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Chapter 1

Introduction

Competitions such as the RoboCup provide a benchmark for the state of the art in the
field of autonomous mobile robots and provide researchers with a standardized setup to
compare their research. Additionally the RoboCup Standard Platform League does not
only provide researchers with a common setup, but also with the same hardware platform
to use. This renders increased importance to publications of those teams, since extensive
documentation and especially releasing source code allows other researchers to compare
results and methods, reuse and improve them, and to further common research goals.

In the course of this report some of the points of the robot software and current the
research approach of the RoboCup team Nao Devils are described. An overview about
the Nao Devils software is given in section 1.2.

Stable motions are of crucial importance in the context of biped robots. Thus, the
following chapter of the document will describe the motion control process emphasizing
the Dortmund Walking Engine which has been the first closed loop walking engine applied
to the Nao in RoboCup 2008. The version of RoboCup 2019 was able to reach walking
speeds of up to 35cm/s on artificial turf, while ensuring a stable walk. Compared to
2018, we revised the sensor control mechanisms of our walking engine, see section 2.1.5.
Additionaly, we added our own key frame engine, see section 2.3.

Together with team HULKs we participated in the Mixed-Team-Competition as the
joint team ”Devil SMASH”, winning the third place. The behaviorial approach is de-
scribed in chapter 6.

This code release includes all software used at RoboCup 2019, except our behavior.
We want to thank the team B-Human for their great work developing their framework,

which provides the base for our own developed modules. The specific changes are listed
in section 1.2.

1.1 Team Description

The Nao Devils are a RoboCup team by the Robotics Research Institute of TU Dortmund
University participating in the Standard Platform League since 2009 [1] as the successor
of team BreDoBrothers, which was a cooperation of the University of Bremen and the
TU Dortmund University [2]. The team consists of numerous undergraduate students as
well as researchers. Previous team members of Nao Devils Dortmund have already been
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Figure 1.1: The Nao Devils team members at RoboCup 2019. From left to right: Max
Brämer, Sebastian Hoose, Torben Seeland, Maximilian Otten, Janine Frickenschmidt,
Arne Moos, Aaron Larisch and Ingmar Schwarz.

part of the teams Microsoft Hellhounds [3] (and therefore part of the German Team [4]),
DoH! Bots [5] and senior team members have been part of BreDoBrothers.

The Team was actively participating in the RoboCup events during the last years.
Major recent successes were the 1st place in the Outdoor Competition at RoboCup 2016,
the 1st place at the technical Challenges at RoboCup 2016, the 3rd place at GermanOpen
2017 as well as the second place at the German Open 2018. At RoboCup 2017 we
finished third place and reached the quarter final at last year’s Champions Cup as well
as the 2nd place in the mixed team competition. At RoboCup 2019, we finished in 4th
place and reached the second place in the ”Directional Whistle” challenge, see chapter 6.
Throughout the year we take part in several local workshops and events such as our
own workshop, RoDeO in Dortmund, Germany, or the RoHOW workshop in Hamburg,
Germany.

1.2 Software Overview

The software package used by team Nao Devils consists of a robotic framework, a simu-
lator and different additional tools.

The framework, running on the Nao itself, is based on the code release 2015 of team
B-Human1. Compared to the 2015 code release of team B-Human we changed or adapted
the following parts (minor changes, changes to behavior or config files are omitted):

1https://github.com/bhuman/BHumanCodeRelease/releases/tag/coderelease2015
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• Changed the V5 camera driver to better fit our needs2.

• Changed the cognition process, the update of the camera images and the simulator
to get have both the upper and the lower image in one cognition frame, reducing
the cognition frame rate to 30 fps.

• Updated the CABSL base class to the version released in 2016 by B-Human.

• Updated B-Human’s KickEngine to their 2016 version and changed the sensor con-
trol part as well as the framework integration to fit our needs.

• Replaced the other motion modules with our own.

• Replaced all vision and modeling modules with our own.

• Replaced most of the team communication with our own.

• Updated the infrastructure to our needs, including the deploy tool ”bush”, which
we replaced with ”dorsh”.

• Implemented our own automatic camera calibration procedure (see Section 3.5).

Since B-Human’s team report of 2015 covers the basics and usage of the simulator in
great depth, a detailed description is excluded from this report.

To test developments in simulation, the software SimRobot was used instead of com-
mercial alternatives, such as Webots from Cyberbotics3. Being open source offers great
advantage, allowing to adapt the code to own developments. In addition having the
feature to directly connect to the robot and debug online is very convenient during devel-
opment. SimRobot [6] is a kinematic robotics simulator developed in Bremen which (like
Webots) utilizes the Open Dynamics Engine4 (ODE) to approximate solid state physics.

2The changed driver can be downloaded at https://github.com/NaoDevils/NaoKernel
3http://www.cyberbotics.com/
4http://www.ode.org/
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1.3 Getting started

This section describes the steps to set up a Nao robot to be ready to play with our code.
It assumes you have already followed the instructions of the ”README.md” file in our
code release.

Our procedure consists of three calibration steps, after the code was compiled and
deployed to the robot:

• Calibrate the camera matrix, see section3.5.

• Check the camera image settings. Since we use auto calibration we only adjust the
settings for very bright or very dark environments. In both cases we adjust our auto
calibration parameters5.

• Calibrate the walking engine. Usually we only calibrate our sensor controls via the
”csConverter2019.cfg” file and adjust center of mass offsets in the robots walking
parameter file ”walkingParamsFLIPM.cfg”.

All other important setup options can be set with our version ofB-Human’s deploy
tool dorsh.

5For V5 adjustments, see the documentation in our camera driver at
https://github.com/NaoDevils/NaoKernel for more details.
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Chapter 2

Motion

The main challenge of humanoid robotics certainly are the various aspects of motion
generation and biped walking. Dortmund has participated in the Humanoid Kid-Size
League during Robocup 2007 as DoH! Bots [5] and before in RoboCup 2006 as the joint
team BreDoBrothers together with Bremen University. Hence there has already been
some experience in the research area of two-legged walking even before participating in
the Nao Standard Platform League of 2008 as the rejoined BreDoBrothers.

The kinematic structure of the Nao has some special characteristics that make it
stand out from other humanoid robot platforms. Aldebaran Robotics implemented the
HipYawPitch joints using only one servo motor. This fact links both joints and thereby
makes it impossible to move one of the two without moving the other. Hence the kinematic
chains of both legs are coupled. In addition both joints are tilted by 45 degrees. These
structural differences to the humanoid robots used in previous years in the Humanoid
League result in an unusual workspace of the feet. Therefore existing movement concepts
had to be adjusted or redeveloped from scratch. The leg motion is realized by an inverse
kinematic calculated with the help of analytical methods for the stance leg. The swinging
leg end position is then calculated with the constraint of the HipYawPitch joint needed
for the support foot. This closed form solution to the inverse kinematic problem for the
Nao has been developed in Dortmund and used since RoboCup 2008 when other teams
as well as Aldebaran themselves still used iterative approximations.

2.1 Walking

In the past different walking engines have been developed following the concept of static
trajectories. The parameters of these precalculated trajectories are optimized with algo-
rithms of the research field of Computational Intelligence. This allows a special adaption
to the used robot hardware and environmental conditions. Approaches to move two legged
robots with the help of predefined foot trajectories are common in the Humanoid Kid-Size
League and offer good results. Nonetheless with such algorithms directly incorporating
sensor feedback is much less intuitive. Sensing and reacting to external disturbances how-
ever is essential in robot soccer. During a game these disturbances come inevitably in the
form of different ground-friction areas or bulges of the carpet. Additionally contacts with
other players or the ball are partly unpreventable and result in external forces acting on
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the body of the robot.
To avoid regular recalibration and repeated parameter optimization the walking al-

gorithm should also be robust against systematic deviations from its internal model.
Trajectory based walking approaches often need to be tweaked to perform optimally on
each real robot. But some parameters of this robot are subject to change during the life-
time of a robot or even during a game of soccer. The reasons could manifold for instance
as joint decalibration, wear out of the mechanical structure or thermic drift of the servo
due to heating. Recalibrating for each such occurrence costs much time at best and is
simply not possible in many situations.

The robot Nao comes equipped with the wide range of sensors capable of measuring
forces acting on the body, namely an accelerometer, gyroscope and force sensors in the
feet. To overcome the drawback of a static trajectory playback, team Nao Devils devel-
oped a walking engine capable of generating online dynamically stable walking patterns
with the use of sensor feedback.

2.1.1 Dortmund Walking Engine

A common way to determine and ensure the stability of the robot utilizes the zero moment
point (ZMP) [7]. The ZMP is the point on the ground where the tipping moment acting
on the robot, due to gravity and inertia forces, equals zero. Therefore the ZMP has to
be inside the support polygon for a stable walk, since an uncompensated tipping moment
results in instability and fall. This requirement can be addressed in two ways.

On the one hand, it is possible to measure an approximated ZMP with the acceleration
sensors of the Nao by using equations 2.1 and 2.2 [8]. Then the position of the approx-
imated ZMP on the floor is (px, py). Note that this ZMP can be outside the support
polygon and therefore follows the concept of the fictitious ZMP.

px = x− zh
g
ẍ (2.1)

py = y − zh
g
ÿ (2.2)

On the other hand it is clear that the ZMP has to stay inside the support polygon
and it is also predictable where the robot will set its feet. Thus it is possible to define the
trajectory of the ZMP in the near future. The necessity of this will be discussed later. A
known approach to make use of it is to build a controller which transforms this reference
ZMP to a trajectory of the center of mass of the robot [9]. Figure 2.1 shows the pipeline
to perform the transformation. The input of the pipeline is the desired translational and
rotational speed of the robot which might change over time. This speed vector is the
desired speed of the robot, which does not translate to its CoM speed directly for obvious
stability reasons, but merely to its desired average. The first station in the pipeline is
the Pattern Generator which transforms the speed into desired foot positions Pglobal on
the floor in a global coordinate system used by the walking engine only. Initially this
coordinate system is the robot coordinate system projected on the floor and reset by
the Pattern Generator each time the robot starts walking. The resulting reference ZMP
trajectory pref calculated by “ZMP Generation” (see section 2.1.3 for details) is also
defined in this global coordinate system.
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Figure 2.1: Control structure visualization of the walking pattern generation process.
Blue lines refer to robot coordinate system and red lines refer to the global coordinate
system.
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The core of the system is the ZMP/IP-Controller, which transforms the reference ZMP
to a corresponding CoM trajectory (Rref ) in the global coordinate system as mentioned
above. The robot’s CoM relative to its coordinate frame (Rlocal) is given by the frame-
work based on measured angles during the initial phase of the walk. After this phase
Rlocal is no longer updated since this would be another control loop which would cause
oscillations [10]. Equation 2.3 provides the foot positions in a robot centered coordinate
frame.

Probot (t) = Pglobal (t)−Rref (t) + Rlocal (t) (2.3)

Those can subsequently be transformed into leg joint angles using inverse kinematics.
Finally the leg angles are complemented with arm angles which are calculated using the
x coordinates of the feet.

2.1.2 The ZMP/IP-Controller

The main problem in the process described in the previous section is computing the
movement of the robot’s body to achieve a given ZMP trajectory. For the RoboCup
2017, we used the FLIP model which we recently introduced[11]. This entire section is
based on the findings and description of the paper. We derived a discrete state-space
representation that can be applied by a preview controller as proposed by Kajita et
al.[12].1 The well-known LIPM proposed by Kajita et al.[12] is a simplification of the
robots dynamics to a single center of mass and is usually applied to derive the Zero
Moment Point (ZMP) from its dynamics. The ZMP p of this system can be calculated
by:

p = c1 + c̈1 ·
zh
g

(2.4)

where g is the gravity and c1 the position of the CoM. The linearity is a consequence
of the constant height of the CoM and important to design closed-form algorithms for
motion generation. We extended the system by a spring and a damper. To retain linearity
we added a second cart with an additional small mass as depicted in Fig. 2.2. Here, two
carts are connected via a damper and a spring (with constants b and k respectively). The
left cart (cart 1) has no mass but is connected to CoM 1 with constant height zh by a
pole of variable length. Similarly to the variable length of the pole, the length of the cart
is also variable. It is adapted such that the spring and the damper is always connected
to the cart at the position c1 of CoM 1. The right cart (cart 2) has the additional CoM 2
and is the only cart that is accelerated by u. The ZMP of cart 1 is located at p and CoM
1 and 2 at c1 and c2 respectively. FLIPM represents all flexible parts that are accelerated
by the motors, e.g. the gears. A spring and a damper connects it to the cart with the
large CoM that is only accelerated by the force exerted by the spring and the damper.
To control the system only the second cart is actively accelerated. More deriviations, and
mathematical details of the work can be found in[11].

To derive a controller that is able to generate the walking motion, we chose to define
the walk by a reference trajectory of the ZMP as proposed by Kajita et al.[12]. We

1A script containing all derived equations and the preview controller can be downloaded here:
https://github.com/OliverUrbann/FLIPM/
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Figure 2.2: Flexible Linear Inverted Pendulum Model (FLIPM).

therefore define the output of the system as:

pk = c · xk (2.5)

c = (1, 0,−zh
g
, 0, 0, 0) (2.6)

As described in [2] it is not sufficient to de
ne the desired ZMP of the current time frame. A preview of approximately 1s is

required. The controller uk is given by:

uk = −GI

k∑
i=0

[Cxi
− prefi ]−Gxxk −

N∑
j=1

Gd,jp
ref
k+j , (2.7)

where the gains GI , Gx and Gd,j that minimize a given cost function are derived by
applying the procedure proposed in [8]. It includes the solution of a discrete matrix
Riccati equation that can be done online before the walk is generated online on the robot.
On platforms like the NAO, the input of the joints are the desired joint angles. They can
be calculated by applying an inverse kinematic on the desired foot positions fR given in
a local coordinate system of the robot. They are given by the following equation:

fR = cb − c2 + fW , (2.8)

where fW are the desired foot positions in world coordinate system and cb the actual
CoM position of the robot in the local coordinate system. We determine fW together
with the reference ZMP and calculate cb by measuring the current joint angles and apply
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Figure 2.3: The control polygon consists of 4 points per foot with constants coordinates
within the respective coordinate frame. In this example a positive x speed is assumed for
a better visualization.

a forward kinematic to combine cb from all CoMs of the links. As can be seen in Eq. 5,
it is not possible to apply the controller output directly to the robot, which is the third
derivative of c2. For further details please see [8]. Assuming the physical parameters (k,
b, m1 and m2) are selected correctly, the CoM of the physical robot follows the large mass
of the model.

2.1.3 ZMP Generation

The ZMP Generation calculates a reference ZMP using the given foot steps. Within
the support polygon the position can be freely chosen since every position results in a
stable walk. On the x axis the ZMP proceeds with the desired speed. This results in
a movement of the center of mass with constant velocity. On the y axis the ZMP is a
Bézier curve with a control polygon of 4 points and dimension 1. The coordinate of each
point is constant within the coordinate system of the respective foot. Figure 2.3 gives an
example. In the right single support phase the control polygon is Pr = {p1, p2, p3, p4}.
The same applies to the other single support phase. In the double support phase the
control polygon consists of the points p4, p

′
1, p

′
2, p5, where p′1 and p′2 are the same point in

the middle of p4 and p5. This leads to a smooth transition between the single and double
support phases. Figure 2.4 shows the resulting reference ZMP along the y axis.
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Figure 2.4: Resulting reference ZMP along the y axis.

2.1.4 Swinging Leg Controller

The PatternGenerator sets the foot positions on the floor. They could be imagined
like footsteps in the snow. Therefore the footpositions of the swinging leg during a
single support phase are missing. They are added by the Swinging Leg Controller which
calculates a trajectory from the last point of contact to the next utilizing a B-spline. The
control polygon consists of 9 points with 3 dimensions each. The x and y coordinates
are set along the line segment between the start and end point. The z coordinates are
increased and decreased respectively by 1

6 of the maximal step height. The z coordinate
over time can be seen in figure 2.5a. To reduce the influence of the leg inertia the feet
are lifted and lowered at the same speed. Figure 2.5b shows the z coordinate over x. The
foot reaches its end position along the x axis some time before the single support phase
ends. This reduces the error if the foot hits the ground too early.

Sensorfeedback

In addition to our previous methods of stabilization[13], we use several PID controllers
which we moved into one module, the CSConverter2019, this year. For these controllers
we use the gyro and angle sensors provided by the NaoQi framework as well as our own
IMU model, based on the code from team Berlin United. Several error correction methods
are applied there.

• Center of mass shift on body angle error as well as on arm movement to avoid enemy
contact,

• a PID controller for the hip and ankle joints based on filtered gyro and body angle
error and

• leg rotation of the swing leg to keep the foot parallel to the ground on body angle
error.
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Figure 2.5: Movement of the swinging leg in the global coordinate system.

This led to an increased stability while fighting for the ball, during side steps and when
walking with high speeds of ¿30 cm/s.

2.1.5 Preview Reset

The Dortmund WalkingEngine uses a preview controller[11] for generating a stable center
of mass trajectory. This has the disadvantage that we can not change steps that are
currently used for this preview resulting in a delayed motion reaction on the field. In
2018 we removed this restriction by resetting our ZMP generation after each step. This
leads to small disturbances in the resulting controller output but can be migitated by an
interpolation between the old and new (reset) ZMP controller output. At the German
Open 2018 we successfully tested this in a real soccer match and used this in every game
since RoboCup 2018.

Results and future work

We successfully removed the preview phase for our walking engine, improving the reac-
tivity of our robots greatly.

For the next year we hope to rewrite our several sensor feedback mechanisms to unify
them and stabilize our walking engine further.

2.2 Kicking

Kicking motions have different objectives. First the ball must be kicked as precise as
possible with an adjustable power. On the other hand, the kicking motion should be as
short as possible to avoid unnecessary delays during gameplay. This section describes our
other method of kicking which is integrated into our walking engine. With this method
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we can can design any step pattern using start and stop positions, a 3D step trajectory
as well as the step duration for each individual step.

2.2.1 Kicking while walking

Since 2016 we are using specific, predefined steps in our walking as fast and small kicks
in one-on-one situations. For this year we improved these kicks by giving each step a
custom swing foot trajectory. This enabled us to create stronger kicks without leaving
our walking engine.

In addition we have implemented prepended steps for kicks to smoothe our transition
between the kick decision of our behavior and our kick execution. Different kicks right
now would need a different approach point in our behavior. If the ball would move in
the last second we would not hit the ball at all. This can be adressed by prepending
steps to our kicks dynamically following the latest ball percepts (see Figure 2.6). To get
a constant speed throughout these steps, we need to take the coordinate system changes
from a possible rotation into account and solve this problem iteratively until the required
steps are within our speed limits.

Figure 2.6: Prepended steps calculated for a rotated kick to the goal with the right foot
achieving a constant velocity in all dimensions. Usually this many steps would not be
needed.

Once the ball is close enough to the robot, we use the latest, fixed, set of steps to
avoid flickering kick decisions and ensure a more stable kick process. This has sped up
our kick behavior greatly.

For 2019 we added several new kicking motions in order to reduce the time to set up
a kick.
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2.3 Special Actions

All movements except walking and kicking are executed by playback of predefined motions
called Special Actions. These movements consist of certain robot postures called key
frames and transition times between these. Using these transition times the movement
between the key frames is executed as a synchronous point-to-point movement in the joint
space. Such movements can be designed easily by concatenating recorded key frames.

This year we introduced a new module named Key Frame Engine which adds addi-
tional configuration and stabilization possibilities to the fixed motions. For every key
frame we can set a target upper body angle that can be used for a balancer which tries
to compensate for the execution error or stop the motion if the error is too great. This is
especially helpful for stand up motions. In addition we can choose to wait until the body
motion has stopped, which we check using the gyroscope. This has been used to prevent
interpolation into key frames or other motion types from an unstable robot. Lastly, we
can use a upper body tilt correction based upon the hip yaw error, similar to the concepts
used in the B-Human and UNSW frameworks.

The Key Frame Engine replaces the old module completely.
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Chapter 3

Cognition

From the variety of Nao’s sensors only microphones, the camera and sonar sensors can
potentially be used to gain knowledge about the robot’s surroundings. The microphones
haven’t been used so far and are not expected to give any advantage. The sonar sensors
provide distance information of the free space in front of the robot and can be used for
obstacle detection. However, the usage of these sensors depends on maintaining a strictly
vertical torso or at least tracking its tilt precisely since otherwise the ground might give
false positives due to the wide conic spreading of the sound waves. Additionally, for
certain fast walk types the swinging arms were observed to generate such false positives,
too, and the sonar sensor hardware in general is currently unreliable and often does not
recover from failure once the robot has fallen down. Thus for exteroceptive perception
the robot greatly relies on its camera mounted in the head.

The following chapter describes the information flow in the cognition process starting
from image processing and its sub-tasks in section 3.2. Special focus is given to new devel-
opments since 2016, meaning the use of a neural network to detect the ball. Additionally
we describe our new automatic calibration of our cameras position (see section 3.5).

3.1 Camera Settings

In order to capture sharp images with even illumination, we adjusted the Nao V6 camera
parameters to fulfill the requirements of our image processing. Playing with enabled
auto exposure is mandatory for us, if we want to play under changing lighting conditions
like outdoors or near windows. Because the Nao’s default camera parameters are not
optimized for this purpose, we basically changed three settings:

• Auto expsoure window: Because the robot might look partly into the outside or
a very bright area with its upper camera, especially when looking straight ahead, we
decided to exclude the upper third of the upper image from the exposure window.
Otherwise, the brightness of the field might decrease too much. The camera offers
settings that allow to adjust the image coordinates of the window that is used for
the internal brightness averaging algorithm used for the auto exposure.

• Maximum exposure: The robot’s cameras are optimized for stationary capturing
that prefer to increase the exposure time before raising the gain if the lighting
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conditions become darker. That is counterproductive for us, because the cameras
are moving a lot during the walk and the head motions, which increases the motion
blur. However, the camera has a feature called ”night mode” that can be used to
limit the maximum exposure time to e.g. 10ms. That slightly increases the noise,
but reduces the motion blur, which is more important for us.

• Target image luminance: In order to tune the overall image brightness needed
for our image processing, we also change the target image luminance thresholds that
are used by the auto exposure. The camera offers settings for a stable and unstable
image luminance region. If the measured image luminance exceeds the limits of the
unstable range, the auto exposure starts adjusting the exposure and gain until the
image luminance reaches a value inside the stable range again. That allows to adjust
the image brightness precisely without changing the parameters too frequent.

3.2 Image Processing

In the past years the Nao Devils Team was using a color table based image processor which
was based on the Microsoft Hellhounds’ development of 2007 [14]. This image processing
however, took at least several hours to calibrate and was very susceptible to lighting
condition changes and color changes, for example when changing between two different
fields. To address these problems, the currently used image processing was written with
the idea to minimize this configuration process. Since 2012 we play our games with our
camera set on auto exposure and auto white calibration. We however cahnged the camera
driver to use all the auto calibration features of the camera, which is available online1

and is based on B-Human’s camera driver2 from 2015.
The image processing in use still uses the color information from the color coded field,

but does not need a specific calibration to get a good detection rate. To achieve this, the
field color (green) is newly calculated every frame using a weighted color histogram based
on pixel samples on the image. The key idea is to use as much a-priori information as
possible to remove the need of color tables, reduce the scanning effort and minimize the
needed subsequent calculations. Since the limited cpu power does not allow for a scan
of two whole images, we process only a small fraction of all pixels, scanning the images
along fixed vertical and horizontal scan lines.

These scan lines search for changes within the y-channel to detect the white lines (if
surrounded by the detected field color), and also detect possible ball locations based on
the y-channel changes as well as possible obstacles.

All relevant objects and features, except the goal posts to save runtime, are extracted
with high accuracy and detection rates. Since the Nao SPL is the first RoboCup league
(neglecting the simulation leagues and the Small Size League with global vision) that
plays on a symmetric field, detecting features on the field itself becomes more important.

The current implementation allows us to play in natural lighting conditions and as
shown in the open challenge for 2014 and in the outdoor competition in 2016. Using auto
camera settings, our robots continue to play and score even with huge lighting condition
changes in games.

1https://github.com/NaoDevils/NaoKernel
2https://github.com/bhuman/BKernel
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Since the image processor in use was implemented to adapt to different resolutions,
the changes noted in the beginning did only result in a slightly slower runtime for both
images and we were still able to process both images at 30 fps each.

3.3 Ball Detection

Our ball detection is based on the idea of a R-CNN pipeline. It starts with a heuristic
approach to extract region proposals which is comparable to our complete ball detection
process before 2017 [15]. By using scanlines we first identify regions that are most likely
not considered background (i.e. carpet). As we use scanlines only on the field and stop at
the field border we ignore all balls or similar objects outside of the field. We then check
if the found object is at least partially round and whether it is within expected bounds.
This results in up to approximately 50 region proposals per image. These are resized to
16x16 grayscale images. On the region proposals we apply a small CNN for classification.
The structure is:

1. Convolution 3x3, Pad ”same”, 4 Filter, Activation ReLU

2. Max-Pooling 2x2

3. Convolution 3x3, Pad ”same”, Activation ReLU, 8 Filter

4. Max-Pooling 2x2

5. Convolution 3x3, Pad ”same”, Activation ReLU, 16 Filter

6. Max-Pooling 2x2

7. Dropout 0.4

8. Convolution 2x2, Pad ”valid”, Activation Softmax, 2 Filter

We use Python and Keras to implement the model, training and validation. We use a
custom loss function for training as false positives are way more confusing our game play
than false negatives:

−yb · log
(

ŷb
ŷb + ŷn

)
· wb − yn · log

(
ŷn

ŷb + ŷn

)
· wn,

where yb and ŷb are the ground truth and predicted values for the ball class respectively
and yn, ŷn for the non-ball class and wb and wn the weights for the ball and non-ball
class respectively. We set wn = 0.999 and wb = 0.001.

To speedup the execution on the robot, the model is quantized after training to 8
bit integer with an additional error of < 1%. For the execution we compile the model
to ANSI C code with no dependencies to a library which has two advantages. First, it
simplifies the deployment significantly as no additional library or software is required on
the robot. We just copy the code file into our project. Second, we can apply various code
generation schemes to speed up the execution, e.g. highly optimized SSE proto-snippets
and loop unrolling. Further details can be found in [16].
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3.4 Robot Detection

We created an infrastructure to train and run CNNs based on the YOLO[17] architecture
on the Nao robot. At RoboCup 2019 we updated our networks to run on both the upper
and the lower image. While both networks look for robots, the lower image network
also puts out possible ball candidates which are then validated by the above classification
network. The upper image network runs at 5.1ms on the Nao V6 with an input of 160x120
RGB image and the following structure:

1. Seperable Depthwise Convolution 3x3, Pad ”same”, Depth Multiplier 4, 3 Filter,
Stride 2x2, Batch Normalization, Activation Leaky ReLU

2. Convolution 1x1, Pad ”same”, Activation Leaky ReLU, 16 Filter

3. Seperable Depthwise Convolution 3x3, Pad ”same”, Depth Multiplier 4, 16 Filter,
Stride 2x2, Batch Normalization, Activation Leaky ReLU

4. Convolution 1x1, Pad ”same”, Activation Leaky ReLU, 24 Filter

5. Seperable Depthwise Convolution 3x3, Pad ”same”, Depth Multiplier 4, 24 Filter,
Stride 2x2, Batch Normalization, Activation Leaky ReLU

6. Convolution 1x1, Pad ”same”, Activation Leaky ReLU, 16 Filter

7. Seperable Depthwise Convolution 3x3, Pad ”same”, Depth Multiplier 4, 16 Filter,
Batch Normalization, Activation Leaky ReLU

8. Convolution 1x1, Pad ”same”, Activation Leaky ReLU, 32 Filter

9. Seperable Depthwise Convolution 3x3, Pad ”same”, Depth Multiplier 4, 32 Filter,
Stride 2x2, Batch Normalization, Activation Leaky ReLU

10. Convolution 1x1, Pad ”same”, Activation Leaky ReLU, 40 Filter

11. Fully Connected 8x10x6

As the output suggests, only one box per grid cell is created for a single class, which
reduces the network complexity greatly.

Our lower image network has a similar runtime with a 80x60 RGB image input, but
needs to detect two objects - robot and ball - and is structured differently:

1. Convolution 3x3, Pad ”same”, 16 Filter, Batch Normalization, Activation Leaky
ReLU

2. Max-Pooling 2x2

3. Convolution 3x3, Pad ”same”, 24 Filter, Batch Normalization, Activation Leaky
ReLU

4. Max-Pooling 2x2

5. Convolution 3x3, Pad ”same”, 16 Filter, Batch Normalization, Activation Leaky
ReLU
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6. Max-Pooling 2x2

7. Convolution 3x3, Pad ”same”, 32 Filter, Batch Normalization, Activation Leaky
ReLU

8. Convolution 3x3, Pad ”same”, 40 Filter, Batch Normalization, Activation Leaky
ReLU

9. Fully Connected 7x10x7

With these networks we can detect close robots reliably, even if they are lying as well
as robots that are up to 5 meters away. The lower network boosted our ball detection as
well in tricky circumstances, for example if the ball is not surrounded with green when
fighting for the ball.

For next year we want to improve these networks by adding more objects. Currently
we have good results with an image segmentation network detecting robots, balls and
goals.

3.5 Automatic Camera Calibration

In order to determine the exact position of objects on the field, the robot must be able to
project image coordinates from its cameras into the appropriate field coordinates using
the position and orientation of the camera also termed CameraMatrix. For a precise
transformation the exact position of the cameras must be known. This position is cal-
culated using an inverse kinematic of the current joint angle sensor values and the robot
dimensions. In theory this would be enough, but practically the joints are slightly dif-
ferent between each robot which results in small offsets in the body posture and also the
cameras are not fixed tightly in the Nao’s head. These small differences can result in big
errors especially when calculating the position of far objects in the camera image. As
these parameters also vary because of the joints wearing out, the camera’s glue is getting
warm and after repairs, they must be adjusted from time to time.

We calibrate the x and y (in the coordinate system of the NaoQi Framework) rotation
offsets of both cameras and the body. Since this can be quite time consuming to do man-
ually for each robot and it is not very intuitive, we implemented an automatic approach
using the field line detection.

Our process starts by placing the robot on a fixed position on the field (e.g. in the
middle of the center circle looking to the side line in our case) and we then compare
the detected horizontal side line and vertical middle line to the expected positions using
the CameraMatrix. We calculate the total error by measuring the distance and angle
difference between the expected and detected field lines. To minimize small fluctuations
in the line detection, we aggregate the lines of multiple frames and only use their me-
dian. Our optimization algorithm iterates over all possible rotation offsets for the camera
calibration between −12 deg and +12 deg with decreasing step sizes and tries to find the
parameters with minimal total error.

The robot moves its head to four predefined positions and records the found lines on
the field. First we optimize the body rotation using the upper camera looking straight
towards the T-cross. We set the upper camera calibration to zero and start the opti-
mization algorithm for the body rotation to minimize the error. After that, we have to

19



determine which part of the previously calculated body rotation correction belongs to the
upper camera. Therefore, we move the head 45 deg to the left and 45 deg to the right and
try to minimize the error using the same algorithm again, but modifying the values for
the upper camera calibration this time and keeping the sum of body and upper camera
calibration constant. This ensures that the minimal error from the center position of the
head is still the same. Consequently we move the head upwards, so that the robot is able
to see the T-cross with its lower camera. Using this position we also minimize the total
error by optimizing the calibration values for the lower camera correction. As a result
both cameras and the body are fully calibrated and a reliable CameraMatrix should
be provided now. If at any time the calculated calibration parameters still result in too
high errors, the calibration process starts from the beginning. An incorrect detection of
the field lines is the most common reason for that.

To make the calibration process even more convenient, we implemented a simple cali-
bration behavior, which can be controlled via the chest button and automates the whole
calibration process. That allows us to calibrate one robot after another without need to
connect a notebook every time. The generated camera calibrations can be downloaded
from the robots using the deploy tool bush afterwards.

3.6 Modeling

Currently our modeling consist of several modules which use our perception to create a
robust filtered world map. In this section we give a short description of the models that
we improved during the last year.

Obstacle Model

Our obstacle model, termed RobotMap, is using the percepts from our visions system to
create a robust model of all robots on the field. In Addition to the percepts, we add
obstacles detected by the foot bumpers in front of the robots as well as our team mate’s
positions from our team communication. Compared to last year we are working on using
this information for our localization.

Ball Model

We simultaniously have three different ball models at any time. Each ball model is a multi
hypothesis kalman filter to ensure a stable model even with false positive ball percepts.
The first one is the local ball model, which is only updated through local percepts. The
second model is a remote ball model, which is only udpated with remote percepts sent
by team mates. And finally our third model is the team ball model which uses the best
of those two models depending on the quality and currency of the percepts.

Our behavior adds a third layer to these models by choosing the prefered model
depending on the tactical situation. Due to the lack of feedback into a robot’s own
localization there are situations where the local model is still to be prefered. Precisely
approaching close balls for example requires accurate robot relative information instead of
the precise global position of the ball on the field. In the team ball model, the ball is more
precise in global coordinates, but moderate errors in a robot’s localization would have a

20



major impact on the relative positioning, as long as the robot’s pose is not corrected by
the distributed information, too.

21



Chapter 4

Behavior

Nao Devils as well as previous Dortmund teams implemented behavior mostly by utilis-
ing state machines such as XABSL (Extensible Agent Behavior Specification Language).
XABSL was developed in its original form in 2004 using XML syntax [18] in Darmstadt
and Berlin and adapted in 2005 to its current C-like syntax and a new ruby-based com-
piler by the Microsoft Hellhounds. Since 2013, we use CABSL which was developed by
team B-Human, and implements XABSL as C++-Macros allowing for easy access to all
data structures (i.e. representations) required for decision making.

To this end, behavior is specified by option graphs. Beginning from the root option,
subsequent options are activated similar to a decision tree until reaching a leaf, i.e. an
option representing a basic skill like “walk” or “execute special action” which are pa-
rameterized by the calling option. Each option contains a state machine to compute
the activation decision based on a number of values stored in the representations (see
section 3.2).

Until 2018, our behavior used static roles with static jobs to ensure a stable assign-
ment. This however had the disatvantage that we could not dynamically react to different
scenarios that the robots encounter during a game. Hence for 2019, we changed our as-
signment to a dynamic one, where we first determine what is needed on the field given the
amount of available players. After that we assign our players depending on their current
position to avoid path crossings, prioritizing the player that kicks the ball. With this
approach we can decide our general strategy on a high level before letting the robots sort
out how to best implement it. Since all robots have to use the same decision we decide
to use the lowest available player number as the one dictating the strategy. This way we
are not dependent on every player calculating the same strategy at all times for a stable
decision. The only exception for this is the ball chaser (or striker), whose assignment can
change faster - if we would have to wait for the next package to confirm the decision, it
could be too late already. Therefore this assignment can be overwritten locally on each
robot.

While it is possible to design complex behavior using CABSL, several tasks may
prove difficult or impossible to specify using CABSL alone, e.g. robust and efficient path
planning including obstacle avoidance and also any strategic team behavior. Hence, the
remainder of this chapter is structured as follows: Section 4.1 describes our new kick
selection for this year and section 4.2 describes a path planning approach to augment
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CABSL.

4.1 Kick Selection

Kick Selection

Since the German Open 2018, we have tried to tackle one of our weaknesses in a one-on-
one situation, namely speed and stability of decisions. We added a new kick selection to
our walking engine to solve this problem.

Since RoboCup 2018, our behavior does not select the best approach and kick for the
ball in our current implementation, but rather the walking engine itself does this. The
input for our walking engine is a direction and strength of the kick and the walking engine
creates a pattern of steps leading up to the optimal kick for this input. Usually this results
in from one up to ten steps which are put in the preview of our walking engine and are
then executed. Through this we achieved a fast and smooth transition from approaching
the ball to the actual kick execution.

4.2 Path Planning

The motion commands used in previous years have been based on desired speed vectors
which were updated with every behavior execution. This mode of control dates back to
the AIBOs which could be controlled like omnidirectional vehicles. Additionally for an
AIBO it was sufficient to walk straight to the ball to grab and turn with it. For humanoid
robots however the the omnidirectional characteristic of the walking generation is much
less distinct, and at the same time a target position close to the ball has to be reached with
a certain target orientation which increases the difficulty for trajectory control. While it
is possible and also commonly done to generate omnidirectional walking patterns with
the walking engine described in section 2.1, for a humanoid robot such as the Nao it
is far more convenient to walk straight than it is to walk sideways. This is reflected
in the possible walking speeds in each direction. Generating smooth path trajectories
following the characteristics optimal for those described walking capabilities is obviously
not possible in an intuitive way using a state-based behavior description language such
as XABSL, or CABSL.

To overcome those limitations and ultimately to achieve more precision and speed
in positioning close to the ball, a more advanced approach to path planning has been
done for the Nao Devils’ robots since RoboCup 2010. The utilized Dortmund Walking
Engine is based on foot step planning (see section 2.1). In 2010, a basic behavior has been
introduced to XABSL allowing the trajectory planning to be done by the walking engine
which has much better control and feedback about the executed motion. The motion
request has been adapted accordingly to accept a target position and orientation and
different go to commands have been implemented to cover common motion tasks while
avoiding obstacles. In 2013, the command has been improved continuously by realizing a
path planning through a potential field generated from static and dynamic obstacles.

Although the approach using a potential field worked, the robots were very cautious
and inefficient, especially when avoiding dynamic obstacles. Since 2014, a much simpler
and more efficient approach has been implemented. The path starts with just two way-
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points, the robot and the target position. Until there are no obstacles on any line between
two waypoints, for each obstacles on such a line a new waypoint next to the obstacle is
generated. For a more stable path, obstacles that are close to each other are merged.
This approach, in contrast to the path which the potential field produced, allows fast and
predictive obstacle avoidance while minimizing the need to slow down when the robot is
near such an obstacle.

Figure 4.1: Example of a path around obstacles.
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Chapter 5

Infrastructure

5.1 Time synchronization

For reliable communication between robots and consistent timestamps, it is important
that the clock on all robots is set correctly. Furthermore, the algorithm used during the
whistle direction challenge described earlier is highly dependent on an accurate clock.

During the last few years, we synchronized the clocks of the robots during our deploy
script using ntpdate1 to a given NTP server. However, this has the drawback that it
slows down the deploy process, it is quite inaccurate and it might fail if the robot turns
off during the game for some reason and its battery-backed RTC clock looses the time.

Therefore, we installed chrony2 on the robot that runs continuously as a daemon in
the background and keeps the time in sync with a given NTP server if connected to LAN.
That has the advantage that chrony monitors the time difference over a longer period of
time and also compensates the clock drift of the Nao. That improves the clock accuracy
without a NTP server connection afterwards. Nevertheless, a complete time loss for some
reason is still not handled by this approach. That is why we additionally implemented
a simple NTP-like time synchronization via team communication during the game as a
backup if the time offset to the other robots gets too big.

1https://linux.die.net/man/8/ntpdate
2https://chrony.tuxfamily.org/
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Chapter 6

Challenges

In the following chapter, we describe the development for the mixed team competition
and the directional whistle challenge we participated in at the RoboCup 2019.

6.1 Mixed Team Competition

The mixed team competition was newly introduced at RoboCup 2017 where two teams
with three robots each played 6v6 games on a standard SPL field against other mixed
teams. This year we started a new joint team with the team HULKs - team Devil SMASH.
To ensure synchronized behavior we used the mixed team competition to update our time
synchronization between our robots by creating our own version of NTP 5.1. This ensures
a reliable team communication even when our default method - offline NTP sync over
cable - does not work.

6.1.1 Behavior Adjustments

This year’s focus with the HULKs was on fusing our role decisions and assignments into
a single working behavior, despite using a different approach. We have been successful
in the end but could not complete all features, such as coordinated team movements, as
desired.

6.2 Directional Whistle Challenge

For this challenge we used an approach based on detection of time differences between the
robots. This is similar to the approach described in [19] or the method used with GPS
and GSM. Using this lateral approach we gained the highest score for far away signals
but had a bad result with close whistles on the own field.

The whistle challenge taught us two things: First, we need to combine an angular and
a lateral approach to receive the best result and second, that using meta information, like
possible sane referee positions, will be important.

In the end, after looking at the challenges result, no team was able to clearly distin-
guish between a referee on the own or on another field. Nevertheless, combining several
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approaches, we hope to tackle this problem for the next RoboCup.

6.3 Results

We were able to get the second place in the Direction Whistle Challenge and the third
place in the Mixed-Team-Challenge. We will build upon the whistle recognition challenge
to prepare for the coming years.
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Chapter 7

Conclusion and Outlook

The Nao Devils are a team from the TU Dortmund University with roots in several other
teams which have competed in RoboCup competitions over the last years. This team
report covered a short overview of the main ideas and concepts that were employed and
successfully used in RoboCup 2019.

A lot of effort has been put into fixing and simplifying our walking engine code as well
as the introduction of the new KeyFrameEngine. We did a full rewrite of our behavior
in the two months before the RoboCup as well, preparing us to adding new features in
the coming years. Due to the new hardware in the V6, we also tried and tested a lot of
neural network options for object detection and were able to successfully employ them in
real games while maintaining the full 30fps.

For RoboCup 2020, beside integrating the new soccer rule changes, we plan to improve
our side walking speed as this was one of our main weaknesses in a one-on-one fight for
the ball. We will increase the use of neural networks for tasks like object detection and
whistle recognition and hopefully start to develop new behavior features allowing us to
use more advanced teamplay. Another big change for RoboCup 2020 will be the use of
modern C++ features and libraries to make better use of the V6 multicore system.
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Wachter, M., Wege, J., Zarges, C.: Microsoft hellhounds 2006. In: RoboCup 2006:
Robot Soccer World Cup X RoboCup Federation, RoboCup Federation (2006)
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