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Byzantine tolerant systems have been designed for decades and a recent boom in
Blockchain inspired solutions has been boosting studies over this topic. While the
literature has been extensively contributing towards more reliability, robustness and
resilience of consensus systems, few works addressed large scale industrial cases
focused on State Machine Replication with one block finality. This paper, besides
being a didactic material, has also the potential of contributing as a scientific reference
regarding the use of Byzantine Fault Resistant agent communication in the Blockchain
ecosystem.
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This chapter is part of the Community Yellow Paper1 initiative, a community-driven technical specifica-
tion for Neo blockchain.

8 Delegated Byzantine Fault Tolerance: Technical details, challenges
and perspectives

Several studies in the blockchain literature have explored partially synchronous and fully asyn-
chronous Byzantine Fault Tolerant (BFT) systems (Hao et al. 2018; Duan, Reiter, and Zhang 2018;
Miller et al. 2016). However, few of them have been applied in a real-world Smart Contract (SC)
scenario - i.e. where multiple distinct decentralized applications use the same BFT system.

Distinct to other prior works in the literature, NEO proposes a BFT consensus mechanism with one
block finality in the first layer (Hongfei, Da and Zhang, Erik 2015). One block finality offers signifi-
cant advantages for real-world applications - For example, end users, merchants, and exchanges can
be confident that their transactions were definitively processed and that there is no chance for them
to be reverted. While the NEO Ecosystem has been designed for hosting Decentralized Applications
(DApps), it is noteworthy that persisting SC transactions (which involves State Machine Replication
(SMR) and is the core functionality of several DApps) poses a unique set of challenges. DApps utilis-
ing SCs tend to bemore complex to develop and optimize when compared to DApps focused only on
appending storage (Schneider 1990). Besides its significant advantages, satisfying this set of require-
ments poses additional constraints, vulnerabilities and challenges when compared to other consen-
sus applications dealt in the literature.

The goal of this technical material is to highlight the main adaptations from the classical Practical
Byzantine Fault Tolerance (pBFT) to the Delegated Byzantine Fault Tolerance (dBFT) currently used
in the NEO blockchain core library (see Neo Project Github). Furthermore, it describes a novel math-
ematicalmodel that is able to verify specific consensus behavior bymeans of a discretemodel which
can simulate its operation in real cases. While highlighting the positive aspects of the current NEO
consensus system, this document also has the goal of pointing out possible faults and future research
& development directions. The latter can be achieved by a combination of NEO’s requirements and
novel ideas in connection with well-known studies from the literature.

The remainder of this document is organized as follows. Section 8.1 provides a brief background
on the classical pBFT. Section 8.2 describes the key modification made from the literature for the
achievement of NEO’s dBFT. Section 8.3 details the current state-of-the-art discussions regarding
NEO’s dBFT, andpresents didactic pseudocodes and flowcharts. Finally, Section 8.9 proposes a novel
mathematical programmingmodel based on Linear Integer Programming, whichmodels an optimal
adversary that will challenge the network and verify its limitations in worst case scenarios.

1See Community Yellow Paper repository
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8.1 Background on Practical BFT

Practical BFT was first made possible by the work of Miguel Castro and Barbara Liskov (see Figure 1),
entitled “Practical Byzantine Fault Tolerance” (Castro and Liskov 1999).

Figure 1: Turing-Prize winner Barbara Liskov on 2010. Wikipedia CC BY-SA 3.0

Given 𝑛 = 3𝑓 + 1 replicas of a State Machine, organized as Primary and Backup nodes, the proposed
algorithm guarantees liveness and safety to the network, if at most 𝑓 nodes are faulty/Byzantine2.

• Safety property ensures that all processes will execute as atomic, either executing on all nodes,
or reverting as awhole. This is possible due to thedeterministic natureof theprocess (executed
on every node), which is also valid for the NEO network and blockchain protocols in general.

• Liveness guarantees that the network won’t be stopped (unless more than 𝑓 byzantine nodes
exist), by using a mechanism called “change view”, which allows Backup nodes to switch Pri-
mary node when it seems Byzantine. A timeout mechanism is used, and by doubling delays
exponentially at every view, pBFT can prevent attacks frommalicious network delays that can-
not grow indefinitely. In the current formula, timeout happens following a left-shift operator
according to the current view number, for example:

– Considering 15 second blocks: 15 << 1 is 30s (first change view); 15 << 2 is 60s; 15 << 3 is
120s; 15 << 4 is 240s.

– Considering 1 second blocks: 1 << 1 is 2s; 1 << 2 is 4s; 1 << 3 is 8s; 1 << 4 is 16s.

It should be noticed that a nodes do not increase change view time until they do not pass to a higher
view. In this sense, timer might expire more than 1 time for each view. Without loss of generality this
can happen since change view is considered to be a locked state.

The considered network on pBFT assumes that it “may fail to deliver messages, delay them, dupli-
cate them, or deliver them out of order.” They also considered public-key cryptography to validate
the identity of replicas, which is also the same for NEO dBFT. Since the algorithm does not rely on
synchrony for safety, it must rely on it for liveness3. The resiliency of 3𝑓 + 1 is optimal for a Byzantine
Agreement (Bracha and Toueg 1985), with at most 𝑓 malicious nodes.
2The name Byzantine refers to arbitrary behavior, and was coined by Leslie Lamport and others in the paper “The Byzan-
tine Generals Problem”

3This was demonstrated by paper “Impossibility of distributed consensus with one faulty process”
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pBFT correctness is guaranteed by having three different phases: pre-prepare, prepare and com-
mit4.

• On pre-prepare, primary sends a sequence number 𝑘 together with message 𝑚 and signed di-
gest 𝑑. Backup 𝑖 accepts pre-prepare if the signature is correct, 𝑘 is in the valid interval5, and 𝑖
has not yet accepted a pre-prepare for the same 𝑘 and the same view.

• When pre-prepare is accepted, a prepare message is broadcast (including to primary), and a
node is considered prepared when it receives at least 2𝑓 prepare messages that match its
local pre-prepare, for the same view. So, at this point, for a given view, the non-faulty replicas
alreadyagreeon the total order for requests. As soonas2𝑓+1non-faultynodesareprepared,
the network can be considered as committed.

• Every committed replica broadcasts a commit message, and as soon as node 𝑖 has received
2𝑓+1 commitmessages, node 𝑖 iscommitted-local. It is guaranteed that, eventually, even
with the occurrence of change views, a system with committed-local nodes will become
committed.

pBFT considers that clients interact and broadcast messages directly to the primary node, then re-
ceiving independent responses from 2𝑓 + 1 nodes in order to move forward (to the next operation).
This is a similar situation for NEOblockchain, where information is spread bymeans of a peer-to-peer
network, but in this case, the location of consensus nodes is unknown (in order to prevent direct de-
lay attacks and denial of service). One difference is that, for pBFT, clients submit atomic and inde-
pendent operations for a unique timestamp, which are processed and published independently. For
NEO blockchain, consensus nodes have to group transactions into batches, called blocks, and this
process may lead to the existence of thousands of valid blocks for the same height, due to different
groupings (different combinations of transactions). So, in order to guarantee block finality (a single
and unique block can exist in a given height), we may have to consider situations where the “client”
(block proposer) is also faulty, which is not considered in pBFT.

8.2 NEO dBFT coremodifications

In summary, we highlight some differences between pBFT and dBFT:

• One block finality to the end-users and seed nodes;
• Use of cryptographic signatures during different phases of the procedures in order to avoid
exposure of nodes commitment to the current block;

• Ability to propose blocks based on information shared through block headers (transactions are
shared and stored in an independent syncronization mechanism);

• Avoid double exposure of block signatures by not allowing view changes after the commitment
phase;

• Regeneration mechanism able to recover failed nodes both in the local hardware and in the
network P2P consensus layer.

4NEOdBFT2.0 also consists of threephases,with a slight naming change: prepare request, prepare response, and commit
5A special technique avoids the exhaustion of sequence number space by faulty primary
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8.3 dBFT detailed description

The dBFT consensus mechanism is a state machine, with transitions depending on a round-robin
scheme (to define Primary/Backup nodes) and also depending on network messages.

8.3.1 dBFT states

dBFT states are the following:

• Initial : initial machine state

• Primary : depends on block height and view number

• Backup : true if not primary, false otherwise

• RequestSent : true if block header has been proposed, false otherwise (removed on dBFT 2.0
since code tracks all preparation signatures, merged as RequestSentOrReceived)

• RequestReceived : true if block header has been received, false otherwise (removed on dBFT
2.0 since code tracks all preparation signatures, merged as RequestSentOrReceived)

• SignatureSent : true if signature has been sent, false otherwise (removed on dBFT 2.0 because
of extra commit phase carrying signatures)

• RequestSentOrReceived : true if a valid signature of Primary has been received, false otherwise
(introduced in dBFT 2.0).

• ResponseSent : true if block header confirmation has been sent (introduced in dBFT 2.0: inter-
nal state used only for blocking node to triggering consensus OnTransaction event)

• CommitSent : true if block signature has been sent (this state was only introduced in dBFT 2.0
and replaced SignatureSent)

• BlockSent : true if block has been sent, false otherwise

• ViewChanging : true if view changemechanism has been triggered, false otherwise

• MoreThanFNodesCommittedOrLost : true in the case that more than F nodes are locked in the
commited phase or considered to be lost (introduced in dBFT 2.0).

• IsRecovering : true if a valid recovery payloadwas received and is being processed (introduced
in dBFT 2.0: internal state)

The first dBFT handled these states explicitly as flags (ConsensusState enum). However, dBFT 2.0 can
infer this information in a implicit manner, since it has added a track of preparations signatures and
state recovery mechanisms.

8.4 Flowchart

Figure 3 presents the State Machine replicated on each consensus node (the term replica or node
or consensus nodemay be considered synonyms for this subsection). The execution flow of a State
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Machine replica begins on the Initial state, for a given block height H on the blockchain. Given T
as standardblock time (15 seconds);vas current viewnumber (starting from𝑣 = 0); 𝑒𝑥𝑝(𝑗) is set to2𝑗;
i as consensus index; R as total number of consensus nodes. This State Machine can be represented
as a Timed Automata (Alur and Dill 1994), where C represents the clock variable and operations (C
condition)? represent timed transitions (C:=0 resets clock). Dashed lines represent transitions
that explicitly depend on a timeout behavior and were included in a different format for clarity. It is
also assumed that transitions are processed in the order they are presented. For example:

(C >= 5)?
A
(C >= 7)?
B

This block would first wait until clock C has over 5 seconds, then process A, then check clock tomeet
7 seconds, and then process B. This allows a more precise description of the actual dBFT 2.0 imple-
mentation.

Let’s start with original PBFT, on Figure 2. $(message) means message is signed. Dashed lines
indicates timeouts or alternative transitions (only on fail states). CKPmeans checkpoint (related to
n, s, h' and H').
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InitialClient

RequestSentToReplica

client c sends 
 $(REQUEST,o,t,c) 
 with timestamp t 

 to primary 
 C' := 0

(C' > T')? 
 retransmit 

 C' := 0

RequestExecuted

client receives f+1 (REPLY)

Initial

OnStart 
 v := 0
 C := 0

Primary

v mod R = i

Backup

not v mod R = i

prepare

client c sends 
 $(REQUEST,o,t,c) 
 with timestamp t 

 n := assign_seq_number 
 broadcast ((PREPREPARE,v,n,d),m)

v+1 mod R = i 
 received 2f (VIEW_CHANGE,v+1) 

 broadcast $(NEW_VIEW, v+1, 2f+1 proof) 
 v := v + 1

received ((PREPREPARE,v,n,d),m) 
 h' < n < H' 
 in_view(v) 

 not accepted other PP with 
 same v and different d 

 broadcast signed (PREPARE,v,n,d,i) 
 C := 0

received (NEW_VIEW, v+1, 2f+1)
v:=v+1

ViewChanging

(C >= T)? 
 broadcast 

 $(VIEW_CHANGE,v+1,n=s,CKP,i)

prepared_m_v_n_i

received 2f PREPARE from backups

received (NEW_VIEW, v+1, 2f+1)
v:=v+1

commit

broadcast $(COMMIT,v,n,D(m),i)

committed_local_m_v_n_i

send to client c 
 $(REPLY,v,t,c,i,r)

received (NEW_VIEW, v+1, 2f+1)
v:=v+1

has 2f+1 commits 
 execute operation

Figure 2: Basic structure for PBFT

Let’s switch to dBFT now.
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Initial

OnStart
 v := 0
 C := 0

Primary

(H + v) mod R = i

Backup

not (H + v) mod R = i

RequestSentOrReceived

(C >= T)? 
 SendPrepareRequest 

 C := 0

ViewChanging

(C >= T exp(v+1))?
 C := 0

OnPrepareRequest 
 ValidBlock

(C >= T exp(v+1))?
 C := 0

(C >= T exp(v+1))?
 C := 0

CommitSent

EnoughPreparations

EnoughViewChanges
 v := v+1 

 C := 0

BlockSent

EnoughCommits

Figure 3: dBFT 2.0 State Machine for specific block height

On Figure 3, consensus node starts on Initial state, on view 𝑣 = 0. Given H and v, a round-robin
procedure detects if current node 𝑖 is Primary: (𝐻 + 𝑣) mod 𝑅 = 𝑖 (it is set to backup otherwise).
If node is Primary, it may proceed to RequestSentOrReceived after SendPrepareRequest
action (that selects transactions and creates a new proposed block) after 𝑇 seconds. If node is
Backup, it needs to wait for a OnPrepareRequest action. After clocks expire, nodes may enter a
ViewChanging state, what guarantees liveness to the network in case of failed Primary. However,
CommitSet state guarantees that no view change occurs, as the node is already committed to
that specific block (so it won’t provide signature to any other block on that height). Since this
could compromise the liveness of the network, a Recovery process was proposed (see Figure 4).
EnoughPreparations, EnoughCommits and EnoughViewChanges depend on having
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enough valid responses that surpass the byzantine level 𝑀 (thus, respecting maximum number of
faulty nodes 𝑓). T is currently, until version 2.0, calculated as a basin on the time that the node
received last block instead of checking the timestamp in which previous header was signed.

8.5 Block finality

Block finality in the Consensus layer level imposes the following condition presented on Equation (1),
which defines that there should not exist two different blocks for a given heightℎ, in any time interval
𝑡.

∀ℎ ∈ {0, 1, ⋯ , 𝑡} ⇒ 𝑏𝑖
𝑡 = 𝑏𝑗

𝑡 (1)

In summary, the block finality provides that clients do not need to verify the majority of Consensus
for SMR. In this sense, seed nodes can just append all blocks that possess the number of authentic
signatures defined by the protocol (namely, 𝑀 = 2𝑓 + 1). In this sense, as already described for the
current NEO dBFT, theminimumnumber of required signatures is 2𝑓 + 1 as defined in The Byzantine
Generals Problems (Lamport, Shostak, and Pease 1982), where 𝑓 = 1

3 × 𝑁 is the maximum number
of Byzantine nodes allowed by the network protocol.

8.6 Multiple block signature exposure

8.6.1 Detected fault on dBFT v1.0

Known Block Hash stuck fork was recently discovered in real operation of NEO blockchain, 2017.

In particular, this happens due to two components of the Blocks that are selected by each node that
is a primary:

• Different sets of Transactions;
• Block Nonce.

In particular, the NEO dBFT 1.0 had a simplified implementation of the pBFT without the commit
stage.

However, it was detected that under rare situations a given node could receive the desired M signa-
tures necessary for persisting a Block, and then suddenly lose connection with other nodes. In this
sense, the other nodes could detect a lack of communication (along with other fails between them-
selves) and generate a new block. Besides breaking block finality 8.5, this problem could halt the
consensus node and any client that persists the block that was not adopted by themajority of CN. In
addition, in a evenmore rare situation, 𝑥 nodes with $ f + 1 < x < M $ could receive a given block while
the other nodes had a different block hash, halting the whole network until a manual decision was
reached.

It is noteworthy that even in anAsynchronousConsensuswithout timeoutmechanism this case could
lead to problems if the Nonce was not yet defined as well as the transactions to be inserted inside
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a Block. This real incident motivated several novel insights on the consensus, which covered this
“natural” issue due to network as well as added extra security in case of real Byzantine nodes.

8.6.2 Commit phase with change view blocking

Taking into account that the aforementioned fault could happen even with the commit phase, one
should verify that nodes could become stuck but not double expose its signature. On the other hand,
other attacks could happen if malicious nodes tried to save the signature and perform some specific
sets of actions, such as storing information and not sharing it.

In this sense, the possibility that naturally came was:

• Lockviewchanging (currently implementedsinceNEOdBFT2.0) after sending theblockheader
signature. This means that those who are committed with that block will not sign any other
proposed Block.

On the other hand, a regeneration strategy sounded compulsory to be implemented since nodes are
stuck with their agreement. We defined this as the indefatigableminers problem, defined below:

1. The speaker is a Geological Engineer and is searching for a place to dig for Kryptonite;
2. He proposes a geographic location (coordinates to dig);
3. The majority of the team (𝑀 ) agrees with the coordinates (with their partial signatures) and

sign a contract to dig;
4. Time for digging: they will now dig until they really find Kryptonite (no other place will be ac-

cepted to be dug until Kryptonite is found). Kryptonite is an infinitely divisible crystal, thus, as
soon as one finds it he will share the Kryptonite so that everyone will have a piece for finishing
their contract (3);

5. If one of them dies, when it resurrects it will see its previous signed agreement (3) and it will
automatically start todig again (Regeneration strategy). Theotherminoritywill suffer the same,
they will be fulfilled with hiddenmessages saying that they should also dig.

This strategykeeps the strengthof the thedBFTwith the limit of amaximumnumberoff faultynodes.
In addition, it adds robustness with a survival/regeneration strategy.

8.7 Regeneration

TheRecover/Regeneration event is designed for responding to a given failed node that lost part of the
history. In addition, it also has a local backup that restores nodes in some cases of hardware failure.
This local level of safety (which can be seen as a hardware faulty safety) is essential, reducing the
chance of specifically designedmalicious attacks.

In this sense, if the node had failed and recovered its health, it automatically sends a 𝑐ℎ𝑎𝑛𝑔𝑒_𝑣𝑖𝑒𝑤 to
0, which means that that node is back and wants to hear the history from the others. Thus, it might
receive a payload that provides it the ability to check the agreements of the majority and come back
to real operation, helping them to sign the current block being processed.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 11



Delegated Byzantine Fault Tolerance: Technical details, challenges and perspectives Rev: efa6b56

Following these requirements, dBFT 2.0 counted with a set of diverse cases in which a node could
recover its previous state, both previously known by the network or by itself. Thus, the recovery is
currently encompassing:

• Replay of 𝐶ℎ𝑎𝑛𝑔𝑒𝑉 𝑖𝑒𝑤 messages;
• Replay of Primary 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 message;
• Replay of 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 messages;
• Replay of 𝐶𝑜𝑚𝑚𝑖𝑡 messages.

The code can possibly recover the following cases:

• Restore nodes to higher views;
• Restore nodes to a view with prepare request sent, but not enough preparations to commit;
• Restore nodes to a view with prepare request sent and enough preparations to commit, conse-
quently reaching CommitSent state;

• Share commit signatures to a node that is committed (CommitSent flag activated).

Figure 4 summarizes some of the current states led by the recovery mechanisms, which is currently
sent by nodes that received a change view request. Recover payloads are sent by a maximum
of 𝑓 nodes that received the 𝐶ℎ𝑎𝑛𝑔𝑒𝑉 𝑖𝑒𝑤 request. Nodes are currently selected based on the
index of payload sender and local current view. It should be noticed that 𝑂𝑛𝑆𝑡𝑎𝑟𝑡 events trigger
a 𝐶ℎ𝑎𝑛𝑔𝑒𝑉 𝑖𝑒𝑤 at view 0 in order to communicate to other nodes about its initial activity and its
willingness to receive any Recover payload. The idea behind this is that a node that is starting late
will probably find some advanced state already reached by the network.

Here, the internal state 𝐼𝑠𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔, differently than the𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑆𝑒𝑛𝑡 state, is didactically repro-
duced for simplifying the possible effects that a Recover message can trigger. In this sense, without
loss of generality, arrows that arrive on it can be directly connected with the ones that leave it.
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Initialize

RecoverLog

OnStart
 Checking data in local db

Recover

v := 0
 C := 0

Initial

InitializeConsensus(0)

CommitSent

store has
EnoughPreparations

IsRecovering

OnRecoveryMessageReceived

Primary

(H + v) mod R = i

Backup

not (H + v) mod R = i

Triggers recover
 every C >= T exp(1)) 

BlockSent

EnoughCommits

(EnoughViewChanges =>
 C := 0 && v := v + x)

Preparations < M

(EnoughViewChanges =>
 C := 0 && v := v + x)

EnoughPreparations
 Possibly some commits

Preparations < M

ViewChanging

(C >= T exp(v+1))?
 C := 0

RequestSentOrReceived

FillContext
 (C >= T)?

C := 0

(C >= T exp(v+1))?
 C := 0

OnPrepareRequest

Can trigger up to f
recovers messages

EnoughViewChanges
 v := v+1 

 C := 0

ValidBlock
 EnoughPreparations

(C >= T exp(v+1) - T)?
 C := 0

Figure 4: dBFT 2.0 State Machine with recover mechanisms
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8.8 Possible faults

8.8.1 Pure network faults

Possible scenarios:

• Up to f nodes are going to delays messages;
• at maximum, fwill crash both in terms of hardware fault or software problems.

8.8.2 Mixedmalicious Byzantine faults

First of all, Byzantine attacks should be designed in order that nodeswill never be able to prove that it
wasanattack. Otherwise,NEOholderwould recriminate suchactionsandvote in favorofothernodes.
Furthermore, nodes that join a given collaborative network possess an identity or stake. If anyone
could detect such malicious behavior, then, that node would “automatically” (through the current
voting system or an automatic mechanism that could be designed) be removed from the network.

• at maximum, 𝑓 , nodes will delays messages;
• at maximum, 𝑓 , nodes will send incorrect information (unlikely as it could reveal malicious be-
havior);

• at maximum, 𝑓 , nodes will try to keep correct information for strategic occasions.

8.9 A MILP Model for Failures and Attacks on a BFT Blockchain Protocol

We present a MILP model for failures and attacks on a BFT blockchain protocol, in particular, the
design is focused on the specific case of dBFT, without loss of generality for other less specialized
cases.

This current model is not fully completed due to the recent updates on dBFT to version 2.0. After
being finalized it will include some benchmark results modeled with A Mathematical Programming
Language (AMPL), currently under development at https://github.com/NeoResearch/milp_bft_failu
res_attacks.

8.9.1 Mathematical model

Parameters:

𝑖 ∈ 𝑅 consensus replica 𝑖 from set of replicas 𝑅. 𝑅𝐵𝑌 𝑍 is byzantine set. 𝑅𝑂𝐾 is non-byzantine set.
𝑅 = 𝑅𝑂𝐾 ∪ 𝑅𝐵𝑌 𝑍 , such that 𝑅𝑂𝐾 ∩ 𝑅𝐵𝑌 𝑍 = ∅.

𝑓 number of faulty/Byzantine replicas. 𝑓 = |𝑅𝐵𝑌 𝑍|.

𝑁 total number of replicas. 𝑁 = |𝑅| = |𝑅𝑂𝐾| + |𝑅𝐵𝑌 𝑍| = 3𝑓 + 1.

𝑀 safety level. 𝑀 = 2𝑓 + 1.

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 14

https://github.com/NeoResearch/milp_bft_failures_attacks
https://github.com/NeoResearch/milp_bft_failures_attacks


Delegated Byzantine Fault Tolerance: Technical details, challenges and perspectives Rev: efa6b56

𝑏 ∈ 𝐵 block 𝑏 from set of possible proposed blocks 𝐵 (may be understood as block hash). 𝐵 =
{𝑏0, 𝑏1, 𝑏2, ⋯}.

ℎ ∈ 𝐻 height ℎ from set of possible heights 𝐻 (tests may only require two or three heights). 𝐻 =
{ℎ0, ℎ1, ℎ2}. Multiple heights are considered, such that block generation canbe simulatedover
a bigger horizon (including primary changes).

𝑣 ∈ 𝑉 view 𝑣 from set of possible views𝑉 (number of viewsmay be limited to the number of consen-
sus nodes 𝑁 ). 𝑉 = {𝑣0, 𝑣1, ⋯ , 𝑣𝑁−1}

𝑡 ∈ 𝑇 time unit 𝑡 from set of discrete time units 𝑇 . 𝑇 = {𝑡0, 𝑡1, 𝑡2, ⋯}.

Variables:

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣 binary variable that indicates if Consensus Node 𝑖 is primary at height ℎ view 𝑣.

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 is at height ℎ and view 𝑣, on time 𝑡

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 is sending Prepare Request mes-

sage (to all nodes) at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. ACTION VARIABLE
MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 is sending Prepare Response

message (to all nodes) at heightℎandview 𝑣, on time 𝑡, for proposedblock 𝑏. ACTIONVARIABLE
MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑅𝑒𝑐𝑣𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 received a Prepare Request mes-

sage from replica 𝑗 at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. ACTION VARIABLE
MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑅𝑒𝑐𝑣𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 received a Prepare Response

message fromreplica 𝑗atheightℎandview𝑣, on time 𝑡, forproposedblock 𝑏. ACTIONVARIABLE
MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 binary variable that indicates if replica 𝑖 has relayed block 𝑏 at height ℎ, on time 𝑡.

ACTION VARIABLE MUST BE SET ONLY ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 binary variable that indicates if replica 𝑖 ∈ 𝑅 received a Block Relaymessage

from replica 𝑗 at height ℎ on time 𝑡, for proposed block 𝑏. ACTION VARIABLEMUST BE SETONLY
ONCE FOR EVERY REPLICA, HEIGHT AND BLOCK.

𝑠𝑒𝑛𝑡𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has sent (in past) to all replicas a

Prepare Request message at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. Once set to
ONE this is carried forever as ONE.

𝑠𝑒𝑛𝑡𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has sent (in past) to all replicas a

Prepare Responsemessage at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏. Once set to
ONE this is carried forever as ONE.

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has received (in past) from

replica 𝑗 a Prepare Request message at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏.
Once set to ONE this is carried forever as ONE.
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𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 binary variable that indicates if replica 𝑖 ∈ 𝑅 has received (in past) from

replica 𝑗 a Prepare Response message at height ℎ and view 𝑣, on time 𝑡, for proposed block 𝑏.
Once set to ONE this is carried forever as ONE.

𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃 𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,ℎ,𝑏 binary variable that indicates if replica 𝑖 ∈ 𝑅 has sent (in past) to all replicas a

Block Relaymessage at heightℎ, on time 𝑡, for proposed block 𝑏. Once set toONE this is carried
forever as ONE.

𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 binary variable that indicates if replica 𝑖 ∈ 𝑅 has received (in past) from

replica 𝑗 a Block Relay message at height ℎ, on time 𝑡, for proposed block 𝑏. Once set to ONE
this is carried forever as ONE.

𝑏𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑒𝑑𝑏 binary variable that indicates if block 𝑏 was relayed (on any time, height or view).

Objective function:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑
𝑏∈𝐵

𝑏𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑒𝑑𝑏 (2)

The adversary can control 𝑓 replicas, but the other 𝑀 replicas must follow dBFT algorithm. The ad-
versary can choose any delay for any message (up to maximum simulation time |𝑇 |). If it wants to
shutdown the whole network, no blocks will be ever produced and objective will be zero (minimum
possible). So, adversary will try tomaximize blocks produced bymanipulating delays in a clever way.
As described by Equation (2), objective function is bounded to [0, |𝐵|].

Constraints:

Initialization constraints

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡0
𝑖,ℎ0,𝑣0

= 1 ∀𝑖 ∈ 𝑅𝑂𝐾 (3)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡0
𝑖,ℎ,𝑣 = 0 ∀𝑖 ∈ 𝑅𝑂𝐾, ℎ ∈ 𝐻\{ℎ0}, 𝑣 ∈ 𝑉 \{𝑣0} (4)

∑
𝑣∈𝑉

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣 = 1 ∀𝑖 ∈ 𝑅, 𝑡 ∈ 𝑇 \{𝑡0}, ℎ ∈ 𝐻 (5)

∑
ℎ∈𝐻

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣 = 1 ∀𝑖 ∈ 𝑅, 𝑡 ∈ 𝑇 \{𝑡0}, 𝑣 ∈ 𝑉 (6)

Igor M. Coelho, Vitor N. Coelho, Peter Lin, Erik Zhang 16



Delegated Byzantine Fault Tolerance: Technical details, challenges and perspectives Rev: efa6b56

Time zero constraints:

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (7)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀ℎ, 𝑏, 𝑖, 𝑣 (8)

𝑅𝑒𝑐𝑣𝑃 𝑟𝑒𝑝𝑅𝑒𝑞𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (9)

𝑟𝑒𝑐𝑣𝑑𝑃 𝑟𝑅𝑒𝑞𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑗, ℎ, 𝑏, 𝑖, 𝑣 (10)

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (11)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡0
𝑖,ℎ,𝑏,𝑣 = 0 ∀ℎ, 𝑏, 𝑖, 𝑣 (12)

𝑅𝑒𝑐𝑣𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏, 𝑣 (13)

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡0
𝑖,𝑗,ℎ,𝑏,𝑣 = 0 ∀𝑗, ℎ, 𝑏, 𝑖, 𝑣 (14)

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡0
𝑖,ℎ,𝑏 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏 (15)

𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡0
𝑖,ℎ,𝑏 = 0 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏 (16)

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡0
𝑖,𝑗,ℎ,𝑏 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏 (17)

𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡0
𝑖,𝑗,ℎ,𝑏 = 0 ∀𝑖, 𝑗 ∈ 𝑅, ∀ℎ, 𝑏 (18)

(19)

Prepare request constraints:

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡

𝑖,ℎ,𝑣 ∀𝑖, ℎ, 𝑏, 𝑣, 𝑡 (20)

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 ≤ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣 ∀𝑖, ℎ, 𝑏, 𝑣, 𝑡 (21)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣 = 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡−1

𝑖,ℎ,𝑏,𝑣 + 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡−1
𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0} (22)

𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 ≤ 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑞𝑡

𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖 ≠ 𝑗, 𝑣, 𝑡 (23)

𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑞𝑡
𝑖,𝑖,ℎ,𝑏,𝑣 = 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡

𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 (24)

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 = 𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡−1

𝑖,𝑗,ℎ,𝑏,𝑣 + 𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑞𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑗, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0} (25)

Prepare response constraints:

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡

𝑖,ℎ,𝑣 ∀𝑖, ℎ, 𝑏, 𝑣, 𝑡 (26)

𝑆𝑒𝑛𝑑𝑃 𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ≥ 1

𝑁 ∑
𝑗∈𝑅

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 ∀𝑖 ∈ 𝑅𝑂𝐾, ℎ, 𝑏, 𝑣, 𝑡 (27)

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 ≤ ∑

𝑗∈𝑅
𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑞𝑡−1

𝑖,𝑗,ℎ,𝑏,𝑣 ∀𝑖 ∈ 𝑅, ℎ, 𝑏, 𝑣, 𝑡 (28)

𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,ℎ,𝑏,𝑣 = 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1

𝑖,ℎ,𝑏,𝑣 + 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡−1
𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0}

(29)

𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 ≤ 𝑠𝑒𝑛𝑡𝑃𝑟𝑅𝑒𝑠𝑝𝑡

𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖 ≠ 𝑗, 𝑣, 𝑡 (30)

𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,𝑖,ℎ,𝑏,𝑣 = 𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑠𝑝𝑡

𝑖,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑣, 𝑡 (31)

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡
𝑖,𝑗,ℎ,𝑏,𝑣 = 𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1

𝑖,𝑗,ℎ,𝑏,𝑣 + 𝑅𝑒𝑐𝑣𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 ∀ℎ, 𝑏, 𝑖, 𝑗, 𝑣, 𝑡 ∈ 𝑇 \{𝑡0}

(32)
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Block persist constraints:

𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃 𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,ℎ,𝑏 = 𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡−1

𝑖,ℎ,𝑏 + 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡−1
𝑖,ℎ,𝑏 ∀𝑖 ∈ 𝑅, ℎ, 𝑏, 𝑡

(33)

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 ≤ 𝑠𝑒𝑛𝑡𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡

𝑗,ℎ,𝑏 ∀ℎ, 𝑏, 𝑖 ≠ 𝑗, 𝑣, 𝑡
(34)

𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑖,ℎ,𝑏 = 𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡

𝑖,ℎ,𝑏 ∀ℎ, 𝑏, 𝑖, 𝑡 (35)

𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡
𝑖,𝑗,ℎ,𝑏 = 𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡−1

𝑖,𝑗,ℎ,𝑏 + 𝑅𝑒𝑐𝑣𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡−1
𝑖,𝑗,ℎ,𝑏 ∀ℎ, 𝑏, 𝑖, 𝑗, 𝑡 ∈ 𝑇 \{𝑡0}

(36)

Block relay constraints:

∑
𝑡∈𝑇

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 ≤ 1 ∀𝑖 ∈ 𝑅, ∀ℎ, 𝑏

(37)

𝑏𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑒𝑑𝑏 ≥ 1
𝑁|𝐻| ∑

𝑡∈𝑇
∑
𝑖∈𝑅

∑
ℎ∈𝐻

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 ∀𝑏 ∈ 𝐵 (38)

𝐵𝑙𝑜𝑐𝑘𝑅𝑒𝑙𝑎𝑦𝑡
𝑖,ℎ,𝑏 ≤ 1

𝑀 ∑
𝑗∈𝑅

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑅𝑒𝑠𝑝𝑡−1
𝑖,𝑗,ℎ,𝑏,𝑣 + ∑

𝑗∈𝑅
𝑟𝑒𝑐𝑣𝑑𝐵𝑙𝑘𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑡

𝑖,𝑗,ℎ,𝑏 ∀𝑖 ∈ 𝑅, ℎ, 𝑏, 𝑣, 𝑡

(39)

8.9.2 Example

Fixed values presented in bold.

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑡
𝑖,ℎ,𝑣, for 𝑖 ∈ 𝑅𝑂𝐾 , ℎ = 0, 𝑣 = 0:

i=0 1 1 1 1 1 ...
t 0 1 2 3 4 ...

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣, ℎ = 0:
i=0 1 0 0 ...
i=1 0 1 0 ...
i=2 0 0 1 ...
v 0 1 2 ...

𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑖,ℎ,𝑣, ℎ = 1:
i=0 0 1 0 ...
i=1 0 0 1 ...
i=2 0 0 0 ...
v 0 1 2 ...

𝑆𝑒𝑛𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣, for 𝑖 = 0, ℎ = 0, 𝑏 = 0, 𝑣 = 0:

SendPrepReq(i=0) 0 0 1 0 0 0 0 0 ...
t 0 1 2 3 4 5 6 7 ...

𝑠𝑒𝑛𝑡𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,ℎ,𝑏,𝑣, i=0, ℎ, 𝑏, 𝑣 = 0:

(i=0) 0 0 0 1 1 1 1 1 ...
t 0 1 2 3 4 5 6 7 ...
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𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣, for i=0,j=0, ℎ, 𝑏, 𝑣 = 0:

- 0 0 0 1 1 1 1 1 ...
t 0 1 2 3 4 5 6 7 ...

𝑟𝑒𝑐𝑣𝑑𝑃𝑟𝑒𝑝𝑅𝑒𝑞𝑡
𝑖,𝑗,ℎ,𝑏,𝑣, i=0,j=1, ℎ, 𝑏, 𝑣 = 0:

- 0 0 0 1 1 1 1 1 ...
t 0 1 2 3 4 5 6 7 ...
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