IIIIIII

Contents

1 API Reference 1
1.1 Utilities . . . o o o o 2
1.1.1 Imitialize e 3
1.1.2 Finalize e 4
1.1.3 Initialize Plugins o e 5
1.1.4 Finalize Plugins e 7
1.1.5 Get API Version o 0 e 9
1.1.6 Get Error String oL e e 10
1.1.7 Get Build Info Strings 12
1.1.8 Pin Memory e e 14
1.1.9 Unpin Memory e 16
1.1.10 Imstall Signal Handler 18
1.1.11 Reset Signal Handler 19
1.1.12 Register Print Callback L 20
1.1.13 Read System e 21
1.1.14 Read System Distributed o 24
1.1.15 Read System Global e 27
1.1.16 Read System Maps One Ring 32
1.1.17 Free System Maps One Ring 38
1.1.18 Write System L o e e 41
1.1.19 Write System Distributed oo 43

1.2 Config o e e 46
1.2.1 Config Create e 47
1.2.2 Config Create From File 49

ii

1.3

14

1.5

1.6

CONTENTS

1.2.3 Config Get Default Number Of Rings 51
1.2.4 Config Destroy o e 53
Resources L 55
1.3.1 Resources Create 56
1.3.2 Resources Create Simple 58
1.3.3 Resources Destroy e 59
Solver . . .o e 61
1.4.1 Solver Create o o 63
1.4.2 Solver Destroy o . e 65
1.4.3 Solver Setup e 67
1.4.4 Solver Solve With 0 Initial Guess 69
1.4.5 Solver Solve L e 72
1.4.6 Solver Get Iterations Number o 75
1.4.7 Solver Get Iteration Residual L o 7
1.4.8 Solver Get Status e 79
Matrix . . . e e 81
1.5.1 Matrix Create e 83
1.5.2 Matrix Destroy e 85
1.5.3 Matrix Upload All 87
1.5.4 Matrix Upload All Global 91
1.5.5 Matrix Replace Coefficients L 95
1.5.6 Matrix Get Size 98
1.5.7 Matrix Comm From Maps 100
1.5.8 Matrix Comm From Maps One Ring 104
Vector . . . o e e e 108
1.6.1 Vector Create e 110
1.6.2 Vector Destroy L 112
1.6.3 Vector Upload e 114
1.6.4 Vector Download 116
1.6.5 Vector Set Zero 118
1.6.6 Vector Get Size 120

1.6.7 Vector Bind 122

CONTENTS

2 Algorithm Guide
2.1 Config Syntax . . .
2.2 Resources Settings .
2.3 General Settings . .
2.4 Multigrid Settings .

2.5 Classical Algebraic Multigrid e

2.6 Aggregation Multigrid

2.7 Krylov Solvers . . .
2.8 Smoothers

2.9 Cycles

3 Programming Guide

3.1 Single Thread Single GPU e

3.2 Multi Thread OpenMP e

3.3 Single Thread MPI
3.4 Multi Thread Hybrid

4 Legacy API

iii

125
127
129
130
132
134
136
138
141
144
146

149
150
152
154
157

159

Chapter 1

API Reference

DESCRIPTION

This documents describes the C API for NVIDIA’s AMGX library.

The API presents an object-oriented framework for describing a sparse linear system of equations and a
method for solving it. There are five types of objects: Config, Resources, Solver, Matrix, and Vector.
Config is a lightweight representation of a parsed set of configuration strings, the format of which is described
in Config Syntaxr. Resources defines a set of resources, such as memory, threads, and hardware, which will
be used by other objects for storage or execution. Matrix and Vector define components of a linear system,
and are bound to a Solver object which actually executes the solution algorithm.

Utilities
Config
Resources
Solver
Matrix

Vector

HISTORY

This document describes API Version 2.

2 CHAPTER 1. API REFERENCE

1.1 Utilities

NAME

Utilities

DESCRIPTION

This section describes utility API functions that are not specific to the core objects of the AMGX library.
AMGX provides a number of mechanisms for dealing with text output, file input and output, memory
management, and other application and library-level utilities.

AMGX _initialize

AMGX _finalize

AMGX _initialize_plugins

AMGX finalize_plugins

AMGX _get_api_version

AMGX _get_error_string
AMGX_get_build_info_strings
AMGX_pin_memory
AMGX_unpin_memory

AMGX _install_signal_handler
AMGX _reset_signal _handler
AMGX _read_system

AMGX _read_system_distributed
AMGX_write_system

AMGX _write_system_distributed
AMGX _register_print_callback

HISTORY

The utility routines were updated in API version 2 to add support for distributed matrices.

SEE ALSO

Initialize, Finalize, Initialize Plugins, Finalize Plugins, Get Error String, Get Build Info Strings, Pin Memory,
Unpin Memory, Install Signal Handler, Reset Signal Handler, Read System, Read System Distributed, Write
System, Register Print Callback

1.1. UTILITIES 3

1.1.1 Initialize

NAME

AMGX _initialize - Initialize the AMGX library.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_initialize();

DESCRIPTION

AMGX _initialize initializes the library. This routine must be called before any subsequent calls to AMGX
routines. It is legal to call AMGX _initialize after a call to AMGX _finalize, so the at the library can be
initialized and finalized repeatedly throughout the lifetime of an application.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_CORE

AMGX_RC_UNKNOWN

HISTORY

AMGX _initialize was introduced in API Version 1.

SEE ALSO

Initialize Plugins, Finalize, Finalize Plugins

4 CHAPTER 1. API REFERENCE

1.1.2 Finalize

NAME

AMGX finalize - Finalizes the AMGX library.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_finalize();

DESCRIPTION

AMGX finalize cleans up any resources or other the library. The caller is not allowed to call any AMGX
routines after this has been called. It is legal to call AMGX _initialize after a call to AMGX_finalize, so
the at the library can be initialized and finalized repeatedly throughout the lifetime of an application.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_UNKNOWN

HISTORY

AMGX _finalize was introduced in API Version 2.

SEE ALSO

Initialize Plugins, Initialize, Finalize plugins

1.1. UTILITIES)

1.1.3 Initialize Plugins

NAME

AMGX _initialize_plugins - Initialize the built-in plugins for the AMGX library.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_initialize_plugins();

DESCRIPTION

AMGX _initialize_plugins initializes the plugins that have been compiled into the AMGX library. Since
AMGX uses a plugin system for encapsulating functionality, all of the routines such as file IO, solvers,
smoothers, graph coloring, and cycling strategy are implemented via built-in plugins. Therefore, attempts
to call routines like AMGX _solver_setup or AMGX _solver_solve are likely to fail if the plugins have
not been initialized first.

It is legal to call AMGX _initialize_plugins after a call to AMGX _finalize_plugins, so the at the plugins
can be initialized and finalized repeatedly throughout the lifetime of an application.

RETURN VALUES

Relevant return values:
AMGX_RC_0OK

AMGX_RC_UNKNOWN

EXAMPLE

int main(int, const char *x*) {
AMGX_initialize();
AMGX_initialize_plugins();

// use the library

AMGX_finalize_plugins();
AMGX_finalize();
return O;

HISTORY

AMGX _initialize_plugins was introduced in API Version 1.

6 CHAPTER 1. API REFERENCE

SEE ALSO

Initialize, Finalize, Finalize Plugins

1.1. UTILITIES 7

1.1.4 Finalize Plugins

NAME

AMGX finalize_plugins - Finalizes the built-in plugins for the AMGX library.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_finalize_plugins();

DESCRIPTION

AMGX finalize_plugins removes all of the plugins from the AMGX library. Since AMGX uses a plugin
system for encapsulating functionality, all of the routines such as file 10, solvers, smoothers, graph coloring,
and cycling strategy are implemented via built-in plugins. Therefore, attempts to call routines like AMGX_
solver_setup or AMGX _solver_solve are likely to fail after the plugins have been finalized.

It is legal to call AMGX _initialize_plugins after a call to AMGX _finalize_plugins, so the at the plugins
can be initialized and finalized repeatedly throughout the lifetime of an application.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_UNKNOWN

EXAMPLE

int main(int, const char *x) {
AMGX_initialize();
AMGX_initialize_plugins();

// use the library

AMGX_finalize_plugins();
AMGX_finalize();
return 0;

HISTORY

AMGX _initialize_plugins was introduced in API Version 1.

8 CHAPTER 1. API REFERENCE

SEE ALSO

Initialize, Initialize Plugins, Finalize

1.1. UTILITIES 9

1.1.5 Get API Version

NAME

AMGX _get_api_version - Retrieve API version of AMGX

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_get_api_version(int #*major, int *minor);

PARAMETERS

major

The major API version number.

minor

The minor API version number.

DESCRIPTION

AMGX_get_api_version retrieves information about the API version of AMGX. All API versions of AMGX
are assigning a monotonically increasing and unique API version. It is important to check against this number
to avoid compatibility issues.

RETURN VALUES

Relevant return values:

AMGX_RC_OK

EXAMPLE

int major, minor;
AMGX_get_api_version(&major, &minor);
printf ("AMGX API version %d.%d\n", major, minor);

HISTORY

AMGX _get_api_version was introduced in API Version 1.

SEE ALSO

10 CHAPTER 1. API REFERENCE

1.1.6 Get Error String

NAME

AMGX _get_error_string - Convert an error code into a string.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_get_error_string(AMGX_RC err, char* buf, int buf_len);

PARAMETERS

err

The error code to be converted.

buf

The string buffer to receive the translation.

buf_len

The length of the provided string buffer. If the error string to be returned is larger than this value,
only the first buf_len characters will be copied into buf.

DESCRIPTION

AMGX_get_error_string can be used to translate the error codes returned via AMGX routines into a
human readable string. This is useful for debugging or diagnostics.

RETURN VALUES

Relevant return values:

AMGX_RC_OK

EXAMPLE

AMGX_RC code = AMGX_initialize(Q);

char buff[256];
AMGX_get_error_string(code, buff, 256);
printf("Initialize returned %s\n", buff);

HISTORY

AMGX_get_error_string was introduced in API Version 1.

1.1. UTILITIES

SEE ALSO

11

12 CHAPTER 1. API REFERENCE

1.1.7 Get Build Info Strings

NAME

AMGX _get_build_info_strings - Retrieve pointers to string containing information about this build of
AMGX

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_get_build_info_strings(char **version, char *x*date,
char **time);

PARAMETERS

version

Pointer to a char * that will be set to the build version. This string should not be modified.

date
Pointer to a char * that will be set to the build date. This string should not be modified.

time
Pointer to a char * that will be set to the build time. This string should not be modified.
DESCRIPTION

AMGX_get_build_info_strings retrieves information about this build of AMGX. All versions of AMGX
are assigning a monotonically increasing and unique version number. This build number is important for
reporting errors to the AMGX development team.

RETURN VALUES
Relevant return values:
AMGX_RC_OK
EXAMPLE

char *version, *date, *time;
AMGX_get_build_info_strings(&version, &date, &time);
printf ("AMGX version %s built %s %s\n", version, date, time);

HISTORY

AMGX_get_build_info_strings was introduced in API Version 1.

1.1. UTILITIES

SEE ALSO

13

14 CHAPTER 1. API REFERENCE

1.1.8 Pin Memory

NAME

AMGX _pin_memory - Notify the operating system that a buffer is to be pinned.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_pin_memory(void *ptr, unsigned int bytes);

PARAMETERS

ptr
The start of the buffer to be pinned.

bytes
The number of bytes to be pinned.

DESCRIPTION

AMGX_pin_memory notifies the operating system that a host buffer is to be pinned to reside in physical
memory. This allows the CUDA driver to optimize transfers across the PCI-Express bus, resulting in higher
achieved bandwidth.

It is recommended that the host buffers used in AMGX _matrix_upload_all, AMGX _matrix_replace_
coefficients, AMGX _vector_upload, and AMGX _vector_download be pinned.

For details on the benefits and drawbacks of using pinned memory, please see the CUDA Programming
Guide.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_UNKNOWN

EXAMPLE

AMGX_vector_handle vector;
AMGX_vector_create(&vector, AMGX_mode_dDFI);
float datall = {1, 2, 3, 4, 1, 2, 3, 4};
AMGX_pin_memory(data, sizeof(float)*8);
AMGX_vector_upload(vector, 2, 4, data);

1.1. UTILITIES

HISTORY

AMGX _pin_memory was introduced in API Version 1.

SEE ALSO

Matriz Upload All, Matriz Replace Coefficients, Vector Upload, Vector Download, Unpin Memory

15

16 CHAPTER 1. API REFERENCE

1.1.9 Unpin Memory

NAME

AMGX _unpin_memory - Notify the operating system that a buffer is to be unpinned.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_unpin_memory(void *ptr);

PARAMETERS

ptr
The buffer to be unpinned.

DESCRIPTION
AMGX_unpin_memory notifies the operating system that a host buffer which was previously pinned
should be unpinned.

For details on the benefits and drawbacks of using pinned memory, please see the CUDA Programming
Guide.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_UNKNOWN

EXAMPLE

AMGX_vector_handle vector;
AMGX_vector_create(&vector, AMGX_mode_dDFI);
float datall = {1, 2, 3, 4, 1, 2, 3, 4};
AMGX_pin_memory(data, sizeof (float)*8);
AMGX_vector_upload(vector, 2, 4, data);
AMGX_unpin_memory(data) ;

HISTORY

AMGX _unpin_memory was introduced in API Version 2.

1.1. UTILITIES

SEE ALSO

Matriz Upload All, Matriz Replace Coefficients, Vector Upload, Vector Download, Pin Memory

17

18 CHAPTER 1. API REFERENCE

1.1.10 Imnstall Signal Handler

NAME

AMGX _install_signal _handler - cause AMGX to install its default signal handlers.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_install_signal_handler();

DESCRIPTION

AMGX _install_signal _handler causes the AMGX library to install its default signal handlers. When the
signal handlers are installed, AMGX will catch fatal signals. On Windows, it will print information about
the signal and exit. On Linux, it will additionally print a demangled stack trace for debugging purposes. All
text output will be directed to the callback set via AMGX _register_print_callback.

By default, AMGX signal handlers are not installed. This allows the application to handle signals.

RETURN VALUES

Relevant return values:

AMGX_RC_OK

HISTORY

AMGX _install_signal_handler was introduced in API Version 1.

SEE ALSO

Reset Signal Handler, Register Print Callback

1.1. UTILITIES 19

1.1.11 Reset Signal Handler

NAME

AMGX _reset_signal_handler - cause AMGX to restore previous signal handlers.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_reset_signal_handler();

DESCRIPTION

AMGX _reset_signal _handler restores any signal handlers that were set prior to the last call to AMGX_
install _signal handler. This allows an application, for example, to enable AMGX signal handling while
inside a particular AMGX routine, and restore the application’s signal handler upon exiting from that
routine.

RETURN VALUES

Relevant return values:

AMGX_RC_OK

EXAMPLE

AMGX_install_signal_handler();
AMGX_solver_solve(solver, rhs, sol);
AMGX_reset_signal_handler();

HISTORY

AMGX _reset_signal _handler was introduced in API Version 1.

SEE ALSO

Install Signal Handler, Register Print Callback

20 CHAPTER 1. API REFERENCE

1.1.12 Register Print Callback

NAME

AMGX _register_print_callback - Register a user-provided callback for text output

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_register_print_callback(AMGX_print_callback func);

PARAMETERS

func

Pointer to the callback function to register.

DESCRIPTION

AMGX _register_print_callback allows the application to register a custom text print callback which will
receive all text output from the AMGX library. This allows an application to integrate AMGX messages
into output or debugging logs.

By default, all text output is sent to stdout.

The user-provided callback should have the following signature:
void callback(const char *msg, int length);

msg will be the null-terminated string to display (possibly with newline characters embedded in it), and
length is always guaranteed to be equal to strlen(msg).

RETURN VALUES

Relevant return values:

AMGX_RC_OK

HISTORY

AMGX _register_print_callback was introduced in API Version 1.

SEE ALSO

Reset Signal Handler, Install Signal Handler

1.1. UTILITIES 21

1.1.13 Read System

NAME

AMGX _read_system - Read a linear system of equations from a file.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_read_system(AMGX_matrix_handle mtx,
AMGX_vector_handle rhs, AMGX_vector_handle sol, const char *filename);

PARAMETERS

mtx

Handle to a Matrix object to be loaded from disk. The Matrix must already have been created via
AMGX _matrix_create.

rhs
Handle to a Vector object representing the right hand size to be loaded from disk. The Vector must
already have been created via AMGX _vector_create.

sol
Handle to a Vector object representing the solution vector to be loaded from disk. This value is
optional - some file formats allow a solution vector to be stored with the matrix. If NULL is passed
for this value, no solution vector data will be returned. If non-NULL, the Vector must already have
been created via AMGX_vector_create. If non-NULL and the file has no associated solution vector
data, the Vector will be initialized to have the proper number of entries, and will be set to all zeroes.

filename
Path to the file to be loaded.

DESCRIPTION

AMGX _read_system reads a linear system of equations, including the matrix, the right hand size, and an
optional starting solution vector, from disk into Matrix and Vector objects. This routine should only be
used in the single-threaded case, where the matrix will not be partitioned across multiple threads. For MPI
execution, use AMGX _read_system _distributed.

The Matrix and Vector objects must have previously been created via AMGX _matrix_create and
AMGX _vector_create. If a Matrix or Vector has had data uploaded to it, that data will be overwritten.

AMGX support a MatrixMarket format, with optional extensions to include the solution vector, separate
storage of the diagonal, and block size information. Only ’'real’, 'symmetric’ and ’general’ keywords are
currently supported. Diagonal is asumed to be stored right after the matrix, followed by right-hand-side
and solution vectors. The extensions are provided through a comment line, starting with %% AMGX. Any
modifier in the extensions line can be ommited and the ordering is not important. It is not assumed that

22 CHAPTER 1. API REFERENCE

rows are sored and the column entires appear in sorted order within each row. But if this is the case, 'sorted’
option can be provided to improve reading performance.

If there is no right-hand-side data in the file, rhs is resized and filled with 1. Similarly, if there is no solution
data, sol is resized and filled with 0 .

The extended MatrixMarket format is as follows:

%%MatrixMarket matrix coordinate real general

%%HAMGX block_dimx(int) block_dimy(int) diagonal sorted rhs solution
%% mxn matrix with nnz non-zero elements

%% m=block_dimx*n_block_rows, n=block_dimy*n_block_cols

%% nnz=block_dimx*block_dimy+*n_block_entrees

m(int) n(int) nnz(int)

11 a_11

12 a_12

ij a_ij

%% these two comment lines present only for the description (to be removed)
%% optional diagonal mx1

a_ii

%% these two comment lines present only for the description (to be removed)
%% optional rhs mx1

b_i
%% these two comment lines present only for the description (to be removed)
%% optional solution nx1

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY
AMGX_RC_UNKNOWN

AMGX_RC_IO_ERROR

1.1. UTILITIES 23

EXAMPLE

AMGX_resources_handle resources;
AMGX_resources_create_simple(&resources) ;
AMGX_matrix_handle matrix;

AMGX_matrix_create(&matrix, resources, AMGX_mode_dFFI);
AMGX_vector_handle rhs;

AMGX_vector_create(&rhs, resources, AMGX_mode_dFFI);
AMGX_read_system(matrix, vector, NULL, argv[1]);

Description of a matrix with 32 block rows and block columns, 100 block entrees, and block size of 4x4:

%/%MatrixMarket matrix coordinate real general

%HAMGX 4 4

128 128 1600

%% these two comment lines present only for the description (to be removed)
%% i =0..31, j = 0..31

4*xi+1 4*j+1 value

4%i+1 4%j+2 value

4*xi+2 4x*j+1 value

4xi+4 4*j+4 value

HISTORY

AMGX _read_system was introduced in API Version 1, the calling signature was modified in API Version
2.

SEE ALSO

Write_system, Matriz Create, Vector Create, Read System Distributed

24

CHAPTER 1. API REFERENCE

1.1.14 Read System Distributed

NAME

AMGX _read _system_distributed - Read a subset of linear system of equations from a file in a distributed
application.

SYNOPSIS

#include <amgx_c.h>

AMGX_RC AMGX_API AMGX_read_system_distributed(AMGX_matrix_handle mtx,
AMGX_vector_handle rhs, AMGX_vector_handle sol,

const char *filename, int allocated_halo_depth, int num_partitioms,

int *partition_sizes, int partition_vector_size, int *partition_vector);

PARAMETERS

mtx

rhs

sol

Handle to a Matrix object to be loaded from disk. The Matrix must already have been created via
AMGX _matrix_create.

Handle to a Vector object representing the right hand size to be loaded from disk. The Vector must
already have been created via AMGX _vector_create.

Handle to a Vector object representing the solution vector to be loaded from disk. This value is
optional - some file formats allow a solution vector to be stored with the matrix. If NULL is passed
for this value, no solution vector data will be returned. If non-NULL, the Vector must already have
been created via AMGX_vector_create. If non-NULL and the file has no associated solution vector
data, the Vector will be initialized to have the proper number of entries, and will be set to all zeroes.

filename

Path to the file to be loaded.

allocated_halo_depth

In order to support halo exchanges for a given halo depth, the Matrix must allocate enough memory
to store any extra layers of data from remote partitions. This setting causes the Matrix to allocate
enough memory to support halo exchanges for halo depth of allocated_halo_depth. This should be
at least as large as the depth of the halo region to be sent to neighboring MPI ranks, but not larger than
necessary, since larger values result in more memory being allocated and more overhead during the
communication map construction. Currently, allocated_halo_depth must be equal to num_import_
rings. In the future, AMGX may support computing extra layers of halo regions automatically.

num_partitions

The total number of partitions. Typically, this will match the number of MPI ranks or threads.

1.1. UTILITIES 25

partition_sizes

An array of size num_partitions listing the size of each partition. That is, partition_sizes[i] will
be the number of block-rows in the system matrix in partition i.

If NULL is passed for this value, partition sizes are computed from partition vector.

partition_vector_size

The number of entries in the partition_vector array. This must be equal to the number of block-rows
of the global system matrix, which is being read for disk. If these sizes do not match, it will result in
an error.

partition_vector

An array of partition assignments of the global system matrix. The array must have size equal to
partition_vector_sizes, which is equal to the number of block-rows of the global system matrix.
Each entry partition_vector[i] will be an integer between 0 and num_partitions-1 indicating the
partition to which block-row i belongs. The total number of entries in partition_vector with values
equal to j must be equal to the value specified in partition_sizes[j].

The partitioning is typically obtained via some type of mesh partitioner and therefore this information
is assumed to be avialable to the calling application, perhaps stored on disk seperately from the global
system matrix.

If NULL is passed for this value, trivial partitioning is performed, when block rows are evenly dis-
tributed among different ranks (block rows 0. .k go to rank 0, etc)

DESCRIPTION

AMGX _read_system_distributed reads a linear system of equations, including the matrix, the right
hand size, and an optional starting solution vector, from disk into Matrix and Vector objects. Unlike
AMGX _read_system, it takes partitioning information and only reads the portion of the system matrix
which is indicated to belong to this MPI rank. This routine is optimized to only store data relevant to the
local partition, and therefore may be used to load data from a matrix which is too large to fit into system
memory.

All objects must have previously been created via AMGX _matrix_create and AMGX_vector_create.
If a Matrix or Vector object has had data uploaded to them, that data will be overwritten.

After this routine, there is no need to call AMGX_matrix_comm_from_maps, AMGX_matrix_comm_
from_maps_one_ring, or AMGX _vector_bind on the Matrix or Vector objects since the reader will
establish communication maps internally.

See Read System for information about the supported file format.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE

AMGX_RC_NO_MEMORY

26 CHAPTER 1. API REFERENCE

AMGX_RC_UNKNOWN

AMGX_RC_IO_ERROR

EXAMPLE

AMGX_config_handle config;

AMGX_config_create(&config, ""); // use default options

AMGX_resources_handle resources;

int gpu_ids[] = {0};

AMGX_resources_create(&resources, config, MPI_COMM_WORLD, 1, gpu_ids);

AMGX_matrix_handle matrix;

AMGX_matrix_create(&matrix, resources, AMGX_mode_dFFI);

AMGX_vector_handle rhs;

AMGX_vector_create(&rhs, resources, AMGX_mode_dFFI);

// assume a 4x4 matrix, where rows O and 2 belong to partition 0, 1 and 3 to partitiomn 1.
int partition_vector[] = {0,1,0,1%};

int partition_sizes[] = {2,2};

AMGX_read_system_distributed(matrix, vector, 0, argv([1], 1, 2, partition_sizes, 4, partition_vector);

HISTORY

AMGX _read_system_distributed was introduced in API version 2.

SEE ALSO

Matriz Create, Vector Create, Read System, Write System, Matriz Upload All, Matriz Comm From Maps,
Matriz Comm From Maps One Ring, Vector Bind

1.1. UTILITIES 27

1.1.15 Read System Global

NAME

AMGX _read_system_global - Read a subset of linear system of equations from a file in a distributed
application to C buffers (using global column indices), allocated internally.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_read_system_global(int #*n, int *nnz, int *block_dimx,
int *block_dimy, int **row_ptrs, void **col_indices_global, void **data, void **diag_data,
void **rhs, void **sol, AMGX_resources_handle rsrc, AMGX_Mode mode, const char *filename,
int allocated_halo_depth, int num_partitions, const int *partition_sizes,
int partition_vector_size, const int *partition_vector);

PARAMETERS

n
The dimension of the local matrix in terms of block-units. This also corresponds to the number of
rows (in block-units) in this partition.

nnz

The number of non-zero entries in the local CSR matrix, in terms of block-units.

block_dimx

The blocksize in x direction. For a scalar matrix, this value should be 1. Currently only square blocks
are supported, so block_dimx and block_dimy must be equal. Currently only block dimx=1 is
supported.

block_dimy

The blocksize in y direction. For a scalar matrix, this value should be 1. Currently only square blocks
are supported, so block_dimx and block_dimy must be equal. Currently only block dimy=1 is
supported.

row_ptrs

Array of indices into the col_indices_global structure. row_ptrs has n+1 entries. Entry i indicates
the starting index of the values belonging to row i in the col_indices_global table. row_ptrs[0]
must always be 0, and row_ptrs[n] must always be equal to nnz.

col_indices_global

Array of the global column indices of the nonzero blocks in the matrix. The type of column indices
must be 64-bit integer (int64_t). col_indices_global must have nnz entries. col_indices_global[i]
contains the column index (in block-units) of nonzero block i.

data

Array of the matrix entries in ”array of structures” (AoS) layout. data must have nnz * block_dimx
* block_dimy entries, where block_dimx and block_dimy are, for example, both 4 in the case of a
4x4 block matrix, or 1 in the case of a scalar matrix. data[i*block_dimx*block_dimy] contains the

28 CHAPTER 1. API REFERENCE
entry 0,0 in block i. datal[i*block_dimx*block_dimy+1*block_dimy] contains the entry 1,0 in block
i, and so on. Data within the block is assumed to be arranged in row-major scanline order.
diag_data
A pointer to an array containing external diagonal entries for each row. If diag property does not exist,
the pointer will be set to NULL. If diag property exists, the array will be allocated and filled. In this
case, it is assumed to be an array with n¥block_dimx*block_dimy entries in AoS layout, where diag_
datal[i*block_dimx*block_dimy] is the 0,0 entry in the i,i block in the matrix. Currently external
diagonal is not supported.
rhs
Handle to a Vector object representing the right hand size to be loaded from disk. The Vector must
already have been created via AMGX_vector_create.
sol
Handle to a Vector object representing the solution vector to be loaded from disk. This value is
optional - some file formats allow a solution vector to be stored with the matrix. If NULL is passed
for this value, no solution vector data will be returned. If non-NULL, the Vector must already have
been created via AMGX _vector_create. If non-NULL and the file has no associated solution vector
data, the Vector will be initialized to have the proper number of entries, and will be set to all zeroes.
rsrc
The Resources object which defines where the memory associated with this object will be allocated,
the precision of this vector object, and any information about how it will communicate with other
vectors in other MPI ranks or threads.
mode
The mode parameter contains the information indicating:
1. (lowercase) letter: whether the code will run on the host (h) or device (d).
2. (uppercase) letter: whether the matrix precision is float (F) or double (D).
3. (uppercase) letter: whether the vector precision is float (F) or double (D).
4. (uppercase) letter: whether the index type is 32-bit int (I) or else (not currently supported).
The corresponding enum combinations are listed below:
typedef enum {
AMGX_mode_hDDI, // 8192
AMGX_mode_hDFI, // 8448
AMGX_mode_hFFI, // 8464
AMGX_mode_dDDI, // 8193
AMGX_mode_dDFI, // 8449
AMGX_mode_dFFI // 8465
} AMGX_Mode;
Note that AMGX does not currently perform automatic precision conversion, so the data that is passed
into a Vector object via subsequent calls to AMGX_vector_upload and AMGX_vector_download
must match the precision of the mode parameter when the Vector was created.
filename

Path to the file to be loaded.

1.1. UTILITIES 29

allocated_halo_depth

In order to support halo exchanges with overlap, it is necessary to allocate buffers to store halo vertices
and connectivity data. The allocated_halo_depth setting causes the Matrix to allocate enough
storage to support halo exchanges for halos up to the specified depth. The actual amount of overlap is
specified via a setting in the Resources and Solver object. Currently, allocated_halo_depth must
be equal to num_import_rings. In the future, AMGX may support computing extra layers of halo
regions automatically.

num_partitions

The total number of partitions. Typically, this will match the number of MPI ranks or threads.

partition_sizes

An array of size num_partitions listing the size of each partition. That is, partition_sizes[i] will
be the number of block-rows in the system matrix in partition i.

If NULL is passed for this value, partition sizes are computed from partition vector.

partition_vector_size

The number of entries in the partition_vector array. This must be equal to the number of block-rows
of the global system matrix, which is being read for disk. If these sizes do not match, it will result in
an error.

partition_vector

An array of partition assignments of the global system matrix. The array must have size equal to
partition_vector_sizes, which is equal to the number of block-rows of the global system matrix.
Each entry partition_vector[i] will be an integer between 0 and num_partitions-1 indicating the
partition to which block-row i belongs. The total number of entries in partition_vector with values
equal to j must be equal to the value specified in partition_sizes[j].

The partitioning is typically obtained via some type of mesh partitioner and therefore this information
is assumed to be avialable to the calling application, perhaps stored on disk seperately from the global
system matrix.

If NULL is passed for this value, trivial partitioning is performed, when block rows are evenly dis-
tributed among different ranks (block rows 0. .k go to rank 0, etc)

DESCRIPTION

AMGX _read_system_global reads a linear system of equations, including the matrix, the right hand size,
and an optional starting solution vector, from disk into to C buffers, allocated internally. See Read System
for information about the supported file format.

Unlike AMGX _read_system, it takes partitioning information and only reads the portion of the system
matrix which is indicated to belong to this MPI rank. This routine is optimized to only store data relevant
to the local partition, and therefore may be used to load data from a matrix which is too large to fit into
system memory. It does not perform packing of the local matrix.

In distributed setting, the local matrix (with global column indices) is obtained from the global coefficient
matrix on rank i following these steps:

1. Select the rows (with global column indices) belonging to rank i and read them into memory

2. The resulting local matrix (with global column indices) is passed to routine AMGX_matrix_upload._
all_global.

30 CHAPTER 1. API REFERENCE

3. The resulting local right-hand-side and initial-guess vectors are passed to AMGX_vector_bind and
AMGX _vector_upload.

All output arrays are allocated inside of the function, only pointers for the relevant data need to be provided.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY
AMGX_RC_UNKNOWN

AMGX_RC_IO_ERROR

EXAMPLE

AMGX_config_handle config;

AMGX_resources_handle rsrc;

AMGX_matrix_handle matrix;

int gpu_ids[] = {0};

int n, nnz, block_dimx, block_dimy, num_neighbors;

int *row_ptrs = NULL, *col_indices_global = NULL,

void *values = NULL, *diag = NULL, *x_data = NULL, *b_data = NULL;

AMGX_config_create(&config, ""); // use default options
AMGX_resources_create(&rsrc, config, MPI_COMM_WORLD, 1, gpu_ids);
AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);

// assume a 4x4 matrix, where rows O and 2 belong to partition 0, 1 and 3 to partition 1.
int partition_vector[] = {0,1,0,1};
int partition_sizes[] = {2,2};

// partition sizes and number of partitions will be computed from partition vector
AMGX_read_system_global(&n, &nnz, &block_dimx, &block_dimy, &row_ptrs,
&col_indices_global, &values, &diag, &b_data, &x_data,
rsrc, AMGX_mode_dFFI, argv[1], 1, 2, partition_sizes, 4, partition_vector);

AMGX_matrix_upload_all_global(A, 4, n, nnz, block_dimx, block_dimy, row_ptrs,
col_indices_global, values, diag, 1 /*or 2%/, 1 /*or 2x/, partition_vector);

1.1. UTILITIES 31

HISTORY

AMGX _read_system_global was introduced in API version 2.

SEE ALSO

Matrixz Create, Vector Create, Read System, Write System, Matrix Comm From Maps, Matriz Comm From
Maps One Ring, Matriz Upload All Global, Vector Bind

32 CHAPTER 1. API REFERENCE

1.1.16 Read System Maps One Ring

NAME

AMGX _read_system_maps_one_ring - Read a subset of linear system of equations from a file in a dis-
tributed application to C buffers (using local column indices), allocated internally.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_read_system_maps_one_ring(int *n, int *nnz, int *block_dimx,
int *block_dimy, int **row_ptrs, int **col_indices, void **data, void **diag_data,
void **rhs, void **sol, int *num_neighbors, int **neighbors, int **send_sizes,

int ***send_maps, int **recv_sizes, int ***recv_maps,

AMGX_resources_handle rsrc, AMGX_Mode mode, const char *filename,

int allocated_halo_depth, int num_partitions, const int *partition_sizes,

int partition_vector_size, const int *partition_vector);

PARAMETERS

n

Pointer to an int which will be set to the matrix dimension in block-units. AMGX only allows square
matrices, so this is both the number of columns and rows. In multithreaded execution, where column
indices may index entries larger than the number of rows, this will return the number of rows in the
local matrix partition.

nnz

Pointer to an int which will be set to the number of non-zero elements in block-units.

block_dimx

Pointer to an int which will be set to the size in x of a matrix block.

block_dimy

Pointer to an int which will be set to the size in y of a matrix block.

row_ptrs

Pointer to an array, which will be allocated and filled with indices into the col_indices structure. row_
ptrs has n+1 entries. Entry i indicates the starting index of the values belonging to row i in the
col_indices table. row_ptrs[0] will always be 0, and row_ptrs[n] will always be equal to nnz.

col_indices

Pointer to an array, which will be allocated and filled with the column indices of the nonzero blocks in
the matrix. col_indices will have nnz entries. col_indices[i] contains the column index (in block
units) of nonzero block i.

data

Pointer to an array, which will be allocated and filled with the matrix entries in ”array of struc-
tures” (AoS) layout. data will have nnz * block_dimx * block_dimy entries, where block_dimx
and block_dimy are, for example, both 4 in the case of a 4x4 block matrix, or 1 in the case of a

1.1. UTILITIES 33

scalar matrix. datal[i*block_dimx*block_dimy] contains the entry 0,0 in block i. data[i*block_
dimx*block_dimy+1] contains the entry 1,0 in block i, and so on. Data within the block is arranged
in row-major scanline order.

diag_data

A pointer to an array containing external diagonal entries for each row. If diag property does not
exist, the pointer will be set to NULL. If diag property exists, the array will be allocated and filled. In
this case, it is assumed to be an array with n¥block_dimx*block_dimy entries in AoS layout, where
diag_datal[i*block_dimx*block_dimy] is the 0,0 entry in the i,i block in the matrix.

rhs

Pointer to an array, which will be allocated and filled with the right-hand-side to be loaded from disk.
If the right-hand-side is not available, the pointer will be set to NULL.

sol

Pointer to an array, which will be allocated and filled with the solution vector to be loaded from disk.
If the solution vector is not available, the pointer will be set to NULL.

num_neighbors

Pointer to an int which will be set to the number of MPI ranks which share a boundary with this rank.
In other words, the number of MPI ranks which will exchange data via halo exchanges.

neighbors

Pointer to an int array, which will be allocated to have size num_neighbors and filled, listing the
index of each MPI rank that shares a boundary with this rank. In other words, a list of MPI ranks
which will exchange data via halo exchanges.

send_sizes

Pointer to an int array, which will be allocated to have size num_neighbors and filled. The value in
entry i is the number of local (i.e. non-halo) rows in this rank’s matrix partition which will be sent to
the MPI rank neighbors[i].

send_maps

Pointer to an int* array, which will be allocated to contain num_neighbors pointers to int arrays,
where entry i is an allocated int array of size send_sizes[i]. Array i is a “map” specifying the local
row indices from this matrix partition which will be sent to the MPI rank neighbors[i]. The data
corresponding to these local row indices will be packed into a transfer buffer, and then sent to the
corresponding MPI rank. The order in which the local row indices are listed corresponds to the order
in which they will be packed into the transfer buffer. For simple cases, this will be an offset mapping,
where local index n+j (which is a halo index) will map to position j in the transfer buffer.

recv_sizes

Pointer to an int array, which will be allocated to have size num_neighbors and filled. The value in
entry i is the number of non-local (i.e. halo) rows in this rank’s matrix partition which will be received
from the MPI rank neighbors[i].

recv_maps

Pointer to an int* array, which will be allocated to contain num_neighbors pointers to int arrays,
where entry i is an allocated int array of size recv_sizes[i]. Array i is a “map” specifying the local
halo indices from this matrix partition which will be received from the MPI rank neighbors[i]. The
data received from neighbor[i] will have been packed into a transfer buffer in the order specified by
that remote matrix partition’s send_maps value corresponding to this (local) MPI rank. The order
in which the indices appear in send_maps must therefore correspond to this order.

34 CHAPTER 1. API REFERENCE

rsrc

The Resources object which defines where the memory associated with this object will be allocated,
the precision of this vector object, and any information about how it will communicate with other
vectors in other MPI ranks or threads.

mode

The mode parameter contains the information indicating:

lowercase) letter: whether the code will run on the host (h) or device (d).
(

(

(uppercase) letter: whether the matrix precision is float (F) or double (D).
(uppercase) letter: whether the vector precision is float (F) or double (D).
(

1.
2.
3.
4. (uppercase) letter: whether the index type is 32-bit int (I) or else (not currently supported).

The corresponding enum combinations are listed below:

typedef enum {
AMGX_mode_hDDI, // 8192
AMGX_mode_hDFI, // 8448
AMGX_mode_hFFI, // 8464
AMGX_mode_dDDI, // 8193
AMGX_mode_dDFI, // 8449
AMGX_mode_dFFI // 8465

} AMGX_Mode;

Note that AMGX does not currently perform automatic precision conversion, so the data that is passed
into a Vector object via subsequent calls to AMGX_vector_upload and AMGX _vector_download
must match the precision of the mode parameter when the Vector was created.

filename

Path to the file to be loaded.

allocated_halo_depth

In order to support halo exchanges for a given halo depth, the Matrix must allocate enough memory
to store any extra layers of data from remote partitions. This setting causes the Matrix to allocate
enough memory to support halo exchanges for halo depth of allocated_halo_depth. This should be
at least as large as the depth of the halo region to be sent to neighboring MPI ranks, but not larger than
necessary, since larger values result in more memory being allocated and more overhead during the
communication map construction. Currently, allocated_halo_depth must be equal to num_import_
rings and therefore here it equals 1 (which is implicit from the name of the routine). In the future,
AMGX may support deeper halo regions.

num_partitions

The total number of partitions. Typically, this will match the number of MPI ranks or threads.

partition_sizes

An array of size num_partitions listing the size of each partition. That is, partition_sizes[i] will
be the number of block-rows in the system matrix in partition i.

If NULL is passed for this value, partition sizes are computed from partition vector.

1.1. UTILITIES 35

partition_vector_size

The number of entries in the partition_vector array. This must be equal to the number of block-rows
of the global system matrix, which is being read for disk. If these sizes do not match, it will result in
an error.

partition_vector

An array of partition assignments of the global system matrix. The array must have size equal to
partition_vector_sizes, which is equal to the number of block-rows of the global system matrix.
Each entry partition_vector[i] will be an integer between 0 and num_partitions-1 indicating the
partition to which block-row i belongs. The total number of entries in partition_vector with values
equal to j must be equal to the value specified in partition_sizes[j].

The partitioning is typically obtained via some type of mesh partitioner and therefore this information
is assumed to be avialable to the calling application, perhaps stored on disk seperately from the global
system matrix.

If NULL is passed for this value, trivial partitioning is performed, when block rows are evenly dis-
tributed among different ranks (block rows 0. .k go to rank 0, etc)

DESCRIPTION

AMGX _read_system_maps_one_ring reads a linear system of equations, including the matrix, the right
hand size, and an optional starting solution vector, from disk into to C buffers, allocated internally. See
Read System for information about the supported file format.

Unlike AMGX _read_system, it takes partitioning information and only reads the portion of the system
matrix which is indicated to belong to this MPI rank. This routine is optimized to only store data relevant
to the local partition, and therefore may be used to load data from a matrix which is too large to fit into
system memory. It also performs packing of the local matrix as described below.

In distributed setting, the packed local matrix is obtained from the global coefficient matrix on rank i
following these steps:

1. Select the rows (with global column indices) belonging to rank i and read them into memory
2. Pack the columns:

a) Reorder the column indices such that the columns corresponding to the global diagonal elements present
on rank i come first.

b) Then, reorder the remaining column indices, in the order to which they belong (have connections) to
rank’s i neighbors. Columns belonging to neighbor 0 first, neighbor 1 second, etc., leaving the natural
ordering of columns within the same neighbor.

¢) Notice that we now have a rectangular matrix with reordered column indices that are numbered locally.
To keep track of this reordering create a local_to_global map which indicates how the locally renumbered
columns map into their global counterparts.

3. Reorder the rows and columns (such that the rows with no connections to neighbors come first):
a) Find the reordering that moves rows with no connections to neighbors first

b) Apply it to rows and columns (belonging to the global diagonal elements present on rank i only, in other
words, columns up to n).

4. The resulting packed local matrix is passed to routine AMGX_matrix_upload_all.

36 CHAPTER 1. API REFERENCE

5. The resulting correspondingly reordered local right-hand-side and initial-guess vectors are passed to
AMGX _vector_bind and AMGX _vector_upload.

This routine also computes all the required communication maps internally and exposes them for later use
in a subsequent call to AMGX_matrix_comm_from_maps_one_ring.

All output arrays are allocated inside of the function, only pointers for the relevant data need to be provided.
AMGX _free_system_maps_one_ring is used for later cleanup.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY
AMGX_RC_UNKNOWN

AMGX_RC_IO_ERROR

EXAMPLE

AMGX_config_handle config;

AMGX_resources_handle resources;

AMGX_matrix_handle matrix;

int gpu_ids[] = {0};

int n, nnz, block_dimx, block_dimy, num_neighbors;

int *row_ptrs = NULL, *col_indices = NULL, *neighbors = NULL;
void *values = NULL, *diag = NULL, *x_data = NULL, *b_data = NULL;
int **send_maps = NULL;

int **recv_maps = NULL;

int *send_sizes = NULL;

int *recv_sizes = NULL;

AMGX_config_create(&config, ""); // use default options
AMGX_resources_create(&resources, config, MPI_COMM_WORLD, 1, gpu_ids);
AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);

// assume a 4x4 matrix, where rows O and 2 belong to partition 0, 1 and 3 to partition 1.
int partition_vector[] = {0,1,0,13};

// partition sizes and number of partitions will be computed from partition vector
AMGX_read_system_maps_one_ring(&n, &nnz, &block_dimx, &block_dimy, &row_ptrs,
&col_indices, &values, &diag, &b_data, &x_data,
&num_neighbors, &neighbors, &send_sizes, &send_maps, &recv_sizes, &recv_maps,
rsrc, AMGX_mode_dDDI, argv([1], 1, O, NULL, 4, partition_vector);

1.1. UTILITIES 37

AMGX_matrix_comm_from_maps_one_ring(matrix, 1, num_neighbors, neighbors,
send_sizes, (const int **)send_maps, recv_sizes, (const int **)recv_maps);

AMGX_matrix_upload_all(matrix, n, nnz, block_dimx, block_dimy,
row_ptrs, col_indices, values, diag);

AMGX_free_system_maps_one_ring(row_ptrs, col_indices, values, diag, b_data,
x_data, num_neighbors, neighbors, send_sizes, send_maps, recv_sizes, recv_maps);

HISTORY

AMGX _read_system_maps_one_ring was introduced in API version 2.

SEE ALSO

Matrixz Create, Vector Create, Read System, Write System, Read System Distributed, Free System Maps One
Ring, Matriz Upload All, Matriz Comm From Maps, Matrix Comm From Maps One Ring, Vector Bind,
Vector Upload

38 CHAPTER 1. API REFERENCE

1.1.17 Free System Maps One Ring

NAME

AMGX _free_system_maps_one_ring - Frees buffers, allocated by AMGX_read_system_maps_one_
ring.

SYNOPSIS

#include <amgx_c.h>

AMGX_RC AMGX_API AMGX_free_system_maps_one_ring(int *row_ptrs, int *col_indices, void *data,
void *diag_data, void *rhs, void *sol, int num_neighbors, int *neighbors,

int *send_sizes, int **send_maps, int *recv_sizes, int **recv_maps);

PARAMETERS

row_ptrs

Array of the column index of the nonzero blocks in the matrix. col_indices must have nnz entries.
col_indices[i] contains the column index (in block units) of nonzero block i. If the data is not
available, the pointer should be set to NULL.

col_indices

Array of the column index of the nonzero blocks in the matrix. col_indices must have nnz entries.
col_indices[i] contains the column index (in block units) of nonzero block i. If the data is not
available, the pointer should be set to NULL.

data

Array of the matrix entries in ”array of structures” (AoS) layout. data must have nnz * block_dimx
* block_dimy entries, where block_dimx and block_dimy are, for example, both 4 in the case of a
4x4 block matrix, or 1 in the case of a scalar matrix. data[i*block_dimx*block_dimy] contains the
entry 0,0 in block i. datal[i*block_dimx*block_dimy+1] contains the entry 1,0 in block i, and so
on. Data within the block is assumed to be arranged in row-major scanline order. If the data is not
available, the pointer should be set to NULL.

diag_data
Optional array of external diagonal entries for each row. If there is no external diagonal, in other
words, the diagonal is contained in the matrix itself the diag_data must be set to a null pointer. If this
value is non-null, it is assumed to be an array with n*block_dimx*block_dimy entries in AoS layout.
diag_datal[i*block_dimx#*block_dimy] is the 0,0 entry in the i,i block in the matrix.

rhs
Array with right-hand-side data. If the right-hand-side data is not available, the pointer should be set
to NULL.

sol

Array with solution vector. If the solution vector is not available, the pointer should be set to NULL.

1.1. UTILITIES 39

num_neighbors

Number of MPI ranks which share a boundary with this rank. In other words, the number of MPI
ranks which will exchange data via halo exchanges.

neighbors

An array of size num_neighbors listing the index of each MPI rank that shares a boundary with this
rank. In other words, a list of MPI ranks which will exchange data via halo exchanges. If the data is
not available, the pointer should be set to NULL.

send_sizes

An array of size num_neighbors. The value in entry i is the number of local (i.e. non-halo) rows
in this rank’s matrix partition which will be sent to the MPI rank neighbors[i]. If the data is not
available, the pointer should be set to NULL.

send_maps

An array of size num_neighbors of arrays, where entry i is another array of size send_sizes[i].
Array i is a “map” specifying the local row indices from this matrix partition which will be sent to
the MPI rank neighbors[i]. The data corresponding to these local row indices will be packed into a
transfer buffer, and then sent to the corresponding MPI rank. The order in which the local row indices
are listed corresponds to the order in which they will be packed into the transfer buffer. For simple
cases with n local rows, this will be an offset mapping, where local index n+j (which is a halo index)
will map to position j in the transfer buffer. If the data is not available, the pointer should be set to
NULL.

recv_sizes

An array of size num_neighbors. The value in entry i is the number of non-local (i.e. halo) rows in
this rank’s matrix partition which will be received from the MPI rank neighbors[i]. If the data is
not available, the pointer should be set to NULL.

recv_maps

An arry of size num_neighbors of arrays, where entry i is another array of size recv_sizes[i]. Array
iis a “map” specifying the local halo indices from this matrix partition which will be received from the
MPI rank neighbors[i]. The data received from neighbor[i] will have been packed into a transfer
buffer in the order specified by that remote matrix partition’s send_maps value corresponding to this
(local) MPI rank. The order in which the indices appear in send_maps must therefore correspond to
this order. If the data is not available, the pointer should be set to NULL.

DESCRIPTION

AMGX free_system_maps_one_ring frees memory buffers, allocated by AMGX _read_system_maps_
one_ring.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_MODE

AMGX_RC_UNKNOWN

40 CHAPTER 1. API REFERENCE

EXAMPLE

AMGX_config_handle config;

AMGX_config_create(&config, ""); // use default options

AMGX_resources_handle resources;

int gpu_ids[] = {0};

AMGX_resources_create(&resources, config, MPI_COMM_WORLD, 1, gpu_ids);

int n, nnz, block_dimx, block_dimy, num_neighbors;

int *row_ptrs = NULL, *col_indices = NULL, *neighbors = NULL;

void *values = NULL, *diag = NULL, *x_data = NULL, *b_data = NULL;

int **send_maps = NULL;

int **recv_maps = NULL;

int *send_sizes NULL;

int *recv_maps_sizes = NULL;

// assume a 4x4 matrix, where rows O and 2 belong to partition 0, 1 and 3 to partition 1.
int partition_vector[] = {0,1,0,13};

// partition sizes and number of partitions will be computed from partition vector
AMGX_read_system_maps_one_ring(&n, &nnz, &block_dimx, &block_dimy, &row_ptrs,
&col_indices, &values, &diag, &b_data, &x_data,

&num_neighbors, &neighbors, &send_sizes, &send_maps, &recv_sizes, &recv_maps,
rsrc, AMGX_mode_dDDI, argv([1], 1, O, NULL, partition_vector_size, partition_vector);
/] ...

// free allocated memory

AMGX_free_system_maps_one_ring(row_ptrs, col_indices, values, diag, b_data,
x_data, num_neighbors, neighbors, send_sizes, send_maps, recv_sizes, recv_maps);

HISTORY

AMGX _free_system_maps_one_ring was introduced in API version 2.

SEE ALSO

Matriz Create, Vector Create, Read System, Write System, Read System Distributed, Read System Maps One
Ring, Matriz Comm From Maps, Matrix Comm From Maps One Ring, Vector Bind

1.1. UTILITIES 41

1.1.18 Write System

NAME

AMGX _write_system - Write a linear system of equations to a file in Matrix Market format.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_write_system(const AMGX_matrix_handle mtx,
const AMGX_vector_handle rhs, const char *filename);

PARAMETERS
mtx
Handle to a Matrix object to be written to disk.

rhs
Handle to a Vector object representing the right hand size to be written to disk.

filename

Path to the file to be written.

DESCRIPTION
AMGX _read_system writes a linear system of equations, including both the matrix and the right hand
size, to disk in Matrix Market format.

In the future, additional file formats may be supported.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_UNKNOWN
AMGX_RC_IO_ERROR

EXAMPLE

// define a scalar identity matrix and the zero vector
// 1000

42 CHAPTER 1.

float datal] = {1, 1, 1, 1}
int col_ind[] = {0, 1, 2, 3
int row_ptr[] = {0, 1, 2, 3

};
, 4};

AMGX_resources_handle rsrc;
AMGX_resources_create_simple(rsrc);

AMGX_matrix_handle matrix;
AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);
AMGX_matrix_upload_all(matrix, 2, 2, 2, 2, row_ptr, col_ind, data, 0);

AMGX_vector_handle vector;
NVMAG_vector_create(&vector, rsrc, AMGX_mode_dFFI);
AMGX_vector_set_zero(vector, 4, 1);

AMGX_write_system(matrix, vector, "identity_system.mtx");

HISTORY

AMGX _write_system was introduced in API Version 1.

SEE ALSO

Read System, Read System Distributed

API REFERENCE

1.1. UTILITIES 43

1.1.19 Write System Distributed

NAME

AMGX _write_system _distributed - Gather a linear system of equations to a single node and write it
into a single file in Matrix Market format.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_write_system_distributed(const AMGX_matrix_handle mtx,
const AMGX_vector_handle rhs, const AMGX_vector_handle sol, int allocated_halo_depth,

int num_partitions,
const int *partition_sizes,
int partition_vector_size,
const int *partition_vector,
AMGX_ERROR& rc);

PARAMETERS

mtx
Handle to a Matrix object to be written to disk.

rhs

Handle to a Vector object representing the right hand size to be written to disk.
sol

Handle to a Vector object representing the solution vector to be written to disk.
filename

Path to the file to be written.

allocated_halo_depth

In order to support halo exchanges for a given halo depth, the Matrix must allocate enough memory
to store any extra layers of data from remote partitions. This setting causes the Matrix to allocate
enough memory to support halo exchanges for halo depth of allocated_halo_depth. This should be
at least as large as the depth of the halo region to be sent to neighboring MPI ranks, but not larger than
necessary, since larger values result in more memory being allocated and more overhead during the
communication map construction. Currently, allocated_halo_depth must be equal to num_import_
rings. In the future, AMGX may support computing extra layers of halo regions automatically.

num_partitions

The total number of partitions. Typically, this will match the number of MPI ranks or threads.

partition_sizes

An array of size num_partitions listing the size of each partition. That is, partition_sizes[i] will
be the number of block-rows in the system matrix in partition i.

If NULL was passed for this value when the system was read/loaded, partition sizes were computed
from partition vector.

44 CHAPTER 1. API REFERENCE

partition_vector_size

The number of entries in the partition_vector array. This must be equal to the number of block-rows
of the global system matrix, which is being read for disk. If these sizes do not match, it will result in
an error.

partition_vector

An array of partition assignments of the global system matrix. The array must have size equal to
partition_vector_sizes, which is equal to the number of block-rows of the global system matrix.
Each entry partition_vector[i] will be an integer between 0 and num_partitions-1 indicating the
partition to which block-row i belongs. The total number of entries in partition_vector with values
equal to j must be equal to the value specified in partition_sizes[j].

The partitioning is typically obtained via some type of mesh partitioner and therefore this information
is assumed to be avialable to the calling application, perhaps stored on disk seperately from the global
system matrix.

If NULL was passed for this value when the system was read/loaded, trivial partitioning was performed,
when block rows are evenly distributed among different ranks (block rows 0. .k go to rank 0, etc)

DESCRIPTION

AMGX _write_system _distributedwrites a linear system of equations, including the matrix, the right
hand size, and an optional starting solution vector, from Matrix and Vector objects to the disk. Unlike
AMGX _write_system, it takes partitioning information and gather all into a single before printing the
full system.

All objects must have previously been created via AMGX_matrix_create and AMGX _vector_create.
In the future, additional file formats may be supported.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_UNKNOWN

AMGX_RC_IO_ERROR

EXAMPLE

AMGX_config_handle config;

AMGX_config_create(&config, ""); // use default options
AMGX_resources_handle resources;

int gpu_ids[] = {0};

AMGX_resources_create(&resources, config, MPI_COMM_WORLD, 1, gpu_ids);
AMGX_matrix_handle A;

1.1. UTILITIES 45

AMGX_matrix_create(&A, resources, AMGX_mode_dFFI);

AMGX_vector_handle rhs;

AMGX_vector_handle x;

AMGX_vector_create(&rhs, resources, AMGX_mode_dFFI);

// assume a 4x4 matrix, where rows O and 2 belong to partition 0, 1 and 3 to partition 1.

int partition_vector[] = {0,1,0,1};

int partition_sizes[] = {2,2};

AMGX_read_system_distributed(A, rhs, x, argv([1], 1, 2, partition_sizes, 4, partition_vector);

AMGX_write_system_distributed(A, rhs, x, "output_system.mtx", 1, 2, partition_sizes, 4, partition_vect

HISTORY

AMGX _write_system_distributed was introduced in API Version 1.

SEE ALSO

Write System, Read System, Read System Distributed

46 CHAPTER 1. API REFERENCE

1.2 Config

NAME

Config

DESCRIPTION

This section describes the API functions for creation and handling of Config objects. A Config object is
a lightweight object that stores a parsed representation of parameter strings. The format allows for nesting
and scoped parameters -- see the Config Syntazx for details.

Config objects are used to store settings for two object types - Resources and Solver objects. In the case
of Resources, it specifies information about the communication pattern and other settings that may affect
communication between different ranks.

In the case of a Solver, the Config specifies the algorithm to be employed, as well as all options and
parameters to configure that algorithm. Configurations can either be specified via a string or read directly
from a text file.

Currently, Config objects are not reference counted, so destroying a Config object while the it is still being
referenced by a Solver, Vector, Matrix or Resources will result in undefined behavior. In the future,
this behavior may change to generate a run-time error.

AMGX _config_create
AMGX _config_create_from_file
AMGX _config_destroy

HISTORY

Configs were introduced in API Version 1.

SEE ALSO

Confg Create, Config Create From File, Config Destroy, Config Syntax

1.2. CONFIG 47

1.2.1 Config Create

NAME

AMGX _config_create - Creates a Config object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_config_create (AMGX_config_handle *ret, const char *options);

PARAMETERS

ret

Pointer to the opaque handle to be returned. This handle will be valid until it is destroyed via
AMGX _config_destroy.

options

A string describing the options for this Config object. See Config Syntax for information on the
format.

DESCRIPTION

AMGX _config_create creates a Config object, which can then be accessed via the handle returned as
ret. This version of the creation function takes all of the configuration options as a single null-terminated
string. See Config Syntaz for information on the format.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_BAD_CONFIGURATION

EXAMPLE

AMGX_config_handle config;
AMGX_config_create(&config, "algorithm=AGGREGATION,cycle=V");

HISTORY

AMGX _config_create was introduced in API Version 1.

48

SEE ALSO

Config Create From File, Config Destroy, Config Syntaz

CHAPTER 1.

API REFERENCE

1.2. CONFIG 49

1.2.2 Config Create From File

NAME

AMGX _config_create_from file - Creates a Config object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_config_create_from_file(AMGX_config_handle *ret,
const char *param_file);

PARAMETERS

ret

Pointer to the opaque handle to be returned. This handle will be valid until it is destroyed via
AMGX _config_destroy.

options
The file name of a text file to be parsed into this Config object.

DESCRIPTION

AMGX _config_create creates a Config object, which can then be accessed via the handle returned as
ret. This version of the creation function takes a file name which specifies a file to be parsed. See Config
Syntaz for information on the format.

RETURN VALUES

Relevant return values:
AMGX_RC_0OK
AMGX_RC_BAD_CONFIGURATION

AMGX_RC_IO_ERROR

EXAMPLE

AMGX_config_handle config;
AMGX_config_create_from_file(&config, "core/configs/FGMRES");

HISTORY

AMGX _config_create was introduced in API Version 1.

50 CHAPTER 1. API REFERENCE

SEE ALSO

Config Create, Config Destroy, Config Syntax

1.2. CONFIG 51

1.2.3 Config Get Default Number Of Rings

NAME

AMGX _config_get_default_number_of rings - Retrieve the default number of rings.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_config_get_default_number_of_rings(AMGX_config_handle cfg,
int *num_import_rings);

PARAMETERS

cfg

Pointer to the opaque handle that contains the configuration string.

num_import_rings

Default number of rings to be used for a given Config object. It is 1 and 2 for the AMG solver, when
AGGREGATION and CLASSICAL algorithms are selected, respectively. Also, it is 1 if AMG
solver is not used.

DESCRIPTION

AMGX _config_get_default_number_of rings returns the default number of rings to be used for a given
Config object in the routines such as Matriz Comm From Maps, Matriz Upload All Global, Read System
Distributed and Read System Global.

This routine only inspects the first two levels of the solver hierarchy. Therefore, it will correctly report
number of rings to be used if AMG is used as a solver or a preconditioner, but it will not detect the number
of rings correctly for deeper (>2) solver hierarchies. The user is advised to set the number of rings manually
in these cases.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_CONFIGURATION

EXAMPLE

AMGX_config_handle config;
int num_import_rings;
AMGX_config_get_default_number_of_rings(config, &num_import_rings);

52 CHAPTER 1. API REFERENCE

HISTORY

AMGX _config_create was introduced in API Version 2.

SEE ALSO

Matriz Comm From Maps, Matrixz Upload All Global, Read System Distributed, Read System Global,

1.2. CONFIG 93

1.2.4 Config Destroy

NAME

AMGX _config_destroy - Destroys a Config object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_config_destroy(AMGX_config_handle obj);

PARAMETERS

obj
Opaque handle specifying the Config object to be destroyed.

DESCRIPTION

AMGX _config_destroy destroys an instance of a Config object that had been previously created via
AMGX _config_create_from_file or AMGX _config_create. After an instance has been destroyed, sub-
sequent attempts to use the Config object will result in undefined behavior.

Note that the Config object should not be destroyed until all Solver, Vector, Matrix and Resources
objects referencing it have been destroyed. Doing so will result in undefinied behavior. Future versions of
AMGX may result in a run-time error.

RETURN VALUES

Relevant return values:
AMGX_RC_0OK

AMGX_RC_BAD_PARAMETERS

EXAMPLE

AMGX_config_handle config;
AMGX_config_create_from_file(&config, "core/configs/FGMRES");
// use it

AMGX_config_destroy(config);

HISTORY

AMGX _config_destroy was introduced in API Version 1.

o4 CHAPTER 1. API REFERENCE

SEE ALSO

Config Create From File, Config Create

1.3. RESOURCES 55

1.3 Resources

NAME

Resources

DESCRIPTION

This section describes the API functions for creation and freeing of Resources objects. A Resources
object represents resources that will be used by the local instance of the AMGX library. This includes
information about GPUs to use in a multi-GPU system, as well as information about MPI communication
in a distributed setting.

The typical lifecycle of a Resources will be to create it via AMGX _resources_create or AMGX _re-
sources_create_simple after the library is initialized. The Resources object will be passed to the con-
structors of all subsequently created Matrix, Vector, and Solver objects to specify where their associated
memory will be allocated and how they will communicate with objects in other threads or MPI ranks. At
the end of the library usage, the Resources object is destroyed via AMGX _resources_destroy in the
reverse order. That is, it should be destroyed after all Solver, Vector and Matrix objects are destroyed,
but before the library is uninitialized.

Any Solver, Vector, Matrix, or objects which interact via AMGX _vector_bind, AMGX _solver_solve,
AMGX _solver_solve_with_0_initial_guess, or AMGX _solver_setup must all have been bound to the
same Resources at creation time.

Currently, Resources objects are not reference counted, so destroying a Resources object while the it is
still being referenced by a Solver, Vector or Matrix will result in undefined behavior. In the future, this
behavior may change to generate a run-time error.

AMGX _resources_create
AMGX _resources_create_simple

AMGX _resources_destroy

HISTORY

Resources were introduced in API version 2.

SEE ALSO

Resources Create, Resources Create Simple, Resources Destroy

o6 CHAPTER 1. API REFERENCE

1.3.1 Resources Create

NAME

AMGX _resources_create - Creates a Resources object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_resources_create (AMGX_resources_handle *ret,
AMGX_config_handle resources_config, void *comm, int device_num, const int *devices)

PARAMETERS

ret

Pointer to the opaque handle to be returned.

config

The Config object which may contain information pertaining to how this Resources object will be
configured. See below for a desciption of config settings which affect Resources creation.

comm

A pointer to the communication specifier. In the case of MPI, this will be a MPI_Comm *. All ranks
in the specified MPI_Comm must enter into this routine synchronously since it will perform globally
synchronizing operations internally. If this value is NULL (0), it is assumed that only a single process
is being used instead, and this routine is being called from a single thread.

device_num

The number of GPU devices which will be utilized by this MPI rank. Currently, only single-GPU per
rank is supported, so this value must be 1.

devices

An array of size device_num listing the GPU indices which will be used by this rank. For numbering
purposes, this corresponds internally to a call to cudaSetDevice, so please see the CUDA Programming
Guide for information about how physical GPUs are assigned indices.

DESCRIPTION

AMGX _resources_create creates a Resources object representing information about the resources used
by Solver, Vector, and Matrix objects over their lifetimes. This includes MPI communicators, thread
pools, pre-allocated memory buffers, and GPU devices.

The Resources object also stores settings that control usage of resources and communication patterns.
These settings are passed in via the confg input. The settings should all be set in the global scope on the
config via AMGX _config_create or AMGX _config_create_from_file. The format of a config string is
described in Config Syntax. Note that this Config may be the same one passed to AMGX _solver_create
or it may be separately created - any parameters which are irrelevant to AMGX _resources_create will
simply be ignored.

1.3. RESOURCES 57

When specifying an MPI communicator, all ranks must call this routine synchronously.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_UNKNOWN

EXAMPLE

For MPI, a Resources would be created as follows:

int devices[] = {0};

// It is recommended to create a separate communicator to avoid any collisions
MPI_Comm nvamg_comm = ...;

AMGX_resources_handle resource;

AMGX_config_handle config;

AMGX_config_create(config, "communicator=MPI, min_rows_latency_hiding=10000");
AMGX_resources_create (&resource, config, &nvamg_comm, 1, devices);

For single-threaded multi-GPU execution, a Resources would be created as follows:

int devices[] = {0, 1, 2};
AMGX_resources_handle resource;
AMGX_resources_create(&resource, config, NULL, 3, devices);

HISTORY

AMGX _resources_create was introduced in API version 2.

SEE ALSO

Resources Create Simple, Resources Destroy

o8 CHAPTER 1. API REFERENCE

1.3.2 Resources Create Simple

NAME

AMGX _resources_create_simple - Creates a Resources object in a single-threaded application.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_resources_create_simple(AMGX_resources_handle *ret);

PARAMETERS

ret

Pointer to the opaque handle to be returned.

DESCRIPTION

AMGX _resources_create_simple creates a Resources object representing information about how data
will be stored for subsequently created Matrix, Vector and Solver objects. Unlike AMGX _resources_
create, this version is suitable for single-GPU and single-threaded applications only.

Calling AMGX _resources_create_simple is equivalent to AMGX _resources_create with a NULL
comm parameter and specifying using a single device with id=0.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_UNKNOWN

EXAMPLE

AMGX_resources_handle resources;
AMGX_resources_create_simple (&resources) ;

HISTORY

AMGX _resources_create_simple was introduced in API version 2.

SEE ALSO

AMGX Resources Destroy, Resources Create

1.3. RESOURCES 59

1.3.3 Resources Destroy

NAME

AMGX _resources_destroy - Destroys a Resources object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_resources_destroy(AMGX_resources_handle obj);

PARAMETERS

obj

Opaque handle specifying the Resources object to be destroyed.

DESCRIPTION

AMGX _resources_destroy destroys an instance of a Resources object that had been previously cre-
ated via AMGX _resources_create or AMGX _resources_create_simple. After an instance has been
destroyed, subsequent attempts to use the Resources object will result in undefined behavior.

Note that the Resources object should not be destroyed until all Solver, Vector and Matrix objects
referencing it have been destroyed. Doing so will result in undefinied behavior. Future versions of AMGX
may result in a run-time error.

When The Resources ojbect has a non-NULL MPI communicator, all ranks must call this routine syn-
chronously.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_BAD_PARAMETERS

EXAMPLE

AMGX_resources_handle rsrc;
AMGX_resources_create(&srcs, ...);
// use it
AMGX_resources_destroy(rsrc);

60 CHAPTER 1. API REFERENCE

HISTORY

AMGX _resources_destroy was introduced in API version 2.

SEE ALSO

Resources Create, Resources Create Simple

1.4. SOLVER 61

1.4 Solver

NAME

Solver

DESCRIPTION

This section describes the API functions for creation and handling of Solver objects. A Solver object
is the main object for executing algorithms to solve a linear system of equations. The Solver interface is
generic, with what type of solution algorithm and what settings to used specified via a Config object that
is passed to the Solver during its initializations. The typical lifecycle of Solver will be to create it with a
certain configuration via AMGX _solver_create, "setup” the solver by passing it the matrix via AMGX_
solver_setup, and then requesting the solver to compute a solution via either AMGX _solver_solve or
AMGX _solver_solve_with_0_initial guess.

In the case of multithreaded execution, the Matrix and Vector objects must have their communication maps
initialized prior to being passed to the Solver. The Solver may initiate communcation and synchronization
operations during its setup and solver phases based on the communication maps of the Matrix and Vector
objects. Therefore, all ranks must call AMGX _solver_setup, AMGX _solver_solve, and AMGX _solver_
solve_with_0_initial_guess synchronously.

Various information about the solution or the iterations can be queried from the Solver after its solve phase
completes.

The setup, solve, and query process can be repeated for other matrices or vectors. Alternately, multiple
right-hand sides can be processed sequentially by requesting a solution without repeating the setup phase.

Finally, the Solver can be destroyed via AMGX _solver_destroy. The Solver should be destroyed before
its bound Matrix is destroyed.

A complete discussion of the algorithms which may be employed by a Solver may be found in the Algorithm
Guide section.

AMGX _solver_create

AMGX _solver_destroy

AMGX _solver_setup

AMGX _solver_solve

AMGX _solver_solve_with_0_initial_guess
AMGX _solver_get_iterations_number
AMGX _solver_get_iteration_residual
AMGX _solver_get_status

HISTORY

Solvers were introduced in API Version 1, and modified to support distributed execution in API Version 2.

62 CHAPTER 1. API REFERENCE

SEE ALSO

Solver Create, Solver Destroy, Solver Setup, Solver Solve, Solver Solve With 0 Initial Guess, Solver Get
Iterations Number, Solver Get Iteration Residual, Solver Get Status

1.4. SOLVER 63

1.4.1 Solver Create

NAME

AMGX _solver_create - Creates a Solver object.

SYNOPSIS

#include <amgx_c.h>

AMGX_RC AMGX_API AMGX_solver_create(AMGX_solver_handle *ret,
AMGX_resources_handle resources, AMGX_Mode mode,
const AMGX_config_handle solver_config);

PARAMETERS

ret

Pointer to the opaque handle to be returned.

mode

The mode in which the associated Solver will operate. The mode value must be consistent with any
mode value used to create the Matrix or Vector objects which will be used to specify the linear
system associated with this Solver. See below for a desciption of the modes.

resources

The Resources object which defines where the memory associated with this object will be allocated,
the precision of the associated matrix and vector objects, and any information about how it will
communicate with other solvers in other MPI ranks.

config

A handle to a Config object that was previously created. Whatever options that are set on the Config
object at the time it is passed to AMGX _solver_create will be used for all subsequent operations by
this Solver.

DESCRIPTION

AMGX _solver_create creates a solver object to compute the solution to a linear system of equations using
the algorithms specified in the config object. Note that when it is created, the Solver is not bound to any
particular Matrix object - binding occurs during the case to AMGX_solver_setup.

The mode parameter can be one of the following values:

typedef enum {
AMGX_mode_hDDI, // 8192
AMGX_mode_hDFI, // 8448
AMGX_mode_hFFI, // 8464
AMGX_mode_dDDI, // 8193
AMGX_mode_dDFI, // 8449

64 CHAPTER 1. API REFERENCE

AMGX_mode_dFFI // 8465
} AMGX_Mode;

For each mode, the first letter h or d specifies whether the matrix data (and subsequent linear solver
algorithms) will run on the host or device. The second D or F specifies the precision (double or float) of the
Matrix data. The third D or F specifies the precision (double or float) of any Vector (including right-hand
side or unknown vectors). The last I specifies that 32-bit int types are used for all indices. Future versions
of AMGX may support additional precisions or mixed precision modes.

All Matrix or Vector objects attached to this Solver must be created with the same Resources object.

It is not allowed to call AMGX _solver_create multiple times on the same Solver without calling AMGX_
solver_destroy in between. There is no way to change the Config on a Solver once it is created - instead,
you must destroy the Solver and create a new one with the modified Config settings.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_UNKNOWN
AMGX_RC_BAD_MODE

AMGX_RC_BAD_PARAMETERS

EXAMPLE

AMGX_config_handle solver_config;
AMGX_config_create_from_file(&solver, "core/configs/V");

AMGX_resources_handle resources;
AMGX_resources_create_simple(&resources) ;

AMGX_solver_handle solver;
AMGX_solver_create(&solver, resources, AMGX_mode_dDDI, solver_config);

HISTORY

AMGX _solver_create was introduced in API Version 1, the calling signature was modified in API Version
2.

SEE ALSO

Solver Destroy, Resources Create, Resources Create Simple, Config Create, Config Create From File

1.4. SOLVER 65

1.4.2 Solver Destroy

NAME

AMGX _solver_destroy - Destroys a Solver object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_destroy(AMGX_solver_handle obj);

PARAMETERS

obj
Opaque handle specifying the Solver object to be destroyed.

DESCRIPTION

AMGX _solver_destroy destroys an instance of a Solver object that had been previously created via
AMGX _solver_create. After an instance has been destroyed, subsequent attempts to use the Solver
object will result in undefined behavior.

AMGX _solver_destroy must be called prior to AMGX_matrix_destroy.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

EXAMPLE

AMGX_solver_handle solver;

AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, config);
// use it

AMGX_config_destroy(solver);

HISTORY

AMGX _solver_destroy was introduced in API Version 1.

66 CHAPTER 1. API REFERENCE

SEE ALSO

Solver Create

1.4. SOLVER 67

1.4.3 Solver Setup

NAME

AMGX _solver_setup - Invoke the setup phase on a Solver object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_setup(AMGX_solver_handle obj, AMGX_matrix_handle mtx);

PARAMETERS

obj

Handle to a Solver object that was previously created via AMGX _solver_create.

mtx

Handle to a Matrix object that was previously created via AMGX _matrix_create.

DESCRIPTION

This routine binds a Matrix to a Solver object and invokes the setup phase of the linear solution algorithm,
as defined by the associated Config object.

The modes that were used to create obj and mtx objects must match, otherwise a run-time error will be
generated. Similarly, they must all be bound to the same Resources object.

Since the setup phase precomputes values that depend on the structure and entries in the matrix, anytime
the matrix changes AMGX _solver_setup must be called again. At the moment, because the C API does
not allow the matrix to be passed in during the solve phase, there is no way to use a setup from a different
matrix than is used in the solve phase. In the future, it may be possible to skip repeated calls to AMGX_
solver_setup, for example if the entries on the matrix change only slightly. If the matrix coefficients were
changed via AMGX _replace_coefficients but the matrix structure is left unmodified, some algorithms
may automatically reuse certain cached computations to result in higher performance. Anytime the commu-
nication maps are changed, for example via AMGX_matrix_comm_from_maps, AMGX _solver_setup
must be called again to rebind to the modified Matrix.

Repeated calls to AMGX _solver_setup are allowed without requiring the Solver object to be destroyed
and created again. The previously bound Matrix will be unbound, and the Matrix will be associated with
this Solver object instead.

In a mulithreaded setting, AMGX_solver_setup may perform global synchronization internally. Therefore,
all MPI ranks must call this routine synchronously.

A complete description of algorithms employed during setup and solve phases can be found in the Algorithm
Guide section.

68 CHAPTER 1. API REFERENCE

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

EXAMPLE

AMGX_solver_handle solver;
AMGX_config_handle config;
AMGX_matrix_handle A;
AMGX_vector_handle b, x;
AMGX_resources_handle rsrc;

AMGX_resources_create_simple(rsrc);
AMGX_config_create_from_file(&config, "core/configs/V");
AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, config);
AMGX_matrix_create(&A, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&b, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&x, rsrc, AMGX_mode_dDDI);
AMGX_read_system(A, b, NULL, "test.mtx");
AMGX_solver_setup(solver, A);

AMGX_solver_solve(solver, b, x);

HISTORY

AMGX _solver_setup was introduced in API Version 1.

SEE ALSO

Solver Solve, Solver Solve With 0 Initial Guess, Algorithm Guide.

1.4. SOLVER 69

1.4.4 Solver Solve With 0 Initial Guess

NAME

AMGX _solver_solve_with_0_initial_guess - Invoke the solve phase on a Solver object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_solve_with_O_initial_guess(AMGX_solver_handle obj,
AMGX_vector_handle rhs, AMGX_vector_handle sol);

PARAMETERS

obj
Handle to a Solver object that was previously created via AMGX _solver_create and bound to a
Matrix via AMGX _solver_setup.

rhs

Handle to a Vector object that was previously created via AMGX _vector_create. The vector
represents the right-hand side of the equation to be solved. In an MPI or multi-GPU setting, rhs
must have communication maps or partition information already set via AMGX_vector_bind or
AMGX _read_system_distributed.

sol

Handle to a Vector object that was previously created via AMGX_vector_create. The vector
represents the solution vector to the equation to be solved. Note that the value of sol will be ignored,
as it is assumed to be the zero vector. This presents a slight opportunity for internal optimizations
since some of the calculations can be simplified in this case. In an MPI or multi-GPU setting, sol
must have communication maps or partition information already set via AMGX_vector_bind or
AMGX _read_system_distributed.

DESCRIPTION

This routine invokes the solve phase of a linear system solution. Different from AMGX _solver_solve, it
ignores the values in the specified sol Vector and assumes that the start point for the iterations will be the
zero-vector. This may be more efficient in some circumstances.

The modes that were used to create obj, rhs, and sol objects must match, otherwise a run-time error will
be generated. Similarly, the Resources instance to which they are bound must all match.

Attempts to call AMGX _solver_solve_with_0_initial_guess without previously calling AMGX _solver_
setup will result in a run-time error. The solve phase may be invoked multiple times for different rhs and
sol values without calling AMGX_solver_setup in between.

AMGX _solver_solve_with_0_initial_guess will run the designated iterative solver until the stopping cri-
teria is met. Which iterative solver and stopping criteria to use are defined in the Config object that was
passed to AMGX _solver_create. See the Algorithm Guide for a discussion of the different algorithms that
may be used and their settings. The solve phase will terminate when one of the following conditions are met:

70 CHAPTER 1. API REFERENCE

1. The number of iterations exceeds max_iters.

2. The residual is below the convergence criteria. What criteria and comparison to use is determined by
convergence and the value that is considered converged is determined by tolerance. What norm to use is
determined by the norm setting.

The iterative solver will ignore the value of sol, as it is assumed to be the zero vector.

Note that the matrix is not required to be passed in because it was previously set via NAMG _solver_setup.
However, AMGX currently does not employ reference counting. Therefore, calls to AMGX _solver_solve_
with_0_initial guess will result in undefined behavior if the referenced Matrix has been destroyed after
being passed to the solver via AMGX _solver_setup. In the future, this behavior may change.

In an MPI setting, AMGX_solver_solve_with_0_initial_guess may perform global synchronization inter-
nally. Therefore, all MPI ranks must call this routine synchronously.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

EXAMPLE

// A minimal example of reading in a matrix and rhs and solving it.
AMGX_solver_handle solver;

AMGX_config_handle config;

AMGX_matrix_handle A;

AMGX_vector_handle x,b;

AMGX_resources_handle rsrc;

AMGX_resources_create_simple(rsrc);

AMGX_config_create_from_file(&config, "core/configs/V");
AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, config);
AMGX_matrix_create(&A, rsrc, AMGX_mode_dDDI);

AMGX_vector_create(&x, rsrc, AMGX_mode_dDDI); // x created but not initialized
AMGX_vector_create(&b, rsrc, AMGX_mode_dDDI);

AMGX_read_system(A, b, NULL, "test.mtx"); // will not initialize x either
AMGX_solver_setup(solver, A);

AMGX_solver_solve_with_O_initial_guess(solver, b, x);

HISTORY

AMGX _solver_solve was introduced in API Version 1.

1.4. SOLVER

SEE ALSO

Solver Setup, Solver Solve, Algorithm Guide

71

72 CHAPTER 1. API REFERENCE

1.4.5 Solver Solve

NAME

AMGX _solver_solve - Invoke the solve phase on a Solver object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_solve(AMGX_solver_handle obj, AMGX_vector_handle rhs,
AMGX_vector_handle sol);

PARAMETERS

obj

Handle to a Solver object that was previously created via AMGX _solver_create and bound to a
Matrix via AMGX _solver_setup.

rhs

Handle to a Vector object that was previously created via AMGX_vector_create. The vector
represents the right-hand side of the equation to be solved. In an MPI or multi-GPU setting, rhs
must have communication maps or partition information already set via AMGX_vector_bind or
AMGX _read_system_distributed.

sol

Handle to a Vector object that was previously created via AMGX _vector_create. The vector
represents the solution vector to the equation to be solved. Note that the value of sol will be used
as the starting point for the iterative algorith, so its value should be initialized via AMGX _vector_
upload, AMGX _vector_set_zero, AMGX_read_system, or AMGX _read_system_distributed.
In an MPT or multi-GPU setting, sol must have communication maps or partition information already
set via AMGX _vector_bind or AMGX _read_system_distributed.

DESCRIPTION

This routine invokes the solve phase of a linear system solution. Different from AMGX _solver_solve_with_
O_initial_guess, it uses the values in the specified sol Vector as a starting point for the iterative procedure.
This allows for intellgent stopping and restarting of iterative solutions. However, it may be less efficient on
a per-iteration basis than AMGX _solver_solve_with_0_initial_guess.

The modes that were used to create obj, rhs, and sol objects must match, otherwise a run-time error will
be generated. Similarly, the Resources instance to which they are bound must all match.

Attempts to call AMGX _solver_solve without previously calling AMGX _solver_setup will result in a
run-time error. The solve phase may be invoked multiple times for different rhs and sol values without
calling AMGX_solver_setup in between.

AMGX _solver_solve will run the designated iterative solver until the stopping criteria is met. Which
iterative solver and stopping criteria to use are defined in the Config object that was passed to AMGX_

1.4. SOLVER 73

solver_create. See the Algorithm Guide for a discussion of the different algorithms that may be used and
their settings. The solve phase will terminate when one of the following conditions are met:

1. The number of iterations exceeds max_iters.

2. The residual is below the convergence criteria. What criteria and comparison to use is determined by
convergence and the value that is considered converged is determined by tolerance. What norm to use is
determined by the norm setting.

The iterative solver will not initialize the value of sol, so whatever value is passed in will be used as the
starting point for the iterative algorithm.

Note that the matrix is not required to be passed in because it was previously set via NAMG _solver_setup.
However, AMGX currently does not employ reference counting. Therefore, calls to AMGX _solver_solve
will result in undefined behavior if the referenced Matrix has been destroyed after being passed to the solver
via AMGX _solver_setup. In the future, this behavior may change.

In an MPI setting, AMGX_solver_solve may perform global synchronization internally. Therefore, all
MPI ranks must call this routine synchronously.

RETURN VALUES

Relevant return values:
AMGX_RC_0OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

EXAMPLE

// A minimal example of reading in a matrix and rhs and solving it.
AMGX_solver_handle solver;

AMGX_config_handle config;

AMGX_matrix_handle A;

AMGX_vector_handle x,b;

AMGX_resources_handle rsrc;

AMGX_resources_create_simple(rsrc);
AMGX_config_create_from_file(&config, "core/configs/V");
AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, config);
AMGX_matrix_create(&A, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&x, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&b, rsrc, AMGX_mode_dDDI);
AMGX_read_system(A, b, NULL, "test.mtx");
AMGX_solver_setup(solver, A);

int n, block_dim;

AMGX_matrix_get_size(A, &n, &block_dim, &block_dim);
AMGX_vector_set_zero(x, n, block_dim);
AMGX_solver_solve(solver, b, x);

74 CHAPTER 1. API REFERENCE

HISTORY

AMGX _solver_solve was introduced in API Version 1.

SEE ALSO

Solver Setup, Solver Solve With 0 Initial Guess, Algorithm Guide

1.4. SOLVER (0]

1.4.6 Solver Get Iterations Number

NAME

AMGX _solver_get_iterations_number - Return the number of iterations that were executed during the
last solve phase.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_get_iterations_number (AMGX_solver_handle obj, int *n);

PARAMETERS

obj

Handle to a Solver object that was previously created via AMGX _solver_create.

Pointer to an int which will be set to the returned value.

DESCRIPTION

This returns the number of iterations which were used to reach a stopping point (either achieving convergence
or reaching the maximum number of allowed iterations) during the most recent call to AMGX _solver_solve
or AMGX _solver_solve_with_0_initial guess. Calling this routine before either of those routines results
in *n being set to 0.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_BAD_PARAMETERS

EXAMPLE

AMGX_solver_setup(solver, A);
AMGX_solver_solve_with_0O_initial_guess(solver, b, x);
int n;

AMGX_solver_get_iterations_number(solver, &n);

HISTORY

AMGX _solver_get_iterations_number was introduced in API Version 1.

76 CHAPTER 1. API REFERENCE

SEE ALSO

Solver Solve, Solver Solve With 0 Initial Guess, Solver Get Iteration Residual, Solver Get Status

1.4. SOLVER 7

1.4.7 Solver Get Iteration Residual

NAME

AMGX _solver_get_iteration_residual - Return the value of the residual for a given iteration from the
last solve phase.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_get_iteration_residual (AMGX_solver_handle obj, int iter,
int idx, double *res);

PARAMETERS

obj
Handle to a Solver object that was previously created via AMGX _solver_create.
iter

The value of the iteration’s residual to inspect. If this value is out of range, it will result in a run-time

€error.
idx
The index of the entry in the block of the residual to retrieve. For example, for a 4x4 block system, the
residual will have 4 components, and this value can be in the range from 0 to 3. For a scalar sytem,
this value should be 0. If this value is out of range, a run-time error will be returned.
res
A pointer to the double variable which will be set to the requested residual value.
DESCRIPTION

This returns the value of a residual from a specific iteration during the most recent call to AMGX _solver_
solve or AMGX _solver_solve_with_0_initial_guess.

Calling this routine with out of range idx or iter values results in an error and *res will be set to -1. Calling
it before a solve phase has executed means that the iter value is automatically out of range.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

78 CHAPTER 1. API REFERENCE

EXAMPLE

AMGX_solver_setup(solver, A);
AMGX_solver_solve_with_O_initial_guess(solver, b, x);
int n;
int mtx_size, block_dim;
AMGX_matrix_get_size(A, &mtx_size, &block_dim, &block_dim);
AMGX_solver_get_iterations_number (solver, &n);
for (int idx=0; idx < block_dim; idx++) {
double final_residual;
AMGX_solver_get_iteration_residual(solver, n, idx, &final_residual);
printf ("Final residual, component %d: %f\n", idx, final_residual);

3

HISTORY

AMGX _solver_get_iteration_residual was introduced in API Version 1.

SEE ALSO

Solver Solve, Solver Solve With 0 Initial Guess, Solver Get Iterations Number, Solver Get Status

1.4. SOLVER 79

1.4.8 Solver Get Status

NAME

AMGX _solver_get_status - Retrieve the status flag from the last solve phase.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_solver_get_status(AMGX_solver_handle solver,
AMGX_SOLVE_STATUS* status) ;

PARAMETERS

obj

Handle to a Solver object that was previously created via AMGX _solver_create.

status

Pointer to a variable which will be set with the Solver object’s status.

DESCRIPTION
Retrieve the status flag specifying the result of the previous call to AMGX_solver_solve or AMGX_
solver_solve_with_0_initial_guess.

The flag will be one of

enum AMGX_SOLVE_STATUS {
AMGX_SOLVE_SUCCESS=0,
AMGX_SOLVE_FAILED=1,
AMGX_SOLVE_DIVERGED=2,
}

AMGX_SOLVE_SUCCESS means the solver achieved convergence with no errors.
AMGX_SOLVE_FAILED means the solver failed for some reason.

AMGX_SOLVE_DIVERGED means that the solver didn’t fail, but it reached the maximum iteration count before
the residual dropped low enough to be considered converged.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_BAD_PARAMETERS

80 CHAPTER 1. API REFERENCE

EXAMPLE

AMGX_solver_setup(solver, A);
AMGX_solver_solve(solver, b, x);
AMGX_SOLVE_STATUS status;
AMGX_solver_get_status(solver, &status);

HISTORY

AMGX _solver_get_status was introduced in API Version 1.

SEE ALSO

Solver Solve, Solver Solve With 0 Initial Guess, Solver Get Iterations Number, Solver Get Iteration Residual

1.5. MATRIX 81

1.5 Matrix

NAME

Matrix

DESCRIPTION

This section describes the API functions for creation and handling of Matrix objects. A Matrix object
represents a sparse linear system of equations that is stored on either the host or the device.

The Matrix object is primarily a way to manage data that is passed from the application into the AMGX
library. It is assumed that the calling application is responsible for creating the matrix data via application-
specific logic - AMGX is not designed to assist in this aspect of numerical computation, as there are no
routines for manipulating matrices or executing BLAS or other mathematical routines on them.

To aid in the easy integration of AMGX into existing applications, AMGX has flexible support for a variety of
layouts and matrix types, including support for block systems and different schemes for storing the diagonals.
It also allows for matrices to be distributed across multiple MPI ranks (distributed memory) or partitioned
across multiple GPUs attached to the same MPI rank. There is support specifying connectivity between
matrix partitions on different MPI ranks in a variety of ways.

In a single-threaded applicaton, the typical lifecycle of Matrix will be to create it via AMGX_matrix_
create, associating it with a Resources instance that specifies the GPU to be utilized by this thread.
Matrix buffers are then transferred from the application into AMGX via AMGX _matrix_upload_all, or
read from disk via AMGX _read_system. Once the data has been loaded, the coefficients may be updated
without affecting the non-zero structure of the matrix via AMGX _matrix_replace_coefficients. The
Matrix will be bound to a Solver object via AMGX _solver_setup, and the associated linear system will
be solved via AMGX _solver_solve or AMGX _solver_solve_with_0_initial_guess. Finally, the memory
associated with this matrix may be deallocated after the solver completes via AMGX _matrix_destroy.

In an MPI application, the lifecycle will be to create it via AMGX_matrix_create, associating it with a
Resources instance that specifies the the GPU to be utilized and the MPI communicator through which
it can find ranks containing other portions of the matrix. Before data can be uploaded to the Matrix, the
application must first AMGX _matrix_comm_from _maps or AMGX_matrix_comm_from_maps_one_
ring. Data is then uploaded via AMGX _matrix_upload_all. Alternately, the matrix structure can be read
from disk via AMGX _read_system_distributed. The coefficients may be changed without affecting the
non-zero structure via AMGX _matrix_replace_coefficients. If the non-zero structure does change, then
the caller must specify the new communication maps via AMGX_matrix_comm _from_maps_one_ring or
AMGX _matrix_comm_from_maps before calling AMGX_matrix_replace_coefficients. The Matrix
will be passed to a Solver object via AMGX _solver_setup. Finally, the memory may be deallocated after
the Solver is destroyed via AMGX _matrix_destroy.

Currently, the Matrix objects are not reference counted, so destroying a Matrix object while the it is still
being used by a Solver will result in undefined behavior. In the future, this behavior may change to generate
a run-time error.

AMGX _matrix_create
AMGX _matrix_destroy
AMGX _matrix_upload_all

82 CHAPTER 1. API REFERENCE

AMGX _matrix_replace_coefficients
AMGX _matrix_get_size
AMGX _matrix_comm_from_maps

AMGX _matrix_comm_from_maps_one_ring

HISTORY

Matrices were introduced in API version 1. Support for distributed and multi-GPU applications was added
in API version 2.

SEE ALSO

Matrixz Create, Matrixz Destroy, Matriz Upload All, Matriz Replace Coefficients, Matriz Get_size, Matrix
Comm From Maps, Matrix Comm From Maps One Ring, Matrix Sort

1.5. MATRIX 83

1.5.1 Matrix Create

NAME

AMGX _matrix_create - Creates a Matrix object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_matrix_create(AMGX_matrix_handle *ret,
AMGX_resources_handle resources, AMGX_Mode mode) ;

PARAMETERS

ret

Pointer to the opaque handle to be returned.

resources

The Resources object which defines where the memory associated with this object will be allocated
and information about how it will communicate with other matrices in other MPI ranks or threads.

mode

The mode in which the associated Matrix will operate. The mode value must be consistent with any
mode value used to create the Solver or Vector objects which will be used to solve the linear system
associated with this Matrix. See below for a desciption of the modes.

DESCRIPTION

AMGX _matrix_create creates a matrix object to handle matrix data.

The mode parameter can be one of the following values:

typedef enum {
AMGX_mode_hDDI, // 8192
AMGX_mode_hDFI, // 8448
AMGX_mode_hFFI, // 8464
AMGX_mode_dDDI, // 8193
AMGX_mode_dDFI, // 8449
AMGX_mode_dFFI // 8465

} AMGX_Mode;

For each mode, the first letter h or d specifies whether the matrix data (and subsequent linear solver
algorithms) will run on the host or device. The second D or F specifies the precision (double or float) of the
Matrix data. The third D or F specifies the precision (double or float) of any Vector (including right-hand
side or unknown vectors). The last I specifies that 32-bit int types are used for all indices. Future versions
of AMGX may support additional precisions or mixed precision modes.

84 CHAPTER 1. API REFERENCE

Note that AMGX does not currently perform any automatic precision conversion, so the data that is passed
into a Matrix object via subsequent calls to AMGX_matrix_upload_all or AMGX _matrix_replace_
coefficients must match the precision (specified in the second position) of the mode parameter when the
Matrix object was created.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_UNKNOWN
AMGX_RC_BAD_MODE

AMGX_RC_BAD_PARAMETERS

EXAMPLE

AMGX_resources_handle resources;

AMGX_matrix_handle matrix;

AMGX_resources_create_simple (&resources) ;
AMGX_matrix_create(&matrix, resources, AMGX_mode_dDFI);

HISTORY

AMGX _matrix_create was introduced in API Version 1, the calling signature was modified in API Version
2.

SEE ALSO

Matrixz Destroy, Resources Create, Resources Create Simple

1.5. MATRIX 85

1.5.2 Matrix Destroy

NAME

AMGX _matrix_destroy - Destroys a Matrix object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_matrix_destroy(AMGX_matrix_handle obj);

PARAMETERS

obj
Opaque handle specifying the Matrix object to be destroyed.

DESCRIPTION

AMGX _matrix_destroy destroys an instance of a Matrix object that had been previously created via
AMGX _matrix_create. After an instance has been destroyed, subsequent attempts to use the Matrix
object will result in undefined behavior. Currently, AMGX does not employ reference counting. There-
fore, calls to AMGX _solver_solve or AMGX _solver_solve_with_0_initial_ guess will result in undefine
behavior after the referenced Matrix has been destroyed. In the future, this behavior may change.

AMGX _matrix_destroy must be called after AMGX _solver_destroy.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

EXAMPLE

AMGX_resources_handle resources;

AMGX_matrix_handle matrix;

AMGX_resources_create_simple (&resources) ;
AMGX_matrix_create(&matrix, resources, AMGX_mode_dDFI);

// use it

AMGX_matrix_destroy(matrix);

86 CHAPTER 1. API REFERENCE

HISTORY

AMGX _matrix_destroy was introduced in API Version 1.

SEE ALSO

Matriz Create

1.5. MATRIX 87

1.5.3 Matrix Upload All

NAME

AMGX _matrix_upload_all - Copy data (packed) local matrix into a Matrix object.

SYNOPSIS

#include <amgx_c.h>

AMGX_RC AMGX_API AMGX_matrix_upload_all(AMGX_matrix_handle mtx, int n,
int nnz, int block_dimx, int block_dimy, const int *row_ptrs,

const int *col_indices, const void *data, const void *diag_data);

PARAMETERS

mtx

Opaque handle specifying the Matrix object.

n
The dimension of the matrix in terms of block-units. For single-threaded operation, AMGX only allows
square matrices, so this is both the number of columns and rows. In MPI operation, a matrix may
have more columns that rows to reference halo vertices on other partitions. In this case n represents
the number of block-rows, and any column indices referencing a column greater than or equal to n will
refer to a halo reference.

nnz
The number of non-zero entries in the CSR matrix, in terms of block units. For example, a 4x4 matrix
with 10 columns/rows, with 3 non-zero blocks per row, would have nnz = 30, even though there are a
total of 480 entries (16 per block, 30 total blocks).

block_dimx
The blocksize in x direction. For a scalar matrix, this value should be 1. Currently only square blocks
are supported, so block_dimx and block_dimy must be equal.

block_dimy
The blocksize in y direction. For a scalar matrix, this value should be 1. Currently only square blocks
are supported, so block_dimx and block_dimy must be equal.

row_ptrs

Array of indices into the col_indices structure. row_ptrs has n+1 entries. Entry i indicates the starting
index of the values belonging to row i in the col_indices table. row_ptrs[0] must always be 0, and
row_ptrs[n] must always be equal to nnz.

col_indices

Array of the column index of the nonzero blocks in the matrix. col_indices must have nnz entries.
col_indices[i] contains the column index (in block units) of nonzero block i.

88 CHAPTER 1. API REFERENCE

data

Array of the matrix entries in ”array of structures” (AoS) layout. data must have nnz * block_dimx
* block_dimy entries, where block_dimx and block_dimy are, for example, both 4 in the case of a
4x4 block matrix, or 1 in the case of a scalar matrix. data[i*block_dimx*block_dimy] contains the
entry 0,0 in block i. data[i*block_dimx*block_dimy+1x*block_dimy] contains the entry 1,0 in block
i, and so on. Data within the block is assumed to be arranged in row-major scanline order.

diag_data

Optional array of external diagonal entries for each row. If there is no external diagonal, in other
words, the diagonal is contained in the matrix itself the diag_data must be set to a null pointer. If this
value is non-null, it is assumed to be an array with n*block_dimx*block_dimy entries in AoS layout.
diag_datal[i*block_dimx*block_dimy] is the 0,0 entry in the i,i block in the matrix.

DESCRIPTION

AMGX _matrix_upload_all copies data (packed) local matrix to a Matrix object from the application.
When this routine is called, the buffers will be allocated to the required size (if necessary), and the data will
be copied into the Matrix data structure.

In single node setting, no packing is needed and the local matrix is the entire coefficient matrix of the linear
system at hand.

In distributed setting, the packed local matrix is obtained from the global coefficient matrix on rank i
following these steps:

1. Select the rows (with global column indices) belonging to rank i and read them into memory
2. Pack the columns:

a) Reorder the column indices such that the columns corresponding to the global diagonal elements present
on rank i come first.

b) Then, reorder the remaining column indices, in the order to which they belong (have connections) to
rank’s i neighbors. Columns belonging to neighbor 0 first, neighbor 1 second, etc., leaving the natural
ordering of columns within the same neighbor.

¢) Notice that we now have a rectangular matrix with reordered column indices that are numbered locally.
To keep track of this reordering create a local_to_global map which indicates how the locally renumbered
columns map into their global counterparts.

3. Reorder the rows and columns (such that the rows with no connections to neighbors come first):
a) Find the reordering that moves rows with no connections to neighbors first

b) Apply it to rows and columns (belonging to the global diagonal elements present on rank i only, in other
words, columns up to n).

4. Pass the resulting packed local matrix to this routine.

The user buffers may reside on the host or device. The library will internally take advantage of Unified
Virtual Addressing (UVA). This feature is available starting with CUDA Toolkit 4.0 release, on 64-bit Linux
and Windows (TCC) platforms, with compute capability 2.0 and higher Tesla class GPUs. These minimum
settings are required for the library to work correctly.

If the user buffers are on the host and the Matrix mode indicates device storage (first letter is a d), the

1.5. MATRIX 89

copy will transfer data to the GPU.

It is recommended that the host buffers passed to AMGX _matrix_upload_all be pinned previously via
AMGX _pin_memory. This allows the underlying CUDA driver to achieve higher data transfer rates
across the PCI-Express bus. This routine and the underlying memory transfers will run synchronously. In
other words, when the call to AMGX _matrix_upload_all returns, the copy is guaranteed to have been
completed. Future versions of AMGX may add functionality to allow for asynchronous copies.

The precision of all floating point buffers must match the mode parameter that was set when this Matrix
object was created.

It is legal to call AMGX _matrix_upload_all on a matrix more than once, even if the n and nnz values
have changed. The buffers will be resized appropriately.

In the MPI distributed setting, AMGX _matrix_comm_from_maps_one_ring or AMGX_matrix_
comm_from_maps must be called before calling this routine. Calls to any of these routines will only
take effect after the next call to AMGX_matrix_upload_all.

It is valid to change whether a Matrix has non-NULL diag_data between one call and the next. That is,
a Matrix may have diag_data on one call to AMGX_matrix_upload_all and have none on a subsequent
call, or vice-versa. Note that AMGX does not check if diagonal entries are included in the regular row data
as well as being listed separately. So if diag_data is non-NULL, it is up to the application to ensure that
these entries do not also appear in the row_ptrs, col_indices, and data buffers. Repeating the diagonal
entries will likely result in undefined behavior.

If the Matrix is bound to a Resources object with a non-NULL MPI communicator and has commu-
nication maps, all ranks must call this routine synchronously because it may perform communication or
synchronization internally.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY

AMGX_RC_UNKNOWN

EXAMPLE (single node)

// define the 2x2 matrix with 2x2 blocks:

// (1 -2) 0
/7 (=3 1)
// (1 -4)

// 0 (-5 1)

float datal]l = {1, -2, -3, 1, 1, -4, -5, 1};
int col_ind[] {0, 13};

90 CHAPTER 1. API REFERENCE

int row_ptr[] = {0, 1, 2};

AMGX_matrix_handle matrix;

AMGX_resources_handle rsrc;

AMGX_resources_create_simple(&rsrc);

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);
AMGX_matrix_upload_all(matrix, 2, 2, 2, 2, row_ptr, col_ind, data, 0);

EXAMPLE (distributed setting)

// define the global 4x4 matrix with 1x1 blocks:
// (1 -2) C 1)
// (-3 1) ()
/7 () (1 -4)
/7 C 1) (-5 1)

// consider 2 MPI ranks
if (rank == 0) {

//packed local matrix, based on permutation = [1, 0] and local_to_global = [0, 1, 3]
// (1 -=-3) (0)
// (=2 1) (1)
float datall = {1, -3, -2, 1, 1};
int col_ind[] = {0, 1, 0, 1, 2};
int row_ptr[] = {0, 2, 5};
}
if (rank == 1) {
//packed local matrix, based on permutation = [0, 1] and local_to_global = [2 3 1]
// (1 -4) (0)
// (-5 1) (1)

float datal] = {1, -4, -5, 1, 1};
int col_ind[] = {0, 1, 0, 1, 2};
int row_ptr[] = {0, 2, 5};

}

AMGX_matrix_handle matrix;

AMGX_resources_handle rsrc;

AMGX_resources_create_simple(&rsrc);

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);
AMGX_matrix_upload_all(matrix, 2, 5, 1, 1, row_ptr, col_ind, data, 0);

HISTORY

AMGX _matrix_upload_all was introduced in API Version 1.

SEE ALSO

Matriz Create, Matrix Replace Coefficients, Pin Memory, Unpin Memory, Matrix Comm From Maps, Matriz
Comm From Maps One Ring, Read System Maps One Ring

1.5. MATRIX 91

1.5.4 Matrix Upload All Global

NAME

AMGX _matrix_upload_all global - Copy data (with global column indices) into a Matrix object.

SYNOPSIS

#include <amgx_c.h>

AMGX_RC AMGX_API AMGX_matrix_upload_all_global (AMGX_matrix_handle mtx,

int n_global, int n, int nnz, int block_dimx, int block_dimy,

const int *row_ptrs, const void *col_indices_global, const void *data, const void *diag_data,
int allocated_halo_depth, int num_import_rings, const int *partition_vector);

PARAMETERS

mtx

Opaque handle specifying the Matrix object.

n_global

The dimension of the global matrix in terms of block-units. This also corresponds to the number of
columns (in block-units) in this partition.

n
The dimension of the local matrix in terms of block-units. This also corresponds to the number of
rows (in block-units) in this partition.

nnz
The number of non-zero entries in the local CSR matrix, in terms of block-units.

block_dimx
The blocksize in x direction. For a scalar matrix, this value should be 1. Currently only square blocks
are supported, so block_dimx and block_dimy must be equal. Currently only block_dimx=1 is
supported.

block_dimy
The blocksize in y direction. For a scalar matrix, this value should be 1. Currently only square blocks
are supported, so block_dimx and block_dimy must be equal. Currently only block_dimy=1 is
supported.

row_ptrs

Array of indices into the col_indices_global structure. row_ptrs has n+1 entries. Entry i indicates
the starting index of the values belonging to row i in the col_indices_global table. row_ptrs[0]
must always be 0, and row_ptrs[n] must always be equal to nnz.

col_indices_global

Array of the global column indices of the nonzero blocks in the matrix. The type of column indices
must be 64-bit integer (int64_t). col_indices_global must have nnz entries. col_indices_global[il]
contains the column index (in block-units) of nonzero block i.

92 CHAPTER 1. API REFERENCE

data

Array of the matrix entries in ”array of structures” (AoS) layout. data must have nnz * block_dimx
* block_dimy entries, where block_dimx and block_dimy are, for example, both 4 in the case of a
4x4 block matrix, or 1 in the case of a scalar matrix. data[i*block_dimx*block_dimy] contains the
entry 0,0 in block i. data[i*block_dimx*block_dimy+1*block_dimy] contains the entry 1,0 in block
i, and so on. Data within the block is assumed to be arranged in row-major scanline order.

diag_data

Optional array of external diagonal entries for each row. If there is no external diagonal, in other words,
the diagonal is contained in the matrix itself the diag_data must be set to a null pointer. If this value
is non-null, it is assumed to be an array with n¥block_dimx*block_dimy entries in AoS layout. diag_
datal[i*block_dimx*block_dimy] is the 0,0 entry in the i,i block in the matrix. Currently external
diagonal is not supported.

allocated_halo_depth

In order to support halo exchanges with overlap, it is necessary to allocate buffers to store halo vertices
and connectivity data. The allocated_halo_depth setting causes the Matrix to allocate enough
storage to support halo exchanges for halos up to the specified depth. The actual amount of overlap is
specified via a setting in the Resources and Solver object. Currently, allocated_halo_depth must
be equal to num_import_rings. In the future, AMGX may support computing extra layers of halo
regions automatically.

num_import_rings

The number of rings of overlap to be specified. The first ring will have depth of 1, the second will have
depth of 2, and so on. This allows the caller to provide the library with information about overlap
regions with depth greater than 1. In this case, “depth” refers to the number of edges that must be
traversed on the matrix connectivity graph in order to reach a non-halo vertex. In other words, the first
ring (depth=1) contains halo vertices, where each vertex is directly connected to at least one non-halo
vertex. The second ring contains halo vertices where each vertex is directly connected to at least one
of the vertices in the first ring, and so on.

partition_vector

An array of partition assignments of the global matrix. The array must have size equal to n_global.
Each entry partition_vector[i] will be an integer between 0 and num_partitions-1 indicating the
partition to which block-row i belongs. The partitioning is typically obtained via some type of mesh
partitioner and therefore this information is assumed to be avialable to the calling application, perhaps
stored on disk seperately from the global system matrix.

If NULL is passed for this value, trivial partitioning is performed, when block-rows are evenly dis-
tributed among different ranks (block rows 0. .k go to rank 0, etc)

DESCRIPTION

AMGX _matrix_upload_all _global copies data (with global column indices) to a Matrix object from the
application. When this routine is called, the buffers will be allocated to the required size (if necessary), and
the data will be copied into the Matrix data structure.

The user buffers may reside on the host or device. The library will internally take advantage of Unified
Virtual Addressing (UVA). This feature is available starting with CUDA Toolkit 4.0 release, on 64-bit Linux
and Windows (TCC) platforms, with compute capability 2.0 and higher Tesla class GPUs. These minimum
settings are required for the library to work correctly.

1.5. MATRIX 93

If the user buffers are on the host and the Matrix mode indicates device storage (first letter is a d), the
copy will transfer data to the GPU.

It is recommended that the host buffers passed to AMGX_matrix_upload_all be pinned previously via
AMGX_pin_memory. This allows the underlying CUDA driver to achieve higher data transfer rates
across the PCI-Express bus. This routine and the underlying memory transfers will run synchronously. In
other words, when the call to AMGX_matrix_upload_all returns, the copy is guaranteed to have been
completed. Future versions of AMGX may add functionality to allow for asynchronous copies.

The precision of all floating point buffers must match the mode parameter that was set when this Matrix
object was created.

It is legal to call AMGX _matrix_upload_all_global on a matrix more than once, even if the n and nnz
values have changed. The buffers will be resized appropriately.

There is no need to call AMGX _matrix_comm_from_maps_one_ring or AMGX _matrix_comm _from_
maps before calling this routine. These calls will be done implicitly inside.

It is valid to change whether a Matrix has non-NULL diag_data between one call and the next. That
is, a Matrix may have diag_data on one call to AMGX _matrix_upload_all_global and have none on
a subsequent call, or vice-versa. Note that AMGX does not check if diagonal entries are included in the
regular row data as well as being listed separately. So if diag_data is non-NULL, it is up to the application
to ensure that these entries do not also appear in the row_ptrs, col_indices_global, and data buffers.
Repeating the diagonal entries will likely result in undefined behavior.

If the Matrix is bound to a Resources object with a non-NULL MPI communicator and has commu-
nication maps, all ranks must call this routine synchronously because it may perform communication or
synchronization internally.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY

AMGX_RC_UNKNOWN

EXAMPLE (distributed setting)

// define the global 4x4 matrix with 1x1 blocks:
// 1 -2) C 1)
// (-3 1) ()
/7 () (1 -4)
/7 C 1) (-5 1)

// consider 2 MPI ranks
if (rank == 0) {

94 CHAPTER 1. API REFERENCE

/7 (1 -2) ¢ 1)
/7 (-3 1) ()

float datal[] ={1, -2, 1, -3, 1};
int col_ind_globalll = {0, 1, 3, 0, 1};
int row_ptr[] = {0, 3, 5};

}

if (rank == 1) {
// () (1 -4)
// C 1) (-5 1)

float data[] = {1, _4: 1’ _5) 1};
int col_ind_globalll = {2, 3, 1, 2, 3};
int row_ptr[] = {0, 2, 5};

}

AMGX_matrix_handle matrix;

AMGX_resources_handle rsrc;

AMGX_resources_create_simple(&rsrc);

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);

AMGX_matrix_upload_all_global (matrix, 4, 2, 5, 1, 1, row_ptr, col_indices_global,
data, NULL, 1 /*or 2%/, 1 /*xor 2%/, NULL);

HISTORY

AMGX _matrix_upload_all_global was introduced in API Version 2.

SEE ALSO

Matrixz Create, Matriz Replace Coefficients, Pin Memory, Unpin Memory, Matrix Comm From Maps, Matrix
Comm From Maps One Ring

1.5. MATRIX 95

1.5.5 Matrix Replace Coefficients

NAME

AMGX _matrix_replace_coefficients - Copy coefficient data into a Matrix object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_matrix_replace_coefficients(AMGX_matrix_handle mtx, int n,
int nnz, const void *data, const void *diag_data);

PARAMETERS

mtx

nnz

data

Opaque handle specifying the Matrix object.

The dimension of the matrix in terms of block-units. AMGX only allows square matrices, so this is
both the number of columns and rows. This value must match the previous dimension passed in via
AMGX _matrix_upload_all.

The number of non-zero entries in the CSR matrix, in terms of block units. For example, a 4x4 matrix
with 10 columns/rows, with 3 non-zero blocks per row, would have nnz = 30, even though there are
a total of 480 entries (16 per block, 30 total blocks). This value must match the previous dimension
passed in via AMGX _matrix_upload_all.

Array of the matrix entries in ”array of structures” (AoS) layout. data must have nnz * block_dimx
* block_dimy entries, where block_dimx and block_dimy are, for example, both 4 in the case of a
4x4 block matrix, or 1 in the case of a scalar matrix. data[i*block_dimx*block_dimy] contains the
entry 0,0 in block i. datal[i*block_dimx*block_dimy+1*block_dimy] contains the entry 1,0 in block
i, and so on. Data within the block is assumed to be arranged in row-major scanline order.

diag_data

Optional array of external diagonal entries for each row. If there is no external diagonal, in other
words, the diagonal is contained in the matrix itself the diag_data must be set to a null pointer. If this
value is non-null, it is assumed to be an array with n*block_dimx*block_dimy entries in AoS layout.
diag_datal[i*block_dimx*block_dimy] is the 0,0 entry in the i,i block in the matrix.

DESCRIPTION

Uploads new coefficient data to a Matrix without changing its non-zero structure. Since AMGX_ma-
trix_replace_coefficients does not allocate buffers, AMGX_matrix_upload_all must have been called
previously on the Matrix object. Attempts to call AMGX _matrix_replace_coefficients on a Matrix
where AMGX _matrix_upload_all had previously been invoked will result in an error if the values of n
and nnz do not match those previously.

96 CHAPTER 1. API REFERENCE

The user buffers may reside on the host or device. The library will internally take advantage of Unified
Virtual Addressing (UVA). This feature is available starting with CUDA Toolkit 4.0 release, on 64-bit Linux
and Windows (TCC) platforms, with compute capability 2.0 and higher Tesla class GPUs. These minimum
settings are required for the library to work correctly.

If the user buffers are on the host and the Matrix mode indicates device storage (first letter is a d), the
copy will transfer data to the GPU.

The meaning and layout of the parameters is the same as AMGX _matrix_upload_all. As with AMGX_
matrix_upload_all, diag_data is an optional argument.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE

AMGX_RC_UNKNOWN

EXAMPLE

// define the 2x2 matrix with 2x2 blocks:
// (1 -2) 0

// (=3 1)

// 1 -4

// 0 (-5 1)

float datall = {1, -2, -3, 1, 1, -4, -5, 1};
int col_ind[] = {0, 1};
int row_ptr[] = {0, 1, 2};

AMGX_matrix_handle matrix;

AMGX_resources_handle rsrc;

AMGX_resources_create_simple(&rsrc);

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);
AMGX_matrix_upload_all(matrix, 2, 2, 2, 2, row_ptr, col_ind, data, 0);

// replace with an identity matrix
float data2 = {1, 0, 0, 1, 1, 0, 0, 1};
AMGX_matrix_replace_coefficients(matrix, 2, 2, data2, 0);

HISTORY

AMGX_matrix_replace_coefficients was introduced in API Version 1.

1.5. MATRIX

SEE ALSO

Matriz Upload All, Pin Memory, Unpin Memory

97

98 CHAPTER 1. API REFERENCE

1.5.6 Matrix Get Size

NAME

AMGX _matrix_get_size - Get size information from a Matrix.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_matrix_get_size(const AMGX_matrix_handle obj, int *n,
int *block_dimx, int *block_dimy);

PARAMETERS

mtx

Opaque handle specifying the Matrix object.

n
Pointer to an int which will be set to the matrix dimension in block-units. AMGX only allows square
matrices, so this is both the number of columns and rows. In multithreaded execution, where column
indices may index entries larger than the number of rows, this will return the number of rows in the
local matrix partition.

block_dimx
Pointer to an int which will be set to the size in x of a matrix block.

block_dimy
Pointer to an int which will be set to the size in y of a matrix block.

DESCRIPTION

AMGX _matrix_get_size retrieves the dimensions of a matrix in terms of block units and the size of each
block. This is useful when the matrix is loaded from disk, and the application needs to create vector of the
same size.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

1.5. MATRIX

EXAMPLE

AMGX_matrix_handle matrix;
AMGX_matrix_create (&matrix, AMGX_mode_dFFI);

// ...fill the matrix with values

int n, blockx, blocky;
AMGX_matrix_get_size(matrix, &n, &blockx, &blocky);

HISTORY

AMGX _matrix_get_size was introduced in API Version 1.

SEE ALSO

Matriz Create

99

100

CHAPTER 1. API REFERENCE

1.5.7 Matrix Comm From Maps

NAME

AMGX _matrix_comm_from_maps - Given a Matrix object corresponding to a local partition, creates
the communication maps necessary for distributed operation, allowing for arbitrary amounts of overlap.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_matrix_comm_from_maps (AMGX_matrix_handle mtx_part,

int allocated_halo_depth, int num_import_rings,
int max_num_neighbors, const int *neighbors,
const int *send_ptrs, int const *send_maps,
const int *recv_ptrs, int const *recv_maps);

PARAMETERS

mtx_part

The Matrix corresponding to the local partition of a distributed matrix. This routine assumes that
the matrix has already been partitioned across multiple MPI ranks, and that this matrix contains only
rows which are local to this MPI rank. The matrix is assumed to be rectangular, with more columns
than rows. If the number of block-rows is M and the number of block-columns is N, with M < N, then
indices M through N-1 refer to “halo” vertices. Halo vertices represent a local copy of data (matrix
row or vector entries) which are located on a remote MPI rank.

allocated_halo_depth

In order to support halo exchanges with overlap, it is necessary to allocate buffers to store halo vertices
and connectivity data. The allocated_halo_depth setting causes the Matrix to allocate enough
storage to support halo exchanges for halos up to the specified depth. The actual amount of overlap is
specified via a setting in the Resources and Solver object. Currently, allocated_halo_depth must
be equal to num_import_rings. In the future, AMGX may support computing extra layers of halo
regions automatically.

num_import_rings

The number of rings of overlap to be specified. The first ring will have depth of 1, the second will have
depth of 2, and so on. This allows the caller to provide the library with information about overlap
regions with depth greater than 1. In this case, “depth” refers to the number of edges that must be
traversed on the matrix connectivity graph in order to reach a non-halo vertex. In other words, the first
ring (depth=1) contains halo vertices, where each vertex is directly connected to at least one non-halo
vertex. The second ring contains halo vertices where each vertex is directly connected to at least one
of the vertices in the first ring, and so on.

max_num_neighbors

The number of different neighbors which can be referenced by a single ring. Since different rings
may reference indices which exist on different numbers of neighboring MPI ranks, this should be the
maximum value. This can happen, say, if there is a narrow region on one of the neighboring matrix
partions, and the wavefront of increasing halo rings actually passes through the neighbor into a neighbor
of that neighbor.

1.5. MATRIX 101

neighbors

An array of size max_num_neighbors listing the index of each MPI rank that is referenced by a
halo vertex in one of the rings on this rank. In other words, an ordered list of MPI ranks which will
exchange data via halo exchanges.

send_ptrs

An array of size max_num_neighbors * num_import_rings +1. The format is similar to the “row
pointers” data in a typical CSR matrix. The value of entry i*max_num_neighbors+ j will be the
position in the send_maps array where data corresponding to ring i, neighbor neighbors[j] begins.
If that data set is empty, for example because a particular ring has no connections with a particular
neighbor, the index should be equal to the index of the next stored region, as with an empty row in
a CSR matrix. The first entry, send_ptrs[0], should always be 0. The last entry, send_ptrs [max_
num_neighbors*num_import_rings], should be the number of total entries in the send_maps array.

send_maps

An array of size send_ptrs[max_num_neighbors*num_import_rings] containing data corresponding
to ring and neighbor entries. The entries beginning at index send_ptrs[i*max_num_neighbors+j]
and ending at index send_ptrs[i*max_num_neighbors+j+1]1-1 (inclusive) correspond to ring i and
neighbor neighbors[j]. This sequence of entries are interpreted as a “map” specifying the local
row indices from this matrix partition which will be sent to the MPI rank neighbors[j]. The data
corresponding to these local row indices will be packed into a transfer buffer, and then sent to the
corresponding MPI rank. The order in which the local row indices are listed corresponds to the order
in which they will be packed into the transfer buffer.

recv_ptrs

An array of size max_num_neighbors * num_import_rings +1. The format is identical to the send_
ptrs array, except referring to the recv_maps array which lists the transfer buffers which are to
be received from each neighboring partition. The last entry, recv_ptrs[max_num_neighbors*num_
import_rings], should be the number of total entries in the recv_maps array.

recv_maps

An array of size recv_ptrs[max_num_neighbors*num_import_rings] containing data corresponding
to ring and neighbor entries. The layout of this array is identical to the send_maps array, except
that the beginning and ending entries of each region are specified by the recv_ptrs array. The entries
beginning at index recv_ptrs [i*max_num_neighbors+j] and ending at index recv_ptrs [i*max_num_
neighbors+j+1]-1 (inclusive) correspond to ring i and neighbor neighbors[j]. This sequence of
entries is interpreted as a “map” specifying the local halo indices from this matrix partition which
will be received from the MPI rank neighborsfj. The data received from neighbor [i] will have been
packed into a transfer buffer in the order specified by that remote matrix partition’s send_maps value
corresponding to this (local) MPI rank. The order in which the indices appear in send_maps must
therefore correspond to this order.

DESCRIPTION

AMGX _matrix_comm_from_maps defines communication connections between a local matrix partition
and one or more remote matrix partitions. Unlike AMGX_matrix_comm _from_maps_one_ring, this
routine allows the caller to specify arbitrary numbers of halo rings, assuming they are known by the applica-
tion. While AMGX is able to discover these extra halo rings itself, if the application already knows the halo

102 CHAPTER 1. API REFERENCE

connections the construction of internal communication maps can be optimized. Therefore AMGX _matrix_
comm_from_maps_one_ring and AMGX_matrix_comm_from_maps result in equivalent functionality,
but AMGX _matrix_comm_from_maps may be more efficient.

Because the AMGX_matrix_comm_from_maps routine may apply reordering or other optimizations
based on communication patterns, this routine must be called before AMGX _matrix_upload_all. Calling
it after AMGX _matrix_upload_all will result in the Matrix to not actually have any attached com-
munication information. In other words, a call to AMGX_matrix_comm _from_maps only records the
communication information, but this information isn’t actually uploaded and applied to the Matrix until
a subsequent call to AMGX_matrix_upload_all. Because the communication maps depend on the non-
zero structure of the matrix, calling AMGX_matrix_upload_all again without calling AMGX _matrix_
comm_from_maps_one_ring or AMGX _matrix_comm _from_maps will invalidate the communication
maps and will also result in a no communication. Changes to the coefficients via AMGX _matrix_replace_
coeflicients are allowed after calling AMGX _matrix_comm_from_maps and will have no effect on the
communication maps.

If AMGX_matrix_comm_from_maps is called on a Matrix, those communication maps must be trans-
fered to any right-hand side or solution Vector objects associated with the Matrix by calling AMGX_
vector_bind.

In an MPI setting, communications between matrices must be created via AMGX _matrix_comm_from_
maps or AMGX_matrix_comm_from_maps_one_ring before AMGX _solver_setup is called on a Ma-
trix.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_UNKNOWN
AMGX_RC_BAD_MODE

AMGX_RC_BAD_PARAMETERS

EXAMPLE

// Create matrices with overlap of depth 2,

// corresponding to a Laplacian operator on the following grid:
//0-1-2-23

// {0,1} are on rank 0, and {2,3} are on rank 1.

// on rank O, ring O = {2}, ring 1 = {3}

// on rank 1, ring 0 = {1}, ring 1 = {0}

AMGX_resources_handle rsrc;

AMGX_resources_create(&rsrc, ...);

AMGX_matrix_handle matrix;

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);

if (MPI_rank == 0) {
float datal] = {2, -1, -1, 2, -1, -1, 2, -1};

1.5. MATRIX

float cols[] = {0, 1, 0, 1,

//

float rows[] = {0,2,5,8};

int nbrs[] = {1};

int send_ptrs([] = {0,1,2}; //

int send_maps[] = {1,0}; //
//

int recv_ptrs[] = {0,1,2}; //

int recv_maps[] = {2,3}; //
//

ring
ring

ring
ring
ring
ring

AMGX _matrix_comm_from_maps (matrix,

0
0
1:
0
0
1

3};

spans pos [0,1),

: local idx 1 (=>

local idx 0 (=>
spans pos [0,1),

: local idx 2 (=>
: local idx 3 (=>
1, 2, 2,

1, nbrs,

send_ptrs, send_maps, recv_sizes, recv_maps);
AMGX__matrix_upload_all(matrix, 3, 8, 1, 1, rows, cols, data,

}
else if (MPI_rank == 1) {
float datal]

float cols[] = {2, 0, 1,
//

float rows[] = {0,3,5,8};
int nbrs[] = {1};

int send_ptrs[] = {0,1,2};
int send_maps[] = {0,1};
int recv_ptrs[] = {0,1,2};
int send_maps[] = {2,1};

0,

//
//
//
//
//
//

1,

ring
ring
ring
ring
ring
ring

AMGX__matrix_comm_from_maps (matrix,
send_ptrs, send_maps, recv_sizes, recv_maps);
AMGX _matrix_upload_all(matrix, 3, 8, 1, 1, rows, cols, data,

HISTORY

0
0
1
0
0
1

1,

= {_1, 2: _1’ _1) 25 _1: 2, _1}:
1, 2,

3};
”””””” halo row

spans pos [0,1),

: local idx 0 (=>
: local idx 1 (=>

spans pos [0,1),

: local idx 2 (=>
: local idx 3 (=>

2, 2, 1, nbrs,

ring 1
global
global
ring 1
global
global

ring 1
global
global
ring 1
global
global

AMGX _matrix_comm_from_maps was introduced in API version 2.

SEE ALSO

103

- this is a halo row (not local)

spans pos [1,2)
idx 1)
idx 0)
spans pos [1,2)
idx 2)
idx 3)

0);

spans pos [1,2)
idx 2)
idx 3)
spans pos [1,2)
idx 1)
idx 0)

0);

Matriz Comm From Maps One Ring, Matrixz Upload All, Read System Distributed, Vector Bind

104 CHAPTER 1. API REFERENCE

1.5.8 Matrix Comm From Maps One Ring

NAME

AMGX _matrix_comm_from_maps_one_ring - Given a Matrix object corresponding to a local partition,
creates the communication maps necessary for distributed operation, with only one layer of overlap.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_matrix_comm_from_maps_one_ring(AMGX_matrix_handle mtx_part,
int allocated_halo_depth,
int num_neighbors, const int *neighbors,
const int *send_sizes, int const **send_maps,
const int *recv_sizes, int const **recv_maps);

PARAMETERS

mtx_part

The Matrix corresponding to the local partition of a distributed matrix. This routine assumes that
the matrix has already been partitioned across multiple MPI ranks, and that this matrix contains only
rows which are local to this MPI rank. The matrix is assumed to be rectangular, with more columns
than rows. If the number of block-rows is N and the number of block-columns is M, with M > N;
indices N through M-1 refer to “halo” vertices. Halo vertices represent a local copy of data (matrix
row or vector entries) which are located on a remote MPI rank.

allocated_halo_depth

In order to support halo exchanges with overlap, it is necessary to allocate buffers to store halo vertices
and connectivity data. The allocated_halo_depth setting causes the Matrix to allocate enough
storage to support halo exchanges for halos up to the specified depth. The actual amount of overlap is
specified via a setting in the Resources and Solver object. Currently, allocated_halo_depth must
be equal to num_import_rings and therefore here it equals 1 (which is implicit from the name of the
routine). In the future, AMGX may support computing extra layers of halo regions automatically.

num_neighbors
The number of MPI ranks which share a boundary with this rank. In other words, the number of MPI
ranks which will exchange data via halo exchanges.

neighbors
An array of size num_neighbors listing the index of each MPI rank that shares a boundary with this
rank. In other words, a list of MPI ranks which will exchange data via halo exchanges.

send_sizes
An array of size num_neighbors. The value in entry i is the number of local (i.e. non-halo) rows in
this rank’s matrix partition which will be sent to the MPI rank neighbors[i].

send_maps

An array of size num_neighbors of arrays, where entry i is another array of size send_sizes[i].
Array i is a “map” specifying the local row indices from this matrix partition which will be sent to

1.5. MATRIX 105

the MPI rank neighbors[i]. The data corresponding to these local row indices will be packed into a
transfer buffer, and then sent to the corresponding MPI rank. The order in which the local row indices
are listed corresponds to the order in which they will be packed into the transfer buffer. For simple
cases with n local rows, this will be an offset mapping, where local index n+j (which is a halo index)
will map to position j in the transfer buffer.

recv_sizes

An array of size num_neighbors. The value in entry i is the number of non-local (i.e. halo) rows in
this rank’s matrix partition which will be received from the MPI rank neighbors[i].

recv_maps

An arry of size num_neighbors of arrays, where entry i is another array of size recv_sizes[i]. Array
iis a “map” specifying the local halo indices from this matrix partition which will be received from the
MPI rank neighbors[i]. The data received from neighbor [i] will have been packed into a transfer
buffer in the order specified by that remote matrix partition’s send_maps value corresponding to this
(local) MPI rank. The order in which the indices appear in send_maps must therefore correspond to
this order.

DESCRIPTION

AMGX _matrix_comm_from_maps_one_ring defines communication connections between a local matrix
partition and one or more remote matrix partitions, in the typical case where there is only a single level of
overlap between the matrix connectivity graphs. In other words, when interpreting the matrices as graphs,
all halo vertices are directly connected to at least one non-halo (local) vertex.

Because the AMGX _matrix_comm_from_maps_one_ring routine may apply reordering or other opti-
mizations based on communication patterns, this routine must be called before AMGX _matrix_upload_all.
Calling it after AMGX _matrix_upload_all will result in the Matrix to not actually have any attached
communication information. In other words, a call to AMGX_matrix_comm_from_maps_one_ring only
records the communication information, but this information isn’t actually uploaded and applied to the
Matrix until a subsequent call to AMGX _matrix_upload_all.

Because the communication maps depend on the non-zero structure of the matrix, calling AMGX_ma-
trix_upload_all again without calling AMGX_matrix_comm_from_maps_one_ring or AMGX_ma-
trix_comm_from_maps will invalidate the communication maps and will also result in a no communication.
Changes to the coefficients via AMGX _matrix_replace_coefficients are allowed after calling AMGX_
matrix_comm_from_maps and will have no effect on the communication maps.

If AMGX_matrix_comm_from_maps_one_ring is called on a Matrix, those communication maps must
be transfered to any right-hand side or solution Vector objects associated with the Matrix by calling
AMGX _vector_bind.

In an MPI setting, communications between matrices must be created via AMGX _matrix_comm_from_
maps, or AMGX _matrix_comm_from_maps_one_ring before AMGX _solver_setup is called on a Ma-
trix.

RETURN VALUES

Relevant return values:

AMGX_RC_OK

106 CHAPTER 1. API REFERENCE

AMGX_RC_UNKNOWN
AMGX_RC_BAD_MODE

AMGX_RC_BAD_PARAMETERS

EXAMPLE

// Create matrices corresponding to a Laplacian operator on the following grid:
//0-1-2-3

// {0,1} are on rank 0, and {2,3} are on rank 1.

// node 2 is a halo node for rank O, and node 1 is a halo node for rank 1.
AMGX_resources_handle rsrc;

AMGX_resources_create(&rsrc, ...);

AMGX_matrix_handle matrix;

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dFFI);

if (MPI_rank == 0) {
float datal]l = {2, -1, -1, 2, -1};
float cols[] {0, 1, 0, 1, 2}; // last entry refers to a halo point (col idx 2)
float rows[] = {0,2,5};

int nbrs[] = {1};
int send_sizes[] = {1};
int send_map[] = {1}; // local idx 1 (=> global idx 1) gets packed to the xfer buffer
int recv_sizes[] = {1};
int recv_map[] = {2}; // halo idx 2 (=> global idx 2) comes from remote xfer buffer
AMGX _matrix_comm_from_maps_one_ring(
matrix, 1, nbrs, send_sizes, &send_map, recv_sizes, &recv_map);
AMGX_matrix_upload_all(matrix, 2, 5, 1, 1, rows, cols, data, 0);
}
else if (MPI_rank == 1) {
float datal] {-1, 2, -1, -1, 2};
float cols[] {2, 0, 1, 0, 13}; // first entry refers to a halo point (col idx 2)
float rows[] = {0,3,5};

int nbrs[] = {1};
int send_sizes[] = {1};
int send_map[] = {0}; // local idx 0 (=> global idx 2) gets packed to xfer buffer
int recv_sizes[] = {1};
int recv_map[] = {2}; // halo idx 2 (=> global idx 1) comes from remote xfer buffer
AMGX__matrix_comm_from_maps_one_ring(

matrix, 1, nbrs, send_sizes, &send_map, recv_sizes, &recv_map);
AMGX_matrix_upload_all(matrix, 2, 5, 1, 1, rows, cols, data, 0);

HISTORY

AMGX _matrix_comm_from_maps_one_ring was introduced in API version 2.

1.5. MATRIX 107

SEE ALSO

Matriz Comm From Maps, Matrixz Upload All, Read System Distributed, Vector Bind

108 CHAPTER 1. API REFERENCE

1.6 Vector

NAME

Vector

DESCRIPTION

This section describes the API functions for creation and handling of Vector objects. A Vector object
represents a linear algebra vector that is stored on either the host or the device. In AMGX accessed via
the C API, vectors are mostly opaque objects. Via the lower-level C++ API, it is possible to manipulate
vectors and execute BLAS-like routines on them. However, via the C-API, the Vector object is primarily a
way to manage data that is passed from the application into the AMGX library and other utility operations
are not supported.

In a single-threaded application, the typical lifecycle of Vector will be to create it via AMGX_vector_
create, associating it with a Resources instance that specifies the GPUs to be utilized by this thread. Note
that the Matrix and Vector must be associated with the same Resources object. The vector buffer is
then transferred from the application into AMGX via AMGX _vector_upload_all, setting it to zeroes via
AMGX _vector_set_zero, or reading from disk via AMGX _read_system. The Vector will be passed to
an Solver object via AMGX _solver_solve or AMGX _solver_solve_with_0_initial guess. For a Vector
representing the solution to the linear system, its content can be retrieved from AMGX via AMGX _vector._
download. Finally, the memory associated with this vector may be deallocated after the solver completes
via AMGX_vector_destroy.

In an MPI application, it is necessary to associate communication data with the Vector object. A Vec-
tor will be created via AMGX_vector_create, associating it with a Resources instance that specifies
the GPUs to be utilized and the MPI communicator across which other partitions of the vector will be
distributed. The application establishes communication information on a Matrix via AMGX_matrix_
comm_from_maps or AMGX_matrix_comm_from_maps_one_ring. The communication information
is then propagated to any vectors which will be associated with this particular linear system (as a right-hand
side or solution) via AMGX_vector_bind. Note that the Matrix and Vector objects must be associated
with the same Resources object for this to be valid. Then, as in the single-threaded case, the Vector will
be passed to an Solver object via AMGX _solver_solve or AMGX _solver_solve_with_0_initial_guess.
For a Vector representing the solution to the linear system, its content can be retrieved from AMGX via
AMGX _vector_download. Finally, the memory associated with this vector may be deallocated after the
solver completes via AMGX _vector_destroy.

Currently, the Vector objects are not reference counted, so destroying a Vector object while the it is still
being used by a Solver will result in undefined behavior. In the future, this behavior may change to generate
a run-time error.

AMGX_vector_create
AMGX _vector_destroy
AMGX _vector_upload
AMGX _vector_set_zero
AMGX _vector_download
AMGX _vector_get_size

1.6. VECTOR 109

AMGX _vector_bind

HISTORY

Vectors were introduced in API version 1. Support for distributed applications was added in API version 2.

SEE ALSO

Vector Create, Vector Destroy, Vector Upload, Vector Set Zero, Vector Download, Vector Get Size, Vector Bind

110 CHAPTER 1. API REFERENCE

1.6.1 Vector Create

NAME

AMGX _vector_create - Creates a Vector object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_create(AMGX_vector_handle *ret,
AMGX_resources_handle resources, AMGX_Mode mode);

PARAMETERS

ret

Pointer to the opaque handle to be returned.

resources

The Resources object which defines where the memory associated with this object will be allocated,
the precision of this vector object, and any information about how it will communicate with other
vectors in other MPI ranks or threads.

mode

The mode in which the associated Vector will operate. The mode value must be consistent with any
mode value used to create the Solver or Matrix objects which will be used to solve the linear system
associated with this Vector. See below for a desciption of the modes.

DESCRIPTION

AMGX _vector_create creates a matrix object to handle vector data.

The mode parameter can be one of the following values:

typedef enum {
AMGX_mode_hDDI, // 8192
AMGX_mode_hDFI, // 8448
AMGX_mode_hFFI, // 8464
AMGX_mode_dDDI, // 8193
AMGX_mode_dDFI, // 8449
AMGX_mode_dFFI // 8465

} AMGX_Mode;

For each mode, the first letter h or d specifies whether the matrix data (and subsequent linear solver
algorithms) will run on the host or device. The second D or F specifies the precision (double or float) of the
Matrix data. The third D or F specifies the precision (double or float) of any Vector (including right-hand
side or unknown vectors). The last I specifies that 32-bit int types are used for all indices. Future versions
of AMGX may support additional precisions or mixed precision modes.

1.6. VECTOR 111

Note that AMGX does not currently perform any automatic precision conversion, so the data that is passed
into a Vector object via subsequent calls to AMGX _vector_upload and AMGX _vector_download must
match the precision (specified in the third position) of the mode parameter when the Vector was created.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_UNKNOWN
AMGX_RC_BAD_MODE

EXAMPLE

AMGX_resources_handle resources;
AMGX_resources_create_simple(&resources) ;

AMGX_vector_handle vector;
AMGX_vector_create(&vector, resources, AMGX_mode_dDFI);

HISTORY

AMGX _vector_create was introduced in API Version 1, the calling signature was modified in API Version
2.

SEE ALSO

Vector Destroy, Resources Create, Resources Create Simple

112 CHAPTER 1. API REFERENCE

1.6.2 Vector Destroy

NAME

AMGX _vector_destroy - Destroys a Vector object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_destroy(AMGX_vector_handle obj);

PARAMETERS

obj
Opaque handle specifying the Vector object to be destroyed.

DESCRIPTION

AMGX _vector_destroy destroys an instance of a Vector object that had been previously created via
AMGX _vector_create. After an instance has been destroyed, subsequent attempts to use the Vector
object will result in undefined behavior. Currently, AMGX does not employ reference counting. Therefore,
calls to AMGX _solver_solve or AMGX_solver_solve_with_0_initial_guess will result in undefine be-
havior after the referenced right-hand side or solution Matrix objects have been destroyed. In the future,
this behavior may change.

It is recommended AMGX _vector_destroy to be called after AMGX _solver_destroy and prior to
AMGX _matrix_destroy.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

EXAMPLE

AMGX_vector_handle vector;
AMGX_vector_create (&vector, AMGX_mode_dDDI);
// use it

AMGX_vector_destroy(vector);

1.6. VECTOR 113

HISTORY

AMGX _vector_destroy was introduced in API Version 1.

SEE ALSO

Vector Create

114 CHAPTER 1. API REFERENCE

1.6.3 Vector Upload

NAME

AMGX _vector_upload - Copy data into a Vector object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_upload(AMGX_vector_handle vec, int n, int block_dim,
const void *data);

PARAMETERS

vec

Opaque handle specifying the Vector object.

n
The number of entries to be copied into the Vector object, in block units.

block_dim
The number of values per block.

data
Pointer to the beginning of the user array to be copied. The array must have n*block_dim entries,
organize in “array of structure” format. In other words, for a 4x4 block system, block_dim would be
4, and the value for entry j within block i would be at position i*4+j.

DESCRIPTION

AMGX _vector_upload copies data from a user buffer into a Vector object. When this routine is called,
the buffer will be allocated to the required size (if necessary), and the data will be copied into the Vector
data structure.

The user buffers may reside on the host or device. The library will internally take advantage of Unified
Virtual Addressing (UVA). This feature is available starting with CUDA Toolkit 4.0 release, on 64-bit Linux
and Windows (TCC) platforms, with compute capability 2.0 and higher Tesla class GPUs. These minimum
set tings are required for the library to work correctly.

If the user buffers are on the host and the Vector mode indicates device storage (first letter is a d), the
copy will transfer data to the GPU.

It is recommended that the host buffers passed to AMGX_vector_upload be pinned previously via
AMGX_pin_memory. This allows the underlying CUDA driver to achieve higher data transfer rates
across the PCI-Express bus. This routine and the underlying memory transfers will run synchronously.
In other words, when the call to AMGX_vector_upload returns, the copy is guaranteed to have been
completed. Future versions of AMGX may add functionality to allow for asynchronous copies.

1.6. VECTOR 115

The precision of all the floating point buffer must match the mode parameter that was set when this Vector
object was created.

It is legal to call AMGX _vector_set_zero or AMGX _vector_upload on a vector more than once, even
if the n and block_dim values have changed. The buffers will be resized appropriately.

In an MPI or multi-GPU settting, the Vector must have communication maps and partition information
set on it before calling AMGX _vector_upload by first calling AMGX_vector_bind. The maps will be
applied during the uploading process. Calling AMGX_vector_bind after AMGX _vector_upload will
result in the communication maps and partition information not being applied until the next time AMGX_
vector_upload or AMGX _vector_set_zero is called.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS
AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY

AMGX_RC_UNKNOWN

EXAMPLE

AMGX_vector_handle vector;

AMGX_vector_create(&vector, resources, AMGX_mode_dDFI);

float datall = {1, 2, 3, 4, 1, 2, 3, 4};

AMGX_pin_memory(data) ;

// set the block vector with 2 entries, block size 4: [(1 2 3 4) (1 2 3 4)]
AMGX_vector_upload(vector, 2, 4, data);

HISTORY

AMGX _vector_upload was introduced in API Version 1.

SEE ALSO

Vector Create, Vector Download, Vector Set Zero, Pin Memory, Unpin Memory, Vector Bind, Matriz Comm
From Maps, Matrix Comm From Maps One Ring

116 CHAPTER 1. API REFERENCE

1.6.4 Vector Download

NAME

AMGX _vector_download - Retrieve data from a Vector object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_download(const AMGX_vector_handle vec, void *data);

PARAMETERS

vec

Opaque handle specifying the Vector object.

data

Pointer to the beginning of the user array to receive the data. The array must have enough space to
store nxblock_dim entries, where n and block_dim can be retrieved via AMGX _vector_get_size.

DESCRIPTION

AMGX _vector_download copies data a Vector object into a user buffer.

The user buffers may reside on the host or device. The library will internally take advantage of Unified
Virtual Addressing (UVA). This feature is available starting with CUDA Toolkit 4.0 release, on 64-bit Linux
and Windows (TCC) platforms, with compute capability 2.0 and higher Tesla class GPUs. These minimum
settings are required for the library to work correctly.

If the user buffers are on the host and the Vector mode indicates device storage (first letter is a d), the
copy will transfer data from the GPU.

It is recommended that the host buffers passed to AMGX_vector_upload be pinned previously via
AMGX _pin_memory. This allows the underlying CUDA driver to achieve higher data transfer rates
across the PCI-Express bus. This routine and the underlying memory transfers will run synchronously. In
other words, when the call to AMGX _vector_download returns, the copy is guaranteed to have been
completed. Future versions of AMGX may add functionality to allow for asynchronous copies.

The precision of the data in the floating point buffer will match the mode parameter that was set when this
Vector object was created.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_BAD_PARAMETERS

1.6. VECTOR 117

AMGX_RC_BAD_MODE

AMGX_RC_UNKNOWN

EXAMPLE

AMGX_vector_handle vector;

AMGX_vector_create(&vector, resources, AMGX_mode_dDDI);
AMGX_vector_set_zero(vector, 100, 1);

double data[100];

AMGX_pin_memory (data) ;

AMGX_vector_download(vector, data);

HISTORY

AMGX _vector_download was introduced in API Version 1.

SEE ALSO

Vector Upload, Vector Set Zero, Pin Memory, Unpin Memory

118 CHAPTER 1. API REFERENCE

1.6.5 Vector Set Zero

NAME

AMGX _vector_set_zero - Allocate storage if needed and set all of the values in a Vector to zero.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_set_zero(AMGX_vector_handle vec, int n, int block_dim);

PARAMETERS

vec

Opaque handle specifying the Vector object to be updated.

The number of entries in the Vector object, in block units.

block_dim

The number of values per block.

DESCRIPTION

AMGX _vector_set_zero sets the data in Vector object to all zeros. When this routine is called, the
buffer will be allocated to the required size (if necessary). The semantics of AMGX _vector_set_zero are
identical to calling <AMGX_vector_upload> with a buffer of the same size consisting of all zeroes.

The precision of the floating point buffer will match the mode parameter that was set when this Vector
object was created.

It is legal to call AMGX _vector_set_zero or AMGX _vector_upload on a matrix more than once, even
if the n and block_dim values have changed. The buffers will be resized appropriately.

In an MPI or multi-GPU settting, the Vector must have communication maps and partition information
set on it before calling AMGX _set_zero by first calling AMGX _vector_bind. The maps will be applied
when the data is set. Calling AMGX_vector_bind after AMGX_vector_upload will result in the com-
munication maps and partition information not being applied until the next time AMGX _vector_upload
or AMGX _vector_set_zero is called.

RETURN VALUES

Relevant return values:
AMGX_RC_OK
AMGX_RC_BAD_PARAMETERS

AMGX_RC_BAD_MODE

1.6. VECTOR 119

AMGX_RC_NO_MEMORY

AMGX_RC_UNKNOWN

EXAMPLE

AMGX_vector_handle vector;

AMGX_vector_create (&vector, AMGX_mode_dDFI);

// set the block vector with 2 entries, block size 4: [(0 0 0 0) (0O 0 0 0)]
AMGX_vector_set_zero(vector, 2, 4);

HISTORY

AMGX_vector_set_zero was introduced in API Version 1.

SEE ALSO

Vector Create, Vector Upload, Vector Comm From Matriz, Vector Bind, Matriz Comm From Maps, Matriz
Comm From Maps One Ring

120 CHAPTER 1. API REFERENCE

1.6.6 Vector Get Size

NAME

AMGX _vector_size - Retrieve size from a Vector object.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_get_size(const AMGX_vector_handle vec, int *n,
int *block_dim);

PARAMETERS

vec

Opaque handle specifying the Vector object.

Pointer to the variable which will be set to the size of this Vector in block-units.

block_dim

Pointer to the variable which will be set to the size of a block-unit.

DESCRIPTION

AMGX _vector_get_size retrieves the size of a Vector object in terms of number of entries, and the size

of each entry.

RETURN VALUES

Relevant return values:
AMGX_RC_OK

AMGX_RC_BAD_PARAMETERS

EXAMPLE

AMGX_vector_handle vector;
AMGX_vector_create(&vector, AMGX_mode_dDDI);
AMGX_vector_set_zero(vector, 100, 1);

int n, b;

AMGX_vector_get_size(vector, &n, &b);

1.6. VECTOR 121

HISTORY

AMGX _vector_get_size was introduced in API Version 1.

SEE ALSO

Vector Upload, Vector Set Zero

122 CHAPTER 1. API REFERENCE

1.6.7 Vector Bind

NAME

AMGX _vector_bind - Create communication maps and partition info on a Vector by copying them from
a Matrix.

SYNOPSIS

#include <amgx_c.h>
AMGX_RC AMGX_API AMGX_vector_bind(AMGX_vector_handle vec,
AMGX_matrix_handle matrix);

PARAMETERS

vec

The Vector object for which communication maps and optional partition data are to be created.

matrix

The Matrix object which has communication maps and optional partition data already.

DESCRIPTION

AMGX _vector_bind defines communication maps between a local vector partition and one or more remote
vector partitions by copying them from a Matrix which has communication maps on it already.

Because the AMGX _vector_upload routine may apply reordering or other optimizations based on commu-
nication patterns, this routine must be called before AMGX_vector_upload. Calling it after AMGX _vec-
tor_upload will result in the Vector to not actually have any attached communication information. In other
words, a call to AMGX_vector_bind only records communication and partition information, but this infor-
mation isn’t actually uploaded and applied to the Vector until a subsequent call to AMGX _vector_upload.
From a functional point of view, AMGX _vector_set_zero behaves identically to AMGX _vector_upload
where the uploaded data is all zeroes, so the same semantics apply.

Once the communication maps and partition information have been attached to a Vector via AMGX_
vector_bind, they do not need to be attached again before subsequent calls to AMGX _vector_upload,
provided that the size of the Vector is unchanged. If the size does change, then new communication maps
and partition information must be attached first via AMGX _vector_bind.

In the distributed setting, communications maps must be attached to a Vector via AMGX _vector_bind
or AMGX _read_system_distributed before the Vector is passed to AMGX_solver_solve as either a
right-hand side or solution vector.

RETURN VALUES

Relevant return values:

AMGX_RC_OK

1.6. VECTOR

AMGX_RC_BAD_MODE
AMGX_RC_NO_MEMORY

AMGX_RC_UNKNOWN

EXAMPLE
int n = ... // # of rows in the matrix
int nnz = ... // nnz in the matrix

float matrix_datal] = ...;
float matrix_cols[] R
int matrix_rows[] R

float rhs_datal] = ...;

AMGX_matrix_handle mtx;
AMGX_vector_handle rhs, sol;
AMGX_resources_handle rsrc;

// single threaded using a single GPU
int devices[] = {0};
AMGX_resources_create(rsrc, config, NULL, 2, devices);

AMGX_matrix_create(mtx, rsrc, AMGX_mode_dFFI);
AMGX_vector_create(rhs, rsrc, AMGX_mode_dFFI);
AMGX_vector_create(sol, rsrc, AMGX_mode_dFFI);

AMGX_vector_bind(rhs, mtx);
AMGX_vector_bind(sol, mtx);

AMGX_matrix_upload_all(

mtx, n, nnz, 1, 1, matrix_rows, matrix_cols, matrix_data, 0);

AMGX_vector_upload(rhs, n, 1, rhs_data);
AMGX_vector_set_zero(sol, n, 1);
// mtx, rhs, and sol can now be used by a Solver

HISTORY

AMGX _vector_bind was introduced in API Version 2.

SEE ALSO

123

Matriz Comm From Maps, Matrix Comm From Maps One Ring, Vector Upload, Read System Distributed

124 CHAPTER 1. API REFERENCE

Chapter 2

Algorithm (Guide

OVERVIEW

The AMGX library provides access to a number of different algorithms for solving sparse linear systems of
equations. Deciding which one to use for a particular problem is a complex question, often requiring a deep
knowledge of the application domain and physical properties of the system to be solved.

This guide describes the algorithms available via AMGX along with options and parameters that can be used
to adjust these algorithms. Because AMGX provides a flexible pluging-based architecture, many different
algorithms can be “mixed and matched” to create a wide variety of solvers. For example, any smoother can
be paired with any AMG solution algorithm.

AMGX supports block or scalar systems, diagonal entries stored separately or with the off-diagonal entries,
single or dobule precision floating point, and host or device-based storage. Since each of these combinations
may require a different implementation of some routine, not all settings and algorithms are compatible with
all storage and layouts. Attempting to use a certain algorithm with an incompatible storage type will result
in a run-time error. Where possible, this guide notes these limitations.

It is also possible to implement custom algorithms and solvers via AMGX’s plugin interface. A description
of this interface is beyond the scope of the API reference.

Config Syntax

Resources Settings

General Settings

Multigrid Settings

Classical Algebraic Multigrid
Aggregation Multigrid
Krylov Solvers

Smoothers

Cycles

Nested Solvers

125

126 CHAPTER 2. ALGORITHM GUIDE

Examples

2.1. CONFIG SYNTAX 127

2.1 Config Syntax

OVERVIEW

The Config format is a text reprentation of a Config object. Config declarations may be stored as text files
and loaded into a Config object via AMGX _config_create_from file, or passed to a Config object from
memory via AMGX_config_create. In either case, the format is the same.

Config files are a series of key-value pairs that define parameters, algorithms, and other settings which
determine the behavior of a solver. Config files allow for a simple scoping mechanism which can be used to
recursively build complex algorithms from simple building blocks. Because of the flexible nature of the file
format, new parameters can be added and registered via plugins and passed through the rest of the system,
allowing for extensible functionality with user control.

Comments can be included at any point. A comment line begins with the # character, like this:
this is a comment

The first non-comment line should be a version specifier, which allows for the format to be backward com-
patible. The version is set just like any key-value pair:

config_version=2

It is recommeneded for the user to specify and use config_version 2. For example, nested solvers are only
supported in config_version 2 and later. Note that file versions are backwards compatible, so a version of
the AMGX library capable of reading version 2 will also be capable of reading version 1. Also, note that if
the config_version is not specified, it is assumed to be 1.

The Config file is a list of settings, specied as key-value pairs. Keys are described in this document, and
associated with each key is either a default value if it is left unset, or the user-provided value if it is set.
Values can be different types, including floating point, strings, integer values, or a special Solver type.

Values of type string, float, or int are specified as
key=value

or
solver_name:key=value

with one setting per line. Scopes, described below, allow for nested structures, such as a Krylov solver
preconditioned by an AMG solver, which uses an ILU smoother.

Any object which iteratively modifies a solution vector is categorized as a Solver. For example, all smoothers,
Krylov solvers, AMG solver, or other iterative algorithms are considered Solver, and they can be used
interchangably.

The syntax for specifying a value of type Solver is

key(solver_name)=value

128 CHAPTER 2. ALGORITHM GUIDE

where value will be the Solver type, and solver_name will be the user-given name of this Solver instance,
used to reference the scope when defining a nested structure. Parameters on the solver can then be set using
the solver_name:key=value syntax shown above.

Many Solver objects themselves can reference another Solver as one a setting. For exaple, the FGMRES
solver has a parameter preconditioner, which can reference any other Solver object. For example, creating
an FMGRES solver preconditioned by a Gauss-Seidel smoother can be written:

solver (my_krylov_solver)=FGMRES
my_krylov_solver:preconditioner (my_precond)=MULTICOLOR_GS

AMGX uses one-level scoping, so parameters set in the global scope (without a solver_name prefix) will
be inherited by all Solver objects, unless that parameter is overriden on a particular Solver. Furthermore,
scope names are not nested, so for example, to specify that the MULTICOLOR _GS smoother should be
applied symmetrically, you would write

my_precond:symmetric_gs=1
Rather than the nested (incorrect)
my_krylov_solver:my_precond:symmetric_gs=1
In this case, you could also write simply
symmetric_gs=1

in the global scope, and that would be inherited by all Solver objects (but ignored by any Solver that
doesn’t care about this parameter, which is currently all Solvers except for MULTICOLOR _GS).

HISTORY

Comments and nested solvers are only supported in config_version 2. Features specific to config_version
2 can only be read by AMGX with API version 1.1 and later.

SEE ALSO

Config, Config Create, Config Create From File

2.2. RESOURCES SETTINGS 129

2.2 Resources Settings

OVERVIEW

All Resources objects can be controlled via the following settings.

PARAMETERS

communicator (string: MPI)

The type of communicator to be used. By default, inter-process communication will use MPI, and the
comm parameter is assumed to be of type MPI_Comm. MPI_DIRECT is also allowed, and assumes
that the installed version if MPI support GPUDirect. If the comm parameter is NULL, this value will
be ignored.

min_rows_latency_hiding (int: -1)

Latency hiding is an option during halo exchange, where the communication pattern will attempt to
overlap the sending and receiving on halo data with computation on non-halo data. For large numbers
of rows, this can be a good idea. However, it has overhead and enforces that the halo rows are processed
with a serial dependency on the non-halo rows, reducing the total amount of available parallelism. This
setting specifies the number of matrix rows below which latency hiding will be disabled - that is, any
levels in the multigrid hierarchy with fewer than min_rows_latency_hiding rows will not use latency
hiding. Setting this value to -1 disables latency hiding entirely.

matrix_consolidation_lower_threshold (int: 0)
Average number of rows at which matrices from different processes must be merged. Default is no
merging.

matrix_consolidation_upper_threshold (int: 1000)
Average number of rows that merged matrices from different processes should have. Default is no
merging.

fine_level_consolidation (int: 0)

Flag that enables or disables (default) fine level consolidation. The consolidation can only happen
once, in other words, if the fine level consolidation is enabled then the coarse level consolidation will
be disabled.

amg_consolidation_flag (int: 0)

Flag that enables or disables (default) fine level consolidation in classical algebraic mutigrid solvers.
The consolidation can only happen once, in other words, if the fine level consolidation is enabled
then the coarse level consolidation will be disabled. The consolidation thresholds are automatically
computed at runime (default), it is also possible to set them manually using matrix_consolidation_
lower_threshold and matrix_consolidation_upper_threshold.

LIMITATIONS

None.

SEE ALSO

130 CHAPTER 2. ALGORITHM GUIDE

2.3 General Settings

OVERVIEW

All Solver objects can be controlled via basic settings such as the convergence criteria. In the case of nested
solvers, these settings can apply to a specific solver via scoping, or generically to all solvers via the global
scope.

PARAMETERS

convergence (string: ABSOLUTE)

The type of convergence check that will be used. ABSOLUTE tests whether the norm of the residual
is less than tolerance. RELATIVE_INI_CORE tests whether the ratio of norm of the residual has
been reduced by tolerance relative to the initial norm of the residual. In a block system, each equation
will be tested independently - in other words, the residual is treated as n vectors for an n-by-n block
system. Convergence for the entire system is only achieved when all residual values are considered
converged.

determinism_flag (int: 0)

Since AMGX often relies on randomized algorithms, the results may vary from one run to another.
When this value is set to 1, the algorithms will be tuned such that the results should be deterministic
and repeatable. This typically results in a small performance penalty, on the order of 15%.

max_iters (int: 100)

The maximum number of iterations before a solver will exit. Setting this to 1, for example, means
that only a single iteration of the solver will be applied, regardless of any convergence test. If the
convergence test succeeds before max_iters are executed, the solver will exit.

monitor_residual (int: 0)
When this flag is set to 0, the convergence check will ignore the residual, and will simply run until
max_iters is reached.

norm (string: L2)
The type of norm used to test for convergence. Supported values are L1, L2, abd LMAX. LMAX is
not currently supported for block systems.

solver (solver: AMG)

There is one unique top level solver set at the global scope, which will be used during AMGX _solver_
setup and AMGX _solver_solve. Since any Solver type may be used interchangeably, this can be
any of the listed smoothers, Krylov solvers or algebraic multigrid methods. For example, allowable
options include algebraic multigrid AMG, Krylov solvers PCG, PBICGSTAB and FGMRES, as
well as smoothers BLOCK_JACOBI and MULTICOLOR_DILU.

tolerance (double: 1e-12)
The tolerance used during a convergence check. The units are whatever is specified via the norm
parameter, and the value that is compared depends on the convergence parameter.
print_solve_stats (int: 0)

Report statistics about the solve, such as the memory, rate of convergence and norm of the residual
through iterations.

2.3. GENERAL SETTINGS 131

print_grid_stats (int: 0)

Report statistics about the multigrid hierarchy, such as the memory, number of rows per level and
sparsity of the matrices.

obtain_timings (int: 0)

Report the setup, solve and total time taken to obtain the solution.

LIMITATIONS

None.

SEE ALSO

132 CHAPTER 2. ALGORITHM GUIDE

2.4 Multigrid Settings

OVERVIEW

Any Solver of type AMG will create an Algebraic Multigrid solver. The specific class of AMG algorithm
can be set via the algorithm parameter. However, many parameters are common to all AMG algorithms.
This includes controls for cycling strategy, pre and post sweeps, and other aspects of hierarchy construction.

PARAMETERS

algorithm (string: CLASSICAL)

Select which AMG algorithm to use. Currently this can be either CLASSICAL or AGGREGA-
TION. See Classical Algebraic Multigrid and Aggregation Multigrid for more details.

cycle (string: V)

The type of cycle to use. Allowable options are V, W, F, CG and CGF. See Cycles for more
information on the various cycle types.

smoother (solver: BLOCK_JACOBI)

Choose the smoother to use. Note that the smoother is a Solver object, and therefore it can be named
and configured using any of the listed smoothers, Krylov solvers or algebraic multigrid methods. For
example, allowable options include algebraic multigrid AMG, Krylov solvers PCG, PBICGSTAB
and FGMRES, smoothers BLOCK_JACOBI and MULTICOLOR_DILU, as well as none indi-
cated by NOSOLVER. The smoother object will ignore any settings for max_iters, instead relying
on presweeps, postsweeps, and coarsest_sweeps to control iteration count. Also, by default the
smoother object’s monitor_residual value will be set to 0.

postsweeps (int: 1)

The number of applications of the smoother to be applied after coarse correction. Since the smoother
is a Solver object, it can be configured to perform a convergence check rather than rely on the
postsweeps parameter. However, any setting for max_iters on the smoother object will be ignored,
and postsweeps will be used instead.

presweeps (int: 1)
The number of applications of the smoother to be applied before coarse correction. Since the smoother
is a Solver object, it can be configured to perform a convergence check rather than rely on the
presweeps parameter. However, any setting for max_iters on the smoother object will be ignored,
and presweeps will be used instead.
max_levels (int: 100)
Indicates the maximum number of levels to be constructed. Setting this to 1, for example, means that
no coarse correction will be applied and a multi-level solver will behave equivalently to a smoother.
min_coarse_rows (int: 2)
The minimum number of block rows in a level. If the level has less than min_coarse_rows it is
considered to be the coarsest level and the algorithm stops generating new levels in the AMG hierarchy.

coarse_solver (solver: DENSE_LU_SOLVER)

Specify a Solver to be used for the coarsest problem. When the max_levels is reached, the resulting
system will be solved using this Solver. By default, this will be a dense LU solver.

2.4. MULTIGRID SETTINGS 133

dense_lu_num rows (int: 128)

The number of rows at which the AMG algorithm stops generating new levels in the AMG hierarchy
and uses dense LU on the coarsest level. If this parameter is used, it will reset the min_coarse_rows
parameter accordingly.

dense_lu_max_rows (int: 0)

The number of rows above which the dense LU solver will not be triggered. If the matrix on the
coarsest level is larger than this value, then a smoother will be used on the coarsest level instead of
the dense LU. This parameter is disabled by default.

coarsest_sweeps (int: 2)

Controls number of times the coarse_solver will be applied on the coarsest level. If coarse_
solver=NOSOLVER then the smoother will be applied coarsest_sweeps times, otherwise the spec-
ified Solver will be applied max_iters times to solve the coarsest linear system. Notice that since the
coarse_solver is a Solver object, it can be configured to perform a convergence check rather than
rely on a fixed number of iterations to converge.

LIMITATIONS

None.

SEE ALSO

134 CHAPTER 2. ALGORITHM GUIDE

2.5 Classical Algebraic Multigrid

OVERVIEW

Classical Algebraic Multgrid (Classical AMG), also known as Ruge-Steuben AMG, or Selection AMG, is a
family of methods where the coarse grid is formed by “selecting” fine points to be carried through the coarse
grid. Interpolation weights are then assigned to each fine point indicating how the values at the fine points
will be weighted when forming th value of the coarse point.

An overview of Classical AMG can be found in

Klaus Stueben. Algebraic Multigrid (AMG): An Introduction with Applications. Germany:
GMD Forschungszentrum Informationstechnik, 1999.

The parallel implementation of Classical AMG in AMGX is based largely on hypre, in particular the following
papers:

Hans De Sterck, Ulrike Meier Yang, Jeffrey J. Heys. “Reducing complexity in parallel alge-
braic multigrid preconditioners.” SIAM J. Matriz Anal. Appl vol. 27 2006: 1019 - 1039.

Hans De Sterck, Robert D. Falgout, Joshua W. Nolting, Ulrike Meier Yang. “Distance-two
interpolation for parallel algebraic multigrid.” Numerical Linear Algebra with Applications
vol. 15, issue 2-3 2008: 115-139.

Ulrike Meier Yang. “On long range interpolation operators for aggressive coarsening.” Nu-
merical Linear Algebra with Applications vol. 17, issue 2-3 2010: 432-472.

In general, Classical AMG is a good choice for more difficult linear systems. For properly discretized elliptic
equations, it is theoretically optimal in the sense that the number of iterations required to reach a certain
reduction in the norm of the residual should not grow as the problem size increases. In practice, we find
that it achieves overall good robustness on a variety of problems.

The parallel implementation of Classical AMG tends to be slightly weaker than the serial implementation,
due to slightly worse coupling between elements in the smoothers, and slightly worse average behavior of the
parallel coarsening algorithm (PMIS).

Compared with Aggregation AMG, the stencil used for restriction tends to be considerably larger, and tends
to have a less predictable non-zero structure. As a result, application of the prolongation and restriction
operators is more expensive, and the coarse grids tend to be less sparse. Also, computation of the Galerkin
projection to form a coarse operator is more expensive in terms of memory footprint and execution time.
On the other hand, the larger restriction means that Classical AMG is usually more numerically robust.

PARAMETERS

interp_max_elements (int: -1)

When this value is greater than 0, it use only the interpolation points with the interp_max_
elements largest weights in each interpolatory set. This is equivalent to the Hypre setting
BoomerAMGSetPMaxElmts.

interp_truncation_factor (double: 1.1)

When this value is between 0 and 1, it will drop values from the interpolatory set if their interpo-
lation weights are less than interp_truncation_factor * max_row_element, where max_row_ele-

2.5. CLASSICAL ALGEBRAIC MULTIGRID 135

ment is the highest interpolation weight in the set. This is equivalent to the Hypre setting HYPRE
BoomerAMGSetTruncFactor.

interpolator (string: D1)
Choose the method for setting interpolation weights. Allowable options are D1 and D2. The D1
algorithm uses an interpolatory set consisting of only directly connected vertices. D2 uses an interpo-
latory set consisting of vertices that are indirectly connected as well (“distance 2”7 along the graph).
D2 is considerably more expensive during both setup and solve phases, but is often required to achieve
convergence on difficult problems. For more details, see the descriptoin of the “ext-+i” method in
[Meier 2010].

max_row_sum (float: 1.1)

When this value is between 0 and 1, consider all connections in a row to be weak if the sum of the
off-diagonal elements is less than max_row_sum times the diagonal value. This is equivalent to the
Hypre setting BoomerAMGSetMaxRowSum.

selector (string: PMIS)

For Classical AMG, only the PMIS selector is allowed. Other selectors may be chosen for Aggregation
AMG, but they are incompatible. The PMIS algorithm is described in [DeSterck et al. 2006].

strength (string: AHAT)

Choose the strength of connection metric to use. Allowable options are AHAT and ALL. The AHAT
algorithm is desribed in [DeSterck et al. 2006] Equation 3.1. ALL will not discard any edges.

strength_threshold (double: 0.25)

Threshhold for the AHAT strength of connection algorithm. All edges with strength below this
threshhold will be discarded.

LIMITATIONS

Classical AMG only supports scalar and does not currently support block matrices. Furthermore, only
PMIS and HMIS selectors as well as D1 and D2 interpolators are currently supported.

SEE ALSO

Aggregation Multigrid

136 CHAPTER 2. ALGORITHM GUIDE

2.6 Aggregation Multigrid

OVERVIEW

Aggregation Multgrid is a family of methods where the coarse grid is formed by aggregating (averaging)
values from multiple fine points to form a coarse point. In an aggregation scheme, the coarse points do not
correspond directly to fine points, but rather each coarse point represents a set, or “aggregate,” from the
fine grid.

The method employed by AmgX is sometimes calls “plain aggregation” or “unsmoothed aggregation.” It
is slightly different from what has been described in literature, but a good starting point is either of these
papers:

Yvan Notay. “An aggregation-based algebraic multigrid method.” Flectronic Transactions on
Numerical Analysis vol. 37 2010: 123-146.

HwanHo Kim, Jinchao Xu, Ludmil Zikatanov. “A multigrid method based on graph matching
for convection-diffusion equations.” Numerical Linear Algebra with Applications vol 10, issue
2-3 2003: 181-195.

AmgX’s parallel aggregation scheme is based on a parallel graph matching approach, which will result in
different types of aggregates from a parallel mazimal independent set (PMIS) approach employed by other
parallel AMG libraries (such as cusp). Graph matching provides greater control over the size of each
aggregate. Unsmoothed aggregation with graph matching results in coarse grids that have the same average
fill-in per matrix row as the fine grid. This property means that Aggregation Multigrid tends to use less
memory than Classical AMG.

As a trade-off for improved efficiency, unsmoothed aggregation tends to be numerically weaker. Unsmoothed
aggregation methods are known to not be numerically optimal, in the sense that the number of iterations
required to reach a certain relative reduction in the norm of the residual grows as the problem size increases.
As explained in [Notay 2010], it is possible to make Aggregation AMG asymptotically optimal by using a
more expensive cycling strategy such as a K-cycle. For many problems, it appears to be faster in practice
to use a sub-optimal V-cycle at the expense of additional iterations.

In AmgX, the graph matching algorithm we use is iterative, where initially all vertices are considered as
singletons, and in each step they are merged into pairs. Because at each step, the number of vertices merged
into pairs may will be less than the remaining number of singleton vertices, it is possible that some vertices
may be “left out” of the aggregation and remain as singletons. In this case, the coarse correction at these
points will not provide any benefit. Therefore, there is a trade-off between the number of graph matching
iterations and the general numerical strength of the Aggregation AMG solver.

PARAMETERS

max_matching_iterations (int: 15)

The iterative graph matching algorithm will terminate when either a large enough percentage of vertices
have been merged, or max_matching_iterations is reached. It may be helpful to raise this to a large
number, such as 200, on especially difficult problems.

max_unassigned_percentage (double: 0.05)

The iterative graph matching algorithm will terminate when fewer than max_unassigned_percentage
of the vertices remain to be merged, or max_matching_iterations is reached. This number should
be between 0 and 1.

2.6. AGGREGATION MULTIGRID 137

selector (string: PMIS)

Specify the algorithm used to select aggregates. While PMIS is the default value, it is not a valid
choice with Aggregation AMG. Valid options are SIZE_2, SIZE_4, and SIZE_8. SIZE_2 will mostly
select aggregates of size 2, while SIZE_4 and SIZE_8 will mostly build aggregates of size 4 and 8,
respectively.

LIMITATIONS

Currently block sizes ranging from 1 to 5 are supported by the Aggregation AMG solver.

SEE ALSO

Classical Algebraic Multigrid

138 CHAPTER 2. ALGORITHM GUIDE

2.7 Krylov Solvers

OVERVIEW

AMGX supports using the AMG solver as a preconditioner for an iterative Krylov solver. Since the notion
of a Solver is flexible, any of the Krylov solvers listed below could be used as a smoother, or a coarse grid
solver. For those which accept a preconditioner, they can be used as an outer solver preconditioned by any
other smoother, multigrid solver, or even another Krylov solver.

For example, to use a FGMRES solver with an error tolerance of 0.01 and maximum of 40 iterations (using
Krylov subspace of size 10 and performing 4 restarts) without any preconditioning specify:

solver (fgmres)=FGMRES
fgmres:tolerance=0.01
fgmres:max_iters=40
fgmres:gmres_n_restart=10
fgmres:preconditioner=NOSOLVER

A more typical case would be to use something like FGMRES preconditioned by an AMG solver. That can
be specified as:

solver=FGMRES
fgmres:tolerance=0.01
fgmres:max_iters=40
fgmres:gmres_n_restart=10
preconditioner (amg_solver)=AMG
amg_solver:max_iters=1
amg_solver:cycle=V

Note that any Solver could be used as a preconditioner, including any of the smoothers.

TYPES

BICGSTAB

The BICGSTARB solver type implements the Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm,
without preconditioning. BiCGStab was described in

Van der Vorst, H. A. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG
for the Solution of Nonsymmetric Linear Systems.” SIAM Journal on Scientific and
Statistical Computing 13 (2) 1992: 631-644.

BiCGStab is used to solve non-symmetric linear systems with minimal extra storage. Each iteration of
BiCGStab requires roughly twice as many operations as one iteration of Conjugate Gradients. Unlike
FGMRES, BiCGStab does not require storage of trailing Krylov vectors.

cG

The CG solver type implements the Conjugate Gradients algorithm, without preconditioning. Conju-
gate Gradient is designed to solve symmetric, positive-definite systems (all positive eigenvalues) with
minimal storage.

2.7. KRYLOV SOLVERS 139

FGMRES

The FGMRES solver type implements the Flexible Generalized Minimum Residual (FGMRES) algo-
rithm, with preconditioning. FGMRES can be used to solve non-symmetric and even indefinite linear
systems. The flexible variant, which allows for the effective preconditioning operator to vary between
iterations, is described in

Saad, Y. “A Flexible Inner-Outer Preconditioned GMRES Algorithm.” SIAM Journal
on Scientific Computing 14 (2) 1993: 461-469.

FGMRES requires the storage of some number of trailing Krylov vectors, so the storage cost of FGM-
RES can be high when using a large restart value. However, unlike BiCGStab, it requires only a single
application of the preconditioner at each iteration.

PBICGSTAB

The PBICGSTARB solver type implements the Bi-Conjugate Gradient Stabilized (BiCGStab) algo-
rithm with preconditioning [Van der Vorst 1992]. BiCGStab is used to solve non-symmetric linear
systems with minimal extra storage. Each iteration of preconditioned BiCGStab applies the precon-
ditioner twice, with the same matrix but two different right-hand sides. Unlike FGMRES, BiCGStab
does not require storage of trailing Krylov vectors.

PCG

The PCG solver type implements the Conjugate Gradients algorithm with preconditioning. Precon-
ditioned Conjugate Gradient is designed to solve symmetric, positive-definite systems (all positive
eigenvalues) with minimal storage.

PCGF

The PCGF solver type implements the Flexible Conjugate Gradients algorithm with preconditioning.
Flexible preconditioned Conjugate Gradients is designed to solve symmetric, positive-definite systems
(all positive eigenvalues) when the application of the preconditioner may result in a different effective
preconditioning matrix at each iteration. For this reason, PCGF is recommended to use as the Krylov
solver with an AMG preconditioner, or any non-deterministic preconditioner.

PARAMETERS

gmres_n _restart (int: 20)

Applies only to the FGMRES solver type. This sets the size of the Krylov space before a restart is
applied. Since FGMRES stores all trailing Krylov vectors, the storage requirement of the FGMRES
solver grows proportional to this value.

max_iters (int: 100)

The maximum number of iterations before a solver will exit. Setting this to 1, for example, means
that only a single iteration of the solver will be applied, regardless of any convergence test. If the
convergence test succeeds before max_iters are executed, the solver will exit.

Also, in the context of FGMRES solver, this paramtere specifies the total number of iterations per-
formed. For example, if max_iters=40 and gmres_n_restart=10, then 4 restarts will be performed.

preconditioner (solver: AMG)

Sets the solver to be used as a preconditioner for Solver types allowing preconditioning. Note that
the preconditioner is a Solver object, and therefore it can be named and configured using any of the
listed smoothers, Krylov solvers, and algebraic multigrid methods. For example, allowable options
include algebraic multigrid AMG, Krylov solvers PCG, PBICGSTAB and FGMRES, smoothers
BLOCK_JACOBI and MULTICOLOR_DILU, as well as none indicated by NOSOLVER.

140 CHAPTER 2. ALGORITHM GUIDE

LIMITATIONS

When using a solver type that does not support preconditioning, any preconditioner settings will be
ignored.

Selecting the appropriate Krylov solver to use for a given linear system often requires knowledge of the
underlying linear system. Using an inappropriate choice may result in either lack of convergence, or possibly
even divergence and NAN values appearing in the solution vector.

SEE ALSO

Smoothers

2.8. SMOOTHERS 141

2.8 Smoothers

OVERVIEW

A smoother is a lightweight iterative solver which tends to quickly damp the high frequency error modes,
while leaving the lower frequency error modes largely unaffected. AMGX supports a number of parallel
smoothers. For example, the following can be used to configure an underrelaxation smoother on an AMG
solver with 0.5 weight:

solver (my_solver) = AMG
my_solver:smoother (my_smoother)
my_smoother:relaxation_factor =

= JACOBI
0.5

Note that the smoother in this case is actually a nested Solver object, separate from the top-level AMG
solver. Therefore, setting the relaxation_factor value on the solver will not work, since parameters are
only inherited from the global scope. In other words, the following will not behave as expected, since it will
set the relaxation_factor parameter on the AMG object itself, rather than on the smoother:

my_solver:relaxation_factor = 0.5

TYPES

BLOCK_JACOBI

The Jacobi method is a highly parallel smoother that tends to be weaker than other smoothers. It is
very cheap to setup and apply. Jacobi can be damped, which is also called SSOR. When applied to a
block matrix, Jacobi will operate in block mode and exactly inverts the diagonal block. Although the
smoother is called BLOCK_JACOBI, it can be applied to scalar matrices.

MULTICOLOR_DILU

The DILU (Diagonal Incomplete LU) smoother is a form of approximate Incomplete LU factorization.
AMGX uses a graph coloring approach to parallelize the traditional DILU algorithm. DILU is weaker
than ILUO, but it uses considerably less storage and is much cheaper to factorize. Relative to Jacobi
or Gauss-Seidel, the setup cost for DILU can be expensive. When applied to a block matrix, DILU
will operate in block mode, exactly inverting each small block as needed.

MULTICOLOR_GS

Gauss-Seidel is usually numerically stronger than Jacobi but weaker than DILU. AMGX uses graph
coloring to parallelize Gauss-Seidel. Setup and application costs are typically in between Jacobi and
DILU as well. When applied to a block matrix, Gauss-Seidel will operate in block mode, exactly
inverting each small block as needed.

MULTICOLOR_ILU

ILU (Incomplete LU) is typically the most numerically powerful smoother. AMGX uses graph coloring
to parallelize both the ILU factorization and solution phases. Unlike DILU, which only requires an
additional vector of storage, ILU requires an entire matrix of factors. The size of the matrix depends
on the ilu_sparsity_level, but may be quite high, especially for dense systems. When applied to a
block matrix, ILU will operate in block mode, exactly inverting each small block as needed.

142 CHAPTER 2. ALGORITHM GUIDE

POLYNOMIAL

Polynomial smoothers are highly parallel, similar to Jacobi, but result in superior numerical perfor-
mance due to more optimal weighting of each update to the iterate. The approach in AMGX is based
on the method described in:

Kraus, J, Vassilevski, P, Zikatanov, L. “Polynomial of best uniform approximation to
$x°{-1}$ and smoothing in two-level methods.” Retrieved May 2012. Available at
http://arxiv.org/abs/1002.1859

It offers similar numerical performance as the more standard Chebychev polynomial approach, but
requires less accurate bounds on the eigenvalues of the system matrix and is therefore cheaper to
setup. We will sometimes refer to this as the KPZ polynomial.

PARAMETERS

coloring_level (int: 1)

For the MULTICOLOR smoothers which require a graph coloring, coloring_level indicates the
distance of the independent sets formed by each color. For example, when coloring_level is 1, each
vertex of a given color will be at least distance 1 from all other vertices of the same color. When
coloring_level is 2, each vertex will be at least distance 2 from all other vertices of the same color,
and so on. A higher value will result in more colors and less available parallelism during the application
of the smoother. When using the MULTICOLOR _ILU smoother, this value must be set to at least
one higher than the ilu_sparsity_level setting.

matrix_coloring_scheme (scheme: MIN_MAX)

The multi-coloring algorithm to be used to color the graph associated with the matrix. The allowed
values are PARALLEL_GREEDY and MIN_MAX (default).

ilu_sparsity_level (int: 0)
When using the MULTICOLOR _ILU solver, selects the level of fill-in to be generated. Setting this
to 0 results in ILO, 1 results in ILU1, and so on. Note that both the storage requirements and the setup
and solve time will increase considerably with this value. Roughly, ILUO requires about half as much
storage as the system matrix, ILU1 requires half as much storage as a square of the system matrix,
and so on. When ilu_sparsity_level is set to a value N, the coloring_level value must be set to at
least N+1. Currently only values of 0 and 1 are supported.

kpz_order (int: 3)

When using the POLYNOMIAL smoother type, this is the order of the polynomial. Roughly, this
corresponds to the number of iterations to be applied. So for example, if pre_sweeps is 2 and kpz_
order is 3, that would be equivalent in computational cost to pre_sweeps of 6 using the JACOBI
smoother.

max_uncolored_percentage (double: 0.15)

For the MULTICOLOR smoothers which require a graph coloring, max_uncolored_percentage
indicates the fraction of vertices that can be left “uncolored.” Uncolored vertices will result in weaker
numerical coupling during the smoother application. However, it is often faster to leave some frac-
tion of the vertices uncolored because then both the setup and solve phases will require fewer global
sychronization points. When determinism_flag is set, this value will be overriden to be 0.

relaxation_factor (double: 0.9)

Amount to weight the smoother correction by. relaxation_factor can be used with any of the MUL-
TICOLOR_GS, JACOBI, or MULTICOLOR_DILU smoothers.

2.8. SMOOTHERS 143

symmetric_GS (int: 0)

For the MULTICOLOR_GS smoother, whether the Gauss-Seidel sweeps should be applied symmetri-
cally. One sweep of Symmetric Gauss-Seidel is roughly equivalent to two sweeps of normal Gauss-Seidel,
in terms of both numerical and computational performance.

LIMITATIONS

The MULTICOLOR _ILU only support ilu_sparsity_level of 0 or 1.

SEE ALSO

Multigrid Settings

144 CHAPTER 2. ALGORITHM GUIDE
2.9 Cycles
OVERVIEW

Multigrid methods can use different cycling strategies to move from finer to coarser levels. The choice of

optim

al cycling stategy depends on the relative costs and numerical necessities of reducing the various error

modes. On a GPU, the cost of a coarse grid is higher relative to a finer grid when compared with a CPU.

There
GPU.

seems

fore, cycling strategies that are most efficient on a CPU will not necessarily be most efficient on a
For example, F and W cycles are often the best choice on a CPU AMG code, while the basic V cycle
to perform better in many cases on a GPU.

TYPES

CcG

CGF

A form of Krylov or non-linear AMLI cycle, where the coarse correction is is applied multiple times,
modulated via some polynomial. A CG cycle is equivalent to using the coarse correction to precondition
Conjugate Gradients applied to the fine-level matrix. Formally, this should be applied to symmetric
matrices only. Pre and post smooth steps are applied before and after the application of the coarse
correction polynomial.

A form of Krylov or non-linear AMLI cycle, where the coarse correction is is applied multiple times,
modulated via some polynomial. A CG cycle is equivalent to using the coarse correction to precon-
dition Flexible Conjugate Gradients applied to the fine-level matrix. Formally, this should be applied
to symmetric matrices only. Since the coarse correction will typically result in a different effective
preconditioner from one iteration to the next, CGF will usually be more robust than CG. Pre and
post smooth steps are applied before and after the application of the coarse correction polynomial.

F
An F cycle is a combination of a V and W cycle. It has convergence quality similar to a W cycle, but
costs less.
A%
The basic V cycle, with one coarse correction applied between the pre-smoother and post-smoother.
W
The basic W cycle, with two coarse corrections applied between the pre-smoother and post-smoother.
PARAMETERS
cycle_iters (int: 2)
For the CG and CGPF cycle types, controls the degree of the coarse correction polynomial. In terms
of computational cost, setting cycle_iters to 1 is roughly equal to a V cycle, and 2 is roughly equal
to a W cycle.
LIMITATIONS

None.

2.9. CYCLES 145

SEE ALSO

Multigrid Settings

146 CHAPTER 2. ALGORITHM GUIDE

2.10 Examples

Aggregation AMG

The following settings create an Aggregation solver with DILU smoother, with 1 pre and 1 post sweep. The
solver will stop when the L2 norm has been reduced by 1000 from the initial norm.

config_version=2
algorithm=AGGREGATION
selector=0NE_PHASE_HANDSHAKING
cycle=V
smoother=MULTICOLOR_DILU
presweeps=1

postsweeps=1
coarse_solver=NOSOLVER
coarsest_sweeps=2
max_levels=1000

norm=L2
convergence=RELATIVE_INI
max_uncolored_percentage=0.15
max_iters=1000
monitor_residual=1
tolerance=0.001
print_solve_stats=1
print_grid_stats=1
obtain_timings=1

In this simple case, there is no need to scope the parameters on the nested solvers since all values will be
inherited from the global scope. The following Config is equivalent, with everything scoped explicitly:

config_version=2

solver (top_level)=AMG
top_level:algorithm=AGGREGATION
top_level:selector=0NE_PHASE_HANDSHAKING
top_level:cycle=V

top_level:smoother (my_smoother)=MULTICOLOR_DILU
my_smoother:max_uncolored_percentage=0.15
top_level:presweeps=1
top_level:postsweeps=1
top_level:coarse_solver=NOSOLVER
top_level:coarsest_sweeps=2
top_level:max_levels=1000
top_level:norm=L2
top_level:convergence=RELATIVE_INI_CORE
top_level:max_iters=1000
top_level:monitor_residual=1
top_level:tolerance=0.001
top_level:print_solve_stats=1
top_level:print_grid_stats=1
top_level:obtain_timings=1

2.10. EXAMPLES 147

Classical AMG

The following creates a Classical AMG solver with an outer FGMRES Krylov solver. The AMG solver will
run 2 V-cycle for each FGMRES step, without checking for convergence. The outer FGMRES solver will
run until the L2 norm of the residual is descreased by 4 orders of magnitude.

config version=2

solver=FGMRES
gmres_n_restart=20
max_iters=100

norm=L2
convergence=RELATIVE_INI_CORE
monitor_residual=1
tolerance=le-4
preconditioner(amg_solver)=AMG
amg_solver:algorithm=CLASSICAL
amg_solver:max_iters=2
amg_solver:presweeps=1
amg_solver:postsweeps=1
amg_solver:cycle=V
print_solve_stats=1
print_grid_stats=1
obtain_timings=1

148 CHAPTER 2. ALGORITHM GUIDE

Chapter 3

Programming Guide

OVERVIEW

The AMGX library may be used in a variety of contexts, from simple single-threaded applications with single-
GPU support, up to complex hybrid MPI/OpenMP parallel applications with complex mappings from CPU
threads to GPU devices. The different usage cases can be categorized roughly by the cardinalities of the
mapping from CPU thread to GPU -- one-to-one, many-to-one, one-to-many and many-to-many. The latter
two cases are currently not supported. This programming guide explains how to use the AMGX API in
these different cases.

For the simple cases where a single thread controls a single GPU, there is nothing required more than
creating the objects and solvers, and executing the solution phase. When multiple MPI ranks are being
used, it becomes necessary to tell AMGX how the columns from one matrix on one rank map to the rows on
neighboring ranks. With this information, AMGX can then distribute the matrix across multiple GPUs (one
per MPI rank), or consolidate the matrix which is spread across multiple MPI ranks into one large matrix
on a single device. From the programmer’s perspective, these two use cases are the same, although obvously
they will have very different performance characteristics.

Finally, these different scenarios may be combined in the case of a complex application with multiple MPI
ranks spread across multiple nodes, each node with one or more GPUs, possibly using OpenMP for intra-
node parallelism. AMGX may consolidate the matrices from multiple ranks onto a single GPU. With hybrid
parallelism (OpenMPI within a node, MPI across nodes), a single OpenMP thread will be nominated to
control the AMGX library. It must provide communication mappings from its matrix to the matrices on
other MPI ranks.

These case are explained in detail in the following sections.
Single Thread Single GPU

Multi Thread OpenMP

Single Thread MPI

Multi Thread Hybrid

149

150 CHAPTER 3. PROGRAMMING GUIDE

3.1 Single Thread Single GPU

OVERVIEW

In the simplest case, a single CPU thread has a linear system in memory that must be solved on a single
GPU. The AMGX _resources_create_simple method is designed for this case - it will assign the default
GPU device to the host thread.

The application creates all of the necessary Vector and Matrix objects, initializes a Solver, uploads the
information to AMGX, and initiates a setup and solve phase. Finally, the results are downloaded from the
device.

EXAMPLE

All of the objects are initialized using a default Resources.

AMGX_matrix_handle matrix;
AMGX_vector_handle rhs;
AMGX_vector_handle soln;
AMGX_resources_handle rsrc;
AMGX_solver_handle solver;
AMGX_config_handle config;

AMGX_resources_create_simple(&rsrc);
AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&rhs, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&soln, rsrc, AMGX_mode_dDDI);

AMGX_config_create(&config, ...);
AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, config);

Next, data is uploaded from the application (or set, in the case of the solution vector which is initialized to
all zeroes).

AMGX_matrix_upload_all(matrix, ...);
AMGX_vector_upload(rhs, ...);
AMGX_vector_set_zero(soln, ...);

Finally, the setup and solve phases are executed.

AMGX_solver_setup(solver, matrix);
// slight optimization to tell is that soln is all zeros
AMGX_solver_solve_with_O_initial_guess(solver, rhs, soln);

The result vector can be copied back into an application buffer on the host.

AMGX_vector_download(soln, ...);

3.1. SINGLE THREAD SINGLE GPU 151

Note that in a typical case, the matrix will either remain fixed and multiple right-hand sides will be used
in succession, or else the matrix structure will be fixed but the coefficients will change. The latter case will
happen, for example, inside a non-linear solver such as Newton iterations, when the mesh is fixed by the
non-linear equations are linearized multiple times. AMGX support the case of a fixed matrix by calling
AMGX _solver_solve multiple times like this:

while (still_iterating) {
AMGX_vector_upload(rhs, ...); // upload new data
AMGX_solver_solve_with_O_initial_guess(solver, rhs, soln);
AMGX_vector_download(soln, ...);

// rest of app simulation loop

In the non-linear case where the matrix structure is fixed, this must be modified slightly:
while (still_iterating) {

AMGX_matrix_replace_coefficients(matrix, ...);
AMGX_solver_setup(solver, matrix); // must be called again

AMGX_vector_upload(rhs, ...); // upload new data
AMGX_solver_solve_with_O_initial_guess(solver, rhs, soln);
AMGX_vector_download(soln, ...);

// rest of app simulation loop

Note that in all of these cases, the host buffers which are read from or copied to should be pinned via
AMGX_pin_memory.

152 CHAPTER 3. PROGRAMMING GUIDE

3.2 Multi Thread OpenMP

OVERVIEW

OpenMP parallelism can be used in the case of multiple CPU cores which have shared access to memory,
for example on a multicore CPU socket, or even across multiple CPU sockets on the same system.

AMGX supports an OpenMP parallel application by treating it the same as a single-threaded application.
The application must nominate a single master thread which is responsible for communicating with AMGX.
In other words, AMGX has no internal notion of supporting OpenMP parallelism - the application must
interact with the AMGX library from a single thread. Internally, AMGX may spawn multiple CPU threads
to accelerate some of the host-side computations, but this will be done independent from how the application
is multithreaded, and the internal threads do not interact with application threads used outside of AMGX
in any way.

The primary implication of this decision is that the application must have a single linear system which it
will pass to AMGX - rather than partitioning its matrix data across multiple buffers, it must operate on a
single global set of buffers. Or at least, it must assemble a single global data structure itself before calling
into AMGX. Because OpenMP is a shared memory model, this requirement is typically compatible with how
data is arranged internally.

One benefit of making AMGX unaware of the internal details of a multithreaded shared memory application
is that AMGX is by default agnostic as to the threading method used - OpenMP, pthreads, Intel TBB, or
any other threading library will be compatible with AMGX as long as communication goes through a single
master thread.

Furthermore, it is straighforward for a shared-memory parallel CPU application to utilize multiple GPUs.
From the perspective of the master thread, the usage will be identical to the single GPU multiple GPU case.
As in the single GPU case, the application is responsble for providing partition information about how to
distribute the system between the GPUs.

EXAMPLE
Since the OpenMP parallel case is largely identical to the single threaded case, we will omit many of the
details for brevity.

It is important to note that Resources object will be initialized the same as the single-threaded case. For
multiple GPUs, for example, the Resources could be initialized like this:

int devices[] = {0,1};
int num_devices = 2;
AMGX_resources_create(&rsrc, config, NULL, num_devices, devices);

for the single-GPU case, the AMGX _resources_create_simple interface may be used.

Uploading data uses the same interface, which requires that the matrix and vector buffers are already
assembled on the host.

AMGX_matrix_upload_all(matrix, ...);
AMGX_vector_upload(rhs, ...);

3.2. MULTI THREAD OPENMP 153

The main thing to note is that all of these routines should either be called from outside any OpenMP parallel
sections, or should be called from only a single thread. For example:

#pragma omp parallel

{

// parallel
}
// serial

AMGX_resources_create_simple(&rsrc);
AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&rhs, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&soln, rsrc, AMGX_mode_dDDI);

AMGX_solver_solve(solver, rhs, soln);
AMGX_vector_download(soln, ...);

#pragma omp parallel
{

// parallel
b

Alternately, this can be called from inside the OpenMP block like this:

int master_thread_id = 0; // nominate one thread only
#pragma omp parallel
{

// parallel

// master thread only

if (omp_get_thread_id() == master_thread_id) {
AMGX_resources_create_simple(&rsrc);
AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&rhs, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&soln, rsrc, AMGX_mode_dDDI);

AMGX_solver_solve(solver, rhs, soln);
AMGX_vector_download(soln, ...);

// parallel

154 CHAPTER 3. PROGRAMMING GUIDE

3.3 Single Thread MPI

OVERVIEW

MPI is a distributed memory parallel model which can either be used within a single node or across multiple
nodes on a cluster. Because the mapping from MPI ranks to nodes is so flexible, and the number of GPUs
per node may be less than, equal to, or greater than the number of MPI ranks on that node, it is necessary
for AMGX to support different cardinalities of the relationship between MPI ranks and GPUs.

The AMGX library supports any case when the number of MPI ranks is greater than or equal to the number
of GPUs.

In addition to describing how MPI ranks relate to GPUs, it is necessary for the application to tell AMGX
how the MPI ranks related to each other. It is assumed that a matrix is partitioned across the different
ranks, where the column index on one rank maps to a row index on a different rank. These mappings must be
provided from the perspective of each MPI rank to AMGX via either AMGX_matrix_comm_from_maps
or AMGX _matrix_comm_from_maps_one_ring.

In the case that muliple MPI ranks on the same node share a single GPU, AMGX internally will perform a
consolidation step inside AMGX _matrix_upload_all, where the matrix partitions are merged into a single
large matrix. That is, rather than have multiple MPI ranks share the GPU independently of each other,
AMGX notices that they are all using the same GPU, and consolidates their linear system partitions into
one. From the application perspective this behavior is hidden, and each MPI rank talks to AMGX as if
the matrix partitions were distributed across multiple different memory spaces, even though they are in fact
using shared memory within the GPU to communicate.

EXAMPLE

When creating the Resources object in an MPI application, it is necessary to provide AMGX with an MPI
communicator to use. It is highly recommended that the application create a copy of its own communi-
cator to eliminate the possibility of AMGX’s internal MPI messages conflicting with the application’s MPI
messages. Based on the cardinality of the MPI Rank to GPU mapping, there are multiple cases to consider.
In the simple case of one GPU per MPI rank, the Resources is created like this:

MPI_Comm AMGX_MPI_Comm = ... // copy the MPI communicator
AMGX_config_handle rsrc_config;
AMGX_config_create(rsrc_config, "communicator=MPI");

// app must know how to provide a mapping

int device[] = {get_device_id_for_this_rank()};

int num_devices = 1;

AMGX_resources_create(&rsrc, config, AMGX_MPI_Comm, num_devices, devices);

The case of multiple MPI ranks sharing a GPU would be identical, except that the call to get_device_
id_for_this_rank in the above example would return the same device id for multiple MPI ranks. In the
simplest case that there is a single device (id 0) attached to each node, this would look like this:

int device[] = {0};
int num_devices = 1;
AMGX_resources_create(&rsrc, config, AMGX_MPI_Comm, num_devices, devices);

3.3. SINGLE THREAD MPI 155

Now all MPI ranks on this node will share the same GPU.

When using MPI, it is necessary to provide the communication maps before AMGX _matrix_upload_all
is called. For example, the following would be a typical usage. This sequence would be executed in parallel
across all MPI ranks.

AMGX_matrix_handle matrix;
AMGX_vector_handle rhs;
AMGX_vector_handle soln;
AMGX_solver_handle solver;
AMGX_config_handle config;

AMGX_matrix_create(&matrix, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&rhs, rsrc, AMGX_mode_dDDI);
AMGX_vector_create(&soln, rsrc, AMGX_mode_dDDI);
AMGX_config_create(&config, ...);
AMGX_solver_create(&solver, rsrc, AMGX_mode_dDDI, config);

// set comm maps and

// then propagate to vectors
AMGX_matrix_comm_from_maps_one_ring(matrix, ...);
AMGX_vector_bind(rhs, matrix);
AMGX_vector_bind(soln, matrix);

// if multiple ranks share a GPU, this will perform internal consolidation

// (exept for classical algebraic multigrid where consolidation is done in AMGX_solver_setup).
AMGX_matrix_upload_all (matrix, ...);

AMGX_vector_upload(rhs, ...);

AMGX_vector_upload(soln, ...); // upload starting point for iterations

// solve and get the result
AMGX_solver_setup(solver, matrix);
AMGX_solver_solve(solver, rhs, soln);
AMGX_vector_download(soln, ...);

Note that the communication maps and partition depend on the matrix structure, so if the structure changes,
the communication maps and partition must be reset.

while (still_simulating) {
// import new matrix structure
AMGX_matrix_comm_from_maps_one_ring(matrix, ...);
AMGX_vector_bind(rhs, matrix);
AMGX_vector_bind(soln, matrix);

// if multiple ranks share a GPU, this will perform internal consolidation
// (exept for classical algebraic multigrid where consolidation is done in AMGX_solver_setup).
AMGX_matrix_upload_all(matrix, ...);

AMGX_vector_upload(rhs, ...);

AMGX_vector_upload(soln, ...); // upload starting point for iterations

156 CHAPTER 3. PROGRAMMING GUIDE

// solve it

AMGX_solver_setup(solver, matrix);
AMGX_solver_solve(solver, rhs, soln);
AMGX_vector_download(soln, ...);

// do other stuff

However, if only the coefficients change, but the matrix structure is fixed, it is not necessary to set the
communication maps or partition vector again. Because initializing these internal structures incurs significant
overhead, it is highly recommended to use the AMGX _matrix_replace_coefficients fast-path whenever
possible.

AMGX_matrix_comm_from_maps_one_ring(matrix, ...);
AMGX_vector_bind(rhs, matrix);
AMGX_vector_bind(soln, matrix);

// if multiple ranks share a GPU, this will perform internal consolidation
// (exept for classical algebraic multigrid where consolidation is done in AMGX_solver_setup).
AMGX_matrix_upload_all(matrix, ...);

AMGX_vector_upload(rhs, ...);

AMGX_vector_upload(soln, ...); // upload starting point for iterations

while (still_simulating) {
// coefficients changed
AMGX _matrix_replace_coefficients(matrix, ...);

// setup and solve it
AMGX_solver_setup(solver, matrix);
AMGX_solver_solve(solver, rhs, soln);
AMGX_vector_download(soln, ...);

// do other stuff

3.4. MULTI THREAD HYBRID 157

3.4 Multi Thread Hybrid

OVERVIEW

In a hybrid parallel model, computation is distributed across many MPI ranks, and each MPI rank launches
multiple threads (for example using OpenMP). There is shared memory parallelism across the threads within
a rank, and distributed memory parallelism between different ranks. AMGX assumes that each MPI rank
is connected to one or more GPUs.

Because AMGX has no notion of shared memory parallelism on the host, it is necessary for each MPI rank
to nominate a single master thread which will handle all communication with the AMGX library. In order
to specify how the global system is distributed across the MPI ranks, it is necessary to set communication
maps on the Matrix which indicate how column indices on one rank map to row indices on neighboring
ranks.

These requirements are identical to the MPI-only or OpenMP-only usage models, except that n a hybrid
model, it is necessary to combine them.

EXAMPLE

The Hybrid MPI example is almost identical to the MPI example, except that it is important to remember all
AMGX calls must only be executed by the master thread on each rank, or called from outside any OpenMP
parallel region.

int master_thread_id = O; // nominate one thread only
#pragma omp parallel

// parallel

// master thread only
if (omp_get_thread_id() == master_thread_id) {

std::vector<int> device_list = get_device_id_list_for_this_rank();
int num_devices = device_list.size();
AMGX_resources_create(&rsrc, config, AMGX_MPI_Comm,

num_devices, devic_list.begin());

// create matrix, vectors, and solver

AMGX_matrix_comm_from_maps_one_ring(matrix, ...);
AMGX_vector_bind(rhs, matrix);
AMGX_vector_bind(soln, matrix);

AMGX_matrix_upload_all (matrix, ...);
AMGX_vector_upload(rhs, ...);
AMGX_vector_upload(soln, ...); // upload starting point for iterations

158 CHAPTER 3. PROGRAMMING GUIDE

// solve it
AMGX_solver_setup(solver, matrix);
AMGX_solver_solve(solver, rhs, soln);

// get the result
AMGX_vector_download(soln, ...);

// parallel

Chapter 4

Legacy API

OVERVIEW

The AMGX library legacy API that consists of routines starting with prefix NVAMG is deprecated.

In order to convert to the current API please rename prefix of the routines from NVAMG to AMGX.

159

Index

Aggregation Multigrid, 136 Pin Memory, 14
Algorithm Guide, 125 Programming Guide, 149

API Reference, 1
Read System, 21

Classical Algebraic Multigrid, 134 Read System Distributed, 24
Config, 46 Read System Global, 27
Config Create, 47 Read System Maps One Ring, 32
Config Create From File, 49 Register Print Callback, 20
Config Destroy, 53 Reset Signal Handler, 19
Config Get Default Number Of Rings, 51 Resources, 55
Config Syntax, 127 Resources Create, 56
Cycles, 144 Resources Create Simple, 58
Resources Destroy, 59
Examples, 146 Resources Settings, 129
Finalize, 4 Single Thread MPI, 154
Finalize Plugins, 7 Single Thread Single GPU, 150
Free System Maps One Ring, 38 Smoothers, 141

Solver, 61

Solver Create, 63

Solver Destroy, 65

Solver Get Iteration Residual, 77
Solver Get Iterations Number, 75
Initialize, 3 Solver Get Status, 79

Initialize Plugins, 5 Solver Setup, 67

Install Signal Handler, 18 Solver Solve, 72
Solver Solve With 0 Initial Guess, 69

General Settings, 130

Get API Version, 9

Get Build Info Strings, 12
Get Error String, 10

Krylov Solvers, 138
Unpin Memory, 16

Legacy API, 159 Utilities, 2

Matrix, 81 Vector, 108

Matrix Comm From Maps, 100 Vector Bind, 122
Matrix Comm From Maps One Ring, 104 Vector Create, 110
Matrix Create, 83 Vector Destroy, 112
Matrix Destroy, 85 Vector Download, 116
Matrix Get Size, 98 Vector Get Size, 120
Matrix Replace Coefficients, 95 Vector Set Zero, 118
Matrix Upload All, 87 Vector Upload, 114
Matrix Upload All Global, 91

Multi Thread Hybrid, 157 Write System, 41
Multi Thread OpenMP, 152 Write System Distributed, 43

Multigrid Settings, 132

160

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2013 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁViﬁIAa

	1 API Reference
	1.1 Utilities
	1.1.1 Initialize
	1.1.2 Finalize
	1.1.3 Initialize Plugins
	1.1.4 Finalize Plugins
	1.1.5 Get API Version
	1.1.6 Get Error String
	1.1.7 Get Build Info Strings
	1.1.8 Pin Memory
	1.1.9 Unpin Memory
	1.1.10 Install Signal Handler
	1.1.11 Reset Signal Handler
	1.1.12 Register Print Callback
	1.1.13 Read System
	1.1.14 Read System Distributed
	1.1.15 Read System Global
	1.1.16 Read System Maps One Ring
	1.1.17 Free System Maps One Ring
	1.1.18 Write System
	1.1.19 Write System Distributed

	1.2 Config
	1.2.1 Config Create
	1.2.2 Config Create From File
	1.2.3 Config Get Default Number Of Rings
	1.2.4 Config Destroy

	1.3 Resources
	1.3.1 Resources Create
	1.3.2 Resources Create Simple
	1.3.3 Resources Destroy

	1.4 Solver
	1.4.1 Solver Create
	1.4.2 Solver Destroy
	1.4.3 Solver Setup
	1.4.4 Solver Solve With 0 Initial Guess
	1.4.5 Solver Solve
	1.4.6 Solver Get Iterations Number
	1.4.7 Solver Get Iteration Residual
	1.4.8 Solver Get Status

	1.5 Matrix
	1.5.1 Matrix Create
	1.5.2 Matrix Destroy
	1.5.3 Matrix Upload All
	1.5.4 Matrix Upload All Global
	1.5.5 Matrix Replace Coefficients
	1.5.6 Matrix Get Size
	1.5.7 Matrix Comm From Maps
	1.5.8 Matrix Comm From Maps One Ring

	1.6 Vector
	1.6.1 Vector Create
	1.6.2 Vector Destroy
	1.6.3 Vector Upload
	1.6.4 Vector Download
	1.6.5 Vector Set Zero
	1.6.6 Vector Get Size
	1.6.7 Vector Bind

	2 Algorithm Guide
	2.1 Config Syntax
	2.2 Resources Settings
	2.3 General Settings
	2.4 Multigrid Settings
	2.5 Classical Algebraic Multigrid
	2.6 Aggregation Multigrid
	2.7 Krylov Solvers
	2.8 Smoothers
	2.9 Cycles
	2.10 Examples

	3 Programming Guide
	3.1 Single Thread Single GPU
	3.2 Multi Thread OpenMP
	3.3 Single Thread MPI
	3.4 Multi Thread Hybrid

	4 Legacy API

