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Nonparametric Estimation Tools



Nonparametric Estimation

Basic Assumption

I X1, . . . ,Xn is a random sample (with replacement) from F(.)
I Sometimes we say that X1, . . . ,Xn are independent and

identically distributed (iid)

We will not assume a parametric form for cdf F (.) and proceed with
a nonparametric analysis

Nonparametric estimation is also referred to as empirical estimation



Moment Estimators

I kth raw moment is E (X k) = µ′k

I Empirically estimated by the corresponding statistic

1
n

n∑
i=1

X k
i

I kth central moment is E (X − µ)k = µk

I Empirically estimated by the corresponding statistic

1
n

n∑
i=1

(
Xi − X̄

)k



Empirical Cumulative Distribution Function

I Define the empirical cumulative distribution function

Fn(x) = number of observations less than or equal to x
n

= 1
n

n∑
i=1

I (Xi ≤ x) .

Here, I(·) is an indicator function, it returns 1 if the event (·) is
true and 0 otherwise

I When the random variable is discrete, estimate the pmf
f (x) = Pr(X = x) using

fn(x) = 1
n

n∑
i=1

I(Xi = x)



Empirical Example

I Example – Toy. Consider n = 10 observations:

i 1 2 3 4 5 6 7 8 9 10
Xi 10 15 15 15 20 23 23 23 23 30

- Empirical estimate of the mean (sample mean) is x̄ = 19.7, and
empirical estimate of the second central moment (biased sample
variance) is 31.01



Empirical Cumulative Distribution Function of a Toy
Example
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Smoothed Empirical Percentiles

Example – Toy. Consider n = 10 observations:

i 1 2 3 4 5 6 7 8 9 10
Xi 10 15 15 15 20 23 23 23 23 30

I Median can defined to be any number between 20 and 23
(many software packages use the average 21.5)

I The smoothed empirical percentile is

π̂q = (1− h)X(j) + hX(j+1)

where j = [(n + 1)q] and, h = (n + 1)q − j , and X(1), . . . ,X(n)
are the ordered values (order statistics) corresponding to
X1, . . . ,Xn



Smoothed Empirical Percentiles

Example – Toy. Take n = 10 and q = 0.5. Then,

I j = [(11)(0.5)] = [5.5] = 5 and, h = (11)(0.5)− 5 = 0.5
I

π̂0.5 = (1−0.5)X(5) +(0.5)X(6) = (0.5)(20)+(0.5)(23) = 21.5

Take n = 10 and q = 0.2. Then,

I j = [(11)(0.2)] = [2.2] = 2 and h = (11)(0.2)− 2 = 0.2

I

π̂0.2 = (1− 0.2)X(2) + (0.2)X(3) = (0.2)(15) + (0.8)(15) = 15



Density Estimators
I When the random variable is discrete, estimate the probability

mass function f (x) = Pr(X = x) is using

fn(x) = 1
n

n∑
i=1

I(Xi = x).

I Observations may be “grouped” in the sense that they fall into
intervals of the form [cj−1, cj), for j = 1, . . . , k. The constants
{c0 < c1 < · · · < ck} form some partition of the domain of
F(.).

I Then, use

fn(x) = nj
n × (cj − cj−1) cj−1 ≤ x < cj ,

where nj is the number of observations (Xi) that fall into the
interval [cj−1, cj ).



Uniform Kernel Density Estimator

I Let b > 0, known as a “bandwidth,”

fn(x) = 1
2nb

n∑
i=1

I(x − b < Xi ≤ x + b).

I The estimator is the average over n iid realizations of a
random variable with mean

E
[ 1
2b I(x − b < X ≤ x + b)

]
= 1

2b (F (x + b)− F (x − b))

→ F ′(x) = f (x),

as b → 0. That is, fn(x) is an asymptotically unbiased estimator of
f (x).



Kernel Density Estimator

I More generally, define the kernel density estimator

fn(x) = 1
nb

n∑
i=1

k
(x − Xi

b

)
.

where k is a probability density function centered about 0.

Special Cases

I uniform kernel, k(y) = 1
2 I(−1 < y ≤ 1), .

I triangular kernel, k(y) = (1− |y |)× I(|y | ≤ 1),
I Epanechnikov kernel, k(y) = 3

4(1− y2)× I(|y | ≤ 1), and
I Gaussian kernel k(y) = φ(y), where φ(·) is the standard

normal density function.



Kernel Density Estimator of a Distribution Function

I The kernel density estimator of a distribution function is

F̂n(x) = 1
n

n∑
i=1

K
(x − Xi

b

)
.

where K is a probability distribution function associated with
the kernel density k.

I To illustrate, for the uniform kernel, we have
k(y) = 1

2 I(−1 < y ≤ 1) so

K (y) =


0 y < −1
y+1

2 −1 ≤ y < 1
1 y ≥ 1



Grouped Data
I Observations (X ) may be grouped in the sense that they fall

into intervals of the form (cj−1, cj ], for j = 1, . . . , k

I Let nj denote the number of observations that fall into
(cj−1, cj ]. Total number of observations is n =

∑k
j=1 nj

I Constants {c0 < c1 < · · · < ck} form some partition of the
domain of F(.)

I Empirical cdf at boundaries is defined in the usual way:

Fn(cj) = number of observations ≤ cj
n

I For cj−1 < x < cj , one could use the ogive, where one
connects the values of the boundaries with a straight line:

Fn(x) = cj − x
cj − cj−1

Fn(cj−1) + x − cj−1
cj − cj−1

Fn(cj)



Grouped Data

I Derivative of the ogive is called the histogram:

fn(x) = F ′n(x) = Fn(cj)− Fn(cj−1)
cj − cj−1

= nj
n × (cj − cj−1) for cj−1 < x ≤ cj

I Another way to write this is

fn(x) = 1
n(cj − cj−1)

n∑
i=1

I(cj−1 < Xi ≤ cj)

I Histogram assumes a uniform distribution within each interval



REVIEW

In this section, you learned how to:

I Estimate moments, quantiles, and distributions without
reference to a parametric distribution



Tools for Model Selection



Comparing Distribution and Density Functions
I Left-hand panel compares cdfs, with dots corresponding to the

empirical distribution, blue to the fitted gamma, and purple to
the fitted Pareto

I Right hand panel compares these three distributions
summarized using pdfs
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PP Plot
I Horizontal axes gives the empirical cdf at each observation
I In the left-hand panel, the corresponding cdf for gamma is

shown in vertical axis
I Right-hand panel shows fitted Pareto distribution. Lines of

y = x are superimposed
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QQ Plot
I Horizontal axes gives the empirical quantiles at each observation
I Vertical axis gives the quantiles from the fitted distributions
I Pareto distribution fits large observations well, and fits small

observations poorly
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Goodness-of-Fit Test

I One important type of inference is to determine whether a
probability distribution fits a random sample (data) from a
certain population well

I We want to determine the goodness-of-fit of a candidate
probability model to these data - Do these data represent what
you would expect to observe if the population had model cdf
F (.)?

I Consider the following goodness-of-fit hypothesis test:
I H0: Data come from a population with cdf F (.)
I H1: Data did not come from such a population
I To determine whether or not to reject H0, compare a test

statistic to a critical value
I If the test statistic for a one-sided test (absolute value of test

statistic for a two-sided test) is smaller than the critical value,
you fail to reject H0: F (.) is an acceptable model for population

I Otherwise you reject H0: F (.) is not an acceptable model



Kolmogorov-Smirnov Test

I Consider these data: x1, x2, . . ., xn
I Let Fn(.) denote the empirical cdf
I Model cdf F (.) is assumed to be for a continuous distribution
I Kolmogorov-Smirnov test statistic:

max
x

(|Fn(x−)− F (x)|, |Fn(x)− F (x)|)

I Commonly used critical values, where α is significance level:
I 1.22√

n if α = 0.10
I 1.36√

n if α = 0.05
I 1.63√

n if α = 0.01
I Often different critical values are used for really small sample

sizes, if there are estimable parameters in F (.), or if data over
a certain value cannot be observed (censoring)



Chi-Square (χ2) Test

I Consider n observations grouped in intervals of the form
(cj−1, cj ], for j = 1, . . . , k
I nj is the number of observations in (cj−1, cj ]

I Assume the model cdf F (.) has r estimable parameters (r can
be zero)
I Let pj = F (cj)− F (cj−1) = Pr(X in (cj−1, cj ])
I Ej = npj , the expected number of observations in (cj−1, cj ]

under F (.)
I Chi-Square (χ2) test statistic:

Q =
k∑

j=1

(nj − Ej)2

Ej

I Critical value is the 100(1 - α)% quantile of a chi-square
distribution with degrees of freedom equal to (k - 1 - r)



REVIEW

In this section, you learned how to:

I Summarize the data graphically without reference to a
parametric distribution

I Determine measures that summarize deviations of a parametric
from a nonparametric fit

I Use nonparametric estimators to approximate parameters that
can be used to start a parametric estimation procedure



Model Selection: Likelihood Ratio Tests and
Goodness of Fit



Likelihood Ratio Test

One important type of inference is to select one of two candidate
models, where one model (reduced model) is a special case of the
other model (full model)

In a Likelihood Ratio Test, we conduct the hypothesis test:

I H0: Reduced model is correct
I H1: Full model is correct



Likelihood Ratio Test Process

To conduct the Likelihood Ratio Test:

I Determine the maximum likelihood estimator for full model,
θ̂Full

I Now assume that p restrictions are placed on the parameters of
the full model to create the reduced model; determine the
maximum likelihood estimator for the reduced model, θ̂Reduced

I LRT = 2
(
l(θ̂Full)− l(θ̂Reduced)

)
is the likelihood ratio. Under

the null hypothesis, the likelihood ratio has a chi-square
distribution with degrees of freedom equal to p. LRT is the
test statistic

I Critical value is a quantile (100(1− α)% for significance level
α) from a chi-square distribution with degrees of freedom equal
to p - If LRT is large relative to the critical value, then we
reject the reduced model in favor of the full model



Information Criteria: Exam STAM Version
I Following statistics can be used when comparing several candidate models

that are not necessarily nested (as in the Likelihood Ratio Test). One picks
the model that maximizes the criterion

I Akaike’s Information Criterion (AIC)

AIC = l(θ̂MLE)− (number of parameters)

I Additional term (number of parameters) is a penalty for the complexity of
the model

I Other things equal, a more complex model means more parameters,
resulting in a smaller value of the criterion

I Bayesian Information Criterion (BIC)

BIC = l(θ̂MLE)
−(0.5)(number of parameters) ln(number of observations)

I This measure gives greater weight to the number of parameters, resulting in
a larger penalty

I Other things being equal, BIC will suggest a more parsimonious model than
AIC



Information Criteria: Alternative Version

I One picks the model that minimizes the criterion

I Akaike’s Information Criterion (AIC)

AIC = −2× l(θ̂MLE) + 2× (number of parameters)

I Bayesian Information Criterion (BIC)

BIC = −2× l(θ̂MLE)
+(number of parameters) ln(number of observations)



Estimation using Modified Data: Nonparametric
Approach



Grouped Data
I Observations may be “grouped” in the sense that they fall into

intervals of the form [cj−1, cj), for j = 1, . . . , k.
I The constants {c0 < c1 < · · · < ck} form some partition of the

domain of F(.).
I Define the empirical distribution function at the boundaries is defined

in the usual way:

Fn(cj) = number of observations ≤ cj
n

I For other values of x , one could use the

Ogive: connect values of the boundaries with a straight line. - For
another way of smoothing, recall the kernel density estimator of the
distribution function

F̂n(x) = 1
n

n∑
i=1

K
(

x − Xi
b

)
.

- For densities, use

fn(x) = nj
n × (cj − cj−1) cj−1 ≤ x < cj



Censored Data
I Censoring occurs when we observe only a limited value of an

observation.
I Suppose that X represents a loss due to an insured event and

that u is a known censoring point.
I If observations are censored from the right (or from above),

then we observe
Y = min(X , u).

I In this case, u may represent the upper limit of coverage for an
insurer. The loss exceeds the amount u but the insurer does not have
in its records the amount of the actual loss.

I If observations are censored from the left (or from below), then we
observe

Y = max(X , u).
I Let u represents the upper limit of coverage but now Y − u represents the

amount that a reinsurer is responsible for. If the loss X < u, then Y = 0,
no loss for the reinsurer. If the loss X ≥ u, then Y = X − u represents the
reinsurer’s retained claims.



Kaplan-Meier Product Limit Estimator
I Let t1 < · · · < tc be distinct points at which an event of

interest occurs, or non-censored losses, and let sj be the
number of events at time point tj .

I Further, the corresponding “risk set” is the number of
observations that are active at an instant just prior to tj .
Using notation, the risk set is Rj =

∑n
i=1 I(xi ≥ tj).

I With this notation, the product-limit estimator of the
distribution function is

F̂ (x) =
{

0 x < t1

1−
∏

j:tj≤x

(
1− sj

Rj

)
x ≥ t1.

I Greenwood (1926) derived the formula for the estimated
variance

V̂ar(F̂ (x)) = (1− F̂ (x))2 ∑
j:tj≤x

sj
Rj(Rj − sj)

.



REVIEW

In this section, you learned how to:

I Describe grouped and censored truncated data
I Estimate distributions nonparametrically based on grouped and

censored data



Estimation using Modified Data: Parametric
Approach



Truncated Data
I An outcome is potentially truncated when the availability of an observation

depends on the outcome.

I In insurance, it is common for observations to be truncated from the left
(or below) at d when the amount observed is

Y =
{

we do not observe X X < d
X − d X ≥ d .

I In this case, d may represent the deductible associated with an insurance
coverage. If the insured loss is less than the deductible, then the insurer
does not observe the loss. If the loss exceeds the deductible, then the
excess X − d is the claim that the insurer covers.

I Observations may also truncated from the right (or above) at d when the
amount observed is

Y =
{

X X < d
we do not observe X X ≥ d

I Classic examples of truncation from the right include X as a measure of
distance of a star. When the distance exceeds a certain level d , the star is
no longer observable.



Maximum Likelihood Estimation with Grouped Data
I Probability of an observation X falling in the jth interval is

Pr (X ∈ (cj−1, cj ]) = F (cj)− F (cj−1)
I Corresponding pmf is

f (x) =


F (c1)− F (c0) if x ∈ (c0, c1]
...

...
F (ck)− F (ck−1) if x ∈ (ck−1, ck ]

=
k∏

j=1
{F (cj)− F (cj−1)}I(x∈(cj−1,cj ])

I Likelihood is

L(θ) =
n∏

j=1
f (xi ) =

k∏
j=1
{F (cj)− F (cj−1)}nj

I Log-likelihood is

l(θ) = ln
n∏

j=1
f (xi ) =

k∑
j=1

nj ln {F (cj)− F (cj−1)}



Censored Data Likelihood

I Suppose that X represents a loss due to an insured event and
that u is a known censoring point

I If observations are censored from the right (or from above),
then we observe Y = min(X , u) and δu = I(X ≥ u)

I If censoring occurs so that δu = 1, then X ≥ u and the
likelihood is Pr(X ≥ u) = 1− F(u)

I If censoring does not occur so that δu = 0, then X < CU and
the likelihood is f(y)

Likelihood =
{

f(y) if δ = 0
1− F(u) if δ = 1

= (f(y))1−δ (1− F(u))δ .



Censored Data Likelihood
I For a single observation, we have

Likelihood = (f(y))1−δ (1− F(u))δ .

I Consider a random sample of size n, {(y1, δ1), . . . , (yn, δn)}
with potential censoring times {u1, . . . , un}

I Likelihood is
n∏

i=1
(f(yi ))1−δi (1− F(ui ))δi =

∏
δi =0

f(yi )
∏
δi =1
{1− F(ui )},

I Here, notation “
∏
δi =0” means take the product over the

uncensored observations, and similarly for “
∏
δi =1”

I Log-likelihood is

l(θ) =
n∑

i=1
{(1− δi ) ln f(yi ) + δi ln (1− F(ui ))}



Maximum Likelihood Estimation Using Censored and
Truncated Data

I Truncated data are handled in likelihood inference via
conditional probabilities

I Adjust the likelihood contribution by dividing by the probability
that the variable was observed

I Summarizing, we have the following contributions to the
likelihood for six types of outcomes

Outcome Likelihood Contribution
exact value f (x)
right-censoring 1− F (CU)
left-censoring F (CL)
right-truncation f (x)/F (CU)
left-truncation f (x)/(1− F (CL))
interval-censoring F (CU)− F (CL)



Maximum Likelihood Estimation Using Censored and
Truncated Data

I For known outcomes and censored data, the likelihood is

∏
E

f(xi )
∏
R
{1− F(CUi )}

∏
L

F(CLi )
∏

I
(F(CUi )− F(CLi )),

where “
∏

E” is product over observations with Exact values, and
similarly for Right-, Left- and Interval-censoring

I For right-censored and left-truncated data, the likelihood is

∏
E

f(xi )
1− F(CLi )

∏
R

1− F(CUi )
1− F(CLi )

,

I Similarly for other combinations



REVIEW

In this section, you learned how to:

I Describe grouped, censored, and truncated data
I Estimate parametric distributions based on grouped, censored,

and truncated data



Bayesian Inference



Bayesian Inference

I In the frequentist interpretation, one treats the vector of
parameters θ as fixed yet unknown, whereas the outcomes X
are realizations of random variables.

I With Bayesian statistical models, one views both the model
parameters and the data as random variables.

I Use probability tools to reflect this uncertainty about the
parameters θ.

I For notation, we will think about θ as a random vector and let
π(θ) denote the distribution of possible outcomes.



Bayesian Inference Strengths
There are several advantages of the Bayesian approach.

I One can describe the entire distribution of parameters
conditional on the data. This allows one, for example, to
provide probability statements regarding the likelihood of
parameters.

I This approach allows analysts to blend information known from
other sources with the data in a coherent manner. This topic is
developed in detail in the credibility chapter.

I The Bayesian approach provides for a unified approach for
estimating parameters. Some non-Bayesian methods, such as
least squares, required a approach to estimating variance
components. In contrast, in Bayesian methods, all parameters
can be treated in a similar fashion. Convenient for explaining
results to consumers of the data analysis.



Bayesian Model

I Prior Distribution. π(θ) is called the prior distribution.

I Model Distribution. The distribution of outcomes given an
assumed value of θ is known as the model distribution and
denoted as f (x |θ) = fX |θ(x |θ). This is the (usual frequentist)
mass or density function.



Bayesian Model

I Posterior Distribution. After outcomes have been
observed (hence the terminology “posterior”), one can use Bayes
theorem to write the distribution as

π(θ|x) = f
f
(x

(
,

x)
θ) = f (x

f
|θ
(
)
x
π

)
(θ)

The idea is to update your knowledge of the distribution of θ (π(θ))
with the data x .

I We can summarize the distribution using a confidence interval
type statement.

I Definition. [a, b] is said to be a 100(1− α)% credibility
interval for θ if

Pr(a ≤ θ ≤ b|x) ≥ 1− α.



Posterior Computation

How do we calculate the posterior distribution?

I By hand - Usually through conjugate priors. As mentioned on
the previous slide:

π(θ|x) = f (x |θ)π(θ)
f (x)

π(θ|x) ∝ f (x |θ)π(θ)

So if the likelihood × prior is proportional to a known
distribution, then we know the exact posterior distribution.

I Markov chain Monte Carlo - If the model is at least somewhat
complicated, we will need to use simulation to approximate
the posterior distribution.

I Normal Approximations - There are some situations where we
can use normal approximations to simplify our estimation
procedure.



Poisson–Gamma Conjugate Family
I Assume a Poisson(λ) model distribution so that

f (x|λ) =
n∏

i=1

λxi e−λ
xi !

I Assume λ follows a gamma(α, θ) prior distribution so that

π(λ) = (λ/θ)α exp(−λ/θ)
λΓ(α) .

I The posterior distribution is proportional to

π(λ|x) ∝ f (x|θ)π(λ)
= Cλ

∑
i xi +α−1 exp(−λ(n + 1/θ))

where C is a constant.
I We recognize this to be a gamma distribution with new

parameters αnew =
∑

i xi + α and θnew = 1/(n + 1/θ).



REVIEW

In this section, you learne how to:

I Describe the Bayesian model as an alternative to the
frequentist approach and summarize the five components of
this modeling approach.

I Summarize posterior distributions of parameters and use these
posterior distributions to predict new outcomes.

I Use conjugate distributions to determine posterior distributions
of parameters.
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