#!/usr/bin/python # -*- coding: utf-8 -*- # EXTENSIONS : "obj" "OBJ" # Accepted file extentions # OSTYPES : "****" # Accepted file types # ROLE : Editor # Role (Editor, Viewer, None) # SERVICEMENU : Obj2DatTexNorm/Convert to .dat # Name of Service menu item """ This script takes a Wavefront .obj file and exports a .dat file containing the same trimesh. This version generates files with per-vertex normals, for Oolite 1.74 and later only. """ import sys import os import string import argparse import math import decimal args = None # # Vector maths libary # These functions work on tuples of three numbers representing geometrical # vector in 3-space. # def vector_add(v1, v2): """ vector_add Add two vectors. """ return v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2] def vector_subtract(v1, v2): """ vector_subtract Subtract v2 from v1. """ return v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2] def vector_scale(v, s): """ vector_scale Scale a vector by multiplying each component with a scalar. """ x, y, z = v return x * s, y * s, z * s def vector_flip(v): return vector_subtract((0, 0, 0), v) def vector_magnitude(v): """ vector_magnitude Return the magnitude/length of a vector, denoted ‖v‖. """ x, y, z = v return math.sqrt(x * x + y * y + z * z) def vector_normalize(v): """ vector_normalize Return a normalized vector, i.e. one scaled so its magnitude is 1. """ return vector_scale(v, 1.0 / vector_magnitude(v)) def is_vector_normalized(v): """ is_vector_normalized Test whether a vector is within 1e-5 of a normalized vector. """ return abs(vector_magnitude(v) - 1.0) < 1e-5 def vector_dot_product(v1, v2): """ vector_dot_product Return the dot product (scalar product) of two vectors. The dot product v1 · v2 = ‖v1‖ ‖v2‖ cos θ, where θ is the angle between the two vectors. If both vectors are normalized, v1 · v2 = cos θ. """ return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2] def vector_cross_product(v1, v2): """ vector_cross_product Returns the cross product (vector product) of two vectors. The cross product v1 × v2 is perpendicular to both v1 and v2 (oriented such that v1, v2, v1 × v2 form a clockwise wound triangle as seen from the origin), its magnitude is ‖v1‖ ‖v2‖ sin θ, where θ is the angle between v1 and v2. Note that v1 × v2 = -(v2 × v1). """ x = v1[1] * v2[2] - v2[1] * v1[2] y = v1[2] * v2[0] - v2[2] * v1[0] z = v1[0] * v2[1] - v2[0] * v1[1] return x, y, z def vector_normal_to_surface(v1, v2, v3): """ vector_normal_to_surface Find a normal to a surface spanned by three points. """ d0 = vector_subtract(v2, v1) d1 = vector_subtract(v3, v2) return vector_normalize(vector_cross_product(d0, d1)) def average_normal(n1, n2, n3): """ average_normal Calculate the normalized sum of three vectors. """ return vector_normalize(vector_add(n1, vector_add(n2, n3))) # # Output formatting # def clean_vector(v): """ clean_vector "Cleans" a vector by converting any negative zeros or values that will round to +/-0 to 0. """ x, y, z = v def clean_number(n): if -0.000005 < n and n < 0.000005: return 0.0 else: return n return clean_number(x), clean_number(y), clean_number(z) def format_number(n): """ format_number Format a float with up to five decimal places, making it as short as possible without discarding information. Based on accepted answer by samplebias at http://stackoverflow.com/questions/5807952/removing-trailing-zeros-in-python """ try: dec = decimal.Decimal('%.5f' % n) except: return 'bad' tup = dec.as_tuple() delta = len(tup.digits) + tup.exponent digits = ''.join(str(d) for d in tup.digits) if delta <= 0: zeros = abs(tup.exponent) - len(tup.digits) val = '0.' + ('0' * zeros) + digits else: val = digits[:delta] + ('0' * tup.exponent) + '.' + digits[delta:] val = val.rstrip('0') if val[-1] == '.': val = val[:-1] if tup.sign: return '-' + val else: return val def format_vector(v): if args.pretty_output: return '% .5f,% .5f,% .5f' % v else: x, y, z = v return '%s %s %s' % (format_number(x), format_number(y), format_number(z)) def format_normal(n): if args.flip_normals: return format_vector(vector_flip(n)) else: return format_vector(n) def format_textcoord(st): if args.pretty_output: return '% .5f,% .5f' % st else: s, t = st return '%s %s' % (format_number(s), format_number(t)) # # Argument handling # class _ListWindingModesAction(argparse.Action): """ _ListWindingModesAction Argparse action to handle the --list-winding-modes option. This is implemented as an action so we don't get the standard "error: too few arguments" message. Based on argparse's _HelpAction. """ def __init__(self, option_strings, dest=argparse.SUPPRESS, default=argparse.SUPPRESS, help=None): super(_ListWindingModesAction, self).__init__( option_strings=option_strings, dest=dest, default=default, nargs=0, help=help) def __call__(self, parser, namespace, values, option_string=None): print """Winding determines which side of a triangle is the outside. The --winding-mode option controls how the winding is selected for each triangle. If a model appears "inside-out" or has missing faces, you need to adjust this. Available modes: 0: maintain the OBJ file's original winding. 1: reverse the OBJ file's winding. 2: select winding automatically for each face based on normals. 3: select winding automatically for each face, but buggily (the same behaviour as Oolite for old-style model files). You probably don't want this.""" parser.exit() argParser = argparse.ArgumentParser(description='''Convert OBJ meshes to Oolite DAT format. This tool preserves normals (face directions for lighting purposes) stored in the OBJ file, rather than making Oolite recalculate them.''') argParser.add_argument('files', nargs='+', help='the files to convert') argParser.add_argument('-w', '--winding-mode', type=int, default=2, metavar='MODE', dest='winding_mode', help='''Specify winding mode (default: %(default)s). Winding determines which side of a triangle is out. Run %(prog)s --list-winding-modes for more information.''') argParser.add_argument('-f', '--flip-normals', action='store_true', dest='flip_normals', help='Reverse normals; this turns the lighting inside out without affecting face visibility') argParser.add_argument('--include-face-normals', action='store_true', dest='include_face_normals', help=argparse.SUPPRESS) # No help because this is only useful when targeting versions earlier than 1.74. argParser.add_argument('-m', '--preserve-material-names', action='store_false', dest='rename_materials', help='Keep abstract material names from material library, instead of renaming materials after their diffuse map. Only use if you\'ll be creating material dictionaries.') argParser.add_argument('-p', '--pretty-output', action='store_true', dest='pretty_output', help='Create a file that\'s easier for humans to read, but larger and slower to parse') argParser.add_argument('--no-texture-split', action='store_true', help='Don\'t split vertices if texture coordinates differ (matches behaviour pre-github issue 184)') argParser.add_argument('-L', '--list-winding-modes', action=_ListWindingModesAction, help=argparse.SUPPRESS) args = argParser.parse_args() # # Processing helpers # def vertex_reference(n, nv): if n < 0: return n + nv else: return n - 1 resolved_vertex_count = 0 def resolve_vertex(v, vn, tc, index_for_vert_norm_and_tex, vertex_lines_out, normals_lines_out): """ resolve_vertex Returns a unique index for each (vertex, normal) pair. When a new pair is seen, a new index is generated and the relevant lines are added to the output buffers for the VERTEX and NORMALS sections. This is necessary because OBJ uses separate index spaces for vertex positions and normals, but DAT requires one index per pair. """ global resolved_vertex_count v = clean_vector(v) vn = clean_vector(vn) key = v, vn, tc if key in index_for_vert_norm_and_tex: return index_for_vert_norm_and_tex[key] else: result = resolved_vertex_count resolved_vertex_count = resolved_vertex_count + 1 index_for_vert_norm_and_tex[key] = result vertex_lines_out.append(format_vector(v) + '\n') if not is_vector_normalized(vn): print 'Bug: writing unnormalized normal %s' % format_normal(vn) normals_lines_out.append(format_normal(vn) + '\n') return result def should_reverse_winding(v1, v2, v3, normal): """ should_reverse_winding Determine whether to reverse the winding of the triangle (v1, v2, v3) based on current winding mode and face normal. """ if args.winding_mode == 0: return False elif args.winding_mode == 1: return True else: calculatedNormal = vector_normal_to_surface(v3, v2, v1) if normal == (0, 0, 0): normal = vector_flip(calculatedNormal) if args.winding_mode == 2: # Guess, using the assumptions that normals should point more "outwards" # than "inwards". if (vector_dot_product(normal, calculatedNormal) < 0.0): return True else: return False elif args.winding_mode == 3: # Buggy calculation traditionally used by Oolite. if (normal[0] * calculatedNormal[0] < 0.0) or (normal[1] * calculatedNormal[1] < 0.0) or (normal[2] * calculatedNormal[2] < 0.0): return True else: return False print 'Unknown normal winding mode %u' % (args.winding_mode) exit(-1) # # Grand processing loop # for input_file_name in args.files: # Select output name and open files output_file_name = input_file_name.lower().replace('.obj', '.dat') if output_file_name == input_file_name: output_file_name += '.1' input_display_name = os.path.basename(input_file_name) output_display_name = os.path.basename(output_file_name) print input_display_name + ' -> ' + output_display_name input_file = open(input_file_name, 'r') lines = input_file.read().splitlines(0) output_file = open(output_file_name, 'w') ### Set up state used in parsing and generating output vertex_lines_out = ['VERTEX\n'] faces_lines_out = ['FACES\n'] normals_lines_out = ['NORMALS\n'] vertex_count = 0 face_count = 0 normal_count = 0 skips = 0 vertex=[] uv=[] normal=[] face=[] texture=[] texture_for_face=[] texcoords_for_face=[] interpret_texture = 0 material_rename = {} index_for_vert_norm_and_tex = {} names_lines_out = [] materials_used = [] max_v = [0.0, 0.0, 0.0] min_v = [0.0, 0.0, 0.0] ### Find materials from material library for line in lines: tokens = string.split(line) if tokens != []: if tokens[0] == 'mtllib': path = os.path.dirname(input_file_name) material_file_name = os.path.join(path, tokens[1]) print ' Material library file: %s' % material_file_name material_file = open(material_file_name, 'r') new_material = False for material_line in material_file.read().splitlines(0): material_tokens = string.split(material_line) if material_tokens != []: if material_tokens[0] == 'newmtl': new_material_name = material_tokens[1] if args.rename_materials: # Let map_Kd handler deal with material table. # FIXME: produce cleaner results if there is no diffuse map. new_material = True else: # Store material key in used material list and (if using short names) the rename table. materials_used.append(new_material_name) if not args.pretty_output: material_rename[new_material_name] = len(material_rename) names_lines_out.append(new_material_name + '\n') if material_tokens[0] == 'map_Kd': # If this is the first diffuse map for this material... if new_material: # Add it to the used materials list and rename table. name = material_tokens[1] materials_used.append(name) print ' Material %s -> %s' % (new_material_name, name) if args.pretty_output: material_rename[new_material_name] = name else: material_rename[new_material_name] = len(material_rename) names_lines_out.append(name + '\n') new_material = False material_file.close() ### Parse vertices for line in lines: tokens = string.split(line) if tokens != []: if tokens[0] == 'v': vertex_count = vertex_count + 1 # Negate x value for vertex to compensate for different coordinate conventions. x = -float(tokens[1]) y = float(tokens[2]) z = float(tokens[3]) vertex.append((x, y, z)) if x > max_v[0]: max_v[0] = x if y > max_v[1]: max_v[1] = y if z > max_v[2]: max_v[2] = z if x < min_v[0]: min_v[0] = x if y < min_v[1]: min_v[1] = y if z < min_v[2]: min_v[2] = z if tokens[0] == 'vn': normal_count = normal_count + 1 x = -float(tokens[1]) y = float(tokens[2]) z = float(tokens[3]) n = (x, y, z) if not is_vector_normalized(n): print 'Warning: read unnormalized normal %s' % format_vector(n) normal.append(vector_normalize((x, y, z))) if tokens[0] == 'vt': uv.append((float(tokens[1]), 1.0 - float(tokens[2]))) ### Parse faces group_token = 0 for line in lines: tokens = string.split(line) if (tokens != []): if (tokens[0] == 'usemtl'): textureName = tokens[1] if (material_rename.has_key(textureName)): textureName = material_rename[textureName] interpret_texture = 1 texture.append(textureName) if (tokens[0] == 'f'): while (len(tokens) >=4): bits = string.split(tokens[1], '/') v1 = vertex_reference(int(bits[0]), vertex_count) if (bits[1] > ''): vt1 = vertex_reference(int(bits[1]), vertex_count) if (bits[2] > ''): vn1 = vertex_reference(int(bits[2]), normal_count) bits = string.split(tokens[2], '/') v2 = vertex_reference(int(bits[0]), vertex_count) if (bits[1] > ''): vt2 = vertex_reference(int(bits[1]), vertex_count) if (bits[2] > ''): vn2 = vertex_reference(int(bits[2]), normal_count) bits = string.split(tokens[3], '/') v3 = vertex_reference(int(bits[0]), vertex_count) if (bits[1] > ''): vt3 = vertex_reference(int(bits[1]), vertex_count) else: if interpret_texture: print 'File does not provide texture coordinates! Materials will not be exported.' interpret_texture = 0 if (bits[2] > ''): vn3 = vertex_reference(int(bits[2]), normal_count) d0 = (vertex[v2][0] - vertex[v1][0], vertex[v2][1] - vertex[v1][1], vertex[v2][2] - vertex[v1][2]) d1 = (vertex[v3][0] - vertex[v2][0], vertex[v3][1] - vertex[v2][1], vertex[v3][2] - vertex[v2][2]) xp = (d0[1] * d1[2] - d0[2] * d1[1], d0[2] * d1[0] - d0[0] * d1[2], d0[0] * d1[1] - d0[1] * d1[0]) det = math.sqrt(xp[0]*xp[0] + xp[1]*xp[1] + xp[2]*xp[2]) if (det > 0): if interpret_texture and not args.no_texture_split: tc1 = uv[vt1] tc2 = uv[vt2] tc3 = uv[vt3] else: tc1 = None tc2 = None tc3 = None rv1 = resolve_vertex(vertex[v1], normal[vn1], tc1, index_for_vert_norm_and_tex, vertex_lines_out, normals_lines_out) rv2 = resolve_vertex(vertex[v2], normal[vn2], tc2, index_for_vert_norm_and_tex, vertex_lines_out, normals_lines_out) rv3 = resolve_vertex(vertex[v3], normal[vn3], tc3, index_for_vert_norm_and_tex, vertex_lines_out, normals_lines_out) face_normal = average_normal(normal[vn1], normal[vn2], normal[vn3]) if should_reverse_winding(vertex[v1], vertex[v2], vertex[v3], face_normal): # If reversing, swap first and third vertex index and tex coord. # Note that we don't need to swap normals here, because they're # indexed in the same sequence as vertices, but texture coords # are stored separately with the faces. temp = rv1 rv1 = rv3 rv3 = temp temp = vt1 vt1 = vt3 vt3 = temp if args.include_face_normals: face_normal_str = format_normal(face_normal) else: face_normal_str = '0 0 0' face_count = face_count + 1 face.append((rv1, rv2, rv3)) faces_lines_out.append('0 0 0\t%s\t3\t%d %d %d\n' % (face_normal_str, rv1, rv2, rv3)) if interpret_texture: texture_for_face.append(textureName) texcoords_for_face.append([uv[vt1], uv[vt2], uv[vt3]]) tokens = tokens[:2]+tokens[3:] ### Write output. output_file.write('// Converted by Obj2DatTexNorm.py Wavefront OBJ file conversion script\n') output_file.write('// (c) 2005-2013 By Giles Williams and Jens Ayton\n') output_file.write('// \n') output_file.write('// original file: "%s"\n' % input_display_name) output_file.write('// \n') output_file.write('// model size: %.3f x %.3f x %.3f\n' % (max_v[0]-min_v[0], max_v[1]-min_v[1], max_v[2]-min_v[2])) output_file.write('// \n') output_file.write('// materials used: %s\n' % materials_used) output_file.write('// \n') output_file.write('NVERTS %d\n' % resolved_vertex_count) output_file.write('NFACES %d\n' % face_count) output_file.write('\n') output_file.writelines(vertex_lines_out) output_file.write('\n') output_file.writelines(faces_lines_out) output_file.write('\n') # Check that we have textures for every vertex ok_to_write_texture = 1 if len(texture_for_face) != len(face): ok_to_write_texture = 0 if len(texcoords_for_face) != len(face): ok_to_write_texture = 0 for texture in texture_for_face: if texture == '': ok_to_write_texture = 0 # If we're all clear then write out the texture uv coordinates. if ok_to_write_texture: output_file.write('TEXTURES\n') for i in range(0, len(face)): facet = face[i] texture = texture_for_face[i] output_file.write('%s\t1.0 1.0\t%s\t%s\t%s\n' % (texture, format_textcoord(texcoords_for_face[i][0]), format_textcoord(texcoords_for_face[i][1]), format_textcoord(texcoords_for_face[i][2]))) output_file.write('\n') # Write NAMES section if used (textures in place and not pretty printing) if len(names_lines_out) != 0: output_file.write('NAMES %u\n' % len(names_lines_out)) output_file.writelines(names_lines_out) output_file.write('\n') output_file.writelines(normals_lines_out) output_file.write('\n') output_file.write('END\n') output_file.close() input_file.close() print 'Done.\n'