{ "metadata": { "name": "", "signature": "sha256:eb5ec1473fe382bc4c20517f981244e27fb89ea55598df7473fff0c3c26d19fc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17: Transport Phenomena" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.1, Page Number 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from scipy import constants\n", "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "M = 0.040 #Molecualar wt of Argon, kh/mol\n", "P, T = 101325.0, 298.0 #Pressure and Temperature, Pa, K\n", "sigm = 3.6e-19 #\n", "R = 8.314 #Molar Gas constant, mol^-1 K^-1\n", "N_A = 6.02214129e+23 #mol^-1\n", "#Calculations\n", "DAr = (1./3)*sqrt(8*R*T/(pi*M))*(R*T/(P*N_A*sqrt(2)*sigm))\n", "\n", "#Results\n", "print 'Diffusion coefficient of Argon %3.1e m2/s'%DAr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diffusion coefficient of Argon 1.1e-05 m2/s\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.2, Page Number 418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "DHebyAr = 4.0 \n", "MAr, MHe = 39.9, 4.0 #Molecualar wt of Argon and Neon, kg/mol\n", "P, T = 101325.0, 298.0 #Pressure and Temperature, Pa, K\n", "sigm = 3.6e-19 #\n", "R = 8.314 #Molar Gas constant, mol^-1 K^-1\n", "N_A = 6.02214129e+23 #mol^-1\n", "#Calculations\n", "sigHebyAr = (1./DHebyAr)*sqrt(MAr/MHe)\n", "\n", "#Results\n", "print 'Ratio of collision cross sections of Helium to Argon %4.3f'%sigHebyAr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of collision cross sections of Helium to Argon 0.790\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.3, Page Number 420" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "D = 1.0e-5 #Diffusion coefficient, m2/s \n", "t1 = 1000 #Time, s\n", "t10 = 10000 #Time, s\n", "\n", "#Calculations\n", "xrms1 = sqrt(2*D*t1)\n", "xrms10 = sqrt(2*D*t10)\n", "\n", "#Results\n", "print 'rms displacement at %4d and %4d is %4.3f and %4.3f m respectively'%(t1,t10,xrms1,xrms10)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rms displacement at 1000 and 10000 is 0.141 and 0.447 m respectively\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.4, Page Number 421" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "D = 2.2e-5 #Diffusion coefficient of benzene, cm2/s \n", "x0 = 0.3 #molecular diameter of benzene, nm\n", "\n", "#Calculations\n", "t = (x0*1e-9)**2/(2*D*1e-4)\n", "\n", "#Results\n", "print 'Time per random walk is %4.3e s or %4.2f ps'%(t,t/1e-12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time per random walk is 2.045e-11 s or 20.45 ps\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.5, Page Number 424" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "P = 101325 #Pressure, Pa\n", "kt = 0.0177 #Thermal conductivity, J/(K.m.s)\n", "T = 300.0 #Temperature, K\n", "k = 1.3806488e-23 #Boltzmanconstant,J K^-1\n", "sigm = 3.6e-19 #\n", "R = 8.314 #Molar Gas constant, mol^-1 K^-1\n", "NA = 6.02214129e+23 #mol^-1\n", "M = 39.9 #Molecualar wt of Argon and Neon, kg/mol\n", "\n", "#Calculations\n", "CvmbyNA = 3.*k/2\n", "nuavg = sqrt(8*R*T/(pi*M*1e-3))\n", "N = NA*P/(R*T)\n", "labda = 3*kt/(CvmbyNA*nuavg*N)\n", "sigm = 1/(sqrt(2)*N*labda)\n", "\n", "#Results\n", "print 'Mean free path %4.3e m and collisional cross section %4.2e m2'%(labda, sigm)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean free path 2.627e-07 m and collisional cross section 1.10e-19 m2\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.6, Page Number 427" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "eta = 227. #Viscosity of Ar, muP\n", "P = 101325 #Pressure, Pa\n", "kt = 0.0177 #Thermal conductivity, J/(K.m.s)\n", "T = 300.0 #Temperature, K\n", "k = 1.3806488e-23 #Boltzmanconstant,J K^-1\n", "R = 8.314 #Molar Gas constant, mol^-1 K^-1\n", "NA = 6.02214129e+23 #mol^-1\n", "M = 39.9 #Molecualar wt of Argon and Neon, kg/mol\n", "\n", "#Calculations\n", "nuavg = sqrt(8*R*T/(pi*M*1e-3))\n", "N = NA*P/(R*T)\n", "m = M*1e-3/NA\n", "labda = 3.*eta*1e-7/(nuavg*N*m) #viscosity in kg m s units\n", "sigm = 1./(sqrt(2)*N*labda)\n", "\n", "#Results\n", "print 'Collisional cross section %4.2e m2'%(sigm)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Collisional cross section 2.74e-19 m2\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.7, Page Number 429" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "m = 22.7 #Mass of CO2, kg\n", "T = 293.0 #Temperature, K\n", "L = 1.0 #length of the tube, m\n", "d = 0.75 #Diameter of the tube, mm\n", "eta = 146 #Viscosity of CO2, muP\n", "p1 = 1.05 #Inlet pressure, atm\n", "p2 = 1.00 #Outlet pressure, atm\n", "atm2pa = 101325 #Conversion for pressure from atm to Pa \n", "M = 0.044 #Molecular wt of CO2, kg/mol\n", "R = 8.314 #Molar Gas constant, J mol^-1 K^-1\n", "\n", "#Calculations\n", "p1 = p1*atm2pa\n", "p2 = p2*atm2pa\n", "F = pi*(d*1e-3/2)**4*(p1**2-p2**2)/(16.*eta/1.e7*L*p2)\n", "nCO2 = m/M\n", "v = nCO2*R*T/((p1+p2)/2)\n", "t = v/F\n", "\n", "#Results\n", "print 'Flow rate is %4.3e m3/s'%(F)\n", "print 'Cylinder can be used for %4.3e s nearly %3.1f days'%(t, t/(24*3600))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flow rate is 2.762e-06 m3/s\n", "Cylinder can be used for 4.381e+06 s nearly 50.7 days\n" ] } ], "prompt_number": 80 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.8, Page Number 431" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "eta = 0.891 #Viscosity of hemoglobin in water, cP\n", "T = 298.0 #Temperature, K\n", "k = 1.3806488e-23 #Boltzmanconstant,J K^-1\n", "R = 8.314 #Molar Gas constant, mol^-1 K^-1\n", "D = 6.9e-11 #Diffusion coefficient, m2/s \n", "\n", "#Calculations\n", "r = k*T/(6*pi*eta*1e-3*D)\n", "\n", "#Results\n", "print 'Radius of protein is %4.3f nm'%(r/1e-9)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of protein is 3.550 nm\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.9, Page Number 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "s = 1.91e-13 #Sedimentation constant, s\n", "NA = 6.02214129e+23 #mol^-1\n", "M = 14100.0 #Molecualr wt of lysozyme, g/mol\n", "rho = 0.998 #Density of water, kg/m3\n", "eta = 1.002 #Viscosity lysozyme in water, cP\n", "T = 293.15 #Temperature, K\n", "vbar = 0.703 #Specific volume of cm3/g\n", "\n", "#Calculations\n", "m = M/NA\n", "f = m*(1.-vbar*rho)/s\n", "r = f/(6*pi*eta)\n", "\n", "#Results\n", "print 'Radius of Lysozyme particle is %4.3f nm'%(r/1e-9)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of Lysozyme particle is 1.937 nm\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.10, Page Number 433" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import arange,array,ones,linalg,log, exp\n", "from matplotlib.pylab import plot,show\n", "\n", "%matplotlib inline\n", "\n", "#Variable Declaration\n", "t = array([0.0,30.0,60.0,90.0,120.0,150.0]) #Time, min\n", "xb = array([6.00,6.07,6.14,6.21,6.28,6.35]) #Location of boundary layer, cm\n", "rpm = 55000. #RPM of centrifuge \n", "\n", "#Calculations\n", "nx = xb/xb[0]\n", "lnx = log(nx)\n", "A = array([ t, ones(size(t))])\n", "# linearly generated sequence\n", "[slope, intercept] = linalg.lstsq(A.T,lnx)[0] # obtaining the parameters\n", "# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n", "# plotting the line\n", "line = slope*t+intercept # regression line\n", "\n", "#Results\n", "plot(t,line,'-',t,lnx,'o')\n", "xlabel('$ Time, min $')\n", "ylabel('$ \\log(x_b/x_{b0}) $')\n", "show()\n", "sbar = (slope/60)/(rpm*2*pi/60)**2\n", "print 'Slope is %6.2e 1/min or %4.3e 1/s '%(slope, slope/60)\n", "print 'Sedimentation factor is %4.3e s'%(sbar)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAETCAYAAADzrOu5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VeW5/vHvAyiotWrVogKKDdShCqIVcKqpEzTpwVrP\nT+W0VbHH2toE6jzWYj222qrVICLO2iNCFYeUoBgqEdSKIGMVFGLxiBaciiKQSMjz++Nd4CYmkOy9\ns9ce7s91ebn3GrLvAOHhWe9a72vujoiISCo6xB1ARERyn4qJiIikTMVERERSpmIiIiIpUzEREZGU\nqZiIiEjKYikmZjbYzBab2RIzu6yFYyqi/fPNrF/C9p3N7DEzW2Rmr5vZwMwlFxGR5mS8mJhZR+B2\nYDBwIDDUzA5ockwJ0MvdewM/A8Yk7L4NmOzuBwB9gEUZCS4iIi2KozPpDyx192Xuvh4YD5zc5Jgh\nwIMA7j4T2NnMuprZTsAx7n5ftK/B3T/JYHYREWlGHMWkG/BOwvvl0batHdMd2Bf4wMzuN7M5Zna3\nmW3frmlFRGSr4igmrZ2/xZo5rxNwKHCHux8KrAEuT2M2ERFJQqcYPvNdoEfC+x6EzmNLx3SPthmw\n3N1nRdsfo5liYmaacExEJAnu3vQf8q0SR2cyG+htZj3NbFvgdKCyyTGVwJkA0d1aq9x9pbuvAN4x\ns29Gx50AvNbch7h71v/3m9/8JvYMyqmcuZwzFzLmUs5UZLwzcfcGMysDpgAdgXvdfZGZnRftH+vu\nk82sxMyWEi5lDUv4EuXAw1Ehqm2yT0REYhDHZS7c/Wng6SbbxjZ5X9bCufOBw9svnYiItJWegI9R\ncXFx3BFaRTnTSznTJxcyQu7kTIWlep0sG5mZ5+P3JSLSnswMz6EBeBERyTMqJiIikjIVExERSVks\nd3OJiEhyqqqrqBhXQb3X09k6M/y/hlN6YmncsVRMRERyRVV1FSNGj6C2X+2mbbWjw+u4C4ru5hIR\nyRGDhg3i2Z7Pfnn724N45r5nUv76uptLRCTPrVgBsxfWN7uvrrEuw2m+TMVERCSLucMjj0DfvrDT\ndp2bPaZLhy4ZTvVlGjMREclS778Pv/gFLF4MkybB+6uGM2J07WZjJkVziigvK48xZaBiIiKShR59\nFMrL4eyz4eGHoUsXgDDIPuqRUdQ11tGlQxfKy8pjH3wHDcCLiGSVDz+EX/4S5s+HBx6AgQMz99ka\ngBcRyQNPPAEHHww9esDcuZktJKnSZS4RkZh99BEMHw6vvAKPPQZHHRV3orZTZyIiEqPKSujTB3bf\nPVzaysVCAupMRERi8e9/w69+BS+8AOPGwbHHxp0oNepMREQybPLkMDay446hG8n1QgLqTEREMuaT\nT+DCC+G55+Chh+C44+JOlD7qTEREMuDZZ0M3ss02sGBBfhUSUGciItKuVq+Giy+Gp5+Ge+6Bk06K\nO1H7UGciItJOnnsudCMbNsDChflbSECdiYhI2n32GVx+OTz1FNx1F3zve3Enan/qTERE0mj69DDD\n72efhbGRQigkoM5ERCQt1q6FK68MEzTeeSf8x3/EnSiz1JmIiKToxRdDN/Lhh2FspNAKCagzERFJ\n2rp18OtfhyfYR4+GU06JO1F81JmIiCTh5ZehXz9YvjyMjRRyIYGYiomZDTazxWa2xMwua+GYimj/\nfDPrl7B9mZktMLO5ZvZK5lKLiEBdXbhT6wc/gOuug/HjYbfd4k4Vv4xf5jKzjsDtwAnAu8AsM6t0\n90UJx5QAvdy9t5kNAMYAG2f2d6DY3T/OcHQRKXCzZoWVD/ffP3QjX/963ImyRxydSX9gqbsvc/f1\nwHjg5CbHDAEeBHD3mcDOZtY1YX9SK4GJiCSjvh6uvhq+//0wRvLYYyokTcVRTLoB7yS8Xx5ta+0x\nDkw1s9lmdm67pRQRAebMgcMPD3dpzZ8PZ5wBpn/Ofkkcd3O1dnH2ln67jnb398xsd6DazBa7+4w0\nZRMRAeDzz+F3v4M77oBbboEf/UhFZEviKCbvAj0S3vcgdB5bOqZ7tA13fy/6/wdm9gThstmXisnI\nkSM3vS4uLqa4uDj15CJSEObPD2Mje+0F8+aF/+ejmpoaampq0vK1zL21jUJ6mFkn4A3geOA94BVg\naDMD8GXuXmJmA4Fb3X2gmW0PdHT31Wa2A/AscK27P9vkMzzT35eI5L716+HGG+G22+CPf4Szziqs\nbsTMcPekvuOMdybu3mBmZcAUoCNwr7svMrPzov1j3X2ymZWY2VJgDTAsOn0P4HELv7udgIebFhIR\nkWT84x+hG9lttzBO0qPHVk+RBBnvTDJBnYmItFZDA9x0E9x8M/z+9/DTnxZWN5IopzoTEZFssWhR\n6EZ23BFmz4Z99ok7Ue7SdCoiUnA2bAjdyHe+A8OGQXW1Ckmq1JmISEF5883QjXTuDK+8AvvuG3ei\n/KDOREQKQmMj3HorHHkk/Nd/wd/+pkKSTupMRCTvLV0K55wD7mG231694k6Uf9SZiEjeamyE22+H\ngQPhhz+EmhoVkvaizkRE8tI//xm6kfr6sBLifvvFnSi/qTMRkbziHtZg798fSkthxgwVkkxQZyIi\neePtt+G//xs+/RSmT4cDDog7UeFQMRGRnFNVXUXFuArqvZ7O1pnyocNZ8X+lXHEFXHQRXHwxdNLf\nbhmlX24RySlV1VWMGD2C2n61m7bNuLqWvdbAtGmlHHRQjOEKmMZMRCSnVIyr2KyQAKwrraWo/ygV\nkhipmIhITqn3+ha212U4iSRSMRGRnOEOH63o3Oy+Lh26ZDiNJFIxEZGcsGIFnHIKrH5rON3/XrTZ\nvqI5RZQPLY8pmYAG4EUky7nDhAkwYgScey5MmFDK1Okw6pFR1DXW0aVDF8rLyik9sTTuqAVNi2OJ\nSNZ6/304//yw7sgDD8Dhh8edKL+lsjiWLnOJSFZ67DHo0yfMpfXqqyok2U6XuUQkq3z4IZSVwbx5\n8OSTYZJGyX7qTEQkazz5ZOhGuneHuXNVSHKJOhMRid3HH8Pw4TBzJjz6KBx1VNyJpK3UmYhIrCZN\ngoMPhl13DZe2VEhykzoTEYnFqlXwq1+F2X3HjYNjj407kaRCnYmIZNzTT4duZIcdYMECFZJ8oM5E\nRDLmk0/CFPFTp4bnRo4/Pu5Eki7qTEQkI6qrw51aHTuGbkSFJL+oMxGRdrV6NVxyCUyeDPfcAyed\nFHciaQ/qTESk3Tz3XOhG1q+HhQtVSPKZOhMRSbvPPoPLLw8PId51F5SUxJ1I2lssnYmZDTazxWa2\nxMwua+GYimj/fDPr12RfRzOba2Z/zUxiEWmt6dOhb99weWvhQhWSQpHxzsTMOgK3AycA7wKzzKzS\n3RclHFMC9HL33mY2ABgDJE6sMAJ4Hdgxc8lFZEvWroUrrwxPsI8ZA0OGxJ1IMimOzqQ/sNTdl7n7\nemA8cHKTY4YADwK4+0xgZzPrCmBm3YES4B4gqamSRSS9XnwRDjkEPvgg3KmlQlJ44igm3YB3Et4v\nj7a19pg/AZcAje0VUERaZ906uPhi+M//hBtugIcfDtOiSOGJYwC+tatWNe06zMy+D7zv7nPNrHhL\nJ48cOXLT6+LiYoqLt3i4iLTRzJlw1llhfGTBAth997gTSVvV1NRQU1OTlq+V8ZUWzWwgMNLdB0fv\nrwAa3f3GhGPuBGrcfXz0fjFQDAwHfgI0AF2ArwIT3f3MJp+hlRZF2kldHYwcGZ5gr6iA006LO5Gk\nS66ttDgb6G1mPc1sW+B0oLLJMZXAmbCp+Kxy9xXufqW793D3fYEzgOeaFhIRaT+zZ8Nhh8Gbb8L8\n+Sok8oWMX+Zy9wYzKwOmAB2Be919kZmdF+0f6+6TzazEzJYCa4BhLX25zKQWKWz19XDddXD33XDr\nrXDGGWC6/UUSZPwyVyboMpdI+sydG8ZGevaEsWNhzz3jTiTtJdcuc4lIDli/Hq69FgYNCnNrPfWU\nCom0TNOpiMiXLFgQupG99gqdSbemN++LNKHOREQ2aWiA668P08MPHx6W1FUhkdZQZyIiALz2WuhG\ndt0V5syBHj3iTiS5RJ2JSIFraIAbb4TiYjjvPHjmGRUSaTt1JiIFbPFiOPvssBb77Nmwzz5xJ5Jc\npc5EpABt2AA33wxHHx0ubVVXq5BIatSZiBSYN9+EYcNgm23glVfgG9+IO5HkA3UmIgWisRFuuw2O\nPDI8wf7ccyokkj7qTEQKQG1t6EYaG+Hll6FXr7gTSb5RZyKSxxobYfRoGDAATjkFnn9ehUTaR6s7\nEzPbDhgKHBydtz1hgarVwEzgUXfXglUiWWLZMjjnnLCA1Ysvwn77xZ1I8lmrJno0sxOAA4Eqd69t\nZn9f4Hjgb+4+P+0p20gTPUohc4e77oKrr4ZLL4ULL4SOHeNOJbkglYket9qZmFkXYJm7T21m395A\nV2Clu99iZt9KJoSIJKequoqKcRXUez2drTNnnDiccfeX8skn4ZLWgQfGnVAKRdJT0Efrj3QGPgN2\nBja4+21pzJY0dSZSCKqqqxgxegS1/b64WNDh8SJ+3P827h1TSifdXiNt1K6dyRbUJnYrZvbdFL6W\niLRRxbiKzQoJQOMPa1n59ig6dSqNKZUUqlSKyWozu4kwEL8KeDo9kUSkNeoa61vYXpfhJCIp3Brs\n7jPd/WJgKbATYQleEcmA996D1+d3bnZflw5dMpxGJIViYma3mNmPgCXu/kvC+ImItCN3ePhh6NcP\nTjhkON+YU7TZ/qI5RZQPLY8pnRSyVAbgewA7AkcBXwdec/cn05gtaRqAl3y0ciX8/OewdCk88AAc\ndlgYhB/1yCjqGuvo0qEL5UPLKT1R4yWSnFQG4NtcTMzsG8C/3H1dMh+YCSomkk/c4S9/gREj4Kc/\nhWuugc66DiDtINN3c10EPArUmNkxAO4+I5kPF5Et++ADOP/8sApiZSX07x93IpHmJTNm8gqwr5nt\nGxWR3dKcSUSAiROhT58ws++cOSokkt2S6Ux6AG8BF5rZQcCLwBNpTSVSwD76CMrKQgF5/HE44oi4\nE4lsXTKdyVvARHcvB/4f8H/pjSRSuJ56Cg4+GPbaC+bNUyGR3JFMZzIB6AvMAfYlzM0lIin4+OMw\nwP7yy2Gw/eij404k0jZb7UzMbD8z673xvbtvcPc50etZ7n5dewYUyXeTJoWxka99LXQjKiSSi7Z6\na7CZdQKKgf0I65fMcvfZ7R8tebo1WHLBqlVwwQVhdt/77oPi4rgTSaFL5dbgrXYm7t7g7lPdfbS7\njwE6mNkvzOyXZnZCVGzaGniwmS02syVmdlkLx1RE++ebWb9oWxczm2lm88zsdTP7fVs/WyQbPPNM\nGBvZfntYsECFRHJf0k/AQ7gERuhatgXeBaa4+5qtnNMReAM4ITpnFjDU3RclHFMClLl7iZkNAG5z\n94HRvu3dfW1UxF4ALnb3F5p8hjoTyUqffgoXXQTV1XDvvXD88XEnEvlCu3YmW+Lub7j7WHcfBbwM\nfL8Vp/UHlrr7MndfD4wHTm5yzBDgwegzZgI7m1nX6P3a6JhtCZNLfpzK9yCSKVOnhm6kQ4fQjaiQ\nSD5J2/I57v4e4U6vrekGvJPwfjkwoBXHdAdWRp3Nq0ARMMbdX086tEgGrF4dls+tqoK774ZBg+JO\nJJJ+KRcTM7sA6AX8xd2fb8Uprb3+1LTVcgh3kwGHmNlOwBQzK3b3mqYnjxw5ctPr4uJiinVRWmIw\nbRqccw4cdxwsXAg77RR3IpEv1NTUUFNTk5avlcqswbcQOoRP3f2vZjbI3ae04ryBwEh3Hxy9vwJo\ndPcbE465E6hx9/HR+8XAse6+ssnX+jWwzt1varJdYyYSqzVr4PLL4Ykn4K67oKQk7kQiWxfXmMmf\ngLnAHmZ2FbBdK8+bDfQ2s55mti1wOlDZ5JhK4EzYVHxWuftKM9vNzHaOtm8HnBhlEMkaM2ZA375h\nsH3hQhUSKQzJ3Na7cQr6jWMabRqzcPcGMysDphAG0O9190Vmdl60f6y7TzazEjNbCqwBhkWn7wk8\naGYdCIXwz+7+t7Z+DyLtYe1auOqq8AT7mDEwZEjciUQyJ5n1TEYDj7p71k5Br8tckmkvvQRnnw2H\nHw4VFbDrrnEnEmm7TF/m0hT0IpF16+CSS+DUU+GGG8KSuiokUoiSKSY9gHrCFPTTgMPSG0kkN8yc\nCYceCm+/HZ4b+eEP404kEp9kbg3eOAX9ODPbDdCPkBSU+noYORLuvz9c0jrttLgTicQvmc5kAvCt\n6LWmoJeCMns2HHYYvPEGzJ+vQiKyUWtmDe4M7OjuH271i5nt7e6xL5alAXhJt88/h+uuC8+M/OlP\nMHQoWFLDlCLZK5UB+K1e5nL3ejM70cy+Cjzh7uuaCbALYdXFRWjlRckzc+eGO7X22SesN7LnnnEn\nEsk+rb412Mz2JDzv8XWgC7ANsAFYS5g76253/6SdcraJOhNJh/Xr4Xe/g9Gj4aab4Cc/UTci+S2V\nziSlKeizlYqJpGrBgtCN7LFHmJyxW7e4E4m0v4w+Z9J0MSsz62FmD5nZ4GQCiGSThga4/vowPXxZ\nWZjpV4VEZOuSuZtrVzOrMrMDo/cXAf9DmOpEJGe99hoccQRMnw5z5oTZfnVZS6R1knoC3t1Lgd7R\n+32AWuD9tKUSyaCGBrjxxrB07s9+FpbU7dEj7lQiuSWZhxb7Rase7mhm/wD2JgzI75DWZCIZsHhx\nGBvZYYfwDMk++8SdSCQ3JdOZVBBWQZwA9ARKgeHAqvTFEmlfGzbAzTfDMcfAWWeFNdlVSESSl0xn\n8gFhcsdLgQXRFPC/T2sqkXa0ZEnoRrbZJsyv9Y1vxJ1IJPcl05lcCKwDHgPWmdlF6Y0k0j4aG+G2\n28Ig+xlnwHPPqZCIpEsynckSd39q4xszOz2NeUTaRW0tDBsWCsrLL0OvXnEnEskvyXQmvcysv5kV\nmVkxUJTmTCJp09gYnmAfMABOOQWef16FRKQ9JNOZ3AlcDPQHFgLT0ppIJE2WLQvPiqxbBy++CPvt\nF3cikfzVqulUzOx84CzCPFyb7QL2c/esemBR06kUlqrqKirGVVDv9XS2zpQPHc67/yzl6qvh0kvh\nwguhY8e4U4pkv3adNTjyJnC0u69v5sO/l8wHi6RDVXUVI0aPoLZf7aZtM66qpfs6eP75Ug48cAsn\ni0jaaKJHyWmDhg3i2Z7Pfmn7ScsGMeX+Z2JIJJK7MjrRo0g2qff6FrbXZTiJSGFTMZGc5Q4f/qtz\ns/u6dOiS4TQihU3FRHLSe+/BkCGw5u3hdH9587vTi+YUUT60PKZkIoUpmVuDRWLjDuPGhTu0fv5z\nmDixlOrnYdQjo6hrrKNLhy6Ul5VTemJp3FFFCooG4CVnrFwZCsjSpfDAA3DYYXEnEskvGoCXvOYO\nEyZA375w4IFhqngVEpHsostcktU++ADOPz+sglhZCf37x51IRJoTW2diZoPNbLGZLWm6rnzCMRXR\n/vlm1i/a1sPMppnZa2b2DzMbntnkkikTJ0KfPmFm3zlzVEhEslksnYmZdQRuB04A3gVmmVmluy9K\nOKYE6OXuvc1sADAGGAisBy5w93lm9hXgVTOrTjxXcttHH0FZWSggjz8epowXkewWV2fSH1jq7sui\nKVrGAyc3OWYI8CCAu88Edjazru6+wt3nRds/AxYBe2UuurSnp56Cgw+GvfaCefNUSERyRVxjJt0I\nS/9utBwY0IpjugMrN24ws55AP2Bme4SUzPn4YxgxIqw18pe/wNFHx51IRNoirmLS2vt2m96itum8\n6BLXY8CIqEPZzMiRIze9Li4upri4uM0hJTMmTQq3/J56auhGdtgh7kQihaGmpoaampq0fK1YnjMx\ns4HASHcfHL2/Amh09xsTjrkTqHH38dH7xcCx7r7SzLYBJgFPu/utzXx9PWeSA1atggsuCAtW3Xcf\nqN6LxCsXnzOZDfQ2s55mti1wOlDZ5JhK4EzYVHxWRYXEgHuB15srJJIbnnkmjI1svz0sWKBCIpLr\nYrnM5e4NZlYGTAE6Ave6+yIzOy/aP9bdJ5tZiZktBdYAw6LTjwJ+DCwws7nRtivcXfON54BPP4WL\nLoLq6vAU+/HHx51IRNJB06lIxkydCj/9KQweDH/8I3z1q3EnEpFEmVhpUSRpq1eH5XMnTYJ77oFB\ng+JOJCLpprm5pF1NmxaeYq+vh4ULVUhE8pU6E2kXa9bA5ZfDE0/A2LFQqhnhRfKaOhNJuxkzwgy/\nn3wSuhEVEpH8p85E0mbtWrjqqjBd/JgxcHLTCXJEJG+pM5G0eOklOOSQsIDVwoUqJCKFRp2JpGTd\nOrjmGvjf/4Xbbw9ToohI4VExkaTNnAlnnw0HHRSeYt9997gTiUhcVEykzerrYeTIMJ/WqFFw2mlx\nJxKRuKmYSJvMnh26kd69QzfStWvciUQkG2gAXlrl88/h17+GkhK48sqwAqIKiYhspM5Etmru3NCN\n7L03zJ8Pe+4ZdyIRyTbqTKRF69fDtdeGKVAuuggqK1VIRKR56kykWQsWhG5kjz1CZ9KtW9yJRCSb\nqTORzTQ0wPXXh3VGysqgqkqFRES2Tp2JbPLaa6Eb2WUXePXVMEYiItIa6kyEhga48UY49lg491yY\nMkWFRETaRp1JgVu8OHQj228fniHp2TPuRCKSi9SZFKgNG+Dmm+Hoo+HMM8OSuiokIpIsdSYFaMmS\n0I106hTm1yoqijuRiOQ6dSYFpLERbrsNjjgCTj89LKmrQiIi6aDOpEDU1sI554TB9r//PcytJSKS\nLupM8lxjI4weDQMGhAWrpk9XIRGR9FNnkseWLQvdyNq18MILsP/+cScSkXylYpInqqqrqBhXQb3X\n09k602uX4Ux4qJRLL4ULLwyD7SIi7UV/xeSBquoqRoweQW2/2k3bnq+s5ZYb4Pz/Lo0xmYgUCo2Z\n5IGKcRWbFRKA+iG1VL40KqZEIlJoVEzywKd19c1ur2usy3ASESlUsRUTMxtsZovNbImZXdbCMRXR\n/vlm1i9h+31mttLMFmYucfZxhwcfhFf/3rnZ/V06dMlwIhEpVLEUEzPrCNwODAYOBIaa2QFNjikB\nerl7b+BnwJiE3fdH5xasf/0LhgwJU6LcdPlwiuZu/vRh0ZwiyoeWx5RORApNXAPw/YGl7r4MwMzG\nAycDixKOGQI8CODuM81sZzPbw91XuPsMM+uZ2cjZwR3GjYMLLoDzzoOJE2HbbUspKoJRj4yirrGO\nLh26UF5WTumJGnwXkcyIq5h0A95JeL8cGNCKY7oBK9o3WvZauRJ+/nN4802YPBm+/e0v9pWeWKri\nISKxiWvMxFt5nCV5Xt6ZMAH69AkPHs6Zs3khERGJW1ydybtAj4T3PQidx5aO6R5ta5WRI0duel1c\nXExxcXFbM2aFDz6AX/4SFi6EysowLYqISDrU1NRQU1OTlq9l7pn/x76ZdQLeAI4H3gNeAYa6+6KE\nY0qAMncvMbOBwK3uPjBhf0/gr+5+cDNf3+P4vtJt4sSwDvuPfwy//S1st13ciUQkn5kZ7t70ilCr\nxNKZuHuDmZUBU4COwL3uvsjMzov2j3X3yWZWYmZLgTXAsI3nm9kjwLHArmb2DnCNu9+f+e+kfXz0\nEZSXh5UPJ06EI4+MO5GIyJbF0pm0t1zuTJ56Cn7xi7DeyPXXh+V0RUQyIec6E/myf/8bRoyAF1+E\n8ePhO9+JO5GISOtpOpUsUFUFBx8MO+0ECxaokIhI7lFnEqNVq8L08NOmwZ//DN/9btyJRESSo84k\nJlOmhOdGOncO3YgKiYjkMnUmGfbpp3DxxfDss3DffXDCCXEnEhFJnTqTDJo6NXQjELoRFRIRyRfq\nTDLgs8/g0kth0iS4+24YNCjuRCIi6aXOpJ3V1IRupK4udCMqJCKSj9SZtJM1a+CKK+Dxx2HsWCjV\nhL4iksfUmbSDGTOgb99w6+/ChSokIpL/1Jmk0dq1cPXV4Qn2MWPg5JPjTiQikhnqTNLk73+Hfv1g\nxYrQjaiQiEghUWeSoro6uOaa8AT77bfDqafGnUhEJPNUTFLwyitw1llw0EHhTq3dd487kYhIPFRM\nklBfD9deG55gr6iA006LO5GISLxUTNro1VdDN9K7N8yfD127xp1IRCR+GoBvpc8/D2MjJSVw5ZXh\n+REVEhGRQJ1JK8ybF7qRvfcOr/fcM+5EIiLZRZ3JFqxfD7/9LZx0Elx0EVRWqpCIiDRHnUkLFi4M\n3cgee8DcudCtW9yJRESylzqTJhoa4He/g+OOg7KysKSuComIyJapM0nw+uuhG9lll3DX1t57x51I\nRCQ3qDMBNmyAP/wBjj0Wzj03LKmrQiIi0noF35m88QacfTZstx3MmgU9e8adSEQk9xRsZ7JhA9xy\nCxx1FPzkJ2FJXRUSEZHkFGRnsmQJDBsGHTvCzJlQVBR3IhGR3FZQnUljY5hL64gjwnxa06apkIiI\npEPBdCZvvRW6kYaGsPZI795xJxIRyR+xdCZmNtjMFpvZEjO7rIVjKqL9882sX1vOTdTYCHfcAf37\nhwWrpk9XIRERSbeMFxMz6wjcDgwGDgSGmtkBTY4pAXq5e2/gZ8CY1p6baNkyOPFEeOgheOEFuPDC\nME6SLWpqauKO0CrKmV7KmT65kBFyJ2cq4uhM+gNL3X2Zu68HxgNNF7kdAjwI4O4zgZ3NbI9WngvA\nt04cRJ/Dqxg0KBSS/fdvr28nebnyB0w500s50ycXMkLu5ExFHGMm3YB3Et4vBwa04phuwF6tOBeA\n149+lh6davlWP+jUqTTl0CIi0rI4OhNv5XGW6ge9M7CWUY+MSvXLiIjIVph7a/9uT9MHmg0ERrr7\n4Oj9FUCju9+YcMydQI27j4/eLwaOBfbd2rnR9sx+UyIiecLdk/qHfByXuWYDvc2sJ/AecDowtMkx\nlUAZMD4qPqvcfaWZfdSKc5P+xRARkeRkvJi4e4OZlQFTgI7Ave6+yMzOi/aPdffJZlZiZkuBNcCw\nLZ2b6e9BREQ2l/HLXCIikn/ybjqVtj7UmClm1sPMppnZa2b2DzMbHm3/mplVm9mbZvasme2cBVk7\nmtlcM/uK0T1+AAAGSklEQVRrFmfc2cweM7NFZva6mQ3I0pxXRL/nC81snJl1zoacZnafma00s4UJ\n21rMFX0fS6KfrZNizvnH6Pd9vpk9bmY7ZWPOhH0XmVmjmX0tW3OaWXn0a/oPM0scv259TnfPm/8I\nl76WAj2BbYB5wAFx54qy7QEcEr3+CvAGcADwB+DSaPtlwA1ZkPVC4GGgMnqfjRkfBM6JXncCdsq2\nnNGfw7eAztH7CcBZ2ZATOAboByxM2NZsLsIDwvOin6me0c9Yhxhznrjx84EbsjVntL0H8AzwT+Br\n2ZgT+C5QDWwTvd89mZz51pm0+qHGTHP3Fe4+L3r9GbCI8OzMpgc0o///IJ6EgZl1B0qAe/ji9uxs\ny7gTcIy73wdhLM3dPyHLcgKfAuuB7c2sE7A94caR2HO6+wzg3002t5TrZOARd1/v7ssIf6n0jyun\nu1e7e2P0dibQPRtzRm4BLm2yLdty/gL4ffR3Ju7+QTI5862YtPSwY1aJ7kbrR/hB6OruK6NdK4Gu\nMcXa6E/AJUBjwrZsy7gv8IGZ3W9mc8zsbjPbgSzL6e4fAzcD/0coIqvcvZosy5mgpVx7EX6WNsqm\nn6tzgMnR66zKaWYnA8vdfUGTXVmVE+gNfMfMXjazGjP7drS9TTnzrZhk/d0EZvYVYCIwwt1XJ+7z\n0FvG9j2Y2feB9919Li08NBp3xkgn4FDgDnc/lHDH3+WJB2RDTjMrAn5FuESwF/AVM/tx4jHZkLM5\nrcgVe2Yzuwr43N3HbeGwWHKa2fbAlcBvEjdv4ZQ4fz07Abu4+0DCPyT/soVjW8yZb8XkXcI1yo16\nsHlljZWZbUMoJH929yejzSujeccwsz2B9+PKBxwJDDGzfwKPAMeZ2Z+zLCOE39Pl7j4rev8Yobis\nyLKc3wZecveP3L0BeBw4guzLuVFLv89Nf666R9tiY2ZnEy7H/ihhczblLCL8I2J+9PPUHXjVzLqS\nXTkh/Dw9DhD9TDWa2W60MWe+FZNND0Sa2baEhxorY84EgJkZcC/wurvfmrCrkjAoS/T/J5uemynu\nfqW793D3fYEzgOfc/SfZlBHC+BPwjpl9M9p0AvAa8FeyKCewGBhoZttFv/8nAK+TfTk3aun3uRI4\nw8y2NbN9CZdFXokhHxDu2CT8C/pkd69L2JU1Od19obt3dfd9o5+n5cCh0WXErMkZeRI4DiD6mdrW\n3T+krTkzcQdBJv8Dvke4U2opcEXceRJyHU0Yh5gHzI3+Gwx8DZgKvAk8C+wcd9Yo77F8cTdX1mUE\n+gKzgPmEf1XtlKU5LyUUuoWEQe1tsiEnofN8D/icMM44bEu5CJdslhIK5KAYc54DLAHeTvg5uiOL\nctZv/PVssv8toru5si1n9Gfyz9Gf0VeB4mRy6qFFERFJWb5d5hIRkRiomIiISMpUTEREJGUqJiIi\nkjIVExERSZmKiYiIpEzFREREUqZiIiIiKVMxEWmBmX3TzJ42s/PMbKqZ3Ru9nmtmW5oMrz2ybGNm\nj2TyM0XaIuNrwIvkkEOAIe6+3sxOAf7g7m+Y2Sp3n5DJIB7Wmhiayc8UaQt1JiItWxL9JQ7wTXd/\nI3r9RksniBQqdSYiLfCwrgtm1huojV4XERYS6uXuj5nZMcCpwPOE9SqKCcu07hZ9jYei874H7E+Y\nsHCih5mPac350WeWAu8185kA33L3/2m/XwmRrVNnIrJ1/QmrYkJYffAjYNvo/caZUpe7++NAH2A6\nMImwxgpmtg9wpbv/ibBc81cSvvZWz9/KZz5BmBpcJFYqJiJbdzhRMXH3lwhrY1dG718Aitx9VrS6\n3kfu/hkwkLDcAIS11JdEK1m6uy/d+IVbc/5WPnMnoKF9v32RrVMxEdm6wwlrp2BmXyV0Bn2i99sB\nGxdo+jZfLB40BJhhZn2AdYS1YSZF274eLTbUqvPNbMctfGYJUG1mR6T9uxZpAxUTkRaYWV8zu4Tw\nl/gpZvZ1oCNhOdvO0WHf4ouxi4OAadHrfwEDCAsOTQD6mFkpYfXPToRFqFp7fqctfOZqwmWwrFme\nWgqTFscSiYGZFbt7Tdw5RNJFnYlIPDpv/RCR3KHOREREUqbOREREUqZiIiIiKVMxERGRlKmYiIhI\nylRMREQkZSomIiKSMhUTERFJmYqJiIik7P8D++OOc/gSCGoAAAAASUVORK5CYII=\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Slope is 3.78e-04 1/min or 6.299e-06 1/s \n", "Sedimentation factor is 1.899e-13 s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 17.11, Page Number 439" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "LMg = 0.0106 #Ionic conductance for Mg, S.m2/mol\n", "LCl = 0.0076 #Ionic conductance for Cl, S.m2/mol\n", "nMg, nCl = 1, 2 #Coefficients of Mg and Cl \n", "\n", "#Calculations\n", "LMgCl2 = nMg*LMg + nCl*LCl\n", "\n", "#Results\n", "print 'Molar conductivity of MgCl2 on infinite dilution is %5.4f S.m2/mol'%(LMgCl2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molar conductivity of MgCl2 on infinite dilution is 0.0258 S.m2/mol\n" ] } ], "prompt_number": 59 } ], "metadata": {} } ] }