{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x6fHsAFVmRE3",
"outputId": "3002166c-a362-4b1a-f967-cde24d8f8c5b"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"id": "x6fHsAFVmRE3"
},
{
"cell_type": "markdown",
"id": "93d1fd16-451e-455e-a30d-5e709cfde046",
"metadata": {
"id": "93d1fd16-451e-455e-a30d-5e709cfde046"
},
"source": [
"# Energy Visualization Chart\n",
"\n",
"**Datascience Analysis Workflow Demonstration:**\n",
" * Using Panadas `DataFrame` library to import excel sheets \n",
" * Transform & Manipulate data to uncover insight using pythob \n",
" * Plot, visualize data using Plotly-Dash, Matplotlib, Seaborn \n",
" * Interactive Hosted Dashboard for sharing with interal team and external clients"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c6fe58c1-6b40-4856-bf48-048bc45809e2",
"metadata": {
"id": "c6fe58c1-6b40-4856-bf48-048bc45809e2"
},
"outputs": [],
"source": [
"!pip install plotly-express -q"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6a00afef-f829-4e13-bc1e-8a81083fe3b6",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "6a00afef-f829-4e13-bc1e-8a81083fe3b6",
"outputId": "6e48573f-6721-48b8-c8c3-42df8065d8c9"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HDH kW CDH kW.3\n",
"0 20.5 125.61 2.5 69.18\n",
"1 20.7 129.51 3.3 60.48\n",
"2 21.2 119.70 3.7 60.90\n",
"3 21.4 120.51 4.5 66.24\n",
"4 21.8 116.28 4.7 64.71\n",
"... ... ... ... ...\n",
"6606 26.6 212.16 NaN NaN\n",
"6607 26.8 206.37 NaN NaN\n",
"6608 26.6 197.10 NaN NaN\n",
"6609 26.4 194.61 NaN NaN\n",
"6610 26.2 191.28 NaN NaN\n",
"\n",
"[6611 rows x 4 columns]"
],
"text/html": [
"\n",
"
| \n", " | HDH | \n", "kW | \n", "CDH | \n", "kW.3 | \n", "
|---|---|---|---|---|
| 0 | \n", "20.5 | \n", "125.61 | \n", "2.5 | \n", "69.18 | \n", "
| 1 | \n", "20.7 | \n", "129.51 | \n", "3.3 | \n", "60.48 | \n", "
| 2 | \n", "21.2 | \n", "119.70 | \n", "3.7 | \n", "60.90 | \n", "
| 3 | \n", "21.4 | \n", "120.51 | \n", "4.5 | \n", "66.24 | \n", "
| 4 | \n", "21.8 | \n", "116.28 | \n", "4.7 | \n", "64.71 | \n", "
| ... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
| 6606 | \n", "26.6 | \n", "212.16 | \n", "NaN | \n", "NaN | \n", "
| 6607 | \n", "26.8 | \n", "206.37 | \n", "NaN | \n", "NaN | \n", "
| 6608 | \n", "26.6 | \n", "197.10 | \n", "NaN | \n", "NaN | \n", "
| 6609 | \n", "26.4 | \n", "194.61 | \n", "NaN | \n", "NaN | \n", "
| 6610 | \n", "26.2 | \n", "191.28 | \n", "NaN | \n", "NaN | \n", "
6611 rows × 4 columns
\n", "| \n", " | Hour | \n", "kW | \n", "Temp (°C) | \n", "size | \n", "
|---|---|---|---|---|
| 0 | \n", "20 | \n", "123.69 | \n", "5.8 | \n", "0.001 | \n", "
| 1 | \n", "21 | \n", "120.99 | \n", "6.1 | \n", "0.001 | \n", "
| 2 | \n", "16 | \n", "134.19 | \n", "5.0 | \n", "0.001 | \n", "
| 3 | \n", "15 | \n", "102.24 | \n", "5.3 | \n", "0.001 | \n", "
| 4 | \n", "16 | \n", "102.69 | \n", "5.3 | \n", "0.001 | \n", "
| ... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
| 1939 | \n", "1 | \n", "127.20 | \n", "5.2 | \n", "0.001 | \n", "
| 1940 | \n", "2 | \n", "120.24 | \n", "5.7 | \n", "0.001 | \n", "
| 1941 | \n", "3 | \n", "119.61 | \n", "5.5 | \n", "0.001 | \n", "
| 1942 | \n", "4 | \n", "116.64 | \n", "5.1 | \n", "0.001 | \n", "
| 1943 | \n", "5 | \n", "122.34 | \n", "5.5 | \n", "0.001 | \n", "
1944 rows × 4 columns
\n", "