/* oolite-default-atmosphere.fragment Default fragment shader for Oolite NEW_PLANETS. © 2009–2013 Jens Ayton Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define MULTIPLIER_LIGHTSRCRADIANCE 1.035 #define MULTIPLIER_PREEXPOSURE 1.0 #define DIFFUSE_LIGHT (gl_LightSource[1].diffuse.rgb * MULTIPLIER_LIGHTSRCRADIANCE) #define AMBIENT_LIGHT (gl_LightModel.ambient.rgb) uniform vec4 atmPosition; uniform float atmRadius; uniform vec4 atmColor; uniform float atmColorMixRatio; uniform float atmDensity; // No vNormal, because normal is always 0,0,1 in tangent space. varying vec3 vEyeVector; varying vec3 vLight1Vector; const float kFresnelExponent = 5.0; void main() { vec3 totalColor = vec3(0.0); vec3 normal = vec3(0.0, 0.0, 1.0); // Diffuse light vec3 light1Vector = normalize(vLight1Vector); vec3 eyeVector = normalize(vEyeVector); vec3 diffuseColor = DIFFUSE_LIGHT; float NdotV = clamp(dot(normal, eyeVector), 0.0, 1.0); float NdotL = max(0.0, dot(light1Vector, normal)); float atmDistance = length(atmPosition.xyz); float minDistance = atmRadius + 3500.0; float magicDistance = atmDistance - minDistance; float cosThreshold = -1.333333e-6 * atmRadius + 0.21333333; // 0.17 ... 0.13 float newOpacityExponent = atmRadius > 40000.0 ? 3.0 : 5.0; // mix in some light blue color totalColor += diffuseColor * vec3(0.85, 0.85, 1.0); // create a fresnel torus around the planet - opacity is proportional to it // multiply NdotV by a constant less than 1.0 to create haze vec3 fresnel = vec3(pow(1.0 - (NdotV * (1.0 - atmDensity)), kFresnelExponent)); // calculate when the atmosphere should fade in / out float quant = atmDistance < (minDistance + 2000.0) ? magicDistance / 2000.0 : 1.0; // calculate the final opacity, special handling for // angles > arccos(cosThreshold) to fade atmosphere out at its edge float newOpacity = clamp(quant * pow(max(0.01, NdotL), 0.203333) * (NdotV > cosThreshold ? pow(fresnel.r * cosThreshold / NdotV, 0.8) : min(1.0, atmDensity * 2.0) * pow(NdotV / cosThreshold, newOpacityExponent)), 0.0, 1.0); // mix the bias color now totalColor *= mix(totalColor, atmColor.rgb, atmColorMixRatio) * // comment below for fresnel to not affect atmosphere color dot(normalize(fresnel), vec3(NdotL)); // at the very edge, mix in some serious bias color if (NdotV < cosThreshold) { totalColor = mix(atmColor.rgb * NdotL, totalColor, newOpacity); } // add ambient light totalColor += AMBIENT_LIGHT * NdotL; // exposure - best to leave this at 1.0 totalColor *= MULTIPLIER_PREEXPOSURE; gl_FragColor = vec4(totalColor, newOpacity); }