{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparison of two algorithms\n",
"\n",
"We will see in this notebook how we can compare the prediction accuracy of two algorithms."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from __future__ import (absolute_import, division, print_function, \n",
" unicode_literals) \n",
"import pickle\n",
"import os\n",
"\n",
"import pandas as pd\n",
"\n",
"from surprise import SVD\n",
"from surprise import KNNBasic\n",
"from surprise import Dataset \n",
"from surprise import Reader \n",
"from surprise.model_selection import PredefinedKFold\n",
"from surprise import dump\n",
"from surprise.accuracy import rmse"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing the msd similarity matrix...\n",
"Done computing similarity matrix.\n"
]
}
],
"source": [
"# We will train and test on the u1.base and u1.test files of the movielens-100k dataset.\n",
"# if you haven't already, you need to download the movielens-100k dataset\n",
"# You can do it manually, or by running:\n",
"\n",
"# Dataset.load_builtin('ml-100k')\n",
"\n",
"# Now, let's load the dataset\n",
"train_file = os.path.expanduser('~') + '/.surprise_data/ml-100k/ml-100k/u1.base'\n",
"test_file = os.path.expanduser('~') + '/.surprise_data/ml-100k/ml-100k/u1.test'\n",
"data = Dataset.load_from_folds([(train_file, test_file)], Reader('ml-100k'))\n",
"\n",
"pkf = PredefinedKFold()\n",
"\n",
" \n",
"# We'll use the well-known SVD algorithm and a basic nearest neighbors approach.\n",
"algo_svd = SVD() \n",
"algo_knn = KNNBasic()\n",
"\n",
"for trainset, testset in pkf.split(data): \n",
" algo_svd.fit(trainset) \n",
" predictions_svd = algo_svd.test(testset)\n",
" \n",
" algo_knn.fit(trainset)\n",
" predictions_knn = algo_knn.test(testset)\n",
" \n",
" rmse(predictions_svd)\n",
" rmse(predictions_knn) \n",
" \n",
" dump.dump('./dump_SVD', predictions_svd, algo_svd)\n",
" dump.dump('./dump_KNN', predictions_knn, algo_knn)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# The dumps have been saved and we can now use them whenever we want.\n",
"\n",
"predictions_svd, algo_svd = dump.load('./dump_SVD')\n",
"predictions_knn, algo_knn = dump.load('./dump_KNN')\n",
"\n",
"df_svd = pd.DataFrame(predictions_svd, columns=['uid', 'iid', 'rui', 'est', 'details']) \n",
"df_knn = pd.DataFrame(predictions_knn, columns=['uid', 'iid', 'rui', 'est', 'details']) \n",
"\n",
"df_svd['err'] = abs(df_svd.est - df_svd.rui)\n",
"df_knn['err'] = abs(df_knn.est - df_knn.rui)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now have two dataframes with the all the predictions for each algorithm. The cool thing is that, as both algorithm have been tested on the same testset, the indexes of the two dataframes are the same!"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" uid | \n",
" iid | \n",
" rui | \n",
" est | \n",
" details | \n",
" err | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 184 | \n",
" 67 | \n",
" 3.0 | \n",
" 3.070263 | \n",
" {'was_impossible': False} | \n",
" 0.070263 | \n",
"
\n",
" \n",
" 1 | \n",
" 766 | \n",
" 487 | \n",
" 3.0 | \n",
" 3.797903 | \n",
" {'was_impossible': False} | \n",
" 0.797903 | \n",
"
\n",
" \n",
" 2 | \n",
" 263 | \n",
" 117 | \n",
" 3.0 | \n",
" 3.594508 | \n",
" {'was_impossible': False} | \n",
" 0.594508 | \n",
"
\n",
" \n",
" 3 | \n",
" 545 | \n",
" 168 | \n",
" 4.0 | \n",
" 3.961151 | \n",
" {'was_impossible': False} | \n",
" 0.038849 | \n",
"
\n",
" \n",
" 4 | \n",
" 525 | \n",
" 255 | \n",
" 1.0 | \n",
" 3.306502 | \n",
" {'was_impossible': False} | \n",
" 2.306502 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" uid iid rui est details err\n",
"0 184 67 3.0 3.070263 {'was_impossible': False} 0.070263\n",
"1 766 487 3.0 3.797903 {'was_impossible': False} 0.797903\n",
"2 263 117 3.0 3.594508 {'was_impossible': False} 0.594508\n",
"3 545 168 4.0 3.961151 {'was_impossible': False} 0.038849\n",
"4 525 255 1.0 3.306502 {'was_impossible': False} 2.306502"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_svd.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" uid | \n",
" iid | \n",
" rui | \n",
" est | \n",
" details | \n",
" err | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 184 | \n",
" 67 | \n",
" 3.0 | \n",
" 3.043189 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 0.043189 | \n",
"
\n",
" \n",
" 1 | \n",
" 766 | \n",
" 487 | \n",
" 3.0 | \n",
" 4.139804 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 1.139804 | \n",
"
\n",
" \n",
" 2 | \n",
" 263 | \n",
" 117 | \n",
" 3.0 | \n",
" 3.525691 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 0.525691 | \n",
"
\n",
" \n",
" 3 | \n",
" 545 | \n",
" 168 | \n",
" 4.0 | \n",
" 4.393259 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 0.393259 | \n",
"
\n",
" \n",
" 4 | \n",
" 525 | \n",
" 255 | \n",
" 1.0 | \n",
" 3.638801 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 2.638801 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" uid iid rui est details \\\n",
"0 184 67 3.0 3.043189 {'actual_k': 40, 'was_impossible': False} \n",
"1 766 487 3.0 4.139804 {'actual_k': 40, 'was_impossible': False} \n",
"2 263 117 3.0 3.525691 {'actual_k': 40, 'was_impossible': False} \n",
"3 545 168 4.0 4.393259 {'actual_k': 40, 'was_impossible': False} \n",
"4 525 255 1.0 3.638801 {'actual_k': 40, 'was_impossible': False} \n",
"\n",
" err \n",
"0 0.043189 \n",
"1 1.139804 \n",
"2 0.525691 \n",
"3 0.393259 \n",
"4 2.638801 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_knn.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" uid | \n",
" iid | \n",
" rui | \n",
" est | \n",
" details | \n",
" err | \n",
"
\n",
" \n",
" \n",
" \n",
" 533 | \n",
" 405 | \n",
" 452 | \n",
" 5.0 | \n",
" 2.370203 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 2.629797 | \n",
"
\n",
" \n",
" 1557 | \n",
" 295 | \n",
" 183 | \n",
" 1.0 | \n",
" 4.275709 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 3.275709 | \n",
"
\n",
" \n",
" 4431 | \n",
" 481 | \n",
" 318 | \n",
" 1.0 | \n",
" 4.855612 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 3.855612 | \n",
"
\n",
" \n",
" 6579 | \n",
" 405 | \n",
" 1218 | \n",
" 5.0 | \n",
" 3.329299 | \n",
" {'actual_k': 21, 'was_impossible': False} | \n",
" 1.670701 | \n",
"
\n",
" \n",
" 10032 | \n",
" 239 | \n",
" 514 | \n",
" 1.0 | \n",
" 4.250013 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 3.250013 | \n",
"
\n",
" \n",
" 14311 | \n",
" 425 | \n",
" 313 | \n",
" 1.0 | \n",
" 4.093898 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 3.093898 | \n",
"
\n",
" \n",
" 15979 | \n",
" 405 | \n",
" 1053 | \n",
" 5.0 | \n",
" 3.497124 | \n",
" {'actual_k': 17, 'was_impossible': False} | \n",
" 1.502876 | \n",
"
\n",
" \n",
" 19292 | \n",
" 1 | \n",
" 131 | \n",
" 1.0 | \n",
" 3.779858 | \n",
" {'actual_k': 40, 'was_impossible': False} | \n",
" 2.779858 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" uid iid rui est details \\\n",
"533 405 452 5.0 2.370203 {'actual_k': 40, 'was_impossible': False} \n",
"1557 295 183 1.0 4.275709 {'actual_k': 40, 'was_impossible': False} \n",
"4431 481 318 1.0 4.855612 {'actual_k': 40, 'was_impossible': False} \n",
"6579 405 1218 5.0 3.329299 {'actual_k': 21, 'was_impossible': False} \n",
"10032 239 514 1.0 4.250013 {'actual_k': 40, 'was_impossible': False} \n",
"14311 425 313 1.0 4.093898 {'actual_k': 40, 'was_impossible': False} \n",
"15979 405 1053 5.0 3.497124 {'actual_k': 17, 'was_impossible': False} \n",
"19292 1 131 1.0 3.779858 {'actual_k': 40, 'was_impossible': False} \n",
"\n",
" err \n",
"533 2.629797 \n",
"1557 3.275709 \n",
"4431 3.855612 \n",
"6579 1.670701 \n",
"10032 3.250013 \n",
"14311 3.093898 \n",
"15979 1.502876 \n",
"19292 2.779858 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Let's check how good are the KNN predictions when the SVD has a huge error:\n",
"df_knn[df_svd.err >= 3.5]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" uid | \n",
" iid | \n",
" rui | \n",
" est | \n",
" details | \n",
" err | \n",
"
\n",
" \n",
" \n",
" \n",
" 14619 | \n",
" 771 | \n",
" 98 | \n",
" 1.0 | \n",
" 4.153106 | \n",
" {'was_impossible': False} | \n",
" 3.153106 | \n",
"
\n",
" \n",
" 1557 | \n",
" 295 | \n",
" 183 | \n",
" 1.0 | \n",
" 4.632378 | \n",
" {'was_impossible': False} | \n",
" 3.632378 | \n",
"
\n",
" \n",
" 11759 | \n",
" 405 | \n",
" 1405 | \n",
" 1.0 | \n",
" 1.915805 | \n",
" {'was_impossible': False} | \n",
" 0.915805 | \n",
"
\n",
" \n",
" 4493 | \n",
" 181 | \n",
" 1242 | \n",
" 1.0 | \n",
" 2.277950 | \n",
" {'was_impossible': False} | \n",
" 1.277950 | \n",
"
\n",
" \n",
" 10970 | \n",
" 279 | \n",
" 1242 | \n",
" 1.0 | \n",
" 3.515677 | \n",
" {'was_impossible': False} | \n",
" 2.515677 | \n",
"
\n",
" \n",
" 2657 | \n",
" 239 | \n",
" 318 | \n",
" 1.0 | \n",
" 4.144616 | \n",
" {'was_impossible': False} | \n",
" 3.144616 | \n",
"
\n",
" \n",
" 4431 | \n",
" 481 | \n",
" 318 | \n",
" 1.0 | \n",
" 4.580412 | \n",
" {'was_impossible': False} | \n",
" 3.580412 | \n",
"
\n",
" \n",
" 12838 | \n",
" 167 | \n",
" 1306 | \n",
" 5.0 | \n",
" 3.136852 | \n",
" {'was_impossible': False} | \n",
" 1.863148 | \n",
"
\n",
" \n",
" 16681 | \n",
" 288 | \n",
" 1358 | \n",
" 5.0 | \n",
" 3.253280 | \n",
" {'was_impossible': False} | \n",
" 1.746720 | \n",
"
\n",
" \n",
" 12869 | \n",
" 363 | \n",
" 1512 | \n",
" 1.0 | \n",
" 3.425335 | \n",
" {'was_impossible': False} | \n",
" 2.425335 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" uid iid rui est details err\n",
"14619 771 98 1.0 4.153106 {'was_impossible': False} 3.153106\n",
"1557 295 183 1.0 4.632378 {'was_impossible': False} 3.632378\n",
"11759 405 1405 1.0 1.915805 {'was_impossible': False} 0.915805\n",
"4493 181 1242 1.0 2.277950 {'was_impossible': False} 1.277950\n",
"10970 279 1242 1.0 3.515677 {'was_impossible': False} 2.515677\n",
"2657 239 318 1.0 4.144616 {'was_impossible': False} 3.144616\n",
"4431 481 318 1.0 4.580412 {'was_impossible': False} 3.580412\n",
"12838 167 1306 5.0 3.136852 {'was_impossible': False} 1.863148\n",
"16681 288 1358 5.0 3.253280 {'was_impossible': False} 1.746720\n",
"12869 363 1512 1.0 3.425335 {'was_impossible': False} 2.425335"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Well... Not much better.\n",
"# Now, let's look at the predictions of SVD on the 10 worst predictions for KNN\n",
"df_svd.iloc[df_knn.sort_values(by='err')[-10:].index]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '');\n",
" var titletext = $(\n",
" '');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('');\n",
"\n",
" var fmt_picker = $('');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option);\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from https://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * https://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('');\n",
" var button = $('');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# How different are the predictions from both algorithms ?\n",
"# Let's count the number of predictions for each rating value\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"%matplotlib notebook\n",
"matplotlib.style.use('ggplot')\n",
"\n",
"figure, (ax1, ax2) = plt.subplots(1, 2)\n",
"\n",
"df_svd.est.plot(kind='hist', title='SVD', ax=ax1)\n",
"df_knn.est.plot(kind='hist', title='KNN', ax=ax2)\n",
"\n",
"# As expected, one of the drawbacks of the NN algorithms is that their predictions are often\n",
"# quite concentrated around the mean. The SVD algorithm seems more confortable predicting extreme rating values."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(nan, nan)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Question: when a user has rated only a small number of items (less than 10), which algorithm\n",
"# gives the best predictions on average?\n",
"\n",
"def get_Iu(uid):\n",
" \"\"\"Return the number of items rated by given user\n",
" \n",
" Args:\n",
" uid: The raw id of the user.\n",
" Returns:\n",
" The number of items rated by the user.\n",
" \"\"\"\n",
" \n",
" try:\n",
" return len(trainset.ur[trainset.to_inner_uid(uid)])\n",
" except ValueError: # user was not part of the trainset\n",
" return 0\n",
" \n",
"df_knn['Iu'] = df_knn.uid.apply(get_Iu)\n",
"df_svd['Iu'] = df_svd.uid.apply(get_Iu)\n",
"\n",
"df_knn[df_knn.Iu < 10].err.mean(), df_svd[df_svd.Iu < 10].err.mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}