{
"cells": [
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"from statsforecast import StatsForecast\n",
"from statsforecast.models import AutoARIMA, AutoETS, AutoCES, AutoTheta, Naive, SeasonalNaive\n",
"from utilsforecast.plotting import plot_series\n",
"from utilsforecast.evaluation import evaluate\n",
"from utilsforecast.losses import mae, rmse, smape, mase\n",
"\n",
"from utils import plot_metric_bar_multi, evaluate_cv, get_best_model_forecast"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1) Load Data"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Load in M4 dataset\n",
"Y_train_df = pd.read_csv('https://auto-arima-results.s3.amazonaws.com/M4-Hourly.csv')\n",
"Y_test_df = pd.read_csv('https://auto-arima-results.s3.amazonaws.com/M4-Hourly-test.csv')\n",
"Y_train_df['ds'] = pd.to_datetime('2024-01-01') + pd.to_timedelta(Y_train_df['ds'], unit='h')\n",
"Y_test_df['ds'] = pd.to_datetime('2024-01-01') + pd.to_timedelta(Y_test_df['ds'], unit='h')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# randomly select 8 series\n",
"n_series = 8\n",
"uids = Y_train_df['unique_id'].drop_duplicates().sample(8, random_state=23).values\n",
"df_train = Y_train_df.query('unique_id in @uids')\n",
"df_test = Y_test_df.query('unique_id in @uids')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Define Error Metrics\n",
"from functools import partial\n",
"hourly_mase = partial(mase, seasonality=24)\n",
"metrics = [hourly_mase, rmse, smape]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"fig = plot_series(df_train, df_test.rename(columns={\"y\": \"actual\"}), max_ids=4)\n",
"fig.savefig('/Users/khuyentran/nixtla_blog/images/statsforecast-automatic-model-selection/selected-series.svg', format='svg', bbox_inches='tight')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2) Baseline: Naive & SeasonalNaive\n",
"Before diving into more sophisticated models, we begin with two classical and interpretable statistical baselines:\n",
"\n",
"**Naive model**: always predicts the last observed value.\n",
"\n",
"**SeasonalNaive model**: predicts that each point will repeat the value observed one season ago (e.g.,the same hour yesterday for hourly data)."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/utilsforecast/processing.py:384: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.\n",
" freq = pd.tseries.frequencies.to_offset(freq)\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/utilsforecast/processing.py:440: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.\n",
" freq = pd.tseries.frequencies.to_offset(freq)\n"
]
}
],
"source": [
"# Use Naive and SeasonalNaive model as a baseline\n",
"sf_base = StatsForecast(\n",
" models=[Naive(), SeasonalNaive(season_length=24)], \n",
" freq='H', \n",
" n_jobs=-1\n",
" )\n",
"\n",
"# Make baseline prediction \n",
"fcst_base = sf_base.forecast(df = df_train, h = 48)\n",
"\n",
"# Evaluate with test dataset\n",
"eval_base = df_test.merge(fcst_base, on = ['unique_id', 'ds'])"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"# Plotting the baseline result\n",
"fig = plot_series(df_train, eval_base, max_ids=4, max_insample_length=5*24)\n",
"fig.savefig('/Users/khuyentran/nixtla_blog/images/statsforecast-automatic-model-selection/baseline-forecasts.svg', format='svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Naive
\n",
"
SeasonalNaive
\n",
"
\n",
"
\n",
"
metric
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
mase
\n",
"
8.029174
\n",
"
0.993421
\n",
"
\n",
"
\n",
"
rmse
\n",
"
179.520049
\n",
"
66.529088
\n",
"
\n",
"
\n",
"
smape
\n",
"
0.252074
\n",
"
0.065754
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Naive SeasonalNaive\n",
"metric \n",
"mase 8.029174 0.993421\n",
"rmse 179.520049 66.529088\n",
"smape 0.252074 0.065754"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Evaluate performance \n",
"metrics_base = evaluate(\n",
" df=eval_base,\n",
" train_df = df_train,\n",
" metrics=metrics,\n",
" agg_fn='mean',\n",
").set_index('metric')\n",
"metrics_base"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3) StatsForecast Models\n",
"After establishing the baselines, we now move on to a set of classical statistical forecasting models implemented efficiently in StatsForecast. These models automatically estimate optimal parameters for each series.\n",
"\n",
"**AutoARIMA**: Captures autocorrelation patterns and adjusts for both trend and seasonality through differencing and autoregressive components.\n",
"\n",
"**AutoETS**: Exponential smoothing model that automatically selects additive or multiplicative trend/seasonal components. Excellent for smooth, structured data.\n",
"\n",
"**AutoCES**: Complex Exponential Smoothing, which extends ETS by modeling cyclical components in a more flexible way.\n",
"\n",
"**AutoTheta**: A robust, fast method derived from the Theta forecasting model\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# Define models\n",
"models = [\n",
" AutoARIMA(season_length=24), # With seasonality set as 24 for hourly data\n",
" AutoETS(season_length=24),\n",
" AutoCES(season_length=24),\n",
" AutoTheta(season_length=24)\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/utilsforecast/processing.py:384: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.\n",
" freq = pd.tseries.frequencies.to_offset(freq)\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/utilsforecast/processing.py:440: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.\n",
" freq = pd.tseries.frequencies.to_offset(freq)\n"
]
}
],
"source": [
"# Initialize statsforecast \n",
"sf = StatsForecast(\n",
" models=models, \n",
" freq='H', \n",
" n_jobs=-1\n",
" )\n",
"\n",
"# Autofit the stats models and make prediction all in one step.\n",
"fcst_sf_models = sf.forecast(df = df_train, h = 48, level=[90])\n",
"\n",
"# Evaluate with test dataset\n",
"eval_sf_models = df_test.merge(fcst_sf_models, on = ['unique_id', 'ds'])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"# Plot the result\n",
"fig = plot_series(df_train, eval_sf_models, max_ids=4, max_insample_length=5*24)\n",
"fig.savefig('/Users/khuyentran/nixtla_blog/images/statsforecast-automatic-model-selection/statsforecast-predictions.svg', format='svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plot_metric_bar_multi(dfs = [metrics_sf_models, metrics_base], metric='mase')\n",
"fig.savefig('/Users/khuyentran/nixtla_blog/images/statsforecast-automatic-model-selection/model-comparison-bar-chart.svg', format='svg', bbox_inches='tight')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4) Cross-Validation with a Rolling Window\n",
"In this section, we use rolling-origin cross-validation to select the best model for each time series. Nixtla’s implementation of cross-validation ensures the temporal order is respected, avoiding data leakage and producing a more stable and streamlined evaluation process.\n",
"\n",
"**How it works:** \n",
"1. Start with an initial training window and forecast the next *h* steps. \n",
"2. Slide the window forward by *step_size* and repeat. \n",
"3. Compute error metrics for each window and model. \n",
"4. Select the model with the **lowest average error** for each series.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n",
"/Users/khuyentran/nixtla_blog/.venv/lib/python3.11/site-packages/fs/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n",
" __import__(\"pkg_resources\").declare_namespace(__name__) # type: ignore\n"
]
}
],
"source": [
"# Run cross-validation with 2 rolling windows of 24 steps each\n",
"cv_df = sf.cross_validation(\n",
" df=df_train,\n",
" h=24, # forecast horizon\n",
" step_size=24, # roll the window forward by 24 steps each time\n",
" n_windows=2 # number of evaluation windows\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
best_statsforecast_model
\n",
"
count
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
AutoARIMA
\n",
"
3
\n",
"
\n",
"
\n",
"
1
\n",
"
AutoETS
\n",
"
2
\n",
"
\n",
"
\n",
"
2
\n",
"
AutoTheta
\n",
"
2
\n",
"
\n",
"
\n",
"
3
\n",
"
CES
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" best_statsforecast_model count\n",
"0 AutoARIMA 3\n",
"1 AutoETS 2\n",
"2 AutoTheta 2\n",
"3 CES 1"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Evaluate model performance using MSE across cross-validation windows\n",
"evaluation_df = evaluate_cv(cv_df, mae)\n",
"\n",
"# Count how many times each model was selected as best\n",
"evaluation_df['best_statsforecast_model'].value_counts().to_frame().reset_index()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After selecting the best model for each series, we visualize the final forecasts alongside the actual test data.\n",
"\n",
"Here, the 90% **prediction interval** (shown as the shaded band) provides an estimate of forecast uncertainty\n",
"reflecting how much variation we can expect in future observations based on past residuals."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"# Extract the forecasts from the best-performing model for each series\n",
"best_fcst_sf = get_best_model_forecast(fcst_sf_models, evaluation_df)\n",
"eval_best_sf = df_test.merge(best_fcst_sf, on = ['unique_id', 'ds'])\n",
"\n",
"# Plot forecasts with 90% interval\n",
"fig = plot_series(df_train, eval_best_sf, level=[90], max_insample_length=5*24, max_ids=4)\n",
"fig.savefig('/Users/khuyentran/nixtla_blog/images/statsforecast-automatic-model-selection/best-model-forecasts.svg', format='svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB4oAAAFpCAYAAABqG6V/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4k2UXBuCnSfemi5YOVtl7ywZFhiCiiFtAREVBRf3de0/c4kLBgQNQBAUFZMpQ9t6UlpbuvZv5X+dNUwvS0p20fW6uXE2bNPkySb/nPec4mM1mM4iIiIiIiIiIiIiIiIiIqNHQ2HoDiIiIiIiIiIiIiIiIiIiobjEoJiIiIiIiIiIiIiIiIiJqZBgUExERERERERERERERERE1MgyKiYiIiIiIiIiIiIiIiIgaGQbFRERERERERERERERERESNDINiIiIiIiIiIiIiIiIiIqJGhkExEREREREREREREREREVEjw6CYiIiIiIiIiIiIiIiIiKiRYVBMRERERERERERERERERNTIMCgmIiIiIqJasWDBAjg4OCA6Ohr1gWynbK9s98VMnToVLVq0qJPtIiIiIiIiIiKqDQyKiYiIiIiIbBxOv/XWWxc8/bnnnlOnp6amlvzs559/xvXXX49WrVrB3d0d7dq1w0MPPYTMzMz//L6E2fL75x9mzJhRq7eLiIiIiIiIiOyfo603gIiIiIiIGqZbb70VN9xwA1xcXFAfNG/eHAUFBXBycoI9u/POO9GsWTPccsstiIiIwIEDB/Dhhx9i5cqV2L17N9zc3M45f/fu3VWQXFrbtm3reKuJiIiIiIiIyN4wKCYiIiIiolqh1WrVob6QSltXV1fYuyVLlmDYsGHn/KxXr16YMmUKFi5ciOnTp59zWmhoqAqViYiIiIiIiIhKY+tpIiIiIiIqd+6utf2xlRyfNWsWfvnlF3Tu3FlVDHfq1Al//PHHRWcUm81mvPTSSwgLC1Ntk4cPH45Dhw6p65XrL+s6y7tM8fvvv2Pw4MHw8PCAl5cXxo4dqy63JmYUW2+nhMjydenSpbCl80NicfXVV6uvR44cueDv6HQ65OXl1fq2EREREREREVH9wYpiIiIiIiKqtM2bN6tZuffcc48KZt9//31MnDgRZ86cgb+/f5m/98wzz6ig+IorrlAHaZU8cuRIFWRW1TfffKOqaUeNGoXXX38d+fn5+PjjjzFo0CDs2bPnguF3Ra1evVrdro4dO+LVV19FWloabrvtNhV0ny8jIwNGo/GilykBuRxKk20uPYe49M8rIjExUX0NCAj4z2nr1q1T1yfbJu21H3jgAdx///0VulwiIiIiIiIiargYFBMRERERUaVJ5erhw4fRunVr9b1UBnfr1g3ff/+9qja+kJSUFLzxxhuq2vfXX38tqRh+8skn8corr1RpO3Jzc3HfffepdsufffZZyc8lOG7Xrp263NI/r6xHH30UTZs2VcG4j4+P+tnQoUNVuC2ha2k9evRATEzMRS/z2WefVRXT5/9MDlUlAbm0+b722mvP+XnXrl1VYC73hYTcUi09e/ZsxMfHq98hIiIiIiIiosaLQTEREREREVXaiBEjSkJiayDp7e2NqKioMn/nzz//VJXD99577zltpSW4rGpQvGbNGmRmZuLGG288pyJXQtN+/fph/fr1qKqEhATs3bsXjz32WElILC6//HJVYXx+K2eZD1xQUHDRy23VqtV/fnbnnXdi0qRJ//n5119/rSqmy/Pdd9/hiy++wCOPPII2bdqcc9ry5cvP+V6qoceMGYO3335bPQ4XqowmIiIiIiIiosaBQTEREREREVVaRETEf37WpEkT1X65LNZq2/PDzMDAQPW7VXHixAn19dJLL73g6RJeV1VZ2yukQlfaZpc2cODAKl+XXIeE7+eTSuby/PXXX7j99ttV2+2XX375otcjAb20nl61ahU2bNiAW265pcrbTERERERERET1G4NiIiIiIiJSSlf5lnahubtSsXshZrO5TrfFZDKpr1J1Gxwc/J/zOzrW3Z880lq7IjOKPT091aG69u3bh/Hjx6Nz585YsmRJhW9reHi4+pqenl7tbSAiIiIiIiKi+otBMRERERERKVLVK22cz1eRubsVYZ3pK1XApdsvS8B6fiWytcJYtsfX17fMbbG2vw4KCrpgRW5Nbe/5jh079p+f9enTp8oziivr1KlTGD16tLrdK1eurFTwbG0PLpXcRERERERERNR4MSgmIiIiIqKS0DUrKwv79+9XM4etc3qXLl1aI5cvQa6TkxM++OADjBw5sqRq+N13373gtohNmzapqlkhM4G/+uqrc84nLZelvbTMOB4+fLi6/NIkhK5qIBoSEoLu3bur6yw9p1jmIh8+fLgkSK6JGcWVkZiYqO4/jUajWkiXdfukYli2uXT1t16vx2uvvQZnZ2d1fxERERERERFR48WgmIiIiIiIlBtuuAGPPvoorr76atx3333Iz8/Hxx9/jLZt2/5nHm9VSKD5v//9D6+++irGjRuHK664Anv27MHvv/+OgICAc84rQajMQZb5uw8//LAKO7/88kt1GWfOnCk5n4TEso233norevbsqW6D9TwrVqxQc4M//PDDKm+zbOvYsWMxaNAgTJs2TYWvEnR36tQJubm5NTajuDKkkliqgh955BE1w7j0HOOmTZvi8ssvV8eXL1+Ol156Cddeey1atmyptv27777DwYMHVbB+oVbdRERERERUfTKSx2AwVGg0DRFRTZN9KDKeqqyxXqUxKCYiIiIiIsXf319VDz/44IMqhJRwUYJSab1cE0GxkODS1dUVn3zyCdavX49+/fph9erVKowtTSqDZVvuuecePP300yrUnD17tmpJfdttt51z3ptuugnNmjVTlbJvvvkmioqKEBoaisGDB//nvFUJZRcvXoynnnoKjz/+uKp0nj9/PpYtW4YNGzbAFmQ2sXjjjTf+c9rQoUNLguIuXbqgY8eO+Pbbb1VltVQRS4X0okWLMGnSpDrfbiIiIiKixkCn06nOTLLwlojIVtzd3VWnNNkXUB4HsyxtISIiIiIisqEWLVpg2LBhWLBgga03hYiIiIiIqEpMJpNaaCvVfNLpSAKailT0ERHVFIl9ZcGKLBiXrgZt2rRRo6vKwopiIiIiIiIiIiIiIiKiapJwRsLi8PBwVc1HRGQLbm5uqlNbTEyMel+Szm5lYVBMREREREQNmvxRJPN5y+Pj46P+kCIiIiIiIqqu8qr3iIjs6X2IQTERERERETVoW7duxfDhw8s9j8wdnjp1ap1tExERERERERGRrTEoJiIiIiIim4uOjq61y+7WrRvWrFlT7nk6depUa9dPRERERERERGSPGBQTEREREVGD1qRJE4wYMcLWm0FEREREREREZFfYKJ+IiIiIiIiIiIiIiIiIqJFhRXEFmEwmxMfHw8vLCw4ODrbeHCIiIiIiIiIiIiIiqgCz2YycnBw0a9YMGg1r54iISmNQXAESEoeHh9t6M4iIiIiIiIiIiIiIqApiY2MRFhZW5yF1gd4IW3Bz0la48O3rr7/GAw88oLIQFxeXkp9PmDBBFdB98803tbilRGRLDIorQN4Irf+ReHt723pziIiIiIiIiIiIiIioArKzs1UhmHU/f12SkLjjM6tgC4dfGAV354pFQJMmTcJ9992H5cuXq+MiOTkZK1aswOrVq2t5S4nIlhgUV4B11Y2ExAyKiYiIiIiIiIiIiIjqF46VLJubmxtuuukmzJ8/vyQo/vbbbxEREYFhw4bZevOIqBYxKCYiIiIiIiIiIiIiIqqF9s9S2Wur666MO+64A3369MHZs2cRGhqKBQsWYOrUqQzYiRo4BsVEREREREREREREREQ1TELWirZ/trUePXqgW7dual7xyJEjcejQIdV6mogatvrxDkVERERERERERERERES1Zvr06Xj33XdVVfGIESPUbGciatg0tt4AIiIiIiIiIiIiIiIisi2ZUxwXF4fPP/8c06ZNs/XmEFEdYFBMRERERERERERERETUyPn4+GDixInw9PTEhAkTbL05RFQHGBQTERERERERERERERGRajt98803w8XFxdabQkR1gDOKiYiIiIiIiIiIiIhq0bZTadgVk46uYb7o29IPrk5aW28S0TkyMjKwYcMGdZg7d66tN4eI6giDYiIiIiIiIiIiIiKiWhCdmoeXVx7BmsNJJT9zdtSgbws/DG4TgEFtAtAh2BsajYNNt5OoR48eKix+/fXX0a5dO1tvDhHVEQbFREREREREREREREQ1KKdQjw/XncSXW05DbzRDq3HA0LaBOJKQjYSsQmw+maoO+B0I8HTGwMgADG4TiD4tmiDCzx0ODgyOqW5FR0fbehOIyAYYFBMRERERERERERER1QCjyYzFO2Px1upjSM3VqZ8NaRuIp8d2QJumXjCbzTiVkotNxy1BsbSklvMt2xuvDsLX3QndwnzRPdxy6BrmA39PzoslIqKax6CYiIiIiIiIiIiIiKia/olKwwu/Hcah+Gz1fasADzw1rgOGtwsqqRCWr5FBXuowbVBLFBmM2B2Tic0nU7DlZBoOx2cjM1+PjcdT1MEq3M9Nhcc39o1Q1cdEREQ1gUExEREREREREREREVEVpeQU4flfD+G3/Qnqey9XR9x/WRtM7t9CzSMuj4ujFv1b+6vDw6OgguOjCTnYF5eJvbGZ2BebiVMpeYhNL1CHPw4mYvUDQ9Aq0LOObh0RETVkDIqJiIiIiIiIiIiIiCpJ2khLOPzMsoPIyNdD4wBV8fvg5W2r3CpaguNu4b7qMLm/5WdZBXociMvC++tOYPvpdLyy8gjmTelTszeGiIgaJQbFRERERERERERERESVrCJ++peD+ONQovq+Q4g33ry2KzqH+tT4dfm4OWFQmwAE+7hi9Lub8OeRZPx1IgWD2wTW+HUREVHjUn7fCyIiIiIiIiIiIqIakFtkwNI9ceog7XWJ6msV8fJ98Rj5zkYVEjtqHDB7RBssmzmwVkLi0iKDPHFr/+bq+Eu/HYHBaKrV6yMiooaPQTERERERERERERHVCgmy1h9Lxn3f70Hvl9bggR/3qcOlb23E4p2xMJrMtt5EogpLzinEjG93qeeztJqWKuJlswZi9oi2F51FXFNk9rGvuxOOJeXghx2xdXKd1PANGzYMs2fPtvVm2J38/HxMnDgR3t7ecHBwQGZmpq03qUF67rnn0L179wqfPzo6Wj0ee/furdXtaiwYFBMREREREREREVGNVlzKPNXnfz2ES15di9vm71AVmIV6E1oFeiDY2xVnMwvw8JL9GPXuJvxxMFH9DpE9W7b3LEa+swmrDiWpKuIHRrTF8lkD0alZ7VYRn8/X3Vldt3h7zXE1v5jInm3YsKFGQ9apU6diwoQJtR5Giq+++gp//fUXtm7dioSEBPj41O3rvSbJY/DLL7/YejPIDnFGMREREREREREREVWb3mjC/C2nsWhnHE4m55b83N/DGVd2a4are4Sia5gPigwmfL0tGnM3nFLnkwrNbuG+eHRUOwyIDLDpbSC6kJ92xeGhxfvU8U7NZBZxN3Rs5m2z7bmpXwS++TtGvX4+XHcCT47taLNtIWrITp06hQ4dOqBz585Vvgyj0ahCWo2GdZtkn/jMJCIiIiIiIiIiomrJytdj6vzteGXlURVeuThqMK5rCL6Y0ht/P3EZnhvfSYXBsrPc1UmLO4e0xqZHhuPeSyPh7qzFvthM3DTvH9wy7x91nMheZOTp8NKKw+r4bQNb4JeZA20aEgsnrQZPje2gji/YGo3TqXk23R4qm3RLyDMabXKobKcGg8GAWbNmqarZgIAAPP300yWXUVRUhP/9738IDQ2Fh4cH+vXrpyqFrWJiYnDllVeiSZMm6vROnTph5cqVqkXw8OHD1XnkNPk/QCqCL2bJkiXo0qUL3Nzc4O/vjxEjRiAvL09VBUuV77Jly9RlycG6HY8++ijatm0Ld3d3tGrVSm2/Xm+puF+wYAGef/557Nu3r+T35Gdy++QyIyIi4OLigmbNmuG+++4racc9Z84cbNq0SZ1fvhcZGRmYPHmyuj1yXWPGjMGJEydKtl0u19fXF8uXL0fHjh3V5Z45c+ai96HYsmWLuh65XLn8UaNGqesTf/zxBwYNGqQuW+6TcePGqSDbSqfTqccvJCQErq6uaN68OV599VV1WosWLdTXq6++Wt0W6/cVqcD+8ssv1f3j6emJe+65RwXfb7zxBoKDgxEUFISXX375nN+T23rVVVep80vL7uuuuw5JSUnnnOe1115D06ZN4eXlhdtvvx2FhYX/uf558+apkF5uS/v27TF37tyLbjNVDSuKiYiIiIiIiIiIqMpi0vJw24IdiErJU6HvE1d0wPjuzeDt6lTu78npD41sh8n9W+Cj9Sex8J8YbD6Zqg7vXt8dE3qE1tltICrLa78fVfOI2wd7qee2hLT2YFi7IAxrF4gNx1Lwysoj+Hxyb1tvEl1AvsmE1psO2OS6Tw3pAg+ttsLnlwBWQrvt27dj586duPPOO1VAeMcdd6gA8vDhw/jhhx9UmLp06VKMHj0aBw4cQJs2bTBz5kwVVEqoKiGonFeCwvDwcPz0009qzu+xY8dUcCjhb3mkxfONN96owkgJNnNyclT7Zwl1JWg9cuQIsrOzMX/+fHV+Pz8/9VVCRwlpZftku2S75WePPPIIrr/+ehw8eFCFrX/++ac6vwTism3vvPOOul0SbicmJqowWfz888947LHH1O/JcWdnZ/VzCbolGJYgWG6PBNRXXHGFus1OTk4ls41ff/11FXZKqCuB6sXuQ5m3e9lll2HatGl477334OjoiPXr16tgVkhQ/uCDD6Jr167Izc3FM888o+4f+T2pVn7//ffVNi1atEg9brGxseogduzYobZB7jO5Tm0FnxcSRP/+++/qfpPj1157LaKiolQgv3HjRtWSW7ZXgnwJvk0mU0lILKfL4gN5bsj9bw3FZfskhP7oo49U8P3NN9+obZdw32rhwoXq9n344Yfo0aMH9uzZox5PeW5NmTKlws9pqhgGxURERERERERERFQl/0SlqdbREqSF+Ljiiyl9Kl1tGejloiqObx/UUoVyKw4k4KlfDqJX8yYI93OvtW0nupjtp9Px405L0PLy1Z3tJiS2kqriv06kYs3hJGw5mYqBbN1O1SChroSmUnHarl07FWDK91LVKgGjVIpKwCkksJXwUH7+yiuvqNMkDJYqYFE69LMGuRJUSjXsxUhQLAHjNddco6pihfVyhQTNUp0rFa2lPfXUUyXHpWJWtlFCWQmK5XckvJTwtfTvyXbL9xJ0SsgrAWvfvn1LtlsqeyUgtv6ONSCWyt8BAwaUhJpy38n830mTJqmfSSWzVMB269at5Houdh9KMN67d+9zKmclvLaS+7c0qfQNDAxU4bO0xpbLlsBZwld5DK33nZDzCbn/z7/fyiPBr1yPBO5SHS3V4RL4S7W4hNPyPJFAXAJtCYrXrl2rnjenT59W94n4+uuv1e2QsLpPnz5499131YIEOYiXXnpJhfelq4qfffZZVc0tzwHRsmVLdTs//fRTBsW1gEExERERERERERERVWlu62M/74feaFazh+dN7o0gb9cqX56Ewu/f2ANJ2YXYGZOBhxbtw/d3XgKtxqFGt5uoInQGE576xVIJemPfcPRqbgm77ElkkBduvaS5aj/94m+HseK+wXy92Bl3jUZV9trquivjkksuUQGjVf/+/VVYJ8GfVLVKFWlpEtZKtayQds133303Vq9erUJXCTWl8rUqJFyVyloJhyWkHjlypKpklVbM5fnxxx9VZapUvkrFrYTNUvFbHgl2JbiUYFsqbaUyWFpoS6B8IVLNLKdJKGol94EEpnKalYTLpW9/Re5DqQy2Bs0XIiG1VNn+888/SE1NVSGukIBYgmKpdL788svVtshtkdbUct9VhwTuEhJbSbtoqUYuPW9ZfpacnFxy/0hAbA2JhQTMElDLaRIUy9cZM2accz3yXJOw2Vo5LY+hBMlSRWwlj6dUgVPNY1BMREREREREREREFWYymTFnzTF8tN4yG/GKLsGYM6k73Jwr3uK0LBJyvX1dd4x5bxO2R6fj87+iMGNo6xrYaqLK+WLzaRxPyoWfhzMeHd0e9ur+y9pg6Z6zOJqYgx93xOKmfhG23iQqRYLXyrR/tkcSuko4uGvXrv+0LJYqXTF9+nQV6q5YsUKFxTIbV0Lme++9t9LXJ9exZs0a1dZYLuuDDz7Ak08+qQJSqSy9kG3btuHmm29Wc4hlOyRQlGpi2YbySKApFbJS0SrXKTN433zzTdU22dpGuiqkgrl06F6R+/BiLbklwJYq4c8//1xVJUtQLAGxtPwWPXv2VJW80ipabo/MBpbQXuY9V9X594Hcpgv9zBpa1wS5r4TcztKBvKhoy2yqHJv2yvj444/VqgpZ1SEHWTUgT2IrKTWX/uWyokJeLLIK5fyh17JaYuzYsaoFgLQuePjhh9XKgtKk97m8SGRoeGRkpOpTT0RERERERERERJVToDNi1ve7S0LimcNb48Mbe9ZISGwV4e+OZ6+0tNucs/oYDsdn19hlE1VEbHo+3lt7XB1/8ooO8HW3zCa1R008nDF7RJuS10t2od7Wm0T1lASxpf3999+qlbHMiJVqWKkalXyl9KF0G2MJXaVSVOb5PvTQQyroE9bZvtZZuxUh4ePAgQNV8CvzaeUyZKav9fLOvywJlSVElUBZ2jfLdsfExJxzngv9njWglRBWqpElS5LQWSqAL6RDhw4qfyp9X6WlpamwWSpny1KR+1CyMmndfCHW65D22lJtLduRkZHxn/NJzibzgOW+lwprmcGcnp6uTpOAtzKPQVXIdpWejSykZXRmZmbJ/SPnudBzrXSFsgThMgv5/PuqrIUCVI+D4rCwMLz22mtqFYUMR7/00kvVoOtDhw6p0x944AH8+uuvWLx4sVrBER8fX9KTXMiTWkJiWTEhbwQybF1CYCm/t5IVFHIe6Z0upfuzZ89Wq1tWrVplk9tMRERERERERERUHyXnFOKGz7Zh5YFEOGkdMGdSNzw8qj00tdDqdlLvMFzesalqaz37xz0o1Nfuzm0iK7PZjGeXH0Kh3oRLWvnhmp6hsHe3XNIcrQI9kJanw0frTtp6c6iekqK8Bx98UAWS33//varkvf/++1W7ZKnWnTx5sgqBJXPZvn27qhqWCmIhuYtkLnLa7t27VRthCQSFBLgS/P72229ISUkpqRgti4SIMrNXMiPZJrlO+T3r5Uk75P3796vtlBbMMg9YgmE5r1QRS9tiCX2twbKV/J5sn+RE8nvS9lnypC+++AIHDx5UweS3336rguPS831Lk+uRDEtaIm/evBn79u3DLbfcgtDQUPXzslTkPnz88cfVHF+papbbd/ToUVVsKdsqbbeloPKzzz7DyZMnsW7dOvVYlfb222+rx01+7/jx4ypXkxDaOhdabr8E0YmJiRcMmWuCVDBLy3C5rfI8kNsot3no0KEqwBfynJK5xzKbWbZT5hFbM0ErWSAg9408jnIeCe7l/HIbqYEFxbJKQ3q+y4tLXigvv/yyqhyW1QNZWVnqBSoPvATIvXr1Uk8ECYStqwuk7YCsRpAXb/fu3TFmzBi8+OKL+Oijj0rK7T/55BO1ykBaDMgbyaxZs1Q/exnCTkRERERERERERBeXkafDLfP+wb64LDRxd8LC6ZdgYq+wWrs+CRVevaYLAjydVfvft1Ydq7XrIipt1aFErDuarBZDvDShyzntY+2Vk1aDp8daqvW+3HIa0al5tt4kqock0CsoKEDfvn1Vp1cJ9O688051mmQzcrpUCssM3AkTJqhQMyIioqSoT35HMhiZjyt5z9y5c9VpEqJK8PfYY4+palHJaMojVbGbNm1S2ZFcjlTRSr4j+Y+QkFa2QYLHwMBAbNmyBePHj1eFh3LZkhVJjvT000+fc7nSsVa2TYoK5fckVJUQVapvpXpZKnqlZbMUL1rnBl+I3BeSV8kMYOmSK4tLVq5cedFW1Re7D+W2SuYl4bM8BnLZy5YtUzORZSawhOBSdCntpuW2Sovs0mSW8BtvvKHuF5kFHB0drbbLOk9Y7kNpry2V31LhXBvk/VK2WYLtIUOGqOBY5j9LdbOVVDzLY/PII4+o+1Eqv2W+dWlS7Dlv3jx1n0nwLEGzhPqsKK4dDmZ5FtsBeSORFQ5TpkxRrQRkVYOU0MvKBuuKByErOWR1irwQpHJ4+fLlagWIlazEkCeerFaQJ7s8GaXttAwkt5Inl1yGhNEXIitJ5GCVnZ2tXjxy/osNPyciIiIiIiIiImpI8ooMuElC4thMNPV2wQ939kfLAI8qXZbsijSaAccKViGvPZKE27/aqY5/N70fBkQGVOl6iSoit8iAEXM2IjG7EPdeGomHRrZDfSGvrSnzd2DryVS1yGJS73Bbb5LdkP37MrO2LvbvyzhNySgk0HJ1da3V6yIiqon3I5tWFAspGZcqYpkfLP3rpR2A9CqXoFh6xpcOiYWsOJHThHyV788/3XpaeeeR/xxkdcyFSEm7/MdhPUhITERERERERERE1NhIy+c7v9mpQmJfdyd8c3u/CoXEJrMZOpMJ+UYTcgxGpOv0SCzU4UyBDrGFRUgp0qPQaLro5VzWoSlu7Guptvrf4n3IKuD8Vao976w5rkLiCD93zBweifpEKvleGN8Jf8wewpCYiIgqzOZBsZTYS0Ww9J2X8nKpKJZ20rYkveBldZH1UHrwNhERERERERERUWNgMJpw3/d7sOVkGjyctVhwW1+0bepVbkVjrsGIhEIdYgt0iCuUQxESivRI0xuRb7IEw44ODsjUGxBfpFOBcVHxz8vy1NgOaO7vjvisQjy77GCN304icfBsFuZvOa2OvzihM1ydtKhvWgR4IDLI09abQVQumSUsxYNlHeR0qn2dOnUq8zFYuHChrTeP6pAjbEyqhiMjLauzpB+59GR/7733VJ9ymTOcmZl5TlVxUlKSGsAt5KsMwy5NTreeZv1q/Vnp80iLCRlKfiFS3SwHIiIiIiIiIiKixshkMuOxnw9g9eEkOGs1+Hxyb3QPP7fzX2kFRhOy9AZkG43QwkGFwc4OGrhrLJWO53PWaKA3mZChNyDHaIS3VgsvJy1cimcplubh4oi3r+uOSZ9sxS9741WV8ZXdmtX4babGy2gy48lfDsJkBsZ1DcHQtoG23iSiBqtZs2bnjBO90OlU+2R+sV5/4S4d53fppYbN5kHx+Uwmk5oPLKGxDP9eu3atGjIujh07plaTyBBvIV9ffvllJCcnIygoSP1MhnFLCCztq63nkSd8aXIe62UQERERERERERHRuZXBL604giW74qDVOOCDm3qUORtYbzKr6mAJiCVk89Rqob1AMHwhThoNfDQa1aI63VAcGDtq4eWoVUFyab2aN8Gs4ZF4f91JPPXLQfRp4YdgH87/pJrx/fYzqr26l4sjnh5n2a9cl6RVu0EdAHn1uGlt3giUqNY4OjqWFA+S7TRv3tzWm0B2wtHWLZ7HjBmDiIgI5OTk4LvvvsOGDRuwatUqNRv49ttvx4MPPgg/Pz8V/t57770q4L3kkkvU748cOVIFwrfeeiveeOMNNY/4qaeewsyZM0sqgmXu8YcffohHHnkE06ZNw7p167Bo0SKsWLHCljediIiIiIiIiIjILn2w7iS+LG7B+8bErhjVydK5rzRjcZvpDL0ROrMJ7hoNnKoYbkko7FwcGKdJ6Gwwwt/ZSYXGpd17WRusP5aCA2ez8PSyg6rKmagm5nC/t/aEOv7gyLZo6u1aq4swJAzWm83qNSRV9YUm+WqGEWb1c1looSrsHbUMjImIqGEHxVIJPHnyZCQkJKhguGvXriokvvzyy9Xp77zzDjQajaoolirjUaNGYe7cuSW/r9Vq8dtvv6nZxhIge3h4qBnHL7zwQsl5WrZsqULhBx54QLW0DgsLw7x589RlERERERERERER0b++2hqNt9ccV8efGdcRE3uF/SfoyjeakGEwIM9ghovGAT6ONbOL0RoYSxvrFJ0eEhN7lAqLJYh++7puGPXuJqw5nIQDcVnoEuZTI9dNjdd3/5xBSk4RQn3dcHO/2quwyzMakaU3otBkUtXDUjss1cNaB6h27dJ23V1mg5uhFkuUtGR31MKVgTEREdUSB7N8uqNyZWdnqyA7KytLVTYTERERERERERE1NL/sOYvZP1rmRt5/WRs8cHnbc04vMplUm+ksg2UOsYdWc8H5wzUh32hUX4NdnP9TVfnAj3uxdM9ZXNY+CF9M7VMr10+Np5p48BvrVVD8ytVdcFO/iBq/DnndSECcZTCoaNhVo4Gjw4Vnd5cm1cayKMNR4wAvrRY+Tv9tyU72t3+/sLAQp0+fVgVsrq5sj09EtlPR9yP+z0JERERERERERNTIRaXk4tGf9qvjUwe0wOwRbUpOkxa5GTo94gt1yNYb4aHVwtNRW2shsXDXamE0AylFehW0lXbvpZHQOABrjyZjf1xmrW0DNY7ZxNZq4mvPq56vLoPJjPTi140ssHDTWKqDnTQOFXrtqBneTo5wcnBQFfxnC3Xq8qRNNRERUU1hUExERERERERERNSIGU1mPLJkP4oMJgyKDFAtpyXIkkaEeQYj4ot0SNYZLbNTnRzhWIsBcWkSqklInHJeONYq0BMTuoeq4+/9aZktS1SVauKPN5xSx+8Z3hrOjjWzq9xkNiNHXjeF8roxqNeNCnxldUMVSBWxtHeXy0nRG9TlFhrPXTxB9s8yk7ruDnJ9REQVwaCYiIiIiIiIiIiokc8l3hmTAQ9nLV6b2AUajUNxQGvA2SIddEYzfBw1aoZqXZOwWNrvpun05wQfs0pVFe+LZVUxVd4P288gOacIzXxcMalXeI1cpjxXE4v0anGFEWb4Ompr7HUjl+Pr6Aid2YwUvR668yrtyX7Je1dCkQ6xhUV1dpDrq0xYPGzYMMyePbtW74f6KD8/HxMnTlQty2UBVWYm/7+pDc899xy6d+9e4fNHR0erx2PvXsu4jPJs2LChzh+76Epsnz1gUExERERERERERNRIxaTl4Y1VR9Xxx6/ogBBfN9Um19outy7aTJdHrlfms2YajEjXGVSV83+qiteyqpiqUE280VJNfPfwyGpXE0sFZ0pxQJxnNKnnrLRPr43XjZdWg0KDZSGHtLcm+ycPk85kVrPdnR00tX6Q65Hrs5enR00HdVOnTsWECRNqPYwUX331Ff766y9s3boVCQkJatZ1fSWPwS+//GLrzaALWLt2LQYMGAAvLy8EBwfj0UcfhcFgOOc8+/fvx+DBg9Ws4fDwcLzxxhuoKQyKiYiIiIiIiIiIGiFTccvpQr0J/Vv5Y2LvMFUNmVhkgAaWdrl11Wa6PBoJix21SNcbka7/Nyy+97I2qqp4HauKqZIW7YxFUnYRQnxccV3vsGq1mc42GNX8YJkj7Crt2R21qk10rS6ecNQiz2hE6nmV9mTf5HkhLchr+1Cbz7/G5tSpU+jQoQM6d+6sAryqLP4wGo0wsQMAlWHfvn244oorMHr0aOzZswc//vgjli9fjscee6zkPNnZ2Rg5ciSaN2+OXbt24c0331QLHz777DPUBAbFREREREREREREjdC3/8Tgn9PpcHfW4oWrO6sKxXyDUbWZdtXa125DCaw9tA5I0xtUMCdaBnhgQg9WFVPlFBmMmLu+eDbxsNZwcdRWq810QqFefS9zhJ3qqD37+ZX2ElgTVZdUMM6aNUtVzQYEBODpp58uWZhTVFSE//3vfwgNDYWHhwf69eunKoWtYmJicOWVV6JJkybq9E6dOmHlypWqBe/w4cPVeeQ0ee5KRfDFLFmyBF26dIGbmxv8/f0xYsQI5OXlqXBMqnyXLVumLksO1u2QKsy2bdvC3d0drVq1Utuv11tenwsWLMDzzz+vQjnr78nP5PbJZUZERMDFxQXNmjXDfffdV9KOe86cOdi0aZM6v3wvMjIyMHnyZHV75LrGjBmDEyf+/T9ILtfX11eFfR07dlSXe+bMmYveh2LLli3qeuRy5fJHjRqlrk/88ccfGDRokLpsuU/GjRungmwrnU6nHr+QkBBVdSqh4quvvqpOa9Gihfp69dVXq9ti/b4iFdhffvmlun88PT1xzz33qOBbqlklOA8KCsLLL798zu/Jbb3qqqvU+aVl93XXXYekpKRzzvPaa6+hadOmqoL29ttvR2Fh4X+uf968eSqkl9vSvn17zJ07FzVl8+bNqjpXnl/h4eHqMZfnl3jiiSfUY3O+bt264YUXXqjx7ZNguGvXrnjmmWcQGRmJoUOHqvv3o48+Qk5OjjrPwoUL1eMrj4W8tm644Qa1zW+//TZqgn194iMiIiIiIiIiIqJaF5uej9d+t7Scnj2yLRw9LLNPvZ0cVQWvPZIQzsVBgxS9AbnFYfG9l/5bVbyXVcVUAYt2xCIxuxDB3q64rk94tdpMS1js7aiBmw0WVpSutM8oVWlPVFUSwDo6OmL79u147733VAglYZiQAHLbtm344YcfVAvcSZMmqQpIa0A6c+ZMFYRKqHrgwAG8/vrrKiiUEO6nn35S5zl27Jhq3yyXXR45z4033ohp06bhyJEjKky95ppr1HNcglYJHuW65XxykJa9QkJHCWkPHz6sruPzzz/HO++8o067/vrr8dBDD6mQzfp78jPZNjnPp59+qm6LtGaWgFr8/PPPuOOOO9C/f391fvleSNC9c+dOFQTLfSLbJRWh1lDaOttY7gO5/w4dOqQC1YvdhzLP9rLLLlPhspxPwkwJ3yWYFRJkPvjgg+q6pVWxRqNRwa+1Wvn9999X27Ro0SJ1X0u4aA2Ed+zYob7Onz9f3Rbr9xcjQfTvv/+uQurvv/8eX3zxBcaOHYu4uDhs3LhR3cannnoK//zzjzq/bIuExOnp6er0NWvWICoqSt3XVrJ9EkK/8sor6rZIsH1+yCrbLsGphNDyHJDzSvAvz9Hqktsk97vMnpbH4ccff1T3tTw+4uabb1avgdIhvDyGct6bbrqpxrdPXjcSNpcmAbaE51I9LOT5MGTIEDg7O5ecRxYRyONsXUhQHY7VvgQiIiIiIiIiIiKqN2Sn9qM/7Ue+zoheLZpgeI8QSMQkoZO9k0pnk9GEZJ3+nKrin3efxXt/Hsf82/raehPJ3quJNxRXEw+vXDWxVO3mGk2qgldnNsFdo4GTjSvvS1faS7thXyfu7qeqk1BXQlOpOG3Xrp0KfOV7CaQkYJRKUam4FRLYSngoP5eQTE6T4M0askpFr5Wfn5/6KmGpVMNejASZUt0s4bBUxQrr5VpDNAnXpKK1NAksrSQglW2UUPaRRx5RvyPBtQThpX9Ptlu+l4plJycnVTnbt2/fku2Wyl4J56y/I6GuhLFS+WsNqCU0lPtOQmYJf4WExhJ+ShWq9Xoudh9KFWnv3r3PCU0l2LaS+7c0qS4NDAxUwbi0xpbLbtOmjao6lsfQet8JOZ+Q+//8+608EvzK9UgILwG2VIdLOCnV4hJUy/NEwuL169erKlwJsOV5c/r0aXWfiK+//lrdDgmn+/Tpg3fffVdVEctBvPTSS/jzzz/PqSp+9tlnVTW3PAdEy5Yt1e2UQH/KlCmoDqmyljB49uzZ6vs2bdqokF0qeT/++GO1rfK4fffddyr8tT7Gcvuk4remt09eX3KfSBAviyASExNLKpfltSDkZ3IdpUlFtvU0qT6vDlYUExERERERERERNSLfbT+DrafS4Oqkwb1j28HJQQMPrf2HxFbuWpmgDBUWS2XxfZe2gVbjgPXHUlhVTOVatDMOCVmFaOrtgut6V7ya2GAyI1VnQHyhrs7bTF+MbIerRoMUnR45xZX2RFVxySWXnDODVyppJRiV4E+qWqWts4St1oNUjFqrLqUNrgR+AwcOVCGaVF9WlYR0Ulkr4bAEr1IZXJGqSakMleuXIFS2T4JjCU/LI5dfUFCggm2pHl66dKkKqcsi1aMSNpduTSxtoCUwldOsJFyWdsJWFbkPrRXFZZHHQiqtZVulpbO1Wth6G6XSWS5DtkUej9WrV6O65DokJC4dTkpgLCFx6Z8lJyeX3D8SEFtDYiHnl4Daev/I1/NbO8tzzUoqp+U+kSC59H0lz6/SVb5VJe3HpfK89GWPGjVKheIScAsJkiUoti6ukxBXflYb2yezh2Xm8IwZM1SbcnmOSIW6KH0/1yYuMSIiIiIiIiIiImokzmYW4NWVlpbTU4a3RusATzjbSeBVGe5aLfKNRhUWB/m6YkL3UPy0O45VxVRuNfHH60+q43cPbQ1XJ23FW01LCGs0wttRqyp37Y2LRgOTGWo7pRV7fVr4QfYvNzcXWq1WtcGVr6VJQCamT5+uwrYVK1aogFKqNqXi8t5776309cl1SMvirVu3qsv64IMP8OSTT6r2xudXVVpJa14J8mQOsWyHzFmWamLZhvJIoCkVslLRKtcpM3gltJMAVyqMq0oqmEuH7hW5D+V3yiNtqKVKWIJzqUqWYFMqiWV2rejZs6cKOqVVtNweqU6VSmmZ91xV598Hcpsu9DNr++uaIPeVkNt5fqB8/n1X1cu/6667SmZRlyYV5UICeZl5vXv3brWQIDY2tqR9dm1sn7QUf+CBB1QFsVQHy2zvxx9/vKQyXxY/nD/n2fp9ZSrEy1L/PgUSERERERERERFRpUlVzGM/7UdukQEdw3xwU7/m9TIkLh0WO8BBhcW3D21ZUlW850z15/VRw7NkVxziswoR5OWCG/pawoCLKTSakKjTqcp1b619hsRW1jnJKUUGFNVgaEONh3XOrNXff/+t2vL26NFDVcNK1ai03i19KB1SSegqVZEyy1fmAUuQJqxzVa2zditCwkepDpbgd8+ePeoypNrXennnX5aEyhKiSqAs7Ztlu2NiYs45z4V+zxrQSggr7YdlHrKEzlIBfCEdOnRQFcel76u0tDQVNkvlbFkqch9KBbK0br4Q63VIlbRUHct2XKjKWiqNJdCU+14qrGUGs8wLFhLwVuYxqArZLglV5WAlLZkzMzNL7h85z4Wea6UrlCUIl9nG599XZS0UqAwJ1GWbzr/syMjIkudqWFiYakUtLaflcPnll6vW6bW5ffKcl8uV56NUMMvrSbbVWnEt879Lz8GWhQ1SPV7dttOCFcVERERERERERESNwPc7YvHXiVQ4O2rw9IROcHWsvyFx6TbU+UYTXLycMa5bCJbticd7a09gAauKqRSdwYS56y0tQe8eVrFq4jyjUYWuerNZVRKXrg60V1JJnGkwwGA2w8XWG0P/YTSbAVMdXU8VSAtjqWyUakuppJRKXqnIlVa4Uq07efJk9b2EnikpKSrUlHBz7Nixat7rmDFj1HklwJSZtRIICglw5fXz22+/qZa61nnBZZEQUS5bWvJKOCffy/VZL0/aIa9atUoFp9L2WaqHJRiW7ZcqYpmDK5XN1mDZSn5PKm6lPbMEgdJSWQI5CU+lMlTmEX/77bdq+0rP9y1Nrueqq65SbaplHq1cxmOPPYbQ0FD187JU5D6UClJpty1VzRK4S2gp96O0x5Z5yXJbP/vsM4SEhKjbKtdb2ttvv61Ok8uWlsWLFy9WIbR1LrTcfrk+CeClxXFNBIznkwpmuQ1yW2XuroTqcnskdJUAX9x///2qTbZ8L9siQeyhQ4fOmWstCwSk4lce29GjR6uZ1Dt37lTPLXmOVodUCkub9VmzZqlKeA8PDxUcS/D64YcflpxPboO0UZeKbZnVXVpNb59UscvlyOMmCy1ee+01LFq0qKRC+aabblLXKe2uZfsPHjyI99577z/bVVX1/9MgERERERERERERlSsuswAvr7DMB7zr0tZoFVj2Tvr6GBbL1OKJA5urquINrCqmC1QTS9v1QC8X3FiBamKZ9ZtUpFeBW30Jicl+STtwZ40DjDBDZzbV+kGuR65PrrcyJMSUNrt9+/bFzJkzVaB35513qtPmz5+vTpdKYalinDBhAnbs2FHSqlfCVvkdCXMl8JJgdO7cueo0CVEl5JJgU6oxJaArj1TFSvWkhMpyOVJFK+GqBNFCQlrZBgkaAwMDsWXLFowfP1617pXL7t69u6owfvrpp8+53IkTJ6ptGz58uPo9CYklRJXqWwksJbCVls2//vqrCmXLIvdFr169MG7cOFXpKd06Vq5cedFW1Re7D+W2SqttmaErj4Fc9rJly9RMZAkQJQSX1tXSblpuq4SLpUlo/cYbb6j7RcJyaV8s22Wdcyv3oYShUqkqYXJtkPdK2WYJoYcMGaKCYwmApbrZSiqe5bF55JFH1P0old933333OZcjAe68efPUfSbBswTNMle4JiqK5XGW1uLHjx/H4MGD1X3xzDPPqGre0q699lpVyZ2fn68eq9rcPmkXLtsij50scpD7sPR1SiAtzw1Z6CD3mTyHZJutr8/qcjDLs5jKlZ2drR6IrKws9SZFRERERERERFTWDMzv/zmD5fviEezjiu7hvugW5ovOoT7wcGFjN7INncmEu7/bjbUHk9Ap1AefT++rAtWGRiqLX1t2CKv2JWBo20B8NY1VxQQU6o24bM5GFRQ/M64jpg0qe0e+7CrPMhjVrF9HB41ahFDfSEVxmKsz5xTbaP9+YWGhCnMkMHJ1dS35uSw6kDnSdUXe4u25VToR1b6y3o/Ox79QiIiIiIiIiIiqyWgy45c9Z/HOn8cRl1FQ8vOVBxJLdti2beplCY6Lw+N2wV4NMqwj+wuJVx5NUiGxPN0eu7JDg33eSag3eXBLrNmfiI3HU3AiKQdtmnrZerPIxr7cclqFxMHerripX9nVxCazGRl6A9L0BrhqNHCpx/O7yf5IaKttmG+9RFTP8X87IiIiIiIiIqIqkuqz1YcSMea9TXho8T4VEgd5ueDpcR3x6Oj2GN0pGCE+rqqK6GhiDn7YEYvHfz6AK97/C5M+2YqcQr2tbwI1YEUmE2LzizBnxVH1/bV9I9A2pGF3y4sM9ET/tgHq+MLtZ2y9OWRjyTmF+GjdSXX80THtypxNLNWeqToDUnVGuGu0DImJapHM15UZxWUd5HSqfZ06dSrzMZC5wfWFzHMu63bIabY2w863T7D1dAWw9TQRERERERERnW/bqTS8seoo9pzJVN/7uDnh7mGtMaV/C7g5nxtGJGUXYm9sJvbJIS4Tu2MyUaA3YmCkP76c2gcujmwRSjWr0GhCil6PLzdEYf6GKPh5OmPxvQPh6Vr+DMWG4K9jyfjfd3vh6+6E7U+MgLMjQ7/G6tEl+/HjzljVyWHp3QOguUA1vSUk1iNDb4SXoxaO9bxdL1tP22frafqXwWBQ83PL0qJFCzWXl2qXzAbW6y+8YFFmScvM4/ogOTlZvcYvRF7vQUFBaKzbV8jW00RERERERERENe94Ug5eWnEEm46nqO/dnLSYNqgF7hzSWoXFF9LU2xWjOgWrgzgQl4UbPtuGLSfT8OCiffjghh4XDDCIqhoSJxfpEZORj+82W3bG3z+qXaMIiUX/yAD4ezojLVeHFYcScHW3UFtvEtnAwbNZWLQrVh2X2cQXeo81mMxqHnG20QhvRy1nuhLVAQmBIyMjbb0ZjV7z5s3REEjQauswuD5vn+ByOiIiIiIiIiKiCtp6KhXXzN2qQmJHjQMm92+OjY8Mw8Oj2pcZEl9IlzAffHJrLzhpHbBifwKe//WQamNNVF0FRhOSivQoMpvx+ZoTKDKY0LNFE4zqYlmk0Bg4ajW4soclHP5xRyxfW42QPOYv/nYY8tCP79YMvZo3+c959CYzknV65EhIrGVITDWL7ztEVF/eh1hRTEQNhsFowoKt0dh+Or3c83m4OOLW/s3RM+K/fyQQERERERGVZdWhRNz73R7ojCb0a+mHN6/thgh/9ypf3uA2gZhzXXfc9/0efLUtBkHerpg5nBU2VHX50m66SA+d2Yz9p9Kx6WgKtBoHPDy2AxwaWQh2Zc9QLPjrNP45mYaT6Xlo4+9p602iOn6//ud0OlwcNXh0TPv/nK4zmVRInGcwqUpiTSN7fVDtcXKyLBrLz8+Hm5ubrTeHiBqx/Pz8c96X7DIofvXVV/Hzzz/j6NGj6k1zwIABeP3119GuXTt1uvSpl97ZF7Jo0SJMmjRJHb/QB93vv/8eN9xwQ8n3GzZswIMPPohDhw4hPDwcTz31FKZOnVprt42I6tbZzAI88MNebI8uPyS2WrrnLCb2DMOjY9ohyIvzQoiIiIiIqHyLdsbisZ/2w2QGRnZsivdv7AFXp+rPf5RKt7TcIjz/62G8ueoY/D2ccUPfiBrZZmp8IbG0mzaYzXA2AW+tPKJ+flP/5mgV1PhC0jA/d/Rq2QS7TmeoquInR7VvdGF5Y1VkMOLl4uf/XUNaIdT33LCuqDgkLjCY4OOo5fOCapRWq4Wvr6+aSyrc3d35HCOiOq8klpBY3ofk/Ujel+w2KN64cSNmzpyJPn36qAHmTzzxBEaOHInDhw/Dw8NDBboJCQnn/M5nn32GN998E2PGjDnn5/Pnz8fo0aNLvpcbbyXDmseOHYsZM2Zg4cKFWLt2LaZPn46QkBCMGjWqDm4pEdWm3w8k4NGf9iO70ABPF0fcM7w1fN2cyzz/7jMZWLIrDj/tjlMrTGePaIMpA1rASctu/ERERERE9F+fbjyFV38/qo5f1zsMr1zdRbW2rSm3DWyJlJwizN1wCk8sPQB/Txdc3rFpjV0+NXx5RqMKiWUhg5ejFp+sPYmEzEIEebtg2tBWaKzG9wxTQfHyPWdx36Vt4O3M5oqNwfwt0YhNL0BTbxfcNbT1f+d36/QoMloqiRngUW0IDra0+reGxUREtiA5qfX9qDwOZjtqlp+SkqKGOkuAPGTIkAuep0ePHujZsye++OKLkp/Jf+hLly7FhAkTLvg7jz76KFasWIGDBw+W/EyqjTMzM/HHH39cdLuys7Ph4+ODrKwseHt7V+m2EVHNK9AZ8eKKw/junzPq+27hvnj/hu5o7u9x0d/dcyYDzy0/hH1xWer7yCBPPHdlJwxqE1Dr201ERERERPWD7DJ57Y+j+HRjVEll2mNjaqcqUa5LFsAu2hmnWqV+O70f+rTwq/HroYYnz2BUwZfs4PPQanEmNQ83zd0KvdGM167vhuGNeNFBod6IcW9tRE6hAe/c0hMTOgUzGGzgZNHN8Lc2ILfIgDmTumFir7Bz5ncnF7dml5C4oco0GBDm6qzeD8i2+/eNRiP0en2dXR8RkZW0m75YJbGVXS2jkzdq4ed34T+Edu3ahb179+Kjjz76z2lSmSxVwq1atVKVw7fddlvJB79t27ZhxIgR55xfKolnz559wespKipSh9L/kRCRfTmamK1mg51IzoW81GcMbY0HL29b4argHhFNsPSegVi8KxZv/HEMJ5NzccsX/2B0p2A8ObYDwv2qPmeMiIiIiIjqP4PRhCeXHsSPO2PV9xIQy98dtUX2YUilclquDmuPJuP2BTuweMYAtAv2qrXrpPovtzgklj1gEgrJgoM3Vx5VIXH/SH8M6xCExkzaw4/uGoLF22OxdFccLm8fBM8GHBAS8PaaYyok7hrmg6t7hJ5TdZ9SZFCt2RtySEz2RUKaigY1RES2Yjd9Vk0mkwpuBw4ciM6dO1/wPFJF3KFDBzXLuLQXXnhBzSxes2YNJk6ciHvuuQcffPBByemJiYlo2vTc1ZPyvQTABQUFF5ydLCuMrAdpgU1E9kH+6P16WzTGf7hFhcSBXi74Zlo/PDq6faVbR2s0Dri+TwTW/W8Ypg5oAa3GAX8cSsSItzfip11xtXYbiIiIiIjI/qsQZ323R4XEGgfg9YldajUktpJ21h/e1BO9mjdRo3Umf/kPkrILa/16qX7KMRiRpEJiB7gXBxHrDidh+6k0ODtq8NAVHVg9q9pPW8LCrcdSEJ2VD5P9NFekGnYoPgs/7LAs7nlmXEe136dkQUWRHkazWbVmJyIiIjsMiqUiWFpD//DDDxc8XQLd7777Drfffvt/Tnv66adVwCxtqaXN9COPPKLmGFfV448/rqqbrYfYWMsHDCKyrawCPe78ZheeWXYIOoMJl7YPwh/3D652u2gfNyc8N74TVt43GJe08kORwYRnlh1EWu6/nQWIiIiIiKhxyNcZcPtXO9QiUmetBnNv7qUWmNYVN2ctvpjSW43HScouwsyFu6E3murs+ql+yC4OibUqJLbs3ssrMuCdP46p45MHtUC4PztlibYh3mjfzBsGkxm/7o1HHl9PDbaw4MXfDkPWAYzrGoLexa37ra8VwWpyIiIiOw2KZ82ahd9++w3r169HWNi/cyNKW7JkCfLz8zF58uSLXl6/fv0QFxdX0j5ahjUnJSWdcx75XuYRuLm5/ef3XVxc1GmlD0RkW6dScnH13C1YczhJ7ax59sqOaueJv6dLjV2HtHT7/o5L0DnUG3k6Iz7dZJlDRkREREREjUOBzojbF+zElpNp8HDWYsFtfTC6c3Cdb4evuzM+n9wbXi6O2BmTgVdXHq3zbSD7laU3IKlIByc4wK1UZ62v/zqNlOwihDZxw62DWtp0G+3NVcVVxav2JiBDb6kspYZl9eEk/B2VrqrpZVSABMfW14plQQVDYiIiIrsLiuU/bAmJly5dinXr1qFly7I/xErb6fHjxyMwMPCilytzjJs0aaICX9G/f3+sXbv2nPNIm2r5ORHZv/XHkjHhoy2ISslDMx9X/HzPANw2sGWttNCSy3zo8nbq+Fdbo5HMNm9ERERERI2m3fQdX+/Etqg0eLo44uvb+2FAZPW6F1VHywAPzLmumzr+5ZbTWL4v3mbbQvZB9qNl6g1qJrGzgwaupULizDwdFv1zRh2/b1RbNZuX/jWySzBcnDSITsnD7pgsVhU3MEUGI15ZeUQdv3NwK4T6uiFDQmKdHi4azTkLKoiIiOhcGlu3m/72229VS2kvLy81S1gO588NPnnyJDZt2oTp06f/5zJ+/fVXzJs3T7WtlvN9/PHHeOWVV3DvvfeWnGfGjBmIiopSLamPHj2KuXPnqpnGDzzwQJ3cTiKq+h/Bn248hWkLdiCn0IA+LZpg+b2D0DnUp1avd1i7QDUTTFpQf7j+ZK1eFxERERER2U9IvPlkKtyLK4nlbwJbG9kpGHcPs8xGfuyn/TiRlHPO6TJ3UyrmqOGTtsmpun+Dr9IhsVi4NRr5OiPahXhhaPsgm22nvfJ0dcJlHZuq46v3xSNTZ2BVcQPyzbYYxKTlI9DLBXcNbYU0nQEpegPcNRr1eiEiIqKy2fR/Sgl1ZQbwsGHDEBISUnL48ccfzznfl19+qVpSjxw58j+X4eTkhI8++khVB3fv3h2ffvop3n77bTz77LMl55FK5RUrVqgq4m7dumHOnDkqXB41alSd3E4iqtqOmgcX7cOrvx9V82Vu7BuBhdMvQUANtpout6p4ZFt1/PvtZxCXkV/r10lERERERLb72+Oub3bhrxPWkLhvyWxLe/DQ5W0xoLW/CgHv+nYXcgotszaF3mxGmt6AAlZHNmj5RhMSdDqkGwzw1Gr/E3yl5xZh8fZYdfyO4a1rpftWQzC+l2Xc3fqDSUgt0KuFFlT/ZRfqSxb5P3B5WxQ6AGl6Izw0WjgxJCYiIrooB7OU7FG5srOz4ePjo0Jtzismqn2JWYW485ud2B+XBUeNg5pHfMslzev8j92bPv8bW0+l4fre4Xj92q51et1ERERERFQ37UpnfLML64+lwM1Ji/m39cElrfxhb1Jzi3DlB5uRkFWIMZ2DMffmnurvI2mterZQBz8nRzR1cYKWAWGDIrvssg1GtRjAZAY8tZoL/l38/qpjWLg1Bh2aeWP+nf0YFJdzf173wRacScvHw1d2wLgeoQh1dVb7Haj+euOPo5i74RRaB3ri67v7IcdkhpejFo6N+HWQaTAgzNUZHpzLXIL794mIysZlVURkV3afycCVH25WIXETdyd8c3s/3Nq/hU3+0H1opGVW8ZLdcTidmlfn109ERERERLVHZzBh5sLdKiR2ddLgi6m97TIkFtJZScJhJ60Dfj+YiM//iio5zcnBAdkGE1tQNzB6k1nNIk7U6aGFgwq+LvR3cVpuEZbsYDVxRch9M75nqDr+x554FJrMyDexGr++FxrIDHdxx2WtkWs2w7uRh8RERESVxaCYiOzGn4eTcMOnfyMlpwjtg72wfNYg9G9tux01MpPs0vZBMJrMePfP4zbbDiIiIiIiqoWQ+Lvd+PNIMlwcNZg3uQ8GtA6APesR0QTPjOuojr/+xzH8HZWG2EIdjGbAQ+uADINRtSim+i/PaERCkQ5ZBqNqNX3+POLSvt0cjSK9CZ3CfDCgjX09hw1mM84UFGFzRg4WJqThtagE3HM4BuN2n8BN+6OwNi1bVfnWpSu6NYNW44ADcVmIS81V7afZbLH+envNMRTqTegS7oOekf7w0WrZWYGIiKiSHCv7C0REtSE2PR8PLNoLndGEUZ2a4u3rusPDxfZvUQ9e3hbrjiZj+b543DMsEu2CvWy9SUREREREVA16own3fb8Haw4nwdlRg88n98YgOwvYyiIjeXafycTSPWdxy9bjyA91wyMtg3FjiL9qo52u18NF48ygpJ6SwDJTb0C6zM41A97aC1cRW6XmFOEnazXxMPuoJj6SW4Avz6biaF4h4ot0MJSTwT54LBadPd1wX/Mg9PPxrJPt8/dywaC2gdh4NBmr9yagxUhPFJnMcNXa/r6jyjmSkI0lu+LU8Rkj2sDHyfb7kIiIiOojVhQTkV3sqLn3+z3IKTSgZ4QvPrypp12ExKJzqI+aASYLjGWlKhERERER1e8g7smlB/DHoUQ4azX47NZeGNI2EPWFBIGvXN1FdWAqzNFB6oe/jU+D0WxW82tzDSYVNFL9fG6m6w1I1htUO3HPMlpNl/b15tMoMliqKS+JtG3b9MQiPZ46EYcb90dhdVo2zhRaQmIXjQMi3V1wqZ8Xpjbzx7Otm+HzTi1wR1gAXDUOOJhbgDsPxeCuQ9E4lFtQJ9s6vpel/fSq/QnI1xtRxPbT9U6B0YSXfj+iZncPaR+E3i38bL1JRERE9ZZ9JDFE1KjNWX0ce2Mz4e3qiPdu6AGnctpq2aqqWHYkrTqUpNpTdQnzsfUmERERERFRFXy88RQW7YyDxgH46OaeGNYuCPWNm7MWn9zSC+PmbkFqKxPioFfB3JgAHxUWSwtqaVXsodXaelOpEiTgT9Mb4KHRwElz8b+JU7ILsXSnpZryjuGRNqsmltbNUkH8bUKaqswVVwT4YEJTX7RwdUGgsyM0F9i2vj4euDHYH5/HpWBxUgb+zsrD3/ujcLm/N2aGB6Glu0utbfMlrf0R6OWixl7tPpmGJp2aqrm29lCRTRdfUJFjNGH9iWRsOZ6quifMuryNrTeLiIioXrOvNIaIGp1Nx1PwycZT6vjrE7si3M8d9qZNUy9M6G5ZcTyHVcVERERERPXSb/vj8cYfls/zz17ZCZd3bIr6qkWAB54c3R6OMbnq+y/iUmAym1XA6GCGqkw1FId2ZP+y9Aak6A1wq2BILL7eHK1mbXeN8EXfVnVfTak3mfFDQpqaN/zF2VQVEvfydsfCLq3watsw1Uq6qYvTBUNiK39nRzzWKgTLekRiXKAP5Jxr0rJxzd6TeO7kWeRIC+5a4KjV4LJOltf/rlPpKDSZ1YHsm7ynpeoMSCgswqd/niqpDm8e4GHrTSMiIqrXGBQTkc0k5xTiwUV71fFbLonAmC4hsFf3X9YGWo0DNhxLwc7odFtvDhERERERVcKumAw8uGifOn7bwBaYMqAF6rtxXUPgnpAv6QlO5BdhU4YlNPbQapBvNCGDLajrBQlDJSR2cdDAuYIhcVJWIX4pns161/C6nU0sFZ3r0rIxce9JvHo6UVWwt3Bzxnvtw/FFpxbo7OVW6csMc3XGy23CsLhbawxr4qVaqi9NzlQzjPW11Ba6X3Gr7h1RaTCaTCg01k4oTTUXEifr9Eg3GLDzeBoOn82Cq5MG04e1tvWmERER1XsMionIJkwmMx78cR9Sc3VqvtZTYzvC3lfsX9c7TB1/c9Ux9ccxERERERHZvzNp+bjj652q+nJEhyC7/9ujorxcnTA8MhDaM3nq+3lxKervFAkNPTRaZBoMyKulikyqGfL4SPjlCAfVLryivvrrtHo+92jeBL1a1l018bG8Qkw/FI0HjsUiplCHJo5aPNEyBEu6RWKYn3e1A+s2Hq54r0OECpzdNRpsz8rD86fia+Xvb7nvnLQOSMgsRHJGEXIMJlWVT/ZHZrCn6vTIMRrhDgd8uvak+vlNA1ogwKv2WpQTERE1FgyKicgmPtl0CptPpsLNSYsPb+oBVyf7n58169I2cNZq8M/pdGw9lWbrzSEiIiIioovIytdj6oLtSM/ToXOoN967oYfqFNRQjO3WzNJ+2mjGgdwCFawJJ42Dmt2ZpjOoFsFkf/KMlpBYdsy5VSIklmri5buts4nrpppYWpm/dCoeN+w7hZ3Z+XDROGB6aAB+69kG14f4qedbTert44G32oVB9hL8mpKFT+NSUNPcnB3RJdxXHd97Oh1FZhPbT9shCe/lfSzTYIS3Vovf9sSrxT9NPJxwcwPoDEFERGQPGBQTkU3avs1ZfVwdf358J0QGeaE+CPV1w039IkqqiqUqmoiIiIiI7JNUXN717U5EpeQhxMcVX0zpAw8XRzQkAyL94euohTbOEhB/HpdacppUZBaaTchkC2q7U2A0IaXIAPmT0l1buUXTCzZFQW80o2eL2q8mlkUGC+PTMH73CSxOylAtoUf6e+OX7pG4t3lTeDrW3oLvgU288EQry3iqj2NTsDw5s8avo1/rf9tPSzEx20/bZ0icrjfC21GLQp0Rn2+wzCaeNqQ1PF0b1vs5ERGRrTAoJqI6X9F/3/d7YDSZMb5bM0wqbudcX9wzvLWqgt4bm4mP1lvaHRERERERkX2RVrVPLD2Av6PS4eGsxZdT+6CptysaGk8nRwzr1BSO0blwMJuxIzsP+3Ly1WlSaSphsbRrLaqlOa9UeYVGE5KL9DCYzZUOWhMyC7B8z1l1/M7htTubdUtGDibtO4k3ohORYzShnYcrvuzUAm+2C0czV2fUhWuD/TAtNEAdf/7UWfyTaZnDXdNB8a7TGdCYZV4020/b03u4zFmXkNjLUaM6JHy3LQbpuTqE+bnh6nq2L6kit1c6DGzLzMXPSRmIK9TZepOIiKgR4dIrIqrTD76P/bwfZzMLEOHnjpev7lwnbbJqUpCXK56/qhMeWbIfb/95HN3CfTGkbaCtN4uIiIiIiEqRRZ1LdsWpNtMf3dwTHUK80RBJC+Bx3Zph2Y44OCUUQNfMXc0q/qBDc3W6k0aDfINBVbC6aFgrYGs6kwkpej10ZrOqkKysLzdGwWA0o08rP/RoUTvVxGcKilQ4/FeGJZSVOcT3Ng/ChKAmKqyra/dGBCG+SIc/UrPx0LFYLOjSEpHuNbPoo22IN3zcndSC9pMJOWgV6oUCkwkelazyptoJiVP1BvVYODo4ID23CAu3RKvTZ1zWBk6O9ff9TOYtn8wvwik5FMjXQnVcFmRYOToA1wQ1wZ3hgQh0drLp9hIRUcNXf/9XJaJ659t/zuD3g4lw0jqoucRervXzw+51vcNxY99w1Zrqvh/2IC7DsmKfiIiIiIhsb/m+eLxVPOrmufGdMKxdEBoqWXjbt3kTNGviBpzKgcR4mzJycSyvsOQ8zg4aZOmNMLJS0uaVxEk6PQoNJnhVYiax1ebjKVi++2zJbOLasCUjFzfsj1IhsQRVk5v549eebTCxqZ9NQmKhcXDAC5Gh6OHlroK0WYfPIEWnr5HLloUkfYrbd++MSoODaj/N6ntbyzYYVUgsHRGs868/W38K+TojOjTzxmUdm6I+OpJbgNsPnsZlO4/jrsMxakHGT0kZ2JtToJ7bsjyhhZszOnu6wWAGFiVlYNzuE3g3JglZHCFARES1iEExVdnp1Dzsi635GTHUMK0/moznlx9Sxx8d3R5dw3xRnz17ZSd0CfVBZr4e9yzcjUI9ZxmRfZOZ2gfisnAsMUfN6yMiIqrJyh8ie3E8KQePLtmvjt8xuCVuvcRSWduQuWk1GNk1GJp8AwJyLH+XSFWxlavGQc0qZgBmO/kSEhfpUWg0w8tRW+nOWqk5RXhx6UF1/PpLItAtokmNb+OixHTceyQGeUYTenq746fukXioRbDaXluTavh324ejuaszEnR63HvkDPJraJ5w3+L20/+cSoOztGo3mLiowsYhsbRgdtVo1OMh9sZkYOnOOHX8/lFtoSkOj+sLmbP8/MmzuHF/FHZm56ud8RGuzhju54U7wgLwWpswLO7WGn9f0gHLerTBwq6t8EWnFujm5YZCkxnzz6Zi7O4T6n1d3kuIiIhqGltPU5X8tj9ezZnt2Mwbv84aVO/aB1Pd2hmdjrsX7oLBZMbVPUIxbWBL1HeuTlp8fEtPjPtgM/bHZeH5Xw/j1Wu62HqziC4ou1CPhxbtw5rDSSUr51v4u6NtUy+0CfJEG/na1BMtAzzgYgc7goiIqH7YcyYDj/60H7HpBWoBXbdwOfiie7gvQn3d+DcC1bm8IoNaxFmgN2JQZAAeG9MBjYGEKVd2C8WCjaeRcyAVGNAUa9KyEV1QhBZuLuq1qIUDcgxGePCzXp3LKw6+jGZUqd20LPh87ucDapFy22AvzLq8bY1un4Sib0cn4duENPX9+EBfPNM6RLUttye+To74qGNz3Lo/CkfyCvHo8Ti82z6i2pXO1qD48Nls6IoMMDtr1KIKvlbqXq7BqKrFnRw0Ja3yZZHzq8sPq+Pje4bWWsv12iCz4RfGp2He2VS1AEOMDvDG/RFNLzrnu7ePB77q3BIbM3Lx4ZkknMgvwgdnkvFdQroKlyc2bVISpBMREVUXg2KqkoGtA1SYcPBsNjadSMVQzmilMhxNzMa0BTtQqDfh0vZBeOParvVu9WdZwpq4470bemDq/O34fvsZ9IjwVW2pieytqmbGN7sQlZqn2r7Le3dukQGnUvLU4fdS55UAeUSHILxzfXe4O/MjAhERlR1afLLpFN5efVwtBBTbo9PVwSrA0xndwnxVcNynhR8uaeXH4JhqvbL9iaUHcDI5F029XfDuDd3VZ5vGon2QJzqEeuPI2WxEQouTMOLLs6mqZa+Q6rw8k6Wq2LUKbY+panKKgy95Jla1MvfbLdHYEZUOVycNXry2K5xrcDarVOU+fvwsNmTkqO9nRQRhemiA3b5fh7s6470OEbjjULRqsf5yVAKebhVSre0N8XVDhL87zqTlY3dMBnq2CVBVmwyK6z4klgUVGjioLglWX/0VhejUPPh5OuPekTW7SKI2/z9am56Dt6MTcbbI0ia9k4crHm4Zgh7e7hW+HHleD/PzwpAmnvg9NQtzzyQjrkiP104n4uekDHzRuWWVFp8QERGdj38dUJU08XDGTf0i1PGP1p+09eaQnYpNz8fkL7Yju9CA3s2b4KObesKpge2UkEUSD4yw/LHy9C8HcfBslq03ieic7g8TPtqiQuJmPq5YMmMADjw3EtsevxRfTeuLp8Z2wPW9w9EzwhdeLo4wmsxYdShJLe4o0LGdOhER/VdSdiFu+eIfvPHHMRUSj+sagt/uHYS3JnVTLX6lsthR44DUXB3WHk3G22uO48bP/1aVx3q2S6Ra9N32M1i2N16Fwx/e1BMBni5oTCT8HdU1RB13OJmtvq5IyUR8oU4dlzmfUjlaU+166eJBkcwUTSzSqeDLXVu1MOdgXCY+WWfZ5/LQFR3QItCjxrZRWmHfdjBahcTODg54vW0Y7ggLtNuQ2KqblzteaROmwneZ7/pmdGK1RyD0K64q3n4qDS4aB1X9aV0IRXUXEstj6l5qn1FUci4W/HVaHX9oTHt4uznB3h3NK8D0Q9F46FisCokDnRzxUmQovu3aqlIh8flzuscG+uKXHm3wZKsQNHHU4nh+EWYfPaOqlomIiKrLwcyBUheVnZ0NHx8fZGVlwdvb29abYzcSswox+I110BvNWDKjP3rXo/YvVPtScopw7SdbEZOWj/bBXvjxzv7wcbf/D/VVraqZ/vVOrDuajHA/N/w2a3CDva1UPxiMJrz+x1F8XvxH9cBIf7x/Qw/4l7PDVD4O7IjOUCGxVBzL73wxpY9qs05ERCTWHknC/xbvQ0a+Hm5OWjx/VSdM6hX2n1ChUG/E4YRs7IvNxO4zmVixPx6yv13+b5l7cy/41IMdvVS/yGLNa+Zuhc5owhNXtMedQ1qjMTqZkYdRb25Ui//aTGiNAwWFuD7YD0+0sgTI1hnFYW7O1W7XSyj3c3WG3oBUvUFVcltb6FZWbqEet37yN+IzCjCiczBeurZLjYW4EmbJnN9knUGFTlKlKwFsfbI0KQPPnYpXx6c288fs5k2rfP9sOpqMh7/fizA/dyy5byCyjEaEujjDk9WadVJ1b60kLh0Sy36Wu+bvwP4zmRjUNgBv3dTDrhcxyMKQD88kY3FSBmRHuyw4mNIsALeF+ld5oUhZjucV4raDp5FrNGGkv7da5CFhcmmZBgPCXJ3hUcPXXZ9x/z4RUdkaVmkf1algH1dc2ytMHZ+74ZStN4fsbB7qlC+3q5BYglOpXGzIwam00n7nuu7qtsqMvtk/7lF/1BDZQmpukar0sobEM4a2xle39S03JBbyR3ffln74alofeDhrseVkGu74eqfa2U9ERI2b/F/w3PJDuP2rnSok7hjijd/uG6RGblxop60sMuoZ0QS3DWyJD27sgXlTesO9+P+Waz/eqrrOENWUrAK9mkssIfGIDk1xx+BWaKxCvd3Qp7VlAXeLTENJmJaqs7Q+leCi0GRGAav7a43JbEaqzoAUvQHu1QiJJWx+7dcjKiQO8XXF41d2qLGQbFN6DqYeiFYhcSs3F1XpWN9CYnF10yaqulIsiE/D3NiUKl9WzxZ+qhtBXHo+EjILVGgp7aepdmUbjEjS6dUM9dIhsfhlV5wKieXzwyPjOtptSCydGpYkpmP8npNYVBwSj/L3xrIekZgZEVTjIbFo6+GKd9pHwNHBAavTsvFWDVTVExFR48agmKrlriGtIWOfpJLyUDxb7pJlR+L0r3aqKhJp9/bNtH5o6u2Khk6C8I9v7gUXRw3WH0vBh2zJTjaw50wGxr2/GX9Hpauw9+Obe+KxMe3hWImW772a+2HBtL7qD/K/TqTizm92MSwmImrETibnqDEGC7ZGq++nDWyJpTMHoHWgZ4Uv49L2TbHorv5qbuyJ5FxcPXerqjYmqi7ZMf7w4n04k56PsCZumDOpm92GCXXBVeOAMd0swdmBvUno4ukGndmMb+LT1M/kvnF0sIQzDBVqntynaToD0vRGeGi0cKpiSCxW7I3HmoOJKryUucSerjWz8Frmmt5/9AwKTCb08/HAV11aqqrD+uq6YD880jJYHf8sLgWfx1UtLPZ0dUTnMB91/J9T6eq1lGc0Qs8F4LUmu7iS2PG8mcQiObsQH645oY7PuCwSTX3sc5/S/px83Lo/Ci9GJSDTYESkuwvmdWqBN9qFI8Sldl9XfX08VEtrsTAhHV8Xv88TERFVhWNFznTNNddU+oI/+eQTBAUFVWWbqB5pEeCBsV2b4dd98fh4wyk1C4oad7vbWd/twfbT6WreqVQmynOksegc6oOXJnTGw0v2450/j+OSVv6qQpOoLizeGYsnlx5U1TStAz3w6a29EBnkVaXL6tPCD/On9sHU+Tuw6XgK7v52Fz65VRZCsG0VEVFjm3UvraYL9Sb4ezirOcTD2wdV+XPSLzMHYtqCnTiSkI3rP9uGd6/vgdGdLTv4iarii82nsfpwEpy1Gsy9uWeD7mJUERIEj+oQjNedjyAxsxBXObvhAAqwNDkTsyKaqjnFMss432RSlcVu2sYbqteGTL2ExAZ4OWpVpV9VxaTm4a2VR9XxO4e3Rpdw3xrZvvlnU/FuTJI6PiHIF0+1aqaeE/XdzSH+KtB9JyZJtf6VectTQgMqfTl9W/tj35lM/HMqFVf3DkO+3ohCkwlOGv4NVBttmiUkdnbQqPek881ZeRR5RQZ0CvPBtX0jYG9kQcj7Z5LwS7Jl0ZunVoN7woPUwoW6fE2NCfRR9+PbMUnqEOTihDEBlgUPRERElVGh5Y2//PILnJ2dVR//ihxWrFiB3Nzci17uq6++ij59+sDLy0uFyhMmTMCxY8fOOc+wYcPUHzulDzNmzDjnPGfOnMHYsWPh7u6uLufhhx+GwWBps2S1YcMG9OzZEy4uLoiMjMSCBQsqdg/RRd0zzDL/acWBBESlXPxxp4a7evrxnw/gzyNJcHbU4PMpvdGpWeP7gDqpd7hqyS4L9N9afe77GVFt+XLzabVAQULiMZ2DsWzWoCqHxFb9Wvnjy6kyo9hSJX/Pt7uhM7D9GhFRYyAjNN5ec1wtAJSQWGYL/37/4CqHxFYhPm5YPKM/hrULVJd798JdmPdXFCsbqUp2xaTjtd8tYdrT4zqga1jNhGn1XRM3JwzuYHmtJp5IV/NnswxG7MrOUz+TAFNe4/lGdoypSXkGI9IMRnhoNdUKieXz9tNL9qNAZ0Tvln64dVDLam+bvMe+HZ1YEhJPCw3Ac60bRkhsNTU0ADPDLc97CcwWJlS+urJfa3/1dWdUuprzLeso5HGlug2JNxxJwoYjyaqa/onxHdVXe2ot/11CGq7ac6IkJB4f6IvlPdrg5mb+NnlNTW7mj5tDLAUKT504i+1Zlvd6IiKiGq8oFu+//36FK4SXLFlSofNt3LgRM2fOVGGxBLtPPPEERo4cicOHD8PD498qxDvuuAMvvPBCyfcSCFsZjUYVEgcHB2Pr1q1ISEjA5MmT4eTkhFdeeUWd5/Tp0+o8EjAvXLgQa9euxfTp0xESEoJRo0ZV9C6gMnQI8cZl7YOw9mgyPt0Yhdev7WrrTSIb+H57LBbvilOtyD+8sYeqpm2sHhrZFsv3xqvK6r+j0hr1fUG176P1J/HmKsuihDsGt8QTV9Tc/LL+rf3xxZQ+mLZgh3qPn/ndbnx0U0+1GISIiBomCSceWrwXKw8kqu+nD2qJx6/oUGM7aj1dHDFvcm889+shfPv3Gby04ghi0vLx7JUdKzUqgRq39DydWshgMJlxZbdmuOWS5rbeJLshM3HHdQvBqn0JWH8oCUPbt8MvKZlqjuUlvp4l58kxmODjaIajHYUw9VWRyYQUnUFVYjhXo920+GjNcRxLyFHV8c9d07na770GsxkvnIrHsuJQ68HmTatUbVsf3BkeCJ3ZhM/jUvHG6URVWTwpuOIdvjo081YtqHMKDTgSn4V2zbxV9b3OZKr240qWBQuyaEVCYtcy5nfnFurx5grLAqBbB7ZAZNPqLX6uSYVGE544EYe16Tnq+w4erni8VYjN53vL3/7/axGs3oPkff6Bo2ewoHNLBLpUeJc/ERFRxSqK169fDz+/in+4+v333xEaapmTUJ4//vgDU6dORadOndCtWzdV5SvVwbt27TrnfBIMSxBsPXh7e5ectnr1ahUsf/vtt+jevTvGjBmDF198ER999BF0Ol1JG+yWLVtizpw56NChA2bNmoVrr70W77zzToVvE5XvnuGR6uvPe+IQn1lg682hOnY6NQ8v/nZYHX98TAeM7NS4WwhKtcx1fcLU8ffXWubqENXGH9qv/3G0JCSePaJNjYbEVgMjAzBvSm8VDq85nIR7v9+t2swTEVHDk5BVgEmfblUhsZPWAa9P7IKnxtV8NY8Ewi9e1RlPjZX/t4Bv/o7BHV/vRG7RuV2hiC5EqmFn/7gXCVmFaBXogVev6dKo5xJfyJDIQPh7uSC7wIBmBZaK/XVp2So0FC4aBxSZzGpOLVWPsXgusd5kgoe2ei2Kd0Sl4Ye/z6jjz0zojEBv12oH2P87FqtCYtn593zrZg02JLaSquIpzSwLtV+KSsAvSRmV+r9JqrjF9lPpasa03gTVpp2qL8coCyrKDonF3D9PIDWnCOH+7pg2tBXshbzG7zgUrUJiJwcHPN4yGAu7trJ5SGylcXDAS21C0cvbHblGE+45EoPkIr2tN4uIiBpaUDx06FA4OlZ8JdKgQYNUi+fKysrKUl/PD6WlCjggIACdO3fG448/jvz8/JLTtm3bhi5duqBp06YlP5Mq4ezsbBw6dKjkPCNGjDjnMuU88vMLKSoqUr9f+kDl69W8CS5p5Qe90YzP/4qy9eZQHZLA6IEf96JAb8SA1v64vQZaYzUEdw+LVDtYt55Kw47odFtvDjXAHaTPLT+kZsOLJ6/ogNkj2tbaTtLBbQLx2a291Py/VYeSVEBNREQNy97YTFz14RYcPJsNPw9nfHt7P1zfp/bmAsr/WdMHt8LHN/cqGXNw3SfbkJhVWGvXSQ1nLvGm4ynqeSPPH6lSp3N5OGpxefH871NHUuHjqEWGwYjd2fklrz8nDZBjMLL1ezXIfZeuMyDbYISnY/VC4gKdAa8styy+ntgnDIPaBVbr8nINRtxzOAbr03NUZe2cduGY0LQJGjp5bj/QvCluKm7F+2JUPM4UFFW6/fT2U5bW1fI6kfuSr5PqyTeakFrcbrqskHjfmQz8tCNOHX/syo5wcbKP2dDRBUWYfCAK+3ML4O2oxacdm+OGEH9o7WyBktyv77aPQCs3FyTrDHjkeByy9GydTkREFVPp3ikSGn/99dcoKKjZqlGTyYTZs2dj4MCBKhC2uummm1S1sFQ1S0j8zTff4JZbbik5PTEx8ZyQWFi/l9PKO48EwBe6HTI7ufTM5fDw8Bq9rQ3VPcMsVcU/bI9FWm7FP4hT/TZ3wym1Y9HL1RFvTeoGDVuXKaG+bri2l+W9g1XFVJNkXtajP+3HV9tiVBXWSxM6444htb/aeli7ILx3Q3d1/PO/TmPlgYRav04iIqoby/aexfWfbkNyThHaNvXEspkD1az6ujC6czB+uLM/AjydcTghGxM+2oLD8VyoSxd28GwW3lhlWbD27JWd0C7YftqS2hNpJz2+ezN1fOuxFAzytoz2+jPNsjhfSFVfntGIAlZLVpkExBkGAzy1WlXRVx0frz2J+IwCBPu4Yublbatd/Tj9UDR2ZuermclzOzbHpf7/duZrDGHxIy2C0d/XAwYzVCvqiupbHBTvj81EXpGBr5MaoDeZkVqkh9yFF5pJbC1AeLV4ocSVPUJLKrttbXd2HiYfOI24Ij1CXZzwdeeW6OXz76hEeyNB9scdmyPQ2RGnC3RYnMSiBSIiqqWguEePHvjf//6nWkDL7OC///4bNUFmFR88eBA//PDDOT+/8847VfWvVA3ffPPNKqReunQpTp2yVFHVBgmkpbrZeoiNja2162pIBrcJQJdQH1VZumBrtK03h+rAvthMvFccgkpY1czXzdabZFfuGdZa7aT560QqdsVUvOUVUVn0RhPu/2FPyTzwOZO61elMvjFdQnBXcSj98OJ9OJlsmc9ERET1t0PFnNXHcP8Pe1FkMOGy9kH46e4BCPer21aK3cN9sfSegWgT5InE7EJM+mQr1h9NrtNtIPsnoc193+9RXaxGdwrGDX24oLs83cN80TLIQ91fTbItbd3XpuWoVslCVcOZgTwDK86qWiGZpjfAxUEDp2oulpZKykX/WFpOPz6+IzyqUSUfX6jDbQdP40heIZo4avFFpxboY8fBVm2GxbPCLQUjv6VkqqrQigjzc0doEze1OHdPdIZ6ncg/vk6qxqRas+tRaDLBs4yQWPz49xmcTslDEw8n3DuyegslasofqVm481CMmqvc2dMN33RphZbule+eWdeCXZwwt0NzTA8LwO0NvNU8ERHZMCh+9913ER8fj/nz5yM5ORlDhgxBx44d8dZbbyEpKalKGyEzg3/77TdVNRwWZpnrWZZ+/fqprydPnlRfJbA+/3qt38tp5Z1HZh27uf032JK22XJa6QNV7IP4zOGt1XEJinMKOQ+jISvQGVXLafkDalzXEIzvZlmxTv+SnazX9LTMa2dVMVVXod6Iu7/dhd/2J6i25h/d1BPX9Cz//8za8PCodmrUQJ7OiBnf7lY7bYmIqP5JySnC7V/twAfrLH9X3TW0FT6b3Bterk42+9y05O4BGBjpr/6PkW2T2cVEVi/8ehhRqXkI9nbFaxM5l/hiXDUOGNU1RB0/eSgVXloNUvUG7Mv5d5SXi1aDXKNRVfxRxelMJlUhaS6nQrKiivRGvLzskLqscT2a4ZLIqgc7p/ILMeXgacQU6hDi7IQFXVqig2fjXczd2csNQ5t4QSZxfxqbUumq4n+K20/LaynHaFQzn6lyMvQGZBpMqjV7We/ZKdmFmFc8UumeEW3h426bzyFW0mb8y7gUPHo8DnqzGZf6eWFepxbwd64/Yw7aerji1mb+/H+SiIgqrEqfaGVe8TXXXINly5YhLi5OtYd++umnVYvmCRMmYN26dRX+z1dCYqkQlt9p2fLis0337t2rvoaEWP7g6d+/Pw4cOKBCa6s1a9aocFcCbOt51q5de87lyHnk51SzRnYMRutAD+QUGvDt35YVsdQwvfr7kZIdNVJNzA+gFzZzeCS0GgdsPJ6iWnQTVYW04rrj653480gyXBw1ake+VPfagqNWgw9u7Imm3i44mZyLR37az5ldRET1zLqjSRj97iY1F9jZUaPGhzw+poP6zGJLPm5OmD+1Lyb1ClMtKp/+5SBeXnFYVT5T47ZifwJ+3Bmrxm68c313+Lo723qT7J60Qr6qeDHv/pgMDChuP70mLfucmZY6E1DAAKySFZIGS4VkNecSi3kbohCTmg9/T2fcP6pdlS9nf04+bjsYrWaTyozSr7q0RAs3+69+rG13h1tmPf+emoWo/KIqzinWqMAwn1XFlSIz0KXq3lPrUO483w/XnEC+zohOYT4YV9wy31YMZjNejErAe2cs+5hvCfHDW+3C4VbNBSFERET2rlr/023fvh3PPvss5syZg6CgINWyOSAgAOPGjVPtqSvSblrmD3/33Xfw8vJSs4TlYJ0bLO2lX3zxRezatQvR0dFYvnw5Jk+erKqYu3btqs4zcuRIFQjfeuut2LdvH1atWoWnnnpKXbZUBosZM2YgKioKjzzyCI4ePYq5c+di0aJFeOCBB6pz8+kCZD6tdVbxF5ujVAUcNTwbjiXj622WCo83J3XljppyNPf3wITurCqm6nnnz+Oqhbm7sxYLbuuL4e2CbLo9gV4umHtzT9VaXXbcfrH5tE23h4iIKkY+mz+z7CCmLdiJtDwd2gd74ddZg3Btr7rvUFEWCa7fuLar6mAhPv/rNO5euEt1s6HG6WxmAR7/eb86PnNYJPoXhzh0cS39PBAZ7KUWXgTmWcLgP9OyVdhp5ayRWbsGLvyrRIVklsEErxoIiY+czcLC4rFdj17ZEd5uVauk3JaZW9Iit4unG+Z3boGmLratyrQXUlE93M9Luqzj07iKjTSQ+biybio6NQ9JWYXqZ9JiPNtgKmndTuUrMJqQqtPDWbVmL3vX857odPyxP0EtAnp4bAe1T9FWCo0mPHD0DH5KyoBsxSMtg/Fwy5ByQ24iIqJGGxRL5a4Ew507d8bgwYORkpKC77//XgW5zz//PObNm4fVq1fjk08+uehlffzxx2oG8LBhw1SFsPXw448/qtOdnZ3x559/qjC4ffv2eOihhzBx4kT8+uuvJZeh1WpV22r5KhXCt9xyiwqTX3jhhZLzSKXyihUrVBVxt27d1PbLdsrsY6p547s3Q6ivG1JzdVi0k/OdG5qMPB0eXmLZUTN1QAsMbmNZoUtlm3VppPpDc93RZByIy7L15lA9s+l4CuYWt+KSHef2snO0V3M/PDW2gzr+6u9Hsf10uq03iYiIynEoPgvjPthcstjv9kEt8cvMgWgX7AX7HGkTifdv7KGC41WHkjDly+1q5Ak1LvKYP/DDXmQXGtQs6/tHtLH1JtUr0hZ5WHvL32sJxzPgodWoitMDuZbF+daqYpm3m8+q4ouSObXpxRWSUrFdHXqDCS8tO6Se45d3DsbQ9lVbCLo6NQuzjpxRVeGX+Hjgs07N4etUf1rk1oW7wy337arUbJzIswS/5fFyc0LHUJ//tJ8uNJnVa4XKJ63sU/V6GMwotxJXuma9tfKoOj6hVxg6NLPd2L88oxEzj8RgU0YuXDQOeKd9OG4OsY+/u4mIiOpCpT89ygzh1q1bY9q0aZg6dSoCA/8bEkm1b58+fS56WRdbsSqtrDdu3HjRy2nevDlWrlxZ7nkkjN6zZ89FL4uqz0mrUTPOnll2CJ9ujMKNfSPUz6j+k9fsE0sPqJl20mL8sTHtbb1J9ULLAA9c1T0US/ecxfvrTuDzyb1tvUlUTyRnF+LBRXvVzLKb+0VgXFf7mgU+ZUAL7D6TieX74jHzu91Yce8gBHm72nqziIioFGnb/OWW03jjj2PQGU2qK8ScSd0wpK39L/Yb360Zmvm44rb5O7A9Ol19lrKn6meqfXPXn1SPvaeLI96/oQf/rqyC0Z2CVXvjnVFpGNyzHf5Iz8bq1Gx083JXp0u1nAYOyNYb4a7RcKRQGQwmM9INBnV/lVchWVFfbT6Nk0m58HV3wkNXVO3v6sWJ6Xg5KkFVy47098bLbULhXAPb1tC083DF5f7equ36p3EpqpVwReYUH4zLUu2nx/cMVa8LJw2QZZCFAnydlEW6FaTr9aqi2FtbftX9Tzti1WtAKunvvszSmdAWMvUG3HPkDA7lFqjFNB+0j0AvH0urfiIiosai0p8gZdbvkSNH8PDDD18wJBYyH3j9+vU1sX1UT13XOxwBns6qTdjaIxVr70P27+fdZ/H7wUTVbvbd63vA1an67bYaC6mKkb8l1xxOUhU9RBcj1QX3/7BXdWeQ1qBPj+sIeyM7SF6b2AVtm3qqBSSzvtsDPVfZExHZjaTsQkz+cjteWnFEhcSXd2yKVbOH1IuQ2Kp3Cz/cW7wDec7qYxxt04jsisnAu8WjW16c0AkR/pZgkyqnSzNvBPu6okhvQljxiFZpP1164b67VoMco5FVxeWQ9tx5BpMK06vrZFIO5m+KUsclJG7iUblRTvLYzYtLwUvFIfGkpk3wWtswhsTluCssULUTlrD4WAWqiiUoFjui0tSCK+HK6vsKha6ZehM8tdpyw/S03CJ8us7SNUtCYh8bjTNL1unVbG8JiZs4ajGvUwuGxERE1ChV+lOktJsmuhgJECcWr/ZfzPbTDUJsej6eXX5IHZ89og26hFlaMVHFRAZ54sriatAP1p609eZQPfDhupPYFpWm5hJ/eFNPu12Y4e7siE9u6aUqfaTi57XfLe3DiIjIdiREWLonDiPf2YTNJ1Ph5qTFq9d0wWe39oJfJQMJezC5fws12iYhqxDzt1jmeVLDll2ox/0/7FEL5yZ0b4are7CSvKpctFoMbmdZHJIalQU3jQaJOj0Olmo/ba0qztIbOav4AqQ6MsNgVNWG1a0klXa7L/1yCAajWT0u0na6shWbb0Un4YMzlgX5d4QF4MlWnKN6MW08XFXVtfg49uLFDLK/Q/4Oy8zX43hijvqZ3MfyTxYM0H/lGoxI0xvgrnW46PPxozUnkFdkQPtm3rjKRp1C4gp1mHrgNKIKihDo7IgvO7dER083m2wLERFRvQiKe/bsiYyMjApf6KBBg3D27NnqbBc1AJN6Wdr5rD+WrNqnUv0Vn1mAm+f9g9wiA3o1b4IZQ1vbepPqpXsvtVQV/3EoEUcTs229OWTHtp1Kw3trj6vjL03orBYa2LNWgZ54a1I3dfyLzaexZFecrTeJiKhRVxHf8fVOPPDjPmQV6NE1zAe/3TdIjYOpr60yZbHU/0a1LWlFnJ6ns/UmUS175peDiMsoQLifG16Y0NnWm1PvjexkCSO3HU/BYF/Pkqri0qSqOJdVxRcMZjP0BkhRaU1U7H6/LQZH4rPh6eqIR8d1qNT7crbBiEePx+HbBMvc3IdbBGNWRNN6+95e12aEB6mq4vXpOThSaqHEhThqNejV0u+cOcXCTeOgXidFfJ38Zy5xms4ARweHi75ODsRmYsXeeHX84bHtodXU/fP3ZH6hConPFukR7uqMBZ1bopW7S51vBxERkb2o0KfcvXv3Yt++fdi/f3+FDnL+oqLinkbUaEmwIaGi/EH18x4uHKivpH34DZ/9jTPp+Yjwc8cHN/ZQfzRR5bVp6oUruoSo46wqprKk5hapChp575zUKwzX9KwfFTSjOweXLCJ5eMk+fL2NFV9ERHVJqgB/2hWHy9/eiD+PJMNZq8HDo9rh57sHoHWgfS84qoiruoWiY4g3cooMqusGNdznsbQY/2VvvAoPZNyNt6uTrTer3uvXwg9ebo7Iytejjdnyt5y04C1dPcyq4gvLMRiRY5BWutX/Gzg6JQ+fr7e02509uh0CvV0r/LtbMnJxzd6TWJ2WDekz9FJkKG5pZmmPTBUjQeCYAEtntI9jUy56/n7F7af/OvZvBbLMpzaYzcgzcAzC+S2ni8wmuF9kLrF0iXhzxRF1/Moeoegc5ou6djCnANMORiNFb0Ckuwvmd26BMNf6122FiIioJjlW9IyXXXZZhf9Y4GpGsrqud5iaLbVoZyzuGtKKz416GBLfWCok/uHOS9DMl614qltVvGJ/AlYeTMDxpBy0bepl600iOyLzrx5ctA/JOUVqsc3zV3VCffLIqHYo0Bnw1bYYPLPskKr4uv+yNnzvJyKqgyriJ34+gLVHLTuzpYr4zWu7oV1ww/mcodE44IkrOuCWL/7BN39HY+qAFpxZ28DoDCY89tP+kkXGj49prxYeU/V5OGkxoE0gVu1PQFZMDlx9HVQl3dG8QnQo1Wq1pKrYqIWHo32OPalLOpMJ6XoDXDQO0FTz82xuoQGP/rgXRQaTCiDHdbeMJboYmYn7TnQiFiVZuvw1d3XGS21C0dWL739VcVd4IP5IzcLGjBwVGHb2Knv/xvCOTfH270dxIDYLsWn5CC/+P8fFQYNsgwnejmY42qAa1t7kGY3INBjgrrn4e8YvO+NwLCEHXq6OmHl5G9S1HVl5uO/IGdU5obOnG+Z2iICPU4V3jRMRETVYFVoSefr0aURFRamvFTnIeZs3b177W092b2zXZmomWlRKHnafqXj7crKXSuJtDIlrWPtgb4zpHAxZd/PJBstqciKrTzdFYdPxFLg4avDRTT3V/N/6thP/ufGd1Bxz8e6fJ/Dc8kMqACcioponC3mXFFcRS0hcuoq4IYXEVoPaBGBI20DojWa8ufqYrTeHangm8W0LtquQWCqJX7umC6YPbmXrzWowpFr40g5B6vi2oykYVNx+WqqKzz+fqio2sKpYbn+m3qha6rpVs5pYqiif/Wm/qigO9HbBM1d3rtBCyj3Z+bhu36mSkPimED/82K01Q+JqaOHmgrGBPhWaVRzg5VJSVfz7PkurZCELBwpNZrZpl+e22awWU8j7htNFQvPMPB0+WXdCHb/r0kg08ajbKt51adm453CMetz6+njgs07NGRITEREVq9CnXQl9K3vQXqTdCDUOni6OGNvV0mp30Q7OrKxvIXFsegGa+zMkrmnWnV4yq7hQz5ZVZLEzOh1vFe/0fn58p3q7g192es0e0VbdBiHVxbN/3Au9kTtSiIhqUkpOEW7/aif+t3gfsgsN6FY8i3jm8MgGPSbksdHtIfnKr/visS8209abQzUgPrMAkz7ehi0n0+DhrMUXU3rjhr4Rtt6sBmdou0A4O2pwNqMAXZ2cL9h++tyq4sb92S3PaFJVkjVRWf3pupPYfDxVLQZ984buKoC8WCXzuzFJmHbwNGILdQh2dsJnHZvj0ZYh1Q6tCbgzLFC1796cmYt9OfnlnndMceX3yn3xJYtf5e8dFw2QZZDZ1Y17QUWW3oA8gwkeFXhezl17AtkFBrQJ9sLVvet2vNLPSRl46FgsdGYzhjXxwocdIuDB/dZEREQl+AmTap3M2BS/7Y9HXpHB1ptDFxGXkX9OSPz9HQyJa1rPCF+E+rohX2fEhlLzjqjxysjT4b7v96hqg6u6N8P1fcJR300Z0ALv3dBdtWNbvi8ed3y9EwU6LowgIqoJ8vlhzHubsK64ivjR0e3x090DGsVIi47NvHF1j1B1/JWVRxp91WN9dzg+G9fM3YpjSTkI9HLBj3f1x7B2lspXqlm+Lk7o2dJPHS+Iy1NVkWcKdTiRX3TO+VhVDBhMZqTrDHB0cFCH6lh1IAFf/XVaHX/yqk7oEGqpZi3LsbxC3LQ/CvPPpkKi+vGBvljSvTX6FVeBU/VFuLngyiDLbNy5Z8r/e3xouyC4u2iRkFmIfaW65LlqNCg0mlDQiKuKC4wmZBiMKiS+WIX8sYRsLN9tGSvwvyva19mCNnkP+zwuBc+filevp6uDfDGnfThcNNwdTkREVBr/Z6Ra17elH1r4uyNPZ8TKAwm23hy6SEh84+d/s5K4lskfUdZK+1/38zXR2Mk8vhnf7kJ8VqF6r3z56i4NZqbvVd1D8fmU3nB10mDDsRQ1VzIrX2/rzSIiqreKDEa89NthTJ2/A6m5OrQP9lJVxHcPa92gq4jP99DIdqoy8p/T6VjPRXf11l8nUnDdp9uQmF2INkGeWHrPAHS+SIhGVSfB8JD2gSXtpweU0X5aNPaqYqkULTCb4F7NMOlIfDZe/uWQOn7rwBYYVfw3YFm2ZOTilv1RKrxv4qjFO+3C8WKbUHhxXnSNuyMsEI4OwN9ZeeVWFbs6a3FZx2B1fOW+f/92t8ysdkCuoXEuhJVK6gy9VFQDzhV4nUhVvaw7GdklGN3raPa8bONrpxPxYfFigOmhAXi2dbNqL/4gIiJqiBrP3gSyGQk8JvW2VMct3sn20/UhJG5RHBKH+DAkri3jincSrDuSjHwdK+0bK1nh/PQvB9WObmnV/+mtvdXXhmR4uyB8e3s/eLs6YldMBq7/bBuSswttvVlERPVOVEouJn68FfM2WyrTpvRvjl9mDmwUVcTnk84stw1soY6/uvIoDI00zKrPFu+MxW3zdyC3yIBLWvlhyYwBCGvCuau1/Xf5iA5BkIjkaHw2+rpZ/tZbk5b1n8rhxlxVLOF4plRJai5eJVmetJwiPPL9HhQZTBjQJgB3j2hT7vm3ZuZi9tEzqjXuQF9P/NQ9Epf6e1f5+ql8Ya7OuCLAUlW8PLn8MQZXdLf87f7neaOj3DSyoMKkKosbmxyDETkGEzwrsEjtQGwmthxPVfPn7xjeuk62T9q3P3Y8Dj8kpqvvH2kZjHubN20wC7KJiIhqGoNiqhPX9AyFxgHYHp2udnKRfZF2t3d8vaskJP6eIXGt6xLqgwg/dxTojaptJDVOX2w+jR93xqr3xw9u7FFv5xJfTO8WfqqVpLSUPJqYg1u/2M6d+mRXZPHCxuMpWH0oUc09XbIrDgv/icGXm0/jk42n8N6fJ/DB2hM4nZpn602lRkhCGnlOjvtgMw6ezUYTdyd8Prk3nr+qM1ydGm+V2T3DIuHr7oQTybn4aTcXo9Ynn2+KwsNL9qv2vjJy46tpfeHj7mTrzWoUQr3d0DHcUrVtTMiHk4MDThfocKrg3PbT1qrivEZWVSwViJnFVZJO1agmlo5Bj/24D8nZRWge4I4Xr+2iQrKy/F0qJB7u54X32ofD39mxwdynepMZRSaTei5JBa7MtZX5z5l6o/reVnN+rwi0vBbWpmXDUM42dI9oghBfV+QXGbGp1N/uThoHtS9FXieNiTyW6XoDXDUOxZXV5ftk7Un1dWz3Zojw96j17ZPH494jZ7AqLVtVD7/WNgw3h/jX+vUSERHVZ5X+5NmqVSvs2LED/v7n/iebmZmJnj17Iioqqia3jxoICR2HtA1UrUdlR9cjo9vbepOolB93xOJIQjZ83JwYEtdx++mPN5zCiv0JGNe1ma03ierY2iNJeHnlEXX8iSs6YHj7hj2Pr0OIN36aMQDjP9qs5hAu2xuPicUz7Ils1cJ3zeEk9blk0/EUtVP4Yt5dewITe4bi3kvbINyPlW9U+3IK9Xjql4PqPVNI5eW71/dAsI8rGjv53DpreCReWnEEb685jiu7NYN7AwlWGrJle8+WfP6RlukPj2wHTTkBGtUsaRE7qF0gDsVmYfvxVPTvE4BNGbn4My0bke6u/6kqdiiuKpbQuDFU4lmrJL0dNdVa3PPmiiPYH5sJT1dHvHVjD3i6lr0Q4p+sXNx39AyKTGYMbeKFN9uGVSuktgdGs1mFwkaY1fNIljRJhbqTBnB20KqA1fL8srT5zjaY4KxxgJvGoU6fZ318PFSLb5mzuz0rr6Qd+/nkPWp012aYvylKtZ8e2eXfFuKuWg2yDUZ4OmobxdxbeX5n6AxqoY93BRar7YxKw87T6XDSOuD2oa1qffvSdAbceyQGh/IKVcX3O+3D0Z/zvYmIiC6q0p9ioqOjYbzAarmioiKcPXu2shdHjch1xe2nZcW/rLok+5BdqMec1cfU8dkj2jAkrkNji//AlIrivCK2n25MjiXm4L7v96g5TTf2Dcftg1raepPqRIS/O+4aYmk39v66E9A3ogoVsp+dWwfisvDMsoPo+/JazPpuj1rEJh9LZD5mzwhf9G/lj2HtAjGyY1MVPF3bKww394tQC97k88uinXG4dM4GPPXLASRmsY061Z7tp9Nxxft/qZBYKtEeHtUOC6dfwpC4lFv7N0dYEzckZRepDgBk3/6JSsPDi/er4/LZ59HR7RkS1zEJ6C7tYFmcuOt0OgZ7lT2nuLHNKpb2wZWpkizL4n9isXz3WdUx6KVruyIioOwKyh1ZebjviCUkHtzEE2+1q98hsVQGS4WwPGfkuRPm4mw5uLog3M3yNcjFCU2cHOHtqFWzl5u5OCPE1UmFydLyuy7bOEu16WXF7b1Xp2aVe94ruln+dv/nZKpqK24l4bCEpuk6qURv+Pu5pNV2ltEIjwrMzZbP3Z+uO6WOT+gVhmDf2t3XdCq/EFMPnlYhsSwAmNepBUNiIiKiCqrwkuvly5eXHF+1ahV8fCwtWoQEx2vXrkWLFpY5UUQXclmHINUqT3bkbDqRouZWku19uO4k0vJ0aBXogVsuaW7rzWlUOjXzVq2+o9Py8eeRJFzVPdTWm0R1IDW3CNMW7ECezqgqw54f37lRVGhYTe7fHPP+ikJMWj5+3h2H6/tE2HqTqIGTWXIpOUVYdSgRi3fGqYp2qxAfV0zsGabC4Bbl7Mi12n0mA++sOY6/TqTi27/PqND4ln7NVVWctFYnqgkZeTq8+vsR9fwSEoS+d0MP9GrexNabZndcHLUqQL//h734ZGMUbuwbAX9Pvhbt0cnkXNz5zS7ojCaM7hSMJ6/oYOtNarTaB3khIsAdZ1Lz4ZReqMKyk/lFOJFXiDYermXOKm7IVcUS8GXoDTCaAfdqVBNL9eS7qyyLsGde3hb92wSUfd6sPMw6EoNCCYl9PfF2u3BV8V0fSSBYYDKp1tkeWg2aODpV+PkiobyExu5q3q9RPQ5SZSzVoHVxf4wK8MGSpAysTc/BkyZTmUG9BP5dwn1wIDYLqw4k4KYB/+7/lGpiqYp21RjQxLnhttGXub9SsevsoFHvDRez9USqqqx3cdJg6pBWtfr8W5qciddPJ6jXUzMXJ3zcsTlauPHzABERUY0HxRMmTFBf5YPelClTzjnNyclJhcRz5syp8BVT49yRM6FHKOZvicbinbEMiu1AdGoe5m+xVF88PbYjnLT18w/T+kreT6Xl9IfrT6r20wyKG0er27u+2YWzmZZ54B/f3AvO1dgZVR95uDiqUE1ahb6/9iSu7hHW6O4DqlmnUnLx+4EEJOcUISNfr0K2jHwdMvP1SM/TqVnwpcnzbVSnYEzqFYaBkQHlzgw8X8+IJvjm9n74OyoNb68+ju3R6fhyy2l8v/0MpgxogTuHtIKfh3Mt3EpqTLOIX1l5RD2XhQSfj41pr9os04Vd2bUZPtsUhUPx2Vi8Kw4zhlo6V5D9kMU6ty3YjqwCPbqH++Kd67uzktiGJHwb0C4QZ1JjsPNoKoZ0bYJ16Tn4OTkDj7b8t6Xu+VXFeUatCsQaasvp7Gq2nM4tNOC5nw+q7iOju4bg5gFlL8LenS0h8RkVag309cSc9vUzJLYExGboTGa4OzogwNFJBcVVqch21DjAV+Oonm/yeMjihEK9Ae6OWrWYobb08nZHgJMjUvUG/J2Vh8FNvMo87xXdmqmgWNpPlw6K5fa6aR2QbjDCRatVt6Ghkcc6S2+EzmyCj6NjBauJLbOJJ/WNQEAtLaiUCvaXohLwe3FFeH9fD7wcGdZgZnwTERHVlQp/ejGZTOoQERGB5OTkku/lIG2njx07hnHjxtXu1lK9N6mXpf20zASUnbdkW7IjUm80q3aa0maT6p7MKRYbjqeoOYTUcMkfy4//dAC7YjLg5eqIeVP6oEkjDZRu7tdcVV9KYL54V6ytN4fqIdkJ++fhJNz6xT+4bM5GvLX6OL7eFoNf98Vj88lUFRjJ88saEksYLOHESxM6Y8eTI/DBjT3U/32VCYlLu6SVP3686xJ8c3tfdAv3VdfzycZT6P/qWjy8eB8Oni2/fSHR+U4m5+CGz/7Gw0v2q5C4fbAXfrq7P169pgtD4ouQwNHaFeenXXHq/1uyHwU6I6Z/vROx6QWI8HPHvCm94ebcMMPG+kJmwQ4tXrS99WQqJgT4quO/JmdesO2vVA46OTggVWeo07bA9a3l9GfrT6pFEWF+bnh8fMcyq2klJL7n8BlVgSuhlsxQrY+zbeV+k1bRsuXSOlpaSEsr6erch0ICc39ny+XJDNxcg0nNPK4t8vweUdx+etVF2k9f1ilYzdo9kZiD44n/dqgR8hjKZqbp9aoVdUOTZzQhw2CAu6Zi798bjiTjWEIO3J21uHVg7XSfPJxbgBv2R6mQWLbq/oggzO3QnCExERFRFVT6f8/Tp/+d/VRYWAhXV87Ioorr2MwbXUJ9cOBsFn7ZcxbTGslcTnskOwVWH05SO8mfGtuhwbYRs3eyI7h1oAdOpeSp9tNSXUkN08cbT+HnPWfVa27uzT0RGdR45yXJDuJ7hrXG878eVu3vpe2vdJ0gupjMfB1+3BGLb/6OQVxGgfqZ/PclXUo6hnjD191JVfQ2cXdWCzFk5IWvuzO8XR1r/P85ubzBbQIxKDJAzZp/988T6vONVDTKQdoES6v1MZ1DWDVP5bZGl/fBTzedUov33Jy0mD2ijfqMzE4vlVt49+zyQziRnIuDZ7PRJezfMUlk20U99/2wB/tiM9X784Lb+iCArcFtToKxnuG+8PN0RnquDo7pRapVa3yRXs0qvjLIEhyX5q6V1rpGpOr1aOrgrGYdN6SW0xLsSShZVUelo8E/Z9Txh8d2gGsZl7U9Kw/3H7GExJf4eODddhH1LiSW9sOy/bJ4INjFCZ5araoGrmmuWmk97QSzWY9soxHeWm2t7bMYFeCNHxLTsT49B0UmU5mPiY+7Ewa1C8T6w8n4fV882ga3O+d0T61Gze+V51SAc81/9rQVvcmsWk7LY16R176898vCCXFD/+bwreHF0bIg7LuEdLwdkwSD2YwQZye83i4M3bzca/R6iIiIGpNKfyKVCuIXX3wRoaGh8PT0RFRUlPr5008/jS+++KI2tpEamOt6W4KwRTtjueLfRuSD+wu/HVbHb+4XgbZNy26vRLVL/ngc27WZOi7tp6lhWrb3LN74wzKv7LkrO6pwqbGTdqrB3q5IyCrED9tZVUzlOxSfhUeX7Ee/V9bi1d+PqpBYQoe7hrbCpoeH48upffC/Ue0wfXArXNMzDMPbB6kK4ub+HqoaszZ31MllX9ahKZbPGoif7h6Aq7o3U9Um0j1A5qYOfH2dmmucnF1Ya9tA9Y/JZFZzs0e9u0mNoJCQ+LL2QVjz4BDcNbQ1Q+JK8nZ1wsiOTdXxn3ZbZjuT7b204rDqJCWLZT6f3ButAhvvIjl74+6kxSVtLZ9HNx9LwcSmlhnoMqu1LF5aDfKNMqNUX6sVnnXJ2uLYoxoLFuVv69d+PQwpIr28czAuibzwXOLFiem4+3A08k0m9JWQuH2ECkPrU1iYrTdAbzbD38kRYa4u8HVyrJWQ2Eqqk6W62NqOurZ093JHkLMjco0mbM3MLfe80n5arNqfAMN5FfbymVCCc6m8lctqCGSfXabegCKzSS0YqYg1BxMRlZwHbzdH3NS/7BbsVSHbMvtoLN6ITlQh8aV+XljUvTVDYiIiomqq9KfSl156CQsWLMAbb7wBZ+d/V4V17twZ8+bNq+72UCMwvluo2llwNDFHrfinuichvdz/UmE1e0RbW29OozeuuP30xuMpanYbNRzyh/V7f55QYZGQ6sJb+9dO6636RiotZl4aqY5/tP6kqqojKk1GVHy1NRpXfbQFY9/fjB93xqLIYFKVw29M7Iq/H78Mj4/pgHA/+9gxJDsHpYr4vRt6YMujl+KBEW0R5OWi2lC+t/YEBry2DjO/263e62WnMjVOuUUGLNhyGpfO2aBm1sek5atFM5/c0ku15A1rYh/P5/poYq+wksVZOkPD2EFfn325+TTmb4lWx+dM6oY+LfxsvUl0Xvvpwe0tQfGmYym4MsAHjg7A3px8nMwvLPP/OS+tFlkGE9J1hnq/6FsqRy0tpzWqyrqqft4RiyPx2fB0dcQDo8+tMBUSZr0alaDmqBrMwBUBPvigfQTc6klILIsCpJq8UGbTOjmqltAS3tZVVblcT6Czk2pJLfNoayuQHulv6USxKrX8fVT9IwPUYsW0XB22R6X953SZp+zkoEGqTq+eYw2h5XSmwQCPCobEEp5/vv6UOn7zgBbwqsHxGYdyC3DdvlPYkJGjqpsfaxmMt9uFw5udqYiIiOq+9fTXX3+Nzz77DJdddhlmzJhR8vNu3brh6NGj1d8iavCkXc/oTsFYvi9eBZZsDVe3sgv1eGuVpbLx/hFtVYtOsi2p6G7b1BPHk3JV1YW04aX6T4LP/y3eh9+KK8VvG9gCT17RwdabZXcdJj7ZcErNkl34zxncznEEjZ68btYeScbSPXHYcCylZMabVKuM6RKCqQOao2dEE7tv5Rfk7Yr7R7TB3cNaq6pRCbx3xmSozhFyCPFxxTU9QzGxZxgr7BqJ2PR8fL0tGj/siEVOoUH9TBbsyWzde4ZHwtOF8/Sqa3BkAAKLF2dsOJaMkZ2Cbb1JjdYfBxPx4gpL96LHxrTHlcUVeGQ/nB0c0LeVn5ofmppThNTUAgxt4oW16TlYkpiBx1pZFrJeKFDz0GqQbjCoYLmJc/2coS4hd4au+i2n5b77eK2lxe7dl0XC3+vc1uoSsD58LBZ/Z+Wp7++NCMLtoQF2/znGeh9J9bME3VIlK9XDUtlrC9IKOtDFCUlFOlXVXhvbIe2nv01Iw4b0HDV/uaxqbydHDUZ2CcGif85g5d4EDLhApyjZPqm+lnbN0p67unObbdlmXG6DhN9yqIiVe+MRl56PJh5OuK5fRI1ty/G8Qtx1KBo5RhMiXJ3xRtswdPB0q7HLJyIiauwq/enq7NmziIy0VACd35Jar69cJdyrr76KPn36wMvLC0FBQZgwYQKOHbMEWCI9PR333nsv2rVrBzc3N0REROC+++5DVlbWOZcjH7LPP/zwww/nnGfDhg3o2bMnXFxc1PZLVTTZzqTe/674ZxVZ3ZLKvbQ8HVoFeODWS2q2DRBV3dgu1vbT8bbeFKoBSdmFuO7TbSokloDr1Wu64NkrO8GxnlQO1BWZSzyruKr44w0nka+zhCfU+Frw/h2VplpL93npT1V1++eRZLXztkuoD54Z1xHbHr8MH9zYA72a+9WLnatW0kFFApIldw/AivsGYYrMaXN3Ui3XP1p/CpfO2YhrP96KH3ecQU4hO0o0NLKTfUd0Ou7+dheGvrken/91WoXE8hnsxQmd8fcTl+GR0e0ZEtcQ+T92QnfL5ym2n7bdgtRnlh3E3Qt3QYpNZcTNXUNa2Xqz6ALk/9Imzo7oE+mvvt94NBkTm1qqvn9LyURBOW1zpcLTTaNBqt5QaxWetU3CJpklW52W0+LdP44hr8iAjqHeuLp3+DmnRRcU4Zb9USoklvtLKh+nhwXWi88xepNUkZrUYy0VxCEulvbPtiTXH+DsBIPZpALMmtbF003N6pb5y5sv2n7aspBi09Fk5Jbx+c3TUeZ6m1Sr5PrbctpYqZbT0s3ji42W8YRTBrWCew19vokpKMKMwzHqddvNyw0/dGvFkJiIiKiGVfp/7Y4dO+Kvv/5C8+bnBkxLlixBjx49KnVZGzduxMyZM1VYbDAY8MQTT2DkyJE4fPgwPDw8EB8frw5vvfWWut6YmBhVxSw/k+srbf78+Rg9enTJ976+viXHT58+jbFjx6rfXbhwIdauXYvp06cjJCQEo0aNquxdQDVgQOsAhPq6qSoyqbS5qnuorTepUYhJy8P8zZYWcE+O7aB2YJN9GNs1BO/8eRx/nUhFZr4Ovu6s9K6v9sdl4o6vdyIpuwhN3J3w8S29cEkry044+i+poJ+74SRi0wvwzbYYNZuTGmYYnJxThDPp+er/IsvXfPU1Oi0Pmfn/7mSTzwcy51cqbiODvNBQdGrmg+ev8sETYzuoqunFO2NVG2qpNJbDc8sP44ouIXjiivbw9zy3IonqnzNp+bj/xz3Ycyaz5GeD2wRg2sCWGNo2EJo6atnZGNtPSyC/7mgyMvJ0aMLOOXUWKMjiuBd+O6wquq1dQ54f36lehGKNlYtWgwHtArDxcLIKvGZcFqmCsvgiPdakZWN8kG/Zv6vRwGgGUnR6VS1p6xCxMqQdsMxZdnGoXsvpv0+mqlms8nb+2JUdoS31vr4tM1dVEkuwFezshPc7RKCdhyvqA1kkoDObEOjsqKqIq3Mf1TQvRy0MJkck6w1wgEONtr+W96qR/t5YEJ+GValZGOHvXeZ52zfzRotAD0Sn5GHdoSSMv0BHMEv1vQPSDUb1Wqto62Z7kVvJltNi2a44JGYVItDbBdf0qZkuaQlFOtx1KAZpegPaubviww7N6919SURE1CCD4meeeQZTpkxRlcVSRfzzzz+rKmBpSf3bb79V6rL++OOPc76XKl+pLN61axeGDBmi5h7/9NNPJae3bt0aL7/8Mm655RYVLDs6Op4TDAcHX7i92CeffIKWLVtizpw56vsOHTpg8+bNeOeddxgU24j8ESXhgMzs+377GQbFdeTVlUehM5rUjspL2wfZenOolMggT7QP9lKzo1cfSsJ1fc5dkU71w6/74lW7aZmj2ibIE19M6YMIf86bLI+TVoP7Lm2Dh5fsxycbT+HmS5qzuq4eSc0twtZTaWq+ulTESrVktjpuUJVl8lUWv8RlFKjXRVm8XBxVSDqhRyj6tfRr0CGaVNLLbZWDdB9YuuesCo1PpeSpKkhpUbzwjn7qtUH1087odNz5zS41Z9vFUaMWPUwd0BLtghvOwgd71T7YW80xP5yQjV/3x2Ny/xa23qQGTxb/PL3sEDYdT1HfS8X8SxM6Y0BkgK03jS5CgtIBbQLU3+anU/IQk5qHiU2b4IMzyfgpKb3coFhIOJxjMCK1SI9gV8sM2fpRJVn9ltPSFe3NFUfUcWmv2y7Eu+Tyf0hMx5unEyG11lL9+E67CPg714/PtvJ4ah2AEBdnFcraIwmvZdZzut4Ir2qG/ecbFeCjguJNGTnINxrLrKSVUHlst2b46M8TWLkv4YJBsZDXhM5gRFqRAc6umjqb61xTLadl1nJFW04X6oyYv8lSTTxtSCu4VOP1ZSXbICFxgk6P5q7O+Lhjc84jJiIiqiWV/rR61VVX4ddff8ULL7ygqn4lOJaWzvKzyy+/vFobY20p7efnV+55vL29zwmJhVQmS5Vwq1atVOXwbbfdVrJ6edu2bRgxYsQ555eAePbs2Re8jqKiInWwys7Ortbtogu7vk84Plh3An9HpeNkcq4Kyqj2bDuVhj8OWVY8PzW2I1f326FxXUNUUPzbgQQGxfWwWvLdtSfw/toT6vvh7QLx/o094OVaP+e21bWre4SqtvjRaflqluvM4f8dcUH2xWA04ettMXhnzXHkFFWspZ7siJZq4Qg/d7WAormfO5r7uyPCzwOtAj3gWgM7lOqbpt6umDG0tWrNuv10OqZ/tRPbo9Px5qpjeIIzzeslma/96JIDamFe51BvfD65N0J82B6xrquKD/92GD/timNQXIukxehnm07hg3Un1UIg6VQ0c1gkZgxrpRbEkP2T8SiB7i7o3doP/5xIw+/7EjBpSAt8HJuMvTkFOJFXiDYXqYKVMFFmsabqDAhydlKXac+kwjfTYKx2CPrVX6cRl16gKifvLB6jIt6NSVJBo7gy0AfPtG5WLwJ0k9msQmJXjQYBdtBmujyyH0OCdxPMyDIY4a3V1ti+jQ4ergh3dUZsoQ4bM3IxJsCnzPOO6hqCuWtPYE9MBuIz8tGsyYUXB8tM72yjUVXfBzo72X1YbG05LWGxj1PFdxn/tCMWabk6hPi64soe1S8Ekfnedx+OQUyhDiHOTvisU4t6s+CCiIioPqrS/7KDBw/GmjVranRDpDpZgtuBAweqSuILSU1NxYsvvog777zznJ9LaH3ppZfC3d0dq1evxj333IPc3Fw1z1gkJiaiadOm5/yOfC8BcEFBgZp/fP7s5Oeff75Gbx/9VzNfN1zavin+PJKE7/45g2eu7GjrTWqwjCYzXvztsDp+k6x4ZkWLXRrbtRneWn0cW06mqiokP7ZLrDevrwd+3Ivl+yzzpe8Y3BKPjelwTvs5uvhcyftHtMEDP+7DZ5uicGv/5vBmyG63dsWk46lfDuFIgmUhnSz0kgoybzcneLk6qsdOfXVzUse93RxVQCz/77NK9sJkB2e/Vv54c1JXzPh2t3od9IxogtGdL9wth+xzwZCMkJDQTIzuFIy3r+8Gd+7UrHPSuv6VlUewLy4LJ5NzGlQLe3vxT1QanvzloFrsKwZG+uOlCV3QMsDD1ptGleTuqMWIriHFQXE8ZlwaiaFNvLA2PQc/JWXgsVaWWazlUbNYjUZo9YC/k/2GxXlGI1JroOW0tBv+evNpdfzBMe3hUdwJ5/uEtJKQeHbzppjazL9eLM42FIfEUqkZ4OxYL4JtaesszzW9ddsrEWiWRx6vUf7emHc2VbWfLi8oburjij4t/bA9Kl0tsrh9WOsyL9NLq0WO0QjoYPdhcUnL6UosppCFQ99vi1HHpw1tDadqjjiTau5ZR2JwLL8Q/k6O+LRTcwS78G9DIiKi2mQ3ey6kIvjgwYOqJfSFSKgrc4ZlVvFzzz13zmlPP/10yXGZk5yXl4c333yzJCiurMcffxwPPvjgOdcdHs7qvtpw8yURKihesisWj4xu1yirieqC7HCWFnyy4/6BEW1tvTlUBtm51qmZNw7FZ6vZ3Tf2jbD1JlEFVlw/ufSAComdtA54eUIXVoNX0fhuofhw3UnVfldmqUtwTPYlLbcIr/1+FIt3xanvfdyc8PCoduq9igsjasboziGYPqgl5m0+jYcX71MjCVoweLF70oL0ocX7sGJ/gvpeqsQfGdWuQbdQt2cBni4Y1jYQa48m46fdZ/Ho6Pa23qQG5bf98Zj13R51PMDTGU+P64jx3ZrVi0CM/svJwQED2wWovxOTs4uwKzodE5v6qaD4t5RM3N+8KdwusshLUxyESaWuBHcBTk5wtbOFYYVGE1KKDDCbAbdqhFjy2f/13w7DYDRjYNsADO9gGef0V0YO3jidqI7fHxGE20ID6s285gKTSYVxfs72NY+4QhXxzk5IMulV9WlNtSSW9tMSFG/JyEWuwagWQpRlTPdmKiiW9tPThrYq831QU0/C4qq0nBZ/7E9Q8+kDvVwwpuvFF5dc7Dn5wNFY7MspUI/ppx2bo7mbCxoDo9msDtJaXb7KU8RNo1HPHyIiotpW6U/ITZo0Ua2hzz/4+/sjNDQUQ4cOxf/buw/wJqsuDuD/7O5NF3vvDTIcoCIILgRxK7hwL/jcC/cEcYAT3AoqQxEVENnI3qtsSksHULpXRr/n3DQVpC1tSZv1/z1PbNqE9G3N23vfe+4554svvqjWaz7wwAOqv/GiRYvQoMHpvT1ycnJw6aWXIjg4GLNmzYLBUPlOsl69eiEpKamsfLT0Lk5LSzvlOfK5lLD+bzaxMJlM6rGTb1Q7LmhZDw3C/ZFdaMFvpYtr5Fy7UrNVaVAhCzmRQb4xyfZUl3eKL1uEI/f31rwETFt7WF3EfXBDNwaJz4IEGh8p3cjy+fL9quctuU/W/LerDuGi8UvKgsTX9miAv8f2w829GzNI7GRPDG6Dnk3CVUnve7/boIKQ5L7Scwpx/aerVJBYFq3fuqYTnhzchkFiNyg/LWZvTFZ/w8h51xWP/bRF3R/aJR4Lx/THVV3qM0jswUxaDYL0evRvb6/ANnfTEfQJC0S8yaDKNC84XrU2XBJgDNXpUGAtQUpRscrydKfg11GzWQWxKwv6VcUfW1Kw4eAJmAxa/G9IG/Xe351XiMcTkmCT8yI6zGOCxJK1WVxSghijQWUSe1KQ2MGk1SLaZIBRo3Hae65lgAlN/I3qd7P4RE6lz+3fJhoBRh2SMvLV+6IyjmBxbmkZarObjU2yCeKE2aLOl+qUHpeKKt+tOKjuX9+n8VllE0t2+xO7k7AqK08FSCe1bXTG8veeSv7/51tt6n2bZbGoLO58m039DuRXKEFyeX9LtQaphiD/f4iIiGpTtUdw6Ums1WpVdq+UZ5ab3JevSVZwq1atcO+99+Kzzz4742vJQCdBYgn+/v3332jatOlpz5Fs3oEDB8JoNOLXX3+Fn9+ZJwmbNm1SAW0J+Io+ffpg4cKFpzxHSmfL18m1ZHHZkTX53Wp7qRpyHikBNGb6ZtUnb0DbaIwoXTQj93VZx7iyntLHcv/tlU7u5/Nl+/HR4n3q/mtXd2SJWCe9/6WMcU6hpSwzj1xrS1Imrp68As/O3qaC923jQjDj3j5465rO3HhUS6Q894c3dlOZelLe+7nZ21x9SFRJ0OzqSSux6XAmwgIM+OaOXri2BzcMuYOL20YjxE+PlKxCNaeis5eZX4zRX69HgdmK81tGYfy1XRAawFKgnk6CV5IxLOWnxaIdaSgstmJ4TLj6/Oe0jCq/lgRN7VmdGqQWFeN4sVn1vnUli60ER4stKLTYEHyWWc65hWa8Py9B3b+jX3PVk1ZKWT+4M1EFeHqGBOLZZnEesXFCMnBFrNGAMIPeI465IpK9Xs9kgE5jLy/unPLT9pLTUn66MgEmvepVLGats2+m9MRgsSNILFUBqlNyWizbfRQHj+UhyE+PoWex3iQB0uf2JGNRRo4K/L/fthE6BZff99mTOUq9F5XYYNACoXqd2qzRwGRUt4Z+JnWTDRBxJgPqm4wq+zzLYlOBZQaMiYiotlR7piyloV955RV88803ePDBB9VN7svX1q9frwLEUvb5/fffP+NrSWD522+/xffff6+yhaWXsNykb/DJQWIpJT1lyhT1ueM51tIJ4Jw5c/D555+rstV79+7FRx99hNdee00dl8M999yD/fv34/HHH8euXbswefJk/Pjjj3j00Uer++NTLZAFNcnA2JiYiR1HqrZjmarmg7/3qJLT4QEGvDaso0dfAPqKRpEB6NQgFHLN+Oc2e/kycj8/r0/CK3N3qvtS0vJ6lgl3CsnAG97NvsDw6+ZkVx+OT5NFiKnLD2DY5JXYkpSFYJMeL1zRDnMeOBfdG0e4+vC8XkyIH96/oauqViBZ3NPXJrr6kOg/Fu1Kx/DJK5GcWaBaR8y671z0aR7p6sOiUia9Dld0tldpmbHhzIv3VDnJyn542iYkZuSralDvX9+V1SS8iASKW8eHoGFkAArNNizamaYyY/UaqPKve/IKq/V6ko0o2YBHi61IL3JdMExKt0ogV4KHwXrdWV8Lf7viEE7kmVVLiBv7NEaB1YaHdh1GarFZZaBOaNMQBjfv7yvzu2yzBSaNBrEm41lnWLsLec9JYE1Tmil9tgZF2asKrszMKwuqV8QRHF28Mw0n8oo9MlicabbgmNmCQG31Sk6Lb5fbs4mH9WiogsU1YbbZ8NTuJPx+LAvyjny7dUOcE+pdrVdk04yUMrf/PdIiXgLDfia1ySHUoFcBetn0cHKPd3mvyDkqz43zM6gFfAkYy98eIiIiZ6v2LHbevHkYMGDAaV+/+OKL1WNiyJAhKjB7JhLUzcrKQv/+/REXF1d2mz59unp8w4YNWL16NbZu3YoWLVqc8pzDhw+r50gZ6kmTJqns4C5duuCTTz7BhAkT8MILL5R9H8lUnjt3rsoi7ty5M8aPH6+Cy4MGDaruj0+1QPqYDCrNxPt+DbOKnUWyWyaXZju+MrQjooO9s2SPN7q8dFcyy0+7p792pOGJGfayi3ed3xT39Gvm6kPyKld0tr//Vx/IQFp29RYmyTnyiy14ZPomvCQ9+GwlGNIxFgv/1w+3ndsUejfrOejN+jaPwtiBrdX9537Zjm3JlWe1UN0tsn+x4gDu+Got8oqt6N0sArPu66uCxeSe5adl411ukcXVh+PRJixIwJLdR+Fn0OKTW7ojPNDo6kMiJzJqNTDqNGWZkb9vSkGU0YB+4cHq85/TKi+pWx4JmIbotciyWFUpasmEq+ugTEaxPUMySHf2QeLjOUX44R97QOzeAS2g02nw7J5kbM8tUBmBH7Rp5LQeubX5O5EyttKjOdbPcMbe054mUKdTvX/lnXa2gbTmAX5oEWBS2Z9/n6H8epv4ELSND4HZWqJKt1eFOwWLs8wWHDVb1OaO6m502Jx4AlsOZ8Kg0+D63o1q3pM44TDmH89WPdPHt2mI/hH2vz3eQv7+ZVtsMOk0KkM42li980/Kwsvfl/p+RsSa7MF4KVUtvzsiIiJnqfbMUPoRSxbvf8nX5DEhGcCSIVyVhZbybqNGjVKPSwC5ouc0adJEPUd6F2/cuFH1Mc7NzVVlp++++25VCvtk8lryPOlbvG/fvrLvQe7hptJsvFkbkrmQ4wTSz3Dsj5vU7v8rO8fjstKLfvIMQzr+GyhLOpHv6sOhk6zefxz3f79BnVuS+fr0kLbM1HeyBuEB6N44HFJVi73r656UjpMs4l82HVHZYs9f3g6TbuzGzUYucm+/5ri4TbRqJXHfdxvYu9vFLFYbnv9lO16cs0NV/pBe3V/f3gthAQyauaOuDcNUAF9KJf+xleNJTcnvbtIi++bTN4d3Qvt4e0lW8h5GrRZ+Wi0u6mjvU7z+YAZSMwtwTax9fWfu0cwaBd5U32K9DsW2ElWKWjIz66JsqqOMbobZnknsjN67U5fuV9nW7RuEol+baHyQmI6/MrJV9uXENg3RyN+923FIwFOC9iE6KXNrVP/PvZFkX0oQzoISFJ5lsLis/HQV+nQ7sopnr0+q8nvcHYLFck6mF5vV+V+T98Q3pdnEQ7rEIzK4+ueAZH8/sDMRy07kqn7p77VphAsj7Nnc3kACuRLQld+sZARLZrBkDtd0/UCyjSX7WALG9Qx61Xe9rjfhEBGR96r2TOC5557DY489hiuvvFKVm5bbVVddpco6O7J4JXO3X79+tXG85KWkVF+zqECVmfFrFXdhUsXe+jMB+47mITrYhJeuau/qw6EaBMr6No9UgbLpa+3VE8j1pDT+nV+tQ5HF3vP7zeEs515brijd3PLrZo4HdWnhzjRc8eFy7ErNQVSQCd/f2Qu3n9eU73MXl2OfcG0XNIzwVyVfx/64GTY3KFHoi7ILzbjty7X4ZtUhyCnx1OA2Kmhm1HvnYrs3kL9dw7vVV/dnbmA7g5rYnZaDsT9tVvfvPK8prupi/32SdwbYIkL80K2JfbPeH5tT0Ds0EPVNBuRYbZh/PKvG56EK1kKjMovTisy1XjZVAqLHpYyuTlPtMrrlScrIL+s/e/+AlvglPRNTk4+pz8c1j0e3EPeuKCFlfXMtNkQa9KrMrfQ79WbyfpMgmvSAPZuMS0f56dWZuWrjQWUGdoxFgEmHw8fzsf5g1TPwTw4WpxXXbeZ9TmmQ2KjRwlSDIPH+9FwsSziq5kQ3921So+9/745DWJOVhwCtFpPbNsa54UHwBpbSEu9S/l7ei/F+RpURLP+/nUHO4QijQW2KsKKEmcVEROQU1Z4N3HXXXViyZAkCAwMxc+ZMdQsICFBfu+OOO9Rzxo4dW1Y+mqiqF5A39rJnFX+3+lCd7DT2Vv/sO46pKw6o+7KAySwXz3RTr8bqowSKzdwl6nKHjufh1qlrkFNkwTlNIvDhjd1YgrcWXdYpXvVm3Xw4E4nHmVVf2yTwOGHBbtzx1TrkFFrQrVEY5j50Hno1Y79VdxAaYMBHN3VXAcm/dqZhynL7GE9153BGvupHvGzPMfgbdPj45u64u19zbqLwAFeX9r3/Z/9xVmmpJqlgcPc365FfbFUbGJ8c3MbVh0S1SLL5JPhwaWlv7983H1H9XofHhKvPZ9Sg/PTJpPemBMQk6HykqBjHaymDUoJPR0szJJ3VL/iTv/eqakJ9WkTCGmHCy/vtGxlHN6iHK6LD4M4kgJRvsyHKqEOkUe+U7GpPIFmXEkQrtNlUoLwmGvub0CbQD9KheOEZsooDTHpcWloVzLGpoKokeCiZ3oXWErWZIqPYrAKMtSm3NEish0admzXx7Qp7NrFk2DeqZvsNCbzftf0gNuUUIFinxSftG6OHF/QkdvQhlkzp0NIAsQR0a2tzhmNTxNm8z4mIiByqNSMwm824/fbbER8fjx9++EH1EJab3O/bt291XoroNFLGVRZBtx/JxuYk9uGrCSnb/djP9l3/N5zTEBe2iXb1IVENXdIuBlFBRqTnFGHhznRXH45PS8kqwC1T1uBYbhHaxoXgs5E94Gdw7x5k3tC7Xvqzijns1V2rMvOLcftXa/H+wj3q81v7NMa00X0QE8JS0+6kQ/1QVQZcfLRknypFTXVj/aEMDJ20AnvScxETYsJP9/TBoPaxrj4sqqL6Yf7oU7rpRVrcUNU3ED06fRMOHMtTv8MPbujKDXJeTjIKpUdp3zZRqhe1bNTblpSFq6LDoJfNezkF2J1XeFbfw9Fn06jR4JjZgiOF9nLUElw5W5KlfLTIjLRiMww1zJAsz+6UbMzfmqruX9u/KcYmHIalBLg0KgT3NawHdya/EwkUS8A0wqB3Wjajp5Cy51EGPfJsNpXhWRMDI+1ZxXOOnnl9amgP+8akxTvTkJFbVKPMezk30outKvP+bEtnVySvNEishabGfarTsgoxr7Slwy3nVS+b+FixGXdsO4ideYUI1+vweYcm6BQcAE9XcFIfYikxXc+od9rfocrI31SpFpBnLanx+5yIiEhUa9QyGAyYMWMGf3NUK8IDjbi8dBfmd6sOufpwPNKrc3cg6UQBGoT745nL7AvK5Jlk08SIHg3LsuzJdZnEIz7+R5V8bRQRgK9u74lQf4OrD8snSH91wXYEtWdvei6u/HAFFicchUmvxfgRnfHSVR1YStdNXd+zoWopkZFXjL93cQNRXZi9MRk3fLoax/OK0T4+BL/cf54K2pNnGV7aO3LmxmRWLaqiiQv3qL8zMjZ8ckt3RAa5d/9Vcl75ab1Bh/5t7b2Kf990BFFGA/qH24NlkxKdM/ZIL9QwvR4SBpNgcWqRuUYld+V8ln+XVlSM5KJiZJot8NPUPPhVnsl/2TfSXdIxFt/k5KjAdrtAP7zUor5bV5XIs1phQwliTUaEGfRufay1RX7mcIMeoTpdjUs6X1G6UWJTTj4SzrBRonVcCNrVD4HFWoK5Nbx+kXMjVK9FntWmsouzzBanbKQ4+X0hQWIRcBbnybRVh9TPKaXqOzSoela9nOu3bTuIfQVFKhN2aoemaBPoD08mlRGyLPbS5LEmPeLOsg9xTd/nEQadqqjgzPcLERH5lmrPDIYOHYrZs2fXztGQz7upd6OyDDIpd0ZVt2hXOn5YY+9n+86Izggy6V19SHSWbuhpPx+k1CXL79a9vek5uPaTf9TmiyaRAfhhdG9EBzPLsq5Ixp5Bp0FCWg4SUnNcfTheZ1tylnp/yyYI6X87876+ZcEUck+SzTestIzuz+vZv742SfBBsuwfmb4JxVYbBraLUZnEsaEcAzzR4A6xqmS4ZMduSMx09eG4vb92pJVVmXh9WEdujvDB8tODOts3by/YlqoqWNzbqJ4Kli0+kYO/z1CCtzokUCVZn/ml5aglI1gCWZIFW1npXQmESFZkSpEZyYVFKovPT6NFiEHvtHLTYv2BDPyz9zh0Wg0ad43Gysxc9Tt6rWWDOskUrOn4JcFsyRaNMRlUlqovU5m6Bh1KUFKjcs6SjX1RhH2jxPTUjDM+f2jpXHr2+mRVmaEmVClq6WcLDVKLLEgvMp91D1pHSeSjRRJ4BgJ1NX9f5BSYMbu0vPbN51Y9m1gC1LdtO4DEwmLEmwz4omNTNAvw3E1IttJzrbDEhnC9lJk2qHLTrijvLu+ZCKMeYXop72/lpjgiIqqRas9uW7ZsiZdeegnXXHMNXn/9dbz//vun3IjORrdG4WgTG4xCsw2zNlSvt4uvlw59YsYWdf/2c5uiN/tKeoVGkQE4v6W9/O4PaxNdfTg+GERbhbTsIrSKCcKPd/dRpRepbvuy9mtlL58/ZzOzip1pzYEM3PDpKpWZ2rF+qMqSbB/PQIAnuKZ0AXJRwlGk55xdCVAqnyyuvfHnLtW3W9zdr5nqSRxg5AY8TxVo0qtgsfhxLTdZVCan0IynZ21V90f1bVK2OYV8q/x0h8ZhiA4xIafQgmUJ6WgR4IeR8fZrkjcOpKhgrjMDHBLMlECv9C1NKizG4cJiJBYUqVtaoVl9XTLl5PvKxyOlGcQSYJaAlwTVnN0DVMaCSaXZxAN61sfUo/YezQ80ikZTNw1uOQJXfjoNYk2GswoGepMArb0/dk2zim+Ii1Af5x7NVL/fylzSIRYBJh2SMvKx4eCZA8tn7Out19rf86Vl2otttmoFAaV89YliM5IKitV5I1nmUjngbMxcl6R61zePDkLf0rWKM5HjHrPrMI4UmdHIz4ipHZqgoZ8Rnkp+r9lWKwJ1WnuZaZNBZYO7kgSopQKEbMCR9wwREVF1VXskmzJlCsLCwrB+/Xp8+umnePfdd8tuEydOrPYBEP13x+dNvexZlN+tTuROuCr6aPE+1cu2eb1APH5pa1cfDjnRTb0aq48/rTvMnpR1ZP2hE7jhs3+DaNNH90E0+7W6xJVdSstPbz7C8cBJFiWk45Ypq5FTZEGvphH4/q5eiAj03IUaX9MiOghdG4XBaitRZZHJueTvzItzduCTJfvV59IX+qnBbaF1cgCC6t4NpdcXszYl41g1e0f6kol/7VHXFI0jA/Dk4DauPhxyAQki2TTApZ3sc7A/Ntv7kN7VoB4amAxIK7ZgspNKUJ9MAr2SjSclqSWwp9doVOZjrtWKY8UWe3C40H4rtpWowJ8EmGsre2/JrnRsT8qCyaDFofp+yLfZ0DU4ADfFueeGbMmWlcCV/P+LMRpUkJH+XWMKMehUkLQmWcXy/71VgAmFMvdKt28YqEiAbEzqZM/In1WadXvWfb0NslFNg5RCs9pIkVRUjOPFZpUhXF7g2GIrKQsuy4aKo1K+GlDnzNluHigyW1XZaXHzeU2qVF5Zju/V/SnYmluAYJ0Wk9s1VuWZPZVsWLFIWXejQW3IOJsS3s6m12pUFrxs+jnTpgYiIqL/qvaIduDAgQpv+/fbF1WIzsZVXeur8nB70nOx9mDlE3Gy7/z/frU92/TpIW3hZ+DOYW9ycdto1ZPyWG4x5u9IdfXheL2V+47Zg2iFFvRsEo7v7uql+qeTawxoG63GAymPvDkpy9WH4/F+23IEd321DkUWGy5qE42vbj8HwX7sue1pRnS396//aV0SN1A4kZSIfHrWNny58qD6/NWrO+D285q6+rDISXo0DkfnhmFq0903/9gXuelUu1Kzy97/L17ZntcUPkpKK0uQdmAnexb+yj3HkJFbpPr+Pt3MHjz+PiUDO3MLau0YJDgm2XnyPSXwKRnDEkAO1etVL04Jdkkmcm2xWG34aOFedb/jeQ2wKa8AfloNXm5Z3yVlZavSI1XKb0v5WwkSuTqz0R3J5oOgGmYVSzD0ulh7VvGPqSfO2APWUX568a50de44gwQjwww6GDVayN7xDLMVyf8JHEtwWMq3Hy4swpFCMwqsNvipnsd6dS4545yRjSMZucWICfXDwNJKHWciv7PZ6Zlq8fnNVg09NpP45LLuEiCWjS21+XeopuT8lwxngxseGxERuTfOIMnthPgZcFVpFtl3q7mQcyY/rElUmWGSZXRha3uZVvIeBp0W1/W0BwUcGwKo9vp83/bFWlVKS0p+SxBN/h6R60ip1wHtYtR9lp8+O9PWJOLBHzaqLIMrOsfjk1u6MwjgoS7vHAc/g1ZtqNvCDRROIRna//t5s5pTSfLw29d0KqvoQd5BFvrvOt8e+P9m1SEUmplp89+NEs/O2qbOBSnT3Z/XFPD18tPxUQFoVz9EvSfmbbVvVj03PAiDIkNUduLL+47UKDvTE/y+OQUHj+YhINwPa032wOKjjWPcMsAlvWvzbVbUM+oQZdSrjEIqfwwIPYus4iH1wlQ2rJRFl17VlWkVF4L29UNgsZZg7qYjTs+8l6Cx2jzxn8CxBIczzRa1mSFUb99kIZs+nEX+Fnxbupnohj6Noa9CJu36rDy8ddBeleDhxjHqb4gn8rSy7rIxoJ5Rr/6WExERVVWNRo2kpCRMnjwZTz75JMaMGXPKjcgZHItzf2xNxXGWh6uQZEVMXW6frI8+vxlLI3opCRTLNd7Kfcex/2jlF6ZUM79vTcHob+yZlgPaxuCzW3uwH6WbuLJzfFk2rCxQUPV9tnQ/npy5FbIudmOvRph4XRe1CYU8k2xgubS9PYvjp/Xst3q2zFYbHp62ETM3JEOn1WDi9V0xood9gxZ5Fzlv6of5q9YSMzacfUlQbyK/j3WHTiDAqMNzl7dz9eGQi0mAyVxSgiGlc7A/Ttqs91jTWATptNieV4gfU8+uB6s7ktK6ny3aC5lx+vesh6KSEvQKDcS1pRml7kSyY4tLSlQWcYSbZjd6S1axBGevig5X96elnPl978gqnr0+SW3EqS3/DRxLmWrZ7FGVktDVtXRXOg4fz0eIvx5Xdat/xuenFpkxNuEwLCXApVEhGBnvnmXbz8RSWtZdSt3HGo0eU9Y9UK9DPSlDz2AxERFVUbVHjIULF6J169b46KOPMH78eCxatAhffPEFpk6dik2bNlX35YjK1bFBKDo1CEWx1Yaf13MhpyISOEnNLlSlia/qar+QJ+/TIDygLFtcsp3Iuf7cloIHvt8As9WeafnRzd2YaelGLmgVhRA/PdKyi7DmgPctSNZ2ibTx8xPw6u871ef39GuOV4d2UMEw8mzXlJaf/nXTEWZGnoUiixX3f7cBv21JgUGnwaQbu5VtTiHvI9lPjnLiU5YdqNXFe0+SlW/GG3/sUvcfurgl4sP8XX1I5Cblpy9sHwO9ToOElBzsTctRj0ng4aFG9movHySmI73YDG/y85rDSM8ugn+bMCRrbAjUafFii3i3CsLK/E7KDKO0T2qYQV8rgUGvzCrW61BSw6zi62LtgeLlmbkqs7gyl3SMRaBJj6SMAqzzgusX2az7xVJ7q8HhPRupXsyVKbTa8OiuRJywWNE60A/jmtf3yPeo2WZDrsWGCCnrLuWcPewaSjKL3bFcPhEReUmg+KmnnsL//vc/bN26FX5+fpgxYwYOHz6Mfv36YcSIEbVzlOSTburVSH2csvwAcossrj4ctyMXiJ+WTtZHndsEJj0DW97sxnPs54NsnGBQwHnSswvxxIytkLXia3s0YKalG5K/bZeW9sCas4Xlp6vjvYV78MHf9h57j1/aGk8ObuORizR0ur7NI1VmZHahBfN3pLn6cDySjKV3f7Ne/f6Meq0qx+74W0PeXaUl2E+P/cfy8PeudFcfjlt4e/4uHM8rRsvoINx+Lvty07/lp/399TivVT31tZNL6F4TG46OQf7Is9rw9gF7WWpvkFtoxpeyiSRQj9zGgepr/2sSiziT+5ScLrbZkGW1wqTTIMZkVNnfVHWSfStlg6V/b3U18jfh3LAglW1+pmx6f6Mel3aKK8sq9nSz1yWpDSMS/L62V8MzrlO9tP8IduQVIkyvw7utG6qApaeRYHeBzYYoow6RRj0DrkRE5PWqPVrv3LkTt956q7qv1+tRUFCAoKAgvPTSS3jzzTdr4xjJR13VpT4aRwYgPacIExfsdvXhuJ2le45hV2oOAo069tHzAf1b10NcqB9O5Jsxb7v3LMi4klzEPj1rK7IKzOhYPxSvXd2RmZZu6srO9vJmf2xNUWVi6cx2HMkuCxK/dFV73Ne/hasPiZxIWk0MLy3799M6lp+uSeuOO79ah8UJR1W/56kje+KiNvYMOfJuQSa9KsEvPltm33DpyzYfzsR3q+3Val66qoPaNEF0SvnpLvYqC/O2pMBSOgeTgMlzzeMhIcr5x7Ox/IQ929jTTV2yH1mFZmi7RkK2qZ8fFoSro8PgTj1SpdR0lEGPOKNRBT2pZlnFVpSo32l1XV9agnxW2okzBpuH9rCXn168M92j26kdzynC5IV71P17L26BiCBTpc//LiUDc49mqb8Pb7VugPpu2Nv7TPKtVljAsu5ERORbqj2zDAwMRHGxvcxKXFwc9u3bV/bYsWPHnHt05NOk9Ou4K9ur+1+sPIhdqdmuPiS38ulS+7l3Xc9GCPU3uPpwqA7KJUoWjPhuFctPO8Osjcn4a2c6jDot3hnRWf2OyT31aR6JqCCT2iixfA/nGlUpD/fUrK3q45COsbi1TxNXHxLVguGl/e+W7z2GlKwCVx+ORxm/IEH93mSz3Ve3nYPzWka5+pCoDo3q2wR6rQarD2RgS1ImfJWMEc/9sk31r7+6a3011hL9t/x0z+aRCAsw4HhuMf7Z++8cTMrJ3lTac/TV/Sk1ytB0J/vTczFtVSKsTYNRGKhXPV+fbxHvFpVYJLMx22Ivgy3ZzZFGg/obRjUjAfaa9io+NzwIDUwG5Fht+ONYVqXPbRUbjPYNQtXf2rkbPbcq0sR5CcgttKBtfAiGla5HVGR1Zi4mHLRvah/bJBa9QoPgaXJVWXeosu6hLOtOREQ+pMqr4pIxnJeXh969e2P58uXqa0OGDMHYsWPx6quv4vbbb1ePETmT9GW9tH2sfSFjtixksJeY2JachRV7j6vsx9vPYwDAV1zfs5H6f77mYAb2lPYJo5pJyy7EuF+3q/sPD2iJ1rHBrj4kqoS87y/raC8J++tmz11oqSvf/HNQZYkFm/R44Qr7hivyPo0jA3FO0wgV5Jm5IdnVh+MxZLPJJ0vsmaTjr+2CXs0YHPM1caH+uKK0F/Vnyw7AV/2wJhFbkrLUWPHUkDauPhxy0/LTJVpgSOn5Mv73XSpg5HBvw3oqmHKkyIxPko7CU8kaw4Q/dsEcqIe1hf2a4MmmsSqb0JUsJSXIMltgk17EJj1iTQZmEbs4q1iy6a8tzSqelppxxvWpoaWb+qT8tE16HXmY1fuOY/7WVMi+hCeuaFdp9a3kwmI8vjsJEma9ol4oboyz/548iWTty/9jKeseyLLuRETkY6o8y3zxxRdVoHjChAno1atX2dcuvvhiTJ8+HU2aNMGUKVNq81jJRz1/RTsEGHVYe/AEZnAhVHH0Jr68UxwahAe4+nCojsSG+uGiNtHq/vdrmFVcU3JB/9TMraq3Z6cGobj7gmauPiSqgitLSx/O357KPt2VkMzSt+clqPuPD26DmBA/Vx8S1aIRpQuQUn6am+nOLCOvGGN+3KTuS/lh9iT2XXeeb+/F+/vWFCRn+l5G/rHcIrz15y51f+zAVogO5lhBFZefvqN/c8SH+yMlsxDv/L6z7PEAnQ5PNbP/Hf3myDHsySuEJ/p7RxrWHDoBS+cIlGg0uCgiGEOiQl1e+jbPakWoQYd4P6PKbGT5W+eRnrkSdK9JVvHQ6DCVcZ+QV4hNOZWPH5d0iFF9fZNPFGClh1VFKjJb8dZv9vP9mnMaqYziikjA/bm9yci0WNE+0A/PNnOPbPyqkjl0jsUKkwoSc0MGERH5piqPfo7Fp2bNmqFTp05lZag//vhjbNmyBTNmzEDjxuyTSs4XH+aPhy5uqe6//vtOZOWb4cuSTuRj7tYUdX80A1w+x9FXb8b6JAbLakg2nPy9iyWnPU23RuGoH+aPvGKr+v9H5Xvhl+3qd9StURhuOsf+94K815COcWoz3cHj+Vh36ISrD8etybXM4z9vQXpOEZrXC8Rzl7Vz9SGRC7WPD0Xf5pGqatEXy30vq/iNP3apDXPt40Nwc29ew1Pl5adNRh1eHNZRZRX+sTkF80qvRUX/iBBcGBEMSwnwzN5kFeD0JPlFFkz8MwGWNqGwBeoRbdTjheauC3I5AlZaaBBvMqqsZsnuJueSoHuYXl+jrGIJ2js2EkxLPV7pc/2NegztXl/d//jvvR6VVfzVsgNIyshHvWAT7r6oRaXP/TntBNZn58NPq8FbrRvCz4Our+Wck0xik06DGD+D2kRARETki6o1AnrSjjDyLref2xQtooNwPK8Yb8+37373VVOXH1SLWue1iFKLXORbLmhZTwXLZHHvty3/LtJQ1aRmFeLFOf+WnG4Vw5LTnkLmIJd3jlP3f93E8tPl+XNbKubvSFN9614f1gla9q/zepKlclnHuLKsYqrYt6sT8dfONLVJ6P0busLfyJKCvu6u0g2X09YeRnah72xEXXswAz+vT1L3Xx7agRvm6Izlp4tLbOjUKAy397OfM5JlmHJSJv5TTeMQrtepDMvHEpJUyWRP8eWyA0gJ0MLaIBAya3qtZQOEGfSuzWrUaRDrZ1AZ3VyDqz2SNSq3Alv1s4qvKy0//dfxbBwtrnz8GHl+UwT56bEnNQfzt9n797q7Q8fy8HXpJqpHB7dWx1+R1CIzJh5KU/cfahyDBn5GeArZJJBttaoy0zHclEFERD6uWqNgq1atEBERUemNqDYY9Vq8fFUHdf+71Ymq96IvkmzqaWsTT1ncIt8ifYEcWcXfrz7k6sPxwJLTW5BTaEFnlpz2SFeW9sj7OyEdOT60qF8V8vtw9N2+u18z9t32IdeUlp+euyUF+cX/9o6kf+1Oy8Erv+1Q958Y3IYb7Ujp36oeWkYHIbfIgulrfGOjhdlqw3Ozt6n7N5zTUFXrIKpK+Wlx2wXN0KFBqOpTPG7mVrV5WUip1g/aNlLZhMszc/HqviMe0Q4h8VgevtlwGOZ2YerzOxtEoWdooMsCVlkWK/z1Wgas6jirWN7f1c0qbhvkjy7B/iqTfkZa5RVdQgOMuOXcJur+xwv3oNhS/cB0XZJzVzaDmK0l6NMyChe1i6n0ua/sP4I8qw2dg/1xfWkA3RNYS4PEwTqdytw38pwjIiIfV62RUHoSv/vuu5XeiGpLn+aRGNolHjKHf+6XbWUXpr7k29WHkF9sRZvYYFzQMsrVh0MuMqJHA5UxuCExE1uTslx9OB5DsmcWJRxlyWkP1i4uRJWMlQWWedvtO9fJ7p15CUjNLkSTyAA8eJG9XQP5hnOaRqBxZIAqOf7HVs/IVKlL0qbhoR82oshiQ79W9XBbX/tiLZFk6jl6FU9dcUAFUb3dp0v3Y1dqDsIDDHh8UBtXHw55UPlps61EzZ1fGt5RtTzYdCgT35xUtr1jcADebNVALTDNTM/E58nu3Y9VAlxv/7ELBR3CAYNWBbnuaRjtkmORIGWOBKxUVqORAas6JBnFgTotCmuQVXx9bKT6+HPqCXV+VPrc3o0RFWxSfb5nrnXvjUl/bknBugMZMOm1eGxIm0qz2n8/loVlJ3Jh0Ggwrnl96DwkA95SWm46TK9DPaMBBlZhIiIiql6g+Prrr8fIkSMrvRHVpqcva4tgkx5bkrLwwxp7Zq2vKLJY8eXKg2W9iVmGyndFB/upvpTi6VlbfWJh0xklp18qzSZ79JJWaMmS0x5J/u4N7WLv8/XFigMeka1SFzYmnsDXq+wVBl69uiP8DCyp62vnxTXd7FnFP61378VHV/VilcBYVJBRbRJiSXY62VVd6qv3RkpWIX4/qe+qNzpwLA/vLdyj7j93eTuEB3pOeVByj/LTon5EAB67rK26/+mifdh+0qZV6Vf8RNNYdf/DxHTMSXffKmBLdx3FCo0ZJWFGBGo1eKNlAxUQd3VWIwNWdZ9VLL/74hpcUwyIDEakQY+jZgv+zsiu9Ll+Rh3u6t9c3f9i6X6Vle+OsgvMeG9egrovpeblfK/I8WIL3jpg36B4d8N6aBZggieQoH6Oxab+30UZDWoDPhEREVUjUFwbQanXX38dPXv2RHBwMKKjozF06FAkJNgnJQ6FhYW4//77ERkZiaCgIAwfPhxpaadmESUmJuKyyy5DQECAep3HHnsMFsupE6/FixejW7duMJlMaNGiBb788kun/zxUNwGysQNbqftv/bkLx3KL4Ctmb0zG0ZwixIX64YrS8qvku569rC1C/Q3YmpyFT5bsc/XhuDUJJj7pKDndMAx3lWYPkWe6qXdjlcmy/Ug2Fu8+Cl8nG0WemrlVVdsY1rU+zm3BahO+aHj3BpCp+qr9GUg8nu/qw3Ebf+9KK9tk9/Y1nVEv2DMWManuyMaaW/vYs8w/W7bfazcgyc/19MytqiLH+S2jcHVX+6YrouqWnxaDO8fhkg6xqsLX8zO2IL/o37WX6+MiMSrenmk5bl8yVmfmwt0UFlvx2sq9sDYNUp+Pa1Ef8S7oq3pyVmO0iQErV/HTadUmger21jZotbgmxl6+/4eUjDOOH5d3jUfjqABk5pvxXencxN1M/msPTuSZ0aReIG46QwWWtw6mINNiRasAE0bFe8b1R7HNhjybFZEGHSKNeo/JgCYiInKrQHFtXDQvWbJEBYFXrVqFBQsWwGw2Y+DAgcjLyyt7zqOPPoo5c+bgp59+Us8/cuQIhg0bVva41WpVQeLi4mKsXLkSX331lQoCP//882XPOXDggHrOhRdeiE2bNuGRRx7BnXfeiXnz5jn9Z6Lad3Pvxqr8aHahRWWJ+AKbrQSfLbOX9rr93KYwsGSuz4sO8cO4K9up+5Idsiu18l3Mvuyn9UlYLCWn9VqMH9GJJac9XESgETeV9un+8O+9XruoX1WfLztQVkb0mdIMH/I98WH+OK90k8DPG5JcfThuIT2nEI/9tEXdv+3cJriwjWtKipJnXFv4GbTYlpytNlt4o5/WJeGf/cfVz/nq0I6sTEQ1Lj8t5P3zxOVtERvqh6SMAkz449TN/g83jsGgyBDVv3VMwmHsySuEO/lk+X6kSpBYo8FVUaEYGBXqsqzGiNKsRgasXMeo0aj3eFENyk8PjwlX58bGnHzMPVZ5Syi5Br33Ynt7mO9XHsTxHPdKeth6OBOz1tnnkE9e3hYGfcXXzIszsvHnsWy1oPxii/oekQlfaLWhwGZDPXXO6VU2OREREf2ryqvlNptNZes6059//olRo0ahffv26Ny5swrwSnbw+vXr1eNZWVmYMmUKJkyYgIsuugjdu3fHF198oQLCElwW8+fPx44dO/Dtt9+iS5cuGDx4MF5++WVMmjRJBY/Fxx9/jKZNm2L8+PFo27YtHnjgAVxzzTUV9lQuKipCdnb2KTdyHzLBfuXqDmU9R9ce9M4FnZMtSkjH3vRcVXb7+nMauvpwyE1ICd4BbWNgtpbgfz9tZgnqCkpOv1xacnrMJa3QIpolp73BXec3U4H/9YdOeO2iflVI5uh7C3er+89c1g6RQcyW9GXXdLeXn56xPkllefky2WA39sfNOJ5XjDaxwXjiUvZipco3IDnOn0+Wel+VFqlI9OrvO8vmQo0iKy4lSlRRIO3k8tMi2N+AccM6qGoWczYmY+F2ewlaIQGYl1vWR/eQAORabbh/5yGkFZnhDg4fz8PXudmSRooYrQ5PNa/7Sl1myWq0SulbnQpYMUjsWprS8tMnZ81XVYzJgHsa1lP339ifgtQzvM/7t41G+wahKDTbMGXJfrgLi9WGN+bYr5kv6xKPrk0iKnyuZMG/st/equHW+Ei0C/KHu8u32mBGCWKMBkQYDdwsRUREVA63SquSwLCIiLBPSiRgLFnGAwYMKHtOmzZt0KhRI/zzzz/qc/nYsWNHxMTElD1n0KBBKri7ffv2suec/BqO5zheo7yS2KGhoWW3hg0ZmHM33RqF4/qe9v8vz87apvr3eisJ/k1YYA8E3NirEYL9DK4+JHITcoHz2tUdVAlqyYL5eLH3LW6eDck0fWbW1pNKTjdz9SGREzPqr+thHwM+XGTvt+iL7+9nf9mmFpr6No/E8G4sI+rrBrWPVeNBcmYB5np5r9Uz+X5NIpbtOaayJz+4oSv7dtMZ3XFeM+i0GlWB5JdNyfAmL87ZjqwCMzrUD1GViYhqFEiT8tO2UyvNSTBp5Hn295QEmdKyCk/pbfxu64Zo6m9EWrEFD+w8hFw3uGYfu3IvLFF+0NhK8EGHxvCv40pDErDKt9kQZbQHiZnV6B7k/VqT8tPitvpR6BjkjxyrDc/vTYatkteQc+mBS+xZxbPXJyHx+L/VFF1p6pL92JuWixB/Ax4qbfVWkYmH0nC02IJGfkbc29D9q7XY/+6UINZoQKhB7+rDISIicltuEyiWjGUpCX3uueeiQwd7tmhqaiqMRiPCwsJOea4EheUxx3NODhI7Hnc8VtlzJJhcUFBw2rE89dRTKmjtuB0+fNjJPy05g2SHSKnNhLQcPDd7m9eWH31/4R7Vi1MWf+9gb1UqJ2D24pXt1f33/96DnSmsgODw6+YjWLgrHQadBm9f00ktAJP3uLtfM9XLbcXe49iQeAK+Zt72NCzdbS+p/spQyejh+9vXSTD0ztIF+4l/7fbZrOLsQnPZBrvHB7VByxhWkqAzaxoViAcubKHuPzt7m9pw4S19un/bkgKZAr0xjO03qOYCdFr46zSqdOvJ7rqwOdrGhyC7wIInp29CTsG/GZUSlJnUtjEiDXrszi9SZaglUOoqP+w4goRw+8ahu2Ii0boOMyEleJhTGrCKMxlVyWnO3dyHlJ6uaflpCTC/0rI+/LQarM7Kw/TUyqsddWsSgb4to9Q87ZOFe+EOJae/LG1z9vjlbREWWHG/7tVZuZiRZr/uGtc8XvV3dleyPijZz5KxH2Myql7rREREVDG3GdWlV/G2bdswbdo0Vx8KTCYTQkJCTrmR+wkPNOK967uqhY8f1yXhm1WH4G2krOqkRfaLh1ev7oDoYD9XHxK5oau6xOOSdixBfbJjuUUY96u9qsSDF7VEKwYKvE6D8AAMK82infS36xdZ6lKh2YpX5trLw919QTM0qxfk6kMiNzHq3CYICzBg/9E8r8uKrKrJi/YhI68YzeoF4pY+jV19OORBHrioBbo0DFOVSMb+uEmVMPdkeUUWPDfbPhe647ym6FC/7vuwkveQYEuYQY/i/2QVy+aDl67pqDIRdyRn4/6v1iEr394CTNT3M+LDto1U6WoJot21/SCOF1vq/PhXpWXhrfTjUhcbjS0a3Ncitk77EWdZrCrYLkFiyc5mkNh7yk+LJv4mPNI4pizj9mBB5f2H7xvQUpVt/2t7GnYmV97buDYVFFswbuY2FbQe1DEWl3So+LwosNrw0t4j6v61MeHoHhoId1VSujHDT6dBrMmgzj0iIiKqnFuMltIz+LfffsOiRYvQoIG9P5SIjY1VfYYzMzNPeX5aWpp6zPEc+fy/jzseq+w5EgD293f/fhpUsQta1cOTg+19516aswOr9h+Ht5DFnTGySFUCXN21Pi7vVPf9k8hzLmxlI4EEByT7XBbJfd0Lv27HiXwz2saF4N7+zV19OFRL7u3fQm0Wkszx7Udct8hS1z5duh9JJwoQF+rH9zedQtpTjL7AXmb/vYV7VM85X5J0Ih9TV9izYp4e3BYGLgxSNcj75d3ruiDAqMOq/Rn4fLn79I+siXfmJ6jM6Abh/nj0kspLiRJVRaBkFWslq/jUYFqjyEBMHtUD4YEGJKTk4N4v1uF47r+BMulh+nG7xgjV67AttwC3bt2PQ2cIpDnTphN5uC8hETajFn4FVnzao3mdBWrtpaatKqta+tm6cwamrzub8tPiutgI9A4NRKGtBM/sSa70dVrGBuPSTnHq/ocL9risOt5783YjKSMf0SEm/O+ytpU+d1JiOpKKzIgx6vFwaVDcHUn2frbVigC9TvUk5jlHRERUNS4dMWUyJEHiWbNm4e+//0bTpqeW1e3evTsMBgMWLlxY9rWEhAQkJiaiT58+6nP5uHXrVqSnp5c9Z8GCBSoI3K5du7LnnPwajuc4XoM8m/QdvbJzPCy2Etz/3QavKRUn2WKHjucjPtQP40pLCxNVRLLNHSWoP/h7D3Yc8d0S1H9uS8XcLSmq1LSUnGagwLtLhTo20fjKBgkZ4yYvtmdQPz2kLQKM7LVFpxrZpwkiA41qDjFzo29lFb8zLwHFFht6N4vAxW3dv28euee48vzl9mvIt+cleOwmpE1SSnTlQXX/tas7cqwg52UVG/UospWcFtiSwNdHt/VEVLAJ+9Jzce8Xa5Ge/W/P4i4hAfi6Y1PUNxlUsOnWrQewOSe/1o95Y3Ye7th+AFa9FoYcM77u3AyxAaY6LzUt/Yjl90fuX366uAblp4X0m36xRX0E67RqQ8QXyccqff7oC1uoFknrDmRg9b66T3hYvvsoZq1LUvdfuLqDqgpQkQ3Zefg2xX6MzzaLd9syzvL/LttiQ4hOh2ijAUYt1wGIiIiqSuvqctPffvstvv/+ewQHB6tewnJz9A0ODQ3FHXfcgTFjxqhs4/Xr1+O2225TAd7evXur5wwcOFAFhG+55RZs3rwZ8+bNw7PPPqteW0pIi3vuuQf79+/H448/jl27dmHy5Mn48ccf8eijj7ryxycnkd3Abw7vhPbxITieV4zRX69DQbFclHmuv3ak4Yc1h1U5oneu7az6ExOdiWyYGNguRm2a8NUS1Jn5xXjul21lJXlZZtH73V/aU/L3bSnYm54Db/fa7ztRaLbhnKYRuLw0E4HoZIEmPe7pZ880f3/hHhU49QWbD2di9iZ7ScRnL2vHsp5UY9f1bFjW0uORaZtUuX9PIvO/J2dsQUlpVSKpwETkzKzigHKyikXTekH4+LaeiAn1w6Fj+SpYnHLSJm4pz/tNx2ZoH+iHTItVlaFeeLz2NrdKP9W7th6ERauB9kQR3mvZAK2jar9dB0tNe3b56eKzyO6VMsdPNrPPzz8+nI6duRUnMcSH+2N4z4bq/uS/9tRpu4MTecV49Rd7a4Ib+jRGj2aRFT4332rFc3uSIUd3VXQYLohwv5ZOsnEl12JV/+/qGXWINhlgkLJTRERE5BmB4o8++ghZWVno378/4uLiym7Tp08ve867776Lyy+/HMOHD8cFF1ygykjPnDmz7HGdTqfKVstHCSDffPPNuPXWW/HSSy+VPUcylefOnauyiDt37ozx48fj888/x6BBg+r8Z6ba4W/U4ZNbuiMi0KhK7z45UxZHSjy2t6ocv7jzvKbo2zzK1YdEHnRx+0ppCeodKdll/a19ycu/7cTRnCI0rxeIhy5u6erDoTrQOjZYbZCQP/mTF3t3VrG0V5BseVn3GHdFey46UoVu7t0YUUEmVaL85/X2bBFvJnO+V3/fqe4P61qfm4TIKZtQ6wWbsCc9F2/8sQue1p5gV2oOwgMMePYMpUSJqkuyYkMNunKzikXDyAAVLJYgWFJGAe6ZulaVtnWINOrxeYemuCA8SL3G2ITD+L40U9GZlp/Iwf3bD8GsAbTHCvFEVBTObVb719VmG0tN+3L5aXFZVCgGRITAUgJVgrqokgzl2y5ohgCTTpVsn1NHVWDkvH391x3IyC1G03qBuPdi+6bbiow/mKaqAMQZDXi8Sd319q4qS2mpaQkMS6A+wmhQ2d1ERETkYaWny7uNGjWq7Dl+fn6YNGkSMjIykJeXp4LEjt7DDo0bN8bvv/+O/Px8HD16FO+88w70+lPLa0kweuPGjSgqKsK+fftO+R7kHRqEB2DSjd1UudlfNh3B58vsPeo8ibz/n5q5Fcdyi9EmNhhjB7Z29SGRB5eg/vDvvR5bMrEmFiWkY8aGJJWJ/9Y1neFncM+SWOR8D1xkX+CQv/2Jx2u/jKErSK/Zcb/ad/7f2KsR2sWHuPqQyM030N1X2r/6w7/3oEiVv/ReC3akYc2BDJj0WvxvEOdOdPZk86m0rxBSwnnJ7qPwBFJZQ/qTOzLrI4Nqv8Qu+Z5Ana7cXsUOEiSWYLEEjVOzClWw+NCxvLLHJdP23TaNMCImXGUpvnkgFeMPpqpyzc7w1/FsPLwzEWZZ8EovwDUaP1zfqxHqIpM412pTQWKWmvbN8tOOzUbPNI9T74N9BUWqt29FwgKNGHmevQXf63N24KfViahtv206giW70qHXafDS8I4wVXLNLBsufk47oe6/1LK+25WcLrTakGu1IkyvV9n78reJiIiIaobbG8mr9GkeWdZX7PU/dmKphyzqOPy47rBa7DTKxfN1XRjoohqREtSD2ttLUD/w/UZkFcgyiXfLKTTjmZlb1f3b+jZF98bhrj4kqkOdGoSp0ppWWwk+WuKdWcU/rElUGWLSimDsJQyE0ZnJhoKYEBOOZBVi+trD8FZSZteR8Xnn+U0RH+bv6kMiL9G/dTRG9mms7ktLj4y8Yrgzab1z33cbVLn581tGYVi3+q4+JPJSeq0GYQYdiivIKhZSflqCxZKxKNV+7vliLfal/dsiRLI2n2kWh4ca2fvJf33kOJ7YnYRjxWd33TL3aCYeTzgMiyx2peSjZ0YJHh/ctk6yGh1B4giDnlVffLj8tJD3wPPN48ve2+uz/t0o8V83n9sEV3Wvr6ojvfP7Lrw/L6HWylAfOZGPCb/b50x3X9gCreIq3niaZbZg3F57S48b4yJwTmgg3IX83cm2WGEr7QFez6hnqWkiIqKzxEAxeZ1b+zTGiO4NIHPrB3/YiEPHK56UuxM5zhfn7FD3xw5shbaVTNqJznSB+9rVHVE/zB8HjuXh4WkbVQDNm0mQQIIhjSIC8L9BrVx9OOQCD5ZmFc9Yn4SUrIr7gXki6SP2zvzd6v7/BrZCeKDR1YdEHkA2mz1Q2sNbWhF4Wp/Vqvp+dSL2H8tDZKCxrDczkbM8NaQtWkQHqUDXU27e2ub5X7Zhd1quKpk94douDFRRrZLMPT+tBoWVXGNEBZvw0W090So2WJW5vWvKWkxfdUhVSRHyHr2jQT281rK+ChzPP56Nget245FdiVicka0ydKsqrciMKUlHValfGe10yXlolFiAN6/rDIO+dpe9rCUlyLFYEWHQqdLaPPc8mzPKT4v+EcG4OjpMZc0/uzdZvUfKo9dp8dQV7cpKQH+38hCe+3kLipw8b5P1gHEztyG/2IrOjcJw07lNKn3+6wdScdRsQRN/Ix5qFAN3IX8XpMe5VCaINRkRwh7gRERETsFAMXkdmSS+PLQDujQMU5mUd329DtmF7p1RKZP2MT9uVpP2c5pG4M7zm7n6kMjDSalB6dvtZ9BiccJRjJ+fAG/1z77j+K60TNcbwzsiwHhq6wHyDT2bRKi/n8VWm+rP6E3GL0hQ45m0JLjhnNovnUje49qeDREf6oe07CIVUPU2Mr+b+Jd9E8Ujl7RCsJ/B1YdEXrjhYuJ1XWDQaTBvexp+WueePb+lF/lP65NUD/v3ru+igsVEdZFVXGizVbqBQja3TRrVA50ahiGvyIIJfyTg1o9XYf2BjLLnXFYvDJ+2a4xOQf4qyLsoIwcP7zqMQet3492DqTiQX3Ta6+ZZrVickYM3D6Tg6o17MXD9bryfmK6CcrrEXAQlZOPtG7rW+uY6KZedo0rf2oPE7I3q+ZxRftrhf01iEW8y4EiRGQ/uTER+6SaJ8tawRl3QDOOGdVAlof/anoYHv16PrHznrWN9u+IgNidmqp7I8n2kZVtF5h3Lwh/HsiD17V5pUR/+btJrW3qA59msiDLoVT9idzkuIiIib8BRlbx2UUeCZLJIIjvrL3t/GdYfsvdWcUcfL9mnji/IpMeEaztXOmknqqoO9UPx5nB7f73Ji/fhty320lHeJL/YgidmbFH3b+rVCH2bR7n6kMgNsoqlTPOx3NMXFT2R9Bl3BPjGXdleZR0QVZVJr8MDF7UsGwekNK03kUzpE/lmNK8XiBt6NnT14ZAXz6fGDrSX/B83Zzvmb0+FO9mTloPnZm9T9x8Z0IpzIarjrGJtpVnFIsTfgI9v74knLm+r7u9Lz8V9X67DMz9uRlpWoXpO99BAfNOpGWZ2aY6R8ZEqO/e42YIvjxzH0E17MXLrfvyYmoGPD6dj1NYDuGDNLjy8KxHfp2Rgf0GRWthqoNFBvzMT+p1ZeOHqDiqTuS7K30qp4iijgT2JvYSzyk8L6en7bpuGCNZpsTEnH2MSEisNQA/uHI/3bumOID+9CureNWU1kjPyz/o41u4/jk8X7VX3xw5ug/jwgAqfe7TYjFf3p6j7tzeIQsfgip9b15nEeTabChLLpgyeb0RERM7F1UbyWjEhfvhiVE80CPfH4YwCXPvJP/hg4R63K8E7b3sqJiywZ8O8eGV7NKhk0k5UXVd1qY/RF9gz1B/7aQt2HMmGNxk/fzcSM/JVxtyTg9u4+nDIxc5rEYXODcNQaLbh82UH4OlkAfLFX3eoVgqXd4pD72aRrj4k8kAjejRAwwh/tXnim1UH4S0OZ+TjixX2n+fpIW25iYJq1V3nN1NjjFT/Gf3Nejzx8xbkFkkXVNdvmJO+xAVmqzq++0vLzRPVdVbxmchG6GE9G+Lnh87D8J4NVfa7ZE2O+GA5pi7ZX1Zmt3mAH8Y0icX87q3xbuuG6BcerLIaN+UUqODVR4ePqoCbpQRo5GfEiJhwPFs/GgOSLTj2ZyL0iXm4o18zXNw+ttbnaFJKOFCvRT2jQf0uyLvKT+ucUH5atAn0x6R2jeGv1eKfzDzVi7uy1+3RNAKf3t5T9fk+dCwfd3y+BjuSs2r0vaXtyLt/7MIDX62HxVqC/m2jcVkXe+/kCq899h1BlsWKNoF+uLtBPbgD+X3lSQ9wPXuAExER1RauqJDXZwD8/vD5uLJzvAoQj1+wGzd8ugrJme7Rv3JxQjoe/N7eP/aa7g0wrFt9Vx8SeaEnLm2D81tGqUXE0d+sU/1OvYFk4U9dYQ8GvjqsI0uOklo0eLB0kfyzZfvV31hP9tuWFKw5mKFKyEsgjKgmDDotHizNKv54yX5V+tMbvDM/AcUWG/o0i8RFbaJdfTjk5STINWVUD9x9QTPI+vT0dYcx+L2lWHfw3/K5rvD8L9uxJ93el/jd67qwKhG5Lqu4gpK6/xUaYMDjl7fFV/f0QZfGYSgy2/DJ33txw6SVWLIrHbbSTd0GrQYXRYbg/baNMK9HKzzSOAZdgv0xMDIEzzePw+/dWuL7tk0Qui8X7321CUu3palzc8Q5DXFX/9rvV59jtcFPr0W00aCOlbyLlJ72c1L5adE5OADvtWkIg0aDvzNy8MLeZFW2vCLNY4Ix5c5zVFa8XLvf+8Va/LklpVpJD9uTsnDrx/9g2ip7ZaKrutVXmfaVBVlnpWdi2YlcdZxSctqg1bpFkDjHYlNVBiLYA5yIiKjWaEoqayhDSnZ2NkJDQ5GVlYWQkBBXHw7VgLzNZ21MVmXZ8oqtCPHT4/VhnXBZpziX9lUd9cUaFFlsuKxjnOonxmwYqi2Z+cW48sMVKvu2b/NIfH37OR79fpPd0Zd/sBx703MxvFsDjL+2s6sPidzo7/3YnzZj5oZkBBp1mH53H7VpyNNIltjF45cgJasQYy9phQcvtgf6iGrCYrXh4glLcOh4Ph6/tDXu6+/ZWYebDmdi6KQVKigw54HzPPIcJ8+1av9xjP1xs9p4KvGhu/s1x6MDWsGor9t51U/rDuOxn7eoY/juzt7o05xVJ8g1ThSbkW62IEyvr/acbf62VHwwbzeO5thbhkQEGXFuy3o4v3U9nNM8Av5Gfblj2qx1Sfhs8b6yHq7nNIvAg4Na13q5aSGZxBJIizEZ4OfB11NUuSyzBWnFZoRW831dmcUZ2Riz67DqxX1tTDiebhZXaeBTNvc9/eNmrNp7XH0uWcYS8L2qewNEVdCL3myxYcqSffhq2QFVlUie9/SV7XBuq8qzg5MKizFi0z7k22x4tHEMRtV3fRsDa2l598jSctPsAU5ni+v7REQVY6C4CjiQeI9Dx/Pw0LRN2Hw4U31+bY8GeOGK9gg0OW/yX9VMyFumrFbl6y5uE42Pbu5e54tL5HsSUnNw9eQV6n13x3lN8dzl7eCp3p63C5MW7UNUkAl/jbkAYQFGVx8SuRHJMrz9y7VYvveYyrKaeW9fNIzwrLL+r/2+E58u3a9KBi94tB/8DFJ4kajmZm5IwpgfNyMswIClj1+IEA+twqCqsHy8EhsTM1UllgnXdnH1IZEPyik0Y9yvOzBjQ5L6vF1cCCZe3wWtYmo/SCV2p+Xgyg+Xq1YL3ExE7tA7NKlQ+gRrahQ4zS+y4IulBzBj7eFTql7I9bGU4ZWg8Xmt66k53bKEo/hwwW5Vklc0qReIhwa2Qt+WUXWSaZivMqdLEGsywp9BYq8mWfJJRcWqZLTeie+tP45m4ak9SZCF2FHxkSpbvrL3rmyMmLJkvzo/HBsjpHrEBW3qqTLu3ZtEQFua1b47NQcvztyKvWm56vNBHWMxdkhblcl/pqzdu7cfxLrsfHQNDsCUDk1c3gNYMq6lBHa4gT3AyXm4vk9EVDEGiquAA4l3MVtteO+vPZi0eC/k3d80KhDvX98VHRvUTTbKtuQs3PDZKuQUWlQvsc9H9mAAgOrMn9tScM+3G9T98SM6Y3j3BvA0cg5dNWmFChZ8fHN3XNqhdnuQkWfKLjTj2o//wa7UHDSvF4gZ9/b1mA0F8h6XAIBkAXwxqicuZFldcgL5m3nJu0uw/2geejYJx2e39vCYc+JknyzZh9f/2IUgkx4LxlyAuFB/Vx8S+fi86qmZW3Ei36yCWo8Pao3bz21atmhfWxUnpEqMVFWR1iJf3XZOrX4/oqrIKDbjqNmCUJ2uxgFbyYTclHgCS3cdxfLdR3HkxKntomJD/ZCaVajuhwcacFf/Friqe/06q5IkAfF8mxVxJiOC9bx+93ayVJpcVKz+vwfonPv/e0ZaBl7al6LuP9AoGndVoRew9PFetDNdBYy3JNoTH0TDyAAM69FAlXH/fMk+1Ys4rLTEe1V6dUvW7rN7kvH7sSwVFP+pS3M09DO6PEicbbWqvyf1TAwSk/NwfZ+IqGIMFFcBBxLvLRv36PRNqqynQafB2IGtMfr8ZrW60CK7/6/75B+1mCSLtF/dfg4CyimnRVSbJsxPwPt/71ULmj/f0wedGoTBkzZ6yOLozpRsVTp+0o3dXH1I5MZkMVGy6OXvvPzN/eaOXm6/MUeyBmQjxPYj2biiczw+uKGrqw+JvIhUNJG2F7JZrUV0kJqH1A/znEDrnrQcXPbBclU14M3hHXFdz0auPiQipOcU4omft2BRwlH1uQRvJdNdsh9rs71CTIgJcx86X1VXIXI1CaalFBbDghLVt9gZ7/UDR/OwdFe6ChpvS8pSm7zl+uX63o0x8vwmCKrDyhhyPJmlJXCj2CfVZ9RG+WmHr48cw/iDaer+401jcVNc1dsH7EnNUeXX/9hyBPlFUsj6X/3aROOJK9oisgpjgwSJn9+bjN+OZkGvAd5p3RAXRoS4PEicY7UiWILERgP03AhFTsT1fSKiijFQXAUcSLy7b6tkAfyxLVV9fm6LSLWwExPi5/TvdeBYHkZ8/A+O5Rahc4NQfHtnLwR7aNlH8mw2WwlGf7MOf+1MV4uLX97W02P6O36wcA/GL9iN8AADFozpx8VRqlLJdSlTK4Ex6QcvgVd3zrz6dOk+vPb7LoT6G/DXmH61Emgg37YrNRujpq5FanahCjR9eds5aBvn/vNb2UQx7KOV2JKUhQtb18PUUT25UE9uQy6pv1+TiJd/26HKQcvf7veu64K+LaKcmkn87oLd+GzZAdWX+Ie7eqNXM/YlJveRZ7HiiCrVq4PByXOtjNwibE/OQqvYENWnta5Jn1R/nQaxRiMDVz6ktspPO3x8OB0fHbZvMhrTOAa3xkdWa24jpdrnb03FrHWHkZZViIcvbY3BnSrve3xyQHbcviP4JT0TsrXjrdYNMSAyxOVjqZxrQXp7kNjZf0eIuL5PRFQxBoqrgAOJd5NT4Md1h1WfsQKzVQWg3hzeCQOrUKanqg5n5KtM4iNZhWgTG4xpo3t7ZLlH8q7eetd+skpl5kr5TinhfF5L5y1m1lZG/mXvL4PZWoL3ru+Cq7rUd/UhkYf4Z99xjJy6BsVWG+48rymeddP+3InH8zFw4hIVZHhreCdc27Ohqw+JvNSRzAJ1TuxJz0WwSY9Pbu2Ovs3dewz48O89eGf+boT4ScnpfrWyqY/IGXOVB77fgN1puZB1+gcvbIGHLm55VqVx5Vpl3vZUvDRnh7qWEE9c2gb39m/uxCMnco6jRWZkWM6uBLU7Bgtt7Evsk2qz/LTj9SWr+JuU4+rz/uHBeKlFPEIN+hq9VlXPOQkSv7zvCGamZ0Le0W+0aoBBUaFukUkcVJpJzCAx1Qau7xMRVYyzXPJ5MpmW0oW/PXQe2seHqLLQo79Zj2dnb0VB8allfKojI68YS3cfxeTFe3Hj56vUwo70yZRMYgaJydUkm3363b3Rp1kkcossqhTp7I3JcOfemo/9vEUFiQe0jcaVneNdfUjkQfo0j8TbIzqp+58vP4Apyw/A3cjizjOzt6ogsZyXI3p4Xv9w8hzxYf74+Z6+OKdJBHJkDJi6FnM2H4G72nEkG+8t3KPuv3hVewaJyW21ignGL/efh+t7NlRlcqXVx42fry7rq1pdB4/lYdQXa3HPtxvUtYSUipf+4vf0a+b0YydyhjCDHv4aLfJtNngDS0kJCktsiDQaGCT20bUiCVwW11J+jbz+2CYxeLppHAwaDRafyMG1m/djY3Z+jV6rqtccr+1PKQsSv9qyvsuDxNbSnsSOctMMEhMREdU9ZhRXAXcc+Y4iixXj5+/Gp0v3q89bRgfh/Ru6VlqSUU6hozlFqp/ktuQsbE3OUveTMwtOeV6jiAD8eHcfxLqgVBZRZe/5x37agl9LAwRPDm6Duy9o5nYZAJ8t3Y9Xf9+pMt8kk4znEdXEJ0v24fU/dqksL+lvPaRjHNzFzA1JGPPjZtV7b94jF6BpVKCrD4l8QKHZikenbyprwfHsZW1x5/nuFYCSfsTSt1sqYAxsF4NPbunudmMUUXl+2ZSMp2duRV6xFRGBRowf0RkXtomu8rk5efE+fLxknzoHjDotRl/QDPdf2AL+RudntRF5SgnqOi+Da7UiXM++xL6syGZDcmExjBptrb6fd+UV4LGEJCQWFqtS0Pc3isZt9aOgdeL7Tt7TbxxIxbTUDMirvtyiPq6IDoPLg8QWK8INOkQa2JOYahfX94mIKsZAcRVwIPE9y/YcxdgfNyM9p0gtzFzdtT7MNpvqcZldYLZ/LLR/lBK+tgrOIlnolyzljvVDMbx7A/ZTJbftWfz6HztVzzsxqm8TPHd5O+jc5CJN+ntfOnEpiiw2vDm8o6oAQFQTMuUZ9+t2fPXPIfW3fcJ1nXF5J9dnpx/PLcKACUtURYvHBrVWgQCiuqzYIH1Vv1x5UH0u5dmfHtLWbXp5T5ifoLIypTXI/EfZt5s8i8xhpBS1bCIVEux9dEArmPTaCs+xv3el4YVft+Nwhn3T6fkto/Dile3RrF5QnR47ka+XoM61WGEs7UvsyQFvOntpRcXIttgQoq/djTp5Vite2ZeC349lqc/7hAXi1RYNEGmsfinq8q6D3j6Yiu9S7EHiF1vE46rocLg6Yz/HYkOEBImNeug89G8FeQ6u7xMRVYyB4irgQOKbZOH+iRlb8NfO9DM+V64bm9cLQof6oWWB4XbxIaq8L5Gn+HzZfrwyd6e6P6RjLCZc2wV+Bp3Lg9jXf7YKaw5k4LwWUfjmjnM8drGJ3Cco9tAPGzF3a4r6/PFLW+Pefs1d+r4aM30TZm5MVj3s5zx4HgwsbUh1TC4HpJqKZNw7xoB3RnRGgBMWJs/G1qQsDJ28Qp23H97Y1S02dhDVpHrL67/vKtuMcTLJnJKNeY6PEjzOzDerx2JD/PD8Fe0wuEMs5z7kcSy2EhwpLIYFJQishd6udZFFai4pQZzJiADOy3yeZMlLr2IpjezMDN+K5mS/pGfi9QMpKLSVIMqgx2st66NXWNBZveaEQ2n4+oi9F/ILzeMxLMa1QWLp+5xn/TdIXNu/VyLB9X0ioooxUFwFHEh8l5wev21Jwa7UbBX0DfEzINhPjxD/0o/qa/bPXR1QI3IG6VEp2fTFVhvOaRqBz27pgdAA12x4sFhtKmgh/WQDjDpVjrdhRIBLjoW8iwSdXp27E1NX2LPopZfky0M7uCRAK73sb526RpXDnnXfuejS0LXl38i3zdqYhMdL+8FL243Pbu2OBuEBLguuXfHBcuxOy8VlneJUuXgiTzZve6oqRX08r7jS50nQ+I7zmuKhi1si0OTazRpEvliC2lqa5Rhj0quey0S2khIkFRTDCtTZxoF9+YWqFPW+giKVASyB3QGRIegeEgCTtmrHcLCgCH8ey1K3AwX2sefZZnEYERsBV5JqfXk2mwqChxsYJKa6w/V9IqKKMVBcBRxIiMiXrNx3DHd/vR45RRY0qxeIO89rprLLwgKMdZrR/9C0jVix177r+bWrO+LGXiw5Tc711cqDeHHOdtU+QDLWJ9/cTW0Aqiv5xRYMmrhUlReVku/jrmxfZ9+bqCJrD2bg3m/X41huMSIDjZh8Uzf0ahZZ58fxxh+7VH/WqCCjKjktPV6JPJ1sgss3W2G1lqiMS9m4ZLHZYLNJBqZNfS7v9Ui2qyEv4YklqLPMFoQadKhnNDCARae8L1KLzQjT193mgQKrTZWLnpF2ouxrfloNeocG4fxwuQUjxnTqtYtk8s87nq2Cw7vyCsu+btRo8FjTWFzr4iCxZOsXnhQk9pS/C+QduL5PRFQxBoqrgAMJEfkayaIfOXUN0rKLyrJbLmhVD1d2jscl7WJqNcNl8+FMFaQ4klWoMonfHN4JV3RmuVGqHQt3puHBHzYiv9iKVjFBmDqqZ51lUL72+05V7jc+1A/zx/RDEDPHyE0kZxZg9NfrVF9V+fsvmxhu7t24zr7/hsQTuOajlWoTxye3dMeg9rF19r2JiMjJJaiLilUvUk8oQS09YnXQIM7PAGMVszbJNxTbbEguLIZeo6nz98Y/mbmYdywLy0/k4qjZcspjrQJMOC88WJVwXnA8G5tz7P3thV4DFVS+NCoUF0YEI6iWeyxXNUgcbTQgVO85m0fIe3B9n4ioYgwUVwEHEiLyRZLV++O6JPy6+Qh2pmSXfd3PoMXFbWNU0Lh/63owOfGCc9qaRDz/y3ZV+rppVKAKELSKCXba6xOVZ1tyFu74aq3aGBEVZMKUkT3QuZZLQJ8cCJs6qgcuahNTq9+PqLoKiq147OfNqgWHuLl3I7xwRftaL9G+/UgW7vtuAw4dz8fVXevj3eu61Or3IyKi2uUpJagdfYljjQYEujigRu6bIZ9psSLERe8PWb6VLOHlmblYdiIHW3IK8N8FXTnDeoQE4tKoEFwcGaKydt2BbBbJtVoRYzSwpDu5DNf3iYjcNFC8dOlSvP3221i/fj1SUlIwa9YsDB069N+Dq2B32VtvvYXHHntM3W/SpAkOHTp0yuOvv/46nnzyybLPt2zZgvvvvx9r165FvXr18OCDD+Lxxx+v8nFyICEiX7c3PQe/bjqigsYHj+eXfT3YpEeLmCDUD/NH/XB/NCj9WD8sQH2saoZkodmKcb9ux7S1h9XnkrU8/trOdVoGmHxbSlYBbvtiLXal5qjNEO9d37VWshjNVhs+WbIP7y/cqzZEXN4pDh+y9yq5KblMmLx4H96ZnwC5YpDe9R/d1K1WyuJKYHriwt34fNkBVX5XMu3/ePgChAZwHCAi8nTuXoLabCtBns2qgsShDGJRJRnnklUcpNNB5wbv4xNmi8o2XnYiFxlmCy4ID8YlUSEqY9fdejxnWayINOgRZWS5aXIdru8TEblpoPiPP/7AihUr0L17dwwbNuy0QHFqauppz7/jjjuwd+9eNGvWrCxQLF+76667yp4XHByMwMDAskGgVatWGDBgAJ566ils3boVt99+OyZOnIjRo0dX6Tg5kBAR2cmQsTU5SwWNJcssNfvfvkflCfU3oElUIFpGB6myvi2jg9EyJgjxof7QlmYUHMksUKWmNydlQa4Z/zewNe7t17zscaK6kltkwf3fbcCS3UfVe/HS9rG4rmdDnN+yHnROeD9K5vLjP2/BjtIMfcnIn3hdlzrt/01U0xLtD0/bpM4R2RgkfYudmXW/bM9RPDNrGxIz7BuRLusUhxcub4foED+nfQ8iInJtCeqU4mIUWktclo1ZEQaxqDrXwslFxWpjQYAHlFJ3p/7OUvZa+im7Q4CdfBfX94mIPKD0tEzG/xso/i95LCcnBwsXLiz7mgSKH3nkEXUrz0cffYRnnnlGBZ2NRvtCrGQbz549G7t27arSsXEgISI6nc1WogJehzPyVT/LpBMF6mNy6cesAnOF/1Z6D0vwuHl0EBYnHEVGXjHCAgwqi7Nfq3p1+nMQncxiteHFOTvwzap/q5VIYOzaHg0xokcDxIf5V/s1JWP+vYV7VD9iyZSU9/oLV7TD0C71uRhJHmNPWg7u+npdWVWJZvUCcUnbGNWKoFujMOhrUJJa/va/8tsOzNyYrD6PC/XDy1d1wIB2LMVORORtCq02pBaZYYN79StmEIuqI9tiRUqhGWEG93kPu7NcixUGjQax7PtNboDr+0REXhAoTktLQ4MGDfDVV1/hxhtvPCVQXFhYCLPZjEaNGqnHHn30Uej19nJBt956qxoIJDDssGjRIlx00UXIyMhAeHj4ad+rqKhI3Rzk3zds2JADCRFRNeQUmlXAeP/RPOxOy8Ge9FwVaDhwLA9m66lDT/v4EHx8c3c0jAhw2fESnUz6ck9fexgzNyQhu9CiviZJxbKR4fpzGuGiNtFV6tW69mAGnvh5C/YfyyvLlHzxyvaqFzKRp8nKN+PpWVsxb3uqyg5zCA8w4MLW0SrAe37LKASfoW2AXH7M3pSMl3/bqYLFsi4/sk8T/G9Q6yq3LCAiIs/sV5xabIYeGvjVcs/7qmAQi6pLsomTCovUpgIT3zOVKrDa1MaQWJMRAW5wvhMxUExEVDGPWYmRALGUlJYS1Sd76KGH0K1bN0RERGDlypWqvLT0O54wYYJ6XDKJmzZtesq/iYmJKXusvECx9Dh+8cUXa/XnISLydhIoaBMrtxAM6Rh3So/WQ8fzsCctF7vTchFo0uHm3o3hx13Z5EbaxoVg3JXt8eTgNvhzWyqmrU3Eqv0ZWJRwVN3qBZvQtWEYwgOMCAs0ICLAaL8fYEBEoBEh/gZ8u+oQvv7HnpkcHWzCy0M71ErfY6K6Iv2CJ93UDdmFZixJOKpKUsv5cCLfrLKC5WbQadC5QRgCTHrotRpVtt3x0XFLyijAmoMZ6jXbxAbj9WEd0bXR6XNyIiLyLoF6HaR2UGpRMXQ2wODCQJtkOMtGpSgTg8RUdQatRvUozjRbGCiuhNlmQ3GJjUFiIiIiD+ExGcVt2rTBJZdcgg8++KDS15k6dSruvvtu5ObmwmQyYeDAgSpQ/Mknn5Q9Z8eOHWjfvr362LZt29NegxnFRERE9F+SDS9Zxj+vT8Kx3H/nCWdyXY+GePqytqpnN5E3lmtfd+iEChr/tTNdnSdVYdRr8fDFLTH6gmZVys4nIiLvIEtQGWYLjhVbEaTXQu+Ccs+SFZpvs6oglrv1TCbPyJSVXsX+Wte8f92dtaQE2RYb6hl1iDCw7ze5D2YUExF5eEbxsmXLkJCQgOnTp5/xub169YLFYsHBgwfRunVrxMbGqrLVJ3N8Lo+VRwLMciMiIiJyaBoVqDKMxw5sheV7j6l+3CfyilU2ZWZ+MTLy7fftXytW/VZfuKI9zm0R5epDJ6o10pu4d7NIdXvmsnbYdzQX25KzYLGWqJ7cUqLaarOVfrTfZL1wYLtYNIkKdPXhExFRHZOgUbhBD+lEc8JiQYhOB20dBpJsJSXIs9oQadAjmBuVqAb8tBoEaLUqYCz9renUjSC5VivCDTp1njNITERE5Bk8IlA8ZcoUdO/eHZ07dz7jczdt2gStVovo6Gj1eZ8+ffDMM8+oHsYGgz2TZ8GCBSqIXF7ZaSIiIqLKSPaj9GMlotM1rxekbkRERBWRwHCkUQ9LSQlyLFaV1VsXAaWSk75fuJFBLKoZed8E63XIsdjUe4rvo3/lWG2q1HSEwVCnG0CIiIjo7Lh0+6SUh5bArtzEgQMH1P3ExMRTykL89NNPuPPOO0/79//88w8mTpyIzZs3Y//+/fjuu+/w6KOP4uabby4LAt94440wGo244447sH37dpWV/N5772HMmDF1+JMSEREREREREZHQaTSIMurhr9eq4FJdkO8j3y/KaFDfn6impOy0SatBkc0tuvm5hXyrFQY5rw0G1cuZiIiIPIdLM4rXrVuHCy+8sOxzR/B25MiR+PLLL9X9adOmqR16N9xww2n/XspDy+Pjxo1TPYWlF7EEik8OAkvvgfnz5+P+++9XWclRUVF4/vnnMXr06Dr5GYmIiIiIiIiI6FRGrVYFlVJtxSrIFKDT1Vq5ackk9iv9fgxi0dnSazUI0WtxrNgCP5YwV32/zSUliDcZ+PsgIiLyQJoSicJSpdjsnoiIiIiIiIjI+fIsVqQUm6GDRpWtdXYAS3oSS1BPyl1LcJrIGQqtNiQXFcOk0fr85oMsiwXher2qEsBS3OSuuL5PRFQxzpCJiIiIiIiIiMglAvU6xBgN0kUYWWaL6l3sDAVWG/JtVkQYdIg2GRgkJqeSzNkArRaFtropne6upBqABMvDDAwSExEReSqXlp4mIiIiIiIiIiLfFqzXqZ6vmWYrMi0W6DUaFYSrSeBJCuflWm2QJM9YkxHBupq9DlFV3rfZVqsqb671wfeYbOqQW5yJJd2JiIg8GbdTEhERERERERGRS0nGbz2jHvVNRhV0yrRYUVzNbE1rSQmyLFYYtRoVJA7R6xgkplrjr9MiUKdV5c19UZ7VijC9Xv0OiIiIyHNxJCciIiIiIiIiIpeToK6Uoo4zGlXQuLikBNkWe8bmmZhtNmRbbAiVf28yOr3fMdF/6TQaRBgMkL0I1d3U4OnyrTZVcjrUwM0YREREno6lp4mIiIiIiIiIyG3otRpEGg0I0OlwwmxRAWCDVspKA7aTSkyXaACN/T8qaFfPqEO4Qe+TZYDJNWRDQpheh6PFFhg0Gp8Imkq5aXOJTW3IYO9vIiIiz8dAMRERERERERERuWVpX5PWgCC9DbkWK3TQQBKFJSgs4SkJCEtYTmJz8pgfs4jJBcIMehTYbKo3tvQt9nZ5Fqv6mYN4vmhmi4kAACv4SURBVBEREXkFBoqJiIiIiIiIiMgtSTBYeg3LjcgdycYFyWRPsZlVCXSDF2fZSslpySIOY8lpIiIir+G9MxciIiIiIiIiIiKiWhao0yFcr1NZxVIW3RtZS0tORxr1LDlNRETkRTiqExEREREREREREZ2FUL0egXot8qyOTtreRcq/h+p1LDlNRETkZTiyExEREREREREREZ0FvVaDCIMeJRqoEtTepMAqJbXtJbZZcpqIiMi7MFBMRERERERERERE5IQS1KE6HfJs3lOCWkpOF6mS0waWnCYiIvJCHN2JiIiIiIiIiIiInECybv21WuR7SVaxlJwO0+sQzJLTREREXokjPBEREREREREREZGTSlBHGvQqE9ds8+ys4nyrFSatliWniYiIvBgDxUREREREREREREROEqjXIUyvR57N6rElqCXIbS4pQaRRz5LTREREXoyjPBEREREREREREZEThUkJao0WuVbPK0EtwW0Jcofr9QhkyWkiIiKvxpGeiIiIiIiIiIiIyIkMWg2iTAboNPYSzp4kz2pDgI4lp4mIiHwBA8VERERERERERERETibB1npGAySnuNBDMouLbTaUaIAIg171WyYiIiLvxkAxERERERERERERUS0I0utUsLi4xKaCsO7MJiWnrSWI0OsQqNO5+nCIiIioDujr4psQERERERERERER+aIQvQ5Wmx7pZgs00Kiy1O5I+imH6LUINXDJmIiIyFcwo5iIiIiIiIiIiIioFoUZ9Igy6FX/X0tJCdyNlMbWl5ac1rEvMRERkc9waaB46dKluOKKKxAfHw+NRoPZs2ef8vioUaPU10++XXrppac8JyMjAzfddBNCQkIQFhaGO+64A7m5uac8Z8uWLTj//PPh5+eHhg0b4q233qqTn4+IiIiIiIiIiIhI1jXDDXpEGHTIsVhVmWd3YS0pQWGJTQWJ/XTMKyIiIvIlLh358/Ly0LlzZ0yaNKnC50hgOCUlpez2ww8/nPK4BIm3b9+OBQsW4LffflPB59GjR5c9np2djYEDB6Jx48ZYv3493n77bYwbNw6ffvpprf5sRERERERERERERA5ajQYRRj3C9DrkWK0ocZNgca7Fqo5JSmQTERGRb3Fpw4nBgwerW2VMJhNiY2PLfWznzp34888/sXbtWvTo0UN97YMPPsCQIUPwzjvvqEzl7777DsXFxZg6dSqMRiPat2+PTZs2YcKECacElImIiIiIiIiIiIhqk5R1jjIaYC2GyiwO1utUtrGryDGYtFqV7ezK4yAiIiLXcPtaIosXL0Z0dDRat26Ne++9F8ePHy977J9//lHlph1BYjFgwABotVqsXr267DkXXHCBChI7DBo0CAkJCThx4kS537OoqEhlIp98IyIiIiIiIiIiIjpbeq0G9Yx6+Om1yLHaXJZZLEFivUaDeiYDjFq3XyYmIiKiWuDWMwApO/31119j4cKFePPNN7FkyRKVgWy1WtXjqampKoh8Mr1ej4iICPWY4zkxMTGnPMfxueM5//X6668jNDS07CZ9jYmIiIiIiIiIiIicQQKz9QwG+Os0yLZaVZ9gVwSJo00GBLAvMRERkc9yaenpM7n++uvL7nfs2BGdOnVC8+bNVZbxxRdfXGvf96mnnsKYMWPKPpeMYgaLiYiIiIiIiIiIyFn8dFrEaozIMFtwwmxFgE5TJ5m92RYrjKVBYn8GiYmIiHyaR80EmjVrhqioKOzdu1d9Lr2L09PTT3mOxWJBRkZGWV9j+ZiWlnbKcxyfV9T7WPoih4SEnHIjIiIiIiIiIiIicnYZ6iijHvWMOhSVlCC/tJJibWGQmIiIiE7mUbOBpKQk1aM4Li5Ofd6nTx9kZmZi/fr1Zc/5+++/YbPZ0KtXr7LnLF26FGazuew5CxYsUD2Pw8PDXfBTEBEREREREREREdlpNRpEGA2INRqggUaVha6NvsWOIHEMg8RERERUyqUzgtzcXGzatEndxIEDB9T9xMRE9dhjjz2GVatW4eDBg6pP8VVXXYUWLVpg0KBB6vlt27ZVfYzvuusurFmzBitWrMADDzygSlbHx8er59x4440wGo244447sH37dkyfPh3vvffeKaWliYiIiIiIiIiIiFwpSK9DnJ89iJtltcLixGCxBIlNpUFiKXlNREREJDQltbE9rYqk1/CFF1542tdHjhyJjz76CEOHDsXGjRtV1rAEfgcOHIiXX34ZMTExZc+VMtMSHJ4zZw60Wi2GDx+O999/H0FBQWXP2bJlC+6//36sXbtWla5+8MEH8cQTT1T5OKVHcWhoKLKysliGmoiIiIiIiIiIiGqNxVaCE2YLMiwW+Gu1MJ1F32JZ+s2x2lSQWMpNM0hMvojr+0REbhoo9hQcSIiIiIiIiIiIiKiuyJJtlsWqAsbFNsCgBYwaLQxaTZX+vdlWguISG8wlJSrYLJnEZxNwJvJkXN8nIqqYvpLHiIiIiIiIiIiIiKiOaTQahBn0CNBpUWgrQa7FikKbDbnmEhi1mtOCxhJYlqBwka0E1hJ7YNlPq0WkTqtKWRsZJCYiIqJyMFBMRERERERERERE5IYkwGvUAiF6HYpsNhUIPjlobNBoYJNAMez35XkSGDZJMJnBYSIiIjoDBoqJiIiIiIiIiIiI3JyUjjaVEzSWDGNHL2N9FUtTExEREQkGiomIiIiIiIiIiIg8NGhMREREVFOsP0JERERERERERERERERE5GMYKCYiIiIiIiIiIiIiIiIi8jEMFBMRERERERERERERERER+RgGiomIiIiIiIiIiIiIiIiIfAwDxUREREREREREREREREREPoaBYiIiIiIiIiIiIiIiIiIiH8NAMRERERERERERERERERGRj2GgmIiIiIiIiIiIiIiIiIjIx+hdfQCeoKSkRH3Mzs529aEQEREREREREREREVEVOdb1Hev8RET0LwaKqyAnJ0d9bNiwoasPhYiIiIiIiIiIiIiIarDOHxoa6urDICJyK5oSbqM5I5vNhiNHjiA4OBgajaZOdjhJUPrw4cMICQmp9e9H5El4fhCVj+cGUcV4fhCVj+cGUcV4fhCVj+cGUcV4frgvCYFIkDg+Ph5aLbtxEhGdjBnFVSCDR4MGDer8+8qEgpMKovLx/CAqH88Noorx/CAqH88Noorx/CAqH88Noorx/HBPzCQmIioft88QEREREREREREREREREfkYBoqJiIiIiIiIiIiIiIiIiHwMA8VuyGQy4YUXXlAfiehUPD+Iysdzg6hiPD+Iysdzg6hiPD+Iysdzg6hiPD+IiMgTaUqkkzsREREREREREREREREREfkMZhQTEREREREREREREREREfkYBoqJiIiIiIiIiIiIiIiIiHwMA8VERERERERERERERERERD6GgWIiIiIiIiIiIiIiIiIiIh/DQDERERGdlZ07dyIvL8/Vh0FERERERERERERE1cBAMSlHjhxBr169MH78eFcfCpFbysrKQklJiasPg8itJCcnY8SIEejRowf++usvVx8OERERkcc6evQolixZgv3797v6UIiIyEMUFBSgqKjI1YdBREQejoFiwiOPPIImTZogJiYGN910k6sPh8itpKSkqEDY008/jYMHD7r6cIjcxpgxY9C4cWNkZmaqC9PAwED1dW6oIALS0tIwceJEzJw5E7t371Zf47lBZJeeno6lS5cyGEZ0kueeew5NmzbFww8/jA4dOuDtt99WG/KIyC43N1dt3hacUxH9O3bIpu3Vq1e7+lCIiMjDMVDsw3bt2oX69evjzz//xMqVK/Hrr78iNjbW1YdF5Da++uortGvXDsXFxbjmmmsQFBTk6kMicrmff/4ZYWFhWLRokbotWLAA3bt3x++//64e12g0rj5EIpd6/vnn0bx5c/z222944IEHMHLkSOzYsUOdG1zYJF/3zDPPoFmzZuo86dSpE1555RUcOnRIPWaz2Vx9eEQusXDhQsyaNQs//vgj/vjjDzz77LP44Ycf8OSTT7r60Ijcwrhx49QGCjlPBK83yNelpqbi1ltvxdy5c1VCw5dfflm2kYKIiKgmGCj2YTKJCAkJweDBg9UOtA0bNuDFF1/EF198gY0bN7r68Ihcymq1Ytq0aXjhhRfwyy+/4MILL1TBMSJft2fPHrz33ntqnDj//PNVb+Lg4GBV8spsNrv68Ihc6ptvvlELNjJuSDl2+VyCX//88496nAub5MsmTZqkzgs5R2QjhbS8kU1GUqFCaLW8NCXf4Ng05Pg4Z84c6HQ6DBkyBHFxcaqS0X333Ye///4bX3/9tYuPlsh1MjIycOedd6pzRMiYIdcigpvvyNfXc+vVq6euy6dPn66SHJYtW+bqwyIiIg+md/UBUN2xWCzqAtSxSNmlSxc8+uijanFGSr9t3rwZLVu2VBNvWfh//PHH8dhjj7n6sIlcQnbzJyQkqI/r16/HO++8o84hyTAeNmwYOnfurBb/uahJvjZ2SHaL4748JiWnJTtMNhsZDAa1aMNgGPkax/teqrTIos3FF1+svu74eM4555z2XCJfIe952YAnAeJu3bqhX79+6ut333232kQhgbDvv/8eN954o3qejDlE3kradcjGOqlUJGOBXE/IhrsGDRqoTXf+/v7qeVdccQXWrl2LV199FTfffDOvOchnnDxPkmsN2Txx9dVXq3Pjlltuwbx581TrNLnuIPIVci7IOOAYC6QFlLQqaNSokfr8oosuwptvvqnmWfHx8S4+WiIi8kS82vARr7/+uppcywKMlJiW/i4mk0llSV566aU4fvw4ZsyYoXrpSdkSmYBLWR9HaR8ib590/3dHsgS/ZKFSyuzedtttauG/YcOGapFTAsWyyMMFG/K1sSM/P79sUVM4FvP79Omjek4ePnyYATDyybFD3veFhYVqrMjJyVEZ9zK3Gj58uDovpDqFLN5IEIznCPni+ZGdna3KJLZq1eqU54WHh6sF///9738MEpPXe/nll1U1FgkCS9awnBNyPSGBYinBvm3btrLnxsTEqGsOo9GoKn4R+QK5xpakhZPHiAcffBCXXXaZCoQNHDhQlWXftGmTS4+TqC699NJL6r1/ww03qEQGWc/18/NTQWLHdfmnn36KFStWqKpGrPJFREQ1wSiHl1uzZg26du2qdulLVktKSorq7yKTCNGiRQuVVTxx4kS18ywgIEB9XbKMZUFn3759Lv4JiOomEHbTTTepQJjjwlQ+yk7Mjz/+WJ077777LiZMmKDOJVnQcZRJZD898sWxw7FJwhHwkkVMCQpIJgyRL44djgWbq666ChEREXjiiScQHR2NzMxMfPLJJyrrXj7ec8896t9z7CBfOj9k84ScF9LqZsqUKfj888/VePHcc8+pTakyp5LsShlziLzR0qVLVU9u6UH8yCOPqMpEUoZdri/EQw89pOZasmn75CBZz5491bmTlpbmwqMncs1GCnnfS9awzKcc8ybpa5+cnIzZs2erOZZgCWryVjJXkvnUt99+qz4ePXpUVX2UzXUOcl0uG+2aNm2K+++/X21M5TouERHVBAPFXuzYsWNqMUYuMKWsm1yULl68WO3kl5K6xcXFapG/V69eauFG7ssufploS+kr+feOyTeRtwfCjhw5ogJhspAvZMemBL6kN5g8z5HhIuXZZaF/1apVauGTWcXkS2PHzp07T9mh7FiYueSSS9QCZ1JSkvqcQTDytbHDsYlCKrXITv5rrrkGgwcPVn1YZcFT2hc8//zzqseeLPJw7CBfPD/ef/99tG7dGm+88Qbq16+vssLk9sADD6h5lix0EnkbqcYi44KMD3KOSJUW2aQtmZJS4UvmTLLR6JlnnlHnypIlS8r+rQSJZcyQuRmRr22kkPPkv8EwGTukZ7FsqpDrcSHrWAwWkzfatWsXtm/frlp0SGa9rE3JRwkcy/kiTq5WJPMsWcP98ssv1Ue5DnE8j4iI6Ey4SuXlJCNSglqyS9+xuC/lc6VUj2SACb3+1FbVMsmQ3f/yb+VClsjXNlHIzk05P8aOHat2Mc+fP/+U80N6ekdGRqpFHV6Ukq+NHSf3A3NclMo5I1UpZAFUMAhGvjh2yLni6F0vn0sGjKPXpJAS1FJKlBspyNfOj927d6txQuZN33zzjSqb+Pvvv2Pv3r2qdYFsXpV/z0AxeSMZB0aPHq0ywBxjggSPZUOqlF2XQLCQzPqOHTuqjUXTpk1T54PMq+SaZMiQIS7+KYjqfiOF45rDcb3tuL6QTRWyyUJaRB04cED9+0mTJrn05yCqrfMjMTFRVYJ0uP766zFy5EhViULIRju5JncEjN966y1VraJv374qC1nKuRMREVUFV3K9WFRUlJpEy+L9yQFhuRg999xzT3u+9ERau3atKkV9++23q97F/+0jRuQLgTDHIo70BZP+xCtXrlQlfGQRUxY1JQAwaNAgdfHKXpPk62OHaNy4seqtl5WVVafHSuRumygci5hSLjEjI0ONH0ICZRI0k/56Eiwm8tW5lbS5keosvXv3Lvt3klUsJROldDuRt5FrBcmkl3NBSPWi2NhYVYVFyrRLFSP56MgGa9OmjSrbLln5/fr1U1n6Uo6XyBc3UqSnp59yve0Ihsm1iiQ39O/fX1Vx4eZt8kaFhYVqTJAMe4fQ0FDcd9996r4EhYW8/yVgLNfjmzdvVnMwmWelpqbilltucdnxExGRZ2Gg2IvJZEEW+B2TZscEWwJdcsHpeI7DihUrVE+L1atXY+7cuXjttddOyzYm8pVAmFycCumfd/fdd6uSobJ5okuXLmqR/95773XhT0DkPmOHIwPshRdeUAubRN6qOmOHlIWTxRkpOz106FDV4iMuLk713yPyRtXdZCRfX7hwIR5++GGVFXPllVeqMrtc7CdvJ606JFgsi/kLFixQm1Ll3Dl+/Lgqv/vhhx9i2bJlqryubDb64osvVPYkkS9upJD2NpJlL6QiiyMYJiV4ZRO3bKiQzXky7yLyNGea88j1g1RjkbHg5BYEsklbMoulpY1kDMtGVdlgIe0+JMNe1nSnTp2qquARERFVlaaEV+Mey1HeUBbpHf1THWSh8uQgr+M5Bw8eVBegEhSW0lZC+odJBoD0W5XSPfI4kTeTP3uOXkYn71A+77zzVFBYdl3+9zHJBpOyP3Lh2qFDBxcdOZH7jB0SBJPz4b/nCpG3qu7YIT3FNmzYoEpOy0YjRwCNyBtV9/yQzUfvvfceNm7ciPHjx6NXr14uPHqiuplXif+eI9KTWDIipSy7jBVEvkwCXRI4lpK5cq0xe/ZsVZZdgmSymUjI51KJQjKKpd0BkSeS9VfZBORoCegYS/47dshc6YMPPlCJPNdee23Zv5eEhkWLFmHevHkIDAw85fqciIioJphR7KFkcnzzzTer+ydfkDri/o5ssK+++uqU50hPsObNm6uF/uTkZFx33XUq00XKIwYHBzNITF7B0f+xvF53Mul2LM44erkICYRt2bJFZQw7HpOJtpBzScqwDxgwgEFi8mjOHDsk++vEiRMMEpPXcNbYIRvwRPv27VVw7Omnn2aQmDyes84PyaYUUlJUKlEsX76cQWLymXmV+O+8STYUtW3bluWlySfHjv+SceGGG25QWZQyTkg1I8mKlBZpDi+99JIaSxgkJk8kY4K0+5NWZtJ/XirXFRQUqCCxo22HjB1yzvz555+q8opch3/55ZdYtWpV2etIBrGUoXaUbBcMEhMR0dlgoNjDyK57Kb/z7bffYvr06Wr32MmTbMeF52effaYmCT/++KMq7eawZ88e1etIyvhIfzDZmTlr1qyy3ZlEno6BMKK6GzvCw8Nd9BMRufcGPBk7iLyFM88P6UMsG1Tl30i5aiJfnFdlZ2er3quSPfnuu++qwJj072axN/ImztxIIdUpHIKCgurg6Imcb+nSpSrxQAK+0pe7WbNmmDFjBp566in1uMFgUB8//fRTNXY4zg0ZK+QckpY2slFi7NixqrS0jB2OLGQiIqKzxRHFw8hOyvr166vdZDfeeKOaXIiTS1rJBav0wJMFfSnHU69evbIdZ7Kw//7776t/L70rpDeYvB6Rp2MgjKhiHDuIysexg6hi3KBK5Px51bp161S5dend/dNPP6mS0/fee686n7g5lbwBN1IQnU6uqeVvfp8+fVSP7WHDhuGjjz7CyJEjVc/6rKws9TwpMy1ZxG+99ZYaH4T8Gwka33777dixY4cagyTA7NiIQURE5AzsUexh0tLS1KRZduYvXrxYXZg+9thjqnSJlClx7ECTfhdSSvpksnv/kUceUb2P5N8ReRPZdbly5UrVt0V6Fm3atAlbt2495TlysSolQOWiUybkjp3NMmmXEqGHDh1SC5kffvihurgl8hYcO4jKx7GDqGI8P4icP6+SIJhk20tfSunDSuRtzmbskI0Uc+bMwffff6/OkcmTJ6sNR0SeTgLB8t6WHtxSNt3Rk/jVV19Vm+hWr16tzgNZopfnhoWFlfs6J48xREREzsRAsRuT3cdyAdqmTRvcdtttaqJ8sszMTLz55puq5MjevXvVRaj0sTi5rI+D/G/mDmXyZgyEEdlx7CCqOo4dRBXj+UHk3HkVkS/gRgqiM48djnHiiSeewP79+1W2Ma+9iYjIlRgodkMJCQmqDIlMGtq1a4f58+ejc+fOeOONN9CrV69TJg+yO/OWW25B37598cknn5TtSiPyZgyEEZ2OYwdR5Th2EFWM5wfRqTivIjozbqQgqtrYIedK7969y8YHx8cLL7wQV155pdpIwfkTERG5Eq9e3NDcuXMRGhqKDRs2YNq0aaoHxYkTJzBhwgTs27dPTRwc/V3atm2Le+65R5X0kefJREN2bcqEnMgbJ91SxlDe7ykpKXjqqacwaNAgVaZHOPa9SJme6667DtHR0WU9wyqacHMiTt6CYwdR+Th2EFWM5wdR+TivIqrbsYPIm8cO6bctY8fJQWLJvt++fTsuuOCCsnNDniNkQwUREVFdYqDYzcjFpkwUZCLt2GUZGxuLZ555BomJiZgyZYr6ml6vV5Nvk8mEIUOG4LzzzsNNN92kPl522WVqwkHkbbhgQ1Q+jh1EFePYQVQxnh9Ep+O8iqhyHDuIaj52OCpO/PXXX4iKikL37t3VudG/f3906tQJBQUFzLonIqI6x0Cxm5GLzaKiIjUxkF1mjl1kI0aMUJMH2aG5cePGU3ZpymRE+oBt3rxZlfxJTU1F69atXfpzEDkbF2yIKsaxg6h8HDuIKsbzg6h8nFcRVYxjB9HZjx1CgsMtW7ZUGfkSIG7QoIHK0Pf393fhT0FERL6KgWI34phE3HnnnWpn2datW9XE27ETUyYXMvGW3i6OXWjr1q3D5ZdfriYj27Ztw+eff676vhB5Gy7YEJWPYwdRxTh2EFWM5wfR6TivIqocxw6isx87xK+//oo5c+Zg6dKlWLNmDb799luEhIS47GcgIiLfxkBxHTt06BCSkpLK7TnhmET37t0b559/Ph577DH1uWOXZr9+/dRzdu3aVfZvmjZtiqlTp6qJeLt27erwJyGqO1ywIV/HsYOo+jh2EFWM5wf5Ms6riGqGYwf5MmeMHTt37lSf5+TkYNSoUSpYvGLFCnTr1q2OfxoiIqJTMVBch3755Rd1Efnggw+eMmFwTDBkZ6bcz8rKwosvvoglS5bg448/LptwSM+XwMBAREREqM/l65GRkTj33HNd9jMROQsXbIjKx7GDqGIcO4gqxvOD6HScVxFVjmMHUe2NHTJeCNksMXbsWLWJgoiIyB0wUFyHpJRIr1691A7LGTNmqK/JRMIxwXj//fcREBCAP//8U02wX3jhBXW7++67sWzZMrz88stq19nFF1+snq/RaFz68xA5CxdsiCrGsYOofBw7iCrG84OofJxXEVWMYwdR3YwdRERE7oaB4jogfVuETKZ79uyJrl274r333oPZbFaTCvn6zTffjDfffBOfffYZbr31VvX8Z555Bs8++ywSEhJw//334++//8a0adNUTxcib8IFG6LTcewgqhzHDqKK8fwgOhXnVURnxrGD6FQcO4iIyFdoShxb/6hWya958ODBatflsWPH8Pjjj6vJ9EMPPaQmFnv27EHr1q3LerXIZET6uTjuS/kf2dlJ5E0c7/MHHnhAfczPz8fu3buxcOFCGAwGdW7IpHrRokV4/fXXccstt5RdbH7wwQf46aefkJmZqf7tp59+inPOOcfVPxKRU3HsIDodxw6iivH8IKoY51VE5ePYQVQxjh1EROQLGCh2sp9//hlhYWFo37494uLiTtmBedlll+HJJ59UfVkmTpyIX3/9FR06dEDHjh0xZswYGI1GVx8+UZ3jpJuIYwdRdXHsIKoYzw/ydZxXEVUfxw7ydRw7iIjIl+ldfQDe4ptvvsH//vc/NGnSBAcOHECrVq3U50OHDlWTCunVsmHDBlXGRyYQeXl5aoemTLY5qSBfn3TLrbi4GL1798awYcMwZcoUrF69utxJt+Ni1HGfF6PkyTh2EFWOYwdRxXh+EJ2K8yqiM+PYQXQqjh1ERETsUXzWLBaL6k8h5Xdee+011Zdl9uzZaN68uSq5U1RUpJ5XUFCgerjMnDkTnTp1UhORAQMGoHHjxmrnpmNyTuRt5L0eExODt99+GzfeeCNGjBihzhHx30l3ZGRk2aR71qxZuOSSSzjpJq/EsYOochw7iCrG84PoVJxXEZ0Zxw6iU3HsICIi+hcDxWdJJs9Hjx7FyJEjcdttt6nJc9++fVU5kuzsbJjN5rJJw48//ohbb70VF1xwgdp59uabb6oda48++mjZ5JzIW3DSTVQxjh1E5ePYQVQxnh9E5eO8iqhiHDuIysexg4iI6F8MFNeATAocE+XQ0FBcc801qiyJlNuR3iyiYcOGatLh2HUpn//www9Yvnw5PvzwQ1XqRyYfUsrkqquuUq/HdtHkTTjpJjoVxw6iM+PYQVQxnh9E/+K8iqhqOHYQ/YtjBxERUfnYo7gaZNL8xBNPwGQyqQnF6NGjcccdd6BLly7qcZlUOPq0zJ07V31dJhYy8TYYDLjuuuvKXksmERqNBnfeeScn2+RVk+4WLVqo97Zj0i39jByTbvlY0aRbehqdc8456msy8ZZJd05OTtmEW16TyBNx7CCqHMcOoorx/CA6FedVRGfGsYPoVBw7iIiIKsdAcRUtWLBATSoee+wxVaJn/vz5uPfee9Vk4pZbboGfn5+aKMiEQUr3bNu2TT1XyKTCQXZpykTCMbnmpIK8ASfdROXj2EFUMY4dRBXj+UF0Os6riCrHsYPodBw7iIiIzoyB4jNwTI7/+ecfREZG4q677lIThUGDBqGwsFD1dImKisLVV19dNlnIyMhQJXx69epVtpvzo48+woQJEziRIK/DSTfR6Th2EFWOYwdRxXh+EJ2K8yqiM+PYQXQqjh1ERERVxx7FZ+CYLOzYsUNNtmVS4ejh8sorr6jJ9i+//ILU1NSyf/PXX3+psj1xcXF4+OGHVe+KQ4cOqX/HvhXkLRzv5ZMn3TLhHj9+vLovk+4//vij7DySW3mT7jFjxqj7nHSTN+HYQVQ+jh1EFeP5QVQ+zquIKsaxg6h8HDuIiIiqjoHicnZhPvTQQ5g4cSLWrFlT9vWLL75YTa5ld6VjchEeHo5bb71VTch37dqlnicTh99++03tzmzSpAkWLlyoHp8xY4b6d+znQt6Ck26if3HsIKoajh1EFeP5QWTHeRVR1XHsILLj2EFERFRzDBSXSklJwRVXXIGbb75Z7a6cOnUqBg4cWDa56NevH0JCQvDiiy+qzx2TZ9mhKTsxN23apD4vKChQt8DAQEyaNElNMHr06OHCn4zIOTjpJjodxw6iynHsIKoYzw+iU3FeRXRmHDuITsWxg4iI6OwxUAwgPz8fTz31lJoMrFq1Ct9++y22bNmC1q1bq14UQnZaSn+Xd955B4cPH4bRaCybXMjztm/fru4HBARg3Lhx6jnXXXedS38uImfgpJuofBw7iCrGsYOoYjw/iE7HeRVR5Th2EJ2OYwcREZFzMFBcOhkwmUwYNWoUmjZtCovFor4+ZMgQ7Ny5U00ggoODceONN6Jbt2649tprVVke2WmZmJiI9PR0DB06tOz1unfv7sKfhsh5OOkmqhjHDqLycewgqhjPD6LycV5FVDGOHUTl49hBRETkHAwUl/rwww9x6aWXqvtarf3Xsnv3bnTq1Kms9I5MOqZPn45jx46hf//+GDFiBPr06aMm5NyBSd6Ik26iynHsIDodxw6iivH8IKoY51VE5ePYQVQxjh1ERERnT1Pi2GJIpznvvPNUmZ6RI0fCZrOVTTr27t2L9evXY/Xq1ejcubN6nMhbSW8j6VUk5DyQc+Cmm25Su5k//fTTsuclJyerCbdctMpEe+XKlWjTpg2+//57xMTEuPAnIKpbHDuIOHYQVYbnB1HVcV5FZMexg6jqOHYQERFVDwPFFdi/fz/69u2LuXPnlu22LC4uVuV7iHwdJ91E5ePYQVQxjh1EFeP5QXQ6zquIKsexg+h0HDuIiIiqT1+Df+PVJG4upUmWL1+OoKCgsknFiy++iNTUVPUxOjra1YdJ5NJJt1x4dujQoexC1DHpbtGihbqx1xH5Go4dRJXj2EFUMZ4fRKfivIrozDh2EJ2KYwcREVHNsUfxfzj6V6xZswbDhw/HggULVC+LyZMn4+qrr+akgnyWo/hAeZPuhx9+WPU9IvJVHDuIysexg6hiPD+Iysd5FVHFOHYQlY9jBxERUc2x9HQ5CgsL0bFjR+zbt0/txpQJ9xNPPOHqwyJyCw888IDqgzRgwACMHj0a+fn5+OabbzBw4EBXHxqRS3HsIKoYxw6iivH8IDod51VElePYQXQ6jh1EREQ1w0BxBS655BK0bNkSEyZMgJ+fn6sPh8gtcNJNVDmOHUSn49hBVDGeH0QV47yKqHwcO4gqxrGDiIio+hgoroDVaoVOp3P1YRC5HU66iSrGsYOofBw7iCrG84OofJxXEVWMYwdR+Th2EBERVR8DxURULZx0ExFRdXHsIKoYzw8iIqoujh1ERERE5CwMFBMRERERERERERERERER+Ritqw+AiIiIiIiIiIiIiIiIiIjqFgPFREREREREREREREREREQ+hoFiIiIiIiIiIiIiIiIiIiIfw0AxEREREREREREREREREZGPYaCYiIiIiIiIiIiIiIiIiMjHMFBMRERERERERERERERERORjGCgmIiIiIiK3N2rUKAwdOrTOv++XX34JjUajbo888kilz23SpAkmTpxYpdft379/2etu2rTJSUdLRERERERERFR1+mo8l4iIiIiIyOkkWFqZF154Ae+99x5KSkrgCiEhIUhISEBgYKDTXnPmzJnYt28fzjnnHKe9JhERERERERFRdTBQTERERERELpWSklJ2f/r06Xj++edVYNYhKChI3VwZyI6NjXXqa0ZERCA7O9upr0lEREREREREVB0sPU1ERERERC4lQVjHLTQ0tCww67hJkPi/paeldPODDz6oykGHh4cjJiYGn332GfLy8nDbbbchODgYLVq0wB9//HHK99q2bRsGDx6sXlP+zS233IJjx45V+5jT09NxxRVXwN/fH02bNsV33313yuOS/Txu3Dg0atQIJpMJ8fHxeOihh87it0RERERERERE5FwMFBMRERERkUf66quvEBUVhTVr1qig8b333osRI0agb9++2LBhAwYOHKgCwfn5+er5mZmZuOiii9C1a1esW7cOf/75J9LS0nDttddW+3tL4Prw4cNYtGgRfv75Z0yePFkFjx1mzJiBd999F5988gn27NmD2bNno2PHjk79+YmIiIiIiIiIzgZLTxMRERERkUfq3Lkznn32WXX/qaeewhtvvKECx3fddZf6mpSw/uijj7Blyxb07t0bH374oQoSv/baa2WvMXXqVDRs2BC7d+9Gq1atqvR95bmSqSwB6p49e6qvTZkyBW3bti17TmJiosqGHjBgAAwGg8osZj9iIiIiIiIiInInzCgmIiIiIiKP1KlTp7L7Op0OkZGRp2TtSmlp4cj03bx5s8oAdvQ8llubNm3UY/v27avy9925cyf0ej26d+9e9jV5nbCwsLLPJbO5oKAAzZo1U4HrWbNmwWKxnOVPTERERERERETkPMwoJiIiIiIijySZuieT3sYnf00+FzabTX3Mzc1VfYXffPPN014rLi7OqccmWcoJCQn466+/sGDBAtx33314++23sWTJktOOm4iIiIiIiIjIFRgoJiIiIiIin9CtWzfVO7hJkyYqI7imJHtYsoPXr19fVnpagsLSA/lk/v7+KjAtt/vvv1/9u61bt6rjICIiIiIiIiJyNZaeJiIiIiIinyDB2oyMDNxwww1Yu3atKjc9b9483HbbbbBarVV+ndatW+PSSy/F3XffjdWrV6uA8Z133qkCww5ffvml6lu8bds27N+/H99++616vHHjxrX00xERERERERERVQ8DxURERERE5BPi4+OxYsUKFRQeOHCg6mf8yCOPqN7CWm31Lo2++OIL9Xr9+vXDsGHDMHr0aERHR5c9Lq/52Wef4dxzz1W9lKUE9Zw5c1QfZSIiIiIiIiIid6ApKSkpcfVBEBERERERuSPJDJZg8n/LSjvDwYMH0bRpU2zcuBFdunRx+usTEREREREREVWGGcVERERERESVyMrKQlBQEJ544gmnvebgwYPRvn17p70eEREREREREVF1MaOYiIiIiIioAjk5OUhLSysrJx0VFeWU101OTkZBQYG636hRIxiNRqe8LhERERERERFRVTFQTERERERERERERERERETkY1h6moiIiIiIiIiIiIiIiIjIxzBQTERERERERERERERERETkYxgoJiIiIiIiIiIiIiIiIiLyMQwUExERERERERERERERERH5GAaKiYiIiIiIiIiIiIiIiIh8DAPFREREREREREREREREREQ+hoFiIiIiIiIiIiIiIiIiIiIfw0AxERERERERERERERERERF8y/8BUacZWPuGGeMAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Extract the forecasts from the best-performing model for each series\n",
"best_fcst_sf = get_best_model_forecast(fcst_sf_models, evaluation_df)\n",
"eval_best_sf = df_test.merge(best_fcst_sf, on = ['unique_id', 'ds'])\n",
"\n",
"# Filter for H25 only\n",
"df_train_h25 = df_train[df_train['unique_id'] == 'H25']\n",
"eval_best_sf_h25 = eval_best_sf[eval_best_sf['unique_id'] == 'H25']\n",
"\n",
"# Plot forecasts with 90% interval\n",
"fig = plot_series(df_train_h25, eval_best_sf_h25, level=[90], max_insample_length=5*24)\n",
"fig"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"