{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Copyright 2019 NVIDIA Corporation. All Rights Reserved.\n",
"#\n",
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# http://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License.\n",
"# =============================================================================="
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"# Torch-TensorRT Getting Started - ResNet 50"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview\n",
"\n",
"In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch's JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference.\n",
"\n",
"When deploying on NVIDIA GPUs TensorRT, NVIDIA's Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA's Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device.\n",
"\n",
"Torch-TensorRT is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. Torch-TensorRT is available to use with both PyTorch and LibTorch."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Learning objectives\n",
"\n",
"This notebook demonstrates the steps for compiling a TorchScript module with Torch-TensorRT on a pretrained ResNet-50 network, and running it to test the speedup obtained.\n",
"\n",
"## Content\n",
"1. [Requirements](#1)\n",
"1. [ResNet-50 Overview](#2)\n",
"1. [Creating TorchScript modules](#3)\n",
"1. [Compiling with Torch-TensorRT](#4)\n",
"1. [Conclusion](#5)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: numpy==1.21.2 in /opt/conda/lib/python3.8/site-packages (1.21.2)\n",
"Requirement already satisfied: scipy==1.5.2 in /opt/conda/lib/python3.8/site-packages (1.5.2)\n",
"Requirement already satisfied: Pillow==6.2.0 in /opt/conda/lib/python3.8/site-packages (6.2.0)\n",
"Requirement already satisfied: scikit-image==0.17.2 in /opt/conda/lib/python3.8/site-packages (0.17.2)\n",
"Requirement already satisfied: matplotlib==3.3.0 in /opt/conda/lib/python3.8/site-packages (3.3.0)\n",
"Requirement already satisfied: PyWavelets>=1.1.1 in /opt/conda/lib/python3.8/site-packages (from scikit-image==0.17.2) (1.1.1)\n",
"Requirement already satisfied: tifffile>=2019.7.26 in /opt/conda/lib/python3.8/site-packages (from scikit-image==0.17.2) (2021.10.12)\n",
"Requirement already satisfied: networkx>=2.0 in /opt/conda/lib/python3.8/site-packages (from scikit-image==0.17.2) (2.0)\n",
"Requirement already satisfied: imageio>=2.3.0 in /opt/conda/lib/python3.8/site-packages (from scikit-image==0.17.2) (2.9.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/conda/lib/python3.8/site-packages (from matplotlib==3.3.0) (2.4.7)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.8/site-packages (from matplotlib==3.3.0) (2.8.2)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.8/site-packages (from matplotlib==3.3.0) (1.3.2)\n",
"Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.8/site-packages (from matplotlib==3.3.0) (0.10.0)\n",
"Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from cycler>=0.10->matplotlib==3.3.0) (1.16.0)\n",
"Requirement already satisfied: decorator>=4.1.0 in /opt/conda/lib/python3.8/site-packages (from networkx>=2.0->scikit-image==0.17.2) (5.0.9)\n",
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\n",
"Tue Oct 26 00:13:31 2021 \n",
"+-----------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.4 |\n",
"|-------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|===============================+======================+======================|\n",
"| 0 Tesla V100-PCIE... On | 00000000:1A:00.0 Off | 0 |\n",
"| N/A 37C P0 24W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 1 Tesla V100-PCIE... On | 00000000:1B:00.0 Off | 0 |\n",
"| N/A 33C P0 22W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 2 Tesla V100-PCIE... On | 00000000:3D:00.0 Off | 0 |\n",
"| N/A 32C P0 24W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 3 Tesla V100-PCIE... On | 00000000:3E:00.0 Off | 0 |\n",
"| N/A 33C P0 24W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 4 Tesla V100-PCIE... On | 00000000:88:00.0 Off | 0 |\n",
"| N/A 32C P0 25W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 5 Tesla V100-PCIE... On | 00000000:89:00.0 Off | 0 |\n",
"| N/A 31C P0 22W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 6 Tesla V100-PCIE... On | 00000000:B1:00.0 Off | 0 |\n",
"| N/A 32C P0 24W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
"| 7 Tesla V100-PCIE... On | 00000000:B2:00.0 Off | 0 |\n",
"| N/A 32C P0 25W / 250W | 0MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=============================================================================|\n",
"| No running processes found |\n",
"+-----------------------------------------------------------------------------+\n"
]
}
],
"source": [
"!pip install numpy==1.21.2 scipy==1.5.2 Pillow==6.2.0 scikit-image==0.17.2 matplotlib==3.3.0\n",
"!nvidia-smi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## 1. Requirements\n",
"\n",
"Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## 2. ResNet-50 Overview\n",
"\n",
"\n",
"PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our ResNet-50 model from there pretrained on ImageNet.\n",
"\n",
"### Model Description\n",
"\n",
"This ResNet-50 model is based on the [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf) paper, which describes ResNet as “a method for detecting objects in images using a single deep neural network\". The input size is fixed to 32x32.\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.10.0\n"
]
},
{
"data": {
"text/plain": [
"ResNet(\n",
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
" (layer1): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (layer2): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (layer3): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (4): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (5): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (layer4): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n",
" (fc): Linear(in_features=2048, out_features=1000, bias=True)\n",
")"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"import torchvision\n",
"\n",
"torch.hub._validate_not_a_forked_repo=lambda a,b,c: True\n",
"\n",
"resnet50_model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True)\n",
"resnet50_model.eval()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All pre-trained models expect input images normalized in the same way,\n",
"i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`.\n",
"The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]`\n",
"and `std = [0.229, 0.224, 0.225]`.\n",
"\n",
"Here's a sample execution."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mkdir: cannot create directory ‘./data’: File exists\n",
"--2021-10-26 00:13:33-- https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630\n",
"Resolving d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)... 13.226.251.36, 13.226.251.27, 13.226.251.107, ...\n",
"Connecting to d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)|13.226.251.36|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 24112 (24K) [image/jpeg]\n",
"Saving to: ‘./data/img0.JPG’\n",
"\n",
"./data/img0.JPG 100%[===================>] 23.55K --.-KB/s in 0.002s \n",
"\n",
"2021-10-26 00:13:34 (13.1 MB/s) - ‘./data/img0.JPG’ saved [24112/24112]\n",
"\n",
"--2021-10-26 00:13:34-- https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg\n",
"Resolving www.hakaimagazine.com (www.hakaimagazine.com)... 23.185.0.4, 2620:12a:8001::4, 2620:12a:8000::4\n",
"Connecting to www.hakaimagazine.com (www.hakaimagazine.com)|23.185.0.4|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 452718 (442K) [image/jpeg]\n",
"Saving to: ‘./data/img1.JPG’\n",
"\n",
"./data/img1.JPG 100%[===================>] 442.11K --.-KB/s in 0.02s \n",
"\n",
"2021-10-26 00:13:35 (28.3 MB/s) - ‘./data/img1.JPG’ saved [452718/452718]\n",
"\n",
"--2021-10-26 00:13:36-- https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg\n",
"Resolving www.artis.nl (www.artis.nl)... 94.75.225.20\n",
"Connecting to www.artis.nl (www.artis.nl)|94.75.225.20|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 361413 (353K) [image/jpeg]\n",
"Saving to: ‘./data/img2.JPG’\n",
"\n",
"./data/img2.JPG 100%[===================>] 352.94K 790KB/s in 0.4s \n",
"\n",
"2021-10-26 00:13:38 (790 KB/s) - ‘./data/img2.JPG’ saved [361413/361413]\n",
"\n",
"--2021-10-26 00:13:38-- https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg\n",
"Resolving www.familyhandyman.com (www.familyhandyman.com)... 104.18.201.107, 104.18.202.107, 2606:4700::6812:ca6b, ...\n",
"Connecting to www.familyhandyman.com (www.familyhandyman.com)|104.18.201.107|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 90994 (89K) [image/jpeg]\n",
"Saving to: ‘./data/img3.JPG’\n",
"\n",
"./data/img3.JPG 100%[===================>] 88.86K --.-KB/s in 0.009s \n",
"\n",
"2021-10-26 00:13:38 (9.64 MB/s) - ‘./data/img3.JPG’ saved [90994/90994]\n",
"\n",
"--2021-10-26 00:13:39-- https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\n",
"Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.217.225.168\n",
"Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.217.225.168|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 35363 (35K) [application/octet-stream]\n",
"Saving to: ‘./data/imagenet_class_index.json’\n",
"\n",
"./data/imagenet_cla 100%[===================>] 34.53K --.-KB/s in 0.07s \n",
"\n",
"2021-10-26 00:13:39 (486 KB/s) - ‘./data/imagenet_class_index.json’ saved [35363/35363]\n",
"\n"
]
}
],
"source": [
"!mkdir ./data\n",
"!wget -O ./data/img0.JPG \"https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630\"\n",
"!wget -O ./data/img1.JPG \"https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg\"\n",
"!wget -O ./data/img2.JPG \"https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg\"\n",
"!wget -O ./data/img3.JPG \"https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg\"\n",
"\n",
"!wget -O ./data/imagenet_class_index.json \"https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WbBnyX3fiX0y86z//e639qV3dLMbDRAEARIkRYmklhmt1ihmFKMJTThke+wXP9mPEw6Hww92+M12hB22R7akkWStExxRJEVxARcQaKDRDfRa3V171d3v/e//s2T6ITPPOf9bVY0GOQWhwpXdt+7/nv9Z8uTyze9vTWGM4Wl5Wp6Wp+Vp+dEU+R+6Ak/L0/K0PC3//1Segu7T8rQ8LU/Lj7A8Bd2n5Wl5Wp6WH2F5CrpPy9PytDwtP8LyFHSflqflaXlafoQleBw3/Ue/9x0znU6rv4UQCCEAkFKitUZrvXSNP0cIgTGm+mkeF1KAEEgpMRrKUlPqkqTVIQwiDCWBCkjTDkmSEAQBSoWEYYCUCikMKgAhQWDA3VcJgTEarZvPMygpCAT2Oimqei4V5/0hDCDw/9Rfu0MGKAFjTH3w9LkNTxL7HONubD8adyNjDKUBo0FrqnaSUoAAXRqKLKfIC/IiRwBhHCMAnRcs5nNmeUZh6j449VYPFlOf49ug2Ra/+OK5H3iLp+VpeVoeE+gqpQjD8FO/V0oBNWD44j83QdcfN8Ie11ojkCgpLWgqRRCGSBkQhiFJkhCGIUHgwFYKpIRQCZQEhFkCciGgLEEpgUA4AAPpQFSIh4BtXWFbXwesmAe+cmAqHkA2+37V2QhRYfgPLELYZ1ZtYwzGgEBgtAFtMGVJvsjQWmO0QUpJkedkRc5ndRX05/l2afaPf7aUTwWmp+Vp+azlsYDup03CJnj9oIl/ekKbJjNzQIMQSCEJVIAKII5iwjAkDEOUUkhpma1yPxZAqY7be4HxnwGJsUy4OmKx1Ne8+c0Db9AAVrP054N/2XfydfAg9pCbPKJtxKkTtLb11kWBLgqKPMeUJQLIFwvHkA2l0RjLmx91+8brCLdeiAcWR98/j1yQnpan5Wl5oDwW0P20Sdhkr6dBVwgPdcKJ/tKCoxAWUIwBx4CRFsQCFSKEREmIVEAoA0IlCAOJklZNIISwrLUC3BpAhDAIrIrBCfC+NhaAHRiaZcz8k7SK1RRUaNsAPGEa4CdOPeYhDz3Vvl4qACiKEp3nFHlOWRTVe2oPuLqstRuNJ1QA2riv1h6cxUP7tMl8n5an5Wn5bOWxgK4vTd3tkm62obc9PWntdwKtNUEgkFK5c+x9jNEVwGhjCJRCBQqlJFJYlYOUElkBgkc6K48bLCOUjvVakdw44Flm6FJ4FcPD9K3u82doB/tOy+ca4eHVU92a9TZF9+r801KBAXOKpxpjKMuCvCgoygLdWKRKYyjQjbZgSePh1TRN2C0pl/qvWYenDPdpeVr+ZOWxgK4xhqIoKMuyPihqDndab2sNXsqCMPXkVkqhwggQ6LJAYDClrq4VWHYWqMCxYolU6gH1htcDG6RjuYBTIUhnnHuYoG1YZpFV3R3trXSqn6E9HqZaeOBh1QevODBL3zXroc2D97UqB7fYBJJSl+hCY7S2cCuWkX9pEWi0efUMrR8A26c63KflafnTlccCumVZMyRPqgBwzPa054LWusGcLJAIIQnChDhJLGBmgrIsKzZq0AilKt2mMJZ9KSkt8Ph7G1PBmKwYLU7VULNh4Rixv59GoI3n1/Zuyj74tHR/Slv7qGIqnvlgEY1/qR5gmlzWgDZWzeLPEXYZWmpHjcEIkFIRBIbCmIaXwiNq6bBYGAgCVfVRWcqqr5qeJHU1nzLdp+Vp+WHLYwHdxWIBOF2sqaFDCFlN3NPA64sxhrIoUUGEkMp5Hyi0NpiyqCz+xgiEssxWSIlwlrESgzAajEDoEuN0ul6fKyQIKZDSuoE5/F0yFgkck2TZJctIgRKmuqYygvGgqO/fv3ovGp5iS6d+CnA5FYIxouEe5u+9/IyyLCnLsmKlUghQyrJVbdnuw57kVRxCCGuAjEKEEBRFgWjohP2zTgPv04RJT8vT8sOVx6ZeiKLIivXGoB3TUlKhpHS6x3JZjdBwIVNOReANPF7fWKoQg0CXGik1KlDEcUwUxagwQgQBQgWgrOgvpEQ23MOktF4LUnl9rUGaUzyzYeAyBoy2jLcyvDklr1pyMDA/kOl6MP/hQcrqg/1lWludtpcMvH+uV8809eRe4vDqntN+z9UTnJQQhqHToXupQWGUNyQu65lPq4ielqflafls5bGAbhRFS8Yy7X578R9qZtYE1eYEDgJF064lhEAFgWXJUiOkIE5ikjgliiJUEKBU4AxqoJREKeu1UFnnhXb+twYlbDjeaRctI7AiurFgp42pDG/GWAC2J9ZsUzZUKPZ2Xj3QKJ8JmJbB23sOSAFa+LpodKkxUiOUtAuUECglEcLqxr0Bs6mPrQC/wej9F8JgdeHKLkz+FaQSKFSjQvVbnmbxT8vT8rR8tvJYQNcGJcgadB3b8seFEOR5vsSa/Plaa5QSKClRgSJwYByFIRJDKVywglTEcUIURQRBQBA0giACVbNaalbmAx6EcxUwS0aiWo9ag26DqRuJ0BYWtXR63IYjgGygZRM4PQh73fLpsmykqmvhrzVeL+EMZ0ZryjynMAYZBBCDEEHD7cu/q6wWNitFmCXgP81YpfP6qNUW1rXOGPHQ8wU2sEQ59c7T8rQ8LZ+tPFamCzwAuqd9dE8baPznIAwIg9Alh3B6YAEicOJ9YKPPLOhKhLQgIYXVu0oHztLpcYEldygjKtOZwyLjnBKcZ0IjxLaKghOBra92umHHkmt9rXDGtoe7wv0gtmuMdyV70DMBgNJ6b+iiJMsyZOBUAY1Fq3pWoy0rj4NHuHxVUX1B4BizB3B1KjS6qd819X2egu7T8rR85vKYQDekMi8ZMFpjjBX5eYSPblMdgRAWAKSf7KCNtsCKQEjp1Af1jw+i8EazKmeBaN7fA6WpwNZo736Fd9oFvI+xVS04TLZGOp+3oVoswEgwso4Qk04x/DA9r3nggzPCmeUYuKp+rlperaCLkrIo0E5fW6gA6dQMVSCEflAPK4UEYVU8QRCggtrzA+EkC6UqHXgQyMpwV7ebb8slv4qnoPu0PC0/RHksoBtHEeBZrsHoWqfrj4vAgbArVWCAQyslFcIYO8FNiTEFAu9aZnXDgRSVblY6OV9gMMKgjXUdQxvH3Grg0Mb+o52hrNTaBRLU76CNdvWuagiA0B59SusFIaTThVqPCA1IZAOkmuz2FAw7TwbtdMdGi4pB+hM8yy4LTVEUFEVOWdaqmSLPkLnCSwNC1MY2nEeCD5+2KhdVLVSV1IHXe1u3OF8H7aWB0yuF8OEkT275V//wf2eM86ypu965F/pX88edSsr2buNL0fB+qVf3uj2b96R+xnJwjaju3xwfVlKT1rf6tLFXehWZldgwBlElDLTvpCqfmtql0nv+2Mwl7r5esjMVFam8Zqxnu+9/gzEaUdld7J01ujlAcDMQV21KYT9rR3asK6YLVzcCIzTCWCnW3te9R3VP41Rc2jWixN/c9o12rVi3MEJiTOmO2xlpRF0n13sYNBLbHrbW1h6kAWGac8O2rhESYyRClBhj29DgRV4XuVnVQ/Cf/p3/+qGT5LGAbuJ8ay07q9ULS4YdKSqvBjgteRuEsFFltuttg3tx3npDqSVH/lpdge0fYY1flauYqCdJxSwN6BJKTWXsA88U68FVP6NpnLJ1FI49SmmQynWQsN/Vda4nV5M22gXFLky61JZZat8CNSu3oFtSZBlFntl7uJcrnWeCcEwVfD2s2G8XOoN0BjlfL9kMlFgykNW9UOWm8Kf4geje4Ul2WvCg0vxbOVCAxjjxYeDVUWt5FKeyojYNk6fFmcotDztxbZEIoavvhZCNZ9aTVxjriaOofcYrNZnwgGG7RjpwCyo9vKzBoaq6Vb9VeqyqBu4NRQ3Owgi0A+LaQ0dU49YIgTASY40dNcD793DjrhT2LiXYUH43tyyWC7TwwGqqt3ww66xw429Zgq0bXNg29co+IbF5/URlF6kXVgviDk5cF9t5oo0lTc0et5PC3lmK0rWJxIg6JsAsV+pTy2MB3W63S57n5HlOWdj0i17FUIGuEciGSN0cBAKQQiKEwghTuW0Zn1XMhQYbrTENg10TeCuvCCFcJrGmTtKL4TYNovUKsOJ66TJyQb3ye5WFcanE/IARnqE45i28igOv5qhZtmX1xgGxrDrTOMAty5KyMOR5WXke+Gu1saCrdYE0hjAIUFFs2aqLZ1YqsO2itGVJUjgvDjvoJMK6xwnf3DXAVkuLWWb2xtfRHa8Gr3FTw0snD9M//9gXywbLairWXAUa7WAcJFVzuwasaiGl2bD1YgmnLK5LwAUgbVrRZrWEd5Wsp71np4ADYYOsALEGfCEcIAvHUKkB11ajZnwCC3bCWKCyAKrdiRpjPBDTACZwPNDWo6q5wAhFrhUloJAYkxPI0r2DcZzQLWrGVNBaW4obg3EJSJut4445hlx1UtVYjVwhACj7t/BAX/e0BWVd9YVBV6CunSwAVpK1c90tKW4u2WcptwD5VnDk0MjlPj1VHhPTjQjDgKKIyLKMLMssk3NynE3NWFvG64Z2lRfN7FUGLQW6rNZiB2xW3EGXlLhwYyMr3axn1mUFQNaVodZ76hqsyxKtS4qisOqQJaZSG5K8R8Npg9XDXLHqHLcSqSAMVeVZUEXBVYBmo+3yLCcvCmx+Cft8T4wF1rgYRSFRFBKGyvoMa0VelMznGZgcbUqyPKPISqQ0pGlEmqbEkSKJrc4WA1pYw5qBJeCpNNPGDu7KWOiYggdfW0fLAPSnjbAf01KxOFPBYzUMmxoe4Wi+qEiBZ3MOeAVgvMTlEbcx9YVjVh6kXVvLCrAt4zVu8lcATy2s+qtk9Z2ygCgsYEo31qxYbNll9STPmo2VGCXSpUgF2WSOph4DVXy7O15DoHDc1aAFFCbiqFzh5nSLg6zL7jTGFAU5AlMuWA3nXGjtcnXliE4wsXcx7l2N58KeI5YYo7DqAsfw/bJSLXQWJP24q20LdiGqWsx4UKR+J/cU359+znq+YIyVUHUlJThpRjiOa04rgOp11p7XWDhOjaHT5TGldrRszmfz0lpTihJRmorF2Up7EaJemyrvBecGhnDidelyORhpI9WE10tp68olLAgbbUNlfd6HCvikRKgm0NVqD12WaBft5vV8otG8tVuXbHymOl+4OjYXbGtoUwihUNp6VjQnp6Go7uPbI4wC4iSs2sWraLznRxha7wIV2MEwGs5YLEqKogShybIZu7t7nJyMwQiOxxOuX7/BpfMXWMwzLl2+wHNXL3D2zCpBI+ihNJqd+4d8+P4dvvyVl4mTOheyF/s8u7dGvZpkaA1lc5I+IUVXv2u9pTe2AhYfHCJLBzKW+Qg3oUQ1MY3wZKvOkue1N7qah14NIByANyU752mDtDpad9ROXuNrCLhIw4oIWFblmbWXnvwdpFsofJ6SWs1Ro4K3HVdDd0mXWi9GtilMtUBMzAq/f/gy741XuDvWxHlGK4CFDhlnObNFgNY9ZouEvtjkz1055mcv3iKQmdO3esit2asFXlkx44ole91Is/41Bavu5QP9RQW4xq2D9lojrBrRNq+ujgl8NkGvTvBd4KNPhfssMFUOWE2lvffqleb68Clj7zGldqzHlAlsQnOtDYg6GMKeV4OvFPU6EoYhcRwThJ6+W/DJ85yicEpsd420o9WqCEpDWXWXLU3Vgym9jsf63lq/V+MGAdbvVEpnFLN8wetbS+fNQD1Mlt41UAKfdKcZKWajxaTLaaCqEa51rTfyi5O/Vko3eSux3tQBEMoGluzsnXByMmZl0KHXgsU8Yz6f0Y1Dzj93hcODY44P9nnpykU+/xMvcP/eHv/gH/1T1rY3+erPfpVz5y9wcjzk1s0bZJM5rXbCiy89Zxl0xdap3rduz6qX3QIHjbRGT1BpqqNqsdL3rJ9AiIaE5VieVzfJapLb+wkcSPr8IMKBpPHfO6G/mpS1gcYDr3Hn2TvIKrWo191CXR/pJngN9A0EtYf829TgX51i1Ql2Ia1DxJtwBqZSq1TAZSSjPOa7e2f46Djkjd0xk/GCJArIhCA0kAaGeWHQiykLJAeZ4v/+/bN8/6DLf/7y+3TisZ1bPhuJse/qua/9UVTSrH9v4xccp/4Q9rxKTYAGoXxzO5yulCwOzD1DXpY83IhoqCBtSzeoV9WgwgO8F2ywGGZtT8K90sPTHMDjYrqOwmvnfqSCkNCAyTIKk6NCa0EPfLivqFUJBlAqIAqtdwJCYpCUxgYDqDyn1Noa0qq0jxY8i0JDXtjMWl48lk48WjLaGevV4BmDlAShrCLaPJMwxqAL48JpS4qGasH7xtqQZQuI0nkE2Ny9jcnoFodaTeHusyTGOuAVGp8D2BoZLGsKjaEUhsPhjLff/oDeoMvWap9erDBlwTxfsNLrIGWPyWzG0eEeV7e3iOOQYjZjc32F2eiYj/Z32bt7g/XtCwwnCy5sDPilX/oFtrfWSdsxsXI8wy35VVBHk7YZO3l9Ap8nULuA548l1AY146L/PGd1beBZbKXXq0iCceKqcOBsZ6HnahWhdH3oOdpS1mIhlwJ4rL3XMVNTqyashrH2PrDMUDvw9X3m+WytEnAPcXDfUCG4PrZivHCU18Gem79erEYKSg3DMbx/Y4gINfPb/1+ufbckUy+RRc+QGU0ic/7j1WPmh9cZiBb/OvkiE5Fi4pDCwNfvdjmevMDf++I11tJjaNTTqj5qacpUTNLXt8Dzbss2/dvVemM3SKt+acJp1RJOv+u9EyRWzeQXqAqYG1faOsrq+xq863pYbbVTQzT0vA8rjyefrtd5gt21IRCATaQSRaFLx1i7LQnP7FyxAQ4QeLYsBMoISgGBFBXza65KGuNAU6GKgrKs+b43btE43z9HuCg25dmtA0rcL59CUbv0iODYraFWobgkOkJ4sdLU53kApmmPdfrhpWlRsyfRGADSlCAk2gju7w75/W99j6PDQ37xa1+k305QlGSFIVABMlAMj47o9Hq0woD/7p/9c175/E/wE194jVs3bnC4v4PWmps3PuTihT3+yt/6W2wMuuzcvclKP2VzY2D5RQNQpdeBY2VNYdyLOA8eIVw++SetGCgrJl9xUCt+VkzIZ7Rziymmag9bvJHFTvZKMBf2O0cRHYt1i3XFjH1j0niSHeP2o+e19diAhlZV+OtqEVk0dfDOYLakq62ehmNjnvNSM1rcNaaOANo/nHP91oSVwQoXzp3jmeef4923ND91519z7f63eO/wCkkwZVv1efvWTcTKJuNrb/ILv7zFv5hdRecCI9uYcs47xzH/xz/+HP/rL79NNx0tkaGa02q3GFAvCP4thDtTeAnFzTfpvRS84cx/V8No86hpqJIqG0t1RZPv++tqplsx7sYyVi1yolZcPao8noQ3+AlpmUNQiduhraDb6UG55AfSMwL/XtL73tYTWguX40A47zgv8hj7XekHnlDIQKJLoDHYfcPadvNigj2u3L1rxXj9HpZVgDGyamIvClbv2LimoSWp71Uxl0YbPaBpd9N86Vo7wbQRHAynfOt7H/DJjZv84s99kfV+i0hBnhVMpxNKbcjmGZ1Oizs3b/D7v/3bnAxPSDptPvroI373d7+OknB8uM/6+iYr6ytonfF7v/3bfPVnfprtzQ0SF9RSDXFHxn27aGz+Ya3rd5JN7HiCijHe79agwOlSDbXRzLsUiRqIHOOt12/j9LDGAZ7wNM0toJ5zagfc7rz6CO4RtrgETLKh0rBepjVvNR7o7QVOsG4a+qgZKjW7tezOM0k32YRXLQh3Zn2uERKzKNjfOebgOzd5KYoY//G3WRQFN3/5ddaSFf7nf+ev8uZ3f59/8eY+OyczevM9vnd4yMnN6zy72uZCdp/B4GVOTIo+mdmsd6Xg+gH8P751mf/qK+8TBXNniPXP1g1ANEugXAGiEbhQpWrB8N4UjqRX/r/VClPdX1RtUUkp1bf1zK+nca3YwX/y48DZbTBNBVuJ+QGbrD8W0HXOFLUVVRiUNBjp120Lhj42woJuk/WBf0GJndQSD7q2UaWsG0DjBqqyng6lEbXNqoGAsmFkEMJU10tjlkS8JdR09be90uCqov4tGoO45idmqZv98333amqf5SXNUcW+vJZLsD+a8403P+SjT67z/DPnWO0mhFJa391CM1/Mabd6tBPFdDFiOhnz9ltvs3NwTPpHbzBdTFhkMxbzGbOTE9rdDiJq89233iNE8Mxzz9BJ0woErDuZ03cDRrt+E3aBs4uRbUNZL/Gnh8GPdTGidDhqgcsYkEJXi7Ifvd66rZqGiqaCQDieKrT1k3XHMKYC8iVx1S/W7t96TIjGteDVU7Umt/JAdYu8/abE38/d3wm6Vh/afGGo7+a8AnTtBuUNQH5xkQjk927ypd/+Q9LhDpO9EbNWi/sXz5D31wnTguNbnxDv3uFXLvf51fc6DDnhb/9sm2k246eSl/mN6AqtMqMoSuRKyImJ0SdzQPKt4xV+9f2L/OWXriHcAqcr10PvpeAr7t/OL15Uf+NJkSNz/rhfOKlQyC5GfmadjlhtNBJeKl6SgYTEbqTogy7AWfCrFscjljl93+Xy2NQLHhwrNinrQQNOJ+o+e1CtW9MJFkIg61zo1deefTUh0hok7MFHuTCJpc81y6jDYRsVbF7UNEc2G9QfrthQ4zvn1F7driF7WtBqMIuG9V+4FbzQgsks52g44Y+/831OxjO2N1Z45tJ5umkLhHUzWywWSKlIWhGLxYw7O/f5nW98k/aZS3z+lZ8kL0qEFkQq5MzlZyi1JGn3EFGKiju0kgAZd20eh1Ov79vF92Xtp1tnjrPs7skLA66ZlLAM04GUz0rndbh2saknlMKzTx/Z5YDO+bU2xXtvaRG4nByNRc2ySVE9C6gNYUI29Mj22caYxrBzxxxhsAPx1CJvGsPZi8MVAfbA5sDKq7pcBwsjkGXJ5T/4Ptsne7Bxhdalgna6xuWXXuOTL/0FVJoSBQEj+X9g5/230eGXua6njI7us722zdvlBRYzRdgTbAUFkyBilmcsAg3YnB6/eus8l9I9XrmwTxDIpXrZKCHPQhts0+iqvRoiAl4hVi9wtd+txQvXh8avMP56L1M0Jq9YcrqryVjD39qCq4+OkwhRWJc3HLh/ikfPY1Mv+NVHGid+Czd5XZ09g/XFu8AADdHb0NBVL7GLJj+sVxlOnfiwmlWwv3SvT71WnPpw6hq/jtaAu4zc9qmGUtc313Lpyup2JZJZrvnk1j7f/u67HJ8cMhoPuXzpHC8+e4mNlT6htIEh3i1usLJClhd8cO0Ov/eH3ybTCWvblzg43McYw9aZs5w7v4ESgg+3z7C7u8/WhUvMZgXjecbb71znmQvbRPJUOz74KktCKFCFeD9pTFf4SeoHmABh6lgk6ZTXfuFpSkl1Kk/n+Wp8OKkbi84rYMnmIAwI6SZcrTaop7FlVxUvM1Tqs1IYAvd0r/sFGu3eEI4barBKleAlKj+vlvrUuWdVeOQWg9mU+RvfRj93gWQ0JV69xIIS8d3f4dv5jHxtjTSV3H3vGm/d7TINtyiSi9zVBXfDlF4kWC3HtOcjZkjCIqMddBGRZIGGMGVawj/9+DmeOTOjLcdWVPfAaFvtVK/Z961A2Ph280DtPROMa78G1zFeRmjey/2uhq9vH7/4+UPm1DUCKKsHCGGjQEtZQC5PXfNgeTzeCw1tlhFOrSCw+qyGka05WCReLyUqNlhBwAN46lvDuOd9+pQ3zbEmHnZmwz/TU4T6L2pezHLnPKpUz9AVC9I+isn4Hz+AoNAlo1HGZLrgxt0Drt24w5079zC6YD49YTDosrU2YKXXIpSG6WxGFEUUeUlmBLv39/nw2idc++QOWrWYTA6YjI4YnxwTt1IGgzY/9YWfYNDr0mm1uHV7l1e/+Brff+cTbly7SVYUVnVQBdrXDWCc5FAKnyNC1AwX56r3aabaH/NS81azNDZq4BUoUYOv734tHLM1tRjvPVNqX17HobzXQwWyPsTAVDNFiHocV6EVriuUqUd99cHU53ojYLUkOsJTTREBOMnEM3PrfVKDybKLk6Fstzhab9P75BbrnZiwyGCtw/Gzqwj5Eff/6Nc4GilOxori7F+mGyhanVWKg2PkYoGJEwoCBhR0VMFdo5kYQdJpoVHElCxkwN3FgH954zX+9nPfRFBU+mbjfYxrOYB69tcMFVFSq3sqKu/ucZoMlJUeV4hGG7nr6kXSyTHemGeWPRWsd4IfM/YZRSHQ4Qzd0USmS6vdeeSYezx+un5VrqJEqvo2xIQGUxUNVmAa14jlJqvIYSUa1Pf7VJ7lG7iuxtKnB5cAls6qr3z40x5Y2Kp+t4MhcDcxaEqsG1imYTpZcP/+AW++9SG/9wdvECcps3zC6mqf6fiYo4N9VgY9Ll/cJk0iyjyjUIpFWTAezjEaFmXBZDyi3+3wk59/hWuf3ORwb4fNrVXSJGBldZXXXnqRFy5eQCrJlcsX6Q/WeOnZi+zdO2HaP+Y/+jM/SSSN1YX7Nm+8jxfcjF8MRQ28Uj6ZEWkAtQvXsutQgKhE/+YU9+DmdZA+eKDEs19T6YcFzbFvyYQfZabycrGrsOPU1JKU9aJQDXWbtYPUaoamt0EFnS422/9XGZL8ABXUoCaM8+l3XjmNnB/oAmTA7H/2N/jk//QPCRYTWvs3uV0MuPM//Sucyec8e38PjOCa7PKv9vcZXfk8CQWTOGRqIlZGhygzZ8qMTCnuD55HLOZkSQfVCgnDmBRBnEhuzSO+f/AiL6++jbeo13PKq2Ga6pO6XeqoSerrPFAvhejWc9z3iahUMqK61p5lgbypVfQ2UqDhsiaWfHVV3kKUM8rBAYvkR8x0qSrvxCVTH2mu0t541XTT8sdxh/ylAirLrz1klu/5KexziTU/9ITaCdwhND53QiO2pbLmN6gNVO/hv/ecwTEhDCWCRV4ymWUcHg25v3PAt998l2984w12d/cIQ8WZs+dotyQhObt3btiQXZMxHh3R7SREgUTnBTPmHI9Hjj2XbK6scHZthXbaIlCKL/3EC5yMv0KUxBwcnRDGKWv9FmkEhYbFdM6gm7LWTXj9c8/xyz/zKqu9FG940afIgVkSE5rO46L6/qHCw4958Yu6Mk4ag8oDwfu72n61s0oKbIY5pxi149Ht6OHu6JmTdrkPcPeugdughSDAg7RAGEHwkPaT1SxoQIxb6Cr965KtwTNE/7fzzqjcm6yU6ff+owJo8D65puKVwiL4lUuM/+v/Ce/t7tE/uEt85x4agQpj4gsvcGH/+6xzxEfpIb+ZlwyFQAeKIrP67gPZIj35mHnnImb3DgUxuruFWECqIJYFl1qCQay4MbnC+fYO3ehexcz9u9kgEKdSEALMabVD1aNUYIhx0Xqmbrvm0laxOt8g9UK5TOiEbSxv0KieUYkQS3UQZQxHiozDh9TRlscHuk1XMD9BK4x0XStANEQv3wbNMbj0mmJZ1KgNa59OtcQjPlfPaOCIqJYue0/pY+epRR3LTHwYoeVI3h1HA9N5wfBkxp07uwyHM/aHE27fvcf+zn2OD4945+23yXRBb6VPf7XF8z/xKu12l+OjA1hMyRcLxsdDtjbWODo+5PBgj7NnN1mEAePplNwY9g+PGQy6rPa7tMOAQCkEgqQTsdpdozCag3s7/F//L3+fF154jv/i7/x1FouM+TRjY3ud8bhkdaXNhbM9axMwyy5tvlRBAK59jAEjhU3Us2Ruf8KKcOkPqwVbIKQLzmmM1yo/c20VroIWtMTlOqBmoHiJ0wKsdPexRi9HFkQd61RLFrJiXsKcHqX1SugBt9YanBKxhKH2irH/CpfCxYOF8AuNqVmxv2flu2ks4QhWumQrA3a5itAF2mik0GTnz9L91rcxa8/zRXGZ320PWOiQMAkx0xHz4Q5Z3EHGWwxFh0gawiQkHn9Mv9fi4uKIC+khz/Qm/MSZKaKn2Ly8x/gk5O6dmGzu2b1szG+32FAbvqyxWrt3sovmkq2oBh37S1iJrfKld0RpyUh/6lmIJg+ulybwWQfr1rbTJUAe9x859B6TeqGCxeplT0vfPjKkpr4NDwJ37ek8B7rBLE8/71N47EOLz5lgH91wdG5UQhiB0II6yto4v3HDdFGwyAuOT0YMTybki4yD/UO+8Udv8P1334coREtY294GIbhz/Rrjk2Nm8wX9wSorcczGmTNcuHIVESiEKZieHHB8cEC+mJPEIbdufEKrlXDvzm3OnjvDdDwhLwobDo0kmkQUhUZEXudo/QaNsS5Ozz17kT//Sz/L+x9+RF7YpEOXL55DCMn33/6Qr3zlBUJlV3Lv/1m1aUPdo0Q9SP3C8kM2949d8TpV5UJ5EbWaATwhcAoCu8pWoqxnh9I4DukmZWnqMV/fx+14ggUEm/VL1J4K1YB3umX/Z9OuIU5JHNVArXvMg4cXyZZhFwcgPgVjo1SLhXWLMqZ217JSm8H6nmogAKPRBibtGKEUwcH3eGF9wOv9lJuLiMOpQIspetBlPb3D1vAGl/qKi9036cfHtM9KyuhZtrbHdDbfI+1mtLua1dUOa501dJbz0su/wPvv9bj1SUlRONe5SsdLDZiNNJC1K55rj6V/ar9b0+jDiuw2BnPlqNBovVpOMY1VFddOzdasJeDiU+wcj43pLlXiITP0f8g523y/psX40072lmGvq8RY3WSel8zmGcfHY0bjKTfv7HJ4PCUvS3YPDsjyHK1hb+eQ6XjC7s59xuMjRif7CFMwPLzHbDokSrtcvvIs09EJW2cv0O90MeWM7bNbHA9HhJHg6tULbJzd5PatW9y5eYPdO3fZuXubOApZWVtlMZuiywXHRwccHuwTpy1OToZkWUa/v8Z8VvDGd9/hJz//OXrthEhaAUo7AEmTiF/+pa/xtZ//CnEcoNqSJI3RSJ45d4Zupxkw6iP3Ti2QDeOQMU7U43Rk+ZOKwC6KXtQqIRf1SvOdLBN1LdOQxKqJa/ySJSviXE1s47ODnbZviDqgAlONR+8dapYmtjvHLCsBvN62UoEZ6smwJA77qgsrmjsQP82SLeB6Ebt0l9ssw/b60o0Ug5Gwf2GVC5M5O5liOJkShAU/u/VvOXv133EmvcH2mRntRKAKQVHkbJ+FOBUU+R1UaEgSkJlBlFCOh5Sxoiwk6H/Jq69e5eqV13jrO13292yD2kVR1jkbGhBbLVHG92tD8qhaq+6TKljK81qvujHLGCIaY6EiZs72wSlS6IljKQy/ceM3+Nv8708POOAxgq5fKSs1gKlXG/8ila/tQ4GyQfkb1nLf6V4V01z5/Llg0FqQFSWT6ZwsK8izgvFoyiLLOTwckmtNWRSURcFsvmBv74jj4zH37+8xm8/4+MYtToYnpElAu9MlTlrIOKCVtmh12syzGWknoVumRC1odSIO9+7RXd2k21/h5HCHD9/+Fq1On9loH6MEvcEq1979Pv1+l97WOqtrKwhKpuMR4+GQxWyC1AXDoyFxFJKmKQd799lJYsaTKUGUsHPvHkeHR2xszTh78TL39/a59vF1nr1ykUE7AYnNqgbYPwyt2G6triT0WpHd+VeCMorS67xOtX1dlg04NWOozzkNUk9GcXkuKrA0VQCEDXZojM8lAG6YdGocxuuAG4IwIJyKob7eu9svnyUaF9bMuXnctrlu+Nkuj3xj/L4WHpRNdYY/x6VkqdQKdf3rz00gEdQ7Q/iautmFETC+8grXb2/xvwl/jlj8Jv/LL/43nDu/Q3cA2QwWC0ErhTgxXP9EMJkaytLQTSRJakhbIUWRkSjItWFv/4AkbaGyGeOTd+it3OMXf+m/4M3vTPjoPY02sjLO+7b0QRA+oaWXNHxmsqZm3AeSuBMeii8yEFWAWR1OfGrHkMYvMJwmtR+cvMcnh2/yqPKYma4tVf5ZTB1NI5anabVmNVcQt7r5UFzv36yNZ/gGb1DQQpAtcj75+DZvvPku337zHW7d2aEUEbnOGE6OMGXJxsYGV5+9SpykxHFEmc05ORpy9+5dDJrxaEi33+fln/wcaadNFARkWcF0MuVgb5f5+JiynKNNyXw+IoliiiBABCFnLz/DbDZFGrjw7Isc7N0nm08J45jB2irT6YxOq0XSSrn87BUClyvhcH+fxXQGBkIVMi8N0+EYISAKI452DzjcP+J4OGR/b4/h4TGLRUHcajPodxiOpuzuHSLMCv12anNWONFYCeGs4M7pXViHPmWkFXsbYqwXw2pxtKlPs5OtNjLgjfJPpCHNpgWVlU2hjkh06oHKfVdUJNczRB/x5flV7XPrPQtOQbWonNLqCD4HnhVxEO4vF1EjaWbdasiMxoFeddTULNwDrcbu29e8EMdshX+vBvj6laPmsdU1QKX/pfrWMsLjtZ/iHxytcSX6B/yNv/b/IewVTKaCIFCEWtPtAYUlQFsphErSGmjMrESMYToJWFuTzIdz0tBACMfjnNWeJBKa+cl9iuTXefWVLTqtS7z9XUlZBhWj9Ab4umZ1G1YkTVARNKt+W2a9tlE9WJcUayPktI0Yh7XKZmmhO10aKif391ayxtfOf/kh59ry2FI7Pqx+otFYgkerAioANjWzAn/PhvOHMeQlHI1m/PbvfoPf/q3f5xvf+CZFPmE2GwGaMGqztnWGsxevcOn5q1y+cp5OJ6bX6dFKUspswY1bt7nw3AXGozHHxyekrZTVtVU63TZCSO7euU9RZuzfu818OCZsJahQsZjNCMIQLRVnzp2nFIK1M2eQQlCanPPPP8N0PCIJJLc++ZjpyRFJkrJ9/iIXLpyjKAqOjw6598nHTCcTwjhhsL6OigJmkymT8ZgkSRgeHfPB997i0nPPkSYp42DE+PiI4fEJK/0+02wOUrB/eECZd1lZXbW7Rsg6YQ3Q2JHi1IpHk7k+qGKoT6p7qAKJJxFxgSp3hAdLb1PwASJeTPWGmQYrrLIfuDaTbmLKJYlXVOQCaESf2XO8sc3u5uDZricnNZQ0mWgzMste7rxuaBiYTelyF9QuYzXYmuWOXQJ/U4ezN76uzhGW9fphktPjH3/QYm/4r/nSa/+U6cJwMYJIGcbzElMKyhm0kpjjYUaSGIQWrG8p9ndKxkeQLWYY3SZqhZT3croJtFTG/o5ic73HYjbnqPwe/Y0Tzq3u0fmZV/nmNyIWWYRo5KCoMrk1GthK+35BopEAyPcPVd8Zp0s3CPKTjHn7Pt32ZYJJsrzaQUPqE1W/6NKGwwdRTJEXrAabbKxsPHLoPTZD2rJcVH/8THPUTwB3XSN4C78qC6BA8HtvXOM7737C7s5dovV1Xv/5r2G04WBvjygMSbst4jhga2ud3qDHfDpBUVIsFixaqc12FsDR3V1GowkgCRSgc4TOmU7mfHLtfSbjGUJqolaICgXT8TF7d+6Sdrt0eivMRiN0EHLu/DlanZhWFDCfzpgNT/jg7e9z/+Z12p0OvQsDXnz5ZaSUlGXG8OSYg/t3mUwmbJ6/xOrZLVbPbjIdjjg5OiKfZ7S7XW5+9BGmtEaYoiiYTSZMxxOm0xlJegapAjpJytFwhApjwiCkncYI1Uy8blgscsIwRDrjW7Xx4ZKbjBOqmgPUneM8qNxcFcuT+Akq0m1dA6oymiG8V80pUdL7A7pp7idcpQKoJDGxdKzWG7rgHxoJbIRmyYXJo7FnYd6LxhiMtATDG5eFqPvJs/FKzykagF3xuYrq1ZZ2/z6mkYuWWtbxi4KtC1XbWKNgwMc3zvLxje8xePWfMzMDvvfRLqXSlBIWE0Eaw1pfMFca2ob5BERo2Ns3dDci9nZzZjPD0f6YbkfRTSU3P5BcPV8SFwJuGFZW+4hxiNpuU2xrusU7fPG1i3zjjQ2b0EoImjF6zaxjlarBlWaiIeH+Ni5KsI4ZECSLNXJzzFH4LudWf4riuKTUpW+E6n5+oTZaM/rwHjwTs739Mvf/4T/lxmHCTz136ZFj7zFFpC2r+6V4MGrM9/0PNHz54gaTZ79Fafj9b3/I1//4PTbPrnCpfZ47d+9SaMNiMefspYsopYhixZXL50liRaQUYRAwm89RUjAajQA43D9k5849tDYcHB7SWxtw5swZkjhmni1ASLLFgm6vy/HhIfPZlOO9HYpsQpHHzOZzDg8PWNvaZjGfsbExgLIgyzMW8xmT8QhjDEVZsFjMGQx6rK6scGt0y+qV8wX5fIIQ0Or22d7aYDQ84ca1a4yOTpjNDTKIuHfnNt3BgDBNIMDurEFBURRgDEoquv0Bk9mcTjuwkWYycCuzwWjBNNOU2ZT1ICBxuzPrajI6vWRDovAZMl0XWEOdsamjETZS7VMMtT+2RQu/k7QBr8OlZqRLPkSVPC7wG0VCTR6rHXUd82/IFoAD2dM6RqfKsAa2ppbXA7VrWPeQ5eP+dqbWDFCrAHzUpzEPssCl7Tj9O1GDkbsTni36u2vHqoWAhV7je9+5wdtv/GP+3i9vcfFcCnKX63cisjInm0K/A6U0TBYFaRvmBjolLEaGtJ2ztqE4zkvSNcP0umZ+oAiF4d2vS157uUURlZj3FSocUB6EpLsRer1DmA+40hV8dFy7htWJbryax6rBTpFa+1YN1wWBbDYxoZIURtDNn0GYe5wkH7B97nOc3JuhC91I2WAIhaJFwPxoyMnqHuurZ/jg5lv8t//i23RiSTG+x998xNj7keh0gQZb+GGuqT96IDCiRAu4vTfl99+8QW89JMsy7t67zvDwmNmsYP3MFlGouHBum3YnIYlCYrfVzXA4ZLGYcXg4YTweMZvNGJ+MGA1PSNMWk+EQpSSLlRWm0yndXodLly4gjKFczFEYrr33DvPxkMJIOv1VuivrdAd9jDB02ylKQGk0Os9Jo5goimi1WsznU2aTMbPJiDDcotNp026nhEnM7M6YyckQrUGGIecunCUMBJ98+AnFzi4mbTEcDgnzgqsvXaIscgKl6XZSssWU4+EJaM1gdUAripFSUpRAVuvohuM57374CfNsxhdefp6L22sVGNSsSNTd1fjGHqvdxZf66AkEXa9awGetarojembvZTbPOj3DdAxQG1EFObj/HY412rHZWg09hWl84zWMS/65QjeCcSyke1nam8k8AakzPYMP9PFbWFXPqLwVBPV2OfU13nhXvb7LZ1BrJLxyQ5CP1zCjd9GjAya3f4V9OWHzwg7IfSSwkIaP9wR39gSdLkQSjDJ0JQz6gsVtuzB0OpDsKC693OGdb07odiQb2wauZaSbLdgUyOMAM40odtrIiYBixnPRCocy4IgFmMIterLOWyE8xbOt41rPHbHSol8mfS9JAUEgKfMCIUK6xTmmh7e5n32flc3z6GGEngm6cUwrz5hPxyxKwb3ZITfMNxGHL7CYR1z63AptCiZh/six95h0uj+YvS6d0ViSHnblshpKMJoU/Kt//XvkxQgxTxDM0GXO/bt36HbXuHj5Aqu9Fiu9NoaC6WTGycmEsiyYTEZobQgCRRRFTCYTsmzObDqiyDKy2ZRFFHF8dIRSijPBFkkS0e12uHWwz9HOHcZHB+iiYHX7EoP1beJ2CyMEg0GXIBDoIufk6JCTo0P2dnaRUpKVBbrI0WXBaHjCwcE+WhdcuHCOja1Ndj++znw8ZjgcoYKItJ1y5sI5ikJjypLjw2OkiukMurQ6HdbWVomVIgyl3R2iLNFSssgyjArQoqTdajHPcoyxjPXXf/N3+fv/r39EkqT8lb/yF/mv/sd/o9oO5oE2N/WP75fTZ4pHHH8SSuXi5dibBR4nqlYuQV7qF7W3TBXBJBCi3mC1NtLwgEO+1yfWygmvylhmk7VZy9S5sKHBeGkwabNk4PLn+QxXHnC9a5OH+ipbWXWZrvyGfS2orvedbyqyL4A7731MPtshTltM71/i/tERu7de4tkv/BFJb46KDWECsxHkC4HWkjDQDLVgnIGaSEwmaAlJT2uiWUG00uHoRNKZ5SgBo0lCMusSLFpMRprOokAVfVpiQj6+y1dbF/lOa5N74j7G2JwKNmmPN29WtNS1uleV1Hr2OsDCIFDMs4I//J3f5LlnXmHj/HkSeR49yTicntBrC85vpxzcm3EnF5gggRBYbXHz6wfk999g6+xZfv6nf5rhcMR4Pnzk2HuMwRFNmuqOn7Kw1Xuk8UAk2oPFiTla8Gu/9QZ3jg7ZPrfKycmQ+WzK0c4h2Tzn6hcuY7IpQgcIYjK3r9rB4THD4QlCGKI4IAoDgkDSaiUUWYfhyTHZbIZUAqEkk/EEpRS6KFjf3CRMQorFnLsfvc98kXPmyoucuXiFVn9AksaUZUZ/0CUvFhyfzNnb2eHk8IgyzxCAkorWyjpr29skrTZlntvVNZRcfvZZPnrrTcYn+0xPjtGFIYpSOu0W2SJjdHLMbD5HRoL1zW0uXrzAYKVLEkVEQcTw5AQB9PoDlAwIgpAoVESBoJO2OTgeUZaG1dU10rTD1vYan3/1RZQXL13D23nu95GzQSEVcLgfjRVFtYvsqUTXJ6zUjgoNdYIzfpkKlZxetuGDWUUjVaAsaqbsTeX4e7v7GG/0sfcy0sFABaaVd24FxJ69CtPQs9LkJ2JJteCBeclnvTK01fX2XNaI0t7bBU34/BoWXQ3eTcwDuxfWNYr50T7FYsy5jTMcHoz53GrKvfcvMooPMduf0N8Y0Y5h0DOMDgR6ZuhtGkYngnkJWWDQuWY2TRgVkrFRaBlyWG5zGYWe54gy5qSMSFRAoEPm0xItp4h2iAk6tCYHfDHXvN/vc41j2z7GB5fURq7KYImHXt0Y875dXSJ6ITnzzFX+5a/+E7pBDxUHhJcFul3y0y9cQKtz5MUVEHb/tkSmTPduwKTF9cmMNDmhi8SEC175/OuPHHuPL+GNaK7fNWN64NzmwIeqcx9yU8Bw+/4Jv/MH32JlYxUlJHs7OxRlTtqJ+U//9v+I9a11DvcPuXvvDovFDIPdXWE+nzOfLwhCiZAwm06JwpAwDAkju/ttURTEcYTWBTrPONjd4eTwkOloxPHREXc+fpf5ImPz7BXWz1/kyovP0+51yeczyiKj2+2gAml3cihLTk5OKIsCIwRpu03aSml3O4xHYzrtlCSJicKQrQtn6a6vM75+h707t9m9f5+1tR6ttE2SpsTtFptntxgOZ0RJQqvTY3V1hSgIiIKQPC84Ojomjlus9nruvRRxIGlFgtZ6n6woWP/5L/K1L75Ep53S66TgggKkEdXOHH7/LV8aRMzl0BXV5NZaPDwM/gkoAsvuKmND5WJkWB6CDsyo2V4l8os64YmhVjtUm6wKU4N29eBaZVEH6HgnNLBb0Zg6AU0FHDT6pQbEitD5ulY1NA13Kc+fPQNsMGt3j2pfOK9kcAxZUzNgz8qDXNEVBdNuj+noY9TgKhfEgvKtc8y/s6Dz5T3K/hyZZER7XaKNKcWiRMuA3sqc27cDdFszywv6Zo18PyCchhRG8Vsf9fmLHQimBiVK5hJEoRGEULbQBMQpLOYFmRa8bDTZoMMtM0aLEuGCuKuWcuHejTfDA7QRdXpNXH9cufQsvS88S/Fexnj3iNGtMZe/nHLxxVe5fftD1sVVhNFEQUJX9Hjl8udJwy3eeu/3uHf7HZ7/ouH82k85FcfDy2PX6VYDYont1n9XzeOZQ3Xe8l0MkOeG/+6//30KYUgSyc3r161P7Lmz/JmvfZkz66tkRU6Z5dy6XXL77j3arZTFPLebVmJQUqKkZF4ULOZzgiCg2+2SJAmjo2MQEqkEh3u76CJndHzIR6VmMhpT5CWbl57n/HMvMFhZp5W26CQxJg5I04QoDjg8OiRbLFgsFrTabQDyxdRtrx7T7fXJs4zpbIpSEq01SRzR6vaR0S7ZdMLBzg7D89tEkf1+sLpC2m6hohPanS5hGNPvD5DGECjF5tYWRVHSbnWwG4EqgkARhIF9H2FIw4AkVKx0IsD6NWsE0ouVBu8iig9drXZCaDIqrxkzFnCfRCMaOC4kmywVl/S/Dvus2SvVpGx6MTRZhHefk43x7NmoJyFNSiFq2b/WOjq/2Sr9aU1rq0f6Y82YQH+tPU83VBBWdDbabxHuYwkdBLmON9U9rJFNe/cqYceHRlQbeApj2OiEHLnv7sqAT4Z3eCFJWA8LinGf6NsxZVujVYacr7MnNdHVXTobc+azE7KsoBjnhMLALCAaZyyyPQ5251y/p7g/XfD3vnCOdDbH6JBQKVAKNS9RwRbZcEaU5EzLCe+OIi6FqxTtgnssGn3jSmX4tOzXRwcuyQ8NTxGB5PXLL/PNb/4WLTmjvxLwc3/pNfYne7YdgV5nnVh30UXBjVv3WcwyzicJzz3/K+RMqSL/HlEeO+guDc1Gewio9j/7LGoFMLx/7TZvfv9d+hsDJtMx+/v32dza5M//2a9xdmOAKQ1FltFOY86fP8d0OmM6GRO0I46OhwRhSBhEHO0fMJtPkUrSbrcRrZD5bE62mBN1O8StFmEYMzk5YTGdMp1O2b54kSDucvXFF1g7s4U0hu2tNVrtGLA+sJPJmEAqpJCsbW3S6kwpsozJWFHmGXEco5Tk5PiY3koHoSwrVmHA1eeeY/fGXbr9LqOTA8ajEe1Oi8UiJwgj4iSl2xtwfDRiNpsTqYReu4XA0GtppFSkaUqaJBhjiKUkErIyQNp8CcsM1nrciGqTSTQEos7BIIVGG0HpBqTdH825GDnWpTH1LsFPUBHCOxtZ8V/gtvV2sKkbulPwxKFBK70k7hcqvGqiAdr+Dh6A/aVN4PSRUU7UXwpGER6c7YOa4b84sdkAQrvvjT6lwquB1IOqzz5mwVs3GKCu9b9uMSgbagW7p5hBkHH+TIvknQPm7cv8q2zMKOrzph7yUhQi22ukJkfMY0opOUoS5uUB4laffKckzBJWe4asoyENyIsFB1rTjRLObrSZ3g94dzTl//a9Q/4X59sE0lCaCKVDEIpimgMKoQ0r7ZyMjPd3Si72WxTrIXvYcDK/oDQjCJd7xYNwDbz2tUue37zE4K/9AidHH7Hy+grd1RVu3H+PLXWVlfQSg6TDrRu3ONg/4GjvA1Qw5vLrnyeIu9zf+4j54og46j9y7P0IvBeag4CKMYjGtz+oGEAXgn/2z36NolwQRnDn7l22tjb5a3/5L3LhzCYBJXNdMFvMyLKMMAhYW1uj1+0AhsGgy71797h39z4CQakNMlC0uz067Q6hChkeD9nu9VgZDAiUYtrtkHTarG1s0Bv0KbKSwdoKYRzRShOEhPl8gS5LxpMJRZ6jlMIYQxiGmFYKaUKchghtyPIMFVpVxtHhEWEYEgQBoZRM51OiNCHtdYnimCLPmIxHTKYTiqLgzJltVgZ9nr0aUxYl89mctcEAhWE2m9FqpyRJYndaloI4aGwQI2hM+WUu0BQlm196a7mPpPKBkMr5NRqBjXrSoqmNeIKKqH585qkmI/CBDl7311Q71Hpf97dotGvVfo1IpVofYc/XlmV7Pa5FPsuOJNYNb2nPPuE5mY3PrBZMV5ZVIk4mMdYP2D663hzK6nIFhqKWXhxLtuTbApCVdPzG4tqqGYxlyuqs4vn1Fh8ND7gsFboVM1InvJ9OiFsKOQ8pyoKWLogikFFAwD7j/IQkyUnKgvZUgJozac3Jdcp0done3QFfXBU801vnuwcL/t93FvzdcwoZzhGBscnkS43JIie+p2zICOYnHIaSraOU0WDBXOraWUr4kdtYLR3rt29vrBrIYHdBcYvm+sULdD5nKJOM8aSkyCcMkpdYHE64V+xz5/q7LGZ3WT1/lu7G84BEm4L11Qvsn7zBevjFR468HwHoNunsg7JocxV6AILd6BIYbly/y+99/Q944QsvYzBsnTnPL/2Zn+PSmS1iockWOdPpjEWes8gW7O7u0un22NpcIwwkwpQMuglRoDg6GVOeGPorKwRhTJK2OP/MM4ymUwIJeTanvbrCmXNnGI9GTifbYjZdoE1JGkdgSqIoJFsUDIcT5vMZUiqGw2OyLMNv2y6kQChlF4s4IowjkiQhSSPSNCUMQ6aTKWmrTdrt0FlZZX1zCyFhkc0py5IoitjcWGdjtUen06csDaaEosiJ04SEFO237xHQCiOUoMG6HtbyP6DLxPI1wqkiwE5M1QCRJ1GtK52sXo0/IR3ggAVIWY0/z2TBmpxEA/VE9T21SsGV6lbu+mWNmlMnVABgXJt7UGjMCB9Z5Zh2M0esfbZNpV6Z+ip8MfgkNvZAlY6eGopMrUGp6ldijJcDLORqX19KxumQtStnWXn/kAujOW/tTojPrWEGE2R7HzkrCDJYzBTdJKLQGSQQRZJpviDuhcymOaPckLQgY47cC5ClJMcwEBm/eDbinUnEv8ki/noaks2HmHaMCCKINEUhSUtBKTWLecTiZA95ts+5do8b8by5pFT9vSRHGNPob9vWgTDksSCPJmStI4piiMkMJ9N9ImWYHxTkw4/Zv3uLMJ1w9uWXUXHLefkYhEv1mCQtsmL8yLH3I/PTbW5xDlT6Q6ih9uGEyVAaza/+239P0m8RJglp2mF7a4tLZzZIAmsAW+QFUipaSYtOe0GcJEwnUyaTmJVeh27aIlYB+YWzxOkhUkpa7S537t1FCMnW9hlWVvq045jRaMTh8RGz+Yw4juj1OkymE5QsKfOSvZ17BJFkb3cXYxRFqcmzBUIYptMpWmuUUsRJUol7URwhtCGKIlbXVuh0u4RhgDCadprS6XV5/tVX2Dp/kc2tLfJ8ThgF9HpdVgd9zp/ZoN9p0Uo7SBmiS5jPZggEYRyCMeT5gnarSxSHf4IeqhWGtcbL9Z0x1VY9nv1aA9yndtyPddHCbb3uhe+G2quybjuPBsv4oHLzmk0QrU4tHVQqBjuRpTtglr6DimXhoc8xzEqv7heAhjrD65UrpkmDUmNVBpVfqicwFjQdP22I2P75pjq3FKC8D29lb5H2nYWNdNNGYyjBRfEVZOw9e5Hu8YTzwzGHWvM7f/Qx0Zbk4i8k9LZ26ZQzilyymHdIkylZNgIlCVuSnTKjNZCEGg6mAVL1SNKEbJAymc5YjGEDzedXYV8kfC9IeTmbkk+OkCsB2ayDNF1MFpGEKavRhF+/dpPudJ8rwSXa5/qcyIzaT6/RdtQSxOkw9txo5vEOs+SIEAlKYjJJUZ4QZwMm+zvs7Nxk++I67a3n7R10bWrUWoCQxOEVjsbvPXLsPV7Q9YOIOqPPw3x4zfK718Up/g+Pp3zru+/xwsufYzyfsCpKnn/2Iv22ZZyLPGeeZ9YGLOwuuUJKoigijmPKUlMUBePxkHwxY321T6fdYTyZc/H8RfK8ICsWrK30ee7KZaaTKXuHB+zs7mKMIc8zDvf3OTo8soxPBshQkqRt4ih1DHtBq9Wi1W6hNURRRBgGSCWI477dN0trWu2Efr9Lp9tHGI0pC7JFxmBlwOb2Nuvrm3S6HaYzq67o9bpcPH+OjdUV0jhGSoUUISYQhIFCa40UEEcxGEMSBFXi7AeSYTcXvdrr/cEvl3QP/sNDpBBz+oInp9iE4ZIqSbbR7jPVQukZbt1M9j0LMSOghd01Vla5ce23Eh8K5q+tGGW1lDXavgG4D5NG6mtqycX3nXbzqmKzwuOMqwOWfdWCtA+rMA6IauzOxjuozhqBCNDCqhe0sQY4UbkPuucKw6ijCV46z+YHn/DFUcGdC5f47ltv0jbnSf/sJtng+4TRFNkeIkxC3ArReorUBj0NGE+7IBShVkR3P0dvLmlFBbqniTuGe9Oc+6OQpFXwT3aP+KutiC+0VhCLFiYEMsEi10gj6CcDrpzf5p/c/4SfuX2XFV0iLvaw2ces3lxX6iS/wEjXZF6vbVsomg6Yx3MWxRwl4GB8HYDhnYjJzodceuUnCNPUqVtcDmRTmUIRRqNkhOFHHBzx0PKQefsDL3Hs6ne//ib9jW2yfI4pM1YGLZLAIE1JkZfMswXzfMZ8kVNqKIoSKWWl4wQoS402Je00ptXqUgJ3ij1Goyk+FPKFZ67QayWsdTtsb66x0m9zeHzMbDZHCUlv0CfPS0ajMcPjIwKprIfDyQlBFBElA+KkRa/bIwhChDB0OilBIJESRKmJk5A0jVEywJQFpdCUheDs2W16/QGrq2sESjJftJhNp2ysrrO1ukIripBKolSA3/I8CEKOj09QgSIOQlpxQhpEjVDez9YvS/71P/B043IyOEgSPrXjk1X81uu1Jtflv/MqAuHDTJuuVwACmUjyckYUdNwRW3wyFBCVMwFeMez9aB3Y1UERDe+BpqqiQsRmqm7RqE+9bbwvwlhjmveCsIuJM5zhI9xM9Qzj9NlWJ6X4aOff8uyZv1hn8AOnXLARbM1t4Euh2d9ucealc6y8c53Pj94hf/kV9u/eonjvEsMzKTI8Ieq8DatHdtcMGaDLkjgtGO1KVg5+ip5WKJMynw+ZjYasDgSd1JB2F0zKjLuHmjyN+PtHBVG4wusRpGIVnURI2hTTCUXY5VeeeZ37ccR7szs8fzIk2QkItxMb8FJ5EtTKhno5831mdcZxtMJY3iYvpmQLSVkcEAcDklaf7S8+i5GhdZ304E1R3drepUSYgH763CPH3uMHXWMQsiG5NL76wXNVMJ4s+PXf+Dqr5zc4OTxk0B+wsb5GuxWCKcnLHKGEdb8yJcPRiNmioJXGZIsF85lhYTRlFBKFEWWpKXWJVCFRGGJ0ye7ePs9cOU+33aKdxkRxRJZlPPfMFWbzOVlWcnh4zCTPmcwWTCYzbt28xfDkkPliisEazqIoIopCgjAgjkN6nQ6tVgJogkDSbSUARFGIznOKPKcsAsqi5MzmBoOVVVqtFtpoOu2ErNWi2+7QTltEUUStv/MbQhrSJEaqgCSM6Max3Z69nrkPbeWlHTnc70pIWtLlekd9lgIlvI7ydGTPk1QqsDElCKtoqF/QQVK1A2xtAUcYpGgx0iNCOlVkWxX6W9HSGtrs/w/ZTty5d9Ws1H72br4gEabecW9Z54tTpvv7+pwDXo1QiyLCMz27E6VzExSUwqDcYhCqAeP8Ojvjt9juvFrpKev7N5Qi/tWE5OBLz7C9t8OFj3dI73yTb599mShbcHgzwRQxw/sv8OqXW0zkNVqJIs9CZqMUWUj0ccYEzXqqbb4CmTLeGzLpQX8DVjpzopU5O0ddht0V/lWhiUSLl+MVGA9J9XXM0W0Ua6gw4z85+zz/5304Sqaom/uc65+D1Iec1Gy03jvOvlWgFOv9dQarz3Nz9gllPkGXiuPR+0RBiJaa1a1zmNway+pwRYPVfyugBKPcOCgJ5Y94N2BfrBHA7ZWG+YzzsnmS4drHt/ngww+4YMbs3P4YVMyLLz7DdDoh73Qdu9AYrZES0nZK2o2YzeacHB+TZwvarYQszzA6ZJEVaJGRtmM63S5ZfhulJL1u2wJmEJHlBVIpeu027U4HjKTXG3A8HHE0HDOf3ieOUwZrG2idMToZksYJaZpY41igaKcx6yt9kjhGSkGShKRRaKeoEOTZnMlkQhgEhGFEGEZ0Oh2iKAKsnjoJYlppilQBQigb59/IFaocmw+kopMmFnBdEy4ZRj5jWbLIN66v3ebd5KfeSeKHfcaPT3Esh3qc+tQvNcurWwC8eC8RIqYMdhtGNFPdo+lnaxrXLakTHOP0Envl+oVXw3l26lUgNSO2GOmB3NTuucJUAE2DRTvZxJ20vLAaFxJhF9CIQbzJzujbtOI+aXDBRR02WLOgYbyz4yBrxez+yk+z+S9/m+5wSjD8mN3jdxAbV9htbxP31jBHa7SLAePxEVJrWkmfPC8g1gi9YJRltClpY+gmKaPxlN2hILkc0Vqdce7iEb05nIxjflOlrMxmXJ5eBwFRp4tUHfTwBu0s42+uX+T/ebRDxgHqnUPOvL5WE4lGvwghacUJm2uXWOufY14U7Ozf5K75XXKhOT7aQZYFffMCgUiJ4gCdObUMfjES+J2BbZ8W1e4en2ZefsxM14svf5JiNz78+u9/l/WNVUxZIAUMD/d4+9vf4erFMxRFDthUh14007oky6bkeY5SArRiNpuRxjGT+ZzJbEY3iijyAmOg1WqhVEAcxYRhSKvVptAlSikQhsC5RfVVSBgGtFptJuMZO3u7xCqhLAOMHtLudFhZWSGOYzbW1ul2UnrtDmkYowKBlBCFoTVKGMPC7fBgvQ4MaWpdvgROOV9qpBJIaVMz+ggm4YwmSkmrOjGGVhQSBfX+BL7F/zTcs5lf90FkXb5zLbA+OcUIkEZjhPJHgEZggZfMPIAJn+zHYFDE0lDqnEBG1NBrHKh6tknFZB22OgJqMG4bd6orG1nKTG38qnLcNrwZ7L20+6CdJqLufV3pKR1LrhZhu6hoqJ7h6ymlYGvlp9m5/8+4N/wmV1ZaQB8Pz/56G8Ulq/fRwKwT0/ra68S/8zZbKuRKd4XZ4oBv7Ay5sfk8pQxJojaqGFGYgtlwn07SYjEzlFHIwgimZc5ELxhITS8J6ZuIg3sltw6he1Gyed6Q9k7YH3X4d0XEfyY3aBW7LDII4wgMBPMFV/uavzQ4y68mCTevf0Lr9ojehTZenSCFpN9ZYWv9Mq14ldHJEfeuv8fh/nXGbUOxOmQ6HmMWIy7Gv0hkVjGLEpPpJUNm5dvr2twY7+yusCoGP64eLI8FdH2HQEMP5b/wIk/TciZOX20n/Wiy4Nr12yTtmNHwgNl4jKJkNp1QasN8kdmQy8ppH3ycuBSG6XSMLksCJdHETOcLZvOMTl8gpKQo58RJzGDQZ3VlQBKnSGX1o8a9hFBugkroyA5RVPLcs1fZ3Nrk2kcfc3B4wAGC6WTK1nZIK0npd9us9nqkcUyoAlQgkdWWAdgUjwiSJLW+gca4wI0A3ECOwsi+k6jZq/1lUEoRBAFKCKIgIFY1UDyoy20cMMsTt9FbDzmO06k3DTx1OKU5baR7AkuVjaARCCHcJmnVqBXVxkd4XbpA0DUtJpwQskkFsE2QBOeKVRvQ7AjV9eYvpuqS6pgFMrf5jPBQYVVJwoF1re5oihreEaypz63TnttrTX2Jy+eLAS000kAan6Eddphm9zkcfpOV/i+4d7a5NqQxVUBJc6E1GA4ubbL2E5eJvn8HNZyx1Q74j0PNB/vf5V7rC5wEKTIMKMZ2Z5WDoyGdNARato4yYaI1C5GT5YaugI0opCvb3Lme8+Fhxsb5FTb6XfYPSn47KvmVvE8cHVMWNmQ41yXR9Igvxau8u3/IW9029z7ap7vdIoxDVnobbG1eQRFTTEfsHl7j/r3r3L99g/v3r3P2F89Q5oLF9Jjz0VeJWLHv5xdLr4+nrFUMzbngdeqioY56SHnM6oU6o1G1Vj5krj5wyBkRPvzkLiKCuBUjVQ+dzRgeH3L//n2Oj064cvYMSRgxLzKUUjYwQWvyLKMoCvJsgZSK0XhCEMVkRYk2EEcJYRShRxMGgx6DXoetzXWSOCGOwqpGdmsWgxbOIV0FgGR10CeNI6QpyS6d5cXnnmU0GtHtdmm3W2yurdJOYgK3INQLjG54DQibmEaFCAFFWVIWpT1XCMIoZJFl1oIscHRFooQgVIIgECQqJKioz8MA9+FtfPo0U51hTh0X9QR2RwyS0vi38fvEPnkAXOWZrTfScWoZgXZ+sZWngL2idisTIOQaU32LjtjEJrTRFWD6LdorN1Dq+H7PYZtqBSOEc7/zTNcBr6mSOFZ3qe9TOSpVPed9af1f1a4Y/h2q53uWXFYLjgGUkZztfon3D/4tu9xGJu/Qj16p4PX06Kji45z70eGrl1kfTYk+3iUnZO3cWV7ev8Pmvbd4L1plp71CHsUUWUYnSRnOZoj5IavdHkJEZKrFSEIuc0pZUCLpCMGVtM9BHnD7u3O6mwYVx9xYTbkxvc5Fs0YcSERpCJgyzwISdZ+/sdrlrT/+I4ZrbU52cr76Cz+L1Irp4S5H+zuMxyfcvv0BRTGhtbbClbOvkbdOmIz3OBt8nph1C6ZGV31oP+jqd9WsWC8RO4Z8zoX/gGHAPh+9wSW+/oylNJCbgN6gjTZTpEjob64hAzDakC8WLOYLQqmqQIT5bOZcw8YcHx+T5zkyiCm0YTKbs8gyAhVQliWTyRxdGlpxxLmtTVb6PdIkJA4CKkd4xzS1LjHGUBjH0AWgIy6cO8N0MWcxyMmyjDRNicOQMFBEYVCHcILVOxsL5FmWMRyNaKctOmstABZZRpZlgFU7RJFlukbbd8PgANcmuYkDVU+ExnM+c1L4qoiHTChfmoDrjpjay1Nj0MaqgZ489UJzMXR6U6EAUfkfN3dvqNkw7uUDSjOnICMwAQ1TJD6/LlVLCWrY8uoC2Ty78kjwWd48KNtTXEIcp5LwwE614NUZyewx43ivWXqqcMuoVz74BceyM3tGr/0c7P4Ow8WIYPgd0hVBHD6P1gojNbEImBXeYm8wosQFUVMqycFPv8j5eUF5f0hxdEiv1AStlDTIuHv0IZ8EK+wIKGVMJ47IS8P+cAQSummfPEnJdcDcFGy2FHkQkBrBRhrSayfslzmZANNK+Wh9QHTvPhGGVnvDBitNj9nTkvODbf5Xr7/G//Y7f8xbb39Mf3CWTrHLweiAo5N9Sjlh5exF2oNnQCq++40PufXWPV7cbJE+t+VUehq/JX0lQRiXZ++USGjX8Notjx+1eqGqC/UkrWPUH35eQwmBEJCX8MmtO9bVShqiKOTkeIEUgnTQQ4YBaZpa30qn71RBQOn0sXme2x10Q+3SO2ryLGdlYJOTh1FCmsSsDrqs9rt0WilJGFbGKAEYpWyDygCDITAQSE2hFZGU5GWJlFbEL+OYOI4JlHLvqiudK0BZGkpdUuQF09mMyXhCp9VCCK8aMZalF7kF5jwDBFEcE6iAUAUkQUAUhkRKVbtz+FI7fNf/PlrEqd3la6L8qLNFbUAxvj+F82hwnfWEAS6AD6m1bSGo86xWsEbtZ+t3qfQ+uPa8WCVMyzFdMaBKz2hq0bt5j8rqT3Nh9CKKRghFzVp9XUz9PLdo4xmyC112HNs9xbOwajP4hhxS0x/TON8b5rRjb0oozvRf4sP9b5PKEQejP+LS6m0OdZfRaMSZwZ+tckVo9zyvI0ZIiijg7tdeZvPffZvpzgHTbELZTog6q7wclmyWu9xWMZ+UEceyg1QpSRwxzTLm5YxsOCWKu6TtDrtFwFRAr9smKXIGSciZKGGsZ8x1RDEcc6s8QRQlg6xEqS0mWUEETMd7XFnZ4O9eucB/sz/h3/37P+DqVkZnXbBy6Sxhq4tQlpkWuWJ/X/PeH73DV//LX8QYiU30fsqoWhGoWrSspRD8ytlgQg8vP4IsY58m2NaldnyxP8NxQWk07XbK/n5Bls8IAsU8y8gWU/YPD8mKkjBSDtwkKggRQhKGIb1ej9F4wnA0RmtYzEta7ZjxZEzabtHrpKx0u6yvDuh2WrSikKDJZvBzq56MCgidq1YRKLKyJAgs+/SbPlpXrprV2ltY4NLGsMgzirJwrm/rRIGiKAxxGBAFirIsKbRmMptSlppet0caxaRhRCsObPy5ofIzbRbx4KGlFq9E5VMvKXQ1/V20ac3BTHUPUfmY+qxTFcQv7cj4ZBQjdGOTHJajJRscVDRA1n/2kNySKxzrIV3Ts/eo+hsLwrKeqF615rnm6RSmtbAOlWduJcE0dwY2S2qKJR4rfB3txPfX1FhtquTkTa2s1yGXjgVv9V7lndtvMgpKEq25M/qIiTb01M+gdSOdj/ALSW1EBEOeRuz8uZ9k67e+SXAvQ81zCCdkSYe1WBMXBSvjO9xTHT5RA4bBClEQEsYJC10wN3P2DuYM1tYoVI/ZBDY3zpKhaYuSQGmCw7ski5xcdDD6hOH0Hl2RUWrDraMZfdNGdFpcvHCRvxTc49dPRtwdtvjpL14hVPWGYiaXvPm77/DNf/+b/PW/+SW6Z89ilWaGOuih6fvs3rfpElhRlrpXEOUjx97j25jSD9Tq6KMB93QpDNzbHzIZj1DKGpyUkkgkcaQ4PDxiNrN5FpI4Qhtc6kZJHLfQzMjLkqIsieOYPLeKb6Ui4jikk8Rs9PvW3zeJaMURkZL1/lWwPAtZBlAlBEpCGEiiQFKEmiy3inxtNJR+vlh9l5TS5aK1RrA0TcEIoihCGMuWwzBESokUVrfYarU4ODwkTUKSKCBxgFuJvqda19axXrQ+tcVPY6R4UGdndc+nxJPGCu6lbmsI/EE9+uNX7O4Qp1rQGOotG5w0UA1mN7n8giQEgU4oxD4lJdIEjTFjVz//jIqlNvRB9fTVLqOZqdtZVPhV8dVa1eN1qLVx2p8jqolf73mmTQOyhX9N7bwQasgurYIAYwRB2KWTdCmCE2bZgqwwmEJx/sxz1aJc77XmXqoxX4yBIgm590tfYv1b79F55yP0eIYJW4SRZNCN6UjDYDRmkO9yx2TstzYYkxIFMYFIUDJjPj8mNyVqfZu9wxHdOGShc8TshI2VPicr6yTX3yYbZeSyB5MFSpX0oi6f3Nqh09vgfrnCYHCBP9e+yx+MFrz7xh1e+cnzCGEoF3B4/y733/n3fPUnz3H55WeQQVD5Jxs/TvAqBfueTRuHHUum8tO2w0PyKbPvRxiR9mnF18/1W65h72jIdDLi8HCP2WxKFMXIQBGImP5gwN7uHifDIZ1W6hLMCIyGvCgYTycUuiRttQiChNlsAQjW1zYYdFPOba6zvrpCO45Io5BEBY3B7Q0mDdGdUxjsvlKACOyGl1EQsCgLcl1SFJaxetC1obqCIAhsFrAgxBtpyqKsWLI3BEohaacpan2NOAyJgoBAWsD1Aqs+VZfl5mwc/EEEtDrVTZ4GgpqHnUadREcASIF59KL+Y1yWCYF9P+lYphX1l9+/MdH8AixtwvsZM9rG5k72Hgt2CNWM2Xuh2O3arfjq9X92oZRYVyPhdjGwi55PhlOzLQ+eGuHyK9i3abBf48G59mbwGceMMwxJz4gx+C3bG4I0a4NN7kxPGC00aSAITAslk0p/78+tF2TjFrH62WUYsPflV5gNWrTf+j7s7aEHPVpCEkYxq/GCVqbYFjPu736fvWiN/fWrnLQGhGmb6WKKETA/3ke1BsyFIM0mtKKARV5QiJJ06woDUo6LKVlp2JQGJSNWVi7wO29e42uf/ypvThYk7U2+crbkg/KE2x/dY3WzTxiUnItjfvav/Vk62+dcv/jUpX6JqxRpVKuhlyLcWlNL86Lhu/0fUL3wWYugFo2nk5zd/T1yPSdOErQuSZKQQMXs7w3pdLusrq3R7fVRUiFVQLnImC0WTKZTptMZWkOWl2isv+7WxiYXtrfodVNW+h3i2PrdRkFQxdoj/JD77KKyr3OoBIG02e/LwKCNtjkftKZ0GcCMDvDO5tYhXdot0p3BLstzDIZYhQggcVuph1KhGghgJ+9yedi6+si19rQo7RM9CwsK2qkQqgneWBSlZ1pI5zz/6QPsx7cY15B1Swo8a/cKBJy9QNdJaYQzRekxO9l9tIJpMKaVtZ0/rDNQGVMlBvNAKitjm9cRN1QYuMQ17jrvAyuhBsQQdGkQ2i+9pn4Pp/et4cGngLS8t1YIG5qeyTQA1+K8W37CkFYIRSFoRQnk7QbfrhegemgI625X6fidKkrA6KVnyda7rP/OH6HHhxCAHCToJKQVaCKlSOWUDTNkPHuPgyPBvk456W4y7W0yB4zOkQWIMIRAosM2i8mY0WzMMAnZFpvcXYw4mE/ZbA1AatbXC77+wUdcef513ji4zX6ouTxQjDoSEUIQRWi5T2frgm13U9aLic/LW40V/066mjO1jbX2JLHjRuKztD2s/NiAri9GwGiW0UojkjRmNp0QBAFBoFgsNCvra4RhSH/QRwpJnhcUZUFeZIxGQ46ODlnkC7KF3Za83+mwvbnJxuoandQq7ZMoIg5CkiiyARRAJTafRqqH4YmoP9QLvdXZhUISSgCJDtwW5tSM1xv9pBDkZclsoZHKgrQQirLMKbRGCo1SgV1UpKwfe0ptU4upP7g0875WopFj9qZiz95IJh4AXLuy1xuGV+5Pjx5fP8bFIVVDP7rk0VAZxAx1msMSoSVGGgQx8dwwVffJWpDJAbGOK9az1EPuo92Lq3TfNHMCuO+NrnZtMK4OWngvBMNoPuWDyTu83v9itQ2Pk81q9oWd+gq/U7F2MFtWTLtePPwC6jpZaNvv+YJesEZ/4xU+vPU9MLn1IadxbmXgoxYDmzlqfb2wvquLjU12f/nnWf3kY4rDGZ28QK1twOiYMtckrRSlDbGAaHFMe3GXyehjjj9MGK1eIvvcC8wmGhVIwnaf2fEh2XRGQE7c7/HBvfv0Ox2OwphxeUxsFBEZ/Y5kf+c6F1cGXD/aZVYGXMpD0tBg5mMWK30qt7DK5mGNlM33rX1CGseqpqh9qv2k+TQnoscWHGHrbqpcnT/4CntWqWG8yCnLHCEF48mYTqdD4TKHtdotJpMJRVEym00pF4KTyQnD8Zij4UmVy1YqydkzZ7h8/jxrK6vOlUsQBSFRENKKbJ6C6ukNsJWV2ICz6jbKkvKzoYIQ9ZFKWBV2/7GqBVStNRaAFJKsKClcGLPVsym0MeS6RAjre9xUqZ5uywpIH6FYfSTbpZ4oBihNrZvVRtj3FjhxySzdSNBM8l0nZHnSis/a5fMaVG3b7N9T+lMjtOtTRT+5RKIHHBT3OFZ7bHN+qf9NpRP3R+11ppqUwgErLj+CPSZPTWzvtNQKUm5NdojDN3m59Xpj3HoFAmhRIis9pMsJTIGNI9OVHruGEA/JurqfUBEb3c+jxQKCDxBSE2ivrzTLE0b4xOrOX8Kd0zC34Vlv1u2x88qr7Beajffe59xUEwcR8zxjXpbIqISkjVg7Q6QixOo6SWeDdaORg3XmWcj7b+8yH0+Q+ZQgCNFCkeUFQTumnxraE82RCimCiKK1Dse7JEJyfABb/VX2J0dcO5ZcDkLaHCPSlo3/EF4K8cBZey5Ug8PUenJRtbpXKVQhLz8Q8B4L6Pr9tWypGdWj6uLFMIlhmhnu7+7brdILQyCU7VclGHQ3yOZzWmnXXmcyZtMZo+GQRVHQSlq0khZJEpEmKSsrK/RaLZIkRkmFknaXhiSJCMMH6VkFJq7aQljtXgVGS4D7qNL013gAIusV0EAgJUoqhKi3zhNyOStSICU+HcsPU8ypxzfZbT22PNI4m7q7qBIajWfB1VyqxFotaoatfmjf4B+DIgzLmxj6yK86p5fFDBeGXTcVPuWoJCBVq6xpxaG8x0ItiMoIv8G7ZTz1hKzHTx2w4D0J/Cef/wq89GHcVjm2li8PXuStg++wlZxnVa5VvNqgLRiYGg7sPZaXxOZTvXubPVdWT/SQoohoqx7zbESiYgfWdapIf55ftKie7DXVTknl9dQGSiEwYcjO515A3log7x5wYkbMB13iV65QIiiVokg6lEGAQKGMzXFw96MDfvPf/PfsT+Ern3+ZV197EVGUzMZD2q0YdXaDZHKLNA/ZOSkpckWwcoZsOmYgjzgY5Wy14WRR8O6dfc4NWvTf3SG6NKDox9RudfrUG7oEOU6aaG5Iatfl2s+Zavl7dPkRqhf81H30BC0x7B6Mmc1mzGYT9vZ26Q76jMcnmNIwGU/QZUm/2+PC2bN00pRcQjCZkqoAKRVxnNBppbRaLZI4Jols1JdSEoEgjkOSMLTDYkncXi51mr6a3Eq/CJ56q6XrTr9frRN44CoBNpJOu3TaphbHBFa9ECjVYBafzmofXupVevk60XDnt9ND412OnFLRuOtE/Z7aMTOfjuUUCX5yituu2xq5apCrzZT1nmGw3INN3gqCVA5o58cMwx1WuVBBrgcpOwRquKu2Rq9AvXTg3wAsoytpQ/pEOsCF9CLX0o/41s4f86UzX2ZVDhBl7YDmQdP+p+u+q4xqVB1mn2nBVhq7gY+HbO9u0UvOsT96m6DTx4a/1r1tXd9kVetK3K6WEfdWDZWJW7IpA8lur0d70eODbEhurnGht0Zt9JPVuM8Xmg+/+zE7Nz/hmQspg9GY+fQW2xdf4d6ORImIla0BZhAxX7uKwLA2z7lzaxfmISYdUOYT2nFOVgb0ggKF4cbxjM1Wh607GelCk2/E9XZ/3vuk0bLWt9IDaz0q/Lvafm7KpQ8vP9J8ugYerutwSFYYzTw3gEYbq6c1ooUBxsMhQgVIpXj++ed5+cUXiclZhCGagFIXBEFEmraIw8DmJlCKUFr9qUQQRyFpbLeyeVip8PEh7dVQEoDxanZ3+ulrHrj/8pfNpUe4NvEg7xXxNqw5qM73uGs+pTM/O/hZ1lUaKqAvjXcv8pjb9CStNVkG4zartC9uAK2bb/RkFLtPX22OqkV9g1TWYOWWWnC7JtRjQ1aAJoxACE1fnmevfJ88mBEVSXWq8EZKBMJopDGUjtE2s4vVvyv6ZAEXq/oB6+ESy5Bz6Rk+Lm7xb6/9c3754p9jPbzopBDP0erINWvw8f3nXdOsDcGfWzNXx62NAGk1ySvtS9w7eJs47ldG4EYrOhuFb6fGW7gh4QG81oeKSmIQccSsyJkXx6y9uFmPMue6J4RidDDmwze+x2g4ZjgakXRafOWVC7zwhS+BDIjTfTorEbIfU4gcYRQG+N7wQ945fptndZeN+Av0eyuYIiMwEp0XdKOMSGlGxrCbhawfaeTomPjiOnlUNNYWX3+shxTLOveHye+eDT+qPBbQlc1+aawGpavI6aTXftAVpWIyW1DqDK1LwjCiLDS6LMkWM1qDFV753Ku8/uqrpJGkLDRBlNDtBTZqK4yQUtp9yYzdnA5pXbHiMCKNApsgp1qp3PPN6Tp/WrHX18akJcmiFiF/AAZ5oBZCoEvjNAq1VVu5XYX97R51S//dQ59xuuZO/+oIbGV99e9T6xmX1x7pKlu6742bF7UW5MkCXKDquKW2FSCMxMiSRTInnsbgPEuqxncBDxY4LBjaCLKAXnmGo/IOm+KqBelKS2uZaxPGPch7Mm2EcbpYVy9nsNSOoToPMoSBy+kV7mbXGc4qTaoDVutlgfcbrYSVhsENHD9tgrRpfAM+WsZgaMUbBCIgibssR2j5AUx1ByFs4FDtlOwbuill1dfooM39/B6L7ojO1nO2/iiQUOaSwzvHfPid72NMjhAlnXbBKz/1OhsXLlp3S6PZ2Fpx47GskMZg+NatN7h9cMQ02uWCKXhGfpVO0ELoguECUhWSyoJuPmEsOtyaSM6mHbL3T0gvdGDgJU7ntrck9brPPgq0YvinQsUfUR4P062sgI1KNDqnOqeyegIGsqwgSgI6nTZZltlMW2XBaDhCCsmrL7/Mz37lp+mmKabMEFIRKEEQRnYbG5cGUbosUUoYwtAm+I6CsAH2D1mdGmPEToS61R5YtXySEGMeaORHEOUHn0eTPbtPnt24JDnWy+Ez3vBRK+updzZmWcsn3UTxeSJK4wXdUw/1IH1qGTD1eHyyStNy2mQ1QkAu0HLCtJORjvrVZLa+1bIhZoKnbQZDLPvI4h5ZNCMuWw6MTQWWXioSDpCNEFZKEPWzq5YXNqdFDdX1mOwGHaQpGHTOkGHdDEu03/uCZcNnw0BWJfLxe6f5d7J38AuwVbnY65QIuLRyiXaQklf3rCeLcIZBD9I2MsgZ3cyycck7PACU+YBP3rxG2JnyzEsX8DIeCCaHC9795ofc//gD2n2FiFK2zm9x5aUvEbT7VsVlCuodnDUQOJC0Y/nLF77IpPw6M53x3ug6ImjzQvvnYC4JA8HdwxPSpM1KBMFiyiJMuV0knI8Djj+ekKwq0ostSrFojJnGWG+qpIRzE6sa/dMn7WN19nmAhXmGZB5eJaUErVZEEAZsbW0SRiGj8Qmj0Yif/Mkv8/Nf+Sr9dogUhVUZSFm5kymlXICB3YI8UpJWEtNNUpIgsBnyH2XhF5ahavGnI20/NPYIL+ay5ErmAfd0VT5NtfCZ6me8KuPRdTaNdqi4iQfl5hWNtfOH0zH/eBRjGvFbwkWOCW8AMqSLVUw+Z9I9rnxXgXqyLemipL2fDFgNXmRc3nWeEe4czzgdqAj3HJ+G1E7ZRlCvmyACy34tA/a/DVob+uEmW4OLjIoxu8WQ37/1azVr9RIJNTAY7ILquar1A16GX29Us/t/1X17rvMF1meZ/d7lg7Z1r7XX9fiQ1SRyHNc3HH5h0fmAm394g5XtkrMvbiCjFJDoMuXOxyP++Nd+n+//0RugDHcPx2xfWuGZ1z+HSrtoXaK1lQyNMdbrx7iFw9jdY7TRvLj+PH/jpb9At9XnxfMX+bnXv8zWMyGH8YK5CBj0u4znY3YWESpMaImSkJy7OgGhuHVzzL3vHmMWbrv3pfzHkmp7p+qzP+7UVp/iR/lYQFebumMr4G04Z/vvq4xVxlYkDKz+rN/v0uv3abUTjCk5c2aLr3z5y6RRZEmGtqKFClSlu0VCqCRpGNJJInrtFq04QXl6uyztLP2cJj268eMFSB/G+zCAMTQFr4c85yHFVyeQAiWsKsEnOBdY8PVRTKL6+fQV4fSrPerJD7tLqQ3NbAS+70pqQ5pwbaWgCoUO1KNJ9o9zET6s0/N+v7mjqc2L7fk6UucsekPXYRoV+Qy1pgJjb/gsi5LDk0Ni02KhRh5vTz3Xiq1+3Al/UiNhjr1nxW/dGKihURjD1eQ5ZvmUUkk+2r9DJ+g1RF+nkmisjB5S/X5ptoO1e2+3YXmlevNQancCXsiYaCRol/7+7n7GJvf0Ok8tmjKUb1dvkHYj2fS4/5191i4H9C8MEFKgS8VimHB0/YR7H3zMtVuHMMr46MNDvvJzr3H1tVctGTCFW5DKagGwgR8lNkGNY+nG1mm7fYb/6Lk/z9ee+3kCGZNxzFH6q+StAtNus7G+gihnHC2gRCKKAiFK9kRIEodc2xlz7Y19inEPYayfsqiMzKcXE6hdA+HB7Znq8nhcxtwKbYTxMqmrXnPlrbqhqrgU0G2nxKFg2u9x5swWmJJ+u0MShRitKR1T8PlzBaCkIFKKJIwIZK1/q+7dEAsehg/m1PGmb/GDk+ZBZmdO3fhR19bf19onJXB6Ztd2xum1GoSybqPPWJpMdsnaLKrx0TjB/vIiISyJxNJ3lBSValM7OdF7MgThE4m6DvCcIciJ+AKBXiwQcYBBkU5XmQ4OyVfnBCctFvEJhDHRLPLModIbzGVClsQkChbmkJg2VNZ9avWBZSEVaFd7mDn/Wns7U6lGhfdqQVcpH1eDFQZ5l810CxMfcanzqmc3eD9T03hWLegbzJJxzRZTxXLLqg7+3yIIuLXa4vlM8G5inEdGbTirs5U1zZIPzgJdJuy9eUzQH9I527PBQPOURHSYjncwMuDbb1/j5PCI1bWU/+Rv/Qyr5886wqOpQ+DdhDZ2i3ghXBi/yynRnPD9eBUhSrQpOBnvMrsz5ePFv+HZzV9Cxqu045TZcMiNwwnbqx0SBKbdZbQY0+62ef/+MVrusXV5g/7GCCMLC+017XVuerVZ1uLvjzgiTTv94KfBRe083aiMFLQjRWACttZWCZVkY3WFQbdLGkeAqaKzVGDTLkopSYOANFQ0/QV/GIz605bGuvInuFYQKMWiyDFaV9FddsKYyqPBM+A/aTGP+Aw0JowtPjm5wJGfB1QdTfHRf3rCgNepTJpZ1TzwyjBgXh5wJI5pxWuEWcq0NaS1ojFlyVycsAhAlQEUYEqDNBELc0wQSEazBWkS0+2UjEe1SsGllEE0dMIWO4TbLNLWw3od2LoIt6I3DWk+2PS55ApTccJakBEHHSrLphNTvPa2AkaopChtakbruXtzM3LtnucNvoWSXC/GnDEt7njPDf8CeN2uqOrt8d8XrVP2v7egEDtsPbNBGq9TTCLMfMTR+B6zWYYoDygK+OrrHZ778k/SP3fG5ZI2VsQ3Gl0FMQv3v3K2Gqfi8BILEk3JIh9x//AG9/ZvUCwKonSV9U7J+bNTFuYMRwcRYRDST9vc3t9jTUVkxdjmeYgjVjZX2VkIzN6C1bUOWh4vgWtF4KuX9eqjRyPCY4tIq0TSylDgmBaV40rFGn0oqjAQSNChopOkhKuKtZUVQqWQwg0EA0GgKjEtVIo4stS/qY99GKjz0CPu+Ckm/MB5ohrL1d+nB9YPC7zeTUxKp4T3SW/wCgX7IN+ej3rAA3poc6rLK9Zsmn/WL+KJg2NEpTaUfpZjma80csljAyxDryfrk1Zc4If2IiP1IJCKhE1WdMQ422NUzNBzyUTdJ4p6iCBAuIQupcgwam7Hm14Qa0GZTInLgPb165QrX2Uqm5PUYFxyG0yt2rJKAS+223nhg49tCp6arfocCQkRs/GCNhp0iRB2HPm8DXau+RBXgRSm6mPfi5p6YcfXi+ohtp0cm59EMZvHC5J2wDyy7+Hj5Rq1s3c3loFKJFo9w2K/4ODw93jta1eJg1Vi2szVmDv3dphMDugOBPH6CqmEi89s0z9zDq39zrvOZ9e490PgfcklgsPxfYo5rK72CIMOmoLRfJeP777Hwc4tWnFC2OnT7nbIygNePffzBNEKLTGkFaaMFy0m04gglkR6wuUrHYxYMJvMKHWCISZUc3K1oOo04/W8finzo8rX8UfMdCsMqKz7rmqNYIQq8YsP63CTQErchoyCKFAEwu4FVhY5Stn0h2WpUUjiMKQVBQ0XnPoZp2ryqUTsYVuSV5c1UFj7ufmwl/1TED0pQLhsXUVhiCOrKPWqMGvc8rbdR9DqRsUMTgWAd9muNX2+6IZOykOxT08nhXT+pO7GhqXrlwz3NIfck1bquC04JbEISNUKCQMKM2G62OeovM5I3iaN2sTZglmckhUZulhgAFVqUtOhJbcJ1DoHScT524fcvrBK0bR2u4fo6phXIfjvHNvEZgPzqgBpas7qBcmV6AxMM4SsRerSGGaHU1przoPCuZD5a7TRVRL8pqrPqySoQNgzEf9bcLMreOHI8O56Ha1YSzoGlQtMOUMnLUTwEq32NjduT7h//2Ne/uLryDxiPl+wP7zJOLvBqNhn++o2gWxx953rvPjSgP5gC1Mx1iZRq5UkHuxOshN+45u/TjGf02612Ny8yGhyQrE4pNdps3Z+hU6SEhjBdvdZDvItijJDGZvuNY4mRPGE1Z7EbBmkShAix9Cm3fN1KPDZ2SzZ87ggq/rYJUhgU4N+Oqw+vuAIJxY9cNg0gKx5qvskrMCAlAIT2O1TvO+hwCeFEgTC0HJb4tTuJn+K6j7gImaq+tonPuT+/wNgjcAao6QQVl/tt+dRtmsehq/LzPa0KGct1AVWR+5FILN0xfLVTZZf7SrrRI+KHZta54tYBvAnsVi/2EZbuPm9LF8IhBSEpkM/7NINL3CQv8tU7GKyMTOdIVH0wy3irEccrdAONvB5vPII7gQ5G3eH7J3tUkpT8UJwbW38bhE10Pp+qPSjDi3nkxFRJ0aYECWcGk8oIqlYOMIhgbRUHI+OaK2lCOFS3RgoZwVSaWQUVukcrWSuXTYzr5ekKUBTu0NpCqXYjUs2piU7bZsVrZwZVBTYUP1DxSJVTORzZHmXe7fvcff2DQ7vXeO1s69S5CP2Du4zntznuHuDMjKUuye0OgFnt7fZeuUqwbzAiIDZZJe0vQLY3WHrzGmaTOfcOrjFH3znmxTzKSIAM52S3fmQza0Oa9trdNqGRCg2k0u04jMIEXImWgdT4HXxRng/a+PUFHY+2F0x/Oio55gR2g2SSnyvc+k6H5TmQv6w8njUC6butqZj+dIAh0oX4g0a7pAVW5VCSInUoIvc+eb54WyIw7D2TKAG80e5L/2gvcOa34vGv9XHBov8zOURjPR0FWWlVijshGuAvh0YzVs6EGwea+h7K+MMXmVQn3OqGtbGbaxhxbIWUd3XM56mrtc3icayqWVVzJPFdgWW7UtRJ5TxKq5KTPaN5CFIhKzGn2PCmHmSckFeRRrJPJzRkimx2gZdc0SBoEwidtcMmzeGjDYCZlFEqWxIQ6vsYEzBRE4aKhrnjmXqvva2CqFnzMsdtnpXYJqBkcxu3OSb795Edu/yhS99GXUy5dgErJ1/hlCF4H1atWZxtI/qSwhsStFSlGhj4+Ok63tLeCS6hPFYIJMCsBsCBJFEiJL9nuK5G2OO4w6LQEJomJ9MufnxCavFgM3PbbHW7pCNbvPJO7/LIk8oipJ33/02YSLorIZsnz9DMJxzv/0JM1HS75yBsM3xvROU2eX+0ZhPbtxBhS1QAd02XFl5ntW1MyAk/+4bv8bt/V3iWHDhQpd+L0HEXeb5HmmroCMlZ5ILdONnkDKs5gNIpIzcOK+pg6n0xo1R7ZC2ERzt0lc2sEa4seIHj1d2/6gNaX74+IyUfjtpj8GVuNqI6PBgYzMlgZHK6qa0ptQlCFWl3pMCwjC0jeFmjHH3abIVX2yDfza4fBh0NJng0l1+wC1P38s0bqYb15duogceAVx9jTCUlIBs6Oke/uxKi+t+KazvaTNL2jIAN/Y5o6E3rhKSi8qXVQsP0A3xFgfSDYPpE1WMn0reEk/FfIXwQQP16T6RjBACsRCcDV4lFCkCQavUHOV7vHPyh7x+9jXSWRtRWA+U+WjOeHzCzr1jLuwIuLxKZAStRZcX7i0oyoL9swnXL2ZInwBJKiIVIGRIqCLQmpIA3b3EvLxDNkzodNYZDifcPrzHaGh49xsfciHtcHx4wMlMc/7Zl+mt9kjbHWRZYnRJZ2UbrQv0eEEYdpmNx5SLGUk6sBuglrntax2ACGH/mBvHc+7d+oSJDNjeaPHScz1MT3J7q8XZayfce2aNeQDBSsKFc5pg1uInrj7HeDxDr7T40k9/kY/2NN+/dh+hPuDcSy9gTACiZKN7lTVzhVwX3Avu0SkizPouxYmmbRIuXOyxWEC+KEkixTi7xezgBkGQsL4ZsXbuHFpltNKUWX5CKId0gxCAy2uvkagNjFF4N0AN1jaEchKGC/H2hMsYlgJf8MAKdeRhQxKkguJapAS0KRGfsg3vY3IZkzXIUv8WpyxRDfbuRCp7HGNckg9BaTwsgJISvw+ZfQ4PzHdh6hxPP/zOuA1gevDWPxzLdeefvqZakJa+EEgl7Q4TFauyQFC6DH0Nu9ZDyunlQCwdau5q6zeY1LisV03FiWncyhgL2jifZfcy9quGI/8Tqmfwslgl1zim7wUzH6Hn837ZawRCS7aDFwlJa2FEhdy5f4/f/eg36eqQ58NtomALspxwMuXO967xvQ9vcX7jDBuR4PzWBpOD64Sbl1g5e4a42+PMah8pbEL+2XTKYj4nK0r2D49YZDPybEF32/DBH75P3F5je/2Y9z+6aQfGaotgQ/Lrb7zD+c0EE0R8eP07iFuavDSIICYKIgKpkCokX9h37iQJSoI2u7QUHB4ckrQSjqcLJhmgAj748C56NmE+nnHltcuIu5rv/cYHXH3l8whOaH/YYqgLttcjnt04S7x2kTu3b5KVhmvvv4P4eIdy0GdyWPLcz71CoXxgg7BkCrglrnGiF6SF4nCxw1ZynpXuBt1Jn3xyTDpYYY9jlA4xYoERmnayQV4MEZSEekGntwY6w4iIxWxEELSxhrcSYaS1x3ibhYVfmwazgkDn52vquWOo3fqoZD4/GeuZ493y7G7SD5v1y+WxgG7pLMKVH7E7LvE2UpYjrhrqB9su1phj3GeE1a1Vr++CBh6gnQ1DnRcnxNJxL/Q1rmlWwB9pWP+bSa0fUDkswfLDnUSaxyoDSCWyNNQq7p20MTb4o9RWgV0a6qi1h9/XHnBDYknmb15gKnVDPSxqr5Fm+kL/vTb1ZiXGUWFvWa9Z7hNavHSEV2+JalIuh6c3+9VgipJQdRtNa9Blyctbr6GEZLp7m/uvnCWSh7TLFlF/jWfPrrL+hRcoJyUr7VXykwn7wynH4Q7rapv8aI+ja2+TmznkY4zO0GiMLohbMZqS/dkuF9QWZy+vIFXJdHKbF35izSa6V9t89c98vvJEqBNL2sQ2Bh9FphGl5s73dvj3v/ldtF6Q5wvOnGnzyleeo301pdNt0zYdhLJS0vYzCSe7exzuHHPz+JB5ueBgcsJgcsLNoyHD4wOunF1nfFASvZ7yh7/zWwznU/TOPrN7x/zsXc1bzx6g46vot24iX71AKcrKkH4cHDEpb4Nc59rJtxnIDVQYIBAMOucw7XMAKB0xyY+ZiZJ5MUcXJ7RUi4HapC/OEqV9NIaJPmFXXGOuj2nRsWxW1Dkqql4XZmnW+3SN9k9nYPRqUqHd9Y1ADwe6RtReG9bXWVUL9qPKYzKkuU43orL4e/9CCTQ3BPQg5MHRszmljVMzSIS0Gzj6BkAE1D6BsNSe1H6HSw8RHuBMrWY2zfDFRhHNWz6i8U4fbiwcj2K3/iSz9J1w64UiSBLyLCfXBk1JBAghyUttrdPUi4Be6lTReHfTyDFhv/NhpcapHJZc6xyw+rFU+ls5v1LtWEk11oyP1jPVNkO1HvRJKroCW7uVji+ikjasYalxhTZ2TzjtnePrb6WUPLf2Mt+490e8d3+MCk+42nmJZ1t/lSgc0EoVs9mMw51b7B3fJb15h+wbb3D4j/81K9M5rV/+HMHPfRklByBdULCwEuMnBzcZFjm99iqoEG00rV6v8fSiohMuULgx5y0ESwkChQkEBRHrAQxeOsfnv/oSUbeDkT5ZjXaSjdUyt1dh65lNjNFMjkbcu7ZHKzbsz4/ZHWdcv3mLlWTKQa65M9xn9XKf8y+dQ5wckZozfDJ8h4Puq0TxgDtvf4/La32Kc20MBVES8/H0m7SSAfN8gZ4eIlqbJEkH8OMQMIJEbpCEW2gzYRwcslMWbKgeq+3P4xSYSKCvOggBx5MbtLtnQQuMCJDO89xLM0uOz1C5TC4BqxsPtV9ulV7I1a9phLYs2JMWIU6jQF0ej3rBq0lEwwdSeGi14oW2SwWeefrIZhdJ54MVq8FtjQsWPGbzBUVhSOIY9/Y0Hfjd4xq9RuMbe25z599Gqlr3tVj+7lOLWf4llkG1OqtxUOAGuF+chO3OVhQzQ5JnGcLgwFZjtDVweOnBTh9nqDRezeLVB6JWy/oloDJsOgbr2Z3PROUNcZ7BVnX2zLZWI9Sh2wJjZPX9k1YqZ7oGqxWNrG6+LPs2N81d7l/jMhAYwf3Dt5lQslEEPNv/82x1fpbZFO7e22Ex2cGUJ7TaAc+8dJb0W98h+/7HhEqwuLrK+JkLrIcJOGZqb69BKD4Yf8D56Dz4nWor5XstDtcumH4BdVpMZxvwK+3KUNFLI87/3Z9B9AfOBdZKV9olvTF4QHHjy3X+xsYq7UEXjGI+FCTfu8FifsS9Mudzn79A9/wG7Y0W0eyQ45U7jPM2ShbMP/yIxeCYyWSHfHcDc66NMZLFPCORXeKgzcH8iJW4hymmzt+YemA1WKUULXoiJU9y2qqD9tF1RmDcrhm94CylnKHlCGUG1Yj2rNff1Af+uGlkB0G1/To1iBiwagU3VExzjHhdhEUx4/a5+7TY+McDuo1seFpWGoJK9q0nqXD/O32JGyzSWdNtjlfX+S7Zq9aGyWyK1jN6vR6RB14HJB5wK9j0DdQA1ib9936sTXboDZLC+BQW9bUs/e3uUbF1UTHBB4tZ+uR1q+DngyAQAiUDFhRkRU6oBOQapRRa2S3YDRJVqW6WI1/MAx3tl+G63UtT77nl1Rv1fepG8vXzuyw3J4HRXr1gjxdPIOhCrWiymrhaOhLG+2Q3IXd5NfUbVQoBUkakrT4XWq9x9fJfIJ8EjI/3uXbjDZAz0k7CynqXMNpCO4Pc/L/8q8ivvUY2H6NffIb1+P/H3n912ZJkd57Yz4SLo0PduDrzptZZKIEqiG4ALYe9ZrpJ9gzFcJGfgB+ED3zgWnzqN8p54OJaI9aQw+menkbPNNAoAIVCVXVVZWalulqFjiNcmhkfzMz9xM2bNxOozixgIXZVZNw4x4+7H3Ozv+393yrHp9OudS0QfiEfrB7ykr7c7eguAK7/v384+SCnLCtiPKlbe/bSWSSSjccLZseWm69MUCrxYVHWg7UJAN5/Ps6B6IISFKYlGTzi+ObrnH7yIdPRRS5cuc/1dxSTawIlTjg4fo9cXqN97TIP3V2mx5rh3gmcHDO4kPGj2/d545vXw1pxDMQOrZ0z1UOkPfa0aL8lEkEtPgdf+EeyxRVEVSAGkr5wUOTfFRvDl0mbQ4wIQLi+NsRagkX8u1sD6/lm/SYb/VG9lRiOcXEe9efrUejp8tVEL3jWOoJ/AFyHsH4iGaIW2YckdYE2HbHoH4pFYEM/NKUTxqMBw3yIc462bUFKZJJAyJgS9EVDngTTThvt3u8faNzVu7ELefIyatEuGGpru5hfpCI88B601kHerQFefx+OWGvIAc7akHbpuevWCeq6JZGWNNGo1pEoSBKNdBYDnssTEvGMh9uFugSNP16j02Y7T+QT4+EEznqzO2banwnh8GElvvas+4vUIv6rIzFEygNsKKEZraqoCIhQQDymA65lTwipSFTOxvgCKtugMQmP72r2H/4CYeaMx5Ldq5vIZMd/wLlQ7N36IuYK7Osv0j+IEJ+NXxfxsToERla4ZBztRJyVWFqUjC12HA9WB7x/8gve3nyToUwRNtJKjpyE6d4BlbYcXJ7SBoqkT43oocZblVGLdnTdb4XDGDCnmnLvEVvbWxwdf8wbf1cxHQ4xew03f/op17/3JoneBTmh3PoZw//0XZ470litGL9yiR0ZbDThtfA0SUjTTVaLOfcPT3nh4qhzIvvLxkW5voYcKslBj8K5OjjuARVo5BbSiuD7EmtarqLvm9KPIaxvVmchuFPewn31jLBYfxGQ4bt9zaDbxYCtmaq9Vr/25YJZFNNhxRmAik4BWNQ1+0eP2drYoFgJBnlGWRTkA1+UWBiBVBqJCE0lRbdGurW0hr4dzETlGq9BRx7PrGk1nRYr6AA4KBf0tR5E/IuOH4lc5xra9vAmejMdfCcG5x2QtbUcL0rmJyfsPbjH5sYmg0yzuTFjMppA2yCNZTSdUrqafJDHOfkZ+O1MxcDbGmJpPxcKk/d35tY+5EJcuA2abhiB8D5d2N56Kdi/bhIZur4Cn+iBGEHVgBYOG9qda6lRKkMnOVhFWTTYCu4eHXFw+BHF8iG1fMzLN14lTS/5jc1ZD2BdDrejT4ZY09+iKRGyxvpnaTmsTlmaU+rMN9OpW8etu++xuTNia3wlbA6Cw3LJv3jv3/D99EdcmFxlezhlO58wTYdcMXC8aXjtwhvc3D8Cp+mDBbvSOOH+IvDCejWGSMHZbIhyln/9Zx+TpR/xze/scLT3gOmjLa6+/i5abWEdJHpMpqYcqV8wunSNzc03KMtjRhkYd6mbT4Mk4dS2nD4sOJk79MWeHIvPqXOc0ysZoTRRUGp8kSgPH2sRBAKcCoqE7ONQBD3I+vEXEDYBgfDV0hxdmKAfqB5co9IS+odAuEe6MZOdM/Np8tV0jpC9g6r7LX3kWlykQfkikoKyVzWQAozxg6QkLCvLJ7ceUbagZUtdFNy9f5cXX3gRrRzPX7vExmziK1sKOq3Fx/32Wm+HTtDVV45j5U2QOMT9I3HhHmNM8Pp992HTvWnRc5wx5Kp7gY53xQNg1LiN9VRKYyzWWKajIW2xQDqDFpb50TG2seztLymWS0ajnF0Dk2HKMA9tv5+ysUZ+TwjRa6M2OM7CTk4A1hiVEMV2HC7EqAVwPorkjEf/rOX210WU9DUuorJva0ueZBwfVcyXNY8fnpDYislsRj4cUpuWYnnI6WLJ/OiQw5sfonTF27/1TaZbEyr9kGGuSdJRiMGO2pFfmnSbbKBtRGyHHiiDDnDDyIbn9tOHf0aqM1a2ASwf3/kB5fA2hufZ4DLzpuTj+UP+2w9+HyGhcSUny9scloo7iaatW1In+J3rb6IuPKSRNRkbHWjFeHFBLLm6Rnt1Wj4gBZU+ZrHc586dIZ/evM23/uGSxaJkQz+HuPEaic7DNxJYJ9jZeZuH1R8h9H2Oyj0SdYIrBIP8uwiuY4FhOqJsGh7ffkgqJYkchIuvLVDCuIgIdYGQFBGKZV9drFfziEH8Ym1dI/xm2HGI3bayhhMuWsC+RVLv1+nfi8jSURrOAd7B/6SP6En5amovRM4xamAChPSTTIZ7j+9L5GeGCnxtXOccjXNMhiOuP/8yQsJouMFousFoc5PpeIR2LdPxiDSA7ZnMskBTsDY8ncS+d+HPblxFvxd0r0dAPRPv3F/nM3uaW9McWUsMdP0V12vXRoAj8f2dLI5Lk+u89cLVMH79sX2wmejObOJG8qRHS9AVxwaHcBYdPtWGY2PkQuRv43n6hUfgdMPENEGDsGc/89dNfvqTQ0rjWB0esb27wWi8ReIKbn/6KQ8f3GLv5IhRrtnZTBmOMgbDIQmOh5884MPbj7m0O+Ef/kd/l+n2Rf6Hf/WnHO/8D3z7hX9E13bdResgJv6GgaRnaLrNGbqH4ESfA+ic4Pr0Gu8/+nOq4gBmL5Nun9Aowbw64L+7+c/55OZNjk2NHTtGeUKeJlSLkqp16HbA65PrfPPKu6STKctmycBmPK5uszt4bi1Bx3UWUKd0dF0fLEJB4W6zsgdkq7fZ2h3y679+wPYLB0zs62Sj1/BQ4tbmvmE4uMzV9GVqfdvXjJZXadqGpfgIaU8YilepZMOkyEjFilxJtBhE3THcXAhU73RcP/ujI15iQayXgF//XG+debpAeO6242dDwZrOmebWnoPjjObYcfjheUbLfI0KInxvf53Ph9avNA043q9/kY5j6AGjd1T1oNsbEA4QynFlZ8DV7RvI6PwSAhuASArXa9Dr16M7IeujEgn8s6+eHd+zx/diPwdfxBN/RWD87IFPP4EV/fd3rANZTJRYdxKuA3g3Sp9zX2v3EjcTu/bveEvB+9vfpn/XV+jvHWbrVkIHxk+++ddE/vt//q8REna3N/j4ww/Z3M545cY2L7y8xVvffJcky0izHKTqN1BjkKf/lvuf3OH3fuvv8jsHW4iDQ9xzl7g3+duM1RDhbBgvB052PdViKxnfUn3dUee68fVWYLSKPLTcmL3MxeMd6voAKxx6nGFPTximY6Yjx/a2Ybud8YE7ZNUahDH8jtlgtnODq9feJlUDnBC0oqG1lkTkFKuK+/Yml0bPA/39dk60OLecQ2eOMnmEq+awGDP/oGWxeMzGlZrNwesMs9dxLpj0rp/HXiSZ+gZDNWEwfEBrG1q9waKscHZOVf8Mudgko2RzmFAYSF22VvTn7JxyiFBPJCpqERhDC6V15OjScD0oh57HAWhFB8AIE7dE4rbjOkeb62PYu3uQ0fyDDsHimz1QuydGYl2+8m7ArhvAIOKJv8OLvXUQEigEYWBUSKqQsdIcQoCK5u6T4P45ItaR/dlHPv3Ap1jwTz3d+lf9vJty64FZ8WP97tTXPwAnJGcq73/m3OLMhvb5cnacuoQLnLdCBL5B5pq2203igM7O9WDsKYc1QP5rJr/zt6+wMd2gbS3D6YgLF7cZDMdBr3K0XfSGW+Nc4bW//xvcePUyv/1oi63b/w43Mvwd84gf/+3f4yjPOmrBK08u9HgMyQnrS9HF+gpx/Nbpqu5FJPD27Dt8fPpz2qSkXu2TjnYRCIZuyBuX32CqL/Bt4I/v/JjfHl3hsr6Au+LrQjhnPX9vNcb4XKxrmy/y/33v/8d3Xxmwk+54rHBRS+0rjSVDQZMeYNuWeT0nr29w9ZXn+dEPf0KbLhkkb9B3Yu19/dFSjApB07yCLDYYbjxAySW1rcCW1HVJ+uCYZpgwL2qyNCWVI6LfxK+53pzv5Yk4aREj8+OMDg61zqnmOpqwowqFT2RwYRPsd4z4feIm0tmTTyyzcFyHZ5FucE847T4rX1mPtHUTtRuPuCshsS58mafgUhekEswHIawfRCwSX5bO0xN/Ue0qAo/43J943BmKRKx9BXrCQIY9V65p7PG+vuje3NqP30jCJBE9Ly2Ff5Qq/PtzzxgefPz8+vX77xa12nD1MF96hixy8f05pASlRajs5u/WV9zrOWBrQ6ryXzP55ve+x4tvvsar33iTay88TzocBf49aH7WdT+safRCKoZXrnPr1vvYRCAu3UDu73H1D/8L/AYYtUXwMGQ6MIrBYHGhW1w/nwIgiADG1tnOEfvc6AVOiyMeFT9HpDO0GiOkZJANabXjyBzy/OR1/nfP/wdcyS8iLr2MsBJrfc1ei8FWK1bzFcL59lBv7r7Ff/2j/44H5V7AuF6zA0jyjDYrmFcL5os90gouJy8ymUxJ8oLdjW0E2Vp6eNyI48Yt8GEFEoGhrrZYHb2MZEKWDBlpGKqrDGa/hnPvcnTs0DYlySb+cyJ8HojEZD+H1ygzRG8dhDnqDwlAGDa7LrZ5HQxDWx/bRTJAn4OJfzIOXIi3ElHBob+v/rrhmk7jvgBWxVeRyvnzU19mRQjvHRYBVLQItLPrgUyvgUkfxeBrLwjb0wmePok73GcB94vgdz2G90l52hj0lb4+b3yedrbAfK7Pg7+gPLUV0FOuuU4v2DPHPf1bdv7psBmaEAu9zukCGGdxVvbnd3iKAR9d0dEN8TwhY+03rv51dKedy7l8/fKVaLqfBbGgJREWuehB4qmNHp+wWcUaiP1Vz/fvkjlY05LjDv1LydNPcCbI+0tKH6p09l7j+Z7Ulp88bt2Kkc9Uwc/lXM7lSfnqkiNiEsgafsZiv/0ajWFV8djAaa05knwx4fXPfJ6++nXJ+rU/uwFIscbW/rJ8p+i/t1s/6fodBI5qPSrtyff9G2unjVq/EGvBtuGYM5xueDkE05+5DxGy79yTFdPO5VzO5VnyFTnS1heuV2ul7sGob3LRUyQOh4qfCz+RQo9JamfrXP770B7D3X7pE0XA/3zaoed9+sP/Isr5+r08k2gIoBfDXdbDys4e19MHLjog1ugdKdecYWuXkFJ8rhXioKvTG62XczmXc/ly8pXQC0r3ZHQsArzuCV6v4uOdMWdVwsg1xk72ztrPw7i/0rLOlX6lF3mmiDObk7UuVJOKn3+yYtn6qdc8+OHg9XO54Oh5VvbNuZzLuZyVr0TTTbSgacF7/6K2G4OLozYruv/6v+nBOa7sNW0qar6/rHb7l23n8xeR9Spln3GqheiBLwvGX8hhr4V+PXGRtXPEl9buy/WRGOuUiGccAg0Uvoe1fYGQWJYz8tTWCdS5qnsu5/Kl5asBXaBdD4x1IbijC2PyL/eNUvxBHpTjZ54aZ0DMBHlWoZdnSYfnX1o5+7zrfMnrr1GmvfPwS176MweKz7wl8NnmpoPdz7kvFzj16CQLYVBrNG53sxKwZj3zZo2iCLxCaHSCQ5xzuudyLn8B+cqSIxyhpK90EHKde6B8suQEdLF+OIRcqzL0hHncaaR/aad50LC/FNf6SwIunwXcX176M64XC/qi2xKAWtvIonL6tIy2GOrnbBzvUBjG2LPHBurBb5Sf3xPqXM7lXHr5ShtTQjBD13rI9DnVHno9rK4TCE/BjjVc8A603uHWXecvcZ9/EUahD5l6wnR/yr/OJjI/eSLWRuAvLzEj50zxmXUH3pljBU/ucPHzT0+ccWfu0bmQFIEvPYntNd7z6NxzOZe/mHw1mm5wsDghuuLAMdMqLmYRzFglXJeC2KUvPMkRxs+5z4LeL3eTaxf4Jc/0RMBCJ3btoPieEGtNd//SIog9vZ6MPPgiCY+HWG81lqhzEKpyii7lui+pvfb59Thkhw8RPJdzOZcvJV+Rpvuk88y/HtNlY+lyz82ereJ+xux/6lr257b287PTPu+ePkeP/nokABTE79drqH+prsVP43ujd+xzrt9/uNeUu7efFhPchZf1em/UcH0qpguJruegey7n8mXlK9N047qVInKy67XWXc/hRvXPcZafhE7ziqGvn9HoInj8ewna/XynFYR7e+IocebfT4P09UI+9Bp7R6t8gazvQB1FsDY+XSrwk+VzvljWMftJKuFZG5OQXk3vwszc54ecncu5nMtn5aspYi7WmVvX0QIOuhYpvqj20xd3X6vS1wiQLnxARAfdOsid5YM/T9aDKZ5yxSeP/sKjxOf8+8vK2ZpJT781D9hdAcB1vfQsp9ttPH+xe1jvXuH/XiuPtx51Ef9YB2rR88HnvO65nMuXl6+k4M25nMu5nMu5PF2+stKO53Iu53Iu5/JZOQfdczmXczmXr1HOQfdczuVczuVrlHPQPZdzOZdz+RrlHHTP5VzO5Vy+RjkH3XM5l3M5l69RzkH3XM7lXM7la5Rz0D2XczmXc/ka5Rx0z+VczuVcvkY5B91zOZdzOZevUc5B91zO5VzO5WuUc9A9l3M5l3P5GuUcdM/lXM7lXL5GOQfdczmXczmXr1HOQfdczuVczuVrlHPQPZdzOZdz+RrlHHTP5VzO5Vy+RjkH3XM5l3M5l69RzkH3XM7lXM7la5SvphvwuZzLXxP53j993onQWbNvNe/C3yCERAiNkAopE6TSSKmQUhI/hxPgRPf52HdQ4Ls5O+ebs1prwK03rG8x1oSGoHD2PqK4rim0EKJ7z5/Trh1nwtEOsIBFCIcL/3bO4uJvZwCLdQbnDNYZrG2x1tJ1j31CpOz1s76vojvTlFQIEPJsz0U/hv6+nYiNUCVSKoRIkCpBCh3+Fv6+pUMgEEL1YxG7hn/mHrordRcUIkEJhRIapVT4kV0zV9/UViJd31zVIXBOhmcpu9dwDofpxrT7wNoc6Z+UH+//9//px89s1XoOuufyN1rWF6/vQg3gPMhICUIhpfY/QgXwlWcAUAiBCEZjBMezwOWhRilwTiCcDddVvpu1iMc8TULv6whe/oIIHE5IPLgK6K4fgSGChAUc1nqAdULgnMCtgb9wICJIW3+v3fd4yjj13yl+3/61s3/3n3W4fkyEw//pcNbipMVaEcZV4qw90747dgb3fzztXvrXhBBhg5HQAX485lmdq8Vn/imwoQu3e8rT+Wx78fXbfJacg+65/I0Wrwl6NUrE30IipEJIiQiAK1AgZABXD4ROiLVPBm3OubVz+YXunENYh3MCi8AhAsD53zwJIo6gsYUziTUtbU3zcziEWNdAQcoItgLnFEI4rDNIGcHW4vDgK5zAWgHS4ZzyWrj47O34c7snNPAoPfg4J8JfLmwO/ddxLt6vQCI6g8LiwNpwfwDxu7puLF383p+DaD0Ih2PEU14HpFy7of6uu/f9PTtwfiML20/YMNxTAFt0R/C5YP5ZOQfdc/kbLc6JoDlKEBKEQCqF0AopBAIVQC/QCVJ6bVGKbmEKBFJIb7RKCWs4GkFMCkFUQk1AIX8+i7WKJxElAoQHOn+ts6/BGdjoNEDR/bhgCksia+A1XOcE1pnuvDgXoE0FU7o/31k64yzw9u+ta5Ci02JFeM8Jr3f3tx0+Z50HfDxVYq03Lj4ja9pt3MyevgGEg598RfTj2B3i+vGLO4BbpzLi6+HYuAH6F3paxzkXTIWzgP4sOQfdc/kbLp7DE8G0lUohlQIkkgC2qGCmSpwAIQXICNYB4CIcdP/xq1UQTNw12kEgsdZzrMIqpFw3j8+axJ3mHV6TUq7xigQAC9ytiCZ8/DHhINkfK/zrnpiIYOIQwiGERQiw2DUkXecuewCOWv3TqAR/zu6j/lc8lejxzuEQAbT853o+/CxZ6rrrr18bPgd8w3We5Mh7zl309xXnAF7r7nn6Xnv1Tzk+YdfdB8J1z8s98ZlnyTnonsvfaOm1NIEUCon2P1GzDVosQoEUiKDhrlMKMvKpcfERAFlER02PPjJwhNZajDAEn5YHnzXHVP9bBoeS9JyyEDhhPX4G0HLrAOlsZyxbS+B0o7asiHRpYD09CAqFwyGF1/YUbaAhguPrKWRoD35ngc/fU489nfEeNwMRv5wAZKA8/JHW2qDpeoiL9I0M7z8JvE/eB3hH2BmttnvG/WsRQv13F2u7Qgepa5S840nnWa/+rn3n8PfT+OYn5Rx0z+VvtPTUgfeoKxU4XBHBVnROMyd6MI3efE8riACKnuvtzo3oAEbCmknrENYiROMB0AQOIkQY+PsS3f1FB5OM/K1Q4fwOIQxCCKywwQwWHcBJaaOu3d2XlNIDi1NgZadlWysRTrNuT0eHn3fLhcgG8XRu14X31s32iGc9Dq3di5BBd+xBFwjAK3HGQYwQEY6nKcBnrk1/js++/8TrnYUS7ztqt2LtVw+0Ub91a695IHbd0xY85cY+R54Juv/sn/0fHU5QNzWHRyc83tvn8OQAmSnefOUlXnn+RXamMxKRYJqW4+NjPrp5kx+99wEffnqH09MVVW1ojMEYg3PO81nhe6owqFpKlBLEqSSF6LidaNZ5FV5inMPYFtsaWmNx1mKt869jwQmsCwPVmTIiEPl2ba/yO52M5pxUfod28aiw0wrJaDjmjbffYXM243f/1u9wslwxGI1wrSFJEhyWi9s7rMoKYVv2DvZ5vLfPwwcPuHvvFj9/7z3qpsZJhUsUVmusdFiH995a110ba3CtxbUNrrWY6IQBhHDIoF0pnOcJowfbRaZJhE3YYdf4KOfWjGAhgmnnX7ei58sc3doKH7Ke6wsHez4wTsY4DV1gusJ5ow0pLMJ5RtGPf8+HxWvUxw+//Gz9CkQJ5TVcmfRRCjLwu7Jn8SDME3rwi3+r8Bkhgwc+aHGdWb9mbgv8czbWYITnPhGe33Q2jpv/UJz7xHCqCMTrX6AzbeN/1k3/qOFKnJN9aFp4zkgH1iGl8wAdzGMnEoQ1eHrCrV3P+md/xvL/LNA5BGJtDXavddqtxFmBC1R2vM9O43W2m7Qe8P33lC5uRPBZx16vSXvt2XVzOf70QxaODbSFPfMdxBOfiPztk9puf8z6+Hwu1bwmzwRd2zRYoK5rnLMorciHI7Z2Zly5fIVrl6+wu7HJIBmAtSwWp8wmYyajAaPRgA8+vM3ewQmybmmEpDUmEOZ+1zTWIhBY61BWoAJvpaU3O4QUaCE8IEsddkeLtRKrLU3bYlqDMRblLFiBcXF39YNuCI4E4TBOdkMogkkR/ycR6EST5TnOOS7s7rJ76QqTyZSLu5f4tW98k90Ll9BJGiaeRCUK27SkSrJcLUAkOOe4mAy4cuUaybe/x97eI97/+Bd8/NGH3Hl4j+PlglYKWucoqpK2aSCYe35BgwgmoZDSb1bxgXibMihPQVMQApwE6eLmC8Ew7DUtiGtWil4D88qVC/ya/5wMbpfOESL8PflNCO8MCvpYbz7HEfQaUTgc7/HvuT//RGRUL7BfZoZ+1RIiFaQM4BtMeSElLoypEN5x5kG413yFEKhOO5YIFSIe8JTAeu6RJIBa3MysjxZwLm6YNji6ekCJoHsmJjhKoCMiYDwJfiKATwRY/3HZAZbHW08y9Nq+DeZ279iLPGs0n8Wa4tLfSgDAbh7FvSMCp+g2Ded6TdxZrwidjT8O38VahPTRHvF/kVL5zHXXtkbn+k0iOv/OjsvaxvUZXnrtu66B7lnA7oc/KOFnOOYvI88E3aap/fwwLWmSMp1OGU9nXLlygcs7F9nZ3GZ7c4tBkiOA8XhInqWkaUKa5AyzAe9/cosHjw4oVhVVC9IIjBDekeD8pLFCYCxIBEoKnHIo4dk1pNfutBQoJbFIrPPxfUpAjdeYrfVarwwT24YZYMJgWOd3Shs0WRdGUAp/bvCA9MZrb/DKa2/y1ltvcuXKdUCSZSlSSk6OF8znS5RSWCFJtEZJWJQVy6LAGEPTtgzyjLaFolwyGA751jvf5s3X3uH45IjVasndvfv8+IOfc+fRA1YGvxE5000oIfCL3hkPaiKaUHEqh41ChEUR3+qnxmde93PTf18VJzgOI8NE6xyyazu4gC5cSdA5X/xY2mBNhrFbu7sO8LsL07/qovYjPgskvwIRUiFETHgIP0oFjc/FVdVbXER6QSNj4L30wfcEWqLnXxVeg3OILknBgRVek3RJ0D5dAAAbrLL1a/amcBRrw2e6mfykLhe/nOieT4QlF56UjMq4URjOOtL8B7zd2WvHIV4YYI3vfcbI9lyqE91e04F/fN8F7jmCr9eQCBfvv0cXPta9tCZPqN+sAW746d+NDs8n7j5aZt0f8dqsjWB/cOeUE593zOfLM0G3bhowBoQiy1KywYA8z7ly8RIXtnaYjCYMByOyPAcgSRQ6BpELiUo0+SAnG9zk/r3HnM5XNE2LMYIWaK0LXJHFODA4DBKHxMmw6I1DSEmMJ/GTHkQAYWX9Di2lwlgBxp9POLBCIK3XIiQecGWwHuKGq5QiTTTbOxd45fXX+fVvf48Xb7yEsS31qmCxWFLWtacshEInmqZpaa1jOMxBSOrVisWqoG0alNIcHhrqumKUZ4zGY4xpqZqGtmmZDkf82suv89zFK3x69zYf3v6Uj2/fYr5YYJ1F4RDOUxvW2WDWh0kWzFPnglYkfKxl3I19HGQw/AW9iRfmgwISBBLvMInLyToXjo86sr8HETQbiQxODeGzhYzD4D/gteHghT4ztaPS7egcF2f4Svclp+hXK167lYFi8MkProtbiqAbtHr8ZujBNkEp3WU7SSmRQgfN1COaCBxvTIQAT7Eh/SbnrEJa3W+4zoebybDZhYft5+sTWlsXqvQUwF2PAHDxOQV1t/PASxA2gLuLmq5GiLbTKnFxTkWP/zoBFS2XZ0mklVgDUtFxvX5sBIEVJM6KzlHp+u/Tb9DdzPrca3oNwltUbu1n7a7ObPiiswzjN+pDwp4Mz+vvoXs0uLCJdd/1C+SZoCuThKatEcKhkyFpNmA8nDAdj5kMR+RZjtYJJNprQmLAANhyxnNW1vl4RiVJtOLeg8ecni6oqhbRCpwxWAvOmC5+xVnPGxknUFhaBIjWD4tzHXcWF3Kc8P3uL4JTALCmWzcRsaz1gCOlRumEV197hTdefY1XXn6Nzc1tTOvY39/HOctquaJsWtqmoWxbnHXkeQ5CYGxLohKyLKNpGg4ODmhbC8ETPBwOqMqKVVUzHqZ+ApiWg5NjkFDVNZuDKb/+2tvszGb8uw8/ZLGYU62KwLFaBBJFzzHLsLPKOPHCZI3TRYSJFhU0F036aO9HE1HQR2QKTwxE2O6nYh/uJIN/SCA8T4zzXnfCZ8WaZm27KdlxcBaLdGEhhzCbpygnvxJZd55JqcPzi1q4DRpgb32gJEJH7VYF4PXg21ETncnL2m9HTE6ImpILAG9lAIjIrQfg7sDC9qCxnoLrTXcPit016DfoXvxzkwRT2K5HNEQdTeBD4wKohkkknFoDojDHwt+q26KfvF53h2v/Fp2jMT76LokCTzVY2QMtgTaLccRn58pnM+ZYP6vzXLQTsrOo14H3LOcdX49ha+tW5ZOAH0aqM+ICt+/imP17AN08G4AxNE2FcBYlJVJJtNIkSqOVRmrVP2UNMtNkJmc8mXBhp6E0LWVd05gGpEMnipOTFXVZIxqBag2NgxbnzZag8Tpr/eQLg2GdV2KVlN0El1IgZRI0Be8X0DqhMR5CTFl6OsH5BTOZjEnSjHw4YmNzi52dC7zz1jtcuXQFrRKsaWnrksWqwDpLsVpxfHJKURQgJEprTpDexxJMy0SnoBRlUVC3LVZ4beX05AScYzydshoN2Jz5zUpJwcliSWMcWkiUFHzjpTd45dpz/PgX7/HeRx8xPz3FOoFKUoTw1oYUgs2NDUbjMa51HBzsYdqm01ycEJ7ADkRT1CS6yd0tVr/gvAMupH2ubdHrepN1BOcmnearkH5hyrDAo2YWNBMrHLZzZESNqLO/iBRDz/H+akXGyAWhEeiwtck18AnaoRAIpVC653CVUkjt6zF4p3DgsIHOIO/y+EOWk5PeshMOlEJYhbLaO1PjPQXFwkcVWG8N9mjwhKzvYE+Ot4Puu/i/LI7oD/AoETnVcJyVhInUfzacvqNCOnogJlWsgf6a2R6v4bpAOT/WNty26JSBSF34yAoimOEtuajwrzktngK48Vzxnw4rLALvQ7LWsh51cpaHPavFRt67My3Xzv1URkx85h/PlC8GXWsDcFmEc7RNQ9M24BwqLlHbhoVrgzdUkmUZo9GQ6XTIzs4mi2pB3daAQ0nF/HSBKgVVHaIVjPX0gLXeqRQnnAWn/OmtdRipUM6RJnFa+51IKcVkusHrb77DYDjk3v173L//gOPjI2rT+uIWMuXC7hXefvstbly/zng0wQlFVTe00lJXJYvFklVR0LQNprWoJCUVgsVyyfLwBOEsTdMwHI0ZDEeMR6BlhrWWtm4oqppVuaBtDYN8QGsNdVWyKgpm4wEb0wmz8Yg0zbDGoKWgNZZBNuIbr73F5mTCx3fvcXCwz/J0DlbznW9/lzdfe51XX3qF5emcP/rBn/DnP/kh+4/ux/SmjvvtTTSCFemi3ypmOGKlCNy3Q7h1HmttrRK8uiFVVQgXloVFCoFVUasW/fXBa0fW83VRe45aVfy3C2q4/HJz9CsVH3Fw1jnWj0Sgs6RAKolUGi0DHSG153CV/yHE00ZLINItkY9dd2hZG3lfiZMSJ1Woy+B8uQchOnz1lIZ/DjFutYtNpYMCuqPFEwCC3zCliJUEwmbnQuJE0Cj9Pz0wGRcZ+iguHLMO7uvafK8dx7nUfzpuRj6ao5ubItBX4uzYd3e+ttmdmZTxik9qoN3bImwQXuMVCKxTnaYbQ9LOni/QCevxuPE5Ruuh2yVkt87WL71G5H2hPBN0tZLoJCW1FqQ3D41pWK2WlFVJ09RkTY1yfhd2zquj1rZY4XBakGQJg3HOdGPMxmpCWRdYa5DKoeYKUVbIqkU1hrY1tE4gjIn4jcNhDBhrUNahlMOhUdIhhV/WSiqef+Flfvfv/D1uPP8CL734Mk5IPr35KZ988gm3bt3i9PSUi5cu8tzVK8xmW+AsVdVwMl8yHg48MC4WnJ6eeDMSicGDLm3LqihYrlaYtkYJwWw2wxrjTTXnvJPPtiwXJzSmQSWp52Stoa4qlBAshUMISaIUCkuiE4xpEECSZmTZgCu/domXbhzz4a1PePjgPv/Tf/SP+eY3v8X/+Pv/kv/+X/xzUqV569XXcBL+9N8WHJ8ce062mxzBgIv7Ic5rV1EjcYHCkYTA+rWp4td2t7DBe7itk6hOQ/YHqDgJbdBqRbgD60/kuuIpcXraQI0E4MV92Tn6lYrovPfijAbYabcBcLXynK+SIZog8L+RD/bA4rX+uACjw5PuL688yECz+JRijZUWLdbHpF/8UiqEExjXIKUP1xM2FmLx3+AzWu5TBtaftt8gPXkCAuXvUpieSolmeNRhhQiREIqem++dbpHv7ewrcXYMo4bbbxH+twz3LiOKRTAO23sE5fh9rOsPixE1/YMUfm4TlAkh/PwO1dSMVf5ZIrHO+nnYkcb95uG608Zd7wnfQ+SLfwl5JuiatgEcWifoRKO1AgeLxYKj40Omg5wkUeSZP401BmsdVdNQVCVVU2OwSCVIs4TRKGcyG1LbBidBJYq0SChXNeWypmoaVNt6JxshHMZ6AGgdGPzkFMbSmhaJRmcpV65d5/d+9/f4wR99n//qP/8v+O6vf4/f+72/z9bmBa7/zvMUp3Nu37lFY1tWy5L7Dx5SVRVCCoaDIavVkoePHlPVNcvlEq00o9EYJTWr5YrjowNWy4KqqhFYhJSUZclw4E1NZ7yWvFzOAwcuEdbSNg1GW7R21HWFEI7hYIBMEpI0B+eoakNdNlA35GnCcrFgNhjyrVffYPDNb/P2m+8wynL+4d//nzCdbvCf/T//r/zs5/+Ob37z21y9fp1FsaStWkzksegnTAybE4H8dYC0DiUc0nqN07qwuXWcYdQS6DOsjHfcSSU7Q1CI/rcRhIIurv98uJveY91rxXGxuL8C1Zw7DUtEzjlWu/KedKECjRAANmqoMhbE6cKtIh8aT+zWIjXiRkYPN8JH5hDAu4M46zr/xHqChHMKX6rAdcCyvvhd1Fx50vT2Ys84k/oNr9MyXU8xyGjyi/VrBR7YdR6FJyJqIq0hei3WyVDPQHaUwdl7FGsOvv5cT+qREV+j3SS7eRUdfAFzifRHsO7C/LRWYmXr57kIGW6it876qz8ZPuYplf450F33aTzDU9mfp8gzQbcsl0ihUFqTpSlaalrTslgueHygmAxzsjxFqxFCOExjqduWsqlZFYU3yYsVVevjfHUqGIw0Y5OBsKSZpCxSllnNSlWsViVVVVELAcLStgYrOFNuzhqLFQbTQo3g8u4l3nnn1/jn/+V/ycc3b2IELE9PqKqSb3zzNxmNhmglmS9WnMznOOfjY4uiYDwekSQJ5aogSVPmqxU4y3g6RjjFqio5PjpmVRSsqpK6qdFSkCUaZ2E4GmKsoSqXqMDlKqEoqsI/LOlL9+lkRqpHKCE42NtjOhkznc4YDgdMNrdYFSV1XbJcLkh0gqVhkCa8/NwLSOc4Pjzk+OAAV7dsTmfcuvkJf/r9P+C1N9+muP4cn978FFvbzkrqIS9OJotzootXdqJjz7ridWcCxJ2fzDZweK3wHLAKsaRCghJ9REMM17PWYS2YtUwmv759ZK8IGo1y1sOF/dXzC37txGI3a04w4WkHueYkk1L0gNvxoH1CROdY6eAh/hWiQQg1baO5LixCSSQ6xK47hDQhquCsCS2kQMTx6gDMdWDbpeTSIUN3D+tOuI4gWKcvwnchJiV4WPMKRvg3rHOgcm0DDTAXx6OLKfbhRzZQNAhC7Hd85n1MiwjWU9y0ukiRiLRrQOi/s3coW2d759yZ2sLxWA+altYDr+2dYNHhGzPe+vHsr9MpBx3A9wpEV03uLzGFnwm6bVsjhCJVEq0VidTgHIuqYu/4kO3ZhM3ZlFGeISU0bUvVtFRVzbJccbxcsFgtWa2WVE2BoUaljmykcDIlzRRZ1pLolERotJQshUDKGh9UJmitz0+Pk9LhaI0vQTccjXj1ldf4H3//97l56zZaa9I0YV6U/NmP/hydDrly+SpSCA4OD1lUleesTMvly5fIs4zlqsC1BqxjNBzCcIh1MJ8vKKuKsqlpbEumFa5RGFPTtgoJZDohzQeslguaqsGaluXylLquqduGLMsReIpmc3ObNNFMplPKYsnpfIGQgrppSNKMJE0ZujHz5YpisWKYJXz0yScM8gGnpyecnB7z8MFDdJIy29yiaVv2Hj/muctXOT4+5mB/32fk9fNtfZ6GidJzWVb0YNxppP18hO69YDo6C07ipHc3OekCiPjPGwvGOv+84kR1EidCiEVnWjpi4tVfBREyaqkqaGjeiYVSSCV9lIJUawDrtVLWUocjRSHXwLDf+gLMOAe0/etCRBODLlrBhsKPMnBroo92kEEzttZ22uO6FuZcSG7oU8DOKoxROiuErvYCQdt0IgCsCDEza3PCV2EzYQ4RzO4AbEJATCw5k5EXL0DQVAO4xncEfuMRUVNlDQD9C32EQTyVxwDbjWtIn/gc9ItgbG3rHfHCQShc1KnQ3Wzsnb9CRA0+jrXoNoW+6LzqgPizoP/58kzQHQ7H1E2JcQ1gUUrQGj/URVmzKguaqsY0DUJrjLW0bUtVNyyLkkWxZLFasiyXlHVBa3zol04sI5ViEkuSJGiRIm2cvCALBa7CigZazzeZ1mewmbD4tZDcuPESD+/e4f7DR4xGQwaDAWk+JB+PGQ7HHBztszGdopMkZPs42qbl4qVdBlnG8ckpUipWqyIAuUQrSbVaYoJ23rQNi+WCYllQl4VPiFA+c83ETgBCMF/OadqWum0oqoKmaWiNRemU1WrF48ePeO7qVXSScGF2mWK5ZH5yikoShCoYDgdkgwEIgdKKpih57/332JxOOFnMOTk+YTbb5vKVGwynm7R1Rao0GxsztrcusJrPMcbQti0xCiR6iXveNnJ1IYWYPsvMBBMT4YL59USMpwMrbTA9Y0AbHjQi1ruoEXlKw4mzK9+t/cfHGH/pefqVia+xICICdOa2lLJLljij0YbfiBjF0HOF62Z2TzmuhyL11/ChTE/eDCHbMXDnPdIEc33N2deFOflrwLp5G4AkfLwrywh9eYSnjQXrjkTCOUOctVDr2NSZ+3ROsD5krr+HOCL+JxYGQthubHw8cnAMCkOMHu+/9Nr3Wbun/t/+S/U0Q/97vSKZdS2YkAAiVXTBR5XiDHe8Tk/0e0Yfc92nLbu1Z3H2vp4lzwTdzZ2LrFYLynKFs6arPi+VAhMKIAv/BZVQaGERFsrKg+6qqFiVBauioKwLqraksRVCQZoq0AlKWYSxOCOJRL/Uvjq/KgVl1dC0kgaBNCaEfvjwr8sXL/LeT3/KcDRiMp4wnW2wsbnNbGOLbDhAq4SDk2Ok9BEK1jmmkwm2qTk8qtnd3aUsKk5O5ozGQ/Ik4cHjR9i2Jc8SThYnzE+PmJ8cY61FKUmepUwGOdPplMlkAgi00kwnUxIpqcoS03it15qG1eIIXEOmFYdHh2SLJaPRiOlkjJ5MKMoV1WJJW5dYIToqxRjLdGOTqq4oViUvv/ku+XBMsVzynLW0tmUxn6OU5LXX4PTkiJOjA5+uighZY8HB5qK56CUmqNqoq4i1ilPht4UObJ0QkeJDiC7YKMThOqzwXndpJVZYVFfMWgZnxtkQNlyfwfarFgfdmMnOlJd9aOIa0PoECAUhtlcIryhIF8MmwxSOdRecRTgbNsEuAR0ROkaI+BRE7OwQtLI1jVmEHc112Qp9gsnZNb5OafjrxKinM/VrA2D2GpzrzitC1mZ0lsbaJTHJJiQzh0QGr+0THYmyL/jjgVt1/KkALAYnfEEdJyxS2Fgd02uuwlMbAuOv94TiGiExhqlJPzG71/oxiaFnLjzPXhGw1mGMjyyJyVc+Hto+QTOE59QVrV/f4MK22m2oT8ynLwG8zwbdzW2yfMh8foxtSuq69g6stRhFJRUSiQrmlrGOqq5ZlRVlWVFUFauypGwqGttgXOMzyaRAJBLbStLcYRuJ9b4g0iwlTTPSMkEvC4pVhRTQSBEy0xTD4YhitUJnORdGU7Y2dtjc2mQ8mrCxueU9w6bh+OSIo4N9yqZhY2OT1rTMFw0vvfwStjWcHB+T5xlt3XLrwUOMM1RFSWsaHj18QFVV5FkKSFKlGA6HzKabpFnGcDjCWOfpgSRlPJqQ5kPSw5TlculBR/gQlcVy7heXsWxMZgyy55jONsjynHpYc3Sw7xNKnGO5XKEQKOkXZToYUa0KsnTAlUuXaEyLRLLaLJCmZTabcef2JzRVwWq1wFmBco421LaInJzqtCY/WXwcqQ8hw/V+b4dAOjAyTOxgQgXsjVOSYP/F5YtWAqzEiVDDodOY4wT1dyLDBP+rEKfbAVXUaELRGqX6/lyds0mGVF8VIxeCZhe4bRe15qjtC08B9Pn86xpYAHMhQ7ZjsCDWbqezS9Y1u/h73SlGr+VGzfesNiiCU6j/iIg1c3kSKELkQCxyZPvUZH9YsHVCzQoXNp7exNdAgpTerWVCau1k6zUuXv8W040Ztjxm78H7PNr7mLZZgTABxG2/sYc2Q5+ZIWeMp7Pabx9K5+e9EVFR6CMljPWbnhQ+KsQ5up5srD2HM1aLcF8KTP+9aLqD4YgkyZFSsZgfsVzMqesaBCSJB1xPaDuMdTTGUDU1q6qkKEsPuquCsiqp2gaLASnRIkE4iW0tzim0VCRakqUWJRStNWR5TVqmZFnKqV6wWhboOhTH0ZprV66QDsdMZptMN7aZbW4zm45J04zVcsnx4QGHR4esqhKtNUmasVguGI1GvPrKq1RlydHJnNF4Ql2X3L13l6qsWC5OWCwXgCBLE1579TWv2UtJW9VUdcNgMGA8GjLIUmSWY52jrSrKssS5CULC9pYhz3Na13J4cERT1z6srGlYrOY83t+jqitG4ynj8RQ722SxOMU5R53U3Lt/n6YsGY2GZFnO4dEBzrRcv3KdV996l83NTbaFz+QpyyW/+Vt/m5PTE8qyQChBU9dxyoQpRKfR9ht2jJnttYIIuK47to+nXCcpnHMo0a8BJwRKOlxouxLDkvwCj6nGAcSD5fxXofaCp16C00ioM4DbAW0AGCFUaN8TQ8WiJrTOZfaLLzaC7J5DZyr7UDRc0HiNDQDtEMJ0m9N6plRfS2BtcTsBToYuEOsA2vO2HbAGDRUXoiRitmCgOc4ARnhmPrxE9tcmcJxhTJyUAW4VTmqyyQ6bF17i0vW3mYw3cM5QVXPu33+A2VvxxvQFThvBDx+WvPut/y3fHUmO9+9wcnqX46MHHBzeYVUco7UmSxWniwOcLVDUIRLEdRZFlLNUS9jIY+q8C3TlGUolxCFbn+DinAi0Q6RJ4rwUMUgyJLjETViGTegs5bH+3L9Ingm6QijSTDNoh7RNzWq1pLXGd0RVGicF1liM9eUbm7qhKCuWhTeJV6sVq1VB2Ta0ziKU88HlaJxTePrR76xSOl8oJ82wWLImI01TBlmGTjRJqlgtS5qqIdEpw8GAuqzZ2trlwuWrDAYDXFNy8PgRH3/6MYvFAgsMBkMaYxAqwRnLZDxl7+DQUwV5xtHRIXfu3GE+n9OUBUprdi9f5de+8S6//p1vcXH3EkonrIoSqSQnp6fsP9rjwcMHlEUFzjDIUlyq2d7dZmtri52dbfIsZzSaoBJN29QcHR3xyc3bvPfzn3Pzk0+4e+8+q6LislCMRiNmsymtsxwfH5OmKRsbMx7cX/L48UOqoiLNUtq25fatT9k72OO73/0tppvblEWBMS03rj7HxUuXebz3iFVR4GIKdODLIrHbBRYFs25dY4ogGWqcEWnBMxGW0coVjhYRwDXwoPRplM4F0HZe45EhIqKnMP5qEAweFHuTXYaqXuvNJ4WSPnvsDOD6+NbYrLI/X1z8gS5wPa1zJvjfiVBLRPnaut3YOQhRDjFZdx103Rq4BqW2pwj8mXueV6yNsOitmY42itpv51WKYL4+PgGckV1hdyEkVkik0yAl2egCL735d1HTF9javsRiVbFvatLhgEpWPN77iBsHDyg/+iHPvfQGHxT7/Jv33+PKcy/z+vY3eO3695ivFmgBEwWzfMh4NORg9YBP7vyQP/iD/wem2fvMs/tsVpoh0i8IH6cbt8JeXfDJKf6ZqxCTH5SANc5dSoVzMXY5WIHBmRaHlycu/2Vn87ML3tQNKqT5KqXROiNLDQR1va4biqqirGp0IlhVJauiZFWsWCxXLJcrqjLEkEpASRKVomSKMwLvhJKBP7LoVAbN2p87yxJqk6IzQZoJsjxhtShxRiKFYJBnCJVRLBe01YpyOefuvbvcuX2bbDBgNtugbWqkVrRNzdbV6wghSBJNnuU8fvyI23dvc3J6QqoUl64/x7d+/dd59xvvooVk/+CAg0c/ZzKbUbc+1nY8GjEajnj33XdpW8P85BiBIM0zRtMZwjmqsqRclcyP7oKQjMcj8iTlrddf45033+DmrVt8//t/xIP797l37w6mabh0+TKz6ZSirDg+PEAqzXg8YTDIOdh7zN7eI29NVD4cr6wKXnvjXQRQFAWDNGFzYwslE7AlpvUzIQbir8+P6N+KCy7GIIhuYfogfBsPjtVI1r0wFl9Xw7nubSckSriu/qlwPlJBOSILh8WhEJ4H/isQMuacT+LwyluIRZaBMpAKoXw3YCX71utqDZQR8oxJv97qHNdXchH0IBEda/0il56nFIDU4CytsPQ1jCNAhgieTutd0379mcO3CiDqTAcOHe/ZacsBUDuuODwL98RmLIAQb+uE6L6zRIDSzK7/BtvPf5uf3Dmg3r8HP/8EoxOazR1GtBSH+4g7DxAPPuHRnZvwoz/hsUnZm+7y6NYjHl3YJZOWV196GSuG7M42GM22sDpjkmf8xjuvMj894Qd/9n9BYNa+Y//8wujjqwi5s9QshFA113HmDgHW4JCo4OHw3HJ4Hi5aHTHjdV3pWOOb/5I6w7NDxpqKtoWmaX3Kqk7I8yHGtFgL8+WKg+MTEiHJ8iGrsmRerFiuVixXS8qypm4NTnp+MskSMp2Ck7RtKHAtfK63lL7iV5Yl3omhJYnV5Gh0BmkiSRKNThLa0tdwqKqCk8U+QijyLKWuKh4+ekjrLKmU1E1D2zZMsjGXrlxlMp2SaE2uE/YfP+LTTz7l4Ggfnaa89dY7/PZv/TYbsyknR8ecnpywPJ1zOl/w4P4d9vb3aI0hzzIuXbrCCy+/zGA4omlaRqMxD+4/IMky3vv5T3l4/y7SwXiUk6QpO7uXuXjxCtONLZJEc/XiLv/x//yf8ic/+DP+9M/+lFt37rBYrdi5cJHRcEgiJccnxygUR8cHbGztsFgs2Xv4gKbxE+/WrU84OjogzwfkWU6eDSjrAmMsZePTtH1crohMQgDIaF76ReesN8e6DJ5AOfQmrOdnRUiqAOmLb1vA+ZRgHJ5aCAArRHSgcdYcFiCtXyAiFsD5FYs1BqeDpisjnRAJ7L71uhJ6jVLoefL4JT34hTbnbh38IC7qKBGchfNlMj2I+ap4wnXL21+nC9uLxkr/bHqQf7qIYJl0+nF4JrHm8VlLJ2rAodyqC8XEiQkOrh8XJ3BCk134NebjV/j5v/sE2xQ0xmCLgmw6Ynlwh8vbG+w9PiJbNYxwiMZweLzPYuMKs2REdu8jkg+/T6Uk//IPHPLiS+jLr7F57QVevrTJW5evsds6vvfd/4S7d3/Iw8d/HsZR9GMex6H7zmsBZU51CoUHz/gZ3/TAj7Xnd92Z+g8uOPMC8Lo+okMIX3Uv9sv7y8iz2/UIQV0XFEWBMwYpfHYaztE0Nafz0tdfsDAeNhhnKYqCYrmiLEqaxuDwKbJZphlkGanMaFtDQw3C180V2j9sqRRahVhICZnyRL1OPY2E9JzuwtRUVUlbOU6PD2mb1odc5UOM9ee0jUEOBcPRgI3NHXYvXGA0GDKdTPjo4494+Hif+eIUhOStt97iN7/3XebHB5weHVJXFffu3WN//zEPH9zn/r07VE0FUpHohDt3b/HjH/+A2cYm27tXyJKUk5NT7tz+iMFgyMl8wcnRAcMsZXt7C2PgYG+f8XjEtRsvIvRlpLN89zvfQSrF97//R+wdHFLWNVubW0ynEzY3ZwjhKKshi+WcCxcuMD89pTg+RGtJPhhQrhZUqxVHzrG5sYXINHVbE0OSbADSuCXHDEYbOFbRLdjIgYX5bEVPCYT3hXCeh8R7gSPHZjpqARw2hJ7ZUOouZBV2fGCoVRU+K9znwcXXJzZG5YRat53JGrU66Pqiee3Wv+072doOCP26tvTFYs6uSM8b+/nrXKh253rg6ArOBIkdQgw+46/TZc841dbpANddsrd819M0HKxtFsbZtePi/Z+lL6IIIVCh7KQPK1Sw8RJH+iL3P30PmRtm17ZRNmX7wjVyAaflPjsqZevqDU73L3Lww5Za1lS/9hxbb/4t2u//EelPf4IWFnv1VYaDCXZxyuatH/FnD37GnRuv8bPbd5gMcnYvXKKdvoh79KMQMfJZjbf7Gm6NphGmewo95WIjlwAOjLE4aehiteN5xdqG2gG3P5Gl23s+45f4Mn6KZ4KuCl7ttimxxgZOBxA+f7msGk5kQaISqtrTDvPFgsViQVmVWNeilCTRgiQUNldC07Yx2DsUIBfBUy+9NtEBcOr5NKl87YXWWMqypanB2JYszZifntJaC7YlUZqy8BW8NjY20EoynWxw/eo1BolmtVpxdHjEwcEBq8UpTV3z4gsv8r3vfJdsMMI5wSeffMQHP/8ZNz/5iNPTQ5qmxlgHUlK3BoSPyR2PxkidcnTyPlVToaVitVpy795tH9YmFU1TcHp6zM1bt1A6YToZc+XWTZ574SVeefkV6tbw/PXn2T845IP33uPhw4cURcly5TXisjY465hONjk63OPSxV2K1RJnLJn2GXRlVWOdZTwcsLNx0U8Ga7rl1mXoRxPU2i5Z0tu9PWXg51iHKl1JSSscWkQawh9piWUy6TQyaUMuk4gQ4wgWMVKcSdJcYyx/tWKdDcDb4FxKjGf1zRA97wd0ROg6LDobQbgvJdOXPnxCAjh7x5Uh9kKDoKlFJ1Fw4ogQ/RFNW+tcR7ue4Xg76ihoxUKTaIlKxuTDGXma01pHlg9o24ZyOaeol6yWB9AsfVEx50HehfEwzoSaHf6S0WLq7lckVJNrPDaG8UbN997cZkO1KNfwcSIp6pLvbU+5Oh2wNbtK08748fVtBuMJ+tJlPjwx1P/kH3Pj1RtkVrL/whu0THnw+BbDj3/GJXtK2j5i/+OfcqC3ubt8iZ2jW2gkKnxn283gNfAVcWuPG8damF7Hxfb0gAs8iw9DNSAS70yNj1v4Apb+GoZYgS5+Nl5pHWjdl1B/n63pOtFVxm+q0vNNQoWCNYo0H+BEwrJxNGYBpuF0fspitaBtmy6NUieSPMnRMun5FhlCU5ToSiUK580ri/OxkkohtMMKSdqmJJkhySpU4qMRcj3s0jPnqwJjY7C14fj4iAsXd9mYznw9iLrBtY6j40MOjg9ZLJdcuXSZV195lbqq+PjDX/D44UN+/vMf8+knH3J4fEJZ1ZhQ9UwKv3HkSYrRGmssqzJ2i2hIs9zXYDAtTd1QVRWtMV09CusgTVPuPXzIg0cPMcZycXeXyXTGc9eusff4EZ/ePObmrU+5WKzY3NymtY40SzGmZTLbZH/vMWmaohJNXZeB5vHhNmmagVAkWnvLOGyMHYZ2tJ3olKK4mXtzKr6wHtELsUeajeDaT+mwSGPLGQlxA+28yN1EwjnfPNERcV78ldB0Ab/B2PUuDE++34NcFxoVm0MK8MAcONwgT2o8Ds8dd+2qcF09BL++18P18dlh4Xkp58GlWVv0OOOL8quUyeQiG9vX2dp5nuefe4VksIkVOZM8IxsMuHm8YMMpNkYDVm2JpKWYP+b9j37Ixx9+n6PHH4NrOt6403c7bS9y9v4/ZniRB6s52WzBt68OeDddsf/4mMW8ZSYfcWk0QFU1B6e3KVcFD2zL269/lyYbMzcZm66iWsx5/u/9h4xmY2w5Z7E0LMdbzLKrvHucIE6PuLCzy9I2HA8XHD24z7oOv7YDBa2Wz763PvrRoRkzzdbmuwiT0gkTxj58WhAcbaHpV7jOOuD66dFbK3yJOf1sTte0vrKSTkEUNG2L1n7rTbMhg6GPXxXOUVRz6uWc+ekpVVXiMCiVkqbKx90mGUppbN0inUQJhVUWhA0xvn5PtVYiWpCx7IbQKJ9HQaIcSlVYW3IyPyXbGqOVBttgUFR1zcZsxoNHj3E6RSlN09S+l5ox7B8ccO/hfaq6ZjqeMptMON5/xO2P3me1WrC/v8fd+/eZLxbMi4JlWdJahxKKJJFUbUuharSQpEqjtHcOqZDVJqSiKkusbWlbS9U2vn5EiJet29ZrErc+pioWPP/cDba2LrB16TKz2ZTRcEDTNDzce0zdNIwnU0xo6lmWK4aTKYeH+yRac3x85NsopT4zLk09fzydzTBNS1EWoZ/Z+tSLc1J05q6fxyYovaEeQHSe4PqeakTQdf0CxCO5CJqriNxXyLH3DTd7LcNCVz/AOddHUvwqZR1UIh0SRETKwHlnme88ElN++5HtC+bIwJH3Gld0rBHbU8UQLQJFgQfcGFHQ35ZfD770ZqhzIbQff6EZzTa5cPFF3njtewym16mMoG4lRzj2Dyum1sCw5aPDO1xBYqYDPljVtI3j25Mh6eA6mzc2+cdv/D3u3/kRf/iH/y+WR5/6Fu1rzijRbbaeY7ZCs0qGFLZix84oVjn/+uiApmgwqxZrHJflBR7fe8AbL7zK6S/uc/H6G3xy8zb5eMy/SwTtdAO1m7Enjnh06z3Uwz0Gt+7w6uFjqFtuWcdOvoFOEiai4Z3xgD/TiqryPRLXjP3u4YknZvqZ4kPrj9r178davR1742JssPW1eEOMsQdT1Z9EhAiRaJV0e1OXp/lMeSboVlVFmiZonaB0hjErrGl9Pnqakg9HSKdp6pqqXFKUNctVQdu2SAVaQZII8jQjSTKcdbStDaUIvZEqpUMpiOaashIT9S8Xdg4niTGDntj3izdmxWjpPcy+qLdjczbDobAWGmuZTWc8uHePe48eUlYVOIuzDU1d8vHHv2C5OGW1WnF4cMjJfM6irKhby3A0RUpJG1oAZdLXgjDWUQtDagVaq67AS1NXvvCLcdSNwSIYDidkWUpV1xSrFauyClzSA9qm4fDogI3jQ6azbZwxpIm3IJarAodlMprQhtCVjdmEYnuHPNEsFifIwBGORyPGoxFOWja2N3AS9OkpWghQfmMwofMFws8tY/1m4EP+fLEaEQtJBR42hs3Q8cKRyOq5Wk8vRDKh5xJ9FMS6Fucz2GwsHAIoPrswvn45ew+us/JFyNCCaMTGLtNRzqbMhnA66bp/x7GLCRLORi03jLfozxNBf13C3ufjcK1D6QG7l1/j2ovfpdHbpOMRR2LAxwclQktu1w0PDwu+g+Tj1PJRlbBTW7ZmI77fFLgm4RUkHznDyWLFwGlWK0u7/Ta/+Q8u8LM/+L9x+9M/BVjbVMSZHylgZVeoVMOqxSiBKHMGUoOsQBpWyxPUKOf9o8fsbl/mka1pmxPM8W1+tnhInmVclUPKIuHw3gPmCj48OWBjMOVeecp4+zL3KNiYDrg03UIbRyYV1RlbRHSa55o2EX6tzdcwrl0EQhePzpkZ23/ah/v5xFCHdI5YQc5H+MheDbZeWXRx03VRtXi2PBN0T+cLtjY3fB+xNMe0jQ/BAhKtyJIURNK1xCjrmrppcDi0ksgEVCbJUk0ivSZqjK/644QPBJdaIpVAWGhNz5m5sPM45xvX9R5Vn36cpz5xYjIes1j6kC8jIEk0uxcvcbIoSLKMNEm5/+Aej/f2KKuS+ckJSSKZjAYsFicsjo94/Pgxy+WSZVVRNYaqaZBSMR6OWa4W5HnKcDTGNDVNVdE2DVmaEWsoKQ2thVQIamupGk9JaOm7TTjrsK0hH6SY1lC1BrsqcPuPKZua+XLJpcstUivMylCsTtFJwnK1whrfIihLBhSrOa+99DLL+QltXYKDLE2ZTmZkeU46HZDmAybbiq3dS2zPplzY3SXPU6+ZhoLdzgnauqEsC5arBav5gqIssSaYVwiqqqZYzKmLAmdaqrqlbsLzC5SJcc5PoKjZOnwb8aD1Rh4jNnS0IhzvokPtVw+6zq3dx5nFG9nMPjPtSQ66j8oQ3YLu8/K9mW6DdktXiW3dCRTDznra5qxRHP6jh0y3X0VfeYfZcJf3TysuTyfcv7eHShSvTnb4b+/f5ZHMeaNquLk746MkYxN4ezbiF7KkUAPeUTlbecLtumErH/LOxgbvHT3iqIIXJ1d58Vv/CY8f3WZVPKTveddnFkZ9MrWG1JQYkXB/r8AVFYnS5KnANBWjkSRNHIO0BY5wDx6TO0iF4teOj0lbhxWKj53DJSnOWN6++BxKaI7rkl0yWiUY0WCXh8yTkqI44gzCfu7UEZEHiSRJz+G6oAAI57ElhpI9+VzxCqHn0unSkgUORKw+EiMdBDGn+MxceoY8E3QPDg/Js5R8kKG1RicpTVvTtA25s74Bn/A7tzGGuvH2rEohyQRZpkhTjdTCv982XlN0nrgWylcYU0rS1i6YdwaCk8367R/nTFfMpWkMbes4KRdcvyy5cvUKt++0CBwyl+TDEVcvX+OiaXh8ckKeKO4/fszx4pTFfIFparQeMMpzlss5VVVS1TVVa2itpXUW6QwbwwGXd3doqiE37z8iSxLSJEEYyzDzJS2bpiZXGicktTGoRFOWBW6+xBYlubBcunqD3YHkp59+wmoxJ9VJ6CkGddlwIk8RQLk8BZnQNA3GNLSmZTSa0rQtGY4sEVx57gWyNOHToiDPcpx1qCTl8uUrSK3YmE55/bXXeXx6Sl3WXL96neevXuW569eYbGyQpElnShlraJqaxXzO4vSYsq7wUSkNTe35wuOTfY4P9lkcHzOfLzg+PWE+96GAFgfKopPQIBSfYVhVNVVV46xDZwnZcMRgMEQnCUmWkecD72Q0hmKx/MIJ+tVL4LiddybFWrJd99szNIJftL6WRb+YO8ANx7mgLTlrPY9rBc4anGt7IIj1GSLFAzgkNnSvi5zqxsbzpFe/zU+OLavH0Lg9duoln57ucWBL3smn/Ddyn08GCc+1msHFEfc3Er6TbfOaMfy5qUjHm7wlFLNW8INqwU6W85JM+fj4gNVgwKU09RX1Nq/yzd/4X/CHv//PwFc78aa8CAFs4QvnrkYkUzSKQZqwMiVNs8QW+CJVRtEkI+oS6ragXZXkSArTkMuEE1sxno4oT/a5MpqQZtOQeJLy1qWXEHrIMM+pmhPGiePxR39EbVZ+3Lp6vkFXXdso1+skeIkbXEzLFh0v79tVrUdwsAa+wWuxTve4SDX4d6XwVEcs0dkF6TwB4E+TZ4Lu4/1DRsOcbbXpnTNSonSCaSrawJNK4XwxHNNinEUliiRJSDJJNvAZZUooGmswrcHZBiENqBqpHFL7wfHe8FDTMzxgKUKaKoD1ZnDTtjRtS1nUNK0hSTWz6QzTVBgcSaJ83reByWjC4cmc45NjTk8XlFWoe2tSDg/38d0jKhrT0NjW0yhpTrl0XBtpdtp9PjpekWtI0gHCwcXLF9ja2kFpSbk4RThBUVbMF6eMpjOcEBzIB9TNPtu55bp7SLtSaGPItcIIzWCQgrUIawMAWubzU7LhFCmEpwKkpK5KBoMRzoaccSlom5qyKsiyAVordJrwygs3eHR4zGg0ZbixQWlv0wwd2WjMdDZjd/cSly5dZDgadXGKOGiahmK5pKl9soWxkqIoqOsS4aBqSk6PD3n08D4nR8ccHR+zf3jE6XyBk44klQwHGq0ItIqlqQ1lWaHSlK3tXba2LzCbbTHd2GI23SQfjDAOqrJmfnr8hRP0qxbRaSgQM77CXn9GQ+qcacRA+/7z3UFd8kPP30YrkE4LcmuHnjWBfdxsC1iSZMT04mtMdl7jzx5ZBm3Dw9UpddEwyCwfbV3i18eXmeD4ODP87vgKF5c1/5pjZqXjWlOzf3FMax1brmR3mfJ4J+PycMZsWdOsSpqLQ9g/ZOwyPnQVVzem2Be+wdX33+bRgx95eq/bWHotPitXJBNB5SSz2QZDDdoZpIVlNUdqTao0k8kUY2uyNKO1LU1r2BhuUBUnJK7l7WuvMtJTaid5sNxjZ7zFph6xbA35KKFta/bvv09T7AXe9uxzsz1J28Pl2nOje83x2VCuaMmctS9c/6Ez532SknDOIZ3fNK2gr6j3y0YvHB4dsTkdkGeawSBH4UIXVI2UYE2DEAprGpxtEdIhkxAelmtvFqcpOEXjGs9xSYtUFiEtSaJQCdjWEPOZRazvKnxlIi0CJIeVIBGMRyNeeeEVrly5ysP7D5gMhxyfNszGY5CKZVmyKhtOF3PqpvElF433zurEJ1/UZYGUAmMaEq1JtWUwnuDQTIZTlmlKbTQ2y9gaZ2xd2EVJyebWJrPpBm1rUBs7WGc5PDpgMBozGPuCN2ZVYa3gZHHMvTKjaGG2fRmlfZUmhKBcLShWS6QQtHVNWTUkA+cBtzXUtkZr3yyzKJeo0YSDY194SArJaDQBZ9i9cJEPPvmU0cYmR8dznHIoJJWtqdsaG3jdJPVFhPLU8+TWWto2ZTzMKYoyRFtYLlwQtK0v5VmVJcXONhubM44PDjg4OmHy6BFHJ8dYZ8gHCcNBila+doE1lrbxpS5nW5fY2txlOtlgsrnJ5uYu49EUrRK/cdYVZVV84QT9OsQFa8p2zq7oZwhAaftWRV0yQlc8m14DcnFBWpzpq4Z5wAbvnAwUjoshcz0dYW2DdZbhcBc7e4lby5z94weIuuWu8ckFs+mIX8wmPN/CQMG/nULapujS8KOdAdkANkTLZA737IqttOWqFIjJlH8130ccL/gHYsSjzQl//Ogh/+FkTDWvmUwVHJ2yMJZrz32DR/d/ihQhbXzN0e2QpCJFJwOSfMjJ8QHXNmYkEtqqZnsyxmBZNRVtWzLSGuFaaCsmgwnDdMAkn5HpBI1mkE6oEbwy22KQ5KzKkvF0gpENDx494Hh+N6z7oFniOuoq/tcDbYwsiRps5yILEvBFxGfmt0+LwNchDu45gT9/aEu/FhhGB/Au+JP8kySmUbvPAPvT5Zmgu1wVzOcL8kxhzIhUJ0ggTVK01sTUOmt9MRutJYYErX0SRZpmaJXSNDbO2zAgBqEEKvEZPwbTV1qSPR8Tc0tcqDiktWY6m7E5S1FOslwuyQYDmqpkN9tFSk0+HFDUNYvihKKuaaqSVbGkLgqk8uFuBsuqMiRKIqRmkA9BpWxtXUAISbFakeQ5k8mMi2nGcDAIGXkp08mE6cYGTd2QpylIwWA4xhjjnY5JToLkUlWwOD0h0T6/27Yty9UCrCXNcg6VxFiLkp7frOoGvVr51NNEQ20xxrKqCjbSKcVqichzpPUxyGmSMRrknK6WnK5KkuGUixdG5MOcyxd2OVktEYnCNA2P9vZZlQ15mjFMUpyzjIc5Kkko6wopJEoIBoOcfJiipKRtKsxgQD0akcQNdDhEpZp8MqRta4bDlMkgJdHesDOuxbaG4WDMZHaR0XiD4WjKdGOTyXiDPBv4521amqYJ/OavVqy1PobY+tRdazxV5gPlY6aa7GKSAV+HIbRA6hooniFj1+JoOxs1arQQuW7nTKzZ5YHags52UdvvcPNYoZ3jcbHkxuYWq3rJjUXNYuRQ21PeyHe5xQmNm/NmusUVoXiYVgxsy+XG8ng74z9fPMIcn/C/rDe5NVjx0+pTdt2YloQ/WH7AAsGSAX9iC+S9JdfShO1BwvDaa+TjC5TL/WBtSpxMSJIJs+3rbD73Lqt8h/tH98jkA+bzEzbSlFRpEuuQ1jLVGTodIIRAM2ZjmmAx5NkALRVFUSDyATbPGLQCYQ1aSbZ3d1hUh3z00R/y6PEHSFd1lkdXUhLotdSAF937YYzF2XF/qtkfOCIb07GDBUiIaoh/AnTdoSM4I9ceebB/XNwQni3PBN1VWVEWBWWRkCSOVickKkWnAxKl/E5oDKatAUuifbpkkjiSVIXsNbCtw/m8ApTEm6aJQiXeK+gcvhNw8Bh7jsyHLlmM70QsfAeGPBcMsymT4RQpNHsHh7QORnnGaDikaCyLVQHOURQFi/mcYrXywyJ9JlZVN6RaIWVC2xiU0oxURqIUs9kmzdRzqZPxJNy/QUof9zocT5BCkSiDbWqMNTjTMspzpPYt6Te3NrBHrnO0aSVp6gqZSKSFum18Wci2QTqfZo1SNKb1GXU6xdU+hdlaX35yY3MD5xwXLlwi1YphnnF8csTe0RFWaA6Pj1Eq4cqlHWaTERfGU1oE+w/2ufnxHbROmU1nCK0Y5BlpmviaEFmOUpKLu1ts7WySpRohHEkicS5HrpZMGPsCOgIaY3ASmrZhmGk2RhmJ8ok00UTOB2MGo03GwymD0ZjReEQ+zDpKxLSWpq6CJ/9XKzGV1lrni+RbQ2taEAIFXjuyEqTAhDxnF+bjk11s15ebsz0FEaM/uiAQYmypwLo2ALOEZJv71ZSHH3wCy4oDZ5nOtvnJyvBSOsNcH3I0TXmrsqyGKw52EgbUlO2SPx9t8a+Ob5FUBf8ze4Xk+Caz1V2GxQmaS6Ta8O7hTXaTTZpRQVLc5/lswnLqOCnv89bOS/zCrXit0owLw2tv/X2OVkeUbcNkPGNz6zqzzecx2ZiVU+Rty4G1fLz/iCs6Z9AaXFOTpgkJAmcEonZonTPIhzjAKMGqbhGiZTzZQanMF93PNJN8hpRw9/7Pee/Df03bzpHCdsDXK5GRABdBE/X1iCNYxmPWfJzhEdhey42BDyJugvLs+YV/7vFqPkplPS07Hr8G6JFd+GWjF6qypqorpJKkaQo4GlMjTLLGTxmMaXx5xiwDoVGJ8aUfhaY1vr2Ow4AwCGWRGnSqSbTyDwc8GY3zRaJxIEGGCshSCLI0AydplUbLFJ0kVEWFaQ2NE7SmZnPzEvXhnLZtWayWNHVJ3fjOvEraULxEUJUVapBDIkjyNBQoT8jSFOkco2xAlRiqasV4OMYZw6oquX79OZQUmLZkmOchIUGA9Vp6Y3zpx+FwRGsd+/uPmY5GlFXD6ckhaZoitPY8cll7vtY0frOR0re8Ae+gy3Lm82Nms02cFBRlyXgwBuf7k+X5gPsfvs/JsmA6mWIFVG3D0cmCPMsxtmY+X/Do4MBzqHXLPeVrVwwHQx8XPBlz8cIOL77wHDeev8polAIhSxBHWZUgLVqHWOt8QD4cMqgKdCMZ5prBMCVNlC8YY30Kt0wSBnlClidkWUqSSHQi0KlAKuFLAooE19ZfOEG/anHOYJ3sMtNM2/p056AyWbGWAiwlxgmc8nGevnW7PAu6cf2Hf/Sp1PEI0fO7ApwwGAG2HbFXDCjLmubhXcTGjM3nX+bK+AJHqmFrussH8pjV4Jh89jw1jvmDe2wlI142GT86/gWDg/cZlC1OnHIhEXzz+BHtfA56n4KWzeUJk+SA5fAeW3XDhfEmq7LikqmZqANkM+feYIe0KXj31e/xwstvc1JU5Crn+LQkyzMqUzFvG36+/4D70lE/f5Wbn/yM+cmcSZIyKhUbWY4UiuFQo6TCWIvUKUpqknTMIBuRJBmL6oTDxT3cvOFAag4OPuJw/ybONR2QGtHrldL5xKc4lpFndutgS/w7mPw8yfG6jmY4w9h2XHCMNY/A6ykV0Z2zp5XifXi8j863XzJ6oQhZVcPxlM2tXZyDoljRtLV3tgBt29Aag9IJOT7rCOWrh7XG0dS+wWRrTeAzJYlMUSpDCB0ynRzKV9sNVd0lWkqksjjpi6QYfFNKJWTo1QZZlvrCOEmKkYKD04L9o2OqqkRIRZoM0LrCWkNrBFIp7/zTCSrLcc759GMlfEHxJKdpG0g0zhrSJGF5espwMuXFF6+TZRmplly8eNWb5EnCalWSao0JzRabpube/YfkWcLbb73Dp59+TNOU7Oxe5OjoENs2pGnKMBvQtpXvLqFK6tYXh7etwTl/HiEly9WSra1tkizzhL2E8WTMzfu3ufP4sS+AE7jqhZQo50OT0jShrArqqqIxPuYW68BYr8EZw2iQs3Nhm42tLYyFVVF5AE0SGmtobes7YLQGKWToCp0gtfL5FDH0Jkw+KVRghxxVtUIoidASNFjluXmhNG0w4du2BSZfOEm/aomcrud1W19Q37W0ik6TVUqFaOMGF8LInJNIpZD0gfPrjpe1K/CZtShEF+ts7YC7i5x7J4fU1iIHI+rJhMt1w8fukMtzRbtdYGaSrXJO4k750LbsHX9CaVOW8iLfomG6d4idlwh7SJmnpMWK3DrUwLCoC8YWUluzfzQnFRqhLfPqhJnIeLxasaUzHspjruxcZGUMd5Yn5ElO62rEQFMIy0IIjqxhkRsuXB6x+uQXFM0pj8oSnMZqSd2UbI6GmOWCtG4Yz2YkQqB1xmg4xmK5df9H3Ln159TVCVLYro6BEC0IT99Ep6UV1ndCJpIAUa2MESB4uqfjA9aoh7DBCSnPACudU3QtBMXJ0MbKf7bndOMBfZHT6EBbf9T/XurpFmVNbb1JvbO9i1KaxWrJ0dGeT3UtCxpfQ5AkzVHa0pgGY2ts6ydVXbbUja+3a4RnaaVKUFbRtgrb+qIjONW1dvF1BRVu7Ysa48jSIanIyZKcPMs5WZSMJxPfh6woOTw+xVqDTlPKw0NWZYmUkrqq/WCGKItsMEAL39VBJSnDRGNag00Fo8nUZ1JJh7SOKy+8wHA0pq4qNqcTNre2yPMBB/v7bI6GaJXhbMvR8RGTydjH81q4d+8e88WCy7uXuXf/Nndv3WQ0HpMNRwiLT9cl5+T0kEQnPvEJnzadCkFRtORpRmssVVEyGY4ZD3wTzJ89usfD/X1c4MGKcsXpqQbbhlTsY5ahvKZUSUiPhiz3PeSWqyUbzSaD0YCDgwPyPGM0SNjamKCEoKprX1yobamahrqpcc5z6oPBkDRLoJFkSqFixVInu9A+Zy2tsWFN+AiUqq0QhcbiMx0b02KM482LF7/URP2qxIVWOs5aMAZEiwkLWTlPSUmhcM6n46K9FSuV6njYGKcc9V2fWLF+jfUrei4wXtc6wckyY+/ePlpANpmRDjKSyy8yMg133Zxr117g29MZBwefUhZjLsiCkgP00TGDylDXh+hMsVNWVA4GWtI4Q641ozTHOoPWmnGSs2oqdJKSKM3hfBla7KxYNQ3ZZINEaxYDzYlxXMJgEsfCNMwlGAeFMzTKcFUOaG4dc3vvLm21ZDqc4IBVVaGzDONAW4dMPRUlU4EQhk/v/ZTHDz5gtXyAFLF4voqjgk+ZEfRJDKarBtaDpM/yk/iEGxdjiQOqemBei0xYj7PuVN9Q0S28JxGkImeazBhnAwrTcuXSq9zfu83e/A4mnNFbLr1TrWeQ1qMbni3PBN1FUbJYVVghGQwnjEZjhuMpQjqODvYpFgvffFGl6MTHjdIo2qqlrVuapqUuW19VzFpqGlQikVJ7LUgInIG2AtPg61gCCEVrHaKVSC1J1BASQ7MyNNKSDxKqxpBoDbbEGUPbNJwuF6xWS1bFCtM2OOdo21D/NwnFdKxjkOcM85y2LskSjTWGuq19EohS7OxeYDAY+ZYsSlJWFdeuX+fCzg5ZlpElOcIJssGAg4NDnGnY2blAlmU4JNNNyCczHj24y6effMJ0tsFwOGZVLjFNgzEW6Vps8Pj7FjAW43w7n7qu0Gnizdm6wgCVMRR1jTU1n967x2KxIEk1w8EQqVOcaXHWsFgsfWIKvoLtqlj55EQVdnqp0Er5YkSpDzmbTidIKamaFmOCqWQ8UCsl0Er5akzWF6FXQvm4bZWitfQhY8JB43w8tqkQOkElmqZpEGWBbVYYLMa6wJuGfPZfsURnl8/Oa7BC4WsphMXofN83YS3WSRSe83b4sSQUX5FnCF3oNSIvPX8Yr+t55LrN2DssObUtzYXLTGzL6eUp2/UJD56fYnFM8po/Pr7Hezd/wI5IWSWXeXMg2VwZ6rpGY7FtSoLCKUjyAauq9JSgktRNS5ZlnBZLJJJEKsqiRCnVW1XGMj8+xA0yDu8UpNc1+acfcvnaZabTMQMpybTipFhx8+iQD+7d4Rfv/RRz2iIayWySY+qKjfGQcT6icYbxYEI6GqOzjNPFPo8+ep9i9QjhWmL7nI5D7Uasj16KoOrhNXKlrqcGugQO153HiwyarFesuufREbzrD8Vrz5qEidtgZ7HF1cEVnn/9Hd54/Xc4Oj3g8eIWP7n1Az6++1NOy4NOo+2covGkImrfz5Zngu58VXJ0uuB0vqRuDRtJgk4TWrND27YslwsaYximmiRJsBbfVdcKTGNpKktVttStoTKWFkitLwxtXEiVtGBqsI0jEb7ldayFaYx33OAMwmXoVDDKhzR1y2q1Ylka6rKkKFfUVYltK5QIZfGU8AukbVBKoVWCMS1pmqCE8rGuWvlAfoFvN5NoX7TdeV5TZimmMbz44otsbG1TlBV37n7IN955lwu7F6hrHyonpWBzcwvhHPfv3+Gn773Pq2++yyuvvs5kNOYnP/ohSZow1VOcc5TFCmlbsDXpbIpWKaerJfvHx6hEgZG+lGbQUtu2RauEqmlItUZrz6nXVYPWLalQNNZyfHSEcY6iLJBChpC9HJRGJRotlW8tZGqqpmL/4JDZ1oyDowNGo4zRMEVq5UHItRRVTVN7+qhpDXVdUZQFprVIodFK+xrHChpT+8I+raWuCqxYYX07QqzPPMBhcaFFiu/QkHzhBP3qxa0Br8HYlnVt1Hf7je3NY1Frh1COvvuALwvoNTR/1nUHzll6weKsL1RkGseDe0fszyVKD5hoxfZ4k/unK25sbCMPlqysQ5t9lvUxN8qaTddQuvvIIueySjiSoJxGpWOEqEiVxUpH4yrqqvI0j1bYVjBMt2nqitpVJFJTt2at5oMjTxQ1LRQtd+7dpEkU9/ZSODyksS2HbUMiFZ88vsfh3Vu4Zc2mTLkw3WCSjEiHGwykZpiP0VlKPpxhbMuDR58i6oLNrUts716lahoUEhRY4euKWFtj2pK2KTFthe+8YcBV0dj3eCF82F3Horvo4IqFyOOYi7Wfnmro2QEXUFOS6ZwLg8uIA8ntn93k8jev8daN32R38yKb04s8797g19/4BzxaPOL9T3/A+7f/nI/vvEfZLmht4yvmddX6fsnohbqoOTg84cHDRxwcHzKdThjkAwb5iPFog3xwTNOcIpSvCIZztG1DXfmspqa21LWlrBtK09I6ME7RBs3LJ7Q5XOsHwIeR+c69QiusVCidAQJnJbPpBoM0w+ahNdDymKosaZraa1yh/KKwhtFghFkWSATJYEhVlmjlHT5t24b26RYtNUprMIaTkxNPaEiJThKEabl06Qqb2xcQUvHxRz/j+3/4+6TS8fLLbzCaboJQDEZDtE65d/NDfvbez/jhj37EzoVdpqMhOxd2eefdb3Dz5i0c8OjBPaqmwlQVTbFAKcWNq9fJByOsccyrEpPGZygYDoZYYxDWkaUZdbViMp3S1hXz5QJnW4yRWActPlRPAFVoA9/kBqkV1vpymWmWU2cpxjlq51CDpMs6XKzmJFozHGRgvYP0dHFCUzUYA2VZYeqaVEmsUygl6Xks77dtQ21apMDYxreyb1t0mvrCSVL6UpwOpMq+cIJ+1RK1lah5SmsRnn3GOV9KULqQChycXzGP34cYhdrCUnC28lh3he7HuZBEZFqvWbcaSJlujamtQg8SjjfHHLSPONqCW0f3ECePaQfX+GY25DiZUtYlY61ogUwmZFpRA7V2LE4esFo+pioXISoixARbr/VVgyuMtl7EOENdl0jjNXgppc+YaxxSaoZas1gteHTrE+zjB5SupHEt1gmUM9jlAn16zJVsgBKKncEO1iZolTMajhEqIR1t8J03vsUgGVG3lnyQYxsfIeKkAiUREjQWrR2pcBR1yXFxymJ5StMWnM4PeHzwKXtHd6lXh1TLfdp2ieo0XNNFFMTfHbhy1lkWEyRcUPakVQjn2y5d27jBc8Mb3Lz9MZvjbd546y2Ko0c8aAzJYILQiiRJ2ZC7/Nbr/xG/9eY/QiSGRXXKg8N7fHjzp7z/6Y+4vfcBjW2+cM49E3SNMewfnnLnzgMePv+QjekEubUNQqCThNF44s1HfLxj3ZSUxcJ751tfb6BuLXXjqBtHKzRWaGqjsICWAikcykEC1MrgWsgGOY0T1I3DVA3DwZCN8ZgsSfG1GBwnp3NM23A6P6GuKwZZTl1WtG3NxtYWq7LmdLFE+UZdaCnRynfEjRWIdJJ7Z6ATVGVJTPUbj6c+lCrNuHDhgq+0lmZs716mLBv+6//Pf8XLL/yMd7/5G6SDEcPpBj/5yZ/zb//Nv+TT27e4cOEKo+EYKTV1XTGbbXH5cs3B3gFbm5t88Iv3KIslxhmcMRydnDCZTNnc2qHF+SgGa7tiG1ZJVqulDxuzluVySZImDBnTNBXQ+GprztLWNVpKquAc8t020q7MZGtbhNOUTcmgHbO3t49ra/YO9tiabTIc+BAyrSQCy3CQ+LZJTUvbNGB9bKlvxOjDqqXUKGsx+JKfWgxASqROEVKjtSZPc5IkBSFoTUgF1+kXTtCvS2y4fyEM0nlvtbMOlF+4Ukofy2ui1tX/dB1/xboqtS4hyse23lEXMtUeH5xy76gmHRuy0QajxSn1bsYVI5ksTtiZ75O3LbI6QTYlz+U5hUopG8NJWzNKRqSDhKODT3n44D6YonMCeYeQ70bs6U3LYnkXNrYRF19DHD5AncyR1iEDONu2BY+HjIWkWp1Srw7JJUwFaCHQQlA3JSbJGEpJmo6pjCHPErJ0xKpyGAfXxtt8eOeUwcyxNdL85IM9SHOsUpDk6NZ3N9nZ2QRlGSrFUE64tHWRcsNSCMlO63jVVZi2AVlxfHiHj+78GQePfs7+g/cwzRLpGtZqhXklIHC1MfpARK1WxDaamlm2yTde+Q6z0YTbH3/E7Z/f5O5Hd/lb3/ldbrz6NheuXuP4YMHR/h5H+4eUVUuW5Yw2Zpwcz3n97dfZ3b7M1eeu8J0b38X8XcNPP/w+P/z5H3/hXPuCerqwWpbsHR1yeLDH0cGG79qbZUjhyPMBo9GIqiho6pKiWFE1jfd6O99+J02gbjzfoWUKTmNaH3LRCoFSXoMQ0pBlGQIoS8N0Y4dpmmIdOGsZD6cMswTbNuwvT6mqmuViSVP56ISDwwMkgmw4JhuMOF0W2LYlSVLa1pJoTVX65pKTLCdNNYPhkHJVIGzLZOTTUwe5D+DXOuXq1SukaYbSCp3mzKYzXnn1NX784z/hj3/wfX7+/s/59e/9Np9+OuXmxx9w9/4dRqMxb771Dju7lxgMPS8s8pxd6esd7O3fJ8sHLFZLQDEcjTB1Rd00zJdLGmupKk8PJGlKolIa68iyzNd1sJ7GP53P0crX9S3qFVJI2ralbRuckGipGY5HHryt9RzsYMBgOPTFeZIMLRSmaNirDjjaP2I2nTKZTJBCMBrmTIYZB0JgjfHWAI5U+roYWkITsn98PRdB04ZOq0L5CS5SnFM+JMs4rAqlEY0I1Q3UM6ff1yF9U0dPMZhQ9Ec6QGpMLHsZ1VfjSRMj14HXIpyh7xC7HsYUYtltjYn1lY3BGEu1bNmabJENhhwoR3JhSrEqeby34LXdGb852OVEnpIDVita48iURqaKFQmn7RHHDz+hqU49RxrTkMN1hZCxWmEAHcPpg/fQwyluNCNflaQYVONrX+NCjWMnwBk0Di196VJCVYih0iyQDMZDFmVJayxapxzNVxwfHDJfWra3rnH/4GdMLl1D33PgWu6ZAat8QG4kRVVxdfMC1UDTti07dc12lvPGzg4fFcfUCLZ1zq4QPDICp1NyPSDfnPHbW2+wNbb89NM/5s9/9q94cOsHUO37+45NIdYSI2ImoPfLCYSTfOPF7/JPfut/zQtX3+Kjj/8cvUy5e3KLvfyAy1eu+3htB5PtDYqy4O7jfZzOub69g8pSRqOUk72H2KYkzRXL4yMSpbkoLvIf/+b/5gvn3LNBF9/2pSx9Ue6yWFGsFviGd4JUK/J8QNPUFIsVxrYonTEcpbR1Q1U1SOVbg/iOv779jgutXxIhkcJ3pBhkGh00qPFogtYpxvpuvsMsIUlSkkRTNA1t1VJXFUfHxxjThmpcLWk+ZJRmHojbhiRNAYFQjqpY0TQNmUyRSUKiE4T0/KXvvrtJW3uHX2tati/uMN3cRAiNCt7eCxcv863v/CZCOO7d+ZRiueDg0X0uX8/I0owrl5/j5Vff5PW3vsFwPKMxrQ9Ta1qKoiTLfGGRuq7Z3PQdg4U1mKZiVayYr1Y0rY/0SHRCNhyymM9JdIZA0Lbe4Tefn1IWHph1lnRJKon2baWTNCMPccQ68eF1zhpM7bBpghSKVGgSBOPhBGMNxeqEx+UeZVmRDXOWZcF8pUgTyWw8oaxq2saSJ0lo26TAGNpW0iTeyVbVLUjjnWhCIYzCSGhrSx0aNboQCyulQn8JT+9XLb5rgK++5guZ+3Y7Thpf01lKn6WG6boE2xDpENvSO+dwyiKM7RtWduIw1lMKEXQ9JeRYtZ5/LVyLujBFi5L69JSRPaVaDdid7XBpnFBbQ1m3nNa1t7pGA6rVXQ4efYSjCREAffREvKfoJIp8iNfzDM3NH5Nce5tyOqNZzhkgUK1ByRB41bYg/MbqWosOsbKtbamdoG4N7XyBQ3Lv/mOWx0sOVi0m3WBn5wqPi4Kj4yVj56gTzVJn5KqmPjlkcuESR5szjnNN0tYM5oKpVvxh1fCT40N205Q3BwPmbcFcJ9xtW2RhectmzHTKp5VhmebcuPG7vHjtN/jg9h/yB3/wf6d4/AugxuEI4f1n0hT8vuPIRMI3rn+b3fwag2TKpa3nKKb7fHTwU65dvsbLr79OpjXHd++QDAY0xZy2XFG0JbfbhrffeZOXXn+JpqpIB0Py8dAnWOHAGZrlFxdxenYLdmeRjr6qvgPTGspi5bs6CHw8rfAFr7MsZzjMcE5SlQUHh4dQN+jE987Sia+eZB0IKcjSEIdiBUJL0iRlOBxT1r4urlA+xOhkWZDIyvfdshaDoLU+hKkoln4St43f7a2jqkusM/jSlxLX1LRtg9KC8XDUZ0I5H+ubZZmPqJC+bGGWJiglqYsShGa1WDKabjDZ3OKVV99gc3OT+3dvUsxPGU/GPHhwj+2dXd5889d4/sWX2Ni6wNHxMfPTI7SS3Ll9i9V8zs7uDjrNcFKRqJTxYIhwlqbVzBdzqrZGKt8ZQmtNXVaAYLGcszscBN7Ra15ta1AabFX6hWIsQqYkIW05y3MPJkiyPFSJ0z45omoboKUoVkipSbKMwXAT57zD82h/D2NbRnnGcJBxMJ/7TJy2ZZCkpFqTpQn1MGeQ+mLuOOeLxTsLSctwMEYbQ9uCcDVtImgbvznQep5Z/uqzgIk1UG1s3NuleXqNTwrRh75F3xngGm+yOuv5cmstUpquSHt3fsAZ3w4ohtM524KFPEkQaUKrBROnaecVr+VD3CAhV5K5qZiJBGUsI51jtaJKJUfzO5w8/kWgL2NV4r7wuHMCG2oHICVK56TpiOFwxniyzWiyxfbFF0gnu7x3+xZ7dz9hcbKPrlvfs8y2IFpa1yKVpDqpGCSZ75otJUdHxxwdntAsS45OFth0THr5OrMLF3CTjFdvvMqDxjBXKcY2YBytzimFoEkkZbMiH6SkCB65hsfSMpyM+M44597eY/7UbTAbTbmg/QanheBoWbM/liwEHB8seXmU8dxkzBsv/x1ms6v8y3/xf+bw3p8SwsR9LeRYCYwYwQDP797gxuW3KU4XrNI9xKLg05//lEcP7nH98gvoVJGOx6yWFcuyYTCe8U/+V/+UZDjGlDU61RSrJXnq12PbWDYuXaStSoQ1DIdf7Kd4Juha5zDOhnKDIVXS+LTFpnEolQZeT5LmGVk2YpBPfPPI5YJluaRqfFk3ZS1Kx1YG3izN0hQagbGSPEsZZAOkhCxVtLamaSvKcoFzimGWg3OY1tJaGE9nrFYrjk+OkVIxGOaMphNfIyGRuKWvtC+lwAR6Yzgak2Spd5iE0CkRErarsvCRFziuXL7KIB8ilWI0mjAYTfym0zSk6YBrz7/A1vYWTVnQtg3Xb7zk6++OZyTZgLJYkSeS8cVd5vM5F3cvkj3/PErC5t0d7t9/SNtWmDYnSfzGIqUGa0iHGauyIBmMmRcr8iQNITTe9FsuloyGE8pVASF2MEl8LHOe5iTZAIAmRGVopT3/qjzQC6EZZClCKVrTslrOGThDkma0GBrbcHx6Qu0Mtx8X5JkiTVPP58nEx+omCZPBkNEgZZSnpEkSzFNJ66zfUAcVeT70zr/GoVWFlj4tHGu7WNdftfhi4lHbteG1oCcJr9F2FrdfzTjnfJv21juphPXJHp/RcqNPx7Y+HM36TsEy+A5QUFBTDzLacoUzhrd2nmNDCxbWF8TfX56C9ZtnqRNe+uZvs3t4nf0Lz/kEjqakqku0ytBSB3/LgPFo08/dwZDxaIPRcAYixTjffqu1lseLFbtX3mClt7EnJxQH96nmezSrQ473HlKc7FEuTilKH5ZZLpYIJWgThcuHKDUg2blAmWnajZxyOmAwm/DDB7+gHG8y3b5Cnoxoa8f+cIaYjnllmHPr8WNOhinHGxd4cZgx2XvAe/WcH5KycfUadrXi/aNj3pjlvJONec9ULMaKadugmgpnU+7sL1lISWots8Er/O3f+9/zz/+b/wPF4U8RznYxemdC9ZxjY7jJ1uwiW9NtX+VPNjR1y5WLL/Pbv/sPgIzl6ZLT+YLTk1PSJKM2cOn55xhORmBa9vcfkE42UNkALXwAwerkkL3bn6Ck4uIb33jmnHsm6LpgDlZFyXyxpKwK2naE1pKqKlCqDi1eHHk+ZDiZMB7McMb68KxEI2SLki1WWpAmFFfRSKUY5AKZDzGNIdUDihBbqHSOaVrybIATAtP67KWqNpiQRTYZj5kPh2xubaAQ1I3xMbBSYWvnIyoC2EqpPYdsHEIlSNEyyDOcgzzNqYoCKzUoxcZ0xo0XbjDb2mZ+csp8foKQkjTLUSqhbStoHanOyGfD4EhSOKzfEJoGrRRKZrSN72qlE01RFswmE15+8SVu37xFtZojXMl8EQHI0y/GGNq6oixX1EVBqjUitOgGqMrKa/HKg/Qgz9GJZDqeMhyM0CrFOkPTVFR1HXZ9g20qGmdphEYlCUKnDPIBeZ57p5mEtm6xQuCcYl74MMFl1SBEQWtayqZikPg+cYMsYzIcMEwzEp36RAmlcMLXmlDah5OlWUae5qQqQeuUTGvvvDStT/P+FYuzFickUlqsFb4sqPX5/Bbr45+dxWJ9hI7UkQH2IXBOIpzvDSel6jKe+pBQX67R2hZnLV3jTufIpE+RHmRDpM5IBynHpmAoMzZVwqJeIcPzr1qDvHKF5156l8lLma99IaBsG9o2ZG8pHWKtnQ+RdC0E62m/KDDWz7NlueK0LVhaweP5HCtT7rUWpQYsKoE2irIy3L91D0OLHCS4LCXdvUGSJrQ0ZBcuMdm8wpSEe3c/QG3lyCtDXrz+Cvc/ucn9rKTadrx6+TmerzL+s49/RJte4OboGt98920OHt7nQ3PEfpmxeWGLF23FB6Zkv3X8p9vbZIM57+n/P3N/9qNbmqX3Yb932OM3xnjmnLNyqKypm91NsqluiqMIWgJpG4ZFwJBgG4btG/8NvjDgW8mAL3xj+Mo2BJq2BZswCZlSswc2m11d3V1TjmceYv6mPb2jL94dkVmkVElIpqp34WRWRpw8GV/E/tZe71rP83sk2zLya8WMV+sNJx4+Kme0WtHESBYjh1KyNo7p/vv80m/8T/ndf/i/Jnbn6TT9MzKugJY5R4u7SB+TVh7B5ek556eXfPTtX+POOx/Q7RqGwXN4dMi9+/eJUrFZXfLsp3/C/uE+IcDlyQnZpqXa26NZb3j68Aseff4pClgu9/iNr7nnvqbopr90Xc96taVpOuZzg/eSvhsI3qVlTpSoqiDPC7I8x/uA0hKl04t1zmCjIYokrhe6IJJjhhatBZmuCUCeZ3R9i9YBqQt2Y+4YCGxnaPqWPMvwzrPbbMi1YrlYsl5vsdESfCCTCaTjW4/xDiVyfEiLoGuCVFVOKOuaoe8w1jEYS1UXLPb2+ejDb7J/cMR6vRnno1nKfIuRoohEqZEijkdFhS6KJEERMuV2Cp26Zmtp2h3GWoqiHE8Jgft37/Gbv/mb/MkPvk+3u8KanoCgnC1YNy/xNnV/fdcm0TqzBBJSKXlDZ4rNtsE5Q64Vk6qkrmrq6YzJbJ/FYp9JkVNkis12w4uXT2j6Hh+v0ywAH4nqOkYmmVuUkJR5SWM6ZpMJjTdcNMl56L0lzwqcs6w3G6RMtthMa4qsIFdZQvXpjExpcpkMMJlOXZVQSeuaKZVsxkIRSHlxv+grxJRfl04/Mcmr5PW4IGUWEyMifDlbiDeG1FEhEMQNEOlG4n+tbCDcWIxvEprHeavOJBvnMduG918/ZF6UGDNgYmC13qZoLCFBSFrnGXJJ1JEBCDHj2WDIVUGWwzDGMVk0RkDbGwoBRmq6waJFxpBLnAs0UvCw61mZlr4z7LqeRQGxNURlePbqc/rtCfLeATpCzCPTBw9QB3eZzo+4XeV0IXBuOlw955c/+IDHTx9z2nb8/ukjvvfht7ltO340nLKzO/Tt2/yV6j3+1G35xjzjf3h7j0fLnP/j5Rd8a3nEPV3zvir5v5w+Yp0rfiQ8f/n2LZqzZzwzntej51eOjvjnfcN5VnBXKHxrWCpJpQXng8MEwWt3/xyP3/sbPPvj/wSiQ8WbqQICwVu33uPNw/foW4OQLcH2/OCf/yGT5V0G6zG94c6bb6CkRIRAu16xvnhGWdesTp7zkz/6fQav+dav/DpOZ1ydXyCV4Oj+HQ7u3WY6m2HN8LX33NeoF9JX3Q+Gy9Wa1XrDcrGgKgucg34Y8HaDzkvmZY2SacMdgyM4l9JxnaHpNtjgEEKQZSUiFuS5JIScGBMEwxiLDREfItEp7GDGIpMjhSD4QHCB89UF1lsmucY6S9sOaJ2jnUOpjNl8ihksbbsbt7dpjqxVRj/0OO+ZziZkUuOEoOkH8rygnkz5zne+x3e++12EkFiXDBi77TahLJWk70NaQpUFWunUnSqJHd8c1hqctVg74IxDS4VFsdlsAJhOasqq4qOPvsmDBw/4g9//Zzx58gUX5+eIvKCeLxgGS1ZUrNcrJvUkucFkEt6HURKmSPL92WxGWaQZblVOktNuMmG5dwuCZbo8pCgrHj95iLEGN2qThUxuNWsGRvs/8+mEYB06JJTf4XwP5x3rtmG9W9OZngzJpKwZrMVaR2cs0CJJOu1MSKQUZKRE4mR0GQXtIi04rt8EgXSK+oVf19Zzxg5XinHkcE1vHRdSPoyLKTt2twoV5Rg79dU56rVMKUHn4brghnHmel14QarIYlox21uSF5plNaHIS7p2h1ASdEEgkbmsc1xuNvzR9oS/cvsdWi/ICoENsBksOktfQw84JXC6ZN0PnDnLNK/Y2g43dFxEz8N2zXRSMs0kPTtCt+LThz8mRsuh71EVVNUhLgZcXXLv/husY+DqcEm89YB/5/XvsF8W/Hj9gmebFW/pA0JWcbl9gleez7an/O17H/IHr9b882HDD8+f8L988E2+ePqIL4aBh7bnw+U+/6MYuLI9Jg7o+Zy/sDflPBiEshwXkf/w7h1+oFcgSjKh+SVy/rBpMDLjN/aWnGHJUNQYQm9QquYbH/27PPvi94ibhwlyPp44pMj45uu/xrvv/hp1UVMUJSfPr7j71kf85t/5e9i+ZbaYM1nMMd2AG0zStNue3fqcV5dn/PjRI4Seoj//DBE8V6tzXj57ysX5KafnZwSga1v+6n//3/+5t9zXFN3kcQ7WcXm54uzsgr3FHkLIm/DFvuuRxlNNbcoC8+mIbU1KdnA20ncDvR3QWckw7IhTTZbNkWICsaZpHX1v6I2BCMakLtrFgLfblJ0WHFpKmt2WvmvYiMjQdSitqMuSg+UiJeACZ1fnaKESYCd4iizHYhn6QJ5lKCkY7IB1ntl8yt5yn7fffoePvvURQgi6kWub5wVlVdH3A5v1mr7vyfKcqqoRpEj1KBVm6MmzHO8sfZ9SNayxCQwjVdr0I9jtdjhrmM1nHB0e8df+5t/it3/rP+f3L38ba11SKcicrt2htQYhcd5R1zVd34yRL4zyO5n0zUoxn80o6xnT6ZTFfJnmv0qhdc7+wW36oefs/JRuGMb5sUCLJIuxpifLNO1gCc4ke7Mel6QIZIhJWhYcQQqsMWluOy7pXEzKBeMHhjF0UQTx5ULqK1HijAUs/S0S/wx0uteRmtfSsRACUiXcigwJ3CSu/3e9qCJ1u4GEHxUifU/HM+0Y5Z1AyWLM2vqZ8PpxyJgry2Ask6zk1mIPN3h2bUuzXhODBSkQo307hki4XPHPPvmE7x7c4f4IjgmywEjBxiUEqsoCUilsb1B5yXvFnM8uLnkqDKpW+GHgncM9fvDspyjvKFROZs+ZHCv60xWb6Fi89jar1QVWtMSDBfmDN7ldZHRFYFbl2N2aHz07SH8CmAAAd+JJREFUpfEtt32kxjHbnPGG6VFSco8r3LNP2DNbyhyOswV10zDPC2bzCc/6nsHCm/UBf7B9xZ/6DX94ZvmfLe7yn66e8Qf9JZ97y39wcJu7W0cnDFK3fG9vRphKoiwIESZ95NGw5UNdEaYlMXpu8xYP3vm3ePr9ZwTsjYLjYHaPb7z55yirKcN2DdFiTcdiuWT/9jG7i3NC8EgixShNNTbQdD2fffIFbQ/3XnuXjz/7jP/H//P/zrSqmBQlR8fHXDUNT05eESOJW/I1188fLwBEgfeB1WbLyekFe8s5WguKPEfLjDyrCDLdVsE6vLAYM4xRPgqtSkLQrNcrsixy5/YbTOvDZKkMAqXSvFYC3jr6oU/SmiDGhAHDMPQwFv/NdoU1ye67nM9YzNKSq+87RIzsNltsP6R49BBHNYJE6YIQ0w3pYkQjEwOgM8xfW/Arv/bncUPPersdQTkKJJyenBBjZOj6xEZwjihTKqoeN//d0DOpJigBza6hKNNoJNcZMs/HLDnJbDpJxZQE+bl9fMi7H3zAH/3x99lsG4IUaKkp8gJbFHjvk6vMjkdH70Cm8YP3kd12S5FltF1PVswQIsMMA5nzydYcE+Tm4PA2u2aLMeZGNO+ReGuRKkvfp+CxLhC8Q/hkIb6z2E96UmfxIdANPc5b3MhQkJDoTeF6/p+SnpNm8logGrjGlMSx2/uS7fSLn+kCXxobxq43hkgUgShTh8o1jyFGog/j99CPsejwpS73WrQlxmUO3BRa8S8VXQFRGozdYr2hVCU6c4S4w2cZIPGjIsS5JE8rmh1XL57yf/ij3+E/+OZ32KsqpAgcT0vmNnDi4E454YeXL7k732PjAp9tz3n/1h6H60t+ZK64tZzhup7XpoLtasXJ80sKNeOWWPCJeUooMvJc8tYbr/NZf0m92OeWypk4QbVdcRR2+HjG9uIl1g/kUrHVBXrbsq8dSsGyNJirc15zPXFVcHu+oju/YhYD282U9fKI12bHDEFwYQbeKyoeUKECeF0yzTw7Ipet4crM+ftmxYOq539eFsz6BpcPFHrC7WmJKx2DDRQxgyhZyBnf+u7f4dlP/7/E3XMQkMuKv/rd/w6392+zevGY1ctnnL56Sds5fuNv/3fpmx3ODGRa0e62ZFlBCIGmbVgc3eN7v3mHq8tTPvnTH7C/t5eAXWj++t/4W7z37W/y/T/8Xf53//F/xLZpOJjvf+399jUz3ch1cqY1hqvdist18unvLfcotEbGElFoiiJDiIh3NnEQgiPXGVVek6kJWrZoWeGtAJ/eilvbQdOQpPJq1OxGdrsN1gWk0nhvsUOPsQZrBqyxgEgs3gi77Y6iKlBSpYLtLDrLKPKCTdNQFCVVWRJ9wCpDpjXRR4QW2MFweHjIX/j1X6eqCtZDT2cMq9UKZw3VZMJg0n/XuwBCJlSiTfI05x26yBERbD+QZxkhRnRMAHU1UQxtm0IZpSS4ElFJQkwPlM1my7179/jgw2/xL/7wD3HWYLzFB4+xbpRXStqmQStFb02CrYRIb3ukKDDW0nYtZdkwmAmqBcoaQWQIDsGEsqqoywo7DKx3u6RqEAV1Pcc6i7OW2WSGqhVt29F2TZona8Uyr9jIDV5KZFHRWoUdmnScJiL89Uae6xqbZDo3R7v4L9XWkS+b1vr/GiXx3+z1JbwkjnmoMc1mI4ggk703zReShAF1HRF7/Te+LLbXg4pxpvulM4GvfhNSNAwIYamzNCrz0nG5XXG1WSUYCSNcSKYl39APZJlicvKCTXT873cd33rwOrPlhCpmvLO3h29b1r7htpL8aHvJfl5wO3f88eULqqzm3WzKf/HiCZdWcp8lm/OHtLtLmrjldrmkmM1Awv1iwh1VMtiKurccnL7EbRrk6oSVtXQ2cnF2jrWWsxh5gqJ1DlEXzGcTquUBSI2uMrQ3lC6y2myZeo+4ytHTPfz+fR7rkv1SUE8mHBd7RCc4jgO5FuwJmNu0OM+VoYiax9stFRW/01zxoPT8tWLJPsnYlPWSz5steVZyfOcNDh58l/OfvIDouTO/wzv3PqS7uOT0i8+JAcpqzu3XbgGedn2F61uK2eLGsaq0ZDKd0PYW03cIAYv9fd4QitPTcy4vL7k6P+FP/8WO1cUFv/qrv8r5xSV1Pf/ae+5rdboxgsoEuoIgB4xraNoVeS5RkwVapUQHLXXSrXmPNSm5oSgK5vMph90evWnoe4cZWh49vmQ2XVBVNQRBEEmPJ9CI6JnNSpq2Z7fbsW0ahn64UQVIEZhVJdNJjdYa7wNaKczQ0bUtUmcIlRxRSuqkJ5YCpbLR4aUgBLbbLT5EvvnRd3nzzbfY7bYMQ4pYL0bC12a1TjNmBE3bUhQFnRlGBGV6D2qpEpPABXZ+Sz2d0Q8bzNilO9JSbDqZ0A9DYhqwpTcL6knN7eMjfuMv/xU+/fwhZycviSIpFNTIW/XR4ZwjRj2mESTYh5KaEBONSUiJtZbd6gI5c0wnU0zf4GyPHqVZy9ksLficZ7PbYEMCxpfVFOcdu77j6GAfhUxmjb6lKicoITmoZ7jgaXY7fEjx84NNgJvruT/x+og+2oJu9FLXu/5r6F38V+vwL/D6mdDCMZInypBGAzKOgPpkergWgSa6RIqTH1k+RL4McInjqu1macZNdb75b6Va75GxpVm/ZPbaOxiVMWSaIH3aYQRPby1BwLwqWPeGiWuZnJyxaXsedVseKsk7Rw/4+08+5sPFHX40bPi12R3++eYlXZHzb9X7/M7qBX3I+LVsyvPdJZu+Rw2SiY9chMg8WJZDyz2TeMKTdkUMCs5fst5tadqB4XLN1fklputwgyU4d/PzF5CMRiKitOKLuqaYVEyO9ji4dUx9fBtTlLiyoAgZmQ10nWflAnmtEVWFnx7yXFdE5akrzX45S1zu6Phmbjnwgb3c02EQ9KwHxy5UXHnJJlreKScsi4LMSYzJ+ODbf5P/4tPfobANHzz4FvvzfUpRkL0jiS5w5xsfklclq5OXrM5ekal0wpQqeQ7CCEDqmh1tmxCp+0d3yMspgw04FzDe4Vdr1lcbtMrJdcGsnHztPfc144XkEKsmGXt7BbN5jiojKIvzPcYVaJWhQo63Bsu1eaIbj0Sassg52F9gfM9ut6YzHboIdHaFCz1FXpJlNRKdOA3GY4xNDF6X3ryDGYjOIMhS+KRIy462bRBC0HYuxan3hqJOL9o6S17k+JC+QVKEGymTjyl7LM8L7ty7S17kZENydtlhoOk6dm2TbMbGoPKMKBLA3Q89eVlQFRVN15EVBTFGyrJks14laVs3IJTEeEtd5ARd4YXAjg+OrMwR0TOpa/Iso64LlJJ0Q09VlTcPrxgDxhgEAhNsuhmcw1rDYjaj71r8WNyN7snyjK7bEZxFa00Int1uQ4gCh0QXNblJqRTGGYzpiEJQlTUKwWA9h3t7WG9p24au79KDSijmxQShM9qhpTXDWGcjOI8z5qa4xOun0XVZvQmuEqR0kH81gfUXfY2nfb7ahV9TxxBJk3tj6xXjIySGMaFZfuWRMiaexURWE1/p5K/Vu9c5EmI8BShpaLsz/uj5U2IfYDAIZ5AipswxrYgj1nOSabTzNM2OQx/Yrbd8YzmjWZ0j8hxz0NGYHRe7Hu13CKVQnWe/ucAGwYQt5dkZod1xEDOy7RrXNCx8pIoDxcU5692Kl7uex7uei/NLnA2gMzKdE4sZoZgjvYOhJ7qB6Cw4T7AOvMeHwM6s2a42XL085WL6lItbt5gc7lEd7LPcX1IdRNadpwdql1EPA0XveWUMrQiIMiNO5rygYCcCVamZ1VOySeRpsBwXnqN8jq4iT33Dk9hCvMU8wl5ZQyV4cP8jisU9Dror/vxHf4n95QH91RrTrAjeY01DPUuL6rMXz1kuDyjKCogpzbieEiLoomCvqrDWUk2mzJf7HB7f5uzkhKIs2FxeMu8HIoL5ZDqO1X7+9TU24IjKYTLLWS4n7O9XzOY5070Jy+mSTFRYF7DO0LY7cp1jnKHr25FfoJN9V2eUZcbgM9AeHyRKFUAGQWNd6hbbbiAGgbFpoZblBUpKNJG+2RKDxw4JTN6E9AM2fYe1BqJHSMn+cslqvUFoTbIxeyKCvu+QOiPLMpq2TV2xVCitqKqMy9P050xn05Q04TyuHDWaPvEQqrJKQJcsp+97oo9kWZbMAV/RAxtnUUJTCoVQmkwXGNOjM5WSLkZ84upqRSTy4sVLNps1MfrxtaTNvkCk8EohGYaeTEmMGUh0pYyqLFLn5S3ODgRXoCdTBtMlna81CKkoyxlIibcmWYczTWt6iA7MQJbl6KygN4Ztr5nP5my2O5q2QYy6z4gAKZOjzruUdOEc2kdKKbHGpcWljCNR/8vU1VRlvpRTAamT/LOwSLshVl0/JCKCsdsR/isdqryZTF/HGMRIAsTLMK7awlceOGkJzQ234cvX/hVgWfqLbYjDlqK6jRpPIMYP9EPSWUspKbWmswZcZF6U7JqWSmuyVcCc93xzcUBzesU38pxl1fKoX3GrmhDzS+r1GbmQ5Lpm7+ULyjBQyAy2DWJ7TtsbnvWO89NzNl1DRCNjhlvcIo6Bk+QlNhjwkYJAYS1d3+H6Ft+3CGsRxqYiHBKO1YfAbrejaRr084KDW8eEN16D1rDOS9S0IndTdFRs7YaNd4hMMo2RLPRc9FegAjMl2JvucS5XXMYBUZWU01tcVp42cyynilw5nvmcU3YcysjeYsnh3Y+Yv/wTal0y7HYYZ9BVydXJKS8/+YTz8imri3M+/tEPefPtd9CZwtYVRVETVUYxnZFP55h+YCJH16UxOG8pZzXPPv2U3W7Dg9cecDc4Xr14/i9ZwP/Lr691pOWZoKo0s1nBYlEzn03Y29vj1v5ttKhpW0fbbRm65qYAughFUcAIEVZSMK2nqFzgosXYiO1LrMnoho6u29APlr7rxuN8QAtNVBIfHFJEnHeIEFB5BiLStGnuqEWK2BBCUE2mQCJkZVnGru2SftI7umGglCn1NsFJEuD85PQVL16dkhUZfhjod5ubMMm7d+9zcnIyHssdziZdcqE12TgjndYlg0lvrqqukDrHR6jrOiUuoCnKgrLIaZqWZrPhzp3brLdb5pMK4y1XqzXej8oH62+iuJES4QMmetquZVKWo4IhWUnryZRMK3IlURK8M3TtDiWgNxbjDZnKkSojz3MCkTwvMNaQS0VvBwafHlZCauqRL0xw1EVB1zap046BQim8FJghAU6yEAnWjhZrhxZizLNKxTmMbqCbYnNd3EJAhZCQnvEX3+1ey8OuLyGSCiGS5GPxWkomEq5SkjS7wkOU4GVAhnT/pTjvUSY2BiaKfwnULv7L/kF4duvPKebHXG1TF6miJxcKYmAYY7OUzsilpGl2gKSUgvXliolWKHdF026pypxLoaiGhmlRsY6aYbfBS8GpyOg3a3ywbJH4TUOzWRN9QMsSNzkiW9zChIhRGVEo8iiYSU1DZJpPqINnFyyNNoSiREznKDPgh544dAgzQNekZIJEn0GopA8+efkCIzT95BDfbjiwA4dR0jm4BEKhmIoJMy3wJsVV7Wc5uYyU1nJpdigcRT8gGstD94TVYsrx0W1mMvKQliu/Y5bvUaiSe7ffh8snnD99Tl+23HrjbV578Ca33zSEIGjXl6y3O4wxXLx8weHREYuDQ6JI6o96OkOOvgA5xjV572g3Oy7PT3n+8hW//3v/jF/67nep8oy9/T2qSf2199zXd7pCkWWKosypqoqqqphMJ8yXS+psiRng4vKUi76lbbZYF9BlfaNhjVGRKUlZ1WAcg9XstoZ2Z7lWQgbv2G03tG2LEIn0VZSJiTAYgXGG+XSSYs6VJoqAM+mhoETaOBdFQakVInjKoiCOeV2DtYmQFSPOGHrTk2uFkoKu3fLw8y947cFrtJsNfd/StR3nr16kuWXfUSiByAsyrTGmp8wKqrrCW8etO7eQeYHUDqU0aVwsyLMEtS7zDOscXdtgreXxF59TFAXLvX2Ojo959uwFi4ND/uj7P2AYhmQJDv7aLU4mJM5brLVJxhYCZa7JpMA7h3OGLKtRmSaQYOe73QYlE5siAkKL9EDsWvquRWs9Bmc6XHC0/QBSkZX1KCkTyUmoJFmmcaZPfAxniSqidEZNBO+wMgWtyHH+jFRELYmjvToyFt5RDCxGQpoMARV+8QU3XeJni3+aEoyM6y/HINdgnDQtScwFMY6wgwIhwjXdNUnhRv2ulGMhH0fCScWbLinkzUzUd+dsnv0LZntvQX5Iu7pk0zd4a9JcXghM34/cjOReXG12uChQRcHp6iLlELaO9dBBDDg9cGosjenIgBDTUjYGDzJHyZy9wzeZTBdsnefUWDJnUc7Rx4COAqVhK8AhCTpjv5ohfOC4qBhMz7ltU/ir9ah+h2u3hNkC+g6MIbqBxMM0EAKr02f4POf1X/9rxOmEK9ez2rUoLVjKCaUXBOcJhWJelhQ6o1YZrRkospxaVSyynLZp6ezANBr2dcG5z9jmkdvzJTsBz/st9/eP+eav/3vcnRxjjada7LE4upvqwmCZ7R1Q7x9izcCLz75IQQpljcoLut7ijE/gJiFoN5u0QJeSrtnxe7/1T/nk84fk1+PFIqWo5MXXW9u/VqcrJOgsDZnrcsKkmlHkFXleUlczqiotdNpmx2azxjg3JkBotEpee6kyovVIscfQb5ExkGeKfjC0bcd61+C9Z1JV47IrSwU+zxFEMlHfaB1F9Ox2O6qiZFrXZFrSdi3OpQTRvm8wzoHMsC5ph63pUyFylvV6xXw6JdOa7WbLJ598zBtvvsUbD+5xdX4OUpBVE548foRSr7h1fEQ9m6OyDCUEdVEwqUpcnrqkzcUlbdumlIZCs9v2OGex1mCM4eT0hLZpqOoZd2/d4pvf+jYqy7i4uGCxv8/t+/eZLmajRVSMHaJEjbbT9WY1al49zg40waNEpNAZmY/4IHBRUciEr8uzjMEYsizDjHrpbAzctN4h7WjNLSuGwZBrT9e15EU9LiSBkJZ2WZaN2umYDBDO4cOAk4G9SYVQELOGaBU+QougFTIxU8diG8UYHBgC0nuUdSggEx75ZyCCPYwQ7+t5dARkEDfKi2Stjz/zKy19x5GDlGOBvbFY3BTx8aUnJkPkJiE8NYBf9rzXDNyhO6UfrqiOv0l5eBdzek5wK7phoB+6pMwRCYrZDgYfYFJP8J1BOM9cZygvqWOGkhJF6pSnYVx0C8F8PmOxOGJ2cMhsOme3ueJye4XZbhHOYqLHy5gYHXlB7Hv8qFkXWvMiOKSATCveufcu1dkFl82Gbbsh5jlCF0hrEdOQJJr9Dt+swQwwjh62L57z8X/2n/L+v/f3KL/3l1g3K+anL5jZFqcEh2VNXRXpvyNT0auqklKAiiKR+KRgXpVMtKZoNjzeXJLtLTjWE07yLWjJsijZy3KGpqdteo51PqqNItp7pMgwZUk1W3Cx2vLq+Rl7t+4xOczJspzgGZ2I0LUNfdehsmSKWi6XrNZXvPPgHT763rdZLic8/OQn/MHvfZ9/9z/8X/zce+5rdbpSKfK8ZDZdMp8dUpZzFBnBj5HpUlKWNZPZkuzqnM6sv7yhY8B7k2DkVtIZR55N6HuJCwO73cBqtaPrOqb1hKoosNYQgqNrW9zQk0k4OtynquvEdLA9l0XG1TqBONZbgxsGZrMapTK6LjE+wziLve4qopREH+i7pKl1Y6DmdDqlKAve+eA9bt++xe/91u+wWMy59au/wssXZzx5/Ij16scJGl7X7C9maCnZbDdsdzvW293NmzCENKgz1tK2HSDZ3z/iw4++zbvvvMtsPuHy8pKuHzg6Pub1t9/i84dPx9lwQVlYjIHemDTqswYzpHm1VBpvDaWQeMDJiPUJA9n1Bq3qG/hMGLflWikGN+BdTxAKGyLBDVjvKKspeVljvEV5T981KKWZTnP6wYwc1SyZTERAeFDOUeLQOlKpyHJeoWY5MXic0mxd4KwzbIzHXU9Ax9EP0SOdI9eKqQhUIiLFn4Fud9TepuFr+lAgEarEOJdO47w40ukSeQwR05w6Xo8axnPbOKe+5rdeF2quC21M3xOAEK95vIDIkXnNcu8ue/u3OD5+i+w7f5GPHz6kef6Q7cUrht0OHR1E0FVOpnOmswlKjXDuLC2Ogw8UeZEkjki8zKCcoosS4xxRV5xs1lxcnjInPRgXeU1mHefDgJca4Q1NVuOyKVFqDuoJSx8QRUa0htPNFf+8XRN9pNaaZVVyvttCPU2mHW/ph4aQLcmmc8TQ4PuW2O6g7zDrK374D/5P7LUrth99B79/i3J3ycI2fNMbPiAjj5GZkEzLfMz9U3Qmacb36mm6f0LkaugI0bHcaWx2ga8rjmYL1utLNjGyrCbsH92mKOvxh+mI0WFNj2kb1leXPHv2hElRcffNNyjmC7KyZsQUEkLEDgNKKeazObtd5NatW3zn/Q94/xsfcHTnFsEPGJfm3F93/fyiK1K3M5/tM6v3qbIFuayIXtK3A7loyfJ0Y+U66T67rsOHdPSN1tJ1A32frJNFXrFeb+mHgc0Ik/HOcbh/iPPpGE4M5Llif76gridM6gnWGnZNy9XqktV6jRkGvB3SbFUK8kmVjszO453F+siuaSiqJCsjpOIblcC5wHa7IQpBXmYQA6Y3vHj+illd8Prbr/Py+Uu2mx2Hh/u89sZb7HY7Hn3+OZ9//imff/oJXdPSDR39qNnVKnFsi7xgvtjj3t37/PL33ubtt95lulyw3W04vzzh6fM0s37/mx/y5lvvsGtaXr54zg/++A/ZbjbptWuNcgFUoGk7UsKuRYeY5rs2JfWqPMf6NFIIWcA4jw2CfAQE5bnG2HQki0LQ7bYJmiJV6qpVTwiBPKvohoS+tM4m0ubNJt4zqUsYQDmJcIJKV5AFqjxyNMmZVgVCKfoAl51Dbhu68xXBjYVMjkUlCDSCaZ1xNMmYlYoq+8XH9YivjDlS0MB1EUzz6evpiBCMsTeM2YPXS7NR93BduMd+V0iRbM/xK7Pr652dICWCaEVW7HFw9DaHywfcPnqTw+PXqeoFQkjOm4FvvHfEy7sfoC8v6XeXyN05CxkZInTOsigL9iYTmrbBDB17izlS1Vw2LauupQuafHFI5xz95Rmr3YaeNWG3TfJPAl3XEKxJjOtqwkxXqL5jtWsQZU2IA5cSLoNHGVjUE27fus9J09Gajo3wVLpkqipM9FgB1jlEXhFFilAvwxJ7dQ55CX1HHDpCb7n6//y/0f1AfP8DGgVN4zi5vOSfnj6nEpa3lxPenezz9mSPw+mcKs/J82To6Y2hi4FKapY6RzjP5dkL9m/f4265YHb8Hndyz96sJAZNUVXpZOIjzg5sLy65OD+laxrmswXOWZrNNgUbqByBxNlA2zS0bUtWlGlf4QPRON77xtscHE64OnlB8I7tdkvX9l97z30txLwsK+q8IlcFcoR7WBPYbVrcAEU1JI+9CJTlhLqeMwwdQ5+eSE3X42PK8No1aSPe7LYUOSxmNaFKcy1vPZkUZDpjudijKCcgFOumo+8aLq8uGNotwTmc6RN0RUsUgukYm951CTDTD5ambZFZjpaSXEmSt0ETMGyaBq0VB/sHlFXFp198xnQ+4b333uX4zh2Eznjy6DGrzYbLyyuOj27xm3/5N/hrf/2vYQZz80NYr1eEEKjrCVVZpYj1skZIyW6zot1c8ulP/5Rt1zCfL9k7PKQsSuaLfbbbHdtdw7OnTxjahqFrmEySWQFSHtquaVFCEaLFuQE9UqR0rlNXTQoCNdaQ5zkWweDSzehDTFk6yNEclnKxhNQpXh1JrhOLtShK1pv1iMLUTCYT+lGPrJSkyAosaWvrrKPIJHvVhINFzcHeDJUrtoNFbTqMlJw2DWbbE4W8MQzICLkW7M9r7hzM2J9XzKtffNGNo9Y0jg+IFPNy/cl0v99E/YrrzjU9lsRIEBQ3brP0K2Euryvs9Z9FopnpgnpyxK3b73N8+02ODl5nsbhDpkqQmtb1rHrL1jjOTWDn4QpJUy1w1QK5d0ydC3pnaaPg3AwMlxewsYgoKaTCBQe7lr5p6POcev2IPlNkmcSXOXqzRtmEkowxclTMOGlPaETASGiw6CrNfLUquVNVnJy8xGYTjJJc9pad31DVRyymC67WF+xUhSoVi7xgfXlJmMwIc0GtoNtd0buIOJ4ihhbhLaLd4FZnhO0W81v/iDoa+g+/QZjVeOvwEXoh+X6z4Y8vr3i3mPI37r/NW8sDMiXIshypBBWS6CLOWiKKd+6+xf7eMVIpsr6nLBKVMMiUfI1ID0LvHKZrIUTu3r3H4tdr+m6g2ey4ODlngaacpdNx13UolXZE1hoiUM6mZC5nu2s4OXnB6uqK7WbLdDL92nvu55sjRIrfVmoElQcIFox3OBEYWoPe7ajqGoSiyAsmkzkhgjEOKTOELPA+0I6SMCEEe3s1xjqMFWhSqkMugEwzmUyZLvYZjKFttgzDwDB0mKEjIjA+jMaHBD0/3JszuMjF1SWRpN/dNg3WeYbBILyjWi5QQmBcYgDvmpbUmEjOTk8YhoF/8o9OqaqSW0fHVHXNa2+8xsXZOc+ePOHx48/44vOfkCvN/v4hxWRGXtcs9vcSX8JYttsVl2cv2Ww2rJpdSvxVkmoyZ7ZYoquK6WzGbpMkNM45nr94MbpYqqSqUJrBJH5xN/QQ40g5a9PScNQZhRCJwaOFBCFwMdL0A2Ud0tEJiXMWqTRhhG8LqchVzmANUSmMM+RZOm5lIWEe22aDyhK0qC6rBC7yKfHhen4ZbMANnugdUmmyXJMXJQ5FXniK3FJoPR6p3bUglRgCZaFZzCccHS442p8w/9fY9P6bvvwYBS/Ho7+I119vEoFxLfeSiSyW7rFUbceGGCG/VECIcakob5reCCqn3rvNg/sf8ebr3+HW0WvMJse4cUk3OE/vBf3g2A7pPdJaQ9saNtaz3ayQpsHuNmxPX/DZ2QvWzhCmewRRsz9YqizDFAX2YkMsC8gyZosZEz9wP5/wcttwcnmBO31B322xk5oQI6VULG7f58GsZtc0CC+5WF+xjRJTVASleWUD2cExVabJvefl6oJOTRjMjmmRM5OSre9wOmfXe8q6xgFWCZzKKBeJ/yGEJus32HY1ckkgliVxt8X84PvIvSnh3Tchg7gz0EaikylAM8KL7YZlUXE4maBEZJJppBBkkymz6SH1ZEmuc6LURO+p51My2dLtdhTTPYQUeGvwvSEEkEVF5jx7RcFivmB1vuLZw+cEdYEsJ8QswxPYrDe4LuUtOm84ffac09NTQvRcvHrBYDu22w2vv/Y6Rf7fcJF2LfROTiggpq4p+kCMjuiSnMs7k+RLmaKqymTVFZ4QNTmBIAza9dSFoChKBjdwcjIQXMR0O0QIuOAoyxI7CpJ9SECbbhgwpocIxhhi8EzqijLTHOwtCFGw2lyRZRnbzZamaVO0TIy0fY8oMvq+I8/z1A3aFDUTYsT0ifOwWl1SlhOePX3GW2++yXqzIS8Ljm/dAiG4urrk2aPHXDZn/PSHP2DTtvTWMS1ymj6Ry3KtybUmCMlyb4/b91+jnk7JiwopBdv1hiIrmM5mmL5jvbpivV7xySc/QQhPNiaymsHQdQ06y8ZNuSeEMDrQxnmhSmm+vTHMypQW0fU926ZlOqkg+MRpwFJVNb11aF0glAcvEutC6sQmHjfrZVFhrGfoO7wP5FmOkgLvHUonhmxwCbjjjMcOFtMb2t6CUlhr8M6lXz4xHGQUBDEGlUePUhmTumA2mzCbzqjKX3wEu/d+VBmkdFiiIIb0dd9IySJf0eamWW5yYcnx9DfGst80xKnLjUKwPHqbX/vlv83br3+H/eUhSiiGGGmtozUOGTy7rkskNh/oz0+4vLyk323Ynjzj8ZPPePToc1btBlFUTJdHZIt9JuUMc3bOUNZcTvYp9/bYC56DIbJa79hJhYk9u+6KEwnGgSJyOJ9ApjmPoFSG3V3w6atHN1Sz/fmC1/ffZLXaYnzg/PKMba4RWYGMOcc6514948q2dKFlG2p0PWWe5azPz7HzGb4oWGYZl+enuGpCttijaEnMa31AlBkBi5rOcF2LXG/wuyviH/0xs7szmNXs3IAwkcIFbhclby0PKXWGIyKkpDOWuiiZlhP29x8QZGJv/+iTR+wGKEvFhweSXPYMmxUH1QwzDHRNi2kaQkx42KuTM4qiYLKYIbOcSOIiZ1mWCII20Qb7zZoyz0AKzs5OePjF55i+pcgV1ht2uxW/87tfsNlt+F/9b/7jn3vPfc14IYUp+piQi4Nx6YYcRfzODeRCIFSCI1dFTa4VWaYZfKCuKqbTOd4Hzs9fslld0vU9XSfY7Sxd2+DMQK7SWKGua6p6junaceHU0LQNzqbAxUwrFtMJi1n6te0G2r7He8d6kxZyg00ZZChJdJaoBUM/pI5dp4RiJQTOB3qbWAyZylhdXtDsNrx6dYIQgtXqkqurS+qqYjCGejahmFR4Af3pKafPn7HbJiBNJEW2v/Hmmyz2D+nbln7osSFQVo7FfEHwISkIrKOqJZdXK7z3zGYzLk5fouoKH2AwiQTmY8D5lE0Xgr+h/cvrznHsqLquQ2cFZZaCK6USTIoKR0r6oG9xSJYHh/RDGlG46BnMkOzbWifympDkRY4xBmc6jOko6xo7GLq+o6onlHlBbwayPKPpLKdXKxyO6TBjCJ5N17PeNbRdR/Qe9xWuAUSi92OEShqLDF8PZPo3fiX1giAwZqL5cfQqIkGOdt5ActONc5IEwUljsRDT/FaI+BVVgiBEwd7iPn/91/999pav4XvDq5entMZw5Qx972gur3h0+ghnPGHoyAI8evQ5u92a7WrNbn2B810K8cxzosrooscOBil7jqopZ0OPN+fYl0+4LDWnkyka0M5xMJ0jZ/s8W18Q+57Q7Xg5qfBCIZVmOSk4yo+5bDeIakHQmot2w8l2TUQzm0y57SZcra5oCkfwPS+rpHI5OrxF3K3ZIvB5iSnnVHdKOr8jaEVb1MzefJNd12Kip5gtME2LVzVqOie2V2jTIGQO+Qyf5bA9Z/KnX6B/6UN2rUX2PaW3HE7m9MNAVk4odI7Kcsoioy5m2GzGT086ZsuMddOzigV6mnPR7Hjy6pxhOKNUBXt304K7uVyxubokqwrOXrzi0Y8/5o1332VxfIvlkWa3atH1hOl8SjWbEBsoyxrft2RFjlQalGS2mLILPe998A6PH3/B97//Odu2TXFVX3N9PWUMQfCRoTM0sqPPDd539P2OUmfILGPoNJBALlrlKK2ZzjJmywMm1Qw7WKwZaLYt7eBYXTXstmk+i3d4qZnWU6p6SoTkYtltcMbinMM4i4iBxWzO0cE+eZax2ja03YBWkq4faLse55J1OCISLESAVqlYKZ3Rdcn2WuQZw2BxxjKta4SITCY1fd/z6NFDqrJkf7lkKKs0v93tEELQdx2DtRwc3wIpx9e0TfzdELAhEkNgs93gfWQ2n2ONx7nA/sEh0QcWyyX9YNlst1xdXDCtay5ivIlCsi7ZfrXQbAfD0I9Q5Bs9Uxod5FlBDOnYb4aBoqrxpIejG2eUdoz7dt5zfn5BWZT0QBYtJljariPLC4KPzOqKxSTSSsGu65KmN8vRumDXXtEPHVU9RUuFs56dc6x3G04uzpnOZ6g8p3WBi23L0CepXgzX0O/EKhh6w3bdsKo1dmjT7PMXfF0rEoQIXxbTEWROCITxIXeT/EsEef3GSrFTSaWQfk8aqyiKouKt13+dH3/2Ci9PGIwlBMluN/DctOwGw3FVUnQDJ+2GoduhI2TGsjk9YxAeigxsRGpFVU+QecVcl7S7K9p+zZOsSsUzK8m7LZc7i9vN8FmBJ/DUNSgliVqzt9zD7Da8Oj3HVTOoZ3jRsZrN0UXOcjLjuCjpPz5hm2koNNtuS1dIytcfcEcWvHzxGV4pXJFzsVtzdHyE7Fs2QrCbVEynh+QvPqPLc/rplOkkp+m2hHqOqRdUk4behNRVmy025AQnodAInZGVJd3zNWH2CLUouFdUZDJjL6+5N99HjypnIRQqnyLmd3ly3rC+OEe/PGcnYbe9wp5fMdvbZ6qukP0Z9++/TVZWZFkxjjUku8tLXjx9wmp1hVCKejZFzRXOOFar3Uj4M3S7HdYOlJMa13dcvTjn9OQlzS6ZTBaLKe+8+w6nZxs+++ILXrx88bX33NfMdNMsd+gGNpsd+IjOBC4MaWQgPSGCcwOxC4ToqSdLtJJMZzPmiyWZKjDKwAVsW8dqtWU1pjJUZUHbevKsZFpPGQZH27WYIXWvxhmscxACk7pCKM2uGzCbdhxuy4QTZJRrIXDeo7VGjRZfP+owzWCSPReB0hlFofEhgUWmoxxts15z8vIVt27fYvqd73Ln3j2ePXnCYrFgvVrRdElPvNtdjcGQOWVdo6Tgar1mGDratkmzZLFjubdM+Ehj0oxpOmG73fInf/on6KJkfXWFFFCUJQQw1mD6PsXGC5PSdmPaoaeOSo52VIkLiYplXQTpEH2PEJFNP6D2kpNPKU0/WJSSDH2L1FNQGpVJVIAQHM4atJR01jLJEww+D9B1DXlZU1cT8rykaxvapkFJxTA4hFRcXG7pux1OPSefTggqZxcjJqQZ7jVtLEbwMdK2Ay9fnhJMS11qnP+zADFnxFGm/y9FRITEphWjRhSuiy6JxQDjOCE99JJK4Uu6goie/cUbCLFkvdviFZyd7hi0Q/YuHVmj4/H6jNemUzIfWZ+fsR06nGnJM4nsOrJdSyglg4+Y7Yos27JXv85yMiE2O/phjTeWs6ogn83JsxkHRcndyR7nlxe8OD/F5zlxUnORSeZ37jEXgtIrFgIeX75gM+zQ5YzOW0JZcHDrDhPjaNeXrHSgzwoGr2Bac+uN92l9y8q22GnFK+e5d+9NXG9oMuh15P73fpn1qxesVca2mnDw3oecb3b4LKeWiuHFKaGaofcPsGZAtD1xcIiiIitz9G6DuOoopzl36pKj2QQZJME5dJ6n1OysoguC0+dPeBkEVgT81Zb7944pbI+ZOIS3aNdSZCUHt29TzqYolbIclYKXj5/w8PPPmdUT5vtLqsmErEj7p6YbaNuWAc92dYmIgXJWs2rXPH3yiEdPHtJvV9w63GPoG5bLBb/6q3+ef/uv/S1+/JMff+0t93OLrhIgfMT2lq7pE4kHSRSWqB1eStCCKBOYxfqUGVXVU4oiJxPAaGY4PV+x2bR0bU+MDiVikikFz35VkWlB03aYoWcYOnzwDM5hrCVTEpXltIPnan2JUoIYA5lKb9x8jFQ31iQNpBAoKZJm1TryqsJZS/AuLeF0MjpYn8YWZVVh+4Gf/vgnHBwe0H7RsL93wPHd22gluXX7mPV6RZGXBOs4PT3FeYuSiuACZVUghMRZx9V6jXWWSk7YtTuE0OwfHFJVJWfn50ghef70CcYMdM0OrRR1UbBtGoxxWDsgIihZpmKQ3vLjrClZmqXMUYI05nEGpRQmGpSWWOvZNluKPB837xlNt6MqCvqmISsmxGgpigIfND4Eorc4A71INkdJIMsL+m5HNsbyGK1w1qRstrSKT/PJ3tGbgdWmQ1Q1VAUh0wkBcx3ACMTg6TvP6dCzWa3QIuKN+69TJv//fsUo8OFLMKMaORGpURdfdrmCkSEhv5Lvlu75EBLIPHEVJLma8tmnH1MUGSfrFdNqzsXTZ7RKsCwn3PKel5srPj1/iSYyF45dt8Y7S2cDwhlUJsgRFAklBxFO12cJQKNyDmcL4mbDi90W7wN9VdE2O7qmY3F8m3vLJVpo5GD5PHZcekcuMxolkEPHfm/R65YwHdhNSh7HGlRNVhcczx7gT8/YaUvQkRWRTV1xtLzF/OQpOyUJWcHLznL3eIF5+hC32GfrJff356y2W4aspFxOqWJPW9bEoqT0jn6wlPMD3Ok5MiuJ6x2Z6ZlnBdPFEmMb9kLNUhfsZQWVLiE4Jrlif3aArQ758VVPiDlFofA2MJgGd3WW3jPescgVh9WE470lyzu3yasCb1NWXbdrePzoMS9Pz7j97TuUdZnUUFlGPZtST0pOT0+ZHu5RVAWZT2ahZug4257R5YaT7Ql7ywkXl1ecnl/yj//RP+H99z/iN//G3/za++1r2QshBKxxmN7gakuGBumAIXVeOlkeg4t4O+B3ES8EVT+gZU/TWh49fc75xRUEmxCM/YAKHoKlyFLS7On5Obu2p84V1lo2TYsZBqpcMZ3MEULhTIeSKRE4IkdfesIXRgKe61mno8hLRBRkmUqAlpiKgNQR4mgVjol5mhbNnrbfEc89WmWcnb7ik88+5p233+b2vTvs7+8lC2VZsphOOb+8IMsr3BitXZYFVVnRDxbv0gx2Nl2y2N8bk4Ydbdvw6IuH9H3PZnNJ8BElBbPZHLdZMww9g0nb69ToekS8ttgm+ZXUCinTa1FSEwWYsfDmKkeISNfsEGKKwJKXE0RM4BysIUaV/OTRUxQlfd8jlEQqhYiRTOnRoBIJHjbbFUVRIiLorMRbm5gEMbK/f4vzywt8dEhZJNRkjDfsAmIaLYzmLvwYdNmanmgN0f3iO92v2jNiTCxdMZoWECSt7nXRvU6HGIE2cnQBfsnkDcQoUEpzdbnj6vKcWVVwdbHiAkVUirbrGOQJB8s9Kq2wbY/1hsvgyWYTdNej6Fg7x5ApVJaRKcVBVtH1HbtmBzpDlDWXMZBNZ0z2D9GDpXCONnqulhWtGVBas8AzbdbU56/os4J8NiEMAy9mU4oHd8jzmjvFjKePfsKmaZH7NU4rThQUb7zFLSInj36YwD77klWjWD54l8nqBc9Xz0FF4pBxd3/Bc7PlqvO89uBNjuSas8qyqyPfO3zAH+5abFZxkN3i1ekKW1eIqyuCKsEarA5shsT8mLqMfGs5vF2jIizyjMPJHnVRYPUeL1xF5yz9y+fcmmi0ccxCw+UXT1npgvZsxa/+pT9HNSnYu32LvK6IIeKNwQ+GoevZbJK8VGqNsT3tbktUkigCMhPsri4opgWTvUXaney2XK2vOOtOsRPHu9/7kOZ5h7UFb37wHos//BGf/vQn/Mov//mvvee+Ng3YWUfX9fR2IIQKIQQ+DigZUsHVPkF/Qw4u2VKNsfRth7eBi8sdp6cnyODouoam6xiGARESrOZoUbMbBs6uVlRFwdV2x2a3pW9bcqUpixlByLRVd+bmOFhVNbu2JRNg7UAIAR+SiwrhgZgSU8scP9LGtJYoKRDBkxUZsRjhOc0uYR+lTGkMdcnv/8HvMwwDMQZ2uy13795hUpfkmeJSK27fvo3ziRsxmUw4Pz9nvlgQtztu3TomuJQMIfOC05evsIOjaRvOT19xtbri+NYtXr56RVWWibcQA9b0iakgzU3hY3RzCXzS2JJoZhAIzibB9qjg9yGMDitDs9uO4PIWoVJKRogS47bU2TIVdGvJs5zgzeioCxhr0VITgsUFz9C79Dnn8QLyrEh/jhkQUnDn7gNenT4jKIVTEhsTB1ZeL89ubF7XR/hACOlH9GfBkJYouOKmI0+aXW7mt4mlkBZjkpT8G4Mg6jTbjTFZiNM8N/2z0hmTySEidrxcXzJf7HE2WHxVcG82Z9vuODOGTCgeLA9ZrS85a1bEABmeaAd0CATjCd5hfeR04sknEypVM8kq5uWEz/stjUrg/7KumTmHOTshe/4Mt7ePIHLW9VzO58j795mLjOl2w0nXYPZmWB9AOJwYKN/5gImU+NUF53QYUeOUJpuV3P/oe1gfObt4ijWwqZa8vXebplvThR3Pd44/9+Zd+qefM4QJd4YFLzY/4UDe5pu+xA1rqtIzm5R86/YD/qkUmCjRB0ushzLTdNuGXmmutOQwrzB9xzQWvH3rAC0EtdZYkfHT5xectytWmw0TBRsTeHNvynpl2M33+Lxx3Dm+D1lOoTNUWQIC23WYdocfOrJM8O1vv8+9u/tMJwXb1RUIxaTvEVrS9zukBDv0dK2iqEpEJhhiRzmZ8Je/99d57eg+/7f/63/CJ59/ylvffI+/9Xf+Lv/g//z3uTjffu0d97XqBecS39Z7T8ATYhpEqywBbcKIsFM6omSOtQEp0py363pOTs8I1hC8Y7PdYQZD3zXIGNF1RW8DJ5dXiBjpvaPpWjRQZCVVXROkYuh7mu0GKVMm2HQ6JcRAdBanJX3XEaUCpYnXEHIh8COEXdxYMAVt26O0RmUJaO6co2laFssli+mcU3PB+mo9RqtLXr08YX9vn08//ZT7D+5h+oHL1RWTesJ6k3CTOsuZzxdkWUGRDeR5zvQgLZeev3zBF4++oNA5WZlztbrCe8vQtRR5jhCSpuswY4csYsRYB0SU1KM0SSCQ5LoYX1MkjgQqZw15NUGr7Ca5ViuFc56maShKR1mmmbUbi4NpW/JqkngVhUwPMwSOa93quGAaIS+CpGIxzjDYgbKoKIua3vYUeUVWTejdl1KEGBLcJhljxwFJiCMQPC12BBH8zxK4fhGXiNeWXUbhfHpUfBWCE+HGGHHzscAY2S5uut1r5YIURRqjKYkLgU00GDMw2I5MTZgv9hguXmFsx7OuZbqYs4gWhp61s5jpFGKk8I7KGFo70JcFA6BjQOcanZfs9wO7wYB12E3D86IgP9qnzGt01xNPTrg6PqQXDmEDRlmYlZRxSXQ5oVAEY1hrmRya+YS7y31Mv6GrCyIDq6bnsq44Xk6oThw70VBGz0vT8s1f/ogffPq7FFnFYT9l2KwxjWezesiDtufxT77PJ/oL3nhwxJvLBXffPOZ+tqIqPYF9xHRHaFukzhFSkJcKNXiUUvi85rL3fFsGcpVSjn98avjJ5ZYqm3J7b0ahJKevHvMvLs44P3uJiYILPedbh0s2r54T7+2R5xkiePpuS99sMF2HUoHDW3OKyiOCTtmGbYMdegKe1fk5UTiCG1hdJBVPFJ55PeN//Hf/J6gQ+e3f+i1enZyjQs9v/6N/yC//hb/I3/3v/V1i//XL4a/V6Ubr8dEhSE9UKSNSS3KdSEc+WkyATEQyrShkigv31tHsekzXUWWKRyeX2GGg7zusGRLMIltyud7gjCEbb9BMapTW6CId6Zw1dG2LtZayyAgiEbT6MYTSDQM+gNQZduggejJdJjtrBOfdKHwPRB/Y9QNFFihLR1HkkCm6vsUOFc5bpBRMqpKISEaHq0t+95/9LnuLBfVkQlFV3Lpzh+gDg7HoXLE+v2QyqanqGT4GtFbE6Bis4dnTp6yvrjB2wMfkiVdC0TQNWZGhtGboWoahI3g/dlapU/celFAjOSXFnouY5roEB1FiXI+UGlmmEQFCJjxm8HgRsVZQ5nXC6w2GPC8Y+pYgxgIbAaFSQR712ClFLc28CZFBqhHeEum2W4J1zKYLiqygZ0DmBT4YfIzpaP4V66uIY5JEHLWsSqUqp9SfCZ5u4iuMRocIEIlS4GNEfqWQwjV+/FqlIFI2nIjEkBBiUURCEAhyAoKL1YqjxTGf7S5YzOdMm46XVUZjBm5XU1ah4VxD07XMlWZGxjoOhKwgyoAfwA6OfFLBYImVRCHZ7la048+9znJmjeVJqfGTij54BjcwzWF2sCB6T29yQmgwec7ZZI64/xrVbMHrPvDF4x8R7QR9KBHG89IX5PuHvF6XPHz1Cb6YISkQfcvtd76B7VuenH2CfO0IXMFSZExNyaOfvmLaT/j40x/zzEHWbsmKnNuHsDs55SQMtG+94M7f/Mv88u0HnMYpJrvDD0+vcDJD9C8QUkHcEUXStp+3licnjzG756y4w8Xk21DNqYOhX13w4xevWDcXXIUkB93LZry7KMi3z9H5gr3lfYoqJ3qD7df0zZrdasvq8gprevp+R55NKKf7qEzjzMB2s2K3WScnqDMIIeg2GyZ1xWvHr3H14ozpYsbTp8+Z1ROMkfzw408Z2pY//xd/nftvvve199zXUMbAxxSKJzXoLKKziMoVOtPJ4REcPkQ8gagEhZqgZJq37rZbtJZcrdYpDz447DCk5VM9oRkMbT+Mce2AkukoHANKKEzXIISk7TtUjHgkWiiapsO6nhBTmCUqw4WA7TqKXJNneQJjeMdgIiqOlveR5JU6m0CuFQFN23ZkKrETppVDacXVZUqBuDw/xTpP9IFXL15yeHTMxeqSTKUZnzGG2WJJUZQ0bUtdlrR9R28tednRDwkn6dxooc2rUYQdGQZHJTKMSQT+4B1CJTfNDY9WJphJGOPpE0JS4d2AC27kAhtCD5nWKJ0hIGEZnRuVDx5vHHboRklTwO02KJ2zsZZJPcHZBJ6OBCZVhR8Lp3eGijIZMnxPiBE3GBq25EVOUVbkOktAoZE1IEZ6w01Ru3n4S8gEAjV+5hcvGYvXfxECruli/st5Ltdwm/G6kYVxbQkey/HNxyPTag8RSvrecHRUIs8t62HNfr5Abnc4bzjrd1TlhKx3ED3b7Q4zLSnnM/RqRWjW9ErSLOYorcmlYJ+M1hkutSO6DjHSxA73l9ztDReuw2uFG1o2GexmBWU15Y3ZAf1nj3moe5wFMShEFrhQitvvfhcZLKcvH9LOK0K+wPWKLkYO9JzdtELZFadnHed7c37puOb51XPeCoqjYZ9g5/zoB39Ee3HJ9GrLng+8f+917r79Ot/59jd5571vUmYZT18+43K9ZvfDT7lz3DN7/U3+SGmelaB8YKsLvpXD+8PAfLlEIyh9RPgVm82Ol6GnLC2LqzNif87vvrwgZjM2aoaY1uTCsF8vOAaWSnG0mDGbzxJd0LSYvqXZrnn5/CWXF5dstit224ZvvPdt7i72KCcTmvUq7YtGaaaPpIDbGJjPlpy/eokJlsdPHvL0xSmPnzxhNp/w6uSKZtdyenbOO+++z1/5H/y9n3vP/dyim9JeI3kORSHRWTJC6Eynbo4wJu5aovBkKgcp0AqccyOUPGDdQJlLzoaefhgSujDLUiaZGdLGXIAMaR7mAdsmlqi3FiUEUSYXWW8tQ9ehFSA1Pkq0lAxDCo8TKvEDhHCEIIhapMJ8fSwnJoLU2LVnOkuMWiWZ1DXDMJAXGVmuUUrgjMF6R7NZs2saNu0jnjx8xNtvv4m1juXeAlEofAycn59STSc8ff6SoWnYbpsxyTiiZPK+S+9RWVqIDd2AMQNt02CdIYxpEQmkHRDCI1U+btFT6GeWZ4BA64JoByIRBTg7JGtucJTVJC0IhUAIOdLefEqxdcl8ap2hLMdg8JAWQ845one4LCVS6CxPD0RrCSFwHahonGHMzUXnBXVZIU2D8+6GCREZO16ZuAsgk6NLytTtjrbaX/w1fr03oLFrvYi4+ayAf/VLHUdXxGuM5ZefssMAbsdivuTp9opDoXlelGzrguPLlvXmgs3BEqcURyZiL9eczwusUoRgub1/iLM9LQ4f0sJR6AxfV8yzKaFb40NgiJGt6flUphPUvekt4tWWx3GLETIZZGzHRb/i+I3XObh8SS88UVva1StO8zmiG3h9b48Fml2zJS+gtJ711pDPCj7Y3+NHT35APJyyPy+Zdpa7jcI8OuO3fvCY33jjPX765Dk8fsF0VvOdD9/nOx99yL0H93jw+pu4MGAHw/F0ylxpptOa3W5H/vIRR0Hwb0+mFHdvod64y6HO2HffZTopURJmy32sMfzgsyf8R//4n/Lq+7/Ld+/t8UQIWuvRdgvBUnUbDu7e5WBYsYyO+7f2eO2tu5R1jjcddremb7Zsr654+vgxF6stzjvms31u3XvA/q3b5HlOJlUKKsjy9DCVEhcsZVGyd3SEyhXPHz3F+siDO3eZVjVd33C4t+Dh40f8yacP+dHDR/xvv+aO+/mdrhIUlaaqNXklyUpBlivyXCPl9cxUEEVAKUlZTiizGmKG7Q1CBLq+py4L3OCwzhNIYBznPV3fJkuqENhxDqijoGt2aWMfE/4vQVoUfd/hXSqgQpZpRigl1ru0vNEqSc2swQY/ArlTVE7wAT9u1F0I9H2KXK4qyaQq8T75sZVM8eYuRnKlcIXAtA6Vac5PX/Hi1QnWOiaTREzbP9hnOpviTE/bDbw8PWW9WrPdbFit1ym6PTiyPGdS1bgY0DHgbZqbdl2T1A1DMkUkPqsYodnXc3N/o1SIowPqmpHgggMlCXZUTQSPEZJyOk/JBiSRv9KjLtnZNPsOybAQvGcwKS4+jp21cx4pQ1pOEhnMQF7XxOBQUiUNtR1SF9jsmE2mFHrLMOIyo0hdbJRjlxuul1ICVPo4SoL82pXCfztXhBuhLj9TP29K8M1vvRk5XH9cjB/78iNRQmt2ZOWM5uqMeTEhW61po2FWaHIhaNZX9HWFDILFpKZYbxgmGik0m8Ew2T/gwFr6Zo2aZGxE5JU3qOg5nu8x2w08dw1dDg6P9YYT1/L60SHLK7jwDVJGou053XlOxZb5rOSOVTx6+Bg/q6B2ZHmFXMPe0YKjgwesTs55ata4+YIsC3S7c/L+iloPLN2MRyZwZ/kaP/jj30LHwPe/eEj/+IT9THLnYIYZGv74T/+Izz//mIPDA8p6zofvf8jQdITgePUy6Z+LIk8nWJ1TrS9ZrTcMVclqMuHb3/4Ow2A5/elzurbjP/vsjLUoMYfHPBo8f3yxI+YTOmcIe3coVM03j464011wTw1859vvc3zvDlkmaNcXDJs1Xbtjt9lyeXXJydkanZfcv3/A3vEtqukMIQT1YsGxziiuruiGhEDN8Ji+5+T5U7Is5/zsjK7dobXg8HBBFEtevnrBbDZl1+y4vFp/7e3283W6uaSa5tTTkrLOycuMolDoLHWKMYVhoaIiL0pmswV1vsA7Rd9dobOUEFzkY1R42yOQlHlO07bEEFBKj359h5Kark+awxBjGgfkWYqUcRbvA9EZsnJKFDp1XyKkWS6ghST6iJWpSJGluaULMXFEgx9tv5pMZwy9QWtFVVXYvgelybTEOEupNbEsGZqWiKRtW7RK6RFD1/P5p59ycHjIF59+wmK5wHrHrmnBJ08+MdLstig1cgtCxIWEVuyNJTqHdx5je5z1o2tOj46oJEeKyJENIG6OsMEHqqJKSzMfEMGjYureg3eE6Mbu3CKigujx3iG0Tn+OTrHeXgmcGZCkJGEhUhpF9AElJZmSoyQqGUycSSYKHx1KqcQsDj7lyVnL8WyPPlh6M9wUoXR3pHnntQQLKRNn4M/EcCEV0f96xrjkjrrGPn71413bQTYh5IqFzliVkgfHt7ncrjlTksM332J6ekGbwaUUeAUH8wpxseZSBNalopGRsqy4O6nomh0rPxBRRJnSbxfTCbNW0PVbqEEFwXZ7xceuo95f8vpQsXr+jMuZwlUVspgwFAq1nPNgMmNje1zoaLorvhiuCGbOkRp4YzHjydnH1H7CsbjDrfw+h7c+4uL8jI8//xPcYAg6Z7Zu2Tw/4aIxzKuM470ZgogxhskkhcP2fc/J2Tkff/xTPvrwI8pM0bUdD157i9V6Tdf1vDw7gx/+kNfuPWAtJfsHC/5f/+AzPvn4c2LwqPkejyYPyPbuU80qTi9PmR8fUlc1u+0VbxQVD7LAW6JhllvePN7n8NY+1aRiaFYM2w3eWQSKoqzZ29vj5GzNbDLnwetvMF0uCSGMXBHBZDpLevkQUUXBanXJbr3iix/9kNlyj6PjQ/7hP/6HnLx8SV1PkJmmNx0XFxf03YCUX88T+blF9xpgU9UlZZnfQGNkluAsGWkMRoQyr6mrGXUxg6Botj1KK7QKQJKdtW1HnmWImIpq8AEfHdbYNA9TiWXQdSl8Ms/zlGTrUieriGRlSZZnaQkkJabrsTbFgruYjrelSiYBQfJbp6DH6+NgyltTqkQpnULn6ioFO9pURLSUZEqNx73UcTrnaLs+JVE4C8B6tcI7S7Pd0TQ72qFHqZy8yGA8jmd5ftOJD2YgV2lR6LwnOIMzJn0vIuRKIqXGhcRNEKMZIsuu8+bSjNFYk/zgJMWAkiB9BC1HGFGgbzuqqiIiGIyhEKmIOpv+PKUcwXlEpmnbljiqHrz3adFZliigGHkM3trEhPB2nNimzb33HjsMiEwyr6YQAyak0Q7XOyggyOv5qCReM2t/pqf8xVwKlb5MkQA1/1VfkfhKcb3+OQgRU0y7uI5nT3N+mQm6Ls3cg/OcNismekIhoPEtISjeXs4QQ8+J244RTzn3jw9p1iukbYlFTOD5yZTJZMre1WU65RFou5bPy0ixP+c1V9O9OuGkMrhJjcMzDGtme8cs3W06t8bEnkIU2O2GT9odoiz54N5rxBfn/HiyJuqBKlN8++ADKgtHnaUWlt3lFf/k0/+cW7Mpb8+WZNsVt7ICffqK9SfPIHrqScmkzFJ6NdC2HW3XobSirEqqoqRrO370oz9hUs94cPcuXd/x8SefgpCsNlvqqmS9W1MWBT/4wWMe3H+NO3cecOvOAz5e7zh7vkL6K4IeCJM5ORmHwvPuvTu8VTgWOuCuXpLRU9c5Plr6dsPu9JRms0kPfaURQjOpJ+RZxmw6Y3l8mDTnzhG9R2cFkIBG/dAitKCa1PzB736MjJ6PHz7k3v17TGczyqymLAru3r3N4Ht+5/d/j832RYq2+prra9QLEqUUZVFQV9eFNx1DgxAgFTKmrKcir1EyI88LrIG8KMgzjVYCa1xK6JVpA9/bAe8NzdDgnSfTGd5ZvIfdLsWqq3HL3Q3dlzE2ErRKMTRCKKKxWNOPQ+9EzE/LjWQHljHNQVWW4UIk0xo/bqGVVGnGKQV937NtGkKArMggCswwoIRAS4HIFMYatmaVknNVkmsZ0yEidLtNStlVKgHcTXoPKqWxzuDsACFHCpnCIkPA+5CkRiGMUd9JbSFEcp5JCUorrE1LtbzIUEqPOtwUDy60TjHYIQA+2YdDShNOkUGaLMuw1iPFQFaWaF0gYzoVWCw+eISMtF1DmRcIJNYahIjUeY6UKi0cZZoNK6cwQw9SYZ0lk0n+NfQdLhoQEq2zZP31Pn2/BcgYR7dgHJMX+JdbxF/o9eUY4WdVCv/qb0zjBPmVJ8qX04bxoegHisUdtust9a3bLM9OeN43HO0dMTt9jpAdL4Li4NYxy+c9QTq6oef5vGB+5zY8fUowgbXreGIMqiw5ONpn9uKEqzBgKo2NnsG11IsFM/0am+aC1u7ICkUmBGfbNXGqOJjdZX818LK95ESuEVlNpmFW5sRpzfKyJQuGqTrk4bMn1Is9fundv8If/sk/52z3GKkjKvPsL6Z8WJWYiytC0/Ar33wzPcSDo+sGwphg4nygKAqkD6w3W+bTKVVZ0jQte8t9Xp1f8tnD52S5SjySuOHu3XvMJkmx8Cu/+itMJ3MuL9KyemUkQde4sqSe76M6i85L3qjh28cTjmiwqxOenL9EesPBwZJmtWEXPK8ePeLy/Bwpkz5/6DvOLi9omwZBGKljHbFIzZHOMoa+pes72maD95aoJMe3jvmdf/rb2GD54slDptM9/uKv/RrzacFqfcGf/ugxzjnmiwVl/vWM6J9bdL0N9K0nOMhUSZ6VZDppcxFqPNJGBBotylFgnyDOVVWg8xylM5q2o217vA/oInUW3nliACEUXdelhU2MZEqlo6eUWGOQSqXZY/BoVeBC+lwIITEfYkRLnR5QgNI53lkkqaONkQRrDindNelYU8R2P/ysttSO+liExBmDGC2wQgT6viPEiJaOTGXI6EfzQtKeJnOoSPrh4IlSJeWAc8m+S0jpxVKixw7Rx5BO32OhFaQFmlIZXhqkFBRFgfMpwFNpddMcxgBZVmCHDhciIUpKlRF1ivFJsq2QXIPj6w12oKySrI2gUDrHOUemFIPpcTJpsHOVXn/QmlznoDKkiHTGoGQyT8jx5+SsRSLItUa7hN6MjA/8UV+cjhiBXEnKKqOoClSm+NIk/Iu7bjCMQMqF/69WVYy4m690uuJnul8xvidk9DjbE7xh5bZMreEqF7zAciQUbddwlklWXcatusadvuRsotl2ay5cw2uHE4ZXV/gqI2YSryN9FiiWc0rjGOjQGSgluNp1XJQTpgdv8qDZ0O7WPGte4uoCoUr2RM69W29x/mxNHRrmecE0q7hoe6rbh7xXfY+TJw952Vt29hHy9CFueZc7s0NU7Hnz1hF36gVit+FQwvPtmmbdEO2AGSzTec1sOsUMA+thQOuMxXKOtZbe9Bhj0z4iBC4vz3n4+ITlYkkIjsurFQcHhzTNjjffuM/Zqxc8f/KUzabDWcPt+3fYXVnKyS2y/TsEoSmNY1rlvHNnSdm9wnVnPP/sJzx9+pKjg32CcTTrHW3b8uTpCx4+fMjQdcynE+o6Y71N1vxr+uH6as1QWg6O9vDe0rYJtiWFZLl/wKeffczl2QnLxYyirviTH/6QVjS8ePWE33v8GSenZ1jjkVGyN5//a/URP7foOhdZrRpOz3bcOhpYLCeQj0F7UiBlkqyImIqGsZZM9kiVJFF5XiC1HnODkrwmRI8SGmccMQSsSWm3IXjyPEerNKt11qKz7Ib2k+cFQiRylkbhnMG6lPQrhUiLoRDReeIJOBcI3qelTgg3eMpMpaJvnU+x1kIyDI6IINPpc8OIm+yto9Aa53oiqTtUIiJVytDyI1/2WkGQSYhR4YkoAdFbuJYd4RE66YW9S6/dOQ/BJ6K986lDlGluK2KK3cmKAukdUiqUypLkTSli9GilyPMKZ3u0TrwJISWaSJFpcp2lr6uoiMEmKZlW6KgxIRAIOAeZ0oQ8/cySdu/Lh4BUafQhlaaskuogAsZZirLGWUc/DFR6yqyo2IYB50eDRgxjGINAasWsKthb1BwfzJhP6j8TRTdd4ksBwlcTJL/6O/4l2pgUEilFen2SGziUEJKIodA9dV2glaQvFLUIRNfR54IsFmhhkTga4akP9pBDS64k06pi1bXUD26zNA6l07hitVvT5pp6UfKmzSkM/LR5RZ9noPdQpuH4+C2uguClfcRUtuyXr7Es99nulXxj/8/x4icGHWoeX/Rsz/4EROCdvdtMqz368yeUynBU7fPmcp/bkwnnK8glLJwlBkuZZ4SDfZ50Qyq0umdSlUgiRZ5TVQVFVbJardk1LXLkNA9D+v1nFxt2bUuIDi01i8Uei/mCe3fuoqRmuTxk6AcmkzlCeH766BGvzIxtHzg+uA9ljpotKNxA2F7hbcPJky/4/ItHHN26w/sffZOj+/cILpH9msFgQiRqjdeK1gaMgzt3HnD3jbfRRUXbDCiVpV3N0LHdrGm2O8qyTJlzJqmynDOcPX6FIrBanfHbv/0CKQWr1RprHXt7+6mxU/9NzREx4K3jcr3m/GLNclGRF9MkfZJyjCXRN7pL7zxD6BAyof2KomA6nWPdKyKRpm0g0xAMzps0UghpTqWVujEzRACV4sevwd06y0AkqLZWAtN3KKkgpNBGFx0IhUDivcWG5IK7JnMlD70iBo91gXYw5EokRi1gvRuXP2J806XZqL2OMr9WDhAptCZEATo5ta6zsGSIKElKH7hmrYqkWSZGvItkWY4dHWDee0Jw6BE3p1VCRCKTPjptyyp0PnI8hUArTV7UGJcwlXlVo0RKXFbCE6NBq4yyKMjKEkEkz3PwqYNTMsFdsqzAxICQFucdWmucD2RZypRDJYWBUjrlm+U5OUkKFmJEdB0iBvIiR2pN06ypqoqpzrl0Lc4nxnKIAYGgzDJm05J7+1Nev3PIrK7+jKzSrrvdL5XFN1/WzRRE/Ex3e910CJHYC1Kkh50cfwnAmitCnJDbwBPZc5ynwMbP6JlPat7yOb3zPOlWSUpWTzmWFV80J2xMxxWeB/M97raCZ8MJ3l8Q9JRezJjfeZN846ivzkCeUwnJ7eotvrAN5et3eevCITaXdMOMP33yCPv4Y8pC8cuLN3n16gxLC26DyjVdt+ad+Wu0fp9b+zWLYs6dukb7jj0RWRLw/QbvDeC5c7RPVRQ0XceV6XDOkRfJWXn1dENWGvI8Q0pFcI711Yr79++xt3/IT3//j6gnJVrn7C8O+eXv/jn2Dve5d/c22805n33+CU8ePWFveYQxhkHmqL1jMl3Sd1v2FvsYE8kycASarmG1XjGbzPjWt7/N/bffJC8Kzl+95Oz0lLPzC9abLYPtaU3HpKxZTJd84/0P2Ds6piin6EqSZTD0A6bv2a7WSdEz9MntqTOmsxnvv/8Bn3/2KR+89z6D6dluNxhnefL0Ga9OTxlMj1QCpfOvvd9+vk5XC/KJRGeBwbXsmh3VJEdn1RjgN4rco0hSLGdTlyYlWpeURcGkniKESlbi4HDWYcftehobBKQaRxUx3AQn+uBHIE2SR0kBxvYIIekai3cOleubzXjKCJSjWcNDSIs6LTXBJckXMdx0gzEmi7NSqXPzLhVvKcCHgOk75GhEwIT0WBHgQqQoUhaVtBJrUoFUUuEIyckv5JgQnGYeOstxw5AA3jEyWEuWZaPSlaQYUBqlc4ZuS5ZVeJXhbBqvECNy7KZDDGnkIYtkXvABXacFlkhBcEzrCdO6SqmuQlBqRTWd0Pc9UQhkpohkhBjIrxeMBGIAawbKLJ04hICqrJOtVyuEkOyVZXKeIcbZukhEs5hUDGWRI0WPjwHvk7wtEskETHPNoipZlhXzquIrmZC/4CsCPj0gUQQRf7bgXkvJrgusEDd/F2N3e93lJjAO5BomdYmiZMGKZV3juoEqOGI+MBP7+PaKvO4IuWe+OCTbQaUMth7Iq5rFbMZQaubNBpllyLpClfs87DqmiylvzT6kuXxIXt/i4cUVG/8SoRTv791mFiUvdiuC21LkkipWhGi4vdhn155RFlPuThe8tTjmMKtAHWF9jxy2nLWv6NZXlIOjms4pMs1q1/D05StAsZgtuPfgHmIeMKEDb4hB8O779zk5aYjeM52U7JqW4CMXlys++/wpk2mK9bp36z6//hf+AvWkZrGcUxYZz9crNlcrPvrwA/b292najsbC9tJzOfTMippZWbIyLYyju643NJ3ljTfe4O6D+0wXc7ZXV5y+fMXnX3zBi5OXPH/xfEwAr3nj/uv86i99yGtvv8Fifw+hMmL0SBEY+o7L05PEYSkKXr14wfmrl7z73vsc3Trmpz/+U/b2FpyeveLoYI/XHtzh4eNH3Lt7TFmXvDo5paoKsuzrre0/t+iWtWaxLFnuFRS1AOmTY8MDOoFXZNQQRqF7SJ2qt4ESQV3W9HlOURRpgSJVsgIPPdGncDgpBFme451DIFP+11hMMp0TQ6Aoy5TVBVhrcdak5ZtPR/MQ3AjC8QQxdpBjeOD1sizPs5TYKtP23FpHEAEpdNpaxxQxo7NxZCJVKjpFTmeSmoKY8H0hQCAkg4UaZ8wx/TtyTGyIITn0Mq3IlURkKTHYj51fpnOs7RBComUihw0j0EeqtMC0No5vbjXKtBy5LhGCm7mqtRakwtsOGzxVVXF4sI9Wmt56ohTUVcG0moxGCUHUCTqPt4hYpNw5PFiXwiizjLqeUOQZs8kEIVWKSiI5EQ8WkvOry/Tz8Ml4oVWSB6oIudR01oy3RHoNwSVtb9u17NqW9Lz8s9HpXl9fltd/9TMwjtWuO93rAvuV7vfm84wxR0OHzyreWt4mKxYMVeS9IVDP9jlfBaZVyQdkTKpDnqwDV1XkYPIG02FNNdnni/M1RkdeX97loFmgsoKfXO1oaVl1W/zsgNeL1znf9Xhr0DKQy0TNunV0TLsRDHKCF45M5+xVEw4XM6amxseBWgmO65yuvcQ1L+n7EwbX4oNBe836XHD54pK6yNl2PYNxZFqw3jbcvnuPxdGMHz3/NH1vhKTUCxbvfpPL00u0sxQonj07oewih3uHNLsd33j7bf76X/2rRAHD0PHjHzxiu91SFpqqKnny5Amff/GQbbNFKk23eI2+gzN+RF0V7B/eZoage/kZzauXLOspb3zjHaZ7S/CB1dk5r16+ZLVe07Qdw+CY1DV3jo75lV/+Fd7/5occ3DpGZRnGWEL0DMPA1fkZF69eIbI0Hlws9iBGPv7kR7x4+YQYI5eXl/jgado1d2/d4vTVS7KiZDGb4N0eu2Z7k7H3866fX3QnGfNFxf5+zWJRMlnUzJdz8qwkRD96ztUobUpHTx9D0p+KgTwvUUpQVyXepyOcNT1iPHozCs2DT52iDQ4lJCFI1JhHlRX5qEpI3a93No0LpLrRtYYEDEjLr7HjlqTcqzQSUGkuE9MIwfs0JgiRFEFEmglnKhIElGWBdam411pRFyV9NwABSVoeplxLCTLgXVpaKTU+5WJA6VQoM60TP0HFtO0d1RrXb1BB2upbH8lkIDAyFkaThBg3/llRMBhD8ClPTpA8/0qno5ztG4iS/fmS5WyaukiVZsF5XjI4R55luAhVWWE9mE6jpcdHgVIZKkKMgTrPKaRiVk/J8py6mqQZWdshlaTIIov5nNVmg9LgxpOF8x4RAvNiQu/s2O2nNdUweLbrljNA+MB6XaG/nrf038KVVqDcUG++VCZ81QMRR/DPTWG97nIZf0bjCep6DIEA7xrC4MimB+gwUB8sOVbv0a0atpVFiIx99QZuNeBjgxOaMDngQXnEedOSlRYbGja+4+7BbYbLhuVkxlQ5ikwwqwqOj24x7Tpys8EJS12VHJUz3pvfZr5eYmuJjw37Vc296Zx+u0NvOk7OzzB2xaPTLYNpidECCWoVSTsQshzXBaxMqR/ep72D9ZG2Gzi4e4R6oXHR4vHsYk8rPP18j+7qCl0KJgf7yNbw+v3X+JXvfYflfMZiOeFf/IvvY63n/r373L99j6zQ/PEP/4jTiwuyPCfLc66uztmpJWp2hxgN6/U5928ds4yO6BusaXjtzbsc3TokyySbq0suzk5Yr1fsmi3OefYO9nhwa5/vfec7fOvbH7A4PCAvS6xp6XYrmt2O9dWKdtPQdz1RK7rLK7qh5eT0BT/44z/EWsdiNqMoUxbh/6+9M2uOLLuu83eGO2Ym5qGAGru62JxFihrcomzRCj9Zln6A/5F/g5/87DdHOPxgPzlEilIExebU3dVzVQGowoycbuYdz/HDPplA0XKXI2RRDBO7AggkMvPmrcTJffdZe+21Li/O2d/dZWtji5cnx/R6PbIkYjrtcM2bV9yXrvoktfR7YiS4MshZGayyvrmDxTKdjUX5Xwsm5hAcU2476qagnFs0DmMUaRKLpkCQYHRO1Kw65/AIZWqBJSoEW/Qo0RBoOlzXSbLzHmNCdWGEaqaNDnY3DhNJIu86J5CF61BaB4qWou5arIe2dcQaWkAhDa04i8WGp21D8rM0bcNgMGA4mdLUHbENjhRBDKbrvMj7eXkfjDFhuy7iLlZrfCfKSUBIzoY2cH01Ajl0zmGI5CKmDHgxyBP4RS9Hm6UhKUlf+5Y06YvJphNzzCiWY1hrSNAYZYWN0IFNLMZJk8sHrNcpaMuKLO3RaqH4aeXI0kQgk6aj0o0srDyjLksKoOoSVgYrzGYzYpPgvMIBk2KC9zK63QXIQpqGMO0KfNUwvJqKbcpvG2VsOcShXmucLZLozfNdqK8pdZ2I1c3nIQI41jZoN2VlZZ0stuSbm9xZ2SYrhpS6JY8zsqwirgrOaUjSlNVswOasZrUumPo5eZqxmq2yt/eYnWLM2M1JEs8g7/Owv8ValHI2n9Cpmrabk2pFpuZsVjNmTcXV6CUviyEH9Zy2ndH5moWNfOc6fEi0Ik3ZiVaH7zC5wVWaOsBwzjvR/7CGeVmRlxGJ7dE0Q0DWdpL2iNM+ebZG3IGLXvLN/X3+/E/eZTS8xLWiaftgb5fWOc5OXrHxzjskaUxZzdHWsrG5ycXFGcPhEMwF2ua0ZcGMmiaLSDcH5KZkcP8O+w/vEqcRzbzg6vSY8eiCeTmjrhu0MWRxwjtPnvDkyWPWN9awEVTzCaOrc06PX3Fy9Iqr4YQ4TumvrTErCsaTEc+efc7R8Uvu7NwnspamFf/Bl8fHzIspx6dnPLi3z9GrIw4PnmGtYaWXYe0/djjCaOJYyv4sy8l6Kf1+n1iltK1jWo3xsmMXupSSpItRtHXLbD6mnnuiyLKxvsrzg1cYa3FNF+hbYe7fe5q2wmgV3A40SZpSl7Kt977BIaaMItWowXe0jVC+nBdcdHG/mB92YbirIzJWlLuUoKjGaNrOo42l6jqhlDUdeQ/xxXIuGDVa6q7DOkcaR3R1jVZgrVjBixKBRitH04prrtEabxUuiH0bpem0DxNmfknCr9s2VLPyyXWuk+kzFM41eAXWClshsglaS7LUyLG6dsE4Fp1a19ToNMUGNoc1hrp1RLFFa0MWyeuqzqFNRGQcUZrSOEeSiBaGthbamiy22MjS7+VEUUJVNxSzmdj3DFZJe330cMR0pumaTnBnbcTg0miuyik9F+G7ls45lBPsvuyE00knWsALyOifNdSNr0V1GwY3lvoLyqP1gqVwLXBOqHZ1oJld03VD4vXgTIfxBZ0riElJaNm+u8dWvcGwKvCRYef+gHvTkuPZhNI3ZEnC3fsDHpYVV+UEExnSJGLbJtxrUobzgun8kmp+wvnoMy6amrKuKOu5MG26Bu87+Sw5t/z8eN/JFw7nXRhyWSRaF1y/OzrX4r0myTRr2S5Xh1ehqBIyeRLH0mfoYgbZKkV9hVMKpQ3bK+tEugfjKXZ4xd2vPOJrb79NFhsKq3n4+G3KYsb52QlJpOj3LLNyzAcfP+P87IRxMWc4vGA2K6RBPrmki3PaqEd9OmcaK9pql621lK29XdJ+ynw2pRgOubo4oawKmq6h6WT6dH11jZ2tbfr9PuCZT4ZMR2NOX53w4uCQ86shnVOsbiTE3jOdz5lMx1R1SRwlPLh7j93dbV4dH/LJp5+SZzmj0YQPPv0cZRS9fs7ockY9m9Pf3JDBqDfEl48BW0Mcx2Rpn36+Shr3sZElsRlpmjGrJnjXgpIGlAIa5fBaHFarsmAyqdBB9tE5R2wtVVejUVIhyoQASknD3DtpFJkAP/jOSVXpveChWovTr3N41wb8MxYJRy1eSs45EVVBruRWK5S2UokqqSq10tR1TRQnVE1F6zrqxqMRCCKKLEp7tNdhoSWUpsThaVonladWeDq6FpQRR2AF0ApNJYpilHfY8OaIyLpocGnvUdrI1lx74Sz70ORzIsTTOidJ1Bhwgk93bRfWfof2IkuZpDldI5VJL83RRnYJNjThFuNUbdvgHdisT9c2xDahtg3O1SgFadajmDR4bdFRQt04kjQi7yXMZlPK8RVdt0IUR/R6+RKqqeqKPO9TNiL63ilNUc6JvaL1ikAzll2Bc7jOQwe+/W3opInkJIuCYZFwF9CPRpgKxosT8M1qWCu0udlI+/UKWf6mXddwdfmc6egV0XHGaHefXjYQXD6ynEfn0LRkTUPsHfWs5PlJgQpKea2rOC9nPG9LdKhIF3zwa9bFDQL3Qk7TBWF1HISE67z8jBcjThf43M47KT7Cz0ppNla2+YPHf8qvmp/z9JP3SSLhr0zGV3TtnN3dLdFakZILi2ctMtTjOb2u5Xvf+RZb68LZ1UYkWd//+Xt0najtKWMomoof/4//RjGd0euJBkKvnxPFhqpq8C3Q1AwGm6ylOXE3Z5WGjbUd0kGPrusYnZxzevyS8+EF46KgrBuUNlil2N3cJImFuz+fjpgMp5ydnPHy+JSjkzMaB1GSsKKkH7WxucnHH/1KpFcjQ5ZnTEdDiskIY0Arx2Q65+SsABx3t9dZXelTVyXFZPKPHwOO45hBf421wRZZuo7VyVKC0RgR2F5YDi8qBO3Ba+FlytW0I04sKsjedW2LNsgAgnfQiTW31QqNxxuLCQs+SRM80phoXIf3i+27x6BofYdrW/KsB85jopi6rsB7jInC4rFoFDZMQvkwURTZiKZtiOOYoijAWJqmEXcJJW7CSjkI+FYSx6RJIuOOTlTCrBHYoguwggkcYBfEcmIb0XW1COh0AnOoG+paXoPrkPdGy1CJNjY0AeVDLUyLFodBG03bSrXhnaP1XiQvQ9Vsw3hx50F3cuGzSni/xkRY42l9J41CGxG1YtnjvQjfdK2jP1jHtTUOQ9W22Kom72X0+wPG4xHFeEici8lflvVo2442XPw2+1uMjKHzsNltcHJ5HMwn/VKhTFTevIwF/19wGv+p4zpJAsrJ1FygLiwgh4UYjoz93vRMu8Zzg1vl8rg3RXAAvGvoaPG+5PBgCF7haQMmHKpplisDi8JoWYviTSGi8IthE+Xdjdk5SZyLR0n16pe3JJFKwnVhJH6hcexxognsHS64R3slqnh7mw/55pPvUQ89Tz/5gLIsMWE832hNWzX4RmFURKIydrL73FUZb72zx+b6gOnogqauiOOIrprz4MFDjFF8/slHTGZTTl6ecXh4iOtga2uHza1tPv70Y9q2pq5L5vOKsnIYm9Ab9FmLPHcHfXbXB/RW+pgoZnhxysHRIaenp4ymYy6GQy4nFc7B1uYmm2srKOWYTyaMzk8ZXU05Pb/k1fkVoyLs3uKIWTlnNp/R7+fcubNHFMWcXZzywYfv82/+7E8Zji8ZDSdM5/Pl+z0aTthe7ZFkEaurq3gMo0nxxjX3pUm3319jkK+TRn0inaKcpZp16E7kGEU5yi0rABAdAI8kBROJDm+kNFFkAke0xTvoXIMKilmdD8R+tRj/FYcIg0y4NVpBIwsmtpa2a1A2wjeN6Ce0jWydteCwnZIttG+F0oST55ooRoXq0bcOEycYa5caB3UXYA8UsUbMLus2uCko4iSGphH/MAdoFdyGLdZI0nPe09Q1cRRUu9D44KeFMkAXZBcJFWCHVhoTGpJSPUsn3QQTSHGQkPPSyuNa4UE73+G1R9dV2CmILgMKsjgBrdBWB1lGJ8MXKGZlQRzn5P0eqpBk37WtNBqx2Dii7Twm0kznczrvWe33WFvfZFZMieOIqqqYtp04K8cJV+Mr2s6xtrEtibhtmPVWcPMpVVXR+QZthb6mtfxNAvj9zxwOMMsNAeFCK1k3vO/qmoOL7kT3+UZlexNekN+9nnABSbIufDb8Aha6duZYSPYuGDcEOqWIHYXCBqnGvb95Ebu+LUlZdk2EpqgPO0Tv5Xg+DML7oMUsZdG1eNGiX5BGPe7vPGRjZYu8nzPo9ZhOp0RxxPpanzyJiazm7upDIlJ2V3a5s7rH/XsPWRn0KIop/cE6vik5ODhEK8W+MZxeXnB6dsL7Hz1lNB4zWFnhwcNHjEZXfPbZpxTTCcV0QhxH9JKUNAJjFbtZxN5Kxlt399je2yXOMspixtnJKQevjrkaTTg9v+T86oqqbdkYrAaJSIerSy7O5gxHlxRFw9VoTlmLSa02hjQVzvhHnzzl8OgZX33nq7z7L77PD//6r2nmU05Pjnlwb5+2Ufzq6VPybIrzJZNxydWwZHdrl3I2BeVI88EbV9yXJt1enJHoBI0Bp+kamE9LmrKlceVS6Frsp1XQ/ZDRTxWq3SRJ6GqwofnlnA8CNh5thUZlTUxoM6GUIjZGeKtBj7U2hhLCFbpbajFoJQlKnH7lQ2ysoasaacQ52U6rgIEa4+m6ljiOqZ0MBNRlidWapvVyEeCafxkZg7VWxIyNoW4txnUYBY0LmFj48DlY0tWU0lgbYw10WBbanF1o6ikf8q8TmTvCdJNC0bU1cZyirRWHCBBGR9cSpTldW4sgetuBkmZb41o88n8T+pwVBofREJkweOLwKqXxwjTQXYuxCUlsqZsapw2urmh8Sd4bUJcFYIjilLrpmNcdvSyi1xc1KWuNTOMEXMigOLs4oa5rVlbWQWuKekbVVFT1nCyL6aUxg15MnFjiWBGb3wb2wo3qFJma1Fovf7OAHpb9tJv83ZBZX5d7fP2YchRJmN6zHB0PT1w+n8Uxg7CODzCHCzDAopG3qFL94vleLhKL5q3zPmCzAat1NzDbRaW7+Ny6kHKX+K6EVpbcrtPNHc+efcLZ+Uu890JPxNM2DaXyjK6uWF3fZie7x/3NfVZ7fcrZlHkxomkczyYT7m5v8vDBI07Pj/nRj3/I8fEJKMXdew+xp8cUxZjnLz6nrWrG46lcEryXSpqG9bUN8nyVzSTna2895v69fXr9jPm84ODgBR9+9JSLyyuuJjMuhhPGxQzvwazJxc9G0vQejcZcDUdMipJ5DU4Z4igmz3PKpiLLMtZWB/zq/RF/83d/y3g04ltf/wbWKD5/9pTLqwseP/oGf/5nP+Do5RE//dnPODo+5+BsyMMH97izd48XB8+ZzqZvXHFfvuq1Wja8XNgit7pDUdO6OS0tWotpoTOahWqqV+BD5WYjjfKefi/BKpg1wdYlyOJ559GRiKYopUWMJYqIogirFU3bSgNJaYEijHBjnZPk5vGBCbGQP9SIIhdoK9sgGyW0TUkY8RJxcxTKWpqqDD5XksC1MSRRJJoOcUTqxLNMLg6GqgJrLHQ1RktCW0g5isIXWC0MB9c0GKPROhYLHe/pAl9Ca710Ilbhm1xEJAFH1iyrd+8Fg9Z40ahwnWRt57DBvbdrG7qmpq4qYmvpEJ8533lMJHBJ50XFLY4i2q4l6mQK0PmOuq6xUUrTiOLbysoaRTGl6xqyLKGYFzgP/V5OEsmGN0kTkansQoXVtRTFBKVlx72zsYOJY9QVaNWysdZna2PA2iBjZdAjjd88vfNPHSokN9mBSAV7He4aYwjbcXm0bOFVEMMPR/o12MEvITe1qJyDBsV1hX/tNrE8HwIMH37rcOils7J67UELo0/8EkggmLdJQ8wHzjjXSRcXtEFCAna+XXLaCQXUar7Nn3znX7OV7fL046d8/tmnGG1ES7ltqZuGOEopq5Y7acp2PiDPMi5HY2bljCjSFJOC7/3+d0njlI8+/CWvTk84ODohyzLSLOfgxXPqtpbJrrqirTviJCIzhqKY4TtPnKWkSc6g1+crD+6zv79D1suoq5qjFy/4+c/f47PPnzOeTnHKMC9rvPMM+n1p9rlGsFblmM9LppMZRdnQeYOymnyQMVhdoaprjg4PGI4u+fZ3fp+f/OQnPP34U4yOeHD/DmeXV5yenfLy+Jx7dx/y6NFb/MH3vsfG4SG/ev8pzw6P2drZZe/eQ46ODt645r7cgr2TPxpOy7SSd7jG4bsG50uUdejECsXEaXRApbQ3QXdVBZGWjjSPiWKLn8qQhCxCh7Gx0KKsDWtJNBQWHfimbYNlDYF25cO+XERkrE3DovFYLZ1kayNQGmu8jMcaS1OFChxH66QZpZxQ1jonydr7hXiNeH3NAi9VYDuhvc2riiiOqZpaOvORcJQ1wvVFGfJ+nzSN6KqKKLagojBg0DAeyfbHWmmHOyV0Mp0YOVcPaZKitKb14ibReU+SZsuxWuNkqqyuG0xbB/5yK+4RTmbdVXCFUFoU17KAYTvvqBsZFe6ihKqqhEcsZRjWaqr5lDxZJ0+zUClBHGd0XSMCOTaRBk/bysj1wvPOaGbFmKZrWFlZw5iIjZUNnG9wbs7+9iZ399bZ2Vgjz1NZG78VIbXogqd7fRuWezelbzw2VL/avcZieL3CVUssGHXtPedv8NNvGmCqACkEBHz5yniCRkVI2ItDI2pzhKTt6ZZwAt4H2tc1DcwjuL0k3EUS7kLV625aiLI12OS773yHB7tPWF/Z4P0P3xMtaGtwTgZilI2JkpzdjS16ecpoUuBwlPOKYtKwv7fFF599TNc5hqMh58MxxkY8evyY8/NTLi/PqWpZu23XCs+/6bBGE0cRq6vrbG/tstpf4+H9R+ztbxPnCY1rOT064ue/+AU/++X7XA4nJElCnKQkSUIvH7A66JGnMW3bcH5+TprElGXFvKqpGsk1VhviNBNjhabj9PiU8WTMvXv3efTgEXU5Z/fODlGWgY5QOmU8mfDpF884OHpJ3su5s7fPn777x7z3s/d49uKQr37lCRsbO29cbeqmw+lt3MbvWtz/TuxvVqmi96sDdCOYn9JacHWtgvCQMEqMMTcm0USDRAdNBr2Yt1gkXgFfhTnA65jvcsAiJFutlLB3lnjvIjELt90vat7g2OyXdDAXLgkLKEHU9ZbKd+5msnWBRhYgCU8Yc455uPaE33/0Lusbezx78Zy/+fH/pJjNhJ3UNOxsb7O/ucUPvv8uW1trXJ6LG8OzF0fcu7dPMRkymxWANLSfHxwyKuasr69zfnFBVc3QwLwSt5UkjVDKMplMWB/k5FnOvbv32N/d5/Gjt9ne2SZOE6Io4vTsFU8/+oRfffAxzw5f0nSOjbU1bBRTty3rK2vcvbPNIE9o5lORIUV4+R6N05Y46ZH0BqxsbuPbjq6aU5YzVlbXuBxeUFUFTV2TxDKJmec9Ef8aDZnPZ2gj3ojjqyu++c1vc3J2znA45PGjh9y7e4//8B//05d2iH8bQLXbuI1/xgiVopdKVqnQ1VdC7VMEZwkVJtd+DR5YYrnev/YY72/ct4ARfPg5wAWLu/XiNNQCOfA4f2NIeon9Xp/zoqJdUMEWxZMk0vYaPljoNbuF8egCKQl9CPz1Py9MhGre8dmnz0iyK07PzzA64fHDRzRVyeGr57x9/z5/9HtfY6VnuLo4ppfn9FPDkwd3GY2HlEVBnudMJhNeHR9RzOaksexo0ZooFnhpdnRMVc3pXE05n+FRtJlmZ+cOd/f2efTgIVs765hEds4Hn33BR598wrOXp4yKOWvrGzRNi1KaOE4w2pKnKYNexvbaKk2ecHp2xnQ2p21lFxdZi4li8tVNotU9dlYztnuWD95/j/d++VP6/R6vXh2RZRl37uxwePiFyBhoTV13WBuz0uvhfcvq6gpHRwckWU5dNRTTkquLyRtX3G3SvY3f8bgJLQSHX7UY2nhdvOSao3v9XH8jed483iJ5LgHa66NcP/LXGnA3H+ZUGL1ZVLksku7iIiF2VotzuMlgcAHjdWHQx3svNEPvWRLN/JJ7JM8P7BiDJVIxcZzw7vf/jCTrc356Ti9K+fjDX9JL4F/+4beJjeLi7JzxeMru7i6+azm/OKGYzQHNxcUl89mcPF1hY2uf8XTM+eUpZSnuMVpH3Lv3gCg+Y1qMGY8roihme3uH7e1ddu/codfPRWmw8Ry/fMXTDz/i2aszxpMpNk5I0pyNOKOua5I4IYlj8jQhiZPw3hqUsgIfhsa+jSLywRrRygZtvsbMxpxcHfLq5IjPP/uMfr+HUoavfe1rHB29oJjNAM/Z+aX0P0KTsq4bsiRlf3+X6fkE7RVvPXjM47fefuOKu026t/E7Hh6vrhOl9CSC2SQ+TD9K8r1Zaf46/itEKx8qXI9wu7jO51w3a5UX6qBePEbuXibwRW5dYsCLQ7jF6wRnZu/R0rUOZLEFhutDldstK+ww+ClJV0lSl2QtTVF5AY3qLOW05fnFc9of/XfefvCA/mCfwdYeV1enfP8Pv4nRHZcXF0DM5uYOvXzAxcU5p8fHaBPz5O23UCpia2uPtc1tzocj/v4Xv2BYtHz3yX0iq+j1Y375yw9YW1+hbmasrGRoJYJKcZJgbcTl1ZA4jhlPhnzx/IAXr045PjlnPq9Y39pCR47Ow9raBoN+P4hLyd9uOpszmxUUVRkonxrnwcY5yeo6Ls7pbMppp2kPTzm7vODu/j2+/uQrNDg+/Ph9ZrOCKEqIo5w0qUXzREnjPkli6kYYF3XZsb/zgG9//Vs8ePvxG1fcbdK9jd/pWNCzFupQi+EEUNcJ8UZcsw38jd9dsyAW2/TXmmEs7nvtlf/B8/n1wnhRwV4n7kWzWXSgl3gsi+r2mpq2qGC9WyRicAuBKJY9uBvnovFOklbbdvzwxz/i+Ref85f/9t+jjWXvzhaumfPq5RU7G5tUjWNzZ5vDF4d89PEnbGys85W3HnJ4cszx6QVnwwv6x+v0+iv80fe+y8PRlMvLMz7+6H1OTw6lKdeIf2CaRiRJjjHiJPPFs4OgUdJyNRxydnnJq9NLroYTOudxl0O2iIL7uCZNU+LIgmsZT4ZMJxOmxZQu6J5YE6E7j0l7tCpm1irmswqnNDurO6z0N6gnl/TyNWbNlDzpcXZ8wfbOBtpoNjbWgq6IoyxLYfvYGO8sezv3+Yt/95fcffyIla2tN66526R7G7/T4f63KQaJJZTwf0iO1xzZ68dI00tKWx+aZT5gwK/btocXeI25cOPQi3PzN/pwofK+TuqK1gfNZq7hh4XAkPeLaTRJtp0XOuKS+abcEttdHGDRTIxsJBodCuZlyWw6pq1nuNYzuppirSdLM54dfMrBq1M2N+6Q5yvcf3CP44sz/vanP6WsWrz/FGtj1jY2ubO7w9HxMW3rGE8mOOeJo5hWBX2XNEE7UEbMKoe+wHtF0zbMq5KzyzGXl2M6D1neI8v6xFFCGickSULTtHRtQ9tWTCZTZtOCtm1J05w4CZOtNsYTMe8Ul5MZl6MKpw1rawkQ8Rd/9Vc8fPyQn/zd3/J73/g2q/0+n37xOd5Z5vMZ06Kgbmra1lNXjiw1fP2bT/hXP/gBX/3WN1jd3Cbv/SOHI27jNv5/j2VFqv6hyvbLFH8X2Kq75vZ6FWCCm5VwtzyWfBce+QJD+DKlNY+wKVQYMRPdBJZF+ALLBYJcaoAU3HVzzDkXoAcVIIbXK/TXboRBnzbYUEUmYqU/oJiOmIxG7Oy+xeHnJ6yvxrw4PODTzz7HeU3Xat5++zEnp6/4u7//GU3r2NvbZDabU5aOl6+OGQ4vSdKE2bwkTyI21noUzjErHSZJsZEm8cLxn5Ul1iR4r7A2pi0rxpOCeVUSJyk2TtjeusPezg6rg76IKZWzYHQwp5jNmc9L8J5+LyLPB2Kiqy2tF8rbxWTEcdmS9td50Xk28hVmTcF//S//ma7suHf/Lo8ePeDl6TEnJ4doDeV8DkrhOoVWMV9/5+t8/90/5q3Hj+gPBsSJeEK+KW4pY7dxG7dxG7/BeLO3xG3cxm3cxm38P4vbpHsbt3Ebt/EbjNukexu3cRu38RuM26R7G7dxG7fxG4zbpHsbt3Ebt/EbjNukexu3cRu38RuM/wVHDXP2+PziqwAAAABJRU5ErkJggg==\n",
"text/plain": [
"