/*
	oolite-default-shader.fragment
	Default fragment shader for Oolite ships.
	
	
	© 2007–2013 Jens Ayton
	
	This is similar to normal ship shaders, but has special controlling
	macros (like OOSTD_DIFFUSE_MAP, OOSTD_SPECULAR etc.) which are specific
	to the default shader.
	
	
	Permission is hereby granted, free of charge, to any person obtaining a copy
	of this software and associated documentation files (the "Software"), to deal
	in the Software without restriction, including without limitation the rights
	to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	copies of the Software, and to permit persons to whom the Software is
	furnished to do so, subject to the following conditions:
	
	The above copyright notice and this permission notice shall be included in all
	copies or substantial portions of the Software.
	
	THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
	FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
	OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	SOFTWARE.
*/


#define MULTIPLIER_LIGHTSRCRADIANCE	3.75
#define MULITPLIER_PREEXPOSURE		2.484
#define LIGHTSRC_RADIANCE_DIFFUSE	(gl_LightSource[1].diffuse * MULTIPLIER_LIGHTSRCRADIANCE)
#define LIGHTSRC_RADIANCE_SPECULAR	(gl_LightSource[1].specular * MULTIPLIER_LIGHTSRCRADIANCE)
#define LIGHTSRC_AMBIENT			(gl_LightModel.ambient)

#ifndef OOSTD_DIFFUSE_MAP
#define OOSTD_DIFFUSE_MAP 0
#endif


#ifndef OOSTD_DIFFUSE_MAP_IS_CUBE_MAP
#define OOSTD_DIFFUSE_MAP_IS_CUBE_MAP 0
#endif

#ifndef OOSTD_SPECULAR
#define OOSTD_SPECULAR 0
#undef OOSTD_SPECULAR_MAP
#endif

#ifndef OOSTD_SPECULAR_MAP
#define OOSTD_SPECULAR_MAP 0
#endif

#ifndef OOSTD_NORMAL_MAP
#define OOSTD_NORMAL_MAP 0
#endif

#ifndef OOSTD_NORMAL_AND_PARALLAX_MAP
#define OOSTD_NORMAL_AND_PARALLAX_MAP 0
#endif

#ifndef OOSTD_EMISSION
#define OOSTD_EMISSION 0
#endif

#ifndef OOSTD_EMISSION_MAP
#define OOSTD_EMISSION_MAP 0
#endif

#ifndef OOSTD_ILLUMINATION_MAP
#define OOSTD_ILLUMINATION_MAP 0
#endif

#ifndef OOSTD_EMISSION_AND_ILLUMINATION_MAP
#define OOSTD_EMISSION_AND_ILLUMINATION_MAP 0
#endif


#if OOSTD_EMISSION_AND_ILLUMINATION_MAP && !OOSTD_EMISSION_MAP
#undef OOSTD_EMISSION_MAP
#define OOSTD_EMISSION_MAP 1
#endif
#if OOSTD_EMISSION_AND_ILLUMINATION_MAP && OOSTD_ILLUMINATION_MAP
#undef OOSTD_EMISSION_AND_ILLUMINATION_MAP
#define OOSTD_EMISSION_AND_ILLUMINATION_MAP 0
#endif
#if OOSTD_NORMAL_AND_PARALLAX_MAP && !OOSTD_NORMAL_MAP
#undef OOSTD_NORMAL_AND_PARALLAX_MAP
#define OOSTD_NORMAL_AND_PARALLAX_MAP 0
#endif


// Diffuse model selection - if 0, then Lambert is selected
#define OODIFFUSE_ORENNAYAR			1


#define NEED_EYE_VECTOR (OOSTD_SPECULAR || OOSTD_NORMAL_AND_PARALLAX_MAP || OODIFFUSE_ORENNAYAR)

#define HAVE_ILLUMINATION (OOSTD_EMISSION_AND_ILLUMINATION_MAP || OOSTD_ILLUMINATION_MAP)


#if NEED_EYE_VECTOR
varying vec3			vEyeVector;
#endif

varying vec2			vTexCoord;

varying vec3			vLight1Vector;

#if OOSTD_DIFFUSE_MAP
#if !OOSTD_DIFFUSE_MAP_IS_CUBE_MAP
// Standard 2D diffuse map
uniform sampler2D		uDiffuseMap;
#else
// Cube diffuse map
uniform samplerCube		uDiffuseMap;
varying vec3			vCubeTexCoords;
#endif
#endif


#if OOSTD_SPECULAR_MAP
uniform sampler2D		uSpecularMap;
#endif

#if OOSTD_EMISSION_MAP
uniform sampler2D		uEmissionMap;
#endif

#if OOSTD_ILLUMINATION_MAP
uniform sampler2D		uIlluminationMap;
#endif

#if OOSTD_NORMAL_MAP
uniform sampler2D		uNormalMap;
#endif

#if OOSTD_NORMAL_AND_PARALLAX_MAP
uniform float			uParallaxScale;
uniform float			uParallaxBias;
#endif

uniform float			uGloss;

uniform bool			uGammaCorrect;

#ifndef OOSPECULAR_NEW_MODEL
#define OOSPECULAR_NEW_MODEL		1
#ifndef OOSPECULAR_NEW_MODEL_GGX
#define OOSPECULAR_NEW_MODEL_GGX	1
#endif
#endif

#ifndef OOSRGB_TO_LINEAR
#define OOSRGB_TO_LINEAR			2.2
#endif

#ifndef OOLINEAR_TO_SRGB
#define OOLINEAR_TO_SRGB			(1.0 / 2.2)
#endif


#if OODIFFUSE_ORENNAYAR
// based on https://www.shadertoy.com/view/ltfyD8
float diffuseOrenNayar(vec3 lightVector, vec3 eyeVector, vec3 normal, float gloss, float albedoFactor)
{
	float NdotL = dot(lightVector, normal);
	float NdotV = dot(normal, eyeVector);
	float roughness = 1.0 - gloss;
	float sigma2 = roughness * roughness;
	float A = 1.0 - 0.5 * (sigma2 / (((sigma2 + 0.33) + 0.000001)));
	float B = 0.45 * sigma2 / ((sigma2 + 0.09) + 0.00001);
	float ga = dot(eyeVector - normal * NdotV, lightVector - normal * NdotL);
	
	return albedoFactor * max(0.0, NdotL) * (A + B * max(0.0, ga) * sqrt(max((1.0 - NdotV * NdotV) * (1.0 - NdotL * NdotL), 0.0)) / max(NdotL, NdotV));
}
#endif


vec3 CalcDiffuseLight(in vec3 lightVector, in vec3 normal, in vec3 lightColor)
{
#if OOSTD_NORMAL_MAP
	float intensity = dot(normal, lightVector);
#else
	// dot(v, (0,0,1)) is v.x*0 + v.y*0 + v.z*1 = v.z
	float intensity = lightVector.z;
#endif
	intensity = max(intensity, 0.0);
	return lightColor * intensity;
}


vec4 CalcSpecularLight(in vec3 lightVector, in vec3 eyeVector, in float exponent, in vec3 normal, in vec4 lightColor)
{
#if OOSTD_NORMAL_MAP
	vec3 reflection = -reflect(lightVector, normal);
#else
	/*	reflect(I, N) is defined as I - 2 * dot(N, I) * N
		If N is (0,0,1), this becomes (I.x,I.y,-I.z).
		Note that we want it negated as per above.
	*/
	vec3 reflection = vec3(-lightVector.x, -lightVector.y, lightVector.z);
#endif
	float intensity = dot(reflection, eyeVector);
	intensity = pow(max(intensity, 0.0), exponent);
	return lightColor * intensity;
}


// More physically accurate specular lighting models
// This is based on the GLSL code from FS2 SCP ( https://github.com/scp-fs2open )

vec3 FresnelSchlick(vec3 specColor, vec3 light, vec3 halfVec)
{
	return specColor + (vec3(1.0) - specColor) * pow(1.0 - clamp(dot(light, halfVec), 0.0, 1.0), 5.0);
}


vec3 CalcSpecularBlinnPhong(vec3 light, vec3 normal, vec3 halfVec, float specPower, vec3 fresnel)
{
	float NdotL = clamp(dot(normal, light), 0.0, 1.0);
	return fresnel * ((specPower + 2.0) / 8.0 ) * pow(clamp(dot(normal, halfVec), 0.0, 1.0), specPower) * NdotL;
}


vec3 CalcSpecularGGX(vec3 light, vec3 normal, vec3 halfVec, vec3 view, float gloss, vec3 fresnel)
{
	float NdotL = clamp(dot(normal, light), 0.0, 1.0);
	float roughness = clamp(1.0 - gloss, 0.0, 1.0);
	float alpha = roughness * roughness;

	float NdotH = clamp(dot(normal, halfVec), 0.0, 1.0);
	float NdotV = clamp(dot(normal, view), 0.0, 1.0);

	float alphaSqr = alpha * alpha;
	float pi = 3.14159;
	float denom = NdotH * NdotH * (alphaSqr - 1.0) + 1.0;
	float distribution = alphaSqr / (pi * denom * denom);

	// fresnel comes in pre-calculated

	float alphaPrime = roughness + 1.0;
	float k = alphaPrime * alphaPrime / 8.0;
	float g1vNL = NdotL / (NdotL * (1.0 - k) + k);
	float g1vNV = NdotV / (NdotV * (1.0 - k) + k);
	float visibility = g1vNL * g1vNV;

	return distribution * fresnel * visibility * NdotL / max(4.0 * NdotL * NdotV, 0.001);
}



uniform float			uHullHeatLevel;
uniform float			uTime;
uniform vec4			uFogColor;


// Irregular flickering function.
float Pulse(in float value, in float timeScale)
{
	float t = uTime * timeScale;   
	
	float s0 = t;
	s0 -= floor(s0);
	float sum = abs( s0 - 0.5);
	
	float s1 = t * 0.7 - 0.05;
	s1 -= floor(s1);
	sum += abs(s1 - 0.5) - 0.25;
	
	float s2 = t * 1.3 - 0.3;
	s2 -= floor(s2);
	sum += abs(s2 - 0.5) - 0.25;
	
	float s3 = t * 5.09 - 0.6;
	s3 -= floor(s3);
	sum += abs(s3 - 0.5) - 0.25;
	
	return (sum * 0.1 + 0.9) * value;
}


// Colour ramp from black through reddish brown/dark orange to yellow-white.
vec4 TemperatureGlow(in float level)
{
	vec4 result = vec4(0);
	
	result.r = level;
	result.g = level * level * level;
	result.b = max(level - 0.7, 0.0) * 2.0;
	result.a = 1.0;
	
	return result;	
}


void main(void)
{
	vec4 totalColor = vec4(0);
	
	// Get eye vector
#if NEED_EYE_VECTOR
	vec3 eyeVector = normalize(vEyeVector);
#endif
	
	// Get texture coords, using parallax mapping if appropriate
#if OOSTD_NORMAL_AND_PARALLAX_MAP
	float parallax = texture2D(uNormalMap, vTexCoord).a;
	parallax = parallax * uParallaxScale + uParallaxBias;
	vec2 texCoord = vTexCoord - parallax * eyeVector.xy * vec2(-1.0, 1.0);
#else
	#define texCoord vTexCoord
#endif
	
	// Get normal
#if OOSTD_NORMAL_MAP
	vec3 normal = normalize(texture2D(uNormalMap, texCoord).rgb - 0.5);
#else
	const vec3 normal = vec3(0.0, 0.0, 1.0);
#endif
	
	// Get light vectors
	vec3 lightVector = normalize(vLight1Vector);
	
#if NEED_EYE_VECTOR
	vec3 halfVector = normalize(lightVector + eyeVector);
#endif	
	// Get ambient colour
	vec4 ambientLight = LIGHTSRC_AMBIENT;
	
	// Get emission colour
#if OOSTD_EMISSION || OOSTD_EMISSION_MAP
	vec4 emissionColor = vec4(1.0);
#if OOSTD_EMISSION
	emissionColor *= gl_FrontMaterial.emission;
#endif
#if OOSTD_EMISSION_MAP
	vec4 emissionMapColor = texture2D(uEmissionMap, texCoord);
	if (uGammaCorrect)  emissionMapColor = pow(emissionMapColor, vec4(OOSRGB_TO_LINEAR));
	emissionColor *= emissionMapColor;
#endif
	emissionColor.a = 1.0;
	totalColor += emissionColor;
#endif
	
	// Get illumination colour
#if OOSTD_EMISSION_AND_ILLUMINATION_MAP
	// Use alpha channel of emission map as white illumination - no sRGB to linear conversion here
	vec4 illuminationMapLight = vec4(emissionMapColor.aaa, 1.0);
#elif OOSTD_ILLUMINATION_MAP
	// fully colored illumination map - convert to linear colorspace
	vec4 illuminationMapLight = texture2D(uIlluminationMap, texCoord);
	if (uGammaCorrect)  illuminationMapLight = pow(illuminationMapLight, vec4(OOSRGB_TO_LINEAR));
#endif
#ifdef OOSTD_ILLUMINATION_COLOR
	// OOSTD_ILLUMINATION_COLOR, if defined, is a vec4() declaration.
	illuminationMapLight *= OOSTD_ILLUMINATION_COLOR;
#endif
	
	vec4 diffuseLight = vec4(0);
	
#if HAVE_ILLUMINATION
	diffuseLight += illuminationMapLight;
#endif
	
	// Get specular parameters
#if OOSTD_SPECULAR_MAP
	vec4 specularMapColor = texture2D(uSpecularMap, texCoord);
	if (uGammaCorrect)  specularMapColor.rgb = pow(specularMapColor.rgb, vec3(OOSRGB_TO_LINEAR));
	#if !OOSPECULAR_NEW_MODEL_GGX
		float specularExponentLevel = pow(specularMapColor.a, 2.0) + 0.001;
		#define APPLY_MAPPED_EXPONENT exponent = (exponent - 1.0) * specularExponentLevel + 1.0
	#endif
#else
	#define APPLY_MAPPED_EXPONENT exponent += 0.001
#endif

#if OOSTD_SPECULAR
	vec4 specularColor = gl_FrontMaterial.specular;
#endif
#if OOSTD_SPECULAR_MAP
	specularColor *= vec4(specularMapColor.rgb, 1.0);
#endif
	
	vec3 fresnel = vec3(0.0);
	float gloss = uGloss;
	// Calculate specular light
#if OOSTD_SPECULAR
	vec4 specularLight = vec4(0);
	#if !OOSPECULAR_NEW_MODEL || !OOSPECULAR_NEW_MODEL_GGX
		float exponent = gl_FrontMaterial.shininess;
		APPLY_MAPPED_EXPONENT;
	#endif
	#if !OOSPECULAR_NEW_MODEL
		specularLight += CalcSpecularLight(lightVector, eyeVector, exponent, normal, gl_LightSource[1].specular);
	#else
		fresnel = FresnelSchlick(specularColor.rgb, lightVector, halfVector);
		#if OOSPECULAR_NEW_MODEL_GGX
			#if OOSTD_SPECULAR_MAP
				gloss *= specularMapColor.a;
			#endif
			specularLight = vec4(CalcSpecularGGX(lightVector, normal, halfVector, eyeVector, gloss, fresnel), 0.0);
		#else
			// New Blinn-Phong
			specularLight = vec4(CalcSpecularBlinnPhong(lightVector, normal, halfVector, exponent, fresnel), 0.0);
		#endif
	#endif
	specularLight.a = 1.0;
#endif
	
	vec4 ambientColor = gl_FrontMaterial.ambient;
	vec4 diffuseColor = gl_FrontMaterial.diffuse;


#if OOSTD_DIFFUSE_MAP
#if !OOSTD_DIFFUSE_MAP_IS_CUBE_MAP
	vec4 diffuseMapColor = texture2D(uDiffuseMap, texCoord);
#else
	vec4 diffuseMapColor = textureCube(uDiffuseMap, vCubeTexCoords);
#endif
	if (uGammaCorrect)  diffuseMapColor = pow(diffuseMapColor, vec4(OOSRGB_TO_LINEAR));
	diffuseMapColor.a = 1.0;
	diffuseColor *= diffuseMapColor;
	ambientColor *= diffuseMapColor;
#endif

#if OODIFFUSE_ORENNAYAR
	diffuseLight.rgb += diffuseOrenNayar(lightVector, eyeVector, normal, gloss, 1.0) * LIGHTSRC_RADIANCE_DIFFUSE.rgb;
#else
	diffuseLight.rgb += CalcDiffuseLight(lightVector, normal, LIGHTSRC_RADIANCE_DIFFUSE.rgb);
#endif
	
	// light energy conservation here
	#if OOSPECULAR_NEW_MODEL
		vec4 kD = vec4(vec3(1.0) - fresnel, 1.0);
	#else
		vec4 kD = vec4(1.0);
	#endif
	totalColor += (diffuseColor * diffuseLight * kD) + (ambientColor * ambientLight);
	
#if OOSTD_SPECULAR
	// we should not multiply by specularColor here; we already took that into account
	// when calculating the Fresnel-Schlick term
	totalColor += specularLight * LIGHTSRC_RADIANCE_SPECULAR;
#endif

	// apparently some drivers fail to clamp alpha properly, so let's do it for them
	totalColor.a = clamp(totalColor.a, 0.0, 1.0);
	
	// Heat glow
	float hullHeat = max(uHullHeatLevel - 0.5, 0.0) * 2.0;
	hullHeat = Pulse(hullHeat * hullHeat, 0.1);
	totalColor += TemperatureGlow(hullHeat);
	
	// exposure
	totalColor.rgb *= MULITPLIER_PREEXPOSURE;
	
	gl_FragColor = mix(totalColor, vec4(uFogColor.xyz, 1.0), uFogColor.w);
	gl_FragColor.a = clamp(gl_FragColor.a, 0.0, 1.0);
}