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Background

Scaling language models (LMs) is the go-to solution to achieve
greater performance [1].
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Background

The more you scale, the more compute you need at inference.

Hardware costs can hinder LLMs if no optimization is done.

Not all optimization techniques are born equal...

What are the different responses to the trade-off between an LLM
performance and an LLM througput?
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Content

1. More About Throughput?
a. Prompt pruning, when KV caching is not enough
b. Speculative decoding
c. Layer skip: self speculative decoding

2. More About Performance?
a. Retrieval augmented generation (at inference)
b. Test-time compute

3. More About "Balance"?
a. Mixture of experts

Course 5: LMs at Inference Time 5



More About Throughput?
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Prompt pruning: when KV caching is not enough

Attention matrices need to be calculated for every token constituting
an LLM's prompt, leading to latency.

On LLaMa2-70b models, given a long prompt, 23% of the total
generation time is accounted for the time to first token (TTFT).

KV caching is of no-use in that context...

How to reduce that TTFT with minimum performance loss?
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Prompt pruning: when KV caching is not enough

When does KV caching comes into play?

The above example assume that your model is aware of LazyLLM [2]
via its training data.
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Prompt pruning: when KV caching is not enough

Not all tokens are useful to understand/answer the prompt.
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Prompt pruning: when KV caching is not enough

How to effectively choose tokens to prune out?

Transformer's attention represents more abstract concept as the
compution is done deeper in its layers [3].

The last attention matrices play an important role in the decision
boundaries computed by a transformer-based LM [4].
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Prompt pruning: when KV caching is not enough

For a given token , the attention matrix compute the probability of a
token  attending to  accross all  attention heads of a model.
This process is repeated accross the  layers of a model.

The importance of an input token , at a given layer  can now be
computed as
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Prompt pruning: when KV caching is not enough

We do not want to have too few tokens and some of them can become
relevant later in the decoding process
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Prompt pruning: when KV caching is not enough

Drawbacks:

Marginal gain in performance with relatively short prompts.

Drop in performance in code completion (no stop-words to drop?).
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Speculative decoding

An LLM can predict multiple tokens in a single forward pass :

Speculative decoding [5] allows an LLM to "guess" future tokens
while generating current tokens, all within a single forward pass.

By running a draft model to predict multiple tokens, the main
model (larger) only has to verify the predicted tokens for
"correctness".
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Speculative decoding

1. Prefix: [BOS]

2. Assistant: [BOS] The quick brown sock jumps

3. Main: [BOS] The quick brown fox / sock jumps

4. Assistant: [BOS] The quick brown fox jumps over the crazy dog

5. Main: The quick brown jumps over the lazy / crazy dog

6. ...
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Speculative decoding

The main model just verifies that the distribution , computed by
the assistant is not too far from the distribution  it computes
within a forward pass.

The expected number of tokens generated within one looop of
speculative decoding can be theorithically formulated as:

Which is the forward passes' reduction factor.
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Speculative decoding

The expected number of tokens generated via speculative decoding
as a function of  for various values of .
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Speculative decoding

In order to take the most out of speculative decoding, the distance
between  and  needs to be minimal.

How to reduce the distance between  and  when the
assistance model is smaller?

Quantization

Distillation

Over-training on the same dataset as the main model
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Layer skip: self speculative decoding

Speculative decoding comes with two inconveniences:

Loading two models in memory

Making sure the assistant model outputs a token distribution as
close as possible to the main model
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Layer skip: self speculative decoding

Why not let the main model do the speculation itself?

Transformer models are believed to be over-parameterized and the
last layers specialized on computing the decision boundaries before
projecting on the LM head. Maybe we can make each layer able to
project on the LM head, thus skipping layers [6] and allowing for an
early exit at inference [7].
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Layer skip: self speculative decoding
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Layer skip: self speculative decoding

The hidden state of a token , at layer  is stochastically given by

Where  is a masking function with a probability of skipping
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Layer skip: self speculative decoding

How is the loss computed?

Where  is a normalized per-layer loss scale
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Layer skip: self speculative decoding

 is a scale that increases across layers, penalizing later layers, as
predicting in later layers is easier.

More About Throughput? 24



Layer skip: self speculative decoding

How does this change inference?
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Layer skip: self speculative decoding

10% speed-up

A single KV cache => low memory overhead

The main model is still competitive when the last transformer layer
is used for prediction despite a different training technique.
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More About Performance?
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Retrieval augmented generation (at inference)

The goal of retrieval augmented generation (RAG) is to give access to
updated knowledge to a model [8].

RAG's intricacies will be discussed in another chapter.
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Retrieval augmented generation (at inference)

RAG-sequence model

RAG-token model
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Retrieval augmented generation (at inference)

Although conditioned on retrieved knowledge, output may be a
hallucination.

Most of RAG's performance depends on the chunking method and
the retriever.
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Test time compute

The goal is to allocate more compute at inference to "natively"
incorporate chain-of-thought like decoding.

The hypothesis is that models have good reasoning capabilities but
standard decoding processes hinder them.
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Test time compute

[9]
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Test time compute

Search against verifiers [10]:

Most decoding methods stem from greedy decoding.

There is no "correct" way of selecting the first token when
decoding.
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test time compute

A reward model (verifier) selects the best answer based on a
systematic search method:
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Test time compute

Modifying proposal distribution:

Reinforcement learning-like techniques where a model learns to
refine its own answer to reach the optimal one: look at ReST [12]
and STaR [11].

Unlinke standard decoding, the model can backtrack to previous
steps.
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Test time compute

Borrowing from ReST, one could create candidate responses
during inference and assess them against a task-specific quality
metric (without updating weights). The highest-quality candidates
can then guide token sampling.

STaR’s multi-path reasoning generation and selection is applicable
at test-time by generating multiple answer paths and using
consistency checks or reranking to choose the best response.
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Test time compute

Takeaways (DeepMind's scaling laws):

Small models (<10b) are better at answering easy questions when
given more TTC than pretraning compute.

Diminishing return on larger models with more TTC than
pretraining compute.
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Test time compute

[13]
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More About "Balance"?
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Mixture of experts

Replacing every FFN in a transformers with a MoE layer [14]?

Divide one FFN network with  parameters into  experts with
 parameters each.
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Mixture of experts

More About "Balance"? 41



Mixture of experts

Reduced computation during training and inference since we only
need to run th of the FFN weights.

Unstable during training: can struggle to generalize, thus prone to
overfitting.

Load balancing is crucial: we do not want a subset of experts to be
under-utilized.
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Mixture of experts

A learned gating network  decides which experts  to send a part of
the input:

Where  denotes the -dimensional output of the gating
network for the -th expert, and  is the output of the -th expert
network
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Mixture of experts

A popular gating function is the softmax function over the top-
logits.

In order to have a sparse vector as output
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Mixture of experts
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Mixture of experts
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Questions?
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