
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339149832

Krestianstvo Luminary: Decentralized Virtual Time for Croquet architecture

Conference Paper · October 2019

DOI: 10.13140/RG.2.2.29073.79207

CITATIONS

0
READS

23

1 author:

Some of the authors of this publication are also working on these related projects:

LiveCoding.space View project

Nikolai Suslov

5 PUBLICATIONS 6 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nikolai Suslov on 10 February 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/339149832_Krestianstvo_Luminary_Decentralized_Virtual_Time_for_Croquet_architecture?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/339149832_Krestianstvo_Luminary_Decentralized_Virtual_Time_for_Croquet_architecture?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LiveCodingspace?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolai_Suslov2?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolai_Suslov2?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolai_Suslov2?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolai_Suslov2?enrichId=rgreq-b22029169e576a6740c419f75e034563-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE0OTgzMjtBUzo4NTcxMTQ5MDU5NDgxNjBAMTU4MTM2MzUyNjA1NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Krestianstvo Luminary:

Decentralized Virtual Time for Croquet architecture

Nikolai Suslov
 Fund for Supporting

Development of RT,

Vologda, Russia

 SuslovNV@krestianstvo.org

ABSTRACT

Croquet architecture is known by its radical

synchronization system with notion of virtual time. It

allows multiple peers to run computations together within a

single shared distributed environment, and it guarantees

that this distributed environment will remain bit-identical

for every peer. Croquet architecture is ideal for developing

collaborative serverless apps and running them on

decentralized networks. But a tiny stateless server named

Reflector, on which Croquet heavily relays on, still

prevents doing that today. Reflector server is used for

heartbeat, time stamping of messages, that are passing

through it, and application's state snapshotting.

This paper presents the research, that transforms the only

server related Croquet’s part - Reflector into the peer-to-

peer application, running just on a clients. Thus, making

Croquet’s Virtual Time to be fully decentralized, where

timestamping of messages will be doing by clients

themselves. The prototype described in the paper is

developed in https://LiveCoding.space - Krestianstvo SDK,

based on Open Source version of Croquet - Virtual World

Framework. Krestianstvo Luminary identically replaces

Croquet Reflector server in flavor of using offline-first Gun

DB pure distributed storage system, that combines

timestamps, vector clocks, and a conflict resolution

algorithm. Deploying itself on peer’s Web Browsers

connected through Gun DB’s Daisy-chain Ad-hoc Mesh-

network for swapping in different transport layers: Web

Sockets, WebRTC, etc. even on AXE blockchain.

CCS CONCEPTS

• Theory of computation~Distributed computing models •

Computing methodologies~Distributed programming

languages • Software and its engineering~Virtual worlds

software • Human-centered computing~Collaborative and

social computing

KEYWORDS

decentralized architecture, virtual worlds software,

collaborative web applications

ACM Reference format:

Nikolai Suslov. 2019. Krestianstvo Luminary: Decentralized Virtual Time
for Croquet architecture. In Proceedings of SPLASH conference

(AGERE’19). ACM

1 Virtual Time in Open Croquet architecture

Croquet introduced its own architecture, that allows anyone

to create massively scaled decentralized collaborative

applications [1]. Croquet radically differs from well-known

p2p and client-server architectures, but unfortunately, it

still has a tiny server - Reflector, for timestamping and

heartbeat. All available versions of Croquet from Smalltalk

to JavaScript (including the latest Croquet V by

https://croquet.studio) are using such Reflector servers [2].

For those who are not familiar with Open Croquet

architecture, just want to mark key principals behind it.

Croquet introduced the notion of Virtual Time: looking on

objects as stream of messages, which leads to deterministic

computations on every connected node in decentralized

network. All computations are done on every node by

themselves while interpreting an internal queue of

messages, which are not replicated to the network. But

these queues are synchronized by an external heartbeat

messages coming from Reflector - a tiny server. Also any

node’s self-generated messages, which should be

distributed to other nodes are marked as external. They are

Work in Progress presented at AGERE’19, October 22, 2019, Athens, Greece

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

AGERE’19, October 22, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s).

https://doi.org/10.1145/1234567890

https://livecoding.space/
https://croquet.studio/
https://2019.splashcon.org/details/agere/5/Krestianstvo-Luminary-Decentralized-Virtual-Time-for-Croquet-architecture

AGERE’19, October 22, 2019, Athens, Greece N. Suslov

2

explicitly routed to the Reflector, where are stamped with

the Reflector’s time now and are returned back to the node

itself and all other nodes on the network.

Moreover, Reflector is not only used for sending

heartbeat messages, stamping/reflecting external messages,

but is also used for holding a list of connected clients, a list

of running virtual world instances and for bootstrapping the

new client connections, storing application snapshots,

Figure 1.

Figure 1: Croquet with Reflector server

In Croquet architecture for decentralized networks, the

Reflector while being a very tiny or even being a micro

service - it remains a server. It uses Web Sockets for that

purposes.

Let’s look how it is implemented in Virtual World

Framework (VWF) - an Open Source version of Croquet

[3]. Here is a function returning Time Now by a Reflector.

Time is getting from a machine, hosting a Reflector server

(server-side code from lib/reflector.js):

function GetNow() {

 return new Date().getTime() / 1000.0;

}

Then this function is used to make a timestamp for a virtual

world instance:

return (GetNow() - this.start_time) * this.rate

Reflector stamps messages, that passed through it and

sends them back to the clients by using Web Sockets. On a

client side, VWF implements a method for dispatching the

received messages (client-side code from public/vwf.js):

socket.on("message", function(message) {

 let fields = message;

 fields.time = Number(fields.time);

 fields.origin = "reflector";

 queue.insert(fields, !fields.action)

}

Clients use Web Sockets to send external messages back to

the Reflector for timestamping:

 var message = JSON.stringify(fields);

 socket.send(message);

2 Introducing Decentralized Virtual Time

Now, let’s look at how Krestianstvo Luminary could

identically replace the Reflector server in Croquet

architecture by introducing the notion of Decentralized

Virtual Time, Figure 2.

Figure 2: Croquet with Krestianstvo Luminary

Krestianstvo Luminary is replacing Reflector server in

flavor of using offline-first Gun DB pure distributed

storage system. That allows instead of ‘Reflecting’

messages with centralized Croquet’s time now, depending

on Server’s Machine time, to ‘Shining’ time on every

connected node using Gun’s Hypothetical Amnesia

Machine, running on decentralized peer-to-peer Web.

In Krestianstvo Luminary clients are never forced to use

Web Sockets directly from the application itself for sending

or receiving messages. Instead Gun DB responds for that

functionality internally. All operations which previously

relay on Web Socket connection are replaced with

subscribing to updates happening on a Gun DB nodes and

Krestianstvo Luminary: Decentralized Virtual Time for Croquet

architecture
AGERE’19, October 22, 2019, Athens, Greece

 3

properties, accordingly to Functional Reactive

programming. So, worlds instances, clients are becoming

just a Gun DB nodes, that are available to all connected

peers. Finally, the required by Croquet a Reflector’s

application logic is moving from the server to the peers.

Now every client on any moment of time could get actual

information about world’s instance, it is connected to,

amount of clients on that instance, etc. Doing that just by

subscribing to a corresponding node on Gun DB.

Instead of using server machine’s time,

new Date().getTime()

Krestianstvo Luminary uses the state from

Gun’s Hypothetical Amnesia Machine:

Gun.state.is (node, property)

For calculation of the machine state, Gun DB HAM

combines timestamps, vector clocks, and a conflict

resolution algorithm. So, every written property on a Gun’s

node stamped with HAM. This state is identical for all

peers. That means, that we could get a state just on any

client. Taking into consideration, that Gun DB guarantees

that, every change on every node or property will be

delivered in right order to all peers [4].

Let’s see how we could make a heartbeat node and

subscribe peers to its updates. Here is the code for creating

a simple heartbeat for VWF:

Gun.chain.heartbeat = function (time, rate) {

 // our gun instance

 var gun = this;

 gun.put({

 'start_time': time,

 'rate': 1

 }).once(function (res) {

 // function to start the timer

 setInterval(function () {

 let message = {

 parameters: [],

 time: 'tick'

 };

 gun.get('tick').put(JSON.stringify(message));

 }, 50);

 })

 return gun;

}

Client, which start firstly or create a new virtual world

instance could create a heartbeat node for that instance and

run a metronome (that part could be run on Gun DB

instance somewhere on network for anytime availability):

let instance = _LCSDB.get(vwf.namespace_); //

instance.get('heartbeat').put({ tick: "{}" }).heartbeat(0, 1);

So, every 50 ms, this client will writes to the property

‘tick’ the message content, thus changing it, so Gun HAM

will move forward the state for this property, stamping it

with the new unique value, from which the Croquet time

will be calculated later. The start time will be the state

value of HAM at ‘start_time’ property of heartbeat node.

Please notice, that actual Croquet timestamp is not

calculated here, as it was in Reflector server. The

timestamp used for the Croquet internal queue of messages

will be calculated on reading of the ‘tick’ by the VWF

client in its main application.

Here is the simplified core version of dispatching ‘tick’

on VWF client main app, just to get the idea (full code

on public/vwf.js):

instance.get('heartbeat').on(function (res) {

 let fields = self.stamp(res);

 queue.insert(fields, !fields.action);

}

this.stamp = function(source) {

 let message = JSON.parse(source.tick);

 message.state = Gun.state.is(source, 'tick');

 message.start_time = Gun.state.is(source, 'start_time');

 message.rate = source.rate;

 let time = (message.state - message.start_time)*message.rate/1000;

 message.time = Number(time);

 message.origin = “reflector";

 return message

 }

The main point here is the calculation of Croquet time

using Gun’s HAM state. Time for updating tick is getting

from the HAM state on ‘tick’ property. The start time of

the world instance heartbeat is getting from the HAM state

stamp on ‘start_time’ property. These stamps are identical

for all connected peers, that is guaranteed by Gun DB.

Then the actual Croquet time is calculated. All calculations

are done by every peer by themselves, no server involved

in.

AGERE’19, October 22, 2019, Athens, Greece N. Suslov

4

So, all peers will calculate exactly the same Croquet time

on getting an update from Gun DB, regardless of the time

when they get this update (network delays, etc.).

Sending external messages will be as simple as just

writing the message by any peer to a world instance

heartbeat with a new message’s content:

instance.get('heartbeat').get('tick').put(JSON.stringify(newMsg));

Being subscribed to the 'heartbeat' node, all connected

peers and a peer itself will get that message, stamped with

an identical Croquet virtual time.

3 Conclusions

Table 1: Comparison table of Virtual Time and Decentralized

Virtual Time implementation internals

Croquet

Reflector

Krestianstvo

Luminary

Architecture: Client-Server Peer-to-Peer

Croquet time

stamp:

on server on peer

Time now is: server machine’s time GunDB HAM state

source

code

new Date().getTime() Gun.state.is (n, p)

Heartbeat

messages:

by server by selected peer

Reflector app

logic:

on server on peer

Hosting: dedicated server peer’s Web Browsers

Security: by server by P2P identities

Let’s summarize, what Krestianstvo Luminary brings to

Croquet architecture in Table 1.

1. Reflector server is no longer required for running

virtual worlds (any existed Gun DB instance on a

network fits, could know nothing about Croquet and

clients)

2. Clients, world instances, connecting logic are hold by a

decentralized DB

3. Timestamping of the messages are doing by clients

themselves using Gun’s HAM

4. One dedicated peer is selected to produce a metronome

empty messages for moving time forward (could be

anywhere and movable)

Gun DB storage system allows to deploy Krestianstvo

Luminary and Croquet applications just on peer’s Web

Browsers connected through Daisy-chain Ad-hoc Mesh-

network suited for swapping in different transport layers:

Web Sockets, WebRTC, etc. That makes Croquet

architecture compatible with novel Decentralized Web

standards and technologies.

For building the prototype of Krestianstvo Luminary,

the open source code of https://LiveCoding.space was used.

It is a collaborative, live programming environment based

on tight integration of A-Frame, Croquet (VWF), Cell.js,

Gun DB storage system and Ohm language [5]. It provides

all-in-one solution for development of collaborative

applications for Web XR. Besides replacing Reflector

server in LiveCoding.space prototype, Krestiasntvo

Luminary has shown a lot of other perspectives. So, all

advantages that Gun DB provides, could be applicable

inside an applications, that relays on Croquet Architecture.

One of the scenarios could be the use of Gun’s HAM Time

Graph. That will allow to store and retrieve the history of

messages for recording and replaying later. Using SEA

Security, Encryption, & Authorization library, will allow to

create a highly secure instance’s heartbeats using peer-to-

peer identifies and being deployed anywhere, anytime

available on AXE blockchain.

ACKNOWLEDGMENTS

I would like to express thanks for the valuable insights that Victor

Suslov, Sergey Serkov and to all others, who have helped in the

realization of the prototype, described in this paper.

REFERENCES
[1] D. A. Smith, A. Kay, A. Raab and D. P. Reed, 2003, Croquet — A

Collaboration System Architecture. In Proceedings of the First Conference on

Creating, Connecting, and Collaborating through Computing (C5’ 03), pages 2–

9. IEEE CS.

[2] D. A. Smith et al., Croquet V SDK documentation, Retrieved August 15, 2019

from https://croquet.studio

[3] N. Suslov, 2014, Virtual World Framework & OMeta: collaborative

programming of distributed objects with user defined languages. The Future

Programming Workshop at SPLASH 2014, Portland, Oregon, USA, video

demo screencast http://vimeo.com/97713576

[4] M. Nadal, Gun DB documentation, Retrieved August 15, 2019 from

https://gun.eco/docs/

[5] N. Suslov, 2019, LiveCoding.space: Towards P2P Collaborative Live

Programming Environment for WebXR. In Proceedings of the Fourth

International Conference on Live Coding (ICLC 2019), Medialab Prado,

Madrid, Spain, http://iclc.livecodenetwork.org/2019/papers/paper133.pdf

View publication statsView publication stats

https://croquet.studio/
http://vimeo.com/97713576
https://www.researchgate.net/publication/339149832

