Aggregate Loss Models

A short course authored by the Actuarial Community

21 Jan 2021

Introduction

Basic Terminology

- Loss amount of financial losses suffered by the insured
- Claim indemnification upon the occurrence of an insured event. Some authors use claim and loss interchangeably
- Frequency how often an insured event occurs (claim count) in one period (typically six months or one year)
- Severity Amount, or size, of losses for an insured event
- Aggregate Loss Total amount paid for a defined set of insureds in one period (typically six months or one year)

Goal

- Build a model for the total payments by an insurance system in a fixed time period
- The insurance system could be a single policy or a portfolio of policies
- Frequency and severity models are building blocks

Models

- Two ways to build a model for aggregate losses on a defined set of insurance contracts
- Individual Risk Model: record losses for each contract and then add them up
- Collective Risk Model (a.k.a. compound model): record losses as claims are made and then add them up

	An	insurance	portfolio	of three	policies:
--	----	-----------	-----------	----------	-----------

Policy ID	Claim ID	Loss Amount
1	-	-
2	1	10
3	1	10
3	2	10
4	1	10
4	2	10
4	3	10

- Aggregate losses:
 - Individual Risk Model: 0 + 10 + 20 + 30 = 60
 - Collective Risk Model: 10 + 10 + 10 + 10 + 10 + 10 = 60

Applications

Actuarial applications of aggregate loss models

- Ratemaking
- Capital management
- Risk financing

Summary

In this section, we learned how to:

- Record aggregate losses from an insurance system
- Identify actuarial applications of aggregate loss models

Individual Risk Model

The **individual risk model** represents the aggregate loss as a sum of a fixed number of insurance contracts

$$S=X_1+\ldots+X_n,$$

where

S denotes the aggregate loss for n (a fixed number) contracts
 X_i denotes the loss for the *i*th contract for i = 1,..., n
 X_i are assumed to independent but are not necessarily identically distributed, due to different coverage or exposure
 X_i usually has a probability mass at zero

Applications

Originally developed for life insurance

- Probability of death within a year is q_i;
- Fixed benefit paid for the death of the *i*th person is b_i.

The distribution of the loss to the insurer for the *i*th policy is

$$f_{X_i}(x) = \begin{cases} 1-q_i, & x=0\\ q_i, & x=b_i \end{cases}$$

Applications

Two-part framework

$$X_i = I_i \times B_i = \begin{cases} 0, & I_i = 0\\ B_i, & I_i = 1 \end{cases}$$

▶ $I_1, \ldots, I_n, B_1, \ldots, B_n$ are independent.

- *I_i* is an indicator (Bernoulli) that is 1 with probability *q_i* and 0 with probability 1-*q_i*. It indicates whether the *i*th policy has a claim.
- B_i, a r.v. with nonnegative support, represents the amount of losses of policy *i*, given that a claim is made. It can follow a degenerate distribution such as the life insurance example.

Consider the example of Wisconsin Property Fund.

```
Insample <- read.csv("Insample.csv", header = T)
Insample2010 <- subset(Insample, Year==2010)</pre>
```

I <- 1*(Insample2010\$Freq>0)
B <- Insample2010[which(Insample2010\$Freq>0),]\$y

length(I)

[1] 1110

length(B)

[1] 403

tal	ole([)					
## ## ##	I 0 707	1 403					
sur	nmary	(B)					
## ##		Min. 200	1st Qu. 3375	Median 9378	Mean 90966	3rd Qu. 29845	Max. 12922218

The distribution of aggregate loss S is defined as:

$$F_S(s) = \Pr(X_1 + X_2 + \cdots + X_n \leq s)$$

In general, it is difficult to evaluate
 When X_i, i = 1,..., n, are i.i.d., it is known as n-fold convolution of cdf of X

R Example #1

```
library(distr)
X <- Exp(rate=1); Y <- Lnorm(meanlog=1,sdlog=1)
conv <- convpow(X+Y,1)
f.Z <- d(conv)
z <- seq(0,30,0.01)
plot(z,f.Z(z), col="blue",type="l")</pre>
```


R Example #2

```
library(distr)
X <- Exp(rate=1)
conv <- convpow(X,10)
f.Z <- d(conv)
z <- seq(0,30,0.01)
plot(z,f.Z(z), col="blue",type="l")</pre>
```


Summary

In this section, we learned how to:

- Build an individual risk model for a portfolio of insurance contracts
- Apply individual risk model to life and nonlife insurance
- Compute the distribution of aggregate losses from an individual risk model

Collective Risk Model - Part I

The collective risk model has representation

$$S=X_1+\ldots+X_N,$$

with S being the aggregate loss of N (a random number) individual claims (X_1, \ldots, X_N) .

- Key assumptions
 - Conditional on $N = n, X_1, \dots, X_n$ are i.i.d. random variables
 - The distribution of N and the common distribution of X are independent of each other.
- Two building blocks: frequency N and severity X

The cumulative distribution function (cdf) is $F_S(s)$. The probability density function (pdf) or probability mass function (pmf) is $f_S(s)$. Specifically,

$$F_{S}(s) = \Pr(S \le s)$$

= $\sum_{n=0}^{\infty} \Pr(N = n) \cdot \Pr(S \le s | N = n)$
= $\sum_{n=0}^{\infty} \Pr(N = n) \cdot F_{X}^{*n}(s)$

$$f_{\mathcal{S}}(s) = \sum_{n=0}^{\infty} \Pr(N=n) \cdot f_X^{*n}(s)$$

Moments

$$S = X_1 + \ldots + X_N$$

Using the law of iterated expectations to calculate the mean

$$E(S) = E[E(S|N)] = E[NE(X)] = E(N)E(X)$$

Using the law of total variation to calculate the variance

$$\begin{aligned} \operatorname{Var}(S) &= \operatorname{E}[\operatorname{Var}(S|N)] + \operatorname{Var}[\operatorname{E}(S|N)] \\ &= \operatorname{E}[N\operatorname{Var}(X)] + \operatorname{Var}[N\operatorname{E}(X)] \\ &= \operatorname{E}(N)\operatorname{Var}(X) + \operatorname{Var}(N)\operatorname{E}(X)^2 \end{aligned}$$

The assumptions suggest that we can build an aggregate loss model, the compound model, in three steps:

- 1. Develop a model for the frequency distribution of N, the primary distribution, based on data
- 2. Develop a model for the severity distribution of X, the secondary distribution, based on data
- 3. Using these two models, carry out the necessary calculations to obtain the distribution of ${\cal S}$

Consider the example of Wisconsin Property Fund.

```
Insample <- read.csv("Insample.csv", header = T)
Insample2010 <- subset(Insample, Year==2010)</pre>
```

Number of policyholders:

nrow(Insample2010)

[1] 1110

Model Fitting

The frequency model: N

N <- Insample2010\$Freq

table(N)

##	Ν											
##	0	1	2	3	4	5	6	7	8	9	10	11
##	707	209	86	40	18	12	9	4	6	1	3	2
##	13	14	15	16	17	18	19	30	39	103	239	
##	1	2	1	2	1	1	1	1	1	1	1	

Model Fitting

The severity model: $\bar{X} = (X_1 + ... + X_n)$ for N = n > 0Xbar <- Insample2010\$yAvg[which(Insample2010\$Freq>0)]

summary(Xbar)

##	Min.	1st Qu.	Median	Mean	3rd Qu.
##	167	2226	4951	56332	11900
##	Max.				
##	12922218				

Summary

In this section, we learned how to:

- Build a collective risk model for a portfolio of insurance contracts
- Calculate mean and variance of the aggregate loss
- Fit frequency and severity components in a collective risk model

Collective Risk Model - Part II

Computing the Aggregate Loss Distribution

Consider a collective risk model

$$S = X_1 + \cdots + X_N$$

Several numerical strategies:

direct calculation: difficult part is the evaluation of *n*-fold convolutions

recursive method: considerable savings in computation time

- Monte Carlo simulation: approximation using the empirical distribution
- R implementation: package actuar

▶ The distribution of *S* can be calculated using:

$$F_{S}(s) = \Pr(S \le s)$$

= $\sum_{n=0}^{\infty} \Pr(N = n) \cdot \Pr(S \le s | N = n)$
= $\sum_{n=0}^{\infty} \Pr(N = n) \cdot F_{X}^{*n}(s)$

To compute the distribution in R, one has to discretize the severity distribution so that it has support {0, 1, ..., m}

The frequency and severity distributions are summarized by:

Ν	0	1	2	3	4
$f_N(n)$	0.2	0.2	0.2	0.2	0.2
X	50	100	150	250	
$f_X(x)$	0.2	0.3	0.4	0.1	

The discretized severity distribution is

Aggregate Claim Amount Empirical CDF: ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 100 250 250 400 1000

plot(Fs)

Recursive Method

Recursive method assumes:

Frequency N satisfies $p_n = (a + b/n)p_{n-1}$ for n = 1, 2, 3, ...

Severity X has a distribution distribution f_X on support {0,1,...,m}

The probability function of S can be calculated using:

$$f_{\mathcal{S}}(s) = \Pr(\mathcal{S} = s)$$

= $\frac{1}{1 - af_X(0)} \sum_{x=1}^{s \wedge m} \left(a + \frac{bx}{s}\right) f_X(x) f_{\mathcal{S}}(s - x)$

▶ The method extends to the more general case where frequency N satisfies $p_n = (a + b/n)p_{n-1}$ for n = 2, 3, ...

Consider the example:

- Frequency N is Poisson with mean 5.
- Severity

X	50	100	150	250
$f_X(x)$	0.2	0.3	0.4	0.1

Recursive Method

Monte Carlo Simulation

- For $j = 1, \ldots, m$, do
 - Generate the number of claims n_j from the frequency distribution N
 - Generate n_j claim amount from severity distribution X, denoted by x_{j,1},..., x_{j,n_j}
 - Calculate aggregate loss $s_j = x_{j,1} + \cdots + x_{j,n_j}$
- The empirical distribution can be calculated as

$$\hat{F}_{s}(s) = \frac{1}{m} \sum_{i=1}^{m} l(s_{i} \leq s)$$

Monte Carlo Simulation

plot(Fs)

Summary

In this section, we learned how to:

- Compute aggregate loss distribution
- Implement numerical strategies in R

Tweedie Distribution

The Tweedie distribution is defined as a Poisson sum of gamma random variables

$$S=(X_1+\cdots+X_N)$$

where $N \sim Poisson(\omega \lambda)$ and $X \sim Gamma(\alpha, \theta)$.

Tweedie Distribution with Exposure

With exposure, the Tweedie variable is the aggregate losses per unit of expoure:

$$S = (X_1 + \cdots + X_N)/\omega$$

where

- $N \sim Poisson(\omega \lambda)$
- $X \sim Gamma(\alpha, \theta)$

Distribution Function for Tweedie Distribution

The cdf of S is

$$\begin{aligned} F_{S}(s) &= \sum_{n=0}^{\infty} \Pr(N=n) \cdot \Pr(S \leq s | N=n) \\ &= \Pr(N=0) + \sum_{n=1}^{\infty} \Pr(N=n) \cdot \Pr(S \leq s | N=n) \\ &= e^{-\omega\lambda} + \sum_{n=1}^{\infty} e^{-\omega\lambda} \frac{(\omega\lambda)^{n}}{n!} \Gamma\left(n\alpha; \frac{s}{\theta/\omega}\right) \end{aligned}$$

Note that

$$\mathcal{S}|(\textit{N}=\textit{n})=(\textit{X}_1+\dots+\textit{X}_{\textit{n}})/\omega\sim\textit{Gamma}(\textit{n}lpha, heta/\omega)$$

Tweedie Distribution

Consider reparameterizations

$$\lambda = \frac{\mu^{2-p}}{\phi(2-p)}, \ \ \alpha = \frac{2-p}{p-1}, \ \ \theta = \phi(p-1)\mu^{p-1}$$

For $p \in (1,2)$, the Tweedie distribution can be presented as:

$$f_{\mathcal{S}}(s) = \exp\left\{\frac{\omega}{\phi}\left(\frac{-s}{(p-1)\mu^{p-1}} - \frac{\mu^{2-p}}{2-p}\right) + c(s; p, \phi/\omega)\right\}$$

and

$$E(S) = \mu$$
, $Var(S) = \frac{\phi}{\omega} \mu^{\mu}$

The histogram of annual medical expenses from a randomly selected 5,000 individuals:

Medical Expenses

```
mu <- exp(summary(fit)$coefficient[1])
phi <- summary(fit)$dispersion</pre>
```

The estimates of μ is 1985.32:

```
The estimates of \phi is 534.4:
```


Theoretical Quantile

Summary

In this section, we learned how to:

- Construct the Tweedie distribution from a collective risk model
- Establish the Tweedie distribution as a member of the exponential family of distributions
- Fit Tweedie distribution as a generalized linear model

Effects of Coverage Modifications

Definition Insurance on the aggregate losses, subject to a deductible, is called *stop-loss insurance*.

- Assume aggregate loss S and deductible d
- The cost of the insurer is

$$(S-d)_+=\left\{egin{array}{cc} 0,&S\leq d\ S-d,&S>d \end{array}
ight.$$

Aggregate Deductible

The expected cost of this insurance is called the *net stop-loss premium*.

It can be computed as:

$$E[(S-d)_+] = E(S) - E(S \land d)$$

where

$$\mathrm{E}(S \wedge d) = \int_0^d [1 - F_S(s)] ds$$

Per-occurrence Deductible

Consider aggregate loss

$$S = X_1 + \cdots + X_N$$

For a per-occurrence deductible *d*, we examine its effect on

- Claim frequency N
- Claim Severity X

Per-occurrence Deductible and Frequency

- Let N be the number of losses and N^P be the number of payments
- ▶ Represent N^P as a compound frequency distribution

$$N^P = I_1 + \cdots + I_N$$

where, for $i = 1, \ldots, N$,

$$I_i = \left\{ egin{array}{cc} 1 & ext{with probability } \Pr(X_i > d) \ 0 & ext{with probability } \Pr(X_i \leq d) \end{array}
ight.$$

Per-occurrence Deductible and Frequency

• The distribution of N^P can be derived using the probability generating function

• Let
$$v = Pr(X > d)$$
, the pgf of N^P is

$$P_{N^{P}}(z) = P_{N}[P_{I}(z)]$$

= $P_{N}[1 + v(z - 1)]$

Per-occurrence Deductible and Frequency

Example: $N \sim Poisson(\lambda)$

• The pgf of N^P is

$$P_{N^{P}}(z) = \exp \left\{ \lambda [1 + v(z - 1) - 1] \right\}$$

= exp { $v\lambda(z - 1)$ }

• N^P is from the same family, and $N^P \sim Poisson(\lambda^* = v\lambda)$

Similar results for other frequency distributions

Per-occurrence Deductible and Severity

It is defined as

$$X^P = X - d|X > d$$

Its distribution is:

$$F_{X^{P}}(x) = rac{F_{X}(x+d) - F_{X}(x)}{1 - F_{X}(x)}$$

Per-occurrence Deductible

Ground up loss

$$S = X_1 + \cdots + X_N$$

▶ With deductible *d*, the aggregate loss to the insurer is

$$S = X_1^P + \dots + X_{N^P}^P$$

Summary

In this section, we learned how to:

- Examine the impact of aggregate deductible on the aggregate loss
- Examine the effect of per-occurrence deductible on frequency and severity components in the aggregate loss