
Keys Under Doormats: Problems and Solutions
for Securely Storing Credentials

in Web Applications

Dmitriy Beryoza, Ron Craig

Dmitriy Beryoza

Senior Security

Researcher,

Vectra AI
dmitriy.beryoza@owasp.org

https://www.linkedin.com/in/beryozad

• 25+ years of software development
with current emphasis on security

• Interests: web and binary exploitation,
reverse engineering, secure software
development, network threat
detection, and CTF competitions

Ron Craig

Secure Engineering

Program Manager,

IBM Security
roncraig@us.ibm.com

https://www.linkedin.com/in/roncraignc

• 25+ years in development

• Interests: training developers and
leaders on secure development,
reading, woodworking, spending time
with family

Who are we

mailto:dmitriy.beryoza@owasp.org
https://www.linkedin.com/in/beryozad
mailto:roncraig@us.ibm.com
mailto:roncraig@us.ibm.com

The views and opinions offered in this presentation do not necessarily
reflect the official positions of either IBM or Vectra. Our thoughts are
our own.

Nobody is perfect, especially us. ☺ We offer this in the hope that it is
useful, but no responsibility is assumed by the authors or their
respective employers for your results or use of the information or
code contained in or related to this presentation.

Use at your own risk. Your mileage may vary. Caveat emptor. Etc., etc.,
etc.

Disclaimer

• Incorrect ways to store secrets

Agenda

• Takeaways

• Introducing SideKEK

• Storing KEKs in the file system

• Safeguarding the master key (KEK)

• Proper secret storage

• Abuse methods

• Introduction to secrets

Storage of Secrets is Common in Modern Apps

• This data must be stored securely, encrypted at rest and in transit,
with most sensitive data encrypted in use, too

• Most applications today must handle a variety of secrets:

• User login passwords

• Back-end system credentials

• Encryption keys

• Private keys for certs

• API keys

• Sensitive customer data

Some terms we’ll use in this talk
First, a few definitions so we’re all on the same page:

• login password – A password or passphrase used by a human to
access a front-end system. Store as a one-way randomly salted hash.

• credential – A username and passphrase pair or other secret used by
a system to access other resources. Must be encrypted.

• Data Encryption Key (DEK) – A cryptographic key used to encrypt
secrets. These secrets may be anything, including cryptographic keys.

• Key Encryption Key (KEK) or "Master Key“ – The top-level
cryptographic key used to protect a Data Encryption Key

The guidance in this talk deals primarily with credentials rather than
with ordinary end user passwords.

Insecure Secret Storage is Common

• If you are developing software or doing code reviews, you have
probably seen many incorrect ways of storing credentials

• Embedded in source code

• In plaintext in config files

• In plaintext in databases

• In plaintext in environment variables

Obfuscation of Secrets Does Little for Security

• Secrets get Base64-encoded

• Secrets get XORed with constant key

• Secrets get encrypted, but the encryption key is constant, hardcoded

Why is This a Problem?

• Keys that are hardcoded are hard to rotate periodically, or to change
in the event of a breach

• Plaintext sensitive data can be leaked from the application in a
variety of ways (and yes, we consider encoded and obfuscated to be
plaintext data)

• If data are encrypted, but the keys to decrypt the data are
hardcoded or leaked, the data can still be accessed

What Are Possible Ways for Abuse?

• Code analysis

• Application source can be stolen

• Application can be reverse engineered

• Leaking of files through vulnerabilities:

• Path Traversal

https://myapp.com/get_log?name=../config/keystore.jks

• Local File Inclusion (LFI)

https://myapp.com/index?lang=../config/config.ini%00

The Abuse Continues …

• …and others

• XML External Entities (XXE)
<!DOCTYPE foo [

<!ELEMENT foo ANY>

<!ENTITY exploit SYSTEM

"file:///opt/myapp/keys/private.key">]>

<foo> &exploit; </foo>

• SQL Injection

https://myapp.com/profile?user='+and+1%3D2+union+all+

select+load_file('/opt/myapp/data/customers.db')--

• Leaking of environment variables through vulnerabilities

https://myapp.com/get_log?name=../../proc/self/environ

Keys Under Doormats

• In other words you either don't lock the door, or lock it but store the
key nearby

• Incorrectly stored encryption keys and credentials become “keys
under doormats”:

• Data not encrypted or encrypted poorly

• When data is encrypted properly the key that protects it is often
stored in close proximity to it

• A vulnerability that allows file exfiltration may allow retrieval of
both the encrypted data and the key that encrypts it

What is the Proper Way to Store Secrets?

• Any password or key that is not needed in plaintext must be stored
hashed, salted, and stretched to prevent brute force attacks

• No plaintext storage for data or keys

• No obfuscation, or custom-made encryption

• Keys must be generated fresh for every installed instance –
otherwise one compromise can extend to entire customer base

• No hardcoding - one should have ability to change expired or
compromised credentials/keys

• Use encrypted keystores/vaults

What is the Proper Way to Store Secrets? (cont.)

• Design your application in a way that full exfiltration of code and
encrypted data still will not cause information compromise

• Essentially, we want to store data in such a way that an attacker
gaining an encrypted copy of it would not be able to read it

• A good guiding rule to follow is Kerckhoffs's principle:

"A cryptosystem should be secure even if everything about the
system, except the key, is public knowledge"

Are We Back to Square One?

• If we store KEK in plaintext or hardcode it, we will have the very
same problem as before. Theft of your data, keystore, DEK, and the
KEK reveals everything

• There is still a problem, however…

• Credentials must be stored in a password protected keystore;
sensitive data must be encrypted in the database, and so on

• A Data Encryption Key (DEK) is used to derive keystore passphrases,
to encrypt database data, and to encrypt sensitive config values

• One additional key (sometimes called the Key Encryption Key, KEK,
or Master Key) is used to strongly encrypt the Data Encryption Key

• …but how do we safeguard the Master Key (KEK) itself?
• Déjà vu and turtles all the way down

Can KEKs be Stored Safely?

• Luckily, YES! There are multiple ways of doing that.

• Unfortunately, many applications give up at this point and store the
KEK in plaintext, hardcoded, or obfuscated

• This is not secure - KEKs must be stored in such a way that they
cannot be stolen from a known file. Is that possible?

Best Practices for Storing KEKs

• Not storing the KEK (user-entered
keys) at all

• Some applications do not
store the KEK at all and let the
user enter the password KEK is
derived from (e.g. full disk
encryption apps)

• Many applications must run in
unattended mode and this
method will not work for
them

Best Practices for Storing KEKs (continued)

• Using HSMs / Secure Enclaves

• Hardware Security Modules are
specialized hardware devices that store
encryption keys in hardware devices.

• To interact with them one needs to run
code in the context of the application,
which means that to exploit them full
application compromise must be
achieved

• HSM are not always available, and their
cost of deployment may be too high for
some applications

Best Practices for Storing KEKs (continued)

• Using Key Lifecycle Management Systems

• Specialized systems responsible for full cycle of key life, from
creation to safe destruction

• Have costs associated with deployment and management

• Using software HSM equivalents

• Software components similar in functionality to HSM

• Usually part of OS but 3rd party implementations exist

• Not built into all platforms

• May have costs associated with deployment and management

Low Cost Ways of Storing KEKs

• Not quite – there are ways to store them based on unique
characteristics of the system the application is running on

• Essentially KEK can be derived from system features that are hard
for a remote attacker to determine

• Sometimes your application requirements do not allow the expense
of dedicated HSM or other recommended ways of storing KEKs

• Are you then stuck with hardcoding the keys or writing them to a
config file, and hoping for the best?

Low Cost Ways of Storing KEKs (continued)

• Disk volume name

• Key space may be small; may be leaked through *nix files

• A number of unique IDs come to mind, but they don’t make good
candidates for a variety of reasons:

• Network card MAC address

• It is broadcast on the network and can be leaked; portions
of it depend on the manufacturer; the possible key space
is small

• Motherboard ID, HDD ID, CPU ID

• Key space may be small; some parts may be
manufacturer-dependent; may be difficult to depend on
in a virtual environment

Low Cost Ways of Storing KEKs (continued)

• A group of methods comes to mind that can store KEKs by utilizing
features of the file system that are not easy to discover by reading
files

• We will outline two such methods that are easiest to implement

• Additionally, all these IDs were not generated in a cryptographically-
secure way (too little entropy), and may not be under our control to
be made secure

• It would be simplest to store a KEK we generate in the file system in
some way

• At the same time, though, it cannot be stored in a pre-defined file
because there are too many ways to steal files – which is what we
are trying to avoid

Storing KEKs in Secret Folders

• KEKs are stored as regular files
inside the folder

• Application can easily find the folder
and load the keys

config

kek_3gvSUZlMlKrY4pIt

key1.bin

key2.bin

• With this method of storage a
subfolder with a random name is
chosen to store KEK files

• The folder name is generated at
install time as a long (filesystem-
safe) random string

• Folder name also has a prefix by
which it can be recognized (or suffix)

Storing KEKs in Secret Folders (continued)

• Attacker, however, does not know the folder name and cannot use
any of the file smuggling vulnerabilities to retrieve KEKs

• Attacker needs to have the ability to search folders, which most of
the time would require code execution capabilities

• Such capabilities would likely mean full application compromise

• Folder and file permissions should be set so that they are
inaccessible to anyone except the user account the application runs
under

• When the app needs to read/write the KEK, it searches for the folder
with known prefix (or known extension) in the name

Storing KEKs in File Timestamps

• Application can interrogate
timestamps of local files easily

• Attacker usually does not have
access to file metadata, short
of having code execution
privileges on the system

config

kek

key1-0-uBBulNGD.bin

key1-1-2AG089rG.bin

...

• A stealthier approach is to
store key bytes in file
timestamps

• A key several bytes in size can
be distributed over the
timestamps of multiple files
created for this purpose

Storing KEKs in File Timestamps (continued)
• Suppose we want to store an encryption key 32 bytes in size, and we

choose to store 2 bytes per timestamp – we will need 16 files

• The files themselves can be empty, or garbage – but that’s evil ;-)

• Multiple sets of files will have to be created to store multiple keys

• Key file names need to indicate which key the file stores. You can
store the key alias in the extension (eg., xxx.key1, yyy.key2) or start
the filename with the alias (eg., key1-xxx, key2-yyy), so you can
search for the correct set of files for any particular key

• A way is needed to set the order the files are used to recover the
key. Filenames can be sorted alphabetically to account for that.

• Example schemes:
• key1-0-uBBulNGD78gTv53s.bin, key1-1-2AG089jasi4fopnc.bin, ...
• F_l-yjbZJINfMugzUg…9gq.key1, Ujbf6HDTnc8ZHnUEs5…fuY.key1, ...

Storing KEKs in File Timestamps (example)

• Suppose we wanted to store key 0xAABBCCDDEEFF

• We can create 3 files and embed bytes of the key in their
timestamps (use mtime on *ix hosts):

08/19/2019 16:35:32.700 00 00 01 6C AA BB D6 DC

08/26/2019 07:39:46.268 00 00 01 6C CC DD D6 DC
09/01/2019 22:43:59.836 00 00 01 6C EE FF D6 DC

• The following is a sample timestamp and its hex representation as
stored in the file system:

08/30/2019 19:45:39.036 00 00 01 6C E4 0F D6 DC

Storing KEKs in File Timestamps (caveats)
• Some of the systems (e.g. macOS) do not guarantee consistent setting

of file modification timestamp milliseconds - better to use seconds
granularity

• It is recommended to change only a portion of the timestamp so that it
remains reasonably close to current time

• Timestamps too far into the past or the future may confuse OS or
applications

• Care should be taken in case of:

• Backup/restore (may change the file timestamps)

• Running utilities that modify timestamps (e.g. touch)

• KEKs may have to be backed up offsite for safekeeping

• On properly designed system destroying the KEK should
permanently deny access to the data it protects

Additional Methods of Secret Storage

• Reliable in the presence of system changes

• Additional methods taking advantage of other file system features
can be devised – feel free to experiment

• The goal is to utilize a method that is:

• Resistant to a variety of vulnerability types (especially the ones
that allow file exfiltration)

• Ideally can only be defeated by attacker gaining code execution
capabilities on the system

• Low cost

SideKEK

• We welcome bug reports/feature suggestions/pull requests

• Feel free to contribute functionality in another language – the
repository is structured to support it

• Introducing SideKEK - a small open source Java library to
help you manage Key Encryption Keys in the file system

https://github.com/ibm/crypto-masterkey-keystore

• Implementations of the “secret folder” and
“timestamp” techniques

• Plugs into Java security infrastructure – designed as
Security Provider and KeyStore class implementations

https://github.com/ibm/crypto-masterkey-keystore

Key takeaways

• It is very easy to store secrets insecurely

• Special attention must be paid to proper encryption and key storage

• A wide variety of application vulnerability types can help achieve
system compromise, particularly if they allow one to steal files

• “Master keys” (KEKs) suffer from the same problem of insecure
storage as other secrets

• Currently recommended methods of KEKs storage are not free –
they require additional hardware, software, or human resources

• By carefully using unique system characteristics (e.g. features of the
file system) one can improve security of KEKs – and all other secrets
by extension - inexpensively

Wrap-Up

• Q&A

• Acknowledgements

• X-Force Ethical Hacking Team members
(Warren Moynihan, Chris Shepherd, Jonathan
Fitz-Gerald, John Zuccato, Matt McCarty,
Rodney Ryan, Troy E Fisher, Vincent Dragnea,
Nathan Roane, Kamil Sarbinowski), IBM Security

• Paul Ionescu, Security Architect, Cloud and Data
Center Security, Trend Micro

Thank you!

Rate this session –
scan the QR code to
complete the survey

