVSx/kastp3+C2vicMw7zsgw8+eOSRR6KioqKjo++9997a2trevXsvX7584MCBOp3OZrPp9frDhw8rlUqF4kq3EE3TGo0mJCRky5Ytjz76KEJIbORt27ZNLpc3z/m3aNGiadOmhYeHkyQ5atQohUKRkpLSsWPH6Ohoo9GYnp6+cePGSZMmaTQas9m8cuXK2NjYEydOtMgaKMrMzOzXr5/42mAwdOvW7cCBA553HQ5HSEgIAOj1+oCAAJ1OJ3bnXtsbb7wxZsyYTz755M477xw9enR8fLzNZnvzzTd9fHz+wif6l+BA6GUCK5ASEpBAymjEEYLAA88hikICn2+Txis1LGMRLCQtVHc3ET/XobtDCQDw66atSW8UA6Hz/I+GyfMJmUKSODz3f5eQjvPrrsNPEDHs38RkMm3dulV8PWnSpISEBACYMmXKlClTamtrVSqV2E+4fPlyzyE9evQ4efIkAAwaNOjixYsNDQ0URWk0GgDo2LHj9OnTPSXHjRs3YsQIs9ns7+/v6VkVM/SKhg8fPnz48NraWpPJJBYQL/37eiYkJJjN5j+6C6VSeY13/0hyciDDjnsAACAASURBVHJ5ebnZbDaZTOKlVSpV867dWw8HQi8TB8tcWXSbJxHPIY4FiiApWYkN6VQa1m3hGgQ5V9ndl0j/JRAaEzQFOyrdDSxNNAl2izQk2lHpKjzfxYc5FpDWvfjrGqaRDR5gauubwzDMO/bu3bt58+aYmJhz585lZma+9957nrd8fX2vcaCHJ2HvVUml0usOPLnBC7UGkiTFKAgAV+2AvcXwM0Iv8wRCkqQIUsIzDOJYgQSKlpXawKjWsu4mZwNPM+VJJuLn2ivPBUkpGXCHoexgLVN8URbZ0dXAZq8roYcE11Hnxv9UXHB3ePnRuqYCe9veGoZh3jJgwIBJkyYFBARMnz49IyOj+VM07NbDLUIvQxwiaAIhgSBImqY4lgOeE6QkSctrXMik1lZVNhEEQVJMktb9ZN2vvQEhA0xnlufJbNVSQ+eMD7Ig/vD+8+ldQh3vq/cPOB//1ZCg/C8ruj0TTVDENa6OYdg/glKpHDp0aFvXArsCtwi9TOAEkiYBCUCQhETCMyziWEQCImVGGaFQ6Ny2BrlRSspVIaSDFVCF48rYUVpFdZgaVpBv+zlnY6V6fIYrq8qvD/I3ZNe8/3LkvkerpHJfacX39W17dxiGYf8+uEXoZZ6uUYIgKQnNuznEcwIhFUhZkBKkcp3b2SDTSwi3ymWpGKhtOlUT7kunHyg+ml2Xo2gsGOxbmK6NqlP3yXepu2lrT8nbKysLQtJnheqTvgq6P+1wrF8PHc5WgWEY5kX4T6qXXekaBUQAQUkkPOsWnxFyIAtSEVKZjnE3yoIkZKPq58NPj2oq/sg1KECtGBEz9KHOE85/OTaiIfb+2fs/yRPMhcKqVBoAGuv1ZY6zMkfmKvNPYb6s9mtlh/+EtfVdYhj2T1JdXV1eXt6tW7c/e+DZs2e3bNmSk5Mjrt+dkpLS/F2LxXLkyBFxKbgFCxZ4rbq3HO4a9TKBQyRFiF2jlITmWQY4ViAEFmQBCpAqDBzbJNNJXApU25RfQctC3abVQ9+4u10qUZslo9UmQ2cA2JArzGh/5Z9G0bm3bznZvv3QUY3nc2PKy85WN5ZY2/QWMQz7hzl69Oizzz57Ewe+9dZbNE1PmTIlLi4uLS3t0KFDzd89efLkihUrMjIy3nnnHS/VtG3gFqGXIf7XwTKUjGYZHvEcIpAbJAEKkMjUAnI2Sus2S7JCKWO/7rPMP30nIIIioCT7ixDdHbTMt9iKLjai4WFXAqEssqNga4zr8HxmrV1a/F1BJ7nwkTD4xR6kBP+IwbB/sG+//faHH37o0KFDUlJSWVlZamoqwzCbN2/Oz8/v0KHD+PHjKYr64YcfVCpVVVWVuEL3+PHjxcXSdu7ceebMmZCQkMmTJyuVyuzs7KqqKpVKtWfPnjFjxoSHh+/ataugoECv148fP16n0x08eLC8vHzt2rVyuXzKlCmCIGzZsuXChQtRUVETJ06USqWXLl26fPmyTqfbtWvXPffc07NnT7GSn3zyiafCOTk5W7dubZ4sSUzS9NNPP3lWurkRhYWFZ86cGTdunGfPjh074uPjPauq3nr4j6mXCTwiKQIJPEFSlFQqcCziOEQgF5L6KYg6ZwMgzbqLqzrzqLf+joS44fHcybO1bsbVVFv2k4kPoP1CPitA/4lsFuYIQtG1n+P0odEjXsmCziH8VxXK3GNrzyIeteV9Yhj2F7z//vtPPPFEWFhYZmbmPffcs3r1arfb3adPnyNHjkRGRm7ZsmXChAkAsGnTpgkTJuzcuTM4OPjll19+6623AGDixIlr164NDw8/d+5cnz59WJY9cuTIjBkzlixZIs4d3L9/f25ubnR0dGNjY1JSUmVlZYurjx8/fs2aNaGhodu2bRs0aJAgCMeOHZs5c+aCBQuaz8FvoaSkxCsZml577bVjx44133PTeYO9BbcIvazlM0KOBZ4VkOAQ+KzLb3ybnTGd08/u85+iI6d9aF+pXOdStT954QeDocI/vL9QUUfHJH16Sfi4H9X8nKo7htStfjFgyER9jyW5ea/E+q4uqpyufEcVfmcAraKc1W5HlZu1czK9xLebThPZZgvXYtg/i6uOydtSfgsuFDshRKb/zcopS5Ys2bFjR3JyMgBUVVXZbLYNGzYEBARs2LABAO6///527dpduHABAOLj41evXg0A/v7+7777blJS0pkzZ7Kzs2manj59+pAhQ3bu3Cmec+fOnTRNA0C3bt3uu+8+cWd9ff2ePXsGDRpUWFg4c+ZMADh9+vShQ4dKS0tVKtWDDz4YGxu7e/duAOA4bteuXX+0wstnn32WmZm5efPmv/5pbN26tfkyNwAwcuTI1NTU//3vfxRF/dFRrQoHQq9CgBAiSAIQAoKg5RKe5RHijpoz3WxejP7+t/s/fuTN+2W0zcZUqUAPALp2oxvyPi2QlST2W8id35hNBREE3OH3m19kksAI2j/UmX748YTUjheeO9gxwOV8/aR0uDpnFu9ECl+pJkop8aGdte7cz8q0Map2Y4NIGk83xLDrkKjp0NTrrBztnQupfvP33Ww219bWJiUliZs9evQ4fPiwGN5SU1PFnVarNTc3FwASExPFPcHBwbW1tWfOnGlsbBw2bJi4MycnJzc3V6vVdu3aVYyCAJCZmfnEE09UVFSoVKqampoJEyYEB/+6ZPGFCxcSExPFlUUpikpOTs7Ozvb19e3SpYsYBRcuXCiu/f3kk0/26tULAL799tunnnrq66+/1uv1y5YtO3/+PAA89NBDAwYMuMZdv/DCCyUlJQAwb948zzidqqqqhoaGmJgYAFi/fr3L5XriiSdiY2MdDkdxcbEnC9UthgOhN4n9ogDwyzNCCeLYgzJzjq2cIntMiL1H4uCkZEBd+XGKktMMAoBBve77KHOjIrC9X1jfcvOK9dX+D8Zepb9aO+z++o9f809InthOsRE9OH94+wM7p6XzJ1L9xuq63SUNE/OhqAN7G3I3lV34sCR+ejiOhRh2bZSM1MVcZaXp1ubj40OSpMViEZcZa2xsBACFQjFixIiXX37ZU0ylUu3fv79FI0mhUHTt2nXTpk2ePXK5fMOGDTKZzLPnsccee+CBB8TVR+fMmSMIQvMzKJVKh8Ph2XQ4HOK6pp4zDB48WIxbYWFhAHDw4MGpU6fu2LFDjNz9+vUTMyleN2ilpaU1NTUBQPMw7InWAHDhwgVPogxolgfq1sPPCL0JcejKyi/iqFG5lOeYz5R1IwJ7WgUfXznBNLEyWdjl3F1aTbTgsAKAVqE4Fv/dpZhVfGMtKNRfltEPXC0QSiM7KrrcWbfmpReU6cIP29wffZQEQwsI5ofS99I/f6Dmq7cAIQAgpWT7+0NpOZW3qQzwM0QM+1uSSqUDBw4UR1qazeaNGzcCwLBhw3bs2CEIgl6v1+v1f/SgbtCgQadOnaqqqhKLKRQKlmVblKmpqYmMjASApqYmMfu8Xq+vq6sT3+3Vq1dWVpbY71peXn7w4EFPfglRSkrKiBEjRowYERQU9OOPP06cOPGLL74Qe3HFw8V3xTB5Df369RNL+vv7e3YajcagoKCffvoJAE6dOnXmzBmE0E8//WQymbzyAPLm4EDoTQKPxHaY2CKUyCQMxyS55FraxyFIDTJwN3EadWeXrcrk310MhADwaBz5Zqbgqq0qkQZMjSF95Vc/uW7kDGW3/pITO8eqyp6PfDrs0ZWjRn20NbAH06nL8dJ3jq6+56uswrP1CEgidlKIu4Et/a7GzjoEJFz9dBiGtZ3Vq1fv27cvPDy8X79+ffv2lcvlw4YNe+ihhzp16nTPPff079+/c+fOYnbcFmJiYt57771BgwalpaUNGTIkNjbWk8LQY/bs2RMmTBg1atSdd94p9qympKRIJJLo6OhBgwaFhIS8/fbbAwcOvPvuu7t37z5//vyuXbv+UT3nzZvX2Ng4ZswYg8FgMBgmTZrU/N2ioiKDwTB06NCGhgaDwSD2o14bQRCvvvrq448/fuedd0ZFRXXq1CklJeXBBx/8v//7v+aNxVvs17TF/zJz584NCwubO3fujRS2Wq1qtfqvX5SxcOfezO+5sMPRLSM79nnR0VSdsfNjP6lakthhfb5t1SNLKr6vd5kZFPFNoLa79au1/k+/Lx447iAfeum7hKbssU8/rZVe5yoI4MHv+ZxGtKAbVVj/47ZL6xzuCS+WLXMoygpkSZnq/wztGlhRfbrTgW6Hwg5kGbJ6BHadmnBfjD7qr9/gX8eyrCAIzbtxsNbjrS/2v8OqVauysrJWrfob5bsWuyUffvjhwMDAhQsXwi+PBpVKZWxsLEVRDoeDJEm5XA4AHMc5HA4x75LL5bp06RJN09HR0XK53O12cxzXPKFgWVlZeXl5QkKCON1C7Px0OBwMw4jZHiwWS15eXmRkpLje9+/PILJarWI6X5FEImmeNVAQBLHzU+RJC3Vd1dXVFRUViYmJBEFkZGT4+/tfN989ACxdutTlci1dutTrX2z8jNCbEH+laxQhRBBEmasSEApzSvI5TiqRAgDTxEo1kpAuD3LmasFh8Ry4aQB1obYmKDLwulEQAAiAD++k1lwSlmXwjNCrc4Cqou69Q92Tg3IuqUxkz7oF1EGrSd85KE0y5kjf+QOfOEGemn940fi4UffFjfachHcLDRet9goXEpDCV2boqMYrt2HYLXP48OGDBw+KaZh27tyZnp4u7ler1Z5BNAAgBjCRmJhXfC2Xy7t06eJ5SyaTtfhxGRISIqbMbU6pVHpOqNFoml/o92fw1Ocad0GS5LWzQf0Rf39/T39p8xtpK/hvnzeJC43CL12jF+rz/SiOd9NOjpfSMgBwN7GqYDkAUCqNYP91gRgJCaFMpdyv5w1eiCTg0Tjy0TixZ7srw68+Xn66VBWGjh+4c/QGq6rdoq+/U9UcU/mvPr6HNwX1WhTdc33Onmp77azuM5gGrvxIXU16oyZCqQ5TEBTZmGcr2l1lStSGpflJNfgrgWGtLiEhQRzwGRMTIzaJ2rpGtzX8V8+bkIAI8tfBMhfNBQG0wPMyJ89JJWoAYJo4qVYCAIRMATyHWIaQXGkDcvVVtPE6iTT/iJSS9gvrDWG9HYoOTZ++F/rEslfH3jfo63v/bzA5lM29sGt/rflcqnDSXnxix8FTvo2j/SP0XWYnyH1//a3HOfiyQ7Vnl+eFDPY19FL9WHnqQl0uwzOhmuA7Q3sF+QQAACCwFDvqMy1NBXZnjZt3CyRNyI1Sn1CFLtZH38Hn+m1KBKyVdzW6XYijZCStpGQ6yZVPDMNuJyaT6ZFHHmnrWmBX4EDoTc26RoUGV6Odc1E0yfFSJ8fJJTIAcDeyMt2VIcKkSiPYLZTuSppmrr6SMl6/l/zalN36I8Zd++7Tofc+sX9or9RvBVt8+JR+8RX7KadrMGO0ZCp3sYon3azJvkqTEz/nYrth8ToiLYTUKqmI4QGmntqTn2Xav3Nd7lAc2NVPyjVWXT62/Of327EBXWvak029SUIphJOO3nGR7ZRRJlrgkLPGbS1xmLMthdsrJSaqyrfiLJGRC3ksWR8slXcA/wSryWQNdbr8HIyBtUokcpL2oWg5LTACa+dYG6/wlfqEKHxCFbIgulJeUeGu4gXBV2lsb4hWsrzgslMqHeumXWaWaWJZG8czV4b/UDJKqqFlBqnCJKVkNzrsi3PxgICWU4DjL4ZhAIADoXeJy8oAAEJCTkNRjDEazHkcJ3dxLoVcAgiYJlZsEQIA6aMVbE1iIERuJ2LclFr31+ug6pVG+wY1blutta38Sal1nq78ydQxfNiIxO497DxxuWzimlMvG6xNA33LfC8/2bMs5puQuU/90HNMjG5iZMlH6W/7RbN3xUbJC8849p0FUh7KBYcyRp5ylsh2UwEf2iHQt1Hnv0e+2O/J4wF9p8aQMzrIA4Lkki7Ed+e/LT1/sadV1s1d1EnIQoijOBMi8i6TtsuUmSUDFIR/IMUflA+/EDu2f3vf0RGkQQYCh2yVjsysnDPppdSBch9UxcoKOLqymHAWAiJ5lYwLlrljaDYKkWFunUERYAjSUlISAMBtZhsusU6z21HHMFJzk+qihS5hJfVAckoCDLzGJIRTVBRPBZKUnnQRbAPL2nlSShAEwTl5iYqS6SS8jm+Q19dIS2x0OUM2qgjOl5dGEgY1hLrAjwUj4nWkjeeaWMbCcU4eAAiKoJUUpSGdKodZVmOTlTOSeoKwG0hJiNIUJgnhSa1b4itTmngHYiwca+E4J8+7r8RvjuIaoK5JKLbAZVaoIQSbnAADUgdJg2hJCK0PUPqGyRRa3s3zbqH5QnqkhCTlRI1QW8VXmflyhq9VOt1GBkWSJr3SzyXT+ASGSIwhrBNxDp6187yLd9gdboUAAJSUdFDOy8zlCq60wVkEtkYVyxtYMogyGuhAVqmX+gb7BERIQcrar9RWvDQloygZycnYYr60zFnSaKkQHA1yl1PDIiNSm0g/SuUHPnrSGKpWmWg7x9p53i3wbh4AaAVFSklGwpQJ5WVcUaOlmHPUg92sYpCCkxp5jVYRxquCaGOAQh9mkPtQLo5z8Ej4JUOngiJkZCPVUCFU1VhLHI4aZGtQcYIWSXW0r1LqL5HpCJWWUvsqZFoFK3DOX48lKIKSU0gm1EN9o9BksdXwPFNYcVYQ2mbhEuxvDgdCbxIERP7SNZrTUNhOH03QOQJSuHmLQipnbRwlpzzz3Cm1nrc1ilGRq6ukjQHwBzOH/ixZuwT/Z1Zy9ZXI5WB1QVvzZA/nCNXZHELQy082On5JRf07PzvUD0fPpo99MqLk6YFSh/sUKjzFD0ZIY4iVBalCUu/VCHOadnwDPrqDSf/5b5VfD2NtAFqjsGSnKg3mivSxtumTywMuOQc8dconUpatcmVHgBApcP7h/fVkAvEzVSuPWux7f7W+3aRoZIIj53I2+DvrBc7eoWlZ14tvWwtjFkh6KNXIly5Etou+vFMDNnVUrNSt11XYHFzCz7LOZcpQnaZMKvxIuHeHck4Va5FzPu4y7Y6arhWGziadoCHzWMkF0qfcX8nIOIYEk69LCYzWRcpZAprIEgt5kIJGxJpUbrXA6y6rY+rbJdCBkcFKu+A4b6/P5szFOrtdaWmSA6fg9CRSAiJ5AnJIC1ANgqAkBL2MUwiCykKZGtS+riApRZopvop2VSoZm4pxkshFC2op70OCjAGugLLnkY0E70MIBkrQAO/DED5OSuWWkjzdRKFaEtXJUZMU2QGp5bxWKWgQUgjAWih7E1kHhI0oDZSwgTTnz6EgtyQQKf1oKSKgjuNLWeYyIVRKyFqCrKWQTMmrEaBaAtWQFgIEkgukuWCaDSZ4P4HQsRKNoJABySCo4oQygS+niGqSrAbCZRRMhKBABLIhPoe0AmkhBQ3NBVNsECkYBKRnKTUvlSAaENEIfA3w1SRZS5A1iGpU8xoQlIigHARyEM4ywgbAU7wfyftRvAYhDQdKjiJZGhDJkEIjiepJsoEk6gBYnWAikEJAcgGAJ9w1pKOWbETA0VwAyZtIwYdHao5Q8SSJKCciHCSyEkQ9SViAqgdBKhd8ABQ8QB2w9aQbCDsBLCFoSEELgg8guUAQAkEAIEQgACdBOAlwAGlDpJVAKkDQdMFFmtK88r/YX2S1WsXBqwRBBAQEDBgwIDQ09KolxaW0xRErdrvdYrHcyOjKf7Gckx9ue2OPEzpNenqjF0+LA6E3NWsRovyGwsGhfSpIgeMVDMerpVJ306/9ogBAqnWCtVF8zdVV0CYvTyaljYEAIAF4oQu80IV0cKC88q9NAzy3r/DQ29lfWrUU6ZPIOe1pioi+PZ94szRqV4kwgW+698evQvK2fNNp2kI0sJ9Afj2UTDQEAiw8VXnm06wvLxvjuoQH+tTkMdb97Sik5oJK6fuPsR17IOfgn/YVC9UfRMwLTejyfzFkN5MY2lOnJAw+XXnum4IDZyvS/VibyWXRcbuVdkIi6IBLbLT5+dktQaW1R337Fna9u0NM+PhgIkItHjvdytgOl/zwU8mx2srTfqxDzZ7ycx2jKwnEK5S8IcAaF22z10giM/x6VcX38Q2PSDQSHXUQrCIsbuuPpT+cK/iutuqclq3Sc6Wmpr1CE99AkCSSSTlViEMWYteXy1LyTb2a2nXxCY/poKditBDhQ9TYy8+Ufl9Qnm425zL2OloolyNB5iIkPK1haAPj44OirfJos6GzIyCWDGoXopWGqIhAJchI28XyEwWV6bXmfHtTGXJXSQRGKhAyjtbwChMXLqMiGENHh197PrSD0agLVEKIilDS4OJcZyvSs4oOV9WcczWd0bA/+vAciTheIEhE07zMxFJGt75Bklxp7GUN7e4TFhUlJ4Np3l8O9Zbci1U/5NWdbmzKkLgb1DxHI54DRCGCRrQPLzUxChrC69XDGwJ7kmEdA3XacCkKUhEqAtW66i7WnCyqO1XbdIm1XJJydgkIJAKZADKOUPFSreCjEEKalAMsvkkSYweDwS+AEvwUhA8NHMmVugqLmk6XWrMtjaW8o5ziGAIhmUAoOMKHk2s5rYLq6VLFMgEJ4B/lq/UNJHk/GUEQQJBg4W2F9otFDel1jfl2SznhqiE5t5RHEoFW8lIVp9IRHTh5BKOPI4zRCn2on0JiIEFLChIFxRFcFVNR6civdRRZLOVuax3LuAmOk3CknCOVZIgcjHJZIKiCSF2EVOmrUOqCLOtqanK9+3/ZzWlsbHzuuefmzJkjk8mysrIee+yxvXv3tpjVLpo5c+bYsWOnTp0KAHv37l23bt3+/ftveX3/RlTBA/x6TVGpvNB51hwOhN7kGSzDC1yjyxqsCS4nOIFQczyjkkrdDb8JhJRaz1sbxNdcXSVtat0fesrf/lOnRQ1MixpY72zgBM7IEdavP3Wufm6Zb9ASjmcza86HDdibtjLcX38mjAjz+bWd2jOwW8/AbjWOupz6fD6ON9GqkLxi7uLPXF22QOfZ/GJsw2eEdeq6zaflEzsCiB6BXXsEdmVZts5hRhQySDVEWSF7OV9wOUiFShLSThreoRN1lS+kWuozImboiJihCFCjq8nJufRSDW2u4+srEcuQap0kMDJB6TPodwdqZOphMcOGxQwDgAZXY53TLCBBTSl8nZy4mgGlNdF6v27kVZ4vhmqCQztNgE4T/vwnrU5pl5rSLvXPHian5clhfZLD+oibVsZmZWwaqVoFFG9tBABKrSOkv19tgQYAv4CEuNgEcZvhGYvbCgBamcbZZPGRywiKImSKP7puGASHhY0BGPNnKywyQbdu8KfTvYp8QBEEvinQ9+YO10H7DtD+xsun+0tra2/uUq1i0aJF4nQIuVz++eef9+vXr6am5ujRo2azuUOHDv369SsqKqqtrb1w4cKBAwf8/f0zMzPNZvOBAwckEokYNbOysk6dOmU0GocNGyaVSsXsuwEBAXv37k1MTLRarQMHDhRXqGFZ9ujRo/3797/upHVBEA4dOpSSkiJOXgSAgoICl8vVsWPHVv48bkhISFRKylCr1cs5WXEg9CbPYBk374owdaYomiAEntBwnFstk7kb2OYr0JMaA994ZdEjrrZcGtYGubiMiitzgPQT5urGPMJWlxIkRfuHRUqkI//4KD+lyU95ZYwPBHWBfqP+1EUNct2VGUtRnWRRnW78QAIIvVx3pcYBYZKA66zw1JxertPLf/kVqb3x49qMWuqjll6ZufynhhNLKalJaRRfuyRSUulz7fJY23K5XHl5eYMHDwaAxx9/PCgoyGg0rl+//o477hg7dmxdXV12djZBEF26dPEEQqVS2a9fv9dee+3TTz8dN27ct99+++qrr37//fdHjx7973//azAY+vTpExwcPHfu3NWrV4vrYu/atWvJkiViKvlr279///Tp00tLSz17Ll68OGvWrPz8fPJqPxn/HXAg9CbPottuztVOH0EQNBAcDxqeZ9UyibuSaR4IKY2BLckRX3O15cqk/m1SZw9CppCG/Ynf1xj2T+ewll84vvwWXKhTn+flqpYzBRMTE0mSrKysTEpKmjdvHgB4khPNmzcvKCho6dKlcXFxnq5RkiTtdvtrr70GAIWFhStWrMjJyRHXhRkxYsSmTZsUCkVVVdWJEyfEnRcuXFi3bp0YCNetW/fYY4/dSFU3bdo0duzY5jEvLS2ttrb25MmTnuVG/31wIPQmxANBAQAwHBOpiyBJGgHHIw0IjFomdZlZdeSvKxhROl+u8UpPDVdTRvtd/Wk5hmGthJaoTMHXXx7zr6Poq3RNHz16VK1W19XVzZs3b9asWWvXrt29e/ebb75ZXV2tVCrdbnfzZlkLP//8M03Tzz//vLhZXl6emZnZs2fPhIQEMQoCwLRp05YuXVpTU+NyuU6cOLFly5bmZ9i3b9/Ro0fhl0W0PfuzsrLEtBX5+flr1659/fXXxUVKMzMzcSDEboina5Tl2QhdKEHSADwPcoJ3a+Uycz0jN/66hBqt9+XN1QAg2C2IYymtsc3qjWG3JalcF9Hxvra6uk6n02g0er1+9uzZYgKmBx54YP/+/WIKJH9//9+nlWjO399fTLQLADNnzvT19T1x4kTzJdmMRuPIkSM/+eSTxsbG8ePHt1gFVKPRiANQtdrfPCoQBEEqlQJASUnJ9u3bX3/9dQCQSqU8z3vntv+WcCD0JnGwTJPbgkDwVfqSJC0ILE3apAKjkkgq6hhFs0BI6XwFhxWxDFtRJAmMaLtaYxjWlo4fPx4UFFRaWqrX68VEEMePH6+pqQEAtVpts9nEYmq12jNIpFevXsXFxRqNRsxwCwAMw/z+zI888sjUqVNtNpuYg7655OTkq7bwYmNjMzIyAOD06dOVlZX19fUqlerSpUsdOnTwzt3+LeFA6E1iizC/oUhK0gRBESSNBJ6mLApwCy6KkpOUvNnTZoKgjQFcXQVbUSgJimy7WmMY1gZGjhxJUVRZWZnNg1zqrQAAIABJREFUZvv444+7dOkilUqHDx8eGhqalZUlNtdGjx49a9as7777bvTo0aNGjaqqqho4cGBkZOSHH364YsWK/v37p6WlSSSSU6dOickrWkhOTlar1Vqttvn62tc2d+7coUOHWq3WY8eOvfDCC/fccw9N0507d77q7I5/DRwIvUlsERY2lkhIiiBIkpIIPEuRFoXgZhtA6d9y7DsdGMFWFDEll+RxPdqkwhiG3Xr+/v6nT58WXxsMhpCQEDE5+88//3z48GGSJN9+++38/PyoqKikpKSBAwdevnzZYDDodLq8vLz8/Hyx8Td9+vThw4efOXOG47hnn302KiqqoaHh95kFtVrtxIkTb7xud9xxx/nz59PT05csWRISEpKSkuJ2u/v27fsvHjIKOBB6l9giLGosiSYoIAiCpBHiaEmDDBhnraAKapnlRBrewV2Y5c47rx0+vU0qjGHYrSeVSq/aRFOpVMOHDxdfd+p0ZWaRmBFXfC2RSOLi4jzl/f39hw0b5tkUc9Z7NsWHfDk5OS2y6V5XaGioZ6Wbvn1vcpbnP8u/OcjfekgAgoSiplKKIAiCJElaEDhS0iAR3I5KQR2ubFFeEd/TcfI7yuBPGfzapMIYhv1b7du3LyMjY9euXQrFHy6ngIlwi9CbxHmEJU2XKYIigBCfEZLSOgJYWyGrHd9yajPtF2K4/1n8gBDDMK+bOXOmZ1gpdm04EHqVgJyCS0pJCUAgtggRzxIUT3GhqUES1VVWvlckptz6amIYhmEebdY1arFYan+38F91dbVnrLCI5/ny8vIWI4PNZrPFYmn1Kv55Ao8srDVcEyJmqAcgCIJkAACY4JTbes14DMOwv63WCoTnz58fOnSor6+v0dhynrggCA8//HBERETnzp3T0tLEmTH19fUpKSndunULDQ195plnxJI///xzVFRU3759AwMDv/jiCwDYsWNHZGRkdHR0eHh47969i4uLW6n+NwcJYGEtIZogQEjMqUSSFEOSJHAkJbnu4RiGYdit11qBUKFQPPDAA2+99dbv39q+ffuhQ4eKiorKysoIglixYgUALF68ODAwsKysLDc3d9OmTYcOHQKAGTNmPP300wUFBbt27ZoxY0ZTU5NOp9u+fbvZbK6pqYmMjHzyySdbqf43B/GokbWEaoJ/aRECSdBOBAAU4IToGIZhf0utFQhjYmLuu+++yMirDAP57LPPpk6dqtVqKYp6/PHHN27cCAAbN2588sknCYLw9fW97777Pvvss8zMzLy8vIceeggA+vTp0759+507d/bv379Lly4AIJFIRowYUVBQ0Er1vzlIQI1MU4g6CEC48tkSFAsCIqXXOxTDMAxrG20wWKaoqOi++66s7xcbG1tSUmI2m81mc/v27T07N2/eXFRUFBYW5hn4GxsbW1hY2Pw8mzdvTk39w6xvCKGampqcnJzmO9u1a3fddFx/BeJRI9sUrA40IySmASMJ2oUEgsKBEMMw7G+qDQKh1Wr1hDeVSsVxXHV1NQA039nU1GSxWJpPfxF3ejaXL19+4cKF//3vf390FY7j1q9fv3Xr1uY79+zZExR0lUTwLUbo3DS3i2lkmtRIhQTBZrfTDEEA4QJWQkr/v707D4iq3P8H/nnOLGwOmyIgsYgoqIiQW+UFcsEFc6HshuaemaW3Lt6upj8zrWuZmjfKTM3rVnpTrpn2Vay0NDXc9yWUQEFcUZB1YOac5/fHQSTDJDmzHHi//po5M3P4zPT0fHx2xU+SVCmTySRJUo37IoLilCrY9UN5efnBgwffeustWwcCD2n37t0dO3YsKir6UwXb2dlZo6lhxn51NkiEXl5eVSktPz/f2dm5efPmjLGCggJ5f/T8/Hxvb++mTZsWFBRUfSo/Pz84OFh+/Omnn3766ae7du26Z9/06nQ63bRp05KSkmoZlcFgeMjvU42ZbjhodU3cGxNxg8FVq3MRBJ2JSY5aR0XuXw/IibDyYF6wPBS8KklJSaIolpSUWOLmkiRJkmTRDieIjY2NiYmRi7SyBdsG/9kiIiIOHDgwbNgwIjpw4EBERISjo2OrVq0OHjwYEBBQdbFt27aXLl26du2at7c3ER08eHD06NFEtGLFijlz5vz4449VmwDZj1JjaSMnAxFVmyyjqeCiVod6H8D2Xn/9dQvd2Ww2m81mR8d79xMGVbBUIiwuLk5NTU1PT6+oqEhJSXF1de3du3efPn3++c9/jh8/vlu3bnFxcV5eXrNnz541axYRvfLKKzNmzAgKCsrMzNy0adPhw4f9/PwGDBjw6quvzpgxY/369Tqdrnfv3hs2bBg3btzbb799+PDhw4cP63S6QYMGWegrPITSijK3yn+nVE6WEZjGxE1aLRIhAICdslQiLCkpSUlJIaK+ffumpKT4+fn17t07KCjIxcUlKipq5cqVCxYsMBqNSUlJw4cPJ6KJEyeWlZW98sorrq6uKSkpISEhRPTZZ59NmzZtxIgRwcHBqampGo2mtLQ0ISHh6NGjR48eJSJnZ2e7SoTGigqDkwsR8TuTZRhpzGTWIxECANgrxjm3dQwWkZSUFBAQUMsxws0bVhTlHqv7H3UqNIghrZ5NHLHxo4CBE34VNLodS7um3w4KDzLGPLuh7vevBzBGaE1FRUUYI7QOdI1ak+IFG0O7REQl+Zc1xkt1v4/klM6NT1O1FqHENRpmEtAiBACwV0iERERPPfeqIv+++HpBjE5e8iEfyETEuaDTVGg0LnW/OQAAWALOI1QSIyZKElWbNcpIq2EVGi06TAAA7BQSoZIYYxLnRLxqZ1GJBC2VoWsUAMBuIREqTJR4VXOQiLik0TAjWoQAAHYLiVBRTJAk6beJkAmsVKNBixAAwE4hESpJIDJzXnUYIRFx0gq8TKNz+uMPAgCArSARKokxkiRetXaCiCSRMalMo0EiBACwU0iEimJMkvjdwwiJiGuIzFqds03DAgCA+0IiVBJjTLx3jFAgIo0eiRAAwE4hESqJMcbvGSOUtESk0zWyaVwAAHBfSIRKYsRE/pvlE5IoEJHOwdWmcQEAwH0hESpJEJgkStUnyzC5RYhECABgr5AIlcQqJ8vc3VmGRD0ROTbysWVYAABwf0iESmJE93aNmlxcPdo6ujS1bWAAAHA/SIRKEuS9Ru8cPUFEglnTuWuyIOhsGxgAANwPEqGS5K7RqhZhhUQaLjrpNbaOCwAA7guJUEmMUfXTJ25XkAOZmQaHPgIA2C8kQiUJjHHp7qzR2xVcTyIJaBECANgvJEIlCcJvZo0WVJCeRNIgEQIA2C8kQiUJjEn87hZrtytIj65RAAD7hkSoJHkZvUmsnDVaUM51XELXKACAPUMiVBRjeuKl5jstQhNpOVqEAAB2DYlQSYwEjSCVmSS5bVhQTloukoAfGQDAfqGOVhbTCbzEzFnlZBmuJTPTYDU9AID9uttrl5OTc+zYsVp+rHv37i4uLpYJSc0Y05FUaqo8him/nJgkMswaBQCwY3cT4fbt28eMGVPLj6Wnp7dq1coyIambllHVGGF+BWk41hECANi138zj6NChw6pVqx74mYiICIvFo3pagZeauY7kFiFHixAAwM79JhE6Ozu3bdvWVqHUB4xpiZeYRA95+YSRMyyfAACwb3cT4fPPPz948ODafCYvL8/Nzc1iIakZY1rGC03co3KvUfSLAgDYu7uJUK/X6/V6+fE333xjNBpr/MCzzz7r4eFhjdDUiDEd8ZI7Y4RFRjP2VwMAsHM1r/V+8cUXr127VuNLnHNLxqNujJhW4MUVnDHGiYqMooAWIQCAfas5Ee7fv18UxaqnpaWlO3fufP/995OTk60VmCoxYhrGS0ycGCsyUSPBTNhWBgDAvtVcTQcGBt5zJTw83NPTc/LkyYMGDRKwVcr9MKYlqbhCYky4aeReeglTRgEA7NyfSGndu3f/9ddfz5w5Y7loVI+RjlGRmROxPCN56TFZBgDA3v2JRHj27FkicnR0tFgw6seYllFRhciYcMNIXjoRO24DANi5mqvpe2aNVlRUnDt3bvHixcHBwcHBwdaKTY2YlqQiEydiN4wcLUIAAPtX21mjOp2uZ8+eCxYswADhH2GkZVRUITG9cL2MvPTYVgYAwN7VataoXq/39fXVoE5/MKYVxNvlEjmwq2W8DVqEAAB2749mjZ4+ffrYsWO5ubne3t7t2rV79NFHrRubGjGBuJZxidiVUop1xBghAIC9q7maLiwsHDly5Ndff139Ymxs7Lp167y9va0SmDoxRlxq7EgVIsst4d4GCTvLAADYuZoH/F544YVvv/32vffeO3fu3O3btzMzMxcuXHjy5MlnnnnGyvGpDGPEJS8HqYILOSXk5WBmAlqEAAB2rYZqurCw8KuvvlqyZMnYsWPlK66urhMmTGjevHm/fv3Onz/fsmVL6wapGowxLvGmTmQspcsV3NtBKkWLEADAvtXQIjQajZIkRUdH33M9JiaGiIqLi60RlzoxRpzIz0m6WSE84sI0khljhAAAdq6GROjl5RUSEvLzzz/fc33v3r3u7u5hYWFWCUylBCIxyEB55aydByNJIqw2AQCwbzW0VxhjK1euHDp0aEFBwTPPPOPj45OXl7d169bZs2evWrXKycnJ+lGqByNO7d35aRLi/Rk3iwzLJwAA7FvN7ZVnnnkmOzt70qRJgYGBDg4Ofn5+L7744oULFwYOHMjuWLZsmZVjVQFGxLmbA3Vtyl4IFUg04fQJAAA7V3M1PX369JKSkj/+ZOfOnS0Qj9ox4hJxyUknCIy4iJ1lAADs3d1EaDabzWazvKf2xIkT/+AzpaWlTk5OjDGLR6c6jBHnnDgjRkQkimgRAgDYubtdo59//nmvXr1q8xmDwXD+/HmLhaRmAiPOiUvEBCLiEsYIAQDs3W/aK0ajMTMz01ah1AOMGOecc17ZXJaw1ygAgL37TSI8ePBgixYtbBVKfcB+2yLEGCEAgN27mwi7deu2fv36Wn6sWbNmlolH5ZjAuVRtjNCMMUIAADt3t5oOCgoKCgqyXST1COfEGBFxETvLAADYO+x7oiRGAlG1FuGdPlIAALBbqKYVVTlGeKdFaDYzLVqEAAB2zYKJsKCgYM+ePTk5Ob9/qbi4eP/+/RkZGdUvXr16de/evTdu3Ki6wjk/d+5cWlpaeXl51UWj0Xj48OFTp05ZLvKHJ68j5BKTG4KYNQoAYPcslQi3b9/esmXLmTNndujQ4V//+lf1l77//vuQkJC33nqrd+/eI0aMkCSJiGbOnBkVFfXuu++2bdt21apVRFRSUtKjR4+EhIQ333yzZcuWZ86cIaKjR4+GhoZOnjx5yJAhcXFxRqPRQvE/NI51hAAAqnK3466iouKB26oRkYeHR23u+9prr82bN2/UqFGZmZnt2rUbMWJEQEAAEXHOR48evWDBgqFDhxqNxqioqG+//dbb2/uDDz745Zdf/Pz8Tp48GRsb+/TTTycnJ4uieOLECY1GM3fu3ClTpnzzzTcTJkwYP3781KlTRVGMi4tbuXLl+PHjH/rLK48xwqxRAABVudsiXLNmjWct1Oamp0+fzszMTExMJKLg4OC//OUvX331lfzS1atXc3Nz+/TpQ0SOjo7dunVbt27d0aNHw8PD/fz8iKhdu3YGgyE1NfXIkSNxcXEajYaI+vbtu3Xr1sLCwiNHjsif1Wg0vXr1WrdundI/SN0wAesIAQDU5W575YknnliyZIn8uLCwcPbs2QEBAQkJCb6+vjdu3EhNTT169Oi0adNqc9OcnBwfHx9521IiCgoKunTpkvzY09NTq9VevHhRzqkXLlwwGo1NmzbNzc0VRVGj0RQXF+fl5eXk5DRt2vTixYvypy5cuCBJUm5urpeX18WLF6Oioojo4sWL2dnZ94tBkqSzZ89u3bq1+sXY2Ngaj5GSJEnuoa0jTsQ4lzgnziVJ4mYTFzSK3LnekO6wdSANAn5qq0HBtqY/9VMLtTgU9m4iDA0NDQ0NlR8/99xzAwcOXLFiRdXO2tOnT/9//+//bd26dfr06Q+8qdFo1Ov1VU8dHByqOl0dHBxefvnlUaNG/eMf/zh16tSRI0eCg4N79eplMBiGDx8eHx//3//+18XFpays7OWXX46Ojg4ICGjWrNmnn36q0WiMRmNSUtLf//73vLy8a9eubdmyRRTF+8UgSdKuXbsuXLhQ/WLr1q29vLx+/+aysjKNEk03URQZl8qNZaLES0tLTRXl3CyWlpbW/c71hslkkiTpD/7DgYKUKtjwQPKhBUiE1vGnCrazs/MDc2ENI1jFxcUbNmw4cuTIPedLJCUlvfvuuxkZGSEhIX98U29v75s3b1Y9zcvLq36ufXJy8rp16w4cOBAWFvbSSy9lZGQ4ODikpaUtW7bs2LFjSUlJ06dPb968efv27ffv3//ll19mZ2d//PHHTzzxRPPmzaOiosLCwn744Qd/f/+pU6euWbPmvl9Mqx0/fnxSUtIfhyrjnDdq1Kg27/xjOp2eiBwcHHQ6XaNGjUyCoHd2dlHizvWGnAgdHBxsHUiDoFTBhgeqfnoPWJriBbvmRCiKYmFh4T3X5Su/v/57bdu2NRqNZ8+ebd26Ned87969I0aMqHqVMZaYmJiYmChJUmRk5KuvvkpErq6ukyZNIqJff/31+PHjMTExRNS6detZs2YR0aJFi6Kiotzd3YkoPj4+Pj6eiPr169etW7eH/eKWwXD6BACAytSQCL29vUNCQv7+979v2rRJnsBCRDdv3nzllVc8PT3btGnzwJu6urqOHTt2zJgxU6dO/eabb9zc3Hr16nX58uU2bdqcPn16586dFRUVTk5Oq1evdnV1HTlyJBH961//Cg0NvXXr1ty5c6dOnerv75+dnf3555+3adPmxIkTycnJmzdvJqKtW7dmZ2c3btx406ZNGRkZa9euVfTXqCvGBIlX6xvBrFEAALtXQzXNGFu+fHl8fHxwcHDnzp3lyTIHDhwwm81ffvllLdv+8+bN++STT9asWRMQELB9+3ZBEBo1avTSSy81atSoWbNmX3zxhbxM8JVXXtHpdETk4eHx9ddfa7Xa+fPnJyQkEJHBYCguLv7vf//btGnTn376KTw8nIh8fHw2b95869at8PDwjz/+2M3NTdFfo84Y45LESWKEWaMAAOrAOOc1vnDx4sWFCxceO3bs0qVLPj4+7dq1e/nll1u3bm3l+B5aUlJSQEBALccIi4qKDAZD3f/ose1viGk/eSZMyL9y9NG4+Tf/M8u5cy+ndo/X/c71BsYIrUmpgg0PhDFCa1K8YN+34y4wMPD999+/ePFiUVFRRESEgn+yPqscI6TKPbdx+gQAgN2reVKpJEkzZ850d3cPDg6WZ6YQ0auvvmpf27jYH0bCb/calagWS1gAAMCGaq6mZ86cOWfOnPHjx7/77rtVF+Pi4tasWVNRUWGt2FSIEZFEd5qEaBECANi/GhKh2WxOTk5+9913586d+8QTT1Rdj4yMLC4urvE0CagkMJLuHsxLopkwWQYAwL7VkAivX79eWFgob+lZnbyM79atW9aIS60Y5/zurFFJwjpCAAA7V0MiNBgMgiBcuXLlnuvyEYA+Pj7WiEulGCO6u6Ae6wgBAOxfzYmwa9eu77zzTnFxcdUua7dv337jjTfat2/v7+9v3QjVhBHjckNQPqEeO8sAANi9mtsrH330UWxsbOvWrdu2bVtYWDhmzJht27bdunXr+++/t3J8qsOYwCXpzhihiDFCAAA7V/Os0cjIyEOHDsXExBw+fLioqCglJaVDhw4///xzdHS0leNTH4FxLjHMGgUAUIn7VtMtW7Zcs2YN5/z27dvyNBmoHUZcxBghAIBa3He597p16zp16uTi4iJv8klEM2bMmD17trUCUyfGGGOci5UtQowRAgDYvZoT4WeffZaYmNisWTP5aAhZaGjohx9+iCNVH4AxkqpmjWKMEADA3tWQCCVJevPNNydPnrxp06bExMSq648//nheXt6lS5esGJ7qMPkAispZoxgjBACwezUvqL927drzzz9/z3Vvb2/5VWvEpV4C41ys3HVbEgldowAA9q2GRCgfkVNSUnLP9czMTCLy8PCwQlgqxYjxyq5RtAgBANShhkTo4eHRrl275ORk6U4XHxFJkjR79uzAwMAWLVpYN0K1YUK1rlEczAsAYO9qbq/MmzevX79+OTk54eHhZWVlc+fOTUlJOXTo0Lp166pSI9SIMca5mZEjcU5cQtcoAICdq3nWaO/evbdt22Y0GpcuXXrr1q0pU6YUFBSkpKT89a9/tXJ8KsMYUWXXKNZOAACown1HsHr27Hn48OEbN25cvXrV09PTz8/PmmGpmCBUriPE2gkAADW4byLMyMhITk4+evRobm6uj49PeHj4xIkT27dvb83g1IgxRlxiTOCSmQmYKQMAYO9q7hr94Ycf2rdvv2zZMicnp65du7q7u69bt65jx47r16+3cnxqw4gRSZwYWoQAAOpQQ5OFcz527Nh27dpt2rRJXjtIRAUFBcOGDXvppZf69+/v5ORk3SBVgzHGSd5iTeCiGVNGAQDsXw0twmvXrmVlZX3wwQdVWZCI3N3dFy5cWFBQcPbsWSuGp0JM4FwiJq+mR9coAIC9q/lgXo1G4+Lics91+QpOongAJh/MK2A1PQCAKtSQCF1cXJ577rn58+dLklT9+ty5c2NiYoKDg60VmxoxJjDiEhEjsxljhAAA9q/mJkt0dPSbb77Zpk2bhIQEHx+fvLy81NTU9PT0adOmLV26VH5PTExMWFiYFUNVCXkFIRO4JKJFCABg/2quqWfOnJmXl5eXlzdnzpzq16dNm1b1+LPPPkMivBdjRAJxCbNGAQDUouZEmJ6efk+/6O85OztbIB51Y8RIYJI8axTrCAEA1KDmmtrNza3q8f79+48cOWIwGOLj4z09Pa0VmGoxJq8j5GYz0yIRAgDYu9/U1B9//PHOnTtTUlIEoXISzd/+9reFCxfKjxs3brxjxw5sLvMAjHEuMcZINGPHbQAA+/ebWaMrV6708PCoyoLbtm1buHBhdHT01q1b//Of/xDRhAkTbBCjijCqHCMkxkUz0+psHRAAADzA3RYh5/zkyZOTJk2quvLll1/q9fqUlBR5ZT1j7IUXXigqKjIYDDaIVC0Y41xkTMDx9AAAqnC3RVhQUGAymfz9/auu/Pjjj48//njV/jLR0dGc85ycHGvHqB6MBBLuHMOEBfUAAGpwNxEaDAadTnfjxg35aXZ2dnZ29mOPPVb1BvlI3oqKCiuHqDKMcZIYCWQ2EybLAADYvbuJUKvVtmrVaunSpWazmYhWr15NRH379q16w7lz54jokUcesXqQqsIYSSJVHsOErlEAAHv3mybLP//5z1GjRrVq1crHx2ffvn2dOnWKjo6uenXz5s3BwcFNmjSxepDqwQRiJM8a5SJ2lgEAUIHfzBodOXLk8uXLPTw8rl+/PmTIkI0bN1bNIC0tLd27d++QIUNsEaSqMKHyPEKziTBrFADA7t3bZBk9evTo0aN//z5nZ+cTJ05YJSQVY4wRMYkkRoxLIhNqPvcYAADsB2pqpVXOGhVINJMGLUIAAHuHRKgsxipnjcpjhJgsAwBg75AIFcUY0Z11hGYTdpYBALB/SIRKYsS4wOQT6kk0E2aNAgDYPSRCZTFijLhITMDOMgAAqoBEqCgm7yzDGRFahAAAqoBEqCQmtwglCS1CAAC1QCJUFGNEcosQk2UAANQBiVBJjAmckTxGSKJIWD4BAGD3kAiVxe6cUC9ws4lhQT0AgN1DIlQSYwIxqlxHKGGMEABABZAIFSWfPkGcEcN5hAAAqoBEqCR51iivPKEeXaMAACqARKgkJgic6M6sUTNDixAAwO4hESpKHiPkVadPIBECANg7JEJlVZs1iq5RAAA1QCJUEmMaIk4cp08AAKgGEqGSGGOc3Tl9wmwiJEIAALtnwUGs48ePHz9+PDQ0tEuXLve8lJ6efujQoWbNmj355JOMMSLinO/evfvixYsdOnRo06aN/LaioqJdu3YVFxfHxcU1bty46uNpaWnnzp3z9fX9y1/+4uzsbLmv8OcxYkTECZNlAABUwlItwo8++qhv37579+5NTEycPn169ZeSk5N79OiRlpY2ZcqUZ555hnMuSdJTTz31j3/8Y//+/b169Vq6dCkRXbhwITw8fOXKldu2bWvbtu2pU6eIyGQyJSQkjBgxYufOnfPnz//qq68sFP/DYYJARJxzxhg23QYAUAWL1NSlpaVvvfXWtm3bunTpcuHChTZt2kycONHHx4eIbt++PWXKlH379kVGRppMptDQ0J07d966devMmTPp6el6vX7cuHHdu3cfPnz422+/3bt3bzkpvvfee7NmzUpJSfn3v/995cqVEydOODk5WSLyOrs7WYbMJsJkGQAAu2eRFuGePXtcXV3lHtGgoKCIiIhvv/1WfikrK4tzHhkZSUQ6ne7RRx/dtGlTenp6ZGSkXq8nooiIiNLS0t27d6enp3fu3Fn+VJcuXb755htJktauXfvaa69duHBB7jK1RPB1UbnpNkmE0ycAAFTCIi3C3NxcPz+/qqd+fn6XLl2SH/v7+5vN5nPnzrVq1UqSpNOnTxNRp06dVq9eLUmSIAgZGRllZWW5ubmBgYFydygRnTx5sry8PC8vLzMz87PPPpMkydnZ+dixY1u3bpVz6u+Jorh7927Nb89/GDZsmMFg+P2bTSaTyWSq+xcXRYlzTlwyixI3V5iJMSVuW5+YTCb5P7StA2kQlCrY8EBms9lsNmtw4IxV/KmCrdVq5Zkof/SeOodUA1EUq9d0Wq3WbDbLjxs3bpyUlNSvX7/hw4enpaVJksQ5Hzx48Pz58+Pj45944onNmzf7+PhwzidPntyjRw+TyeTi4rJ9+3b5tkaj8ZFHHlm9ejURTZs27Y033ti2bVstLgMdAAAUxElEQVSNMXDOr169eubMmeoXy8vLa5xcI4qiKIp1/+Kck8QlLjObJGKkxG3rE1EUJUlS5NeGB1KqYMMDiXfYOpAG4U/91BqNxjaJ0NfX98aNG1VPr1271rNnz6qn8+fPHzBgwPHjx6dPn75q1So3NzcHB4d9+/Zt3rz55s2b69evj46ODg4OjoyMPHHiRGpqqpOT01NPPRUfH+/j4+Pr6/vkk0/K9+nWrduqVavu+8W02meffTYpKak2AZtMJkdHx4f8ttXodDqNVkck6bS6CkHjaF8zWu2CRqORJMnBwcHWgTQIShVseCC5RYhf2zoUL9gWSYRdunTJzs7Oyspq3rz57du3Dxw4sHTpUlEUb9++7enpSUQxMTExMTH5+fkbNmyQZ346ODg8++yzRJSamlpRUSGPL/r5+Y0dO5aIJk6c+NRTTzHGunfvnpGRIf+V8+fPP/LII5aI/6ExxjgRlziTRCwiBABQBYskwiZNmrz00ksJCQljxoxJSUkZMGBAq1atjhw50qFDB6PROG/ePLnv9PPPP09MTIyNjSWioUOHRkVFXblyZcWKFStWrHBycjp06NB//vOfkJCQffv2HThwYPfu3UT0+uuvd+vWTa/Xu7i4zJs3b9myZZaI/+ExRvKySFHETBkAAFWw1JyFf//732+88cbly5fHjBnzxRdfEFFgYOCSJUt0Ol2vXr0YY0aj8aOPPvrkk0/k9w8cOLCgoMDDwyMtLW3QoEFE1KJFi/Dw8Bs3bsTGxh4/fjwgIICI2rZt+/PPP2s0mvLy8m+//XbAgAEWiv9hMcYYJ4mJZqbT2zoYAAB4MMY5t3UMFpGUlBQQEFDLMcKioqIaZ5P+WZfSN+VmbC04tf3RgYvF/631mb6i7vesZ+RZoxgjtA6lCjY8EMYIrUnxgo1Z7Iqq3C6OyFzBtGgRAgCoABKhshgRZwKTysvRNQoAoApIhEpijHHOOSOqMCIRAgCoAhKhshgRJ8Z4WSnTYRgMAEAFkAgVxRhxTkzgFWWEMUIAADVAIrQARpKxTNCjRQgAoAJIhEpixDhxToxKSxgSIQCAGiARKkruGhVIMpYyPVYUAQCoABKhBTCSSovRIgQAUAUkQiXJXaNEjJcWoUUIAKAKSITK44xJJYWCg5OtAwEAgAdDIlQUY8Q5Y0wqLWaOOIwQAEAFkAiVxYg4Z8Q4CU4utg4GAAAeDInQAhgjIsEJu/4DAKgAEqGS5L1GiRERCQZ3W4cDAAAPhkSoLHmvUYGYoHFvYutgAADgwZAIFSUvqNdoGnXuJTg1snU0AADwYEiEFsDIte8IWwcBAAC1gkSopMq9RjlnjNk6FgAAqBUkQkXJXaPEiZAIAQDUAYlQeZxLjOGHBQBQB9TXymJEnLhESIQAACqB+lpJjIgTYYwQAEBFkAgVhTFCAAC1QSJUHsYIAQBUBPW1suQxQk7oGgUAUAkkQiXJe42iRQgAoCKory0BY4QAAKqBRKgsRoQWIQCAmqC+VhRjhK5RAABVQX2trMqVhOgaBQBQCyRC5WFBPQCAiiARKqnyhHpssQYAoB6or5WHFiEAgIogESqLEUl3HgAAgAogESqLcQlTRgEA1ARVtsKwdgIAQF1QZSuJMca5hG5RAAAVQSJUGOciWoQAACqCKltpXMKvCgCgIqiyFcUYxggBANQFVbaSGDF0jQIAqAuqbIVxLuFUXgAAFUEiVBTDOkIAAJVBla0wdI0CAKgLqmxlMc5FYhpbhwEAALWFRKgkxhiX0CIEAFATVNkK44SjJwAA1ASJUFmMSyIOIwQAUBFU2cpihAX1AACqgipbYZg1CgCgLqiylXRnsgxmjQIAqAYSocKwswwAgLogESoLe40CAKgMqmyFcY6uUQAANUEiVBT2GgUAUBut5W69b9++bdu2+fr6Dh061GAwVH/pyJEj33//vYODw5AhQ7y9vYmIc7558+bjx483b948MTFRp9MRUWFh4bp1665cufLkk0/GxMQQUW5u7nfffZednW0wGPr27du6dWvLxf8QGBHnWEcIAKAmlqqy169fP2DAAK1Wm5qaGhMTYzKZql5as2ZNv379JEn69ddfO3TocPXqVSIaPnz4u+++azAYvvjii4SEBCIqKCiIjIzcs2ePs7Pz6NGjFy1aRERbtmz56aefNBpNVlZWp06dvvnmGwvFXxdoEQIAqIilWoTvvPPOhx9+OHToUFEUIyIiNm3aNHjwYPmlGTNmJCcn//WvfyWiwsLCRYsWDRky5H//+9/ly5c9PT0nTJgQFBS0b9++PXv2BAYGrlq1ioiio6MHDRo0duzYcePGjRs3Tr6Pm5vbypUr+/fvb6Gv8DAYIyKMEQIAqIhF2i7Xrl07depUfHw8EWk0mt69e+/YsUN+iXOek5MTFhYmPw0LC/vuu+9ycnK8vLw8PT2JSK/XBwcHf//99zk5OaGhoVVvu3r16qlTp6r+hNls/uWXX1q2bGmJ+OuAERETkAgBAFTDIi3Cq1evOjg4uLu7y099fHz27t0rP2aMhYWF7d27NyIigoj27t17+fLl0NDQ69evZ2ZmBgcHFxQUnD59ul27du3bt1+8eLEoihqNZs+ePUSUm5v76KOPHjp06MUXX8zOzu7UqdPbb799vxjMZvPGjRuzsrKqX5w2bVpVVNUZjUZ5VLKOKsoriIhzMhqNdb9bvWQymSRJ4pzbOpAGQamCDQ9kNpvNZrOto2go/lTB1uv1gvCAJp9FEqEgCHJlJ5/DIIqiVnv3D33wwQdDhgz56aefrly5YjKZHBwcAgMDJ0+eHBMT07NnzyNHjgQFBen1+lGjRn3++eddunRp06bNmTNnGjdu7ODgQERt27bdsGFDdnb2pEmTZs+ePWvWrBpjYIy5u7v7+/tXv6jT6TSaGpprGo2mxut/lnwTQVDmbvWSJEmMMfw+1qFUwYYH4pxzzvFrW8efKti1OQ7IIonQ19fXZDLdvHmzSZMmRHTlyhVfX9+qV+Pi4s6ePXv48GF/f//t27enpqYS0TvvvDN8+PCMjIw5c+aMHDmyRYsWjo6OP/3008GDB0tKStq3b9+sWbMWLVoQkZOTU3BwcHBw8OzZs8eNG3e/RKjRaLp165aUlFSbgHU6nSL/cNbqdEQkCBr8M/wPSJKE38c6lCrY8ECMMcYYfm3rULxgW2SMsEmTJp07d964cSMRVVRUbN26VR4vPHz4cElJCRF5eXn16dMnMDBwyZIlzz33nPypVq1axcfHX7lyZc+ePQMHDiQijUbz2GOP9ejRY9myZRERES1atKg++/T06dPV86t9YESE5RMAACpiqVmjs2bNev75548fP37s2LGAgIA+ffoQUadOnfbs2XP06NGdO3d6eHjs2LHjscceGzlyJBENHz5cr9eXl5enpqYuXLgwMDCwqKgoLi7u0UcfzcrKOnHixHfffUdECQkJOp3Oz88vKysrLS1tw4YNFoq/LjBrFABARZjlpi1kZGTs2rWrSZMm8fHxcjN2x44dHTt2FEVxx44d+fn57dq1e/zxx+U3nz9/fu/evZzzbt26BQUFERHnfM+ePb/88oubm1ufPn1cXV2J6MaNG3v37r1+/bqXl9eTTz7p4eFxv7+elJQUEBBQy67RoqKie5b8P5yiW+e/WxXjHRj7l6e/rPvd6iV5sow83AuWplTBhgeSJ8s4OjraOpAGQfGCbcGdZUJCQkJCQqpf6dGjh/zg2WefvefNLVu2vGctBGMsOjo6Ojq6+kUvL69BgwZZIFgloUUIAKAiGM1SFsYIAQBUBlW2oip3lsGvCgCgGqiylcQIiRAAQGVQZSsPiRAAQEVQZStK3sGgFhsZAACAnUAiVBZOnwAAUBkkQiUxJEIAALVBIlRU5axRdI0CAKgGEqGysI4QAEBlUGUrDwfzAgCoCBKhkuROUYZfFQBAPVBlKwsL6gEAVAZVtqLkaTKYLAMAoB5IhEqqXD6BMUIAAPVAIlQUxggBANQGVbaSGJZPAACoDapsReEYJgAAtUGVrSzsLAMAoDJIhEqqXEeIvUYBANQDiVBZGCMEAFAZVNmKYgJh+QQAgKogESpJniaDyTIAACqCKltJcgoUBK2tAwEAgNpCIlRU5WQZJEIAANVAIlSSPF9U0CARAgCoBhKhkgRBR0SN3INtHQgAANQW2i5KEjS6/i//ond0s3UgAABQW2gRKgxZEABAXZAIAQCgQUMiBACABg2JEAAAGjQkQiKiTZs2cc5tHUWDcP78+ZMnT9o6ioZiy5YtJpPJ1lE0CJmZmcePH7d1FA3Ftm3bjEajgjdEIiQiGjNmDOoL69i8efPatWttHUVDMX78+OLiYltH0SB89913y5cvt3UUDcVrr7128+ZNBW+IRAgAAA0aEiEAADRo9XZBvY+Pz+eff75jx47avNnFxSUhIQEny1vBpUuXTCbTU089ZetAGgSNRjNkyBCttt7+b24/rly5UlJSgoJtHWazefTo0Xq9vjZv/vjjj5s3b/7H72H1dZKI2Wzetm2braMAAABbiomJcXV1/eP31NtECAAAUBsYIwQAgAYNiRAAABo0JEIAAGjQkAgBAKBBa+jzqq9evfrGG2+cOnUqLCzs/fff9/Pzs3VE9dYPP/ywePHiqqfvvfdeixYtbBhP/ZOTk7Nhw4Zjx465ubklJyfLF69duzZlypRTp06Fhoa+//77jzzyiG2DrDd27dq1Y8eOc+fODR48ePDgwUR04MCB+fPnV71h+vTpERERtguw/khPT1+0aNHhw4cFQYiLi3v99dednJzKy8tnzpy5Y8eOJk2azJw5s3PnznX5Ew29RZiYmKjT6VavXu3p6ZmQkGDrcOqzrKysixcvPnuHp6enrSOqb06cOHHs2DHGWPWFQ4mJiVqtdvXq1U2aNEEJV9CWLVuKi4vPnz9/+vRp+Upubu7p06erSri3t7dtI6w30tLSPD0958yZ884772zcuDEpKYmI3nrrrT179ixbtmzgwIF9+vTJz8+v09/gDdjJkyednJxKSko45xUVFe7u7vv377d1UPXWsmXLEhISbB1F/bdp06ZWrVrJj0+dOuXk5FRcXMzvlPC0tDSbRlffPPfcczNnzpQff/XVV7GxsTYNp/7buHFjUFBQeXm5p6dnVWHu3r37Rx99VJfbNugW4cmTJ8PDw52dnYlIp9NFRkaeOHHC1kHVZ0eOHOnTp8+oUaN+/PFHW8fSIJw8ebJt27YuLi5EpNPpoqKiUMIt6ty5c3379h02bNiWLVtsHUv9dPz48VatWl26dCk/P79jx47yxc6dO9fx6I8GPUZ4/fp1d3f3qqceHh7Xrl2zYTz1W1hY2IwZM/z9/Y8dO9a/f/+1a9cOGDDA1kHVcyjh1hQUFPTWW2+1aNHizJkzw4cPX7BgwahRo2wdVL1y6NChBQsW7Nq16/r1640aNaraO9DDw6Oqg/rhNOhE6ObmVlpaWvW0uLi4eq0ByuratWvXrl2JKC4urqysbNGiRUiEloYSbk1RUVFRUVFE1LNnT0EQFi1ahESooNOnT/fv33/FihWRkZFnz54tKyvjnMsbRNe9YDfortHAwMCMjAxJkuSnGRkZQUFBNo2ooWjWrNnt27dtHUX9hxJuKyjhyvrll1969eq1YMGCp59+mojk6f1ZWVnyq3Uv2A06EcbExOj1+vXr1xPR//3f/5WUlMTFxdk6qHrr8OHD8unHV65cWbRoUffu3W0dUf0XHR3t6Oi4bt06ItqyZUtRUVGvXr1sHVS9dfTo0fLyciK6efPmhx9+iBKulIyMjLi4uJkzZw4ZMkS+4urqOmDAgI8//piIMjMzt2zZMnTo0Dr9DQXm8ajZjh07fH19g4ODvb29U1NTbR1OfTZs2DBnZ2d/f39nZ+cxY8aUlpbaOqL65tChQx7VxMfHc85/+OGHZs2aySV869atto6x/pgyZUr1X3v58uV/+9vfqkp4YmJifn6+rWOsJ2bPnl39p/bx8eGcZ2VlRUREBAQEuLu7z5s3r45/AqdPkNlsvn79etOmTXFsm6WVlpbm5+d7e3vjp7YmlHCrKSsru3XrVtOmTXU6na1jaRAuX77s6enp6OhYx/sgEQIAQIPWoMcIAQAAkAgBAKBBQyIEAIAGDYkQAAAaNCRCAABo0JAIAQCgQUMiBKgPzpw5s2rVKqyGAngIWEcIoAJz585dvHjx/V6dOHEi5/z11183mUxYNQ/wZ+H/GQAV6Nix45gxY+THZ8+eXbt27bBhw0JDQ+UrHTp0cHR0fOeddzQaje1iBFArtAgBVGbjxo1PP/305s2b+/fv/8fvvHHjhsFgqNqASpKkmzdvenl53fM2s9mcl5dnMBjkI3wBGhqMEQLUB0uWLPH19RVFcc6cOb6+vmlpaWFhYU2bNnV1dZ08eTLnfPny5b6+vk2bNm3cuHFKSor8qYqKiilTpjRt2tTX19fV1bV79+4ZGRm2/SIA1odECFAfFBcXX716lXNuNBrz8vLGjBkzderUgwcPTpgwYd68eePGjVu4cOHy5ct//vnnjh07jhw5Uj6qfuTIkYsXL541a9bJkye3bduWn5/fs2fP4uJiW38bAKvCGCFAfWM2m997771BgwYRUVRU1Pr167/44ouMjAz5ONNPPvmkZcuW3377bVhY2JdffrlixQr5IPXw8PCvv/46JCRk3bp1L7zwgm2/AoA1IREC1DeMsaoDeDUaTUhISElJiZwFiSg4OFir1ebk5Fy8eJGIXF1dt2/fXvVZLy+vU6dOWT9mABtCIgSobxwcHJydnaue6vV6vV5f9VQQBK1WazKZ8vLyGGNjx4695+OFhYVWChTAPiARAjRQbm5uRJSVlSU/AGiwMFkGoIGKjY3lnP/vf/+zdSAANoYWIUADFRcX16NHj0mTJomiOGDAgEaNGv36668bN27s1q1bbGysraMDsB60CAEaKMbYxo0bBw8ePHHiRF9fX4PBEBkZ+fXXXxsMBluHBmBV2FkGQH1EUbxnNzXOuSRJD7fFWnFxcXp6uiAI/v7+TZo0UShGANVAIgQAgAYNXaMAANCgIRECAECDhkQIAAANGhIhAAA0aEiEAADQoCERAgBAg/b/AQi/Vy2BI9WcAAAAAElFTkSuQmCC" }, "metadata": {}, "execution_count": 21 } ], "cell_type": "code", "source": [ "p2 = plot()\n", "for g in get_components(ThermalStandard, sys)\n", " state_series = get_state_series(sim, (get_name(g), :ω))\n", " plot!(\n", " p2,\n", " state_series;\n", " xlabel = \"Time\",\n", " ylabel = \"Speed [pu]\",\n", " label = \"$(get_name(g)) - ω\",\n", " )\n", "end\n", "state_series = get_state_series(sim, (\"Battery\", :ω_oc))\n", "plot!(p2, state_series; xlabel = \"Time\", ylabel = \"Speed [pu]\", label = \"Battery - ω\")\n", "img = DisplayAs.PNG(p2) # This line is only needed because of literate use display(p2) when running locally" ], "metadata": {}, "execution_count": 21 }, { "cell_type": "markdown", "source": [ "---\n", "\n", "*This notebook was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*" ], "metadata": {} } ], "nbformat_minor": 3, "metadata": { "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.5.4" }, "kernelspec": { "name": "julia-1.5", "display_name": "Julia 1.5.4", "language": "julia" } }, "nbformat": 4 }