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Abstract
In this paper we propose the use of the Word2vec algorithm in order to obtain odor perception
embeddings (or smell embeddings), only using publicly available perfume descriptions. Besides
showing meaningful similarity relationships among each other, these embeddings also demonstrate to
possess some shared information with their respective word embeddings. The meaningfulness of these
embeddings suggests that aesthetics might provide enough constraints for using algorithms motivated
by distributional semantics on non-randomly combined data. Furthermore, they provide possibilities
for new ways of classifying odors and analyzing perfumes. We have also employed the embeddings in
an attempt to understand the aesthetic nature of perfumes, based on the difference between real and
randomly generated perfumes. In an additional tentative experiment we explore the possibility of a
mapping between the word embedding space and the odor perception embedding space by fitting
a regressor on the shared vocabulary and then predict the odor perception embeddings of words
without an a priori associated smell, such as night or sky.
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1 Introduction

Imagine you’re smelling a new perfume and want to describe its scent. Most likely you
will refer to notes such as lemon, mandarine or musk, that make up the complex scent of
a perfume. Our goal in this work is to get vectorial representations (or embeddings2) for
those notes that would capture some relevant properties. We would like these representations
to capture that lemon and mandarine are more similar than lemon and musk. In this
work we have created such representations using perfume descriptions—each perfume being
represented by a list of notes.

But how do we know that the embeddings’ quality is good? The embeddings seem to
capture some relevant relationships, as the model finds that e.g. citric components, such
as, lemon, mandarine and so on, are relatively similar. Additionally, in order to have a
systematic evaluation, we show that the information in our embeddings can be, to some
extent, grounded in language, by comparing the relative distances among notes found in
our embeddings and in pretrained word embeddings. Furthermore, we expand on this by
demonstrating that the measured amount of shared information correlates with how much a
word is associated with smell3.

In addition, we tried to find the relation between the semantic information in word
embeddings and the perceptual information in odor embeddings. We do that by fitting a

1 Corresponding author
2 In this paper these will be referred to as smell embeddings, note embeddings or odor perception embeddings
3 In this paper the terms odor, smell and scent will be used interchangeably.
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2 From meaning to perception

regressor that maps one embedding space onto another embedding space. Using this regressor,
the model is able to suggest a odor perception embedding for any word in the given language.

These notes or perfume components can easily be associated with specific smells. Because
of that, we tentatively believe that our model can capture information in the intersection of
smell, a sensory modality, and language. This might open up new ways of investigating how
our brains form associations between semantic information and sensory experience.

The goal of this work is to create meaningful smell embeddings and to systematically
validate them by using a ranking-based approach. Furthermore, we have employed the
embeddings in an attempt to understand the aesthetic nature of perfumes, by analyzing
the difference between real perfumes and randomly generated ones. We contribute to the
scientific community by providing a collection of odor perception embeddings, which are
ready to be used by anyone4. We further believe that our findings regarding the composition
of perfumes can be extrapolated to other areas where elements are combined in ways that are
supposed to provide aesthetic value, such as harmony in music or flavor profiles in cooking.

The article is structured as follows. We start by providing the reader with some background
information about perfumes. After that, we discuss the state of the art, in which we introduce
works that have tackled the problem of representing perfumes, notes or molecules using
different approaches. Then, we present the data and methods that we have employed in
our experiments, which are introduced in the next section. We present the results for each
of the experiments and discuss those outcomes in the discussion section. As an additional
experiment, we present our explorations on mappings between vector spaces within the
discussion section. Finally, we close with a conclusion and outline possible future directions.

2 Background

The scent of a perfume is usually classified in scent family and scent family sub types. Floral,
Chypre, Fougère, Marine/Ozonic, Oriental, Citrus, Green, and Gourmand are considered to
be the main family types. Examples for family sub types are fruity, spicy, woody, or animalic
[9]. In practice, however, there is some variation in what is considered a scent family. [31]
point out that grouping odors based on their qualitative similarity bears a huge potential
for subjectivity, as basic sensory similarities and categories can be immensely influenced by
a person’s background and conception of reality. Furthermore, based on [5], [31] elaborate
that, for instance, floral notes might be grouped together not because of a similar smell but
rather because of the fact that they all come from flowers. Based on this, such classifications
cannot be viewed as a "rendition of truth, but of someone’s rendition of truth" [31]. Aside
from its family, a scent can further be described in terms of its notes. A given combination
of ingredients is referred to as a composition.

A perfume composition consists of three types of notes: the top notes, the heart notes,
the base notes. All of these unfold in different ways over time. The top notes comprise of
light, small and highly volatile molecules that evaporate rapidly. The heart notes come to
light just before the top notes disappear, which can be anywhere between two minutes up
to one hour after a perfume is applied. Base notes emerge when the heart notes disappear.
They consist of heavy, large and relatively low-volatile molecules and are often fixatives that
support the top and heart notes. They appear only after 30 minutes and can stay up to 24
hours. Given the dynamic nature of a perfume, its perceived smell changes over time [9]5.

4 All our code and embeddings will be made available as a GitHub repository.
5 In order to leverage a shared vocabulary with pretrained word embeddings, we made no distinction
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The perceived notes of a perfume, however, do not necessarily go back to an ingredient of the
same name, e.g. "concrete". Those notes are commonly referred to as fantasy notes. Please
find below an example which includes the descriptors regarding the perfume Chance Eau
Tendre from Chanel.6

Top notes: Grapefruit and quince
Heart notes: Iris absolute and hyacinth
Base notes: Amber, white musk and cedar wood

The notes assigned to a perfume are semantic descriptors. Although widely applied, there
are several questions surrounding these semantic descriptors, e.g. how many descriptors
or references are needed in order to appropriately describe a perfume, or what is the right
balance of scent families among the descriptors. [31] also recognize the subjectivity involved
in this method, since individuals have different olfactory experiences and might use different
numbers of descriptors in order to describe an odor. However, they also add that averaging
over several subjects provides some reliability. The weak link between smell and language
is also found in works [19, 24, 32]. For example, in [19], the authors found that when
describing perceptual stimuli accross languages, people tend to rely heavily on source-based
descriptors. Contrary to the widespread assumption that languages are universally insufficient
at describing smell (e.g. [9]), [18] show in a cross-lingual experiment that this might be true
for English, but not necessarily for all languages. With regards to English, [17] point out
that smell-related language is quite infrequent compared to other sensory modalities such as
vision.

Despite this apparent gap, [11] show how the distributional hypothesis and large text
corpora can be leveraged to quantify the association between words and odors. Based on
similar theoretical assumptions, [8] show that word embeddings trained on general text can
be used as features for accurately predicting perceptual ratings of odors.

3 State of the art

There have been several attempts to analyze the representation of smell in embedded vectorial
spaces. Some of them make use of Natural Language Processing (NLP) resources, others
make use of odor characters as perceived by people, and some others combine them all.

In previous work analyzing the odor perception space and the use of language [11], the
authors introduce two metrics to describe how strongly a word is associated with olfaction
and how specific a word is in its description of odors. Furthermore, they introduce a two-
dimensional space that characterizes perceptual olfactory connotations of English-language
odor descriptors. We opted for a similar approach but decided to use a different evaluation
procedure, which we describe in section 5. The work by Hörberg et al. [10] is also rather
related to ours. They propose a data-driven approach that automatically identifies odor
descriptors in English, and then derive their semantic organization on the basis of their
distributions in natural texts. Other authors [33] analyze perfume notes (making a distinction
between top, heart and base notes) and extract the Principal Components. They propose a
visualization which is a modified version of the Hexagon of Fragrance Families, a sensory map
that visualizes perfumes in a polygon. Each side of the polygon represents odor characteristics.

between e.g. lemon as a top note and lemon as a heart note
6 https://en.wikipedia.org/wiki/Chanel_Chance

https://en.wikipedia.org/wiki/Chanel_Chance
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note frequency
musk 8601

bergamot 7617
sandalwood 7298

jasmine 6426
amber 6331
vanilla 6322

patchouli 6243
rose 5166

cedarwood 4074
vetiver 3931

Table 1 The 10 most frequent notes and their raw counts

There are a number of works that make an attempt to predict odor descriptors based
on molecules. A number of these works were presented as part of the DREAM olfaction
prediction challenge [13] or make use of the publicly available data set [14]. The authors in
[28, 27] trained models to predict the odor of molecules. The problem, called quantitative
structure-odor relationship (QSOR) modeling, is tackled using graph neural networks. Khan
et al. [15] built an olfactory perceptual space and a molecular physicochemical space. They
predict pleasantness of different molecules based on a Principal Component Analysis (PCA)
reduction of the character space defined by Dravnieks [6]. Other researchers [23, 8] made
use of vectorial representations of words for molecule-based odor prediction. While [23] used
Word2Vec embeddings [21], [8] made use of FastText word embeddings [4].

4 Data

As suggested by researchers in [7], the website Basenotes7 provides data for thousands of
commercially available perfumes. For this study, 42773 perfumes were obtained from the
website. The top notes, heart notes and base notes of each perfume were collected8. We
excluded perfumes with less than 3 listed notes or missing note category labels, which reduced
the number of perfumes to 26253. After extraction the lists of notes were lower-cased and all
punctuation was removed (e.g. in order to match Ylang-ylang and ylang-ylang). We applied
no further normalization processes. Consequently, notes such as sicilian lemon and lemon
were treated as distinct notes. The final dataset consisted of 12550 notes distributed over
26253 perfumes with average number of notes µ = 8.6 (σ = 4.1). Table 1 shows the 10 most
frequent notes.

5 Methods

Word2vec
For this study we decided to represent the notes of the perfumes as dense vectors (embeddings).
According to ([12]) dense embeddings outperform sparse representations in every NLP task.

7 www.basenotes.net
8 We do not have any explicit information about the number of authors involved. However, we have no

reason to assume it was only one.

www.basenotes.net
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The assumed reasons for this are: 1) embeddings usually are of lower dimensionality and
therefore a model has to learn fewer parameters, 2) the model might generalize better due to
fewer parameters and 3) dense embeddings might be able to capture synonymity to a higher
degree.

While there are several methods to obtain word embeddings, the method used in this
study is called Word2vec ([20]; [21]). The Word2vec method comprises two complementary
approaches: the continuous bag-of-words model (CBOW) and the skip-gram model. The
difference lies in the task that is used to obtain the representations. In the CBOW model, a
word is predicted based on its context, whereas in the skip-gram approach it works the other
way around. The intuition behind both approaches is that the learned weights of the model
used for prediction can be used as an embedding of the word. One of the great advantages
of this is that it uses running text as implicitly supervised training data and therefore does
not need manual labeling ([12]). This study uses the CBOW model, as it is the default
architecture ([26]). Also, other hyperparameters such as the context window size were left at
default, since assumptions about these hyperparameters are outside the scope of this study.
They will, however, be subject of future works.

Rank Biased Overlap
As we mentioned earlier, thanks to our perceptional embeddings, we were able to create
rankings of the most similar notes given one specific note (or position in the embedded
space). For example, by looking for notes similar to lemon, we were able to find notes
like bergamot, orange and so on. The notes’ ranking seemed to make sense based on our
linguistic/semantic intuition. In order to measure this intuition in a metric, we decided to
use a metric that compares two similarity rankings (smell embedding space/word embedding
space) and returns a measurement of how overlapping the two rankings are.

We employed Rank Biased Overlap (RBO) [30]. RBO is a similarity metric for ranked
lists and it can estimate a similarity measure between two rankings, even when not all
elements in the rankings are exactly the same. Since RBO is a ranked metric, higher ranked
overlaps can be set to have a higher weight, than lower ranks. The output of this metric is a
value between 0 and 1. As a result, dissimilar rankings would return a value close to zero,
while similar rankings would return a value close to one.

6 Experiments

This section covers the two main experiments of our study.

6.1 Experiment 1a
The goal of this experiment was to investigate whether the Word2vec algorithm can be
applied to perfumes similarly to language and create meaningful embeddings of the perfume
notes. Although the perfume notes do not follow a strict sequential order the way language
does, the word2vec algorithm can still be applied, since it processes the elements in the
context window as bag of words. In order to simplify the process and make sure the choice
of the context size would not impact the outcome too much, we represented each perfume
as a sequence of 100 elements randomly sampled from its set of notes. We then trained
the embeddings with 10, 20, 50 and 100 dimensions based on these sequences using the
gensim implementation of the Word2vec model [26], leaving all parameters at default. In
order to validate these smell embeddings we extracted the shared vocabulary between the
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smell embedding size word embedding mean RBO mean RBO random p-value
10 giga .046 .013 <.001***
10 wiki .042 .018 <.001***
10 wiki+giga .047 .016 <.001***
20 giga .049 .013 <.001***
20 wiki .049 .018 <.001***
20 wiki+giga .05 .016 <.001***
50 giga .039 .013 <.001***
50 wiki .038 .018 <.001***
50 wiki+giga .039 .016 <.001***
100 giga .03 .013 <.001***
100 wiki .031 .018 <.001***
100 wiki+giga .031 .016 <.001***

Table 2 Results of the grid-search in Experiment 1a. The best result is marked in bold font but
also with a light gray background.

smell embeddings and word embeddings (660 items). Our assumption was that although
the two types of embeddings captured different information, there had to be some olfactory
information in the word embeddings. This overlap could be quantified by comparing relative
similarities, meaning if "lemon" and "orange" are close in word embeddings space they should
also be relatively close in the smell embedding space9. In order to test this assumption
for every item in the shared vocabulary we ranked the remaining items by their cosine
similarity both in the word embedding and the smell embedding space. We then compared
the similarity rankings for every item by calculating the RBO. By this we received a value
indicating agreement between the relative similarities for every item in the shared vocabulary.
To see these values in perspective we repeated the procedure and randomly shuffled the
items in the smell embedding space. Finally, in order to ensure that the measured agreement
was not due to randomness, we performed a Mann-Whitney-U test on the two distributions
of RBO-values. We repeated the same procedure with word embeddings trained on three
different corpora10 for all four odor perception embeddings in a grid search. Due to the fact
that olfaction is not too frequently expressed in English and that the word embeddings do
not account for polysemy, we expected a significant but not necessarily striking overlap of
the information expressed in the respective embeddings.

Results
The results of the grid-search are shown in Table 2. Although the mean RBOs are quite
low, the RBOs are in all configurations significantly different from the randomized ones.
The highest mean RBO was obtained by the smell embeddings of size 20 and the word
embeddings from the wiki+giga corpus.

Leveraging one of the known properties of Word2vec, we took a closer look at some of the

9 Another way of conceptualizing this is to think about the pretrained word embeddings capturing general
language as opposed to the smell embeddings capturing exclusively olfactory language. With olfactory
content also being present in general language (even if limited), there should be an intersection of the
two.

10 We used the unlemmatized continous skip-gram embeddings trained on English Wikipedia, Gigaword
and Wikipedia+gigaword publicly available on http://vectors.nlpl.eu/repository/.

http://vectors.nlpl.eu/repository/


J. Amann and M. Agirrezabal 7

note 5 most similar notes
musk amber, jasmine, sandalwood, bergamot, mandarin
bergamot lemon, mandarin, jasmine, petitgrain, rosemary
sandalwood jasmine, amber, musk, patchouli, freesia
coffee roasted cocoa bean, tiramisone, dry ambered cherries, cacao
lavender lavandin, geranium, basil, menthol, rosemary
vanilla heliotrope, praline, almond blossom, tonka bean, sandalwood
rosemary lavender, bergamot, lemon, oregano, lavander
strawberry balsamic vanilla, cosmopolitan cocktail accord, creamy caramel, raspberry, peach
incense myrrh, papyrus, noble laurel, black tolu, opponax

Table 3 The upper row shows the 5 most similar notes to the 3 most frequent one. The lower
row shows the 5 most smilar notes to several selected ones.

similarities between the smell embeddings. Table 3 shows some notes with their respective 5
most similar ones. The upper part of the table shows the three most common notes. There
are two things that can be observed here: Firstly, among the three most common and their
respective most similar notes, there seems to be a notable overlap. However, frequency does
not seem to be the only factor involved, since the rankings seem to reflect semantic properties.
Musk and amber are both considered animalic smells11. Interestingly, jasmine, commonly
considered a floral scent, is also said to have musky qualities12. This effect shows even more
in the case of bergamot. Here, the three out of 5 most similar notes(lemon, mandarin and
petitgrain) are citric as well. There might also exist subtle perceptual similarities with the
notes jasmine or rosemary. But again, a frequency effect seems rather obvious. Looking
at the lower part of the table, one can find several examples that make intuitive sense,
lavender or rosemary being quite impressive examples, the latter even capturing the different
spelling of lavander. Let us look at the examples of coffee and incense: In the case of
coffee, the similarities to roasted cocoa bean and cacao are quite straight forward. Less
straightforward but nonetheless fitting is the similarity to the synthetic note tiramisone,
which has a chocolate-like character 13. For incense we can see quite intuitive similarities to
myrrh and opponax14, also known as sweet myrrh, as well as to other spicy or woody notes
like papyrus, noble laurel and black tolu.

6.2 Experiment 1b

In order to add a second step to our systematic evaluation of the smell embeddings, we
tested our assumption that the amount of agreement between the relative similarities should
be correlated with how strongly a word is associated with olfaction. In a conceptually
similar approach to [11], we quantified the olfactory association of a word by computing its
cosine similarity with the average vector of several olfaction-related words, such as "smell" or
"odor"15. We then computed Spearman’s rank correlation coefficient for the RBO-values and
our values for olfactory association.

11 https://www.fragrantica.com/notes/
12 https://perfumesociety.org/ingredients-post/jasmine-2/
13 https://www.premiumbeautynews.com/en/symrise-is-enhancing-its-fragrance,13817
14 Google reveals that the actual spelling should most likely be "opoponax"
15 The full list will be made available on GitHub
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[Histogram] [Kernel Density Estimation

plot]

Figure 1 These two figures represent the average variance of the distance between the centroid
of a perfume and its notes.

Results

Even though the Spearman’s correlation coefficient is rather small, it does not seem to be
result of a random process, based on the p-value obtained (r = 0.16 and p < .001). These
results show that there is indeed a positive correlation between the RBOs and the olfactory
association.

6.3 Experiment 2

The goal of this experiment was to assess if the smell embeddings can be used in order
to investigate the formal aesthetics of perfumes. Inspired by [3] we made the following
assumption: The notes of pleasant perfumes spread across the embedding spaces in specific
ways, following some kind of order. While there exists a multitude of possible geometrical
properties this assumption could manifest itself in, for the sake of keeping it simple, we
hypothesized that in a pleasant perfume the individual notes are spread rather evenly around
their centroid.

In order to check whether this hypothesis is true, we calculated the centroid of each
perfume16, and then, the euclidean distance of each of the notes to the centroid. We then
saved the variance for each perfume, as a measure of such variation. Besides, we generated a
number of random perfumes17 and we did the same with their variances.

16 Similarly to [22] we these perfumes as being pleasant and of aesthetic value based on the fact they
appear on this website.

17 We made sure that the number of notes in these random perfumes was similar to the actual perfumes,
and also that the random notes were drawn from the same distribution as the real perfumes.
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Results

Figure 1 shows a histogram and a Kernel Density Estimation plot to visualize the differences
of the variances between real perfumes and randomly generated perfumes. We can see
that there are some differences, and the difference in means is significant according to a
Mann-Whitney-U Test (p < 0.0001). But, as it can be seen in both plots from Figure 1, the
overlapping area between the two cases is quite large.

7 Discussion

In this section, we discuss the performed experiments and their results followed by an
additional tentative experiment, where we explore the possibility of mappings from the word
embedding space to the smell embedding space. In experiment 1a, in general, we observed
that the odor perception embeddings contain some information about smell. We evaluated
this by calculating the Rank Biased Overlap (RBO) for each word in the shared vocabulary,
effectively measuring the similarity between two rankings. One ranking was the one with the
closest words from the smell embeddings (perfume) and the other ranking came from word
embeddings (language). When comparing these RBOs with the ones obtained between smell
embeddings and randomly shuffled word embeddings, we observed that there is a small but
significant difference between the RBOs. This suggests, then, that there is an amount of
shared information between the embedding spaces. However, the shared information seems to
be rather limited which can be explained by the fact that general English does not express a
large amount of olfactory information or the polysemy of the word embeddings (e.g. "orange"
can be both a color and a smell, which probably increases the difference between "lemon"
and "orange" in word embedding space).

Furthermore, these embeddings do not only seem to encode intuitive and established
information, e.g. that lavender and lavandin are similar, but they also seem to capture subtle
information, or information that may not be available at a first glance. For example, we
found that musk and jasmine are relatively similar. While there are sources highlighting the
"muskyness" of jasmine, this characteristic is not reflected in traditional odor classification
schemes. However, when looking at the ranking based on closest words, we noticed a trend:
The most similar notes also seem to be the most frequent ones in a number of cases. We still
need to analyze the effect of frequency in the embeddings, and we may need to account for
that effect. A weighting scheme, similar to TF-IDF18 could be applied as a possibility.

Concerning experiment 1b, the positive correlation between the RBOs and olfactory
association indicates a tendency that the agreement between the spatial relationships between
word embeddings and smell embeddings grows with the amount of olfactory information in
a word embedding. This seems to support our assumption that at least a part of the little
agreement can be explained by the general lack of olfactory information in English.

The goal of Experiment 2 was to get a first insight in whether the smell embeddings can
potentially be used in order to model perfume aesthetics. Our results show a tendency that
the notes of real perfumes are more evenly distributed around their centroid compared to
randomly sampled perfumes. Although significant, the difference of the two groups was rather
small, indicating that our measure only explains a small fraction of what makes perfumes
pleasant. In general, these results encourage further research and analysis.

18 Term-Frequency - Inverse Document Frequency.
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Further exploration
After training different smell embedding models and evaluating them with Rank Biased
Overlap, we decided to conduct another experiment. We tried to find a relation between the
smell embedding space and the word embedding space. The final goal of this was to check
whether we can find a sufficiently good mapping between two vectorial spaces and, if we
could find one, whether we would be able to associate any word from a given language with
a possible smell. This could potentially contribute to our understanding of how we associate
words with smell.

For this experiment, the idea was to train a model that would receive an embedding table
as input and tasking it with predicting the representations of each of those instances, but in
the target space. We used the shared vocabulary of those two spaces as training data and
we trained several regression models, specifically three different types of regression models:
Linear Regression, Multilayer Perceptron Regressor and K-Nearest Neighbors Regressor19.
We could have trained more types of regression models, but we decided to choose these
because of the simplicity and in some cases, because of the ease of interpretation. For all
these mapping experiments, we reduced the dimensionality of the word embeddings, from
300 dimensions to 20 dimensions, the same size of the odor perception embeddings. We used
Principal Component Analysis (PCA) for this. The main reason behind this reduction was
computational efficiency, as the number of learned parameters in the regressors would be
significantly smaller. We validated these models using 5-Fold Cross-Validation. The obtained
Mean-Squared Error (MSE) for each model can be found in table 4. In addition, we also
included a dummy regressor that constantly returns the mean value of the output, as a very
simple baseline.

We obtained the best results with the MLP regressor model, but considering that Linear
Regressor was relatively close, we decided to use the Linear Regressor for the final experiments.
The main reason for choosing this model is the simplicity of the model, as it only performs a
linear transformation to the input space, without further non-linearities, as it happens with
the MLP regressor model. It has to be noted here that the MLP regressor and the linear
regressor perfomed only marginally better than the dummy regressor. A possible reason
for this might be that these mappings are, if existent in the fist place, too complex for the
chosen regression models. Alternatively, this might also be due to the fact the models are
not sufficiently optimized, as this was beyond the scope of this experiment, or it might be a
consequence of the dimensionality reduction.

In order to get some insight in how the linear regressor translates out-of-vocabulary
words with no a priori associated smell, we showed the five most and least similar notes to
some example words in Table 5 together with some words that were part of the training
set. As an additional reference, we also provide the most similar and least similar words
according to the mappings estimated by the dummy regressor20: “cypresses, balsa, currants,
peppercorns, talcum” were the most similar notes and “carob, sake, sex, mamey, bean” were
the least similar for all cases. Admittedly, it seems hard to detect some general patters of
how semantic qualities of the words are translated into smell, but looking at words such
as "seduction" which produces a smell similar to pheromone or "fish", which is translated
to the smell kelp (a seaweed), one gets the impression that there might be some semantic
qualities that are captured by the mappings and translated in a way that makes intuitive

19 We use the scikit-learn [25] implementation of these models with the default parameters.
20 As this baseline always returns the same value (mean), the most similar and least similar words are

always the same for any input word.
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Linear Regression MLP Regression K-NN Regression Dummy Regression

µ 1.6473 1.6203 2.0472 1.7846
σ 0.1383 0.1372 0.1895 0.1560

Table 4 Mean-Squared Error of different regression models in mapping from a source space (word
embedding space) to a target space (smell embeddings space). The mean (µ) and standard deviation
(σ) were calculated from the 5-Fold Cross-Validation results.

5 most similar notes 5 least similar notes
word

moon cola, birch, raspberry, strawberry, sunflowers sulphur, buttercream, turf, fresh, lacquer
church butter, earth, mugwort, stone, water grapefruit, sake, oleander, kumquat, cashmere
rotten rubber, firewood, fireplace, fossils, cigar orchid, lemon, jasmine, bergamot, mandarin
seduction lys, leaf, gorse, broomstick, pheromone cinnamon, chocolate, fenugreek, coffee, carob
grass* grass, rain, bulrush, thistle, blueberry sesame, mulberry, prune, elderberry, carob
night sedum, papyrus, mesquite, sugar, honeycomb margarita, cassis, peonies, ozone, narcissus
wood* wood, smoke, earth, fur, flowers eucalyptus, peonies, carob, sake, sandstone
male scotch, kayak, ember, cigars, talc clover, aniseed, liquorice, rhubarb, acacia
female heather, ember, turpentine, scotch, cypress rhubarb, pansy, aniseed, barley, liquorice
sweat* saltwater, dust, chlorophyll, stalk, mist benzoin, cacao, verbena, cinnamon, mandarin
sky foliage, port, parchment, lemonade, spirits rosewood, turf, mace, sulphur, ivy
cod kirsch, algae, must, essence, pinewood champagne, cassia, cherry, carob, plum
fish kelp, wheat, minerals, pandanus, peel cranberry, cinnamon, carob, papyrus, pimento

Table 5 The 5 most similar and least similar notes to some selected words. The asterisk indicates
that a word as pat of the training set.

sense. However, in general the results seem rather random. This might due to previously
mentioned factors such as a potential non-linear relationship between the two embedding
spaces, an insufficiently trained model or the reduced dimensions of the the input data. On
top of this, polysemy in the word embeddings might add further complexity, e.g. "church" as
organization vs. "church" as a building. Especially concerning the latter, it might also be
worth thinking about the word-smell pairs used for training, whose relationship is mostly
source-based. Yet, most of us would probably associate "church" with incense as opposed to
stone. Since this was only a tentative experiment, we did not investigate these issues any
further, but aim to address them in future works.

8 Conclusion and Future Work

In this work, we used Word2vec as a method for creating meaningful perfume note represen-
tations. We tested the quality of those embeddings by following a rank based metric (Rank
Biased Overlap). Besides, experiment 1b suggests that the words with a higher RBO, or
higher agreement in the ranking between note and word embedding spaces, are somehow more
related to olfaction. Looking at the embeddings of particular notes, we discovered that they
contain meaningful similarities to other notes that seem to capture both salient and more
subtle similarities. Since these similarities sometimes transcend traditional categories, we
believe that the embeddings presented in this paper could potentially contribute to new ways
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of odor categorization. Furthermore, our findings suggest that, in relation to distributional
semantics, aesthetics in data with complex structures might be an equivalent concept to
semantics in language.

Additionally, we have performed an initial experiment in order to evaluate the potential
use of our embeddings for modelling the pleasantness of a perfume. Our results suggest a
tendency that the notes of real perfumes are more evenly distributed around their centroid
compared to randomly sampled perfumes, but we believe this needs further analysis as the
difference is relatively small. Since our results were nonetheless significant, we cautiously
read them as encouragement for further exploration of geometric properties of perfumes in
our embedding space in relation to their pleasantness.

To conclude, we explored the use of regression models for creating linear mappings
between embedding spaces. This way, given a word in the English language, we can propose
a perfume note based on this mapping. However, this approach needs further improvement.

In this work we did not associate each perfume with a specific gender, and we therefore
considered all the perfumes’ population as a whole. It would be very interesting to analyze
the perfumes considering their gender association. Furthermore, it would also be relevant to
investigate the grammatical gender of the odor descriptors, as done previously by Speed and
others [29]. In order to do this, however, we would have to analyze the odor descriptors and
their embeddings in languages other than English, in which words have an associated gender,
such as German, Spanish, French, and so on.

With regards to preprocessing, there is considerable room for improvement: Applying
lemmatization to all words might provide to be useful. Additionally, we are planning on
investigating the importance of the choice of hyperparameters of the word2vec algorithm in
this setting, most notably the model architecture (CBOW vs. skip gram) and the size of the
context window.

Furthermore, another possibility to improve our representations could be to include
molecule information to these smell embeddings. In order to do so, we need a mapping
between notes and molecules.

With regards to the linear mapping experiments, we believe that using more advanced
mapping algorithms could make our results better and also that we would be able to provide
more accurate odors for other non-odor related words. A possibility could be to follow the
work on Unsupervised Machine Translation [1, 16] and also Bilingual Lexical Induction [2].
In relation to this, we would like to have a proper and robust way for evaluating these
mappings, besides qualitative and intuitive evaluations.

Last but not least, we want to continue trying to match different perception and language
spaces. We have analyzed and mapped the spaces related to language and olfaction. Our
intention is to do similar experiments with other sensory modalities, such as vision, taste or
hearing.
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