{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [], "source": [ "cd C:\\Users\\micha\\Dropbox\\Catalyst Neuro\\repos\\nwb-jupyter-widgets" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from pynwb import NWBHDF5IO\n", "from nwbwidgets.brains import HumanElectrodesPlotlyWidget\n", "from nwbwidgets.utils.timeseries import get_timeseries_tt\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "from datetime import datetime\n", "from ndx_events import LabeledEvents, AnnotatedEventsTable, Events\n", "\n", "io = NWBHDF5IO(r'C:\\Users\\micha\\Desktop\\Brunton Lab Data\\H5\\subj_01_day_3.nwb', mode='r')\n", "nwb = io.read()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ffeb489c5533482aa5df02ba564f494e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HumanElectrodesPlotlyWidget(children=(FigureWidget({\n", " 'data': [{'color': 'lightgray',\n", " 'hoveri…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "HumanElectrodesPlotlyWidget(nwb.electrodes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n" ] } ], "source": [ "for i, n in enumerate([0]):\n", " print(i, n)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "a = np.array([x for x in range(3)])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "b = np.array([1, 1, 1])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[b == 1]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['x',\n", " 'y',\n", " 'z',\n", " 'imp',\n", " 'location',\n", " 'filtering',\n", " 'group',\n", " 'group_name',\n", " 'standard_deviation',\n", " 'kurtosis',\n", " 'median_deviation',\n", " 'good',\n", " 'low_freq_R2',\n", " 'high_freq_R2']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(nwb.electrodes.colnames)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "array([ True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nwb.electrodes['good'][:]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.bool_" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(nwb.electrodes['good'][0])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "isinstance(nwb.electrodes['x'][0], np.float)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.float64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(nwb.electrodes['z'][0])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }