/* oolite-default-planet.fragment Default fragment shader for Oolite NEW_PLANETS. © 2009–2013 Jens Ayton Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef IS_OOLITE #define IS_OOLITE 0 #endif #if IS_OOLITE #define MULTIPLIER_LIGHTSRCRADIANCE 3.75 #define MULTIPLIER_PREEXPOSURE 2.484 #define SPECULAR_LIGHT (gl_LightSource[1].specular.rgb * MULTIPLIER_LIGHTSRCRADIANCE) #define DIFFUSE_LIGHT (gl_LightSource[1].diffuse.rgb * MULTIPLIER_LIGHTSRCRADIANCE) #define AMBIENT_LIGHT (gl_LightModel.ambient.rgb) #else #define MULTIPLIER_LIGHTSRCRADIANCE 1.0 #define SPECULAR_LIGHT vec3(0.8) #define DIFFUSE_LIGHT vec3(0.8) #define AMBIENT_LIGHT vec3(0.2) #define OOSTD_ILLUMINATION_MAP 1 #define OOSTD_NORMAL_MAP 1 #define OOSTD_SPECULAR_MAP 1 #endif #ifndef OOSTD_ILLUMINATION_MAP #define OOSTD_ILLUMINATION_MAP 0 #endif #ifndef OOSTD_DIFFUSE_AND_ILLUMINATION_MAP #define OOSTD_DIFFUSE_AND_ILLUMINATION_MAP 0 #endif #ifndef OOSTD_NORMAL_MAP #define OOSTD_NORMAL_MAP 0 #endif #ifndef OOSTD_SPECULAR_MAP #define OOSTD_SPECULAR_MAP 0 #endif #ifndef OOSTD_NORMAL_AND_SPECULAR_MAP #define OOSTD_NORMAL_AND_SPECULAR_MAP 0 #endif #ifndef OOSTD_HARSH_MISTRESS #define OOSTD_HARSH_MISTRESS 0 #endif // Illumination map parameters. #define USE_ILLUMINATION OOSTD_ILLUMINATION_MAP || OOSTD_DIFFUSE_AND_ILLUMINATION_MAP #if OOSTD_ILLUMINATION_MAP uniform sampler2D uIlluminationMap; #define ILLUMINATION_COLOR texture2D(uIlluminationMap, texCoords).rgb #elif OOSTD_DIFFUSE_AND_ILLUMINATION_MAP uniform vec4 uIlluminationColor; // low alpha values correspond to high illumination, so that textures with unused alpha channel // (i.e. alpha == 1.0 for all pixels) display correctly without any illumination #define ILLUMINATION_COLOR ((1.0 - diffuseMapSample.a) * uIlluminationColor.rgb) #endif // Specular map parameters. // Separate OOSTD_SPECULAR_MAP is for testing in OpenGL Shader Builder, which doesn’t deal with alpha channels sensibly. #define USE_SPECULAR OOSTD_SPECULAR_MAP || OOSTD_NORMAL_AND_SPECULAR_MAP #if (OOSTD_SPECULAR_MAP) uniform sampler2D uSpecularMap; #define SPECULAR_FACTOR (texture2D(uSpecularMap, texCoords).r) #elif OOSTD_NORMAL_AND_SPECULAR_MAP #define SPECULAR_FACTOR (normalMapSample.a) #else #define SPECULAR_FACTOR 0.2 #endif // Normal map parameters. #define USE_NORMAL_MAP OOSTD_NORMAL_MAP || OOSTD_NORMAL_AND_SPECULAR_MAP /* "Harsh shadow factor": degree to which normal map affects global diffuse light with terminator and full shadow, as opposed to "local light" which is a normal Lambertian light. Terminator threshold: defines the width and colour of the terminator. The numbers are cosines of the angle where it transitions to full light. Both of these factors are ignored in simple shader mode. */ #if OOSTD_HARSH_MISTRESS const float kHarshShadowFactor = 0.3; const vec3 terminatorThreshold = vec3(0.08); #else const float kHarshShadowFactor = 0.05; uniform vec4 terminatorThreshold; #endif // Texture coordinate calcuation. #define TEXTURE_COORDS vec2(TexLongitude(coords.x, coords.z), vTexCoords.t) #if OOSTD_CUBE_MAP uniform samplerCube uDiffuseMap; #if USE_NORMAL_MAP uniform samplerCube uNormalMap; #endif #else uniform sampler2D uDiffuseMap; #if USE_NORMAL_MAP uniform sampler2D uNormalMap; #endif #endif // Diffuse model selection - if 0, then Lambert is selected #define OODIFFUSE_ORENNAYAR 1 // Specular model selection #ifndef OOSPECULAR_NEW_MODEL #define OOSPECULAR_NEW_MODEL 1 #ifndef OOSPECULAR_NEW_MODEL_GGX #define OOSPECULAR_NEW_MODEL_GGX 1 #endif #endif // No vNormal, because normal is always 0,0,1 in tangent space. varying vec3 vEyeVector; varying vec2 vTexCoords; varying vec3 vLight1Vector; varying vec3 vCoords; #if OODIFFUSE_ORENNAYAR // based on https://www.shadertoy.com/view/ltfyD8 float diffuseOrenNayar(vec3 lightVector, vec3 eyeVector, vec3 normal, float gloss, float albedoFactor) { float NdotL = dot(lightVector, normal); float NdotV = dot(normal, eyeVector); float roughness = 1.0 - gloss; float sigma2 = roughness * roughness; float A = 1.0 - 0.5 * (sigma2 / (((sigma2 + 0.33) + 0.000001))); float B = 0.45 * sigma2 / ((sigma2 + 0.09) + 0.00001); float ga = dot(eyeVector - normal * NdotV, lightVector - normal * NdotL); return albedoFactor * max(0.0, NdotL) * (A + B * max(0.0, ga) * sqrt(max((1.0 - NdotV * NdotV) * (1.0 - NdotL * NdotL), 0.0)) / max(NdotL, NdotV)); } #endif vec3 CalcDiffuseIntensity(in vec3 lightVector, in vec3 normal) { float LdotN = lightVector.z; #if USE_NORMAL_MAP float globalTerm = dot(normalize(mix(vec3(0.0, 0.0, 1.0), normal, kHarshShadowFactor)), lightVector); #else float globalTerm = LdotN; #endif // Hard terminator with slight redish-orange tinge. Note: threshold values are cosines. vec3 baseLight = smoothstep(vec3(0.0), terminatorThreshold.xyz, vec3(globalTerm)); #if USE_NORMAL_MAP // Modulate with normal-mapped "local" illumination. float local = dot(lightVector, normal); local -= LdotN; baseLight *= local + 1.0; #endif return baseLight; } vec3 CalcSpecularLight(in vec3 lightVector, in vec3 eyeVector, in float exponent, in vec3 normal, in vec3 lightColor) { #if USE_NORMAL_MAP vec3 reflection = -reflect(lightVector, normal); float NdotE = dot(normal, eyeVector); #else /* reflect(I, N) is defined as I - 2 * dot(N, I) * N If N is (0,0,1), this becomes (I.x,I.y,-I.z). Note that we want it negated as per above. */ vec3 reflection = vec3(-lightVector.x, -lightVector.y, lightVector.z); float NdotE = eyeVector.z; #endif float RdotE = max(dot(reflection, eyeVector), 0.0); float intensity = pow(max(RdotE, 0.0), exponent); // Approximate Fresnel term. float kRefract = 1.0/1.33; // Index of refraction of water. float F0 = ((kRefract - 1.0) * (kRefract - 1.0)) / ((kRefract + 1.0) * (kRefract + 1.0)); float Fa = F0 + pow((1.0 - NdotE), 4.0) * (1.0 - F0); intensity *= 0.4 + Fa; return lightColor * intensity; } // More physically accurate specular lighting models // This is based on the GLSL code from FS2 SCP ( https://github.com/scp-fs2open ) vec3 FresnelSchlick(vec3 specColor, vec3 light, vec3 halfVec) { return specColor + (vec3(1.0) - specColor) * pow(1.0 - clamp(dot(light, halfVec), 0.0, 1.0), 5.0); } vec3 CalcSpecularBlinnPhong(vec3 light, vec3 normal, vec3 halfVec, float specPower, vec3 fresnel, vec3 specColor) { float NdotL = dot(normal, light); return mix(specColor, FresnelSchlick(specColor, light, halfVec), fresnel) * ((specPower + 2.0) / 8.0 ) * pow(clamp(dot(normal, halfVec), 0.0, 1.0), specPower) * NdotL; } vec3 CalcSpecularGGX(vec3 light, vec3 normal, vec3 halfVec, vec3 view, float gloss, vec3 fresnel) { float NdotL = clamp(dot(normal, light), 0.0, 1.0); float roughness = clamp(1.0 - gloss, 0.0, 1.0); float alpha = roughness * roughness; float NdotH = clamp(dot(normal, halfVec), 0.0, 1.0); float NdotV = clamp(dot(normal, view), 0.0, 1.0); float alphaSqr = alpha * alpha; float pi = 3.14159; float denom = NdotH * NdotH * (alphaSqr - 1.0) + 1.0; float distribution = alphaSqr / (pi * denom * denom); // fresnel comes in pre-calculated float alphaPrime = roughness + 1.0; float k = alphaPrime * alphaPrime / 8.0; float g1vNL = NdotL / (NdotL * (1.0 - k) + k); float g1vNV = NdotV / (NdotV * (1.0 - k) + k); float visibility = g1vNL * g1vNV; return distribution * fresnel * visibility * NdotL / max(4.0 * NdotV * NdotL, 0.001); } /* Approximation of atan(y/z) with quadrant rectification, scaled to -0.5..0.5 instead of -pi..pi. It is assumed that the values are in range. You are not expected to understand this. */ float TexLongitude(float z, float y) { const float k2Pi = 6.283185307179586; const float kMagic = 0.2732395447351; // (4 - pi) / pi float ratio = z / y; float r1 = 1.0 / ((ratio + kMagic / ratio) * k2Pi); // Result when abs(z) >= abs(x). float r2 = 0.25 * sign(ratio) - ratio / ((1.0 + kMagic * ratio * ratio) * k2Pi); // Result when abs(z) <= abs(x). float result = (abs(ratio) > 1.0) ? r1 : r2; // Adjust for sector. // Equivalent to (z < 0.0) ? ((y > 0.0) ? 0.75 : -0.25) : 0.25. // Well, technically not equivalent for z < 0, y = 0, but you'll very rarely see that exact case. return result + step(z, 0.0) * sign(y) * 0.5 + 0.25; } void main() { vec3 totalColor = vec3(0); vec3 coords = normalize(vCoords); vec2 texCoords = TEXTURE_COORDS; /* Fun sphere facts: the normalized coordinates of a point on a sphere at the origin is equal to the object-space normal of the surface at that point. Furthermore, we can construct the binormal (a vector pointing westward along the surface) as the cross product of the normal with the Y axis. (This produces singularities at the pole, but there have to be singularities according to the Hairy Ball Theorem.) The tangent (a vector north along the surface) is then the inverse of the cross product of the normal and binormal. */ #if USE_NORMAL_MAP #if OOSTD_CUBE_MAP vec4 normalMapSample = textureCube(uNormalMap, vCoords); #else vec4 normalMapSample = texture2D(uNormalMap, texCoords); #endif vec3 normal = normalize(normalMapSample.xyz - vec3(0.5)); #else vec3 normal = vec3(0, 0, 1); #endif // Diffuse light vec3 light1Vector = normalize(vLight1Vector); vec3 eyeVector = normalize(vEyeVector); vec3 halfVector = normalize(light1Vector + eyeVector); vec3 diffuseIntensity = CalcDiffuseIntensity(light1Vector, normal); #if OODIFFUSE_ORENNAYAR vec3 diffuseLight = DIFFUSE_LIGHT * diffuseOrenNayar(light1Vector, eyeVector, normal, max(SPECULAR_FACTOR * 0.64, 0.2), 1.0); #else vec3 diffuseLight = DIFFUSE_LIGHT * max(0.0, dot(normal, light1Vector)); #endif #if OOSTD_CUBE_MAP vec4 diffuseMapSample = textureCube(uDiffuseMap, vCoords); #else vec4 diffuseMapSample = texture2D(uDiffuseMap, texCoords); #endif vec3 diffuseColor = diffuseMapSample.rgb; // remove gamma correction for processing diffuseColor.rgb = pow(diffuseColor.rgb, vec3(2.2)); vec3 fresnel = vec3(0.0); #if USE_SPECULAR && OOSPECULAR_NEW_MODEL // water has a reflectivity of 0.02 and the spec map represents water as values close to 1.0 // land masses have standard dielectric material reflectivity (approx. 0.04). So we scale // our 0.0 ... 1.0 input to 0.04 ... 0.02 fresnel = FresnelSchlick(vec3(0.04 - 0.02 * SPECULAR_FACTOR), light1Vector, halfVector); #endif // Specular light. #if USE_SPECULAR float specularFactor = SPECULAR_FACTOR; #if !OOSPECULAR_NEW_MODEL vec3 specularLight = CalcSpecularLight(light1Vector, eyeVector, 30.0 * specularFactor, normal, SPECULAR_LIGHT); totalColor += specularLight * 0.6 * specularFactor; #else #if OOSPECULAR_NEW_MODEL_GGX // specularFactor multiplied by a constant is used as gloss here // sea will have a gloss of 0.6, ice caps 0.3 and land 0.2 vec3 specularLight = CalcSpecularGGX(light1Vector, normal, halfVector, eyeVector, max(specularFactor * 0.62, 0.2), fresnel); #else // New Blinn-Phong vec3 specularLight = CalcSpecularBlinnPhong(light1Vector, normal, halfVector, 30.0 * specularFactor, fresnel, SPECULAR_LIGHT); #endif totalColor += SPECULAR_LIGHT * specularLight; #endif #endif // conservation of energy totalColor += diffuseColor * diffuseLight * (vec3(1.0) - fresnel); // paint the orange-reddish terminator totalColor *= diffuseIntensity; #if USE_ILLUMINATION vec3 illuminationColor = ILLUMINATION_COLOR; totalColor += (1.0 - diffuseIntensity.r) * illuminationColor; #endif // Ambient light, biased towards blue. vec3 ambientColor = diffuseColor; #if !OOSTD_HARSH_MISTRESS ambientColor *= vec3(0.8, 0.8, 1.0); #endif totalColor += AMBIENT_LIGHT * ambientColor; // exposure totalColor *= MULTIPLIER_PREEXPOSURE; gl_FragColor = vec4(totalColor, 1.0); }