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Book Description

Loss Data Analytics is an interactive, online, freely available text.

• The online version contains many interactive objects (quizzes, computer
demonstrations, interactive graphs, video, and the like) to promote deeper
learning.

• A subset of the book is available for offline reading in pdf and EPUB
formats.

• The online text will be available in multiple languages to promote access to
a worldwide audience.

What will success look like?

The online text will be freely available to a worldwide audience. The online
version will contain many interactive objects (quizzes, computer demonstrations,
interactive graphs, video, and the like) to promote deeper learning. Moreover,
a subset of the book will be available in pdf format for low-cost printing. The
online text will be available in multiple languages to promote access to a
worldwide audience.

How will the text be used?

This book will be useful in actuarial curricula worldwide. It will cover the loss
data learning objectives of the major actuarial organizations. Thus, it will be
suitable for classroom use at universities as well as for use by independent
learners seeking to pass professional actuarial examinations. Moreover, the
text will also be useful for the continuing professional development of actuaries
and other professionals in insurance and related financial risk management
industries.

Why is this good for the profession?

An online text is a type of open educational resource (OER). One important
benefit of an OER is that it equalizes access to knowledge, thus permitting
a broader community to learn about the actuarial profession. Moreover, it
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has the capacity to engage viewers through active learning that deepens the
learning process, producing analysts more capable of solid actuarial work.
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process? Cost is often cited as an important factor for students and teachers
in textbook selection (see a recent post on the $400 textbook). Students will
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the actuarial curriculum. Given the dramatic changes in the way that actuaries
treat data, loss data seems like a natural place to start. The idea behind the
name loss data analytics is to integrate classical loss data models from applied
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that high speed computation is readily available.
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1
Loss Data and Insurance Activities

Chapter Preview. This book introduces readers to methods of analyzing in-
surance data. Section 1.1 begins with a discussion of why the use of data is
important in the insurance industry. Section 1.2 gives a general overview of
the purposes of analyzing insurance data which is reinforced in the Section 1.3
case study. Naturally, there is a huge gap between the broad goals summarized
in the overview and a case study application; this gap is covered through the
methods and techniques of data analysis covered in the rest of the text.

1.1 Data Driven Insurance Activities

In this section, you learn how to:

• Summarize the importance of insurance to consumers and the economy
• Describe the role that data plays in managing insurance activities
• Identify data generating events associated with the timeline of a typical

insurance contract

1.1.1 Nature and Relevance of Insurance

This book introduces the process of using data to make decisions in an insurance
context. It does not assume that readers are familiar with insurance but
introduces insurance concepts as needed. Insurance is the exchange of a certain
amount, known as a premium, for a promise to compensate another party upon
the occurrence of an insured event.

If you are new to insurance, then it is probably easiest to think about an
insurance policy that covers the contents of an apartment or house that you
are renting (known as renters insurance) or the contents and property of a
building that is owned by you or a friend (known as homeowners insurance).
Another common example is automobile insurance. In the event of an accident,

1



2 1 Loss Data and Insurance Activities

this policy may cover damage to your vehicle, damage to other vehicles in the
accident, as well as medical expenses of those injured in the accident.

One way to think about the nature of insurance is who buys it. Renters,
homeowners, and auto insurance are examples of personal insurance in that
these are policies issued to people. Businesses also buy insurance, such as
coverage on their properties, and this is known as commercial insurance. The
seller, an insurance company, is also known as an insurer. Even insurance
companies need insurance; this is known as reinsurance.

Another way to think about the nature of insurance is the type of risk being
covered. In the U.S., policies such as renters and homeowners are known as
property insurance whereas a policy such as auto that covers medical damages
to people is known as casualty insurance. In the rest of the world, these are
both known as non-life or general insurance, to distinguish them from life
insurance.

Both life and non-life insurances are important components of the world
economy. The The Organization for Economic Cooperation and Development
(OECD) estimates that direct insurance premiums in the OECD (Organization
for Economic Cooperation and Development) countries for 2020 was 2,520,220
for life and 2,704,799 for non-life; these figures are in millions of U.S. dollars.
The total represents 9.447% of the OECD gross domestic product (GDP). As
examples, premiums accounted for 30.9% of GDP in Luxembourg and 17.0%
of GDP in Chinese Taipei (the two highest in the study) and represented
12.5% of GDP in the United States. Both life and non-life insurances represent
important economic activities.

Insurance affects the financial livelihoods of many and, by almost any measure,
insurance is a major economic activity. As noted earlier, on a global level
insurance premiums comprised nearly 9.5% of GDP in 2020. On a personal
level, almost everyone owning a home has insurance to protect themselves in
the event of a fire, hailstorm, or some other calamitous event. Almost every
country requires insurance for those driving a car. In sum, insurance plays an
important role in the economies of nations and the lives of individuals.

1.1.2 Why Data Driven?

Insurance is a data-driven industry. Like all major corporations and organiza-
tions, insurers use data when trying to decide how much to pay employees, how
many employees to retain, how to market their services and products, how to
forecast financial trends, and so on. These represent general areas of activities
that are not specific to the insurance industry. Although each industry has
its own data nuances and needs, the collection, analysis and use of data is
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an activity shared by all, from the internet giants to a small business, by
public and governmental organizations, and is not specific to the insurance
industry. You will find that the data collection and analysis methods and tools
introduced in this text are relevant for all.

In any data-driven industry, deriving and extracting information from data is
critical. Making data-driven business decisions has been described as business
analytics, business intelligence, and data science. These terms, among others,
are sometimes used interchangeably and sometimes refer to distinct applications.
Business intelligence may focus on processes of collecting data, often through
databases and data warehouses, whereas business analytics utilizes tools and
methods for statistical analyses of data. In contrast to these two terms that
emphasize business applications, the term data science can encompass broader
data related applications in many scientific domains. For our purposes, we
use the term analytics to refer to the process of using data to make decisions.
This process involves gathering data, understanding concepts and models of
uncertainty, making general inferences, and communicating results. Chapter 2
describes data analytics in further detail.

When introducing methods in this text, we focus on loss data that arise
from, or are related to, obligations in insurance contracts. This could be the
amount of damage to one’s apartment under a renter’s insurance agreement,
the amount needed to compensate someone that you hurt in a driving accident,
and the like. We call such payments an insurance claim. With this focus, we
are able to introduce and directly use generally applicable statistical tools and
techniques.

1.1.3 Insurance Processes

Yet another way to think about the nature of insurance is by the duration of
an insurance contract, known as the term. This text will focus on short-term
insurance contracts. By short-term, we mean contracts where the insurance
coverage is typically provided for a year or six months. Most non-life commercial
and personal contracts are for a year so that is our default duration. An
important exception is U.S. auto policies that are often six months in length.

In contrast, we typically think of life insurance as a long-term contract where
the default is to have a multi-year contract. For example, if a person 25 years
old purchases a whole life policy that pays upon death of the insured and that
person does not die until age 100, then the contract is in force for 75 years.

There are other important differences between life and non-life products. In
life insurance, the benefit amount is often stipulated in the contract provisions.
In contrast, most non-life contracts provide for compensation of insured losses
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which are unknown before the accident. (There are usually limits placed on the
compensation amounts.) In a life insurance contract that stretches over many
years, the time value of money plays a prominent role. In a non-life contract,
the random amount of compensation takes priority.

In both life and non-life insurances, the frequency of claims is very important.
For many life insurance contracts, the insured event (such as death) happens
only once. In contrast, for non-life insurances such as automobile, it is common
for individuals (especially young male drivers) to get into more than one
accident during a year. So, our models need to reflect this observation; we
introduce different frequency models that you may also see when studying life
insurance.

For short-term insurance, the framework of the probabilistic model is straight-
forward. We think of a one-period model (the period length, e.g., one year,
will be specified in the situation).

• At the beginning of the period, the insured pays the insurer a known
premium that is agreed upon by both parties to the contract.

• At the end of the period, the insurer reimburses the insured for a (possibly
multivariate) random loss.

This framework will be developed as we proceed; but we first focus on inte-
grating this framework with concerns about how the data may arise. From
an insurer’s viewpoint, contracts may be only for a year but they tend to be
renewed. Moreover, payments arising from claims during the year may extend
well beyond a single year. One way to describe the data arising from operations
of an insurance company is to use a timeline granular approach. A process
approach provides an overall view of the events occurring during the life of an
insurance contract, and their nature – random or planned, loss events (claims)
and contract changes events, and so forth. In this micro oriented view, we can
think about what happens to a contract at various stages of its existence.

Figure 1.1 traces a timeline of a typical insurance contract. Throughout the
life of the contract, the company regularly processes events such as premium
collection and valuation, described in Section 1.2; these are marked with an x
on the timeline. Non-regular and unanticipated events also occur. To illustrate,
t2 and t4 mark the event of an insurance claim (some contracts, such as life
insurance, can have only a single claim). Times t3 and t5 mark events when
a policyholder wishes to alter certain contract features, such as the choice of
a deductible or the amount of coverage. From a company perspective, one
can even think about the contract initiation (arrival, time t1) and contract
termination (departure, time t6) as uncertain events. (Alternatively, for some
purposes, you may condition on these events and treat them as certain.)
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FIGURE 1.1: Timeline of a Typical Insurance Policy. Arrows mark the
occurrences of random events. Each x marks the time of scheduled events that
are typically non-random.
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1.2 Insurance Company Operations

In this section, you learn how to:

• Describe five major operational areas of insurance companies.
• Identify the role of data and analytics opportunities within each operational

area.

Armed with insurance data, the end goal is to use data to make decisions. We
will learn more about methods of analyzing and extrapolating data in future
chapters. To begin, let us think about why we want to do the analysis. We take
the insurance company’s viewpoint (not the insured person) and introduce
ways of bringing money in, paying it out, managing costs, and making sure
that we have enough money to meet obligations. The emphasis is on insurance-
specific operations rather than on general business activities such as advertising,
marketing, and human resources management.

Specifically, in many insurance companies, it is customary to aggregate detailed
insurance processes into larger operational units; many companies use these
functional areas to segregate employee activities and areas of responsibilities.
Actuaries, other financial analysts, and insurance regulators work within these
units and use data for the following activities:

1. Initiating Insurance. At this stage, the company makes a decision
as to whether or not to take on a risk (the underwriting stage) and
assign an appropriate premium (or rate). Insurance analytics has its
actuarial roots in ratemaking, where analysts seek to determine the
right price for the right risk.

2. Renewing Insurance. Many contracts, particularly in general in-
surance, have relatively short durations such as 6 months or a year.
Although there is an implicit expectation that such contracts will be
renewed, the insurer has the opportunity to decline coverage and to
adjust the premium. Analytics is also used at this policy renewal stage
where the goal is to retain profitable customers.

3. Claims Management. Analytics has long been used in (1) detecting
and preventing claims fraud, (2) managing claim costs, including
identifying the appropriate support for claims handling expenses, as
well as (3) understanding excess layers for reinsurance and retention.

4. Loss Reserving. Analytic tools are used to provide management
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with an appropriate estimate of future obligations and to quantify the
uncertainty of those estimates.

5. Solvency and Capital Allocation. Deciding on the requisite amount
of capital and on ways of allocating capital among alternative in-
vestments are also important analytics activities. Companies must
understand how much capital is needed so that they have sufficient
flow of cash available to meet their obligations at the times they are
expected to materialize (solvency). This is an important question that
concerns not only company managers but also customers, company
shareholders, regulatory authorities, as well as the public at large.
Related to issues of how much capital is the question of how to allo-
cate capital to differing financial projects, typically to maximize an
investor’s return. Although this question can arise at several levels,
insurance companies are typically concerned with how to allocate
capital to different lines of business within a firm and to different
subsidiaries of a parent firm.

Although data represent a critical component of solvency and capital allocation,
other components including the local and global economic framework, the
financial investments environment, and quite specific requirements according
to the regulatory environment of the day, are also important. Because of the
background needed to address these components, we do not address solvency,
capital allocation, and regulation issues in this text.

Nonetheless, for all operating functions, we emphasize that analytics in the
insurance industry is not an exercise that a small group of analysts can do
by themselves. It requires an insurer to make significant investments in their
information technology, marketing, underwriting, and actuarial functions. As
these areas represent the primary end goals of the analysis of data, additional
background on each operational unit is provided in the following subsections.

1.2.1 Initiating Insurance

Setting the price of an insurance product can be a perplexing problem. This is in
contrast to other industries such as manufacturing where the cost of a product
is (relatively) known and provides a benchmark for assessing a market demand
price. Similarly, in other areas of financial services, market prices are available
and provide the basis for a market-consistent pricing structure of products.
However, for many lines of insurance, the cost of a product is uncertain and
market prices are unavailable. Expectations of the random cost is a reasonable
place to start for a price. (If you have studied finance, then you will recall
that an expectation is the optimal price for a risk-neutral insurer.) It has been
traditional in insurance pricing to begin with the expected cost. Insurers then
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add margins to this, to account for the product’s riskiness, expenses incurred
in servicing the product, and an allowance for profit/surplus of the company.

Use of expected costs as a foundation for pricing is prevalent in some lines of the
insurance business. These include automobile and homeowners insurance. For
these lines, analytics has served to sharpen the market by making the calculation
of the product’s expected cost more precise. The increasing availability of the
internet to consumers has also promoted transparency in pricing; in today’s
marketplace, consumers have ready access to competing quotes from a host
of insurers. Insurers seek to increase their market share by refining their risk
classification systems, thus achieving a better approximation of the products’
prices and enabling cream-skimming underwriting strategies (“cream-skimming”
is a phrase used when the insurer underwrites only the best risks). Surveys
(e.g., Earnix (2013)) indicate that pricing is the most common use of analytics
among insurers.

Underwriting, the process of classifying risks into homogeneous categories and
assigning policyholders to these categories, lies at the core of ratemaking.
Policyholders within a class (category) have similar risk profiles and so are
charged the same insurance price. This is the concept of an actuarially fair
premium; it is fair to charge different rates to policyholders only if they
can be separated by identifiable risk factors. An early article, Two Studies
in Automobile Insurance Ratemaking (Bailey and LeRoy, 1960), provided
a catalyst to the acceptance of analytic methods in the insurance industry.
This paper addresses the problem of classification ratemaking. It describes
an example of automobile insurance that has five use classes cross-classified
with four merit rating classes. At that time, the contribution to premiums
for use and merit rating classes were determined independently of each other.
Thinking about the interacting effects of different classification variables is a
more difficult problem.

When the risk is initially obtained, the insurer’s obligations can be managed
by imposing contract parameters that modify contract payouts. Chapter 4
describes common modifications including coinsurance, deductibles and policy
upper limits.

1.2.2 Renewing Insurance

Insurance is a type of financial service and, like many service contracts, insur-
ance coverage is often agreed upon for a limited time period at which time
coverage commitments are complete. Particularly for general insurance, the
need for coverage continues and so efforts are made to issue a new contract pro-
viding similar coverage when the existing contract comes to the end of its term.
This is called policy renewal. Renewal issues can also arise in life insurance,
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e.g., term (temporary) life insurance. At the same time other contracts, such as
life annuities, terminate upon the insured’s death and so issues of renewability
are irrelevant.

In the absence of legal restrictions, at renewal the insurer has the opportunity
to:

• accept or decline to underwrite the risk; and
• determine a new premium, possibly in conjunction with a new classification

of the risk.

Risk classification and rating at renewal is based on two types of information.
First, at the initial stage, the insurer has available many rating variables upon
which decisions can be made. Many variables are not likely to change, e.g.,
sex, whereas others are likely to change, e.g., age, and still others may or may
not change, e.g., credit score. Second, unlike the initial stage, at renewal the
insurer has available a history of policyholder’s loss experience, and this history
can provide insights into the policyholder that are not available from rating
variables. Modifying premiums with claims history is known as experience
rating, also sometimes referred to as merit rating.

Experience rating methods are either applied retrospectively or prospectively.
With retrospective methods, a refund of a portion of the premium is pro-
vided to the policyholder in the event of favorable (to the insurer) experience.
Retrospective premiums are common in life insurance arrangements (where
policyholders earn dividends in the U.S., bonuses in the U.K., and profit sharing
in Israeli term life coverage). In general insurance, prospective methods are
more common, where favorable insured experience is rewarded through a lower
renewal premium.

Claims history can provide information about a policyholder’s risk appetite. For
example, in personal lines it is common to use a variable to indicate whether
or not a claim has occurred in the last three years. As another example, in a
commercial line such as worker’s compensation, one may look to a policyholder’s
average claim frequency or severity over the last three years. Claims history
can reveal information that is otherwise hidden (to the insurer) about the
policyholder.

1.2.3 Claims and Product Management

In some of types of insurance, the process of paying claims for insured events
is relatively straightforward. For example, in life insurance, a simple death
certificate is all that is needed to pay the benefit amount as provided in the
contract. However, in non-life areas such as property and casualty insurance,
the process can be much more complex. Think about a relatively simple insured
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event such as an automobile accident. Here, it is often required to determine
which party is at fault and then one needs to assess damage to all of the
vehicles and people involved in the incident, both insured and non-insured.
Further, the expenses incurred in assessing the damages must be assessed,
and so forth. The process of determining coverage, legal liability, and settling
claims is known as claims adjustment.

Insurance managers sometimes use the phrase claims leakage to mean dollars
lost through claims management inefficiencies. There are many ways in which
analytics can help manage the claims process, c.f., Gorman and Swenson (2013).
Historically, the most important has been fraud detection. The claim adjusting
process involves reducing information asymmetry (the claimant knows what
happened; the company knows some of what happened). Mitigating fraud is
an important part of the claims management process.

Fraud detection is only one aspect of managing claims. More broadly, one can
think about claims management as consisting of the following components:

• Claims triaging. Just as in the medical world, early identification and
appropriate handling of high cost claims (patients, in the medical world), can
lead to dramatic savings. For example, in workers compensation, insurers
look to achieve early identification of those claims that run the risk of high
medical costs and a long payout period. Early intervention into these cases
could give insurers more control over the handling of the claim, the medical
treatment, and the overall costs with an earlier return-to-work.

• Claims processing. The goal is to use analytics to identify routine situations
that are anticipated to have small payouts. More complex situations may
require more experienced adjusters and legal assistance to appropriately
handle claims with high potential payouts.

• Adjustment decisions. Once a complex claim has been identified and
assigned to an adjuster, analytic driven routines can be established to aid
subsequent decision-making processes. Such processes can also be helpful
for adjusters in developing case reserves, an estimate of the insurer’s future
liability. This is an important input to the insurer’s loss reserves, described
in Section 1.2.4.

In addition to the insured’s reimbursement for losses, the insurer also needs to
be concerned with another source of revenue outflow, expenses. Loss adjustment
expenses are part of an insurer’s cost of managing claims. Analytics can be
used to reduce expenses directly related to claims handling (allocated) as well
as general staff time for overseeing the claims processes (unallocated). The
insurance industry has high operating costs relative to other portions of the
financial services sectors.
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In addition to claims payments, there are many other ways in which insurers
use data to manage their products. We have already discussed the need for
analytics in underwriting, that is, risk classification at the initial acquisition
and renewal stages. Insurers are also interested in which policyholders elect to
renew their contracts and, as with other products, monitor customer loyalty.

Analytics can also be used to manage the portfolio, or collection, of risks that
an insurer has acquired. As described in Chapter 13, after the contract has been
agreed upon with an insured, the insurer may still modify its net obligation
by entering into a reinsurance agreement. This type of agreement is with a
reinsurer, an insurer of an insurer. It is common for insurance companies to
purchase insurance on its portfolio of risks to gain protection from unusual
events, just as people and other companies do.

1.2.4 Loss Reserving

An important feature that distinguishes insurance from other sectors of the
economy is the timing of the exchange of considerations. In manufacturing,
payments for goods are typically made at the time of a transaction. In contrast,
for insurance, money received from a customer occurs in advance of benefits or
services; these are rendered at a later date if the insured event occurs. This
leads to the need to hold a reservoir of wealth to meet future obligations in
respect to obligations made, and to gain the trust of the insureds that the
company will be able to fulfill its commitments. The size of this reservoir of
wealth, and the importance of ensuring its adequacy, is a major concern for
the insurance industry.

Setting aside money for unpaid claims is known as loss reserving; in some
jurisdictions, reserves are also known as technical provisions. We saw in Figure
1.1 several times at which a company summarizes its financial position; these
times are known as valuation dates. Claims that arise prior to valuation dates
have either been paid, are in the process of being paid, or are about to be paid;
claims in the future of these valuation dates are unknown. A company must
estimate these outstanding liabilities when determining its financial strength.
Accurately determining loss reserves is important to insurers for many reasons.

1. Loss reserves represent an anticipated claim that the insurer owes
its customers. Under-reserving may result in a failure to meet claim
liabilities. Conversely, an insurer with excessive reserves may present
a conservative estimate of surplus and thus portray a weaker financial
position than it truly has.

2. Reserves provide an estimate for the unpaid cost of insurance that
can be used for pricing contracts.
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3. Loss reserving is required by laws and regulations. The public has a
strong interest in the financial strength and solvency of insurers.

4. In addition to regulators, other stakeholders such as insurance company
management, investors, and customers make decisions that depend on
company loss reserves. Whereas regulators and customers appreciate
conservative estimates of unpaid claims, managers and investors seek
more unbiased estimates to represent the true financial health of the
company.

Loss reserving is a topic where there are substantive differences between life
and general (also known as property and casualty, or non-life) insurance. In
life insurance, the severity (amount of loss) is often not a source of uncertainty
as payouts are specified in the contract. The frequency, driven by mortality of
the insured, is a concern. However, because of the lengthy time for settlement
of life insurance contracts, the time value of money uncertainty as measured
from issue to date of payment can dominate frequency concerns. For example,
for an insured who purchases a life contract at age 20, it would not be unusual
for the contract to still be open in 60 years time, when the insured celebrates
his or her 80th birthday. See, for example, Bowers et al. (1986) or Dickson
et al. (2013) for introductions to reserving for life insurance. In contrast, for
most lines of non-life business, severity is a major source of uncertainty and
contract durations tend to be shorter.

1.3 Case Study: Wisconsin Property Fund

In this section, we use the Wisconsin Property Fund as a case study. You learn
how to:

• Describe how data generating events can produce data of interest to insurance
analysts.

• Produce relevant summary statistics for each variable.
• Describe how these summary statistics can be used in each of the major

operational areas of an insurance company.

Let us illustrate the kind of data under consideration and the goals that
we wish to achieve by examining the Local Government Property Insurance
Fund (LGPIF), an insurance pool administered by the Wisconsin Office of
the Insurance Commissioner. The LGPIF was established to provide property
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insurance for local government entities that include counties, cities, towns,
villages, school districts, and library boards. The fund insures local government
property such as government buildings, schools, libraries, and motor vehicles.
It covers all property losses except those resulting from flood, earthquake,
wear and tear, extremes in temperature, mold, war, nuclear reactions, and
embezzlement or theft by an employee.

The fund covers over a thousand local government entities who pay approxi-
mately 25 million dollars in premiums each year and receive insurance coverage
of about 75 billion. State government buildings are not covered; the LGPIF
is for local government entities that have separate budgetary responsibilities
and who need insurance to moderate the budget effects of uncertain insurable
events. Coverage for local government property has been made available by
the State of Wisconsin since 1911, thus providing a wealth of historical data.

In this illustration, we restrict consideration to claims from coverage of building
and contents; we do not consider claims from motor vehicles and specialized
equipment owned by local entities (such as snow plowing machines). We also
consider only claims that are closed, with obligations fully met.

1.3.1 Fund Claims Variables: Frequency and Severity

At a fundamental level, insurance companies accept premiums in exchange
for promises to compensate a policyholder upon the occurrence of an insured
event. Indemnification is the compensation provided by the insurer for incurred
hurt, loss, or damage that is covered by the policy. This compensation is also
known as a claim. The extent of the payout, known as the severity, is a key
financial expenditure for an insurer.

In terms of money outgo to customers, an insurer is indifferent to having ten
claims of 100 when compared to one claim of 1,000. Nonetheless, it is common
for insurers to study how often claims arise, known as the frequency of claims.
The frequency is important for expenses, but it also influences contractual
parameters (such as deductibles and policy limits that are described later)
that are written to limit amounts paid for each occurrence of an insured event.
Frequency is routinely monitored by insurance regulators and can be a key
driver in the overall indemnification obligation of the insurer. We shall consider
the frequency and severity as the two main claim variables that we wish to
understand, model, and manage.

To illustrate, in 2010 there were 1,110 policyholders in the property fund
who experienced a total of 1,377 claims. Table 1.1 shows the distribution.
Almost two-thirds (0.637) of the policyholders did not have any claims and
an additional 18.8% had only one claim. The remaining 17.5% (=1 - 0.637 -
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TABLE 1.1: 2010 Claims Frequency Distribution

Number 0 1 2 3 4 5 6 7 8 9 or more Sum
Policies 707 209 86 40 18 12 9 4 6 19 1110
Claims 0 209 172 120 72 60 54 28 48 614 1377

Proportion 0.637 0.188 0.077 0.036 0.016 0.011 0.008 0.004 0.005 0.017 1

TABLE 1.2: 2010 Average Severity Distribution

Minimum First
Quartile

Median Mean Third
Quartile

Maximum

167 2,226 4,951 56,332 11,900 12,922,218

0.188) had more than one claim; the policyholder with the highest number
recorded 239 claims. The average number of claims for this sample was 1.24
(=1377/1110).

For the severity distribution, a common approach is to examine the distribution
of the sample of 1,377 claims. However, another common approach is to examine
the distribution of the average claims of those policyholders with claims. In
our 2010 sample, there were 403 (=1110-707) such policyholders. For 209 of
these policyholders with one claim, the average claim equals the only claim
they experienced. For the policyholder with highest frequency, the average
claim is an average over 239 separately reported claim events.

Table 1.2 summarizes the sample distribution of average severities from the
403 policyholders who made a claim; it shows that the average claim amount
was 56,330 (all amounts are in U.S. Dollars). However, the average gives only
a limited look at the distribution. More information can be gleaned from the
summary statistics which show a very large claim in the amount of 12,920,000.
Figure 1.2 provides further information about the distribution of sample claims,
showing a distribution that is dominated by this single large claim so that the
histogram is not very helpful. Even when removing the large claim, you will
find a distribution that is skewed to the right. A generally accepted technique
is to work with claims in logarithmic units especially for graphical purposes;
the corresponding figure in the right-hand panel is much easier to interpret.

1.3.2 Fund Rating Variables

Developing models to represent and manage the two outcome variables, fre-
quency and severity, is the focus of the early chapters of this text. However,
when actuaries and other financial analysts use those models, they do so in
the context of external variables. In general statistical terminology, one might
call these explanatory or predictor variables; there are many other names in



1.3 Case Study: Wisconsin Property Fund 15

Average Claims

F
re

qu
en

cy

0.0e+00 6.0e+06 1.2e+07

0
10

0
20

0
30

0
40

0

Logarithmic Average Claims
F

re
qu

en
cy

6 8 10 14

0
20

40
60

80
10

0
12

0

FIGURE 1.2: Distribution of Positive Average Severities

statistics, economics, psychology, and other disciplines. Because of our insur-
ance focus, we call them rating variables as they are useful in setting insurance
rates and premiums.

We earlier considered observations from a sample of 1,110 policyholders which
may seem like a lot. However, as we will see in our forthcoming applications,
because of the preponderance of zeros and the skewed nature of claims, actuaries
typically yearn for more data. One common approach that we adopt here is to
examine outcomes from multiple years, thus increasing the sample size. We
will discuss the strengths and limitations of this strategy later but, at this
juncture, we just wish to show the reader how it works.

Specifically, Table 1.3 shows that we now consider policies over five years of
data, 2006, . . . , 2010, inclusive. The data begins in 2006 because there was a
shift in claim coding in 2005 so that comparisons with earlier years are not
helpful. To mitigate the effect of open claims, we consider policy years prior to
2011. An open claim means that not all of the obligations for the claim are
known at the time of the analysis; for some claims, such an injury to a person
in an auto accident or in the workplace, it can take years before costs are fully
known.

Table 1.3 shows that the average claim varies over time, especially with the
high 2010 value (that we saw was due to a single large claim)1. The total

1Note that the average severity in Table 1.3 differs from that reported in Table 1.2. This
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TABLE 1.3: Claims Summary by Policyholder

Year Average
Frequency

Average
Severity

Average Number
of Policy-
holders

2006 0.951 9,695 32,498,186 1,154
2007 1.167 6,544 35,275,949 1,138
2008 0.974 5,311 37,267,485 1,125
2009 1.219 4,572 40,355,382 1,112
2010 1.241 20,452 41,242,070 1,110

TABLE 1.4: Summary of Claim Frequency and Severity, Deductibles,
and Coverages

Minimum Median Average Maximum

Claim Frequency 0 0 1.109 263
Claim Severity 0 0 9,292 12,922,218
Deductible 500 1,000 3,365 100,000
Coverage (000’s) 8.937 11,354 37,281 2,444,797

number of policyholders is steadily declining and, conversely, the coverage is
steadily increasing. The coverage variable is the amount of coverage of the
property and contents. Roughly, you can think of it as the maximum possible
payout of the insurer. For our immediate purposes, the coverage is our first
rating variable. Other things being equal, we would expect that policyholders
with larger coverage have larger claims. We will make this vague idea much
more precise as we proceed, and also justify this expectation with data.

For a different look at the 2006-2010 data, Table 1.4 summarizes the distribution
of our two outcomes, frequency and claims amount. In each case, the average
exceeds the median, suggesting that the two distributions are right-skewed.
In addition, the table summarizes our continuous rating variables, coverage
and deductible amount. The table also suggests that these variables also have
right-skewed distributions.

Table 1.5 describes the rating variables considered in this chapter. Hopefully,
these are variables that you think might naturally be related to claims outcomes.
You can learn more about them in Frees et al. (2016b). To handle the skewness,
we henceforth focus on logarithmic transformations of coverage and deductibles.

is because the former includes policyholders with zero claims where as the latter does not.
This is an important distinction that we will address in later portions of the text.
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Table 1.5. Description of Rating Variables

V ariable Description

EntityType Categorical variable that is one of six types: (Village, City,
County, Misc, School, or Town)

LnCoverage Total building and content coverage, in logarithmic millions of dollars
LnDeduct Deductible, in logarithmic dollars
AlarmCredit Categorical variable that is one of four types: (0, 5, 10, or 15)

for automatic smoke alarms in main rooms
NoClaimCredit Binary variable to indicate no claims in the past two years
Fire5 Binary variable to indicate the fire class is below 5

(The range of fire class is 1 to 10)

For the alarm credit variable, a zero means that no automatic smoke alarms
exist in any of the main rooms. In the same way, a 5 means they exist in some
of the main rooms and a 10 means they exist in all of the main rooms. At the
15 level, facilities are monitored on a 24 hours per day, 7 days per week basis
by a police, fire, or security company. A fire rating is a similar type of score.
It reflects how prepared a community and area is for fires. While it mainly
focuses on the local fire departments and water supply, there are other factors
that contribute to an area’s score. This rating is used to determine how likely
it is for a fire to do severe damage before help arrives with 1 being the best
and 10 the worst.

To get a sense of the relationship between the non-continuous rating variables
and claims, Table 1.6 relates the claims outcomes to these categorical variables.
Table 1.6 suggests substantial variation in the claim frequency and average
severity of the claims by entity type. It also demonstrates higher frequency and
severity for the Fire5 variable and the reverse for the NoClaimCredit variable.
The relationship for the Fire5 variable is counter-intuitive in that one would
expect lower claim amounts for those policyholders in areas with better public
protection (when the protection code is five or less). Naturally, there are other
variables that influence this relationship. We will see that these background
variables are accounted for in the subsequent multivariate regression analysis,
which yields an intuitive, appealing (negative) sign for the Fire5 variable.

Tables 1.7 and 1.8 show the claims experience by alarm credit. It underscores
the difficulty of examining variables individually. For example, when looking
at the experience for all entities, we see that policyholders with no alarm
credit have on average lower frequency and severity than policyholders with the
highest (15%, with 24/7 monitoring by a fire station or security company) alarm
credit. In particular, when we look at the entity type School, the frequency
is 0.422 and the severity 25,523 for no alarm credit, whereas for the highest
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TABLE 1.6: Claims Summary by Entity Type, Fire Class, and No
Claim Credit

Number
of Policies

Claim
Frequency

Average
Severity

Village 1,341 0.452 10,645
City 793 1.941 16,924
County 328 4.899 15,453
Misc 609 0.186 43,036
School 1,597 1.434 64,346

Town 971 0.103 19,831
Fire5–No 2,508 0.502 13,935
Fire5–Yes 3,131 1.596 41,421
NoClaimCredit–No 3,786 1.501 31,365
NoClaimCredit–Yes 1,853 0.31 30,499

Total 5,639 1.109 31,206

alarm level it is 2.008 and 85,140, respectively. This may simply imply that
entities with more claims are the ones that are likely to have an alarm system.
Summary tables do not examine multivariate effects; for example, Table 1.6
ignores the effect of size (as we measure through coverage amounts) that affect
claims.

We will learn more about modeling count data in the Chapter 3 and about
severity data in Chapters 4 and 7.

1.3.3 Fund Operations

We have now seen distributions of the Fund’s two outcome variables: a count
variable for the number of claims, and a continuous variable for the claims
amount. We have also introduced a continuous rating variable (logarithmic
coverage); a discrete quantitative variable (logarithmic deductibles); two binary
rating variables (no claims credit and fire class); and two categorical rating
variables (entity type and alarm credit). Subsequent chapters will explain how
to analyze and model the distribution of these variables and their relationships.
Before getting into these technical details, let us first think about where we
want to go. General insurance company functional areas are described in
Section 1.2; we now consider how these areas might apply in the context of
the property fund.

Initiating Insurance

Because this is a government sponsored fund, we do not have to worry about
selecting good or avoiding poor risks; the fund is not allowed to deny a
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TABLE 1.7: Claims Summary by Entity Type and Alarm Credit (AC)
Categories 0 and 5

AC0
Claim
Fre-

quency

AC0 Avg.
Severity

AC0
Num.

Policies

AC5
Claim
Fre-

quency

AC5 Avg.
Severity

AC5
Num.

Policies

Village 0.326 11,078 829 0.278 8,086 54
City 0.893 7,576 244 2.077 4,150 13
County 2.14 16,013 50 0 0 1
Misc 0.117 15,122 386 0.278 13,064 18
School 0.422 25,523 294 0.41 14,575 122

Town 0.083 25,257 808 0.194 3,937 31
Total 0.318 15,118 2611 0.431 10,762 239

TABLE 1.8: Claims Summary by Entity Type and Alarm Credit (AC)
Categories 10 and 15

AC10
Claim
Fre-

quency

AC10
Avg.

Severity

AC10
Num.

Policies

AC15
Claim
Fre-

quency

AC15
Avg.

Severity

AC15
Num.

Policies

Village 0.5 8,792 50 0.725 10,544 408
City 1.258 8,625 31 2.485 20,470 505
County 2.125 11,688 8 5.513 15,476 269
Misc 0.077 3,923 26 0.341 87,021 179
School 0.488 11,597 168 2.008 85,140 1013

Town 0.091 2,338 44 0.261 9,490 88
Total 0.517 10,194 327 2.093 41,458 2462
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coverage application from a qualified local government entity. If we do not
have to underwrite, what about how much to charge?

We might look at the most recent experience in 2010, where the to-
tal fund claims were approximately 28.16 million USD (= 1377 claims ×
20452 average severity). Dividing that among 1,110 policyholders, that sug-
gests a rate of 24,370 ( ≈ 28,160,000/1110). However, 2010 was a bad year;
using the same method, our premium would be much lower based on 2009
data. This swing in premiums would defeat the primary purpose of the fund,
to allow for a steady charge that local property managers could utilize in their
budgets.

Having a single price for all policyholders is nice but hardly seems fair. For
example, Table 1.6 suggests that schools have higher aggregate claims than
other entities and so should pay more. However, simply doing the calculation
on an entity by entity basis is not right either. For example, we saw in Tables
1.7 and 1.8 that had we used this strategy, entities with a 15% alarm credit
(for good behavior, having top alarm systems) would actually wind up paying
more.

So, we have the data for thinking about the appropriate rates to charge but
need to dig deeper into the analysis. We will explore this topic further in
Chapter 10 on premium calculation fundamentals. Selecting appropriate risks
is introduced in Chapter 11 on risk classification.

Renewing Insurance

Although property insurance is typically a one-year contract, Table 1.3 suggests
that policyholders tend to renew; this is typical of general insurance. For
renewing policyholders, in addition to their rating variables we have their
claims history and this claims history can be a good predictor of future claims.
For example, Table 1.6 shows that policyholders without a claim in the last two
years had much lower claim frequencies than those with at least one accident
(0.310 compared to 1.501); a lower predicted frequency typically results in a
lower premium. This is why it is common for insurers to use variables such as
NoClaimCredit in their rating. We will explore this topic further in Chapters
12 and 15 on experience rating.

Claims Management

Of course, the main story line of the 2010 experience was the large claim of over
12 million USD, nearly half the amount of claims for that year. Are there ways
that this could have been prevented or mitigated? Are their ways for the fund
to purchase protection against such large unusual events? Another unusual
feature of the 2010 experience noted earlier was the very large frequency of



1.4 Exercises 21

claims (239) for one policyholder. Given that there were only 1,377 claims that
year, this means that a single policyholder had 17.4 % of the claims. These
extreme features of the data suggests opportunities for managing claims, the
subject of Chapter 13.

Loss Reserving

In our case study, we look only at the one year outcomes of closed claims
(the opposite of open). However, like many lines of insurance, obligations from
insured events to buildings such as fire, hail, and the like, are not known
immediately and may develop over time. Other lines of business, including
those where there are injuries to people, take much longer to develop. Chapter
14 introduces this concern and loss reserving, the discipline of determining how
much the insurance company should retain to meet its obligations.

1.4 Exercises

These exercises ask you to work with data using statistical software, such as R
code. If you would like some practice with R code, please visit the first chapter
of a Short Course on Loss Data Analytics. As another method of learning, you
can also get practice executing ‘R’ code at our Online Version R Code Site.

Exercise 1.1. Corporate Travel. Universities purchase corporate travel
policies to cover employees and students traveling on official university business
for a wide variety of accidents and incidents while away from the campus or
primary workplace. This broad coverage includes medical care and evacuation,
loss of personal property, extraction for political and weather related reasons,
and more. These data represent experience from the Australian National
University (ANU) and additional details can be found in ANU’s corporate
travel policy. You can also learn more about this line of business from ANU’s
insurer, Chubb Travel. The data provided are maintained by the insurer, Chubb,
and were accessed on 29 July 2022. You can retrieve the data by going to
Appendix Section 22.2.

a. Claim Frequency. The travel data history is long and stable. This coverage
began on 1 November 2006. Table 1.9 shows the count of claims for years
2015-2019, inclusive. Produce a comparable table of claims frequency for the
entire period. Comment on the unusual frequency surrounding the COVID
pandemic.

b. Adjust for Zero Claims. From this data set, there are 2107 incurred claims.
Of these claims, there are 269 zeros and an additional 3 claims where the

https://openacttexts.github.io/LDACourse1/introduction-to-loss-data-analytics.html
https://openacttexts.github.io/LDACourse1/introduction-to-loss-data-analytics.html
https://openacttexts.github.io/LDARcode/
https://services.anu.edu.au/files/document-collection/TRAVEL%20INFORMATION%20-%20Travel%20Information%20Kit_July%202018.pdf
https://services.anu.edu.au/files/document-collection/TRAVEL%20INFORMATION%20-%20Travel%20Information%20Kit_July%202018.pdf
https://www.chubb.com/au-en/business/business-travel-group-travel-insurance.html
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TABLE 1.9: 2015-2019 Travel Claims Frequency

2015 2016 2017 2018 2019

158 154 139 205 274

incurred claim is less than 10. We omit these claims in our analysis. Reproduce
your part (a) analysis by omitting incurred claims less than 10.

c. Loss Distributions over Time. There are 1835 incurred losses in the dataset
with all available years (yet omitting claims less than 10). Figure 1.3 shows
that the distribution of incurred losses is stable over the period 2015-2019,
inclusive. Produce a comparable figure for the entire period.
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FIGURE 1.3: Distribution of Travel Losses by Year

d. Summary Statistics. In addition to graphs, it can be helpful to display
several summary statistics. For the five year period 2015-2019, produce a set
of summary statistics.

Exercise 1.2. Group Personal Accident. Group personal accident insurance
offers financial protection in case of injury or death resulting from an incident
that occurs on the job. Group personal accident offers insurance coverage
and liability insurance protection against accidental death or injury. The
insurance covers students and ANU’s voluntary workers; ANU workers are
covered through another system known as “workers’ compensation.”

Several limits apply including 1,000,000 for the period of insurance, 600,000 for
non-scheduled flights, and others. These limits were not reached in the data
we consider. For this coverage, there is a “7 day excess” for weekly benefits but
none for general benefits. The database documentation provided to us, and
the data we provide, do not indicate whether the excess has been triggered;
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TABLE 1.10: 2015-2019 Group Personal Accident Claims Frequency

2015 2016 2017 2018 2019

4 7 16 11 9

we have only paid claims. Because of the relatively small size of this class of
insurance, we ignore the effects of deductibles for this line.

The data provided to us are maintained by the insurer, Chubb. These data
began in underwriting year 2007 and were accessed on 29 July 2022. You can
retrieve the data by going to Appendix Section 22.3.

a. Claim Frequency. From this data set, there are 148 incurred claims. Of these
claims, there are 35 zeros and an additional 0 claims where the incurred claim
is less than 10. We omit these claims in our analysis. Table 1.10 shows the
count of claims for years 2015-2019, inclusive. Produce a comparable table of
claims frequency for the entire period, omitting claims that are less than 10.

b. Skewness of Claims Severity Distribution. The left-hand panel of Figure 1.4
shows a histogram of incurred claims that reveals the right-skewed nature of
this distribution. The right-hand panel shows the same claims but on the log
(base 10) scale; this plot demonstrates that the log transform can symmetrize
a distribution. These plots are for the 2015-2019 data. Replicate this work,
using incurred claims for all available years (still omitting those less than 10).

c. Summary Statistics. Produce summary statistics for both claims and log
claims using all available years (still omitting those less than 10). Comment
on the relationship between the mean and the median for both claims and log
claims, relating this to the symmetry of the distributions observed in part (b).

d. Loss Distributions over Time. There are 112 incurred losses. Figure 1.5
indicates that the incurred losses are stable over the period 2015-2019, inclusive.
Produce a comparable figure for the entire period and comment on the stability
of the distribution.

Exercise 1.3. Motor Vehicle. This policy covers ANU’s vehicles including
cars, vans, utilities, and motorcycles. There are two parts to this coverage,
one for comprehensive damage to the insured vehicles and a second for legal
liability. The comprehensive coverage for loss or damage is essentially limited
by the market value of the insured vehicle. For legal liability, there is a $50
Million upper limit for all claims arising from the one accident or series of
accidents resulting from the one original cause. There is also another upper
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FIGURE 1.5: Distribution of Group Personal Accident Losses by Year
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limit (that is lower than 50 million) when the vehicle is used for transportation
of dangerous goods.

The data available contain the amount paid by the insurer (Vero Insurance
Limited) which is the focus of our initial analysis. In addition, the data also
contains a deductible (called an “excess” in the data file) that we explore in
later parts.

The data provided to us are maintained by the insurer, Vero Insurance Limited.
These data began in underwriting year 2012 and were accessed on 8 August
2022. You can retrieve the data by going to Appendix Section 22.4.

a. Adjust for Zeros. From this data set, check that:

• there are 318 incurred claims.
• Of these claims, there are 50 zeros and
• an additional 0 claims where the incurred claim is less than 10.

Remove these claims in your analysis, so that there are 268 incurred claims.

b. Claim Frequency. Produce a table that shows the count of claims for the
entire period.

c. Loss Distributions over Time. Produce a figure that shows the distribution
of motor vehicle paid amounts over time and comment on the stability of the
distribution.

d. Year 2019. In your analysis from the prior steps, you may have noticed the
unusual aspects of year 2019. In that year, ANU suffered extensive damage
from a hailstorm that increased the frequency of claims as well as the severity.
Produce a histogram of paid claims for that year.

e. Deductibles. For each event, or series of events arising from the one originating
cause, ANU bears the amount of the excess in respect of each and every
insured vehicle, unless stated otherwise. The standard deductible (or excess)
in the dataset is 1000. However, a cursory examination of the dataset shows
tremendous variation by vehicle and over time. Replicate Table 1.11 that shows,
for each year, the number of claims with zero excess, positive excess less than
1000, an excess equal to 1000, and an excess greater than 1000.

(Deductibles. We recommend that motivated readers extend our analysis to
account for this deductible in both the severity and frequency.)
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TABLE 1.11: Motor Vehicle Excess by Year

UW.Year Num 0 Num
0-1000

Num =
1000

Num
>1000

Total

2011 1 1 7 0 9
2012 1 2 13 0 16
2013 4 1 22 0 27
2014 0 0 11 0 11
2015 1 1 14 0 16

2016 6 1 19 0 26
2017 16 0 4 1 21
2018 19 0 1 0 20
2019 99 0 6 0 105
2020 5 0 0 0 5

2021 10 0 0 0 10

1.5 Further Resources and Contributors

If you would like additional practice with R coding, please visit our companion
LDA Short Course. In particular, see the Introduction to Loss Data Analytics
Chapter.

Contributor

• Edward (Jed) Frees, University of Wisconsin-Madison and Australian
National University, is the principal author of the initial version and second
edition of this chapter. Email: jfrees@bus.wisc.edu for chapter comments
and suggested improvements.

• Chapter reviewers include: Yair Babad, Chunsheng Ban, Aaron Bruhn, Gor-
don Enderle, Hirokazu (Iwahiro) Iwasawa, Dalia Khalil, Bell Ouelega, Michelle
Xia.

This book introduces loss data analytic tools that are most relevant to actuaries
and other financial risk analysts. We have also introduced you to many new
insurance terms; more terms can be found at the NAIC Glossary (2018).

This work is licensed under a Creative Commons Attribution 4.0 International
License.

https://openacttexts.github.io/LDACourse1
https://openacttexts.github.io/LDACourse1/introduction-to-loss-data-analytics.html
https://openacttexts.github.io/LDACourse1/introduction-to-loss-data-analytics.html
mailto:jfrees@bus.wisc.edu


2
Introduction to Data Analytics

Chapter Preview. This introduction focuses on data analytics concepts relevant
to insurance activities. As data analytics is used across various fields with differ-
ent terminologies, we start in Section 2.1 by describing the basic ingredients or
elements of data analytics. Then, Section 2.2 outlines a process an analyst can
use to analyze insurance data. Many fields emphasize the development of data
analytics with a focus on multiple variables, or “big” data. However, this often
comes at the cost of excluding consideration of a single variable. So, Section
2.3 introduces an approach we call “single variable analytics,” which includes
a description of variable types, exploratory versus confirmatory analysis, and
elements of model construction and selection, all of which can be done in the
context of a single variable. Building on this, Section 2.4 explores the roles
of supervised and unsupervised learning, which require the presence of many
variables.

The final section of this chapter, Section 2.5, offers a broader introduction
to data considerations beyond the scope of this book, intended for budding
analysts who want to use this chapter to build a foundation for further studies
in data analytics. Additionally, the technical supplements introduce other
standard ingredients of data analytics, such as principal components, cluster
analysis, and tree-based regression models. While these topics are not necessary
for this book, they are important in a broader analytics context.

2.1 Elements of Data Analytics

In this section, you learn how to describe the essential ingredients of data
analytics

• consisting of several key concepts, and
• two fundamental approaches, data and algorithmic modeling.

27
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Data analysis involves inspecting, cleansing, transforming, and modeling
data to discover useful information to suggest conclusions and make decisions.
Data analysis has a long history. In 1962, statistician John Tukey defined data
analysis as:

procedures for analyzing data, techniques for interpreting the results of
such procedures, ways of planning the gathering of data to make its analysis
easier, more precise or more accurate, and all the machinery and results of
(mathematical) statistics which apply to analyzing data.

— (Tukey, 1962)

2.1.1 Key Data Analytic Concepts

Underpinning the elements of data analytics are the following key concepts:

• Data Driven. As described in Section 1.1.2, the conclusions and decisions
made through a data analytic process depend heavily on data inputs. In
comparison, econometricians have long recognized the difference between
a data-driven model and a structural model, the latter being one that
represents an explicit interplay between economic theory and stochastic
models, Goldberger (1972) .

• EDA - exploratory data analysis - and CDA - confirmatory data analysis.
Although some techniques overlap, e.g., taking the average of a dataset,
these two approaches to analyzing data have different purposes. The purpose
of EDA is to reveal aspects or patterns in the data without reference to
any particular model. In contrast, CDA techniques use data to substantiate,
or confirm, aspects or patterns in a model. See Section 2.3.2 for further
discussions.

• Estimation and Prediction. Recall the traditional triad of statistical
inference: hypothesis testing, parameter estimation, and prediction. Medical
statisticians test the efficacy of a new drug and econometricians estimate
parameters of an economic relationship. In insurance, one also uses hypothesis
testing and parameter estimation. Moreover, predictions of yet to be realized
random outcomes are critical for financial risk management (e.g., pricing) of
existing risks in future periods, as well as not yet observed risks in a current
period, cf. Frees (2015).

• Model Complexity, Parsimony, and Interpretability. A model is a
mathematical representation of reality that, in statistics, is calibrated using
a data set. One concern is the complexity of the model where the complexity
may involve the number of parameters used to define the model, the number
of variables upon which it relies, and the intricacies of relationships among
the parameters and variables. As a rule of thumb, we will see that the more
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complex is the model, the better it fares in fitting a set of data (and hence at
estimation) but the worse it fares in predicting new outcomes. Other things
being equal, a model with fewer parameters is said to be parsimonious and
hence less complex. Moreover, a parsimonious model is typically easier to
interpret than a comparable model that is more complex. Complexity hinders
our ability to understand the inner workings of a model, its interpretability,
and will be a key ingredient in our comparisons of data versus algorithmic
models in Section 2.1.2.

• Parametric and Nonparametric models. Many models, including stochas-
tic distributions, are known with the exception of a limited number of
quantities known as parameters. For example, the mean and variance are
parameters that determine a normal distribution. In contrast, other models
may not rely on parameters; these are simply known as nonparametric models.
Naturally, there is also a host of models that rely on parameters for some
parts of the distribution and are distribution-free for other portions; these
are referred to as semi-parametric models. Parametric and nonparametric
approaches have different strengths and limitations; neither is strictly better
than the other. We start the discussion in Section 2.3.3 to explain under
what circumstances you might prefer one approach to another.

• Robustness means that a model, test, or procedure is resistant to unan-
ticipated deviations in model assumptions or the data used to calibrate the
model. When interpreting findings, it is natural to ask questions about how
the results react to changes in assumptions or data, that is, the robustness
of the results.

• Computational Statistics. Historically, statistical modeling relied exten-
sively on summary statistics that were not only easy to interpret but also
easy to compute. With modern-day computing power, definitions of “easy to
compute” have altered drastically paving the way for measures that were once
deemed far too computationally intensive to be of practical use. Moreover,
ideas of subsampling and resampling data (e.g., through cross-validation and
bootstrapping) have introduced new methods for understanding statistical
sampling errors and a model’s predictive capabilities.

• Big Data. This is about the process of using special methods and tools
that can extract information rapidly from massive data. Examples of big
data include text documents, videos, and audio files that are also known as
unstructured data. Table 2.1 summarizes new types of data sources that lead
to new data. As part of the analytics trends, different types of algorithms
lead to new software for handling new types of data. See Section 2.5.4 for
further discussions.
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Table 2.1. Analytic Trends (from Frees and Gao (2019))

Data Sources Algorithms
Mobile devices Statistical learning
Auto telematics Artificial intelligence
Home sensors (Internet of Things) Structural models
Drones, micro satellites
Data Software
Big data (text, speech, image, video) Text analysis, semantics
Behavioral data (including social media) Voice recognition
Credit, trading, financial data Image recognition

Video recognition
Source : Stephen Mildenhall, Personal Communication

2.1.2 Data versus Algorithmic Modeling

There are two cultures for the use of statistical modeling to reach conclusions
from data: the data modeling culture and the algorithmic modeling culture.
In the data modeling culture, data are assumed to be generated by a given
stochastic model. In the algorithmic modeling culture, the data mechanism is
treated as unknown and algorithmic models are used.

Data modeling allows statisticians to analyze data and acquire information
about the data mechanisms. However, Breiman (2001) argued that the focus
on data modeling in the statistical community has led to some side effects such
as:

• It produced irrelevant theory and questionable scientific conclusions.
• It kept statisticians from using algorithmic models that might be more

suitable.
• It restricted the ability of statisticians to deal with a wide range of problems.

Algorithmic modeling was used by industrial statisticians long time ago. Sadly,
the development of algorithmic methods was taken up by communities outside
statistics. The goal of algorithmic modeling is predictive accuracy. For some
complex prediction problems, data models are not suitable. These prediction
problems include voice recognition, image recognition, handwriting recognition,
nonlinear time series prediction, and financial market prediction. The theory
in algorithmic modeling focuses on the properties of algorithms, such as
convergence and predictive accuracy.
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2.2 Data Analysis Process

In this section, you learn how to describe the data analysis process as five
steps:

• scoping phase,
• data splitting,
• model development,
• validation, and
• determining implications.

Table 2.2 outlines common steps used when analyzing data associated with
insurance activities.

Table 2.2 Data Analysis Process for Insurance Activities

I. Scoping II. Data III. Model IV. Validation V. Determine
Phase Splitting Development Implications

Use background Split the Select a candidate Repeat Phase III Use knowledge gained
knowledge and data into model to determine several from exploring the data,

theory to training candidate models fitting and predicting
define goals and testing the models to make

portions data-informed statements
about the project goals

Prepare, collect, Select variables to Assess each model
and revise data be used with the using the testing

candidate model portion of the data
to determine its

predictive capabilities

EDA Evaluate model fit
Explore the data using training data

Use deviations from
model fit to improve

suggested models

I. Scoping Phase

Scoping, or problem formulation, can be divided into three components:

• Use background knowledge and theory to define goals. Insurance
activity projects are commonly motivated by business pursuits that have
been formulated to be consistent with background knowledge such as market
conditions and theory such as a person’s attitude towards risk-taking.
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• Prepare, collect, and revise data. Getting the right data that gives
insights into questions at hand is typically the most time-consuming aspect
of most projects. Section 2.5 delves more into the devilish details of data
structures, quality, cleaning, and so forth.

• EDA - Exploring the data, without reference to any particular model, can
reveal unsuspected aspects or patterns in the data.

These three components can be performed iteratively. For example, a question
may suggest collecting certain data types. Then, a preliminary analysis of the
data raises additional questions of interest that can lead to seeking more data
- this cycle can be repeated many times. Note that this iterative approach
differs from the traditional “scientific method” whereby the analyst develops a
hypothesis, collects data, and then employs the data to test the hypothesis.

II. Data Splitting

Although optional, splitting the data into training and testing portions has
some important advantages. If the available dataset is sufficiently large, one
can split the data into a portion used to calibrate one or more candidate
models, the training portion, and another portion that can be used for testing,
that is, evaluating the predictive capabilities of the model. The data splitting
procedure guards against overfitting a model and emphasizes predictive aspects
of a model. For many applications, the splitting is done randomly to mitigate
unanticipated sources of bias. For some applications such as insurance, it is
common to use data from an earlier time period to predict, or forecast, future
behavior. For example, with the Section 1.3 Wisconsin Property Fund data, one
might use 2006-2010 data for training and 2011 data for assessing predictions.

For large datasets, some analysts prefer to split the data into three portions, one
for training (model estimation), one for validation (estimate prediction error
for model selection), and one for testing (assessment of the generalization error
of the final chosen model), c.f. Hastie et al. (2009) (Chapter 7). In contrast, for
moderate and smaller datasets, it is common to use cross-validation techniques
where one repeatedly splits the dataset into training and testing portions and
then averages results over many applications. These techniques are described
further in Chapter 8.

III. Model Development

The objective of the model development phase is to consider different types
of model and provide the best fit for each “candidate” model. As with the
scoping phase, developing a model is an iterative procedure.

• Select a candidate model. One starts with a model that, from the analyst’s
perspective, is a likely “candidate” to be the recommended model. Although
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analysts will focus on familiar models, such as through their past applications
of a model or its acceptance in industry, in principle one remains open to all
types of models.

• Select variables to be used with the candidate model. For simpler
situations, only a single outcome, or variable, is of interest. However, many
(if not most) situations deal with multivariate outcomes and, as will be seen
in Section 2.4, analysts give a great deal of thought as to which variables
are considered inputs to a system and which variables can be treated as
outcomes.

• Evaluate model fit on training data. Given a candidate model based on
one or more selected variables, the next step is to calibrate the model based
on the training data and evaluate the model fit. Many measures of model fit
are available - analysts should focus on those likely to be consistent with the
project goals and intended audience of the data analysis process.

• Use deviations from the model fit to suggest improvements to the
candidate model. When comparing the training data to model fits, it may
be that certain patterns are revealed that suggest model improvements. In
regression analysis, this tactic is known as diagnostic checking.

IV. Validation

• Repeat Phase III to determine several candidate models. There is
a wealth of potential models from which an analyst can choose. Some are
parametric, others non-parametric, and some a mixture between the two.
Some focus on simplicity such as through linear relationships whereas others
are much more complex. And so on. Through repeated applications of the
Phase III process, it is customary to narrow the field of candidates down to
a handful based on their fit to the training data.

• Assess each model using the testing portion of the data to determine
its predictive capabilities. With the handful of models that perform the
best in the model development phase, one assesses the predictive capabilities
of each model. Specifically, each fitted model is used to make predictions with
the predicted outcomes compared to the held-out test data. This comparison
may also be done using cross-validation. Models are then compared based on
their predictive capabilities.

V. Determine Implications

The scoping, model development, and validation phases all contribute to making
data-informed statements about the project goals. Although most projects
result in a single recommended model, each phase has the potential to lend
powerful insights.

For data analytic projects associated with insurance activities, it is common to
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select the model with best predictive capabilities. However, analysts are also
mindful of the intended audiences of their analyses, and it is also common to
favor models that are simpler and easier to interpret. The relative importance
of interpretability very much depends on the project goals. For example, a
model devoted to enticing potential customers to view a webpage can be
judged more on its predictive capabilities. In contrast, a model that provides
the foundations for insurance prices typically undergoes scrutiny by regulators
and consumer advocacy groups; here, interpretation plays an important role.

2.3 Single Variable Analytics

In this section, you learn how to describe analytics based on a single variable
in terms of

• the type of variable,
• exploratory versus confirmatory analyses,
• model construction and
• model selection.

Rather than starting with multiple variables consisting of inputs and outputs
as is common in analytics, in this section we restrict considerations to a single
variable. Single variable analytics is motivated by statistical data modeling.
Moreover, as will be seen in Chapters 3-8, single variable analytics plays a
prominent role in fundamental insurance and risk management applications.

2.3.1 Variable Types

This section describes basic variable types traditionally encountered in statis-
tical data analysis. Section 2.5 will provide a framework for more extensive
types that include big data.

Qualitative Variables

A qualitative, or categorical variable is one for which the measurement denotes
membership in a set of groups, or categories. For example, if you were coding in
which area of the country an insured resides, you might use 1 for the northern
part, 2 for southern, and 3 for everything else. Any analysis of categorical
variables should not depend on the labeling of the categories. For example,
instead of using a 1,2,3 for north, south, other, one should arrive at the same
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set of summary statistics if I used a 2,1,3 coding instead, interchanging north
and south.

In contrast, an ordinal variable is a variation of categorical variable for which
an ordering exists. For example, with a survey to see how satisfied customers
are with our claims servicing department, we might use a five point scale
that ranges from 1 meaning dissatisfied to a 5 meaning satisfied. Ordinal
variables provide a clear ordering of levels of a variable although the amount
of separation between levels is unknown.

A binary variable is a special type of categorical variable where there are only
two categories commonly taken to be 0 and 1.

Earlier, in the Section 1.3 case study, we saw in Table 1.5 several examples of
qualitative variables. These included the categorical EntityType and binary
variables NoClaimCredit and Fire5. We also treated AlarmCredit as a cat-
egorical variable although some analysts may wish to explore its use as an
ordinal variable.

Quantitative Variables

Unlike a qualitative variable, a quantitative variable is one in which each
numerical level is a realization from some scale so that the distance between
any two levels of the scale takes on meaning. A continuous variable is one that
can take on any value within a finite interval. For example, one could represent
a policyholder’s age, weight, or income, as continuous variables. In contrast, a
discrete variable is one that takes on only a finite number of values in any finite
interval. For example, when examining a policyholder’s choice of deductibles,
it may be that values of 0, 250, 500, and 1000 are the only possible outcomes.
Like an ordinal variable, these represent distinct categories that are ordered.
Unlike an ordinal variable, the numerical difference between levels takes on
economic meaning. A special type of discrete variable is a count variable, one
with values on the nonnegative integers. For example, we will be particularly
interested in the number of claims arising from a policy during a given period.
Another interesting variation is an interval variable, one that gives a range of
possible outcomes.

Earlier, in the Section 1.3 case study, we encountered several examples of
quantitative variables. These included the deductible (in logarithmic dollars),
total building and content coverage (in logarithmic dollars), claim severity and
claim frequency.

Loss Data

This introduction to data analytics is motivated by features of loss data that
arise from, or are related to, obligations in insurance contracts. Loss data
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rarely arise from a bell-shaped normal distribution that has motivated the
development of much of classical statistics. As a consequence, the treatment
of data analytics in this text differs from that typically encountered in other
introductions to data analytics.

What features of loss data warrant special treatment?

• We have already seen in the Section 1.3 case study that we will be concerned
with the frequency of losses, a type of count variable.

• Further, when a loss occurs, the interest is in the amount of the claim, a
quantitative variable. This claim severity is commonly modeled using skewed
and long-tailed distributions so that extremely large outcomes are associated
with relatively large probabilities. Typically, the normal distribution is a
poor choice for a loss distribution.

• When a loss does occur, often the analyst only observes a value that is
modified by insurance contractual features such as deductibles, upper limits,
and co-insurance parameters.

• Loss data are frequently a combination of discrete and continuous components.
For example, when we analyze the insured loss of a policyholder, we will
encounter a discrete outcome at zero, representing no insured loss, and a
continuous amount for positive outcomes, representing the amount of the
insured loss.

2.3.2 Exploratory versus Confirmatory

There are two phases of data analysis: exploratory data analysis (EDA) and
confirmatory data analysis (CDA). Table 2.3 summarizes some differences
between EDA and CDA. EDA is usually applied to observational data with
the goal of looking for patterns and formulating hypotheses. In contrast,
CDA is often applied to experimental data (i.e., data obtained by means of a
formal design of experiments) with the goal of quantifying the extent to which
discrepancies between the model and the data could be expected to occur by
chance.
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Table 2.3. Comparison of Exploratory Data Analysis and Confirmatory
Data Analysis

EDA CDA
Data Observational data Experimental data

Goal Pattern recognition, Hypothesis testing,
formulate hypotheses estimation, prediction

Techniques Descriptive statistics, Traditional statistical tools of
visualization, clustering inference, significance, and

confidence

As we have seen in the Section 1.3 case study, the techniques for single variable
EDA include descriptive statistics (e.g., mean, median, standard deviation,
quantiles) and summaries of distributions such as through histograms. In
contrast, the techniques for CDA include the traditional statistical tools of
inference, significance, and confidence.

2.3.3 Model Construction

As we learned in Section 2.1.2, models may have a stochastic basis from the
statistical modeling paradigm or may simply be the result of an algorithm.
When constructing a model, it is helpful to think about how it is parameterized
and to identify the purpose of constructing the model.

Parametric versus Nonparametric

Data analysis models can be parametric or nonparametric. Parametric models
are representations that are known up to a few terms known as parameters.
These may be representations of a stochastic distribution or simply an algo-
rithm used to predict data outcomes. Typically, data are used to determine
the parameters and in this way calibrate the model. In contrast, nonpara-
metric methods make no such assumption of a known functional form. For
example, Section 4.4.1 will introduce nonparametric methods that do not
assume distributions for the data and therefore are also called distribution-free
methods.

Because a functional form is known with a parametric model, this approach
works well when data size is relatively limited. This reasoning extends to the
situation when one is considering many variables simultaneously so that the so-
called “curse of dimensionality” effectively limits the sample size. For example
if you are trying to determine the expected cost of automobile losses, you are
likely to consider a driver’s age, gender, driving location, type of vehicle, and
dozens of other variables. Approaches that use some parametric relationships
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among these variables are common because a purely non-parametric approach
would require data sets too large to be useful in practice.

Nonparametric methods are very valuable particularly at the exploratory stages
of an analysis where one tries to understand the distribution of each variable.
Because nonparametric methods make fewer assumptions, they can be more
flexible, more robust, and more applicable to non-quantitative data. However,
a drawback of nonparametric methods is that it is more difficult to extrapolate
findings outside of the observed domain of the data, a key consideration in
predictive modeling.

Explanation versus Prediction

There are two goals in data analysis: explanation and prediction. In some
scientific areas such as economics, psychology, and environmental science, the
focus of data analysis is to explain the causal relationships between the input
variables and the response variable. In other scientific areas such as natural
language processing, bioinformatics, and actuarial science, the focus of data
analysis is to predict what the responses are going to be given the input
variables.

Shmueli (2010) discussed in detail the distinction between explanatory modeling
and predictive modeling. Explanatory modeling is commonly used for theory
building and testing and is typically done as follows:

• State the prevailing theory.
• State causal hypotheses, which are given in terms of theoretical constructs

rather than measurable variables. A causal diagram is usually included
to illustrate the hypothesized causal relationship between the theoretical
constructs.

• Operationalize constructs. In this step, previous literature and theoretical
justification are used to build a bridge between theoretical constructs and
observable measurements.

• Collect data and build models alongside the statistical hypotheses, which are
operationalized from the research hypotheses.

• Reach research conclusions and recommend policy. The statistical conclusions
are converted into research conclusions or policy recommendations.

In contrast, predictive modeling is the process of applying a statistical model
or data mining algorithm to data for the purpose of predicting new or future
observations. Predictions include point predictions, interval predictions, regions,
distributions, and rankings of new observations. A predictive model can be
any method that produces predictions.
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2.3.4 Model Selection

Although hypothesis testing is one approach to model selection that is viable in
many fields, it does have its drawbacks. For example, the asymmetry between
the null and alternative hypotheses raises issues; hypothesis testing is biased
towards a null hypothesis unless there is strong evidence to the contrary.

For modeling insurance activities, it is typically preferable to estimate the
predictive power of various models and select a model with the best predictive
power. The motivation for this is that we want good model selection methods
achieve a balance between goodness of fit and parsimony. This is a trade-off
because on the one hand, better fits to the data can be achieved by adding
more parameters, making the model more complex and less parsimonious. On
the other hand, models with fewer parameters (parsimonious) are attractive
because of their simplicity and interpretability; they are also less subject to
estimation variability and so can yield more accurate predictions, Ruppert
et al. (2003).

One way of measuring this balance is through information criteria such as
Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion
(BIC). These measures each contain a component that summarizes how well
the model fits the data, a goodness of fit piece, plus a component to penalize
the complexity of the model.

Although attractive due to their simplicity, there are drawbacks to these
measures. In particular, both rely on knowledge of the underlying distribution
of the outcomes (or at least good estimates). A more robust approach is to
split a data set in a portion that can used to calibrate a model, the training
portion, and another portion used to quantify the predictive power of the
model, the test portion. It is more robust in the sense that it does not rely on
any distributional assumptions and can be used to validate general models.

The data splitting approach is attractive because it directly aligns with the
concept of assessing predictive power and can be used in general, and complex,
situations. However, it does introduce additional variability into the process
by introducing extra randomness of the uncertainty of which observations fall
into the training and testing portions. To mitigate this problem, it is common
to use an approach known as cross-validation. To illustrate, suppose that one
randomly partitions a dataset into five subsets of roughly equivalent sizes

Train Test Train Train Train

Then, based on the first, third, fourth, and fifth subsets, estimate a model,
use this fitted model to predict outcomes in the second, and compare the
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predictions to the held-out values in the test portion. Repeat this process by
selecting each subset as the test portion, with the others being used for training,
and take an average over the comparison which results in a cross-validation
statistic. Cross-validation is used widely in modeling insurance activities and
is described in more detail in Chapter 5.

Example 2.3.1. Under- and Over-Fitting. Suppose that we have a set of
claims that potentially varies by a single categorical variable with six levels.
For example, in the Section 1.3 case study there are six entity types. If each
level is truly distinct, then in classical statistics one uses the level average to
make predictions for future claims. Another option is to ignore information in
the categorical variable and use the overall average to make predictions; this is
known as a “community-rating” approach.

For illustrative purposes, we assume that two of the six levels are the same and
are different from the others. For example, the Table 1.6 summary statistics
suggest that Schools and the Miscellaneous levels can be viewed similarly
yet warrant a higher predicted claims amount than the other four levels. For
illustrative purposes, we generated 100 claims that follow this pattern (using
simulation techniques that will be described in Chapter 8).

Results are summarized in Table 2.4 for three fitted models. These are the
“Community Rating” corresponding to using the overall mean, the “Two Levels”
corresponding to using two averages, and the “Six Levels” corresponding to
using an average for each level of the categorical variable. The data set of size
100 was randomly split into five folds; for each fold, the other folds were used
to train/estimate the model and then that fold was used to assess predictions.
The first five rows of Table 2.4 give the results of the root mean square error
for each fold. The sixth row provides the average over the five folds and the
last row gives a similar result for another goodness of fit statistic, the AIC.
This approach is known as “cross-validation” that will be described in greater
detail in Chapters 6 and 8.

Table 2.4 shows that in each case the “Two Level” model has the lowest root
mean square error and AIC, indicating that it is the preferred model. The
overfit model with six levels came in second and the underfit model, community
rating, was a distant third. This analysis demonstrates techniques for selecting
the appropriate model. Unlike analysis of real data, in this demonstration we
enjoyed the additional luxury of knowing that we got things correct because
we in fact generated the data - an approach that analysts often use to develop
analytic procedures prior to utilizing the procedures on real data.
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TABLE 2.4: Under- and Over-Fitting of Models

Community
Rating

Two
Levels

Six Levels

Rmse - Fold 1 1.318 1.192 1.239
Rmse - Fold 2 1.034 0.972 1.023
Rmse - Fold 3 0.816 0.660 0.759
Rmse - Fold 4 0.807 0.796 0.824
Rmse - Fold 5 0.886 0.539 0.671

Rmse - Average 0.972 0.832 0.903
AIC - Average 227.171 206.769 211.333

2.4 Analytics with Many Variables

In this section, you learn how to describe analytics based on many variables in
terms of

• supervised and unsupervised learning,
• types of algorithmic models, including linear, ridge, and lasso regressions, as

well as regularization, and
• types of data models, including Poisson regressions and generalized linear

models.

Just as with a single variable in Section 2.3, with many variables analysts follow
the same structure of identifying variables, exploring data, constructing and
selecting models. However, the potential applications become much richer when
considering many variables. With many potential applications, it is natural
that techniques for data analysis have developed in different but overlapping
fields; these fields include statistics, machine learning, pattern recognition, and
data mining.

• Statistics is a field that addresses reliable ways of gathering data and making
inferences.

• The term machine learning was coined by Samuel in 1959 (Samuel, 1959).
Originally, machine learning referred to the field of study where computers
have the ability to learn without being explicitly programmed. Nowadays,
machine learning has evolved to a broad field of study where computational
methods use experience (i.e., the past information available for analysis) to
improve performance or to make accurate predictions.
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• Originating in engineering, pattern recognition is a field that is closely related
to machine learning, which grew out of computer science. In fact, pattern
recognition and machine learning can be considered to be two facets of the
same field (Bishop, 2007).

• Data mining is a field that concerns collecting, cleaning, processing, analyzing,
and gaining useful insights from data (Aggarwal, 2015).

2.4.1 Supervised and Unsupervised Learning

With multiple variables, the essential tasks of identifying variable types, ex-
ploring data, and selecting models are similar in principle to that described for
single variables in Section 2.3. When exploring data in multiple dimensions,
additional considerations such as clustering like observations and reducing
the dimension arise. As these considerations will not arise in the applications
in this book, we provide only a brief introduction in Technical Supplement
Section 2.6.1.

The construction of models differs dramatically when comparing single to
multiple variable modeling. With many variables, we have the opportunity to
think about some of them as “inputs” and others “outputs” of a system. Models
based on input and output variables are known as supervised learning methods
or as regression methods. Table 2.5 gives a list of common names for different
types of variables (Frees, 2009). When the target variable is a categorical
variable, supervised learning methods are called classification methods.

Table 2.5. Common Names of Different Variables

Target Variable Explanatory Variable
Dependent variable Independent variable
Response Treatment
Output Input
Endogenous variable Exogenous variable
Predicted variable Predictor variable
Regressand Regressor

Methods for data analysis can be divided into two types (Abbott, 2014; James
et al., 2013): supervised learning methods and unsupervised learning methods.
Unsupervised learning methods work where our data are treated the same
and there is no artificial divide between “inputs” and “outputs.” As a result,
unsupervised learning methods are particularly useful at the exploratory stage
of an analysis.
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2.4.2 Algorithmic Modeling

Early data analysis traced the movements of orbits of bodies about the sun
using astronomical observations in the 1750’s by Boscovich and was continued
in the early 1800’s by Legendre and Gauss (the latter two in connection with
their development of least squares). This work was done using algorithmic
fitting approaches (such as least squares) without regard to distributions of
random variables.

The idea underpinning algorithmic fitting is easy to interpret. One variable, Y ,
is determined to be a target variable. Other variables, X1, X2, . . . , Xp, are used
to understand or explain the target Y . The goal is to determine an appropriate
function f(·) so that f(X1, X2, . . . , Xk) is a useful predictor of Y .

Linear Regression. To illustrate, consider the classic linear regression context.
In this case, we have n observations of a target and explanatory variables, with
the ith observation denoted as (xi1, . . . , xik, yi) = (xi, yi). One would like to
determine a single function f so that f(xi) is a reasonable approximation for
yi, for each i. For the linear regression, one restricts considerations to functions
of the form

f(xi1, . . . , xik) = β1xi1 + · · · + βkxik = x′
iβ.

Here, β = (β1, . . . , βk)′ is a vector of regression coefficients. This function is
linear in the explanatory variables that gives rise to the name linear regression.

The ordinary least squares (OLS) estimates are the solution of the following
minimization problem,

minimizeβ
1
n

∑n
i=1(yi − x′

iβ)2.

The OLS estimates are historically prominent in part because of their ease
of computation and interpretation. Naturally, a squared difference such as
(yi − x′

iβ)2 is not the only way to measure the deviation between a target yi

and an estimate x′
iβ. In general, analysts use the term loss function l(yi,x′

iβ)
to measure this deviation; as an alternative, it is not uncommon to use an
absolute deviation.

Algorithmic Modeling Culture. As introduced in Section 2.1.2, a culture
has developed across widespread communities that emphasizes algorithmic
fitting particularly in complex problems such as voice, image, and handwriting
recognition. Algorithmic methods are especially useful when the goal is pre-
diction, as noted in Section 2.3.3. Many of these algorithms take an approach
similar to linear regression. As examples, other widely used algorithmic fitting
methods include ridge and lasso regression, as well as regularization methods.

Ridge Regression. One limitation of OLS is that it tends to overfit, par-
ticularly when the number of regression coefficients k becomes large. In fact,
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with k = n one gets an exact match between the targets yi and the predictor
function. A modification introduced in 1970 by Hoerl and Kennard (1970) is
known as ridge regression where one determines regression coefficients β as
in equation (2.4.2) although subject to the constraint that ∑p

j=1 |βj|2 ≤ cridge,
where cridge is an appropriately chosen constant. Naturally, if cridge is very
large, then the constraint has no effect and the ridge estimates equal the OLS
solution. However, as cridge becomes small, it reduces the size of the regression
coefficients. In this sense, the ridge regression estimator is said to be “shrunk
towards zero.”

Adding the constraint on the size of the coefficients can mean smaller and
more stable coefficients when compared to OLS. As such, ridge regression is
particularly useful when dealing with high-dimensional datasets, where the
number of predictors is very large compared to the number of observations. In
the actuarial applications, we might have a portfolio of only a few thousand
risks that we wish to model. With ridge regression, we can utilize millions of
variables as potential inputs to develop predictive models.

Lasso Regression. Similar to ridge regression, one can determine regres-
sion coefficients β as in equation (2.4.2) although subject to the constraint
that ∑p

j=1 |βj| ≤ classo, where classo is an appropriately chosen constant. This
procedure is known as lasso regression. Here, one uses absolute values in the
constraint function (although still squared errors for the loss function).

The lasso overcomes an important limitation of ridge regression. With ridge
regression, we might reduce the size of the constant cridge that forces the
regression coefficient to become small but does not ensure that they become
zero. In contrast, the lasso ensures that trivial regression coefficients become
zero. In the linear regression approximation, a zero regression coefficient means
that the variable drops from the function approximation, thus reducing model
complexity.

Regularization. Both the ridge and lasso regressions are constrained min-
imization problems. It is not too hard to show that they can be written
as

minimizeβ

 1
n

n∑
i=1

(yi − x′
iβ)2 + LM

p∑
j=1

|βj|s
 ,

where s = 2 is for ridge regression and s = 1 is for lasso regression. We can
interpret the first part inside the minimization operation as the goodness
of fit and the second part as a penalty for size of the regression coefficients.
As we have discussed, reducing the coefficients can mean reducing modeling
complexity. In this sense, this expression demonstrates a balance between
goodness of fit and model complexity, controlled by the parameter LM (In
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this case, because it is a constrained optimization problem, the parameter is a
Lagrange multiplier.). The choice of LM = 0 reduces to the OLS estimator
that focuses on goodness of fit. As LM becomes large, the focus moves away
from the data (and hence goodness of fit). This is an example of a regularization
method in data analytics, where one expresses a prior belief concerning the
smoothness of functions used for our predictions.

2.4.3 Data Modeling

One way to motivate an algorithmic development is through the use of a
data model introduced in Section 2.1.2. Here, we can also think of this as a
“probability” or “likelihood” based model, in that our main goal is to understand
the target (Y ) distribution, typically in terms of the explanatory variables.
Thus, data models are particularly useful for the goal of explanation previously
discussed in Section 2.3.3.

Data models were initially developed in the early twentieth century through
the work of R.A. Fisher and E.P. George Box (among many, many others)
whose work focused on data as the result of experiments with a small number
of outcomes and even fewer explanatory (control) variables.

Linear Regression. The (algorithmic) linear regression with OLS estimates
can be motivated using a probabilistic framework, as follows. We can think of
the target variable yi as having a normal distribution with unknown variance
and a mean equal to x′

iβ, a linear combination of the explanatory variables.
Assuming independence among observations, it can be shown that the maximum
likelihood estimates are equivalent to the OLS estimates determine in equation
(2.4.2).

Maximum likelihood estimation is used extensively in this text, you can get a
quick overview in Chapter 18 Appendix C. For additional background on OLS
and maximum likelihood in the linear regression case see, for example, Frees
(2009) for more details.

Poisson Regression. In the case where the target variable Y represents a
count (such as the number of insurance losses), then it is common to use a
Poisson distribution to represent the likelihood of potential outcomes. The
Poisson has only one parameter, the mean, and if explanatory variables are
available, then one can take the mean to equal exp (x′

iβ). One motivation for
using the exponential (exp(·)) function is that it ensures that estimated means
are non-negative (a necessary condition for the Poisson distribution). When
maximum likelihood is used to estimate the regression coefficients, then this is
known as Poisson regression.

Generalized Linear Model. The generalized linear model (GLM ) consists
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of a wide family of regression models that include linear and Poisson regression
models as special cases. In a GLM, the mean of the target variable is assumed
to be a function of a linear combination of the explanatory variables. As with
a Poisson regression, the mean can vary by observations by allowing some
parameters to change yet the regression parameters β are assumed to be
constant.

In a GLM, the target variable is assumed to follow a distribution from the
linear exponential family, a collection of distributions that includes the nor-
mal, Poisson, Bernoulli, Weibull, and others. Thus, a GLM is one way of
developing a broader class that includes linear and Poisson regression. Using
a Bernoulli distribution, it also includes zero-one target variables resulting
in what is known as logistic regression. Thus, the GLM provides a unifying
framework to handle different types of target variables, including discrete and
continuous variables. Extensions to other distributions that are not part of
linear exponential family, such as a Pareto distribution, are also possible. But,
GLMs have historically been found useful because their form permits efficient
calculation of estimators (through what is known as iterative reweighted least
squares). For more information about GLM s, readers are referred to De Jong
and Heller (2008) and Frees (2009).

2.5 Data

In this section, you learn how to describe data considerations in terms of

• data types,
• data structure and storage,
• data cleaning,
• big data issues, and
• ethical issues.

Data constitute the backbone of “data analytics.” Without data containing
useful information, no level of sophisticated analytic techniques can provide
useful guidance for making good decisions.

The prior sections of this chapter provide the foundations of data considerations
needed for the rest of this book. However, for readers who wish to specialize
in data analytics, the following subsections provide a useful starting point for
further study.
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2.5.1 Data Types

In terms of how data are collected, data can be divided into two types (Hox
and Boeije, 2005): primary and secondary data. Primary data are the original
data that are collected for a specific research problem. Secondary data are
data originally collected for a different purpose and reused for another research
problem. A major advantage of using primary data is that the theoretical
constructs, the research design, and the data collection strategy can be tailored
to the underlying research question to ensure that data collected help to solve
the problem. A disadvantage of using primary data is that data collection can
be costly and time consuming. Using secondary data has the advantage of
lower cost and faster access to relevant information. However, using secondary
data may not be optimal for the research question under consideration.

In terms of the degree of organization, data can be also divided into two types:
structured data and unstructured data. Structured data have a predictable and
regularly occurring format. In contrast, unstructured data lack any regularly
occurring format and have no structure that is recognizable to a computer.
Structured data consist of records, attributes, keys, and indices and are typically
managed by a database management system such as IBM DB2, Oracle, MySQL,
and Microsoft SQL Server. As a result, most units of structured data can
be located quickly and easily. Unstructured data have many different forms
and variations. One common form of unstructured data is text. Accessing
unstructured data can be awkward. To find a given unit of data in a long text,
for example, a sequential search is usually performed.

2.5.2 Data Structures and Storage

As mentioned in the previous subsection, there are structured data as well as
unstructured data. Structured data are highly organized data and usually have
the following tabular format:

V1 V2 · · · Vd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d
... ... ... · · · ...
xn xn1 xn2 · · · xnd

In other words, structured data can be organized into a table consisting of
rows and columns. Typically, each row represents a record and each column
represents an attribute. A table can be decomposed into several tables that
can be stored in a relational database such as the Microsoft SQL Server. The
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SQL (Structured Query Language) can be used to access and modify the data
easily and efficiently.

Unstructured data do not follow a regular format. Examples of unstructured
data include documents, videos, and audio files. Most of the data we encounter
are unstructured data. In fact, the term “big data” was coined to reflect
this fact. Traditional relational databases cannot meet the challenges on the
varieties and scales brought by massive unstructured data nowadays. NoSQL
databases have been used to store massive unstructured data.

There are three main NoSQL databases (Chen et al., 2014): key-value
databases, column-oriented databases, and document-oriented databases. Key-
value databases use a simple data model and store data according to key values.
Modern key-value databases have higher expandability and smaller query
response times than relational databases. Examples of key-value databases
include Dynamo used by Amazon and Voldemort used by LinkedIn. Column-
oriented databases store and process data according to columns rather than
rows. The columns and rows are segmented in multiple nodes to achieve expand-
ability. Examples of column-oriented databases include BigTable developed
by Google and Cassandra developed by FaceBook. Document databases are
designed to support more complex data forms than those stored in key-value
databases. Examples of document databases include MongoDB, SimpleDB, and
CouchDB. MongoDB is an open-source document-oriented database that stores
documents as binary objects. SimpleDB is a distributed NoSQL database used
by Amazon. CouchDB is another open-source document-oriented database.

2.5.3 Data Cleaning

Raw data usually need to be cleaned before useful analysis can be conducted. In
particular, the following areas need attention when preparing data for analysis
(Janert, 2010):

• Missing values. It is common to have missing values in raw data. Depending
on the situation, we can discard the record, discard the variable, or impute
the missing values.

• Outliers. Raw data may contain unusual data points such as outliers. We
need to handle outliers carefully. We cannot just remove outliers without
knowing the reason for their existence. Although sometimes outliers can
be simple mistakes such as those caused by clerical errors, sometimes their
unusual behavior can point to precisely the type of effect that we are looking
for.

• Junk. Raw data may contain garbage, or junk, such as nonprintable charac-
ters. When it happens, junk is typically rare and not easily noticed. However,
junk can cause serious problems in downstream applications.
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• Format. Raw data may be formatted in a way that is inconvenient for
subsequent analysis. For example, components of a record may be split into
multiple lines in a text file. In such cases, lines corresponding to a single
record should be merged before loading to a data analysis software such as R.

• Duplicate records. Raw data may contain duplicate records. Duplicate
records should be recognized and removed. This task may not be trivial
depending on what you consider “duplicate.”

• Merging datasets. Raw data may come from different sources. In such
cases, we need to merge data from different sources to ensure compatibility.

For more information about how to handle data in R, readers are referred to
Forte (2015) and Buttrey and Whitaker (2017).

2.5.4 Big Data Analysis

Unlike traditional data analysis, big data analysis employs additional methods
and tools that can extract information rapidly from massive data. In particular,
big data analysis uses the following processing methods (Chen et al., 2014):

• A bloom filter is a space-efficient probabilistic data structure that is used
to determine whether an element belongs to a set. It has the advantages of
high space efficiency and high query speed. A drawback of using bloom filter
is that there is a certain nonrecognition rate.

• Hashing is a method that transforms data into fixed-length numerical values
through a hash function. It has the advantages of rapid reading and writing.
However, sound hash functions are difficult to find.

• Indexing refers to a process of partitioning data in order to speed up reading.
Hashing is a special case of indexing.

• A trie, also called digital tree, is a method to improve query efficiency by
using common prefixes of character strings to reduce comparisons among
character strings.

• Parallel computing uses multiple computing resources to complete a
computation task. Parallel computing tools include Message Passing Interface
(MPI), MapReduce, and Dryad.

Big data analysis can be conducted in the following levels (Chen et al., 2014):
memory-level, business intelligence (BI) level, and massive level. Memory-level
analysis is conducted when data can be loaded to the memory of a cluster
of computers. Current hardware can handle hundreds of gigabytes (GB) of
data in memory. BI level analysis can be conducted when data surpass the
memory level. It is common for BI level analysis products to support data
over terabytes (TB). Massive level analysis is conducted when data surpass the
capabilities of products for BI level analysis. Usually Hadoop and MapReduce
are used in massive level analysis.
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2.5.5 Ethical Issues

Analysts may face ethical issues and dilemmas during the data analysis process.
In some fields, ethical issues and dilemmas include participant consent, benefits,
risk, confidentiality, and data ownership (Miles et al., 2014). For example, re-
garding privacy and confidentiality, one might confront the following questions:
How do we make sure that the information is kept confidentially? How do we
verify where raw data and analysis results are stored? How will we have access
to them? These questions should be addressed and documented in explicit
confidentiality agreements.

Within the insurance sector, discrimination, privacy, and confidentiality are
major concerns. Discrimination in insurance is particularly difficult because
the entire industry is based on “discriminating,” or classifying, insureds into
homogeneous categories for the purposes of risk sharing. Many variables that
insurers use are seemingly innocuous (e.g., blindness for auto insurance), yet
others can be viewed as “wrong” (e.g., religious affiliation), “unfair” (e.g., onset
of cancer for health insurance), “sensitive” (e.g., marital status), or “mysterious”
(e.g., Artificial Intelligence produced). Regulators and policymakers decide
whether it is not permitted to use a variable for classification. In part because
they depend on differing attitudes, perspectives can vary dramatically across
jurisdictions. For example, gender-based pricing of auto insurance is permitted
in all but a handful of U.S. states (the exceptions being Hawaii, Massachusetts,
Montana, North Carolina, Pennsylvania, and, as of 2019, California) yet not
permitted within the European Union. Moreover, for personal lines such as
auto and homeowners, availability of big data may also lead to issues regarding
proxy discrimination. Proxy discrimination occurs when a surrogate, or proxy,
is used in place of a prohibited trait such as race or gender, see, for example,
Frees and Huang (2021).
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Further Readings and References

• Stigler (1986) gives a definitive account of the early contributions of Boscovich,
Legendre and Gauss.

• Breiman (2001) compares the data modeling and the algorithmic modeling
cultures.

• Good (1983) compares the two phases of data analysis, exploratory data
analysis (EDA) and confirmatory data analysis (CDA)

• See, for example, Breiman (2001) and Shmueli (2010), for more discussions
of the two goals in data analysis: explanation and prediction.

• Comparisons of structured data and unstructured data can be found in Inmon
and Linstedt (2014), O’Leary (2013) ,Hashem et al. (2015), Abdullah and
Ahmad (2013), and Pries and Dunnigan (2015), among others.

2.6.1 Technical Supplement: Multivariate Exploratory Analysis
Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure that transforms
a dataset described by possibly correlated variables into a dataset described
by linearly uncorrelated variables, which are called principal components and
are ordered according to their variances. PCA is a technique for dimension
reduction. If the original variables are highly correlated, then the first few
principal components can account for most of the variation of the original data.

The principal components of the variables are related to the eigenvalues and
eigenvectors of the covariance matrix of the variables. For i = 1, 2, . . . , d, let
(λi, ei) be the ith eigenvalue-eigenvector pair of the covariance matrix Σ of d
variables X1, X2, . . . , Xd such that λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 and the eigenvectors
are normalized. Then the ith principal component is given by

Zi = e′
iX =

d∑
j=1

eijXj,

where X = (X1, X2, . . . , Xd)′. It can be shown that Var (Zi) = λi. As a
result, the proportion of variance explained by the ith principal component is
calculated as

Var (Zi)∑d
j=1 Var (Zj)

= λi

λ1 + λ2 + · · · + λd

.

For more information about PCA, readers are referred to Mirkin (2011).

Cluster Analysis

Cluster analysis (aka data clustering) refers to the process of dividing a dataset
into homogeneous groups or clusters such that points in the same cluster are
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similar and points from different clusters are quite distinct (Gan et al., 2007;
Gan, 2011). Data clustering is one of the most popular tools for exploratory
data analysis and has found its applications in many scientific areas.

During the past several decades, many clustering algorithms have been proposed.
Among these clustering algorithms, the k-means algorithm is perhaps the most
well-known algorithm due to its simplicity. To describe the k-means algorithm,
let X = {x1,x2, . . . ,xn} be a dataset containing n points, each of which is
described by d numerical features. Given a desired number of clusters k, the
k-means algorithm aims at minimizing the following objective function:

P (U,Z) =
k∑

l=1

n∑
i=1

uil∥xi − zl∥2,

where U = (uil)n×k is an n× k partition matrix, Z = {z1, z2, . . . , zk} is a set
of cluster centers, and ∥ · ∥ is the L2 norm or Euclidean distance. The partition
matrix U satisfies the following conditions:

uil ∈ {0, 1}, i = 1, 2, . . . , n, l = 1, 2, . . . , k,

k∑
l=1

uil = 1, i = 1, 2, . . . , n.

The k-means algorithm employs an iterative procedure to minimize the ob-
jective function. It repeatedly updates the partition matrix U and the cluster
centers Z alternately until some stop criterion is met. For more information
about k-means, readers are referred to Gan et al. (2007) and Mirkin (2011).

2.6.2 Tree-based Models

Decision trees, also known as tree-based models, involve dividing the predictor
space (i.e., the space formed by independent variables) into a number of simple
regions and using the mean or the mode of the region for prediction (Breiman
et al., 1984). There are two types of tree-based models: classification trees
and regression trees. When the dependent variable is categorical, the resulting
tree models are called classification trees. When the dependent variable is
continuous, the resulting tree models are called regression trees.

The process of building classification trees is similar to that of building regres-
sion trees. Here we only briefly describe how to build a regression tree. To do
that, the predictor space is divided into non-overlapping regions such that the
following objective function

f(R1, R2, . . . , RJ) =
J∑

j=1

n∑
i=1

IRj
(xi)(yi − µj)2
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is minimized, where I is an indicator function, Rj denotes the set of indices of
the observations that belong to the jth box, µj is the mean response of the
observations in the jth box, xi is the vector of predictor values for the ith
observation, and yi is the response value for the ith observation.

In terms of predictive accuracy, decision trees generally do not perform to the
level of other regression and classification models. However, tree-based models
may outperform linear models when the relationship between the response and
the predictors is nonlinear. For more information about decision trees, readers
are referred to Breiman et al. (1984) and Mitchell (1997).

2.6.3 Technical Supplement: Some R Functions

R is an open-source software for statistical computing and graphics. The R
software can be downloaded from the R project website at https://www.r-
project.org/. In this section, we give some R function for data analysis, especially
the data analysis tasks mentioned in previous sections.

https://www.r-project.org/
https://www.r-project.org/
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Table 2.6. Some R Functions for Data Analysis

Data Analysis Task R Package R Function
Descriptive Statistics base summary
Principal Component Analysis stats prcomp
Data Clustering stats kmeans, hclust
Fitting Distributions MASS fitdistr
Linear Regression Models stats lm
Generalized Linear Models stats glm
Regression Trees rpart rpart
Survival Analysis survival survfit

Table 2.6 lists a few R functions for different data analysis tasks. Readers can
go to the R documentation to learn how to use these functions. There are also
other R packages that do similar things. However, the functions listed in this
table provide good starting points for readers to conduct data analysis in R.
For analyzing large datasets in R in an efficient way, readers are referred to
Daroczi (2015).

This work is licensed under a Creative Commons Attribution 4.0 International
License.
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Frequency Modeling

Chapter Preview. A primary focus for insurers is estimating the magnitude
of aggregate claims it must bear under its insurance contracts. Aggregate
claims are affected by both the frequency and the severity of the insured
event. Decomposing aggregate claims into these two components, each of
which warrant significant attention, is essential for analysis and pricing. This
chapter discusses frequency distributions, summary measures, and parameter
estimation techniques.

In Section 3.1, we present terminology and discuss reasons why we study
frequency and severity separately. The foundations of frequency distributions
and measures are presented in Section 3.2 along with three principal distri-
butions: the binomial, the Poisson, and the negative binomial. These three
distributions are members of what is known as the (a, b, 0) class of distributions,
a distinguishing, identifying feature which allows for efficient calculation of
probabilities, further discussed in Section 3.3. When fitting a dataset with a
distribution, parameter values need to be estimated and in Section 3.4, the
procedure for maximum likelihood estimation is explained.

For insurance datasets, the observation at zero denotes no occurrence of a
particular event; this often deserves additional attention. As explained further
in Section 3.5, for some datasets it may be impossible to have zero of the
studied event or zero events may follow a different model than other event
counts. In either case, direct fitting of typical count models could lead to
improper estimates. Zero truncation or modification techniques allow for more
appropriate distribution fit.

Noting that our insurance portfolio could consist of different sub-groups, each
with its own set of individual characteristics, Section 3.6 introduces mixture
distributions and methodology to allow for this heterogeneity within a portfolio.
In Section 3.7 an example is given that demonstrates how standard frequency
distributions can often provide a good fit to real data. Exercises are presented
in Section 3.8 and Section 3.9.1 concludes the chapter with R Code for plots
depicted in Section 3.4.

55
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3.1 Frequency Distributions

In this section, you learn how to summarize the importance of frequency
modeling in terms of

• contractual,
• behavioral,
• database, and
• regulatory/administrative motivations.

3.1.1 How Frequency Augments Severity Information
Basic Terminology

In this chapter, loss, also referred to as ground-up loss, denotes the amount
of financial loss suffered by the insured. We use claim to denote the indem-
nification upon the occurrence of an insured event, thus the amount paid by
the insurer. While some texts use loss and claim interchangeably, we wish
to make a distinction here to recognize how insurance contractual provisions,
such as deductibles and limits, affect the size of the claim stemming from a
loss. Frequency represents how often an insured event occurs, typically within
a policy contract. Here, we focus on count random variables that represent the
number of claims, that is, how frequently an event occurs. Severity denotes
the amount, or size, of each payment for an insured event. In Chapter 7, the
aggregate model, which combines frequency models with severity models, is
examined.

The Importance of Frequency

Recall from Section 1.2 that setting the price of an insurance good can be a
complex problem. In manufacturing, the cost of a good is (relatively) known.
In other financial service areas, market prices are available. In insurance, we
can generalize the price setting as follows. Start with an expected cost, then
add “margins” to account for the product’s riskiness, expenses incurred in
servicing the product, and a profit/surplus allowance for the insurer.

The expected cost for insurance can be determined as the expected number of
claims times the amount per claim, that is, expected value of frequency times
severity. The focus on claim count allows the insurer to consider those factors
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which directly affect the occurrence of a loss, thereby potentially generating a
claim.

Why Examine Frequency Information?

Insurers and other stakeholders, including governmental organizations, have
various motivations for gathering and maintaining frequency datasets.

• Contractual. In insurance contracts, it is common for particular deductibles
and policy limits to be listed and invoked for each occurrence of an insured
event. Correspondingly, the claim count data generated would indicate the
number of claims which meet these criteria, offering a unique claim frequency
measure. Extending this, models of total insured losses would need to account
for deductibles and policy limits for each insured event.

• Behavioral. In considering factors that influence loss frequency, the risk-
taking and risk-reducing behavior of individuals and companies should be
considered. Explanatory (rating) variables can have different effects on models
of how often an event occurs in contrast to the size of the event.

– In healthcare, the decision to utilize healthcare by individuals, and
minimize such healthcare utilization through preventive care and well-
ness measures, is related primarily to his or her personal characteristics.
The cost per user is determined by the patient’s medical condition,
potential treatment measures, and decisions made by the healthcare
provider (such as the physician) and the patient. While there is overlap
in those factors and how they affect total healthcare costs, attention
can be focused on those separate drivers of healthcare visit frequency
and healthcare cost severity.

– In personal lines, prior claims history is an important underwriting
factor. It is common to use an indicator of whether or not the insured
had a claim within a certain time period prior to the contract. Also,
the number of claims incurred by the insured in previous periods has
predictive power.

– In homeowners insurance, in modeling potential loss frequency, the
insurer could consider loss prevention measures that the homeowner has
adopted, such as visible security systems. Separately, when modeling
loss severity, the insurer would examine those factors that affect repair
and replacement costs.

• Databases. Insurers may hold separate data files that suggest developing
separate frequency and severity models. For example, a policyholder file is
established when a policy is written. This file records much underwriting
information about the insured(s), such as age, gender, and prior claims
experience, policy information such as coverage, deductibles and limitations,
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as well as any insurance claims event. A separate file, known as the “claims”
file, records details of the claim against the insurer, including the amount.
(There may also be a “payments” file that records the timing of the payments
although we shall not deal with that here.) This recording process could then
extend to insurers modeling the frequency and severity as separate processes.

• Regulatory and Administrative. Insurance is a highly regulated and
monitored industry, given its importance in providing financial security to
individuals and companies facing risk. As part of their duties, regulators
routinely require the reporting of claims numbers as well as amounts. This
may be due to the fact that there can be alternative definitions of an “amount,”
e.g., paid versus incurred, and there is less potential error when reporting
claim numbers. This continual monitoring helps ensure financial stability of
these insurance companies.

3.2 Basic Frequency Distributions

In this section, you learn how to:

• Determine quantities that summarize a distribution such as the distribution
and survival function, as well as moments such as the mean and variance

• Define and compute the moment and probability generating functions
• Describe and understand relationships among three important frequency

distributions: the binomial, Poisson, and negative binomial distributions

In this section, we introduce the distributions that are commonly used in
actuarial practice to model count data. The claim count random variable is
denoted by N ; by its very nature it assumes only non-negative integer values.
Hence the distributions below are all discrete distributions supported on the
set of non-negative integers {0, 1, . . .}.

3.2.1 Foundations

Since N is a discrete random variable taking values in {0, 1, . . .}, the most
natural full description of its distribution is through the specification of the
probabilities with which it assumes each of the non-negative integer values.
This leads us to the concept of the probability mass function (pmf) of N ,
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denoted as pN(·) and defined as follows:

pN(k) = Pr(N = k), for k = 0, 1, . . .

We note that there are alternate complete descriptions, or characterizations,
of the distribution of N ; for example, the distribution function of N defined
by FN(x) = Pr(N ≤ x) and determined as:

FN(x) =


⌊x⌋∑
k=0

Pr(N = k), x ≥ 0;

0, otherwise.

In the above, ⌊·⌋ denotes the floor function; ⌊x⌋ denotes the greatest integer
less than or equal to x. This expression also suggests the descriptor cumulative
distribution function, a commonly used alternative way of expressing the
distribution function. We also note that the survival function of N , denoted
by SN(·), is defined as the ones’-complement of FN(·), i.e. SN(·) = 1 − FN(·).
Clearly, the latter is another characterization of the distribution of N .

Often one is interested in quantifying a certain aspect of the distribution and
not in its complete description. This is particularly useful when comparing
distributions. A center of location of the distribution is one such aspect, and
there are many different measures that are commonly used to quantify it. Of
these, the mean is the most popular; the mean of N , denoted by µN ,1 is defined
as

Another basic aspect of a distribution is its dispersion, and of the various
measures of dispersion studied in the literature, the standard deviation is the
most popular. Towards defining it, we first define the variance of N , denoted

1For convenience, we have indexed µN with the random variable N instead of FN or pN ,
even though it is solely a function of the distribution of the random variable.

µN =
∞∑

k=0
k pN (k).

We note that µN is the expected value of the random variable N , i.e. µN = E[N ]. This
leads to a general class of measures, the moments of the distribution; the r-th raw moment
of N , for r > 0, is defined as E[Nr] and denoted by µ′

N (r). We remark that the prime ′ here
does not denote differentiation. Rather, it is commonly used notation to distinguish a raw
from a central moment, as will be introduced in Section 4.1.1. For r > 0, we have

µ′
N (r) = E[Nr] =

∞∑
k=0

kr pN (k).

We note that µ′
N (·) is a well-defined non-decreasing function taking values in [0, ∞], as

Pr(N ∈ {0, 1, . . .}) = 1; also, note that µN = µ′
N (1). In the following, when we refer to a

moment it will be implicit that it is finite unless mentioned otherwise.
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by Var[N ], as Var[N ] = E[(N − µN)2] when µN is finite. By basic properties of
the expected value of a random variable, we see that Var[N ] = E[N2]− [E(N)]2.
The standard deviation of N , denoted by σN , is defined as the square root of
Var[N ]. Note that the latter is well-defined as Var[N ], by its definition as the
average squared deviation from the mean, is non-negative; Var[N ] is denoted
by σ2

N . Note that these two measures take values in [0,∞].

3.2.2 Moment and Probability Generating Functions

Now we introduce two generating functions that are found to be useful when
working with count variables. For a discrete random variable, the moment
generating function (mgf) of N , denoted as MN(·), is defined as

MN(t) = E [etN ] =
∞∑

k=0
etk pN(k), t ∈ R.

We note that while MN(·) is well defined as it is the expectation of a non-
negative random variable (etN), it can assume the value ∞. Note that for a
count random variable, MN(·) is finite valued on (−∞, 0] with MN(0) = 1.
The following theorem, whose proof can be found in Billingsley (2008) (pages
285-6), encapsulates the reason for its name.

Theorem 3.1.
Let N be a count random variable such that E [et∗N ] is finite for some t∗ > 0.
We have the following:

a. All moments of N are finite, i.e.

E[N r] < ∞, r > 0.

b. The mgf can be used to generate its moments as follows:

dm

dtmMN(t)
∣∣∣∣∣
t=0

= E[Nm], m ≥ 1.

c. The mgf MN(·) characterizes the distribution; in other words it
uniquely specifies the distribution.

Another reason that the mgf is very useful as a tool is that for two independent
random variables X and Y , with their mgfs existing in a neighborhood of 0,
the mgf of X + Y is the product of their respective mgfs, that is, MX+Y (t) =
MX(t)MY (t), for small t.
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A related generating function to the mgf is the probability generating function
(pgf), and is a useful tool for random variables taking values in the non-negative
integers. For a random variable N , by PN (·) we denote its pgf and we define it
as follows2:

PN(s) = E [sN ], s ≥ 0.

It is straightforward to see that if the mgf MN(·) exists on (−∞, t∗) then

PN(s) = MN(log(s)), s < et∗
.

Moreover, if the pgf exists on an interval [0, s∗) with s∗ > 1, then the mgf
MN(·) exists on (−∞, log(s∗)), and hence uniquely specifies the distribution
of N by Theorem 3.1. (As a reminder, throughout this text we use log as the
natural logarithm, not the base ten (common) logarithm or other version.) The
following result for pgf is an analog of Theorem 3.1, and in particular justifies
its name.

Theorem 3.2.
Let N be a count random variable such that E (s∗)N is finite for some s∗ > 1.
We have the following:

a. All moments of N are finite, i.e.

E N r < ∞, r ≥ 0.

b. The pmf of N can be derived from the pgf as follows:

pN(m) =


PN(0), m = 0;

(
1

m!

)
dm

dsmPN(s)
∣∣∣
s=0

, m ≥ 1.

c. The factorial moments of N can be derived as follows:

dm

dsm
PN(s)

∣∣∣∣∣
s=1

= E
m−1∏
i=0

(N − i), m ≥ 1.

d. The pgf PN (·) characterizes the distribution; in other words it uniquely
specifies the distribution.

200 = 1
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3.2.3 Important Frequency Distributions

In this sub-section we study three important frequency distributions used
in statistics, namely the binomial, the Poisson, and the negative binomial
distributions. In the following, a risk denotes a unit covered by insurance. A
risk could be an individual, a building, a company, or some other identifier for
which insurance coverage is provided. For context, imagine an insurance data
set containing the number of claims by risk or stratified in some other manner.
The above mentioned distributions also happen to be the most commonly used
in insurance practice for reasons, some of which we mention below.

• These distributions can be motivated by natural random experiments which
are good approximations to real life processes from which many insurance
data arise. Hence, not surprisingly, they together offer a reasonable fit to
many insurance data sets of interest. The appropriateness of a particular
distribution for the set of data can be determined using standard statistical
methodologies, as we discuss later in this chapter.

• They provide a rich enough basis for generating other distributions that even
better approximate or well cater to more real situations of interest to us.

– The three distributions are either one-parameter or two-parameter
distributions. In fitting to data, a parameter is assigned a particular
value. The set of these distributions can be enlarged to their convex
hulls by treating the parameter(s) as a random variable (or vector) with
its own probability distribution, with this larger set of distributions
offering greater flexibility. A simple example that is better addressed
by such an enlargement is a portfolio of claims generated by insureds
belonging to many different risk classes.

– In insurance data, we may observe either a marginal or inordinate
number of zeros, that is, zero claims by risk. When fitting to the
data, a frequency distribution in its standard specification often fails to
reasonably account for this occurrence. The natural modification of the
above three distributions, however, accommodate this phenomenon well
towards offering a better fit.

– In insurance we are interested in total claims paid, whose distribution
results from compounding the fitted frequency distribution with a
severity distribution. These three distributions have properties that
make it easy to work with the resulting aggregate severity distribution.

Binomial Distribution

We begin with the binomial distribution which arises from any finite sequence
of identical and independent experiments with binary outcomes. The most
canonical of such experiments is the (biased or unbiased) coin tossing exper-
iment with the outcome being heads or tails. So if N denotes the number
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of heads in a sequence of m independent coin tossing experiments with an
identical coin which turns heads up with probability q, then the distribution of
N is called the binomial distribution with parameters (m, q), with m a positive
integer and q ∈ [0, 1]. Note that when q = 0 (resp., q = 1) then the distribution
is degenerate with N = 0 (resp., N = m) with probability 1. Clearly, its
support when q ∈ (0, 1) equals {0, 1, . . . ,m} with pmf given by 3

pk =
(
m

k

)
qk(1 − q)m−k, k = 0, . . . ,m.

where (
m

k

)
= m!
k!(m− k)!

The reason for its name is that the pmf takes values among the terms that
arise from the binomial expansion of (q+ (1 − q))m. This realization then leads
to the the following expression for the pgf of the binomial distribution:

PN(z) = ∑m
k=0 z

k
(

m
k

)
qk(1 − q)m−k

= ∑m
k=0

(
m
k

)
(zq)k(1 − q)m−k

= (qz + (1 − q))m = (1 + q(z − 1))m.

Note that the above expression for the pgf confirms the fact that the binomial
distribution is the m-convolution of the Bernoulli distribution, which is the
binomial distribution with m = 1 and pgf (1 + q(z − 1)). By “m-convolution,”
we mean that we can write N as the sum of N1, . . . , Nm. Here, Ni are iid
Bernoulli variates. Also, note that the mgf of the binomial distribution is given
by (1 + q(et − 1))m.

The mean and variance of the binomial distribution can be found in a few
different ways. To emphasize the key property that it is a m-convolution of the
Bernoulli distribution, we derive below the moments using this property. We
begin by observing that the Bernoulli distribution with parameter q assigns
probability of q and 1 − q to 1 and 0, respectively. So its mean equals q
(= 0 × (1 − q) + 1 × q); note that its raw second moment equals its mean as
N2 = N with probability 1. Using these two facts we see that the variance
equals q(1 − q). Moving on to the binomial distribution with parameters m
and q, using the fact that it is the m-convolution of the Bernoulli distribution,
we write N as the sum of N1, . . . , Nm, where Ni are iid Bernoulli variates, as
above. Now using the moments of Bernoulli and linearity of the expectation,

3In the following we suppress the reference to N and denote the pmf by the sequence
{pk}k≥0, instead of the function pN (·).



64 3 Frequency Modeling

we see that
E[N ] = E

[
m∑

i=1
Ni

]
=

m∑
i=1

E[Ni] = mq.

Also, using the fact that the variance of the sum of independent random
variables is the sum of their variances, we see that

Var[N ] = Var
[

m∑
i=1

Ni

]
=

m∑
i=1

Var[Ni] = mq(1 − q).

Alternate derivations of the above moments are suggested in the exercises. One
important observation, especially from the point of view of applications, is
that the mean is greater than the variance unless q = 0.

Poisson Distribution

After the binomial distribution, the Poisson distribution (named after the
French polymath Simeon Denis Poisson) is probably the most well known of
discrete distributions. This is partly due to the fact that it arises naturally as
the distribution of the count of the random occurrences of a type of event in a
certain time period, if the rate of occurrences of such events is a constant. It
also arises as the asymptotic limit of the binomial distribution with m → ∞
and mq → λ.

The Poisson distribution is parametrized by a single parameter usually denoted
by λ which takes values in (0,∞). Its pmf is given by

pk = e−λλk

k! , k = 0, 1, . . .

It is easy to check that the above specifies a pmf as the terms are clearly
non-negative, and that they sum to one follows from the infinite Taylor series
expansion of eλ. More generally, we can derive its pgf, PN(·), as follows:

PN(z) =
∞∑

k=0
pkz

k =
∞∑

k=0

e−λλkzk

k! = e−λeλz = eλ(z−1),∀z ∈ R.

From the above, we derive its mgf as follows:

MN(t) = PN(et) = eλ(et−1), t ∈ R.

Towards deriving its mean, we note that for the Poisson distribution

kpk =

0, k = 0
λ pk−1, k ≥ 1.
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This can be checked easily. In particular, this implies that

E[N ] =
∑
k≥0

k pk = λ
∑
k≥1

pk−1 = λ
∑
j≥0

pj = λ.

In fact, more generally, using either a generalization of the above or using
Theorem 3.1, we see that

E
m−1∏
i=0

(N − i) = dm

dsm
PN(s)

∣∣∣∣∣
s=1

= λm, m ≥ 1.

This, in particular, implies that

Var[N ] = E[N2]− [E(N)]2 = E [N(N−1)]+E[N ]−(E[N ])2 = λ2 +λ−λ2 = λ.

Note that interestingly for the Poisson distribution Var[N ] = E[N ].

Negative Binomial Distribution

The third important count distribution is the negative binomial distribution.
Recall that the binomial distribution arose as the distribution of the number of
successes in m independent repetitions of an experiment with binary outcomes.
If we instead consider the number of successes until we observe the r-th failure
in independent repetitions of an experiment with binary outcomes, then its
distribution is a negative binomial distribution. A particular case, when r = 1,
is the geometric distribution. However when r in not an integer, the above
random experiment would not be applicable. In the following, we allow the
parameter r to be any positive real number to then motivate the distribution
more generally. To explain its name, we recall the binomial series, i.e.

(1 + x)s = 1 + sx+ s(s− 1)
2! x2 + . . . ..., s ∈ R; |x| < 1.

If we define
(

s
k

)
, the generalized binomial coefficient, by

(
s

k

)
= s(s− 1) · · · (s− k + 1)

k! ,

then we have
(1 + x)s =

∞∑
k=0

(
s

k

)
xk, s ∈ R; |x| < 1.

If we let s = −r, then we see that the above yields

(1 −x)−r = 1 + rx+ (r + 1)r
2! x2 + . . . ... =

∞∑
k=0

(
r + k − 1

k

)
xk, r ∈ R; |x| < 1.
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This implies that if we define pk as

pk =
(
r + k − 1

k

)(
1

1 + β

)r (
β

1 + β

)k

, k = 0, 1, . . .

for r > 0 and β ≥ 0, then it defines a valid pmf. Such defined distribution is
called the negative binomial distribution with parameters (r, β) with r > 0
and β ≥ 0. Moreover, the binomial series also implies that the pgf of this
distribution is given by

PN(z) = (1 − β(z − 1))−r, |z| < 1 + 1
β
, β ≥ 0.

The above implies that the mgf is given by

MN(t) = (1 − β(et − 1))−r, t < log
(

1 + 1
β

)
, β ≥ 0.

We derive its moments using Theorem 3.1 as follows:

E[N ] = M ′(0) = rβet(1 − β(et − 1))−r−1
∣∣∣
t=0

= rβ;

E[N2] = M ′′(0) =
[
rβet(1 − β(et − 1))−r−1 + r(r + 1)β2e2t(1 − β(et − 1))−r−2

]∣∣∣
t=0

= rβ(1 + β) + r2β2;
and Var[N ] = E[N2] − (E[N ])2 = rβ(1 + β) + r2β2 − r2β2 = rβ(1 + β)

We note that when β > 0, we have Var[N ] > E[N ]. In other words, this
distribution is overdispersed (relative to the Poisson); similarly, when q > 0
the binomial distribution is said to be underdispersed (relative to the Poisson).

Finally, we observe that the Poisson distribution also emerges as a limit of
negative binomial distributions. Towards establishing this, let βr be such that
as r approaches infinity rβr approaches λ > 0. Then we see that the mgfs of
negative binomial distributions with parameters (r, βr) satisfies

lim
r→0

(1 − βr(et − 1))−r = exp{λ(et − 1)},

with the right hand side of the above equation being the mgf of the Poisson
distribution with parameter λ.4

3.3 The (a, b, 0) Class

4For the theoretical basis underlying the above argument, see Billingsley (2008).
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In this section, you learn how to:

• Define the (a,b,0) class of frequency distributions
• Discuss the importance of the recursive relationship underpinning this class

of distributions
• Identify conditions under which this general class reduces to each of the

binomial, Poisson, and negative binomial distributions

In the previous section we studied three distributions, namely the binomial,
the Poisson and the negative binomial distributions. In the case of the Poisson,
to derive its mean we used the the fact that

kpk = λpk−1, k ≥ 1,

which can be expressed equivalently as

pk

pk−1
= λ

k
, k ≥ 1.

Interestingly, we can similarly show that for the binomial distribution

pk

pk−1
= −q

1 − q
+
(

(m+ 1)q
1 − q

)
1
k
, k = 1, . . . ,m,

and that for the negative binomial distribution

pk

pk−1
= β

1 + β
+
(

(r − 1)β
1 + β

)
1
k
, k ≥ 1.

The above relationships are all of the form

pk

pk−1
= a+ b

k
, k ≥ 1; (3.1)

this raises the question if there are any other distributions which satisfy this
seemingly general recurrence relation. Note that the ratio on the left, the ratio
of two probabilities, is non-negative.

Snippet of Theory. To begin with, let a < 0. In this case as k → ∞,
(a+ b/k) → a < 0. It follows that if a < 0 then b should satisfy b = −ka, for
some k ≥ 1. Any such pair (a, b) can be written as(

−q
1 − q

,
(m+ 1)q

1 − q

)
, q ∈ (0, 1),m ≥ 1;
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note that the case a < 0 with a+ b = 0 yields the degenerate at 0 distribution
which is the binomial distribution with q = 0 and arbitrary m ≥ 1.

In the case of a = 0, again by non-negativity of the ratio pk/pk−1, we have
b ≥ 0. If b = 0 the distribution is degenerate at 0, which is a binomial with
q = 0 or a Poisson distribution with λ = 0 or a negative binomial distribution
with β = 0. If b > 0, then clearly such a distribution is a Poisson distribution
with mean (i.e. λ) equal to b, as presented at the beginning of this section.

In the case of a > 0, again by non-negativity of the ratio pk/pk−1, we have
a+b/k ≥ 0 for all k ≥ 1. The most stringent of these is the inequality a+b ≥ 0.
Note that a+ b = 0 again results in degeneracy at 0; excluding this case we
have a + b > 0 or equivalently b = (r − 1)a with r > 0. Some algebra easily
yields the following expression for pk:

pk =
(
r + k − 1

k

)
p0a

k, k = 1, 2, . . . .

The above series converges for a < 1 when r > 0, with the sum given by
p0 · ((1 − a)(−r) − 1). Hence, equating the latter to 1 − p0 we get p0 = (1 − a)(r).
So in this case the pair (a, b) is of the form (a, (r−1)a), for r > 0 and 0 < a < 1;
since an equivalent parametrization is (β/(1 + β), (r − 1)β/(1 + β)), for r > 0
and β > 0, we see from above that such distributions are negative binomial
distributions.

From the above development we see that not only does the recurrence (3.1)
tie these three distributions together, but also it characterizes them. For this
reason these three distributions are collectively referred to in the actuarial
literature as (a,b,0) class of distributions, with 0 referring to the starting
point of the recurrence. Note that the value of p0 is implied by (a, b) since
the probabilities have to sum to one. Of course, (3.1) as a recurrence relation
for pk makes the computation of the pmf efficient by removing redundancies.
Later, we will see that it does so even in the case of compound distributions
with the frequency distribution belonging to the (a, b, 0) class - this fact is the
more important motivating reason to study these three distributions from this
viewpoint.

Example 3.3.1. A discrete probability distribution has the following properties

pk = c
(

1 + 2
k

)
pk−1 k = 1, 2, 3, . . .

p1 = 9
256

Determine the expected value of this discrete random variable.
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Example Solution. Since the pmf satisfies the (a, b, 0) recurrence relation we
know that the underlying distribution is one among the binomial, Poisson, and
negative binomial distributions. Since the ratio of the parameters (*i.e.* b/a)
equals 2, we know that it is negative binomial and that r = 3. Moreover, since
for a negative binomial p1 = r(1 + β)−(r+1)β, we have

9
256 =3 β

(1 + β)4

=⇒ 3
(1 + 3)4 = β

(1 + β)4

=⇒ β =3.

Finally, since the mean of a negative binomial is rβ we have the mean of the
given distribution equals 9.

3.4 Estimating Frequency Distributions

In this section, you learn how to:

• Define a likelihood for a sample of observations from a discrete distribution
• Define the maximum likelihood estimator for a random sample of observations

from a discrete distribution
• Calculate the maximum likelihood estimator for the binomial, Poisson, and

negative binomial distributions

3.4.1 Parameter Estimation

In Section 3.2 we introduced three distributions of importance in modeling
various types of count data arising from insurance. Let us now suppose that
we have a set of count data to which we wish to fit a distribution, and that we
have determined that one of these (a, b, 0) distributions is more appropriate
than the others. Since each one of these forms a class of distributions if we
allow its parameter(s) to take any permissible value, there remains the task of
determining the best value of the parameter(s) for the data at hand. This is a
statistical point estimation problem, and in parametric inference problems the
statistical inference paradigm of maximum likelihood usually yields efficient
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estimators. In this section we describe this paradigm and derive the maximum
likelihood estimators.

Let us suppose that we observe the independent and identically distributed,
iid, random variables X1, X2, . . . , Xn from a distribution with pmf pθ, where
θ is a vector of parameters and an unknown value in the parameter space
Θ ⊆ Rd. For example, in the case of the Poisson distribution, there is a single
parameter so that d = 1 and

pθ(x) = e−θ θ
x

x! , x = 0, 1, . . . ,

with θ > 0. In the case of the binomial distribution we have

pθ(x) =
(
m

x

)
qx(1 − q)m−x, x = 0, 1, . . . ,m.

For some applications, we can view m as a parameter and so take d = 2 so
that θ = (m, q) ∈ {0, 1, 2, . . .} × [0, 1].

Let us suppose that the observations are x1, . . . , xn, observed values of the
random sample X1, X2, . . . , Xn presented earlier. In this case, the probability
of observing this sample from pθ equals

n∏
i=1

pθ(xi).

The above, denoted by L(θ), viewed as a function of θ, is called the likelihood.
Note that we suppressed its dependence on the data, to emphasize that we are
viewing it as a function of the parameter vector. For example, in the case of
the Poisson distribution we have

L(λ) = e−nλλ
∑n

i=1 xi

(
n∏

i=1
xi!
)−1

.

In the case of the binomial distribution we have

L(m, q) =
(

n∏
i=1

(
m

xi

))
q
∑n

i=1 xi(1 − q)nm−
∑n

i=1 xi .

The maximum likelihood estimator (mle) for θ is any maximizer of the likeli-
hood; in a sense the mle chooses the set of parameter values that best explains
the observed observations. Appendix Section 17.2.2 reviews the foundations of
maximum likelihood estimation with more mathematical details in Appendix
Chapter 19.

Special Case: Three Bernoulli Outcomes. To illustrate, consider a sample
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of size n = 3 from a Bernoulli distribution (binomial with m = 1) with values
0, 1, 0. The likelihood in this case is easily checked to equal

L(q) = q(1 − q)2,

and the plot of the likelihood is given in Figure 3.1. As shown in the plot, the
maximum value of the likelihood equals 4/27 and is attained at q = 1/3, and
hence the maximum likelihood estimate for q is 1/3 for the given sample. In
this case one can resort to algebra to show that

q(1 − q)2 =
(
q − 1

3

)2 (
q − 4

3

)
+ 4

27 ,

and conclude that the maximum equals 4/27, and is attained at q = 1/3 (using
the fact that the first term is non-positive in the interval [0, 1]).

But as is apparent, this way of deriving the mle using algebra does not
generalize. In general, one resorts to calculus to derive the mle - note that
for some likelihoods one may have to resort to other optimization methods,
especially when the likelihood has many local extrema. It is customary to
equivalently maximize the logarithm of the likelihood5 L(·), denoted by l(·),
and look at the set of zeros of its first derivative6 l′(·). In the case of the above
likelihood, l(q) = log(q) + 2 log(1 − q), and

l′(q) = d
dq l(q) = 1

q
− 2

1 − q
.

The unique zero of l′(·) equals 1/3, and since l′′(·) is negative, we have 1/3
is the unique maximizer of the likelihood and hence its maximum likelihood
estimate.

FIGURE 3.1: Likelihood of a (0, 1, 0) 3-sample from Bernoulli

5The set of maximizers of L(·) are the same as the set of maximizers of any strictly
increasing function of L(·), and hence the same as those for l(·).

6A slight benefit of working with l(·) is that constant terms in L(·) do not appear in l′(·)
whereas they do in L′(·).
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3.4.2 Frequency Distributions MLE

In the following, we derive the maximum likelihood estimator, mle, for the
three members of the (a, b, 0) class. We begin by summarizing the discussion
above. In the setting of observing iid, independent and identically distributed,
random variables X1, X2, . . . , Xn from a distribution with pmf pθ, where θ
takes an unknown value in Θ ⊆ Rd, the likelihood L(·), a function on Θ is
defined as

L(θ) =
n∏

i=1
pθ(xi),

where x1, . . . , xn are the observed values. The mle of θ, denoted as θ̂MLE, is a
function which maps the observations to an element of the set of maximizers
of L(·), namely

{θ|L(θ) = max
η∈Θ

L(η)}.

Note the above set is a function of the observations, even though this depen-
dence is not made explicit. In the case of the three distributions that we study,
and quite generally, the above set is a singleton with probability tending to
one (with increasing sample size). In other words, for many commonly used
distributions and when the sample size is large, the likelihood estimate is
uniquely defined with high probability.

In the following, we assume that we have observed n iid random variables
X1, X2, . . . , Xn from the distribution under consideration, even though the
parametric value is unknown. Also, x1, x2, . . . , xn will denote the observed val-
ues. We note that in the case of count data, and data from discrete distributions
in general, the likelihood can alternately be represented as

L(θ) =
∏
k≥0

(pθ(k))mk ,

where mk is the number of observations equal to k. Mathematically, we have

mk = |{i|xi = k, 1 ≤ i ≤ n}| =
n∑

i=1
I(xi = k), k ≥ 0.

Note that this transformation retains all of the data, compiling it in a stream-
lined manner. For large n it leads to compression of the data in the sense of
sufficiency. Below, we present expressions for the mle in terms of {mk}k≥1 as
well.

Special Case: Poisson Distribution. In this case, as noted above, the
likelihood is given by

L(λ) =
(

n∏
i=1

xi!
)−1

e−nλλ
∑n

i=1 xi .
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Taking logarithms, the log-likelihood is

l(λ) = −
n∑

i=1
log(xi!) − nλ+ log(λ) ·

n∑
i=1

xi.

Taking a derivative, we have

l′(λ) = −n+ 1
λ

n∑
i=1

xi.

In evaluating l′′(λ), when ∑n
i=1 xi > 0, l′′ < 0. Consequently, the maximum

is attained at the sample mean, x, presented below. When ∑n
i=1 xi = 0, the

likelihood is a decreasing function and hence the maximum is attained at
the least possible parameter value; this results in the maximum likelihood
estimate being zero. Hence, we have

x = λ̂MLE = 1
n

n∑
i=1

xi.

Note that the sample mean can be computed also as

x = 1
n

∑
k≥1

k ·mk .

It is noteworthy that in the case of the Poisson, the exact distribution of
λ̂MLE is available in closed form - it is a scaled Poisson - when the underlying
distribution is a Poisson. This is so as the sum of independent Poisson random
variables is a Poisson as well. Of course, for large sample size one can use the
ordinary Central Limit Theorem (CLT) to derive a normal approximation.
Note that the latter approximation holds even if the underlying distribution is
any distribution with a finite second moment.

Special Case: Binomial Distribution with known m. Unlike the case
of the Poisson distribution, the parameter space in the case of the binomial
is 2-dimensional. Hence the optimization problem is a bit more challenging.
We first discuss the case where m is taken to be known - this is not a realistic
assumption in insurance applications but is appropriate in circumstances where
we are observing m iid binary outcomes with unknown probabilities.

We begin by observing that the likelihood is given by

L(m, q) =
(

n∏
i=1

(
m

xi

))
q
∑n

i=1 xi(1 − q)nm−
∑n

i=1 xi .

Taking logarithms, the log-likelihood is

l(m, q) = ∑n
i=1 log

((
m
xi

))
+ (∑n

i=1 xi) log(q)
+ (nm−∑n

i=1 xi) log(1 − q)
= ∑n

i=1 log
((

m
xi

))
+ nx log(q) + n (m− x) log(1 − q),
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where x = n−1∑n
i=1 xi. Since we have assumed that m is known, maximizing

l(m, q) with respect to q involves taking the first differential and equating to
zero:

dl(m, q)
dq = nx

q
− n (m− x)

1 − q
= 0,

which implies that
q̂MLE = x

m
.

Special Case: Binomial Distribution with unknown m. Note that since
m takes only non-negative integer values, we cannot use multivariate calculus
to find the optimal values. Nevertheless, we can use single variable calculus to
show that

q̂MLE × m̂MLE = x. (3.2)

Towards this we note that for a fixed value of m,

δ

δq
l(m, q) = nx

q
− n (m− x)

1 − q
,

and that
δ2

δq2 l(m, q) = −nx

q2 + n (m− x)
(1 − q)2 ≤ 0.

The above implies that for any fixed value of m, the maximizing value of q
satisfies

mq = x,

and hence we establish equation (3.2).

With equation (3.2), the above reduces the task to the search for m̂MLE, which
is a maximizer of

L
(
m,

x

m

)
. (3.3)

Note the likelihood would be zero for values of m smaller than max
1≤i≤n

xi, and
hence m̂MLE ≥ max1≤i≤n xi.

Towards specifying an algorithm to compute m̂MLE, we first point out that
for some data sets m̂MLE could equal ∞, indicating that a Poisson distribu-
tion would render a better fit than any binomial distribution. This is so as
the binomial distribution with parameters (m,x/m) approaches the Poisson
distribution with parameter x with m approaching infinity. The fact that some
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data sets prefer a Poisson distribution should not be surprising since in the
above sense the set of Poisson distribution is on the boundary of the set of
binomial distributions. Interestingly, in Olkin et al. (1981) they show that if
the sample mean is less than or equal to the sample variance then m̂MLE = ∞;
otherwise, there exists a finite m that maximizes equation (3.3).

In Figure 3.2 below we display the plot of L (m,x/m) for three different samples
of size 5; they differ only in the value of the sample maximum. The first sample
of (2, 2, 2, 4, 5) has the ratio of sample mean to sample variance greater than
1 (1.875), the second sample of (2, 2, 2, 4, 6) has the ratio equal to 1.25 which
is closer to 1, and the third sample of (2, 2, 2, 4, 7) has the ratio less than 1
(0.885). For these three samples, as shown in Figure 3.2, m̂MLE equals 7, 18 and
∞, respectively. Note that the limiting value of L (m,x/m) as m approaches
infinity equals (

n∏
i=1

xi!
)−1

exp (−nx ) ( x )nx . (3.4)

Also, note that Figure 3.2 shows that the mle of m is non-robust, i.e. changes
in a small proportion of the data set can cause large changes in the estimator.

The above discussion suggests the following simple algorithm:

• Step 1 . If the sample mean is less than or equal to the sample variance, then
set m̂MLE = ∞. The mle suggested distribution is a Poisson distribution
with λ̂ = x.

• Step 2 . If the sample mean is greater than the sample variance, then compute
L(m,x/m) for m values greater than or equal to the sample maximum until
L(m,x/m) is close to the value of the Poisson likelihood given in (3.4). The
value of m that corresponds to the maximum value of L(m,x/m) among
those computed equals m̂MLE.

We note that if the underlying distribution is the binomial distribution with
parameters (m, q) (with q > 0) then m̂MLE equals m for large sample sizes.
Also, q̂MLE will have an asymptotically normal distribution and converge with
probability one to q.

Special Case: Negative Binomial Distribution. The case of the negative
binomial distribution is similar to that of the binomial distribution in the sense
that we have two parameters and the mles are not available in closed form.
A difference between them is that unlike the binomial parameter m which
takes positive integer values, the parameter r of the negative binomial can
assume any positive real value. This makes the optimization problem a tad
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FIGURE 3.2: Plot of L(m, x̄/m) for a Binomial Distribution

more complex. We begin by observing that the likelihood can be expressed in
the following form:

L(r, β) =
(

n∏
i=1

(
r + xi − 1

xi

)(
r + xi − 1

xi

))
(1 + β)−n(r+x)βnx.

The above implies that log-likelihood is given by

l(r, β) =
n∑

i=1
log

(
r + xi − 1

xi

)
− n(r + x) log(1 + β) + nx log β,

and hence
δ

δβ
l(r, β) = −n(r + x)

1 + β
+ nx

β
.

Equating the above to zero, we get

r̂MLE × β̂MLE = x.

The above reduces the two dimensional optimization problem to a one-
dimensional problem - we need to maximize

l(r, x/r) =
n∑

i=1
log

(
r + xi − 1

xi

)
− n(r + x) log(1 + x/r) + nx log(x/r),

with respect to r, with the maximizing r being its mle and β̂MLE = x/r̂MLE.
In Levin et al. (1977) it is shown that if the sample variance is greater than
the sample mean then there exists a unique r > 0 that maximizes l(r, x/r)
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and hence a unique mle for r and β. Also, they show that if σ̂2 ≤ x, then
the negative binomial likelihood will be dominated by the Poisson likelihood
with λ̂ = x. In other words, a Poisson distribution offers a better fit to the
data. The guarantee in the case of σ̂2 > µ̂ permits us to use some algorithm to
maximize l(r, x/r). Towards an alternate method of computing the likelihood,
we note that

l(r, x/r) = ∑n
i=1

∑xi
j=1 log(r − 1 + j) −∑n

i=1 log(xi!)
−n(r + x) log(r + x) + nr log(r) + nx log(x),

which yields( 1
n

)
δ

δr
l(r, x/r) = 1

n

n∑
i=1

xi∑
j=1

1
r − 1 + j

− log(r + x) + log(r).

We note that, in the above expressions for the terms involving a double
summation, the inner sum equals zero if xi = 0. The maximum likelihood
estimate for r is a root of the last expression and we can use a root finding
algorithm to compute it. Also, we have( 1

n

)
δ2

δr2 l(r, x/r) = x

r(r + x) − 1
n

n∑
i=1

xi∑
j=1

1
(r − 1 + j)2 .

A simple but quickly converging iterative root finding algorithm is the Newton’s
method, which incidentally the Babylonians are believed to have used for
computing square roots. Under this method, an initial approximation is selected
for the root and new approximations for the root are successively generated
until convergence. Applying the Newton’s method to our problem results in
the following algorithm:
Step i. Choose an approximate solution, say r0. Set k to 0.
Step ii. Define rk+1 as

rk+1 = rk −
1
n

∑n
i=1

∑xi
j=1

1
rk−1+j

− log(rk + x) + log(rk)
x

rk(rk+x) − 1
n

∑n
i=1

∑xi
j=1

1
(rk−1+j)2

Step iii. If rk+1 ∼ rk, then report rk+1 as maximum likelihood estimate; else
increment k by 1 and repeat Step ii.

For example, we simulated a 5 observation sample of 41, 49, 40, 27, 23 from the
negative binomial with parameters r = 10 and β = 5. Choosing the starting
value of r such that

rβ = µ̂ and rβ(1 + β) = σ̂2

where µ̂ represents the estimated mean and σ̂2 is the estimated variance. This
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leads to the starting value for r of 23.14286. The iterates of r from the Newton’s
method are

21.39627, 21.60287, 21.60647, 21.60647;

the rapid convergence seen above is typical of the Newton’s method. Hence in
this example, r̂MLE ∼ 21.60647 and β̂MLE = 1.66616.

Newton <- function(x, abserr) {
mu <- mean(x)
sigma2 <- mean(xˆ2) - muˆ2
r <- muˆ2/(sigma2 - mu)
b <- TRUE
iter <- 0
while (b) {

tr <- r
m1 <- mean(c(x[x == 0], sapply(x[x > 0], function(z) {

sum(1/(tr:(tr - 1 + z)))
})))
m2 <- mean(c(x[x == 0], sapply(x[x > 0], function(z) {

sum(1/(tr:(tr - 1 + z))ˆ2)
})))
r <- tr - (m1 - log(1 + mu/tr))/(mu/(tr * (tr + mu)) - m2)
b <- !(abs(tr - r) < abserr)
iter <- iter + 1

}
c(r, iter)

}

To summarize our discussion of MLE for the (a, b, 0) class of distributions,
in Figure 3.3 below we plot the maximum value of the Poisson likelihood,
L(m,x/m) for the binomial, and L(r, x/r) for the negative binomial, for the
three samples of size 5 given in Table 3.1. The data was constructed to cover
the three orderings of the sample mean and variance. As shown in the Figure
3.3, and supported by theory, if µ̂ < σ̂2 then the negative binomial results
in a higher maximum likelihood value; if µ̂ = σ̂2 the Poisson has the highest
likelihood value; and finally in the case that µ̂ > σ̂2 the binomial gives a
better fit than the others. So before fitting a frequency data with an (a, b, 0)
distribution, it is best to start with examining the ordering of µ̂ and σ̂2. We
again emphasize that the Poisson is on the boundary of the negative binomial
and binomial distributions. So in the case that µ̂ ≥ σ̂2 (µ̂ ≤ σ̂2, resp.) the
Poisson yields a better fit than the negative binomial (binomial, resp.), which
is indicated by r̂ = ∞ (m̂ = ∞, respectively).
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Table 3.1. Three Samples of Size 5

Data Mean (µ̂) Variance (σ̂2)
(2, 3, 6, 8, 9) 5.60 7.44
(2, 5, 6, 8, 9) 6 6

(4, 7, 8, 10, 11) 8 6

FIGURE 3.3: Plot of (a, b, 0) Partially Maximized Likelihoods

3.5 Other Frequency Distributions

In this section, you learn how to:

• Define the (a,b,1) class of frequency distributions and discuss the importance
of the recursive relationship underpinning this class of distributions

• Interpret zero truncated and modified versions of the binomial, Poisson, and
negative binomial distributions
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• Compute probabilities using the recursive relationship

In the previous sections, we discussed three distributions with supports con-
tained in the set of non-negative integers, which well cater to many insurance
applications. Moreover, typically by allowing the parameters to be a function
of known (to the insurer) explanatory variables such as age, sex, geographic
location (territory), and so forth, these distributions allow us to explain claim
probabilities in terms of these variables. The field of statistical study that
studies such models is known as regression analysis - it is an important topic
of actuarial interest that we will not pursue in this book; see Frees (2009).

There are clearly infinitely many other count distributions, and more impor-
tantly the above distributions by themselves do not cater to all practical needs.
In particular, one feature of some insurance data is that the proportion of
zero counts can be out of place with the proportion of other counts to be
explainable by the above distributions. In the following we modify the above
distributions to allow for arbitrary probability for zero count irrespective of the
assignment of relative probabilities for the other counts. Another feature of a
data set which is naturally comprised of homogeneous subsets is that while the
above distributions may provide good fits to each subset, they may fail to do
so to the whole data set. Later we naturally extend the (a, b, 0) distributions
to be able to cater to, in particular, such data sets.

3.5.1 Zero Truncation or Modification

Let us suppose that we are looking at auto insurance policies which appear
in a database of auto claims made in a certain period. If one is to study
the number of claims that these policies have made during this period, then
clearly the distribution has to assign a probability of zero to the count variable
assuming the value zero. In other words, by restricting attention to count data
from policies in the database of claims, we have in a sense zero-truncated the
count data of all policies. In personal lines (like auto), policyholders may not
want to report that first claim because of fear that it may increase future
insurance rates - this behavior inflates the proportion of zero counts. Examples
such as the latter modify the proportion of zero counts. Interestingly, natural
modifications of the three distributions considered above are able to provide
good fits to zero-modified/truncated data sets arising in insurance.

As presented below, we modify the probability assigned to zero count by the
(a, b, 0) class while maintaining the relative probabilities assigned to non-zero
counts - zero modification. Note that since the (a, b, 0) class of distributions
satisfies the recurrence (3.1), maintaining relative probabilities of non-zero
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counts implies that recurrence (3.1) is satisfied for k ≥ 2. This leads to the
definition of the following class of distributions.

Definition. A count distribution is a member of the (a, b, 1) class if for some
constants a and b the probabilities pk satisfy

pk

pk−1
= a+ b

k
, k ≥ 2. (3.5)

Note that since the recursion starts with p1, and not p0, we refer to this
super-class of (a, b, 0) distributions by (a,b,1). To understand this class, recall
that each valid pair of values for a and b of the (a, b, 0) class corresponds to a
unique vector of probabilities {pk}k≥0. If we now look at the probability vector
{p̃k}k≥0 given by

p̃k = 1 − p̃0

1 − p0
· pk, k ≥ 1,

where p̃0 ∈ [0, 1) is arbitrarily chosen, then since the relative probabilities
for positive values according to {pk}k≥0 and {p̃k}k≥0 are the same, we have
{p̃k}k≥0 satisfies recurrence (3.5). This, in particular, shows that the class of
(a, b, 1) distributions is strictly wider than that of (a, b, 0).

In the above, we started with a pair of values for a and b that led to a
valid (a, b, 0) distribution, and then looked at the (a, b, 1) distributions that
corresponded to this (a, b, 0) distribution. We now argue that the (a, b, 1) class
allows for a larger set of permissible distributions for a and b than the (a, b, 0)
class. Recall from Section 3.3 that in the case of a < 0 we did not use the fact
that the recurrence (3.1) started at k = 1, and hence the set of pairs (a, b)
with a < 0 that are permissible for the (a, b, 0) class is identical to those that
are permissible for the (a, b, 1) class. The same conclusion is easily drawn for
pairs with a = 0. In the case that a > 0, instead of the constraint a+ b > 0
for the (a, b, 0) class we now have the weaker constraint of a+ b/2 > 0 for the
(a, b, 1) class. With the parametrization b = (r − 1)a as used in Section 3.3,
instead of r > 0 we now have the weaker constraint of r > −1. In particular,
we see that while zero modifying a (a, b, 0) distribution leads to a distribution
in the (a, b, 1) class, the conclusion does not hold in the other direction.

Zero modification of a count distribution F such that it assigns zero probability
to zero count is called a zero truncation of F . Hence, the zero truncated version
of probabilities {pk}k≥0 is given by

p̃k =

0, k = 0;
pk

1−p0
, k ≥ 1.

In particular, we have that a zero modification of a count distribution {pT
k }k≥0,
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denoted by {pM
k }k≥0, can be written as a convex combination of the degenerate

distribution at 0 and the zero truncation of {pk}k≥0, denoted by {pT
k }k≥0. That

is we have
pM

k = pM
0 · δ0(k) + (1 − pM

0 ) · pT
k , k ≥ 0.

Example 3.5.1. Zero Truncated/Modified Poisson. Consider a Poisson
distribution with parameter λ = 2. Calculate pk, k = 0, 1, 2, 3, for the usual
(unmodified), truncated and a modified version with (pM

0 = 0.6).

Example Solution. For the Poisson distribution as a member of the (a, b,0)
class, we have a = 0 and b = λ = 2. Thus, we may use the recursion pk =
λpk−1/k = 2pk−1/k for each type, after determining starting probabilities. The
calculation of probabilities for k ≤ 3 is shown in the following table.

Table. **Calculation of Probabilities for** k ≤ 3

k pk pT
k pM

k

0 p0 = e−λ = 0.135335 0 0.6
1 p1 = p0(0 + λ

1 ) = 0.27067 p1
1−p0

= 0.313035 1−pM
0

1−p0
p1 = 0.125214

2 p2 = p1
(

λ
2

)
= 0.27067 pT

2 = pT
1

(
λ
2

)
= 0.313035 pM

2 = pM
1

(
λ
2

)
= 0.125214

3 p3 = p2
(

λ
3

)
= 0.180447 pT

3 = pT
2

(
λ
3

)
= 0.208690 pM

3 = pM
2

(
λ
3

)
= 0.083476

3.6 Mixture Distributions

In this section, you learn how to:

• Define a mixture distribution when the mixing component is based on a finite
number of sub-groups

• Compute mixture distribution probabilities from mixing proportions and
knowledge of the distribution of each subgroup

• Define a mixture distribution when the mixing component is continuous

In many applications, the underlying population consists of naturally defined
sub-groups with some homogeneity within each sub-group. In such cases it is
convenient to model the individual sub-groups, and in a ground-up manner
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model the whole population. As we shall see below, beyond the aesthetic appeal
of the approach, it also extends the range of applications that can be catered
to by standard parametric distributions.

Let k denote the number of defined sub-groups in a population, and let Fi

denote the distribution of an observation drawn from the i-th subgroup. If
we let αi denote the proportion of the population in the i-th subgroup, with∑k

i=1 αi = 1, then the distribution of a randomly chosen observation from the
population, denoted by F , is given by

F (x) =
k∑

i=1
αi · Fi(x). (3.6)

The above expression can be seen as a direct application of the Law of Total
Probability. As an example, consider a population of drivers split broadly into
two sub-groups, those with at most five years of driving experience and those
with more than five years experience. Let α denote the proportion of drivers
with less than 5 years experience, and F≤5 and F>5 denote the distribution of
the count of claims in a year for a driver in each group, respectively. Then the
distribution of claim count of a randomly selected driver is given by

α · F≤5(x) + (1 − α)F>5(x).

An alternate definition of a mixture distribution is as follows. Let Ni be a
random variable with distribution Fi, i = 1, . . . , k. Let I be a random variable
taking values 1, 2, . . . , k with probabilities α1, . . . , αk, respectively. Then the
random variable NI has a distribution given by equation (3.6)7.

In (3.6) we see that the distribution function is a convex combination of the
component distribution functions. This result easily extends to the probability
mass function, the survival function, the raw moments, and the expectation as
these are all linear mappings of the distribution function. We note that this is
not true for central moments like the variance, and conditional measures like
the hazard rate function. In the case of variance it is easily seen as

Var[NI ] = E[Var[NI |I]] + Var[E[NI |I]] =
k∑

i=1
αiVar[Ni] + Var[E[NI |I]]. (3.7)

Appendix Chapter 18 provides additional background about this important
expression.

Example 3.6.1. Actuarial Exam Question. In a certain town the number
7This in particular lays out a way to simulate from a mixture distribution that makes

use of efficient simulation schemes that may exist for the component distributions.



84 3 Frequency Modeling

of common colds an individual will get in a year follows a Poisson distribution
that depends on the individual’s age and smoking status. The distribution of
the population and the mean number of colds are as follows:

Table 3.2. The Distribution of the Population and the Mean Number
of Colds

Proportion of population Mean number of colds
Children 0.3 3
Adult Non-Smokers 0.6 1
Adult Smokers 0.1 4

1. Calculate the probability that a randomly drawn person has 3 common
colds in a year.

2. Calculate the conditional probability that a person with exactly 3
common colds in a year is an adult smoker.

Example Solution.

1. Using Law of Total Probability, we can write the required probability as
Pr(NI = 3), with I denoting the group of the randomly selected individual with
1, 2 and 3 signifying the groups *Children*, *Adult Non-Smoker*, and *Adult
Smoker*, respectively. Now by conditioning we get

Pr(NI = 3) = 0.3 · Pr(N1 = 3) + 0.6 · Pr(N2 = 3) + 0.1 · Pr(N3 = 3),

with N1, N2 and N3 following Poisson distributions with means 3, 1, and 4,
respectively. Using the above, we get Pr(NI = 3) ∼ 0.1235 2. The conditional
probability of event A given event B, Pr(A|B) = Pr(A,B)

Pr(B) . The required conditional
probability in this problem can then be written as Pr(I = 3|NI = 3), which
equals

Pr(I = 3|NI = 3) = Pr(I = 3, N3 = 3)
Pr(NI = 3) ∼ 0.1 × 0.1954

0.1235 ∼ 0.1581.

In the above example, the number of subgroups k was equal to three. In general,
k can be any natural number, but when k is large it is parsimonious from a
modeling point of view to take the following infinitely many subgroup approach.
To motivate this approach, let the i-th subgroup be such that its component
distribution Fi is given by Gθ̃i

, where G· is a parametric family of distributions
with parameter space Θ ⊆ Rd. With this assumption, the distribution function
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F of a randomly drawn observation from the population is given by

F (x) =
k∑

i=1
αiGθ̃i

(x), ∀x ∈ R,

similar to equation (3.6). Alternately, it can be written as

F (x) = E[Gϑ̃(x)], ∀x ∈ R,

where ϑ̃ takes values θ̃i with probability αi, for i = 1, . . . , k. The above makes
it clear that when k is large, one could model the above by treating ϑ̃ as
continuous random variable.

To illustrate this approach, suppose we have a population of drivers with the
distribution of claims for an individual driver being distributed as a Poisson.
Each person has their own (personal) expected number of claims λ - smaller
values for good drivers, and larger values for others. There is a distribution of λ
in the population; a popular and convenient choice for modeling this distribution
is a gamma distribution with parameters (α, θ) (the gamma distribution will
be introduced formally in Section 4.2.1). With these specifications it turns out
that the resulting distribution of N , the claims of a randomly chosen driver,
is a negative binomial with parameters (r = α, β = θ). This can be shown in
many ways, but a straightforward argument is as follows:

Pr(N = k) =
∫∞

0
e−λλk

k!
λα−1e−λ/θ

Γ(α)θα dλ = 1
k!Γ(α)θα

∫∞
0 λα+k−1e−λ(1+1/θ) dλ

= Γ(α+k)
k!Γ(α)θα(1+1/θ)α+k

=
(

α+k−1
k

) (
1

1+θ

)α ( θ
1+θ

)k
, k = 0, 1, . . .

Note that the above derivation implicitly uses the following:

fN |Λ=λ(N = k) = e−λλk

k! , k ≥ 0; and fΛ(λ) = λα−1e−λ/θ

Γ(α)θα
, λ > 0.

By considering mixtures of a parametric class of distributions, we increase the
richness of the class. This expansion of distributions results in the mixture
class being able to cater well to more applications that the parametric class
we started with. Mixture modeling is an important modeling technique in
insurance applications and later chapters will cover more aspects of this
modeling technique.

Example 3.6.2. Suppose that N |Λ ∼ Poisson(Λ) and that Λ ∼ gamma with
mean of 1 and variance of 2. Determine the probability that N = 1.
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Example Solution. For a gamma distribution with parameters (α, θ), we have
that the mean is αθ and the variance is αθ2. Using these expressions we have

α = 1
2 and θ = 2.

Now, one can directly use the above result to conclude that N is distributed as a
negative binomial with r = α = 1

2 and β = θ = 2. Thus

Pr(N = 1) =
(

1 + r − 1
1

)
( 1
(1 + β)r

)
(

β

1 + β

)1

=
(

1 + 1
2 − 1
1

)
1

(1 + 2)1/2

( 2
1 + 2

)1

= 1
33/2 = 0.19245.

3.7 Real Data Example

In this section, you learn how to:

• Compare a fitted distribution to empirical data to assess the adequacy of
the fit

In the above, we have discussed three basic frequency distributions, along
with their extensions through zero modification/truncation, and by looking at
mixtures of these distributions. Nevertheless, these classes remain parametric
and hence a small subset of the class of all possible frequency distributions
(that is, the set of distributions on non-negative integers). Hence, even though
we have discussed methods for estimating the unknown parameters, the fitted
distribution need not be a good representation of the underlying distribution
if the latter is far from the class of distribution used for modeling.

While the class of distributions considered above is relatively narrow, via a
real example, we present some evidence that they serve insurance purposes
quite well.

In 1993, a portfolio of n = 7, 483 automobile insurance policies from a major
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Singaporean insurance company had the distribution of auto accidents per
policyholder as given in Table 3.3.

Table 3.3. Singaporean Automobile Accident Data

Count (k) 0 1 2 3 4 Total
No. of Policies with k accidents (mk) 6, 996 455 28 4 0 7, 483

If we a fit a Poisson distribution, then the mle for λ, the Poisson mean, is the
sample mean which is given by

N = 0 · 6996 + 1 · 455 + 2 · 28 + 3 · 4 + 4 · 0
7483 = 0.06989.

Now if we use Poisson (λ̂MLE) as the fitted distribution, then a tabular
comparison of the fitted counts and observed counts is given by Table 3.4
below, where p̂k represents the estimated probabilities under the fitted Poisson
distribution.

Table 3.4. Comparison of Observed to Fitted Counts: Singaporean
Auto Data

Count Observed Fitted Counts
(k) (mk) Using Poisson (np̂k)
0 6, 996 6, 977.86
1 455 487.70
2 28 17.04
3 4 0.40

≥ 4 0 0.01
Total 7, 483 7, 483.00

Notice that the fit seems quite reasonable from the above tabular comparison,
suggesting that the Poisson distribution is a good model of the underlying
distribution. Nevertheless, it is worth pointing out that such a tabular com-
parison falls short of a statistical test of the hypothesis that the underlying
distribution is indeed Poisson. In Section 6.1.2, we present Pearson’s chi-square
statistic as a goodness-of-fit statistical measure for this purpose.

3.8 Exercises
Theoretical Exercises

Exercise 3.1. Derive an expression for pN (·) in terms of FN (·) and SN (·).
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Exercise 3.2. A measure of center of location must be equi-variant with
respect to shifts, or location transformations. In other words, if N1 and N2
are two random variables such that N1 + c has the same distribution as N2,
for some constant c, then the difference between the measures of the center of
location of N2 and N1 must equal c. Show that the mean satisfies this property.

Exercise 3.3. Measures of dispersion should be invariant with respect to shifts
and scale equi-variant. Show that standard deviation satisfies these properties
by doing the following:

• Show that for a random variable N , its standard deviation equals that of
N + c, for any constant c.

• Show that for a random variable N , its standard deviation equals 1/c times
that of cN , for any positive constant c.

Exercise 3.4. Let N be a random variable with probability mass function
given by

pN (k) =


(

6
π2

) (
1
k2

)
, k ≥ 1;

0, otherwise.

Show that the mean of N is ∞.

Exercise 3.5. Let N be a random variable with a finite second moment. Show
that the function ψ(·) defined by

ψ(x) = E(N − x)2. x ∈ R

is minimized at µN without using calculus. Also, give a proof of this fact using
derivatives. Conclude that the minimum value equals the variance of N .

Exercise 3.6. Derive the first two central moments of the (a, b, 0) distributions
using the methods mentioned below:

• For the binomial distribution, derive the moments using only its pmf, then
its mgf, and then its pgf.

• For the Poisson distribution, derive the moments using only its mgf.
• For the negative binomial distribution, derive the moments using only its

pmf, and then its pgf.

Exercise 3.7. Let N1 and N2 be two independent Poisson random variables
with means λ1 and λ2, respectively. Identify the conditional distribution of N1
given N1 +N2.

Exercise 3.8. (Non-Uniqueness of the MLE) Consider the following
parametric family of densities indexed by the parameter p taking values in
[0, 1]:

fp(x) = p · ϕ(x+ 2) + (1 − p) · ϕ(x− 2), x ∈ R,
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where ϕ(·) represents the standard normal density.

• Show that for all p ∈ [0, 1], fp(·) above is a valid density function.
• Find an expression in p for the mean and the variance of fp(·).
• Let us consider a sample of size one consisting of x. Show that when x equals

0, the set of maximum likelihood estimates for p equals [0, 1]; also show that
the mle is unique otherwise.

Exercise 3.9. Graph the region of the plane corresponding to values of
(a, b) that give rise to valid (a, b, 0) distributions. Do the same for (a, b, 1)
distributions.

Exercise 3.10. (Computational Complexity) For the (a, b, 0) class of
distributions, count the number of basic mathematical operations (addition,
subtraction, multiplication, division) needed to compute the n probabilities
p0 . . . pn−1 using the recurrence relationship. For the negative binomial distri-
bution with non-integer r, count the number of such operations. What do you
observe?

Exercise 3.11. Using the development of Section 3.3 rigorously show that not
only does the recurrence (3.1) tie the binomial, the Poisson and the negative
binomial distributions together, but that it also characterizes them.

Exercise 3.12. Actuarial Exam Question. You are given:

1. pk denotes the probability that the number of claims equals k for
k = 0, 1, 2, . . .

2. pn

pm
= m!

n! ,m ≥ 0, n ≥ 0

Using the corresponding zero-modified claim count distribution with pM
0 = 0.1,

calculate pM
1 .

Exercises with a Practical Focus

Exercise 3.13. Singaporean Automobile Accident. In this exercise, we
replicate and extend the real-data example introduced in Section 3.7 using R.

• a. From the package CASdatasets, retrieve the data sgautonb in order to
work with the variable Clm_Count which is a count of claims. Refer to Section
22.6 for a description of this package. Verify that the mean claim count is 0.

• b. Compute the fitted Poisson distribution and reproduce Table 3.5.

• c. Compute the maximum likelihood estimates for the negative binomial
distribution. One way to do this is to create a negative logarithmic likelihood
function and use the R function optim for minimization. Use the resulting
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TABLE 3.5: Singaporean Automobile Comparison of Empirical to
Poisson Fitted Percentiles

Claim Count Empirical
Percentile

Poisson
Perc

6996 0.9349 0.9325
455 0.9957 0.9977
28 0.9995 0.9999
4 1.0000 1.0000

maximum likelihood estimates to create a fitted distribution and augment
the Table in part (b) with this alternative distribution.

In part (c), you learn that the more complex negative binomial distribution
produces roughly the same fits as the simpler Poisson distribution. As a result of
this analysis, an analyst would typically prefer the simpler Poisson distribution.

Exercise 3.14. Corporate Travel. This exercise is based on the data set
introduced in Exercise 1.1 where now the focus is on frequency modeling. For
corporate travel, the number of claims are sufficient that a separate frequency
model could be considered. For the frequency of claims, there are 2107 claims
over the 2006-2021 period that amounts to 131.69 per year. One might assume
that annual claims can be fit using a single distribution to the entire period,
such as a Poisson or a negative binomial. Another option is to fit a distribution
starting in years 2009, where this is an increase in the amount of claims from
prior years. A third option is to omit experience from underwriting year 2019
and on where the number of claims fluctuated dramatically, in part due to the
Covid epidemic. In this exercise, we pursue the first option.

• a. Fit a Poisson distribution and a negative binomial distribution to all
claims.

• b. Fit a negative binomial distribution to all claims using the strategy
introduced in part (c) of Exercise 3.13.

• c. To check your work, use the fitdist function from the package
fitdistrplus, with the negative binomial (nbinom) option.

• d. Use the ecdf function in R to produce empirical cumulative probabilities.
Produce a table that compares the empirical percentiles to those under the
Poisson and negative binomial.

From part (d), you learn that both fitted distributions did well and neither
outperformed the other.

../docs/ChapIntro.html#Exer:1.1
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3.9 Further Resources and Contributors

Appendix Chapter 17 gives a general introduction to maximum likelihood
theory regarding estimation of parameters from a parametric family. Appendix
Chapter 19 gives more specific examples and expands some of the concepts.

If you would like additional practice with R coding, please visit our companion
LDA Short Course. In particular, see the Frequency Modeling Chapter.

Contributors

• N.D. Shyamalkumar, The University of Iowa, and Krupa Viswanathan,
Temple University, are the principal authors of the initial version and also
the second edition of this chapter. Email: shyamal-kumar@uiowa.edu for
chapter comments and suggested improvements.

• Chapter reviewers include: Chunsheng Ban, Paul Johnson, Hirokazu (Iwahiro)
Iwasawa, Dalia Khalil, Tatjana Miljkovic, Rajesh Sahasrabuddhe, and
Michelle Xia.
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https://openacttexts.github.io/LDACourse1/frequency-modeling.html
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3.9.1 TS 3.A. R Code for Plots

Code for Figure 3.2:

likm<-function(m){
prod((dbinom(x,m,mean(x)/m)))

}
x<-c(2,2,2,4,5);
n<-(5:100);
# Computing the Likelihood
ll<-sapply(n,likm);
# Computing the MLE
n[ll==max(ll)]
# Storing the Likelihood Curve
y<-cbind(n,ll);

# Second Dataset
x<-c(2,2,2,4,6);
ll<-sapply(n,likm);
n[ll==max(ll)]
y<-cbind(y,ll);

# Third Dataset
x<-c(2,2,2,4,7);
ll<-sapply(n,likm);
n[ll==max(ll)]
y<-cbind(y,ll);

colnames(y)<-c("m","$\\tilde{x}=(2,2,2,4,5)$",
"$\\tilde{x}=(2,2,2,4,6)$",
"$\\tilde{x}=(2,2,2,4,7)$");

dy<-data.frame(y);
library(tikzDevice);
library(ggplot2);
options(tikzMetricPackages =

c("\\usepackage[utf8]{inputenc}","\\usepackage[T1]{fontenc}",
"\\usetikzlibrary{calc}", "\\usepackage{amssymb}",
"\\usepackage{amsmath}","\\usepackage[active]{preview}"))

tikz(file = "plot_test.tex", width = 6.25, height = 3.125);
ggplot(dy) +

geom_point(aes(x=m, y=(X..tilde.x...2.2.2.4.5..),
shape="$\\tilde{x}=(2,2,2,4,5):\\hat{m}=7$"), size=0.75) +

geom_point(aes(x=m, y=(X..tilde.x...2.2.2.4.6..),
shape="$\\tilde{x}=(2,2,2,4,6):\\hat{m}=18$"),size=0.75) +

geom_point(aes(x=m, y=(X..tilde.x...2.2.2.4.7..),
shape="$\\tilde{x}=(2,2,2,4,7):\\hat{m}=\\infty$"),size=0.75) +

geom_point(aes(x=c(7),y=dy$X..tilde.x...2.2.2.4.5..[3],colour="$\\hat{m}$",
shape="$\\tilde{x}=(2,2,2,4,5):\\hat{m}=7$"),size=0.75) +

geom_point(aes(x=c(18),y=dy$X..tilde.x...2.2.2.4.6..[14],colour="$\\hat{m}$",
shape="$\\tilde{x}=(2,2,2,4,6):\\hat{m}=18$"),size=0.75)+

labs(x="m",y="$L(m,\\overline{x}/m)$",
title="MLE for $m$: Non-Robustness of MLE ");

dev.off();
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Code for Figure 3.3:

likbinm<-function(m){
# binomial likelihood maximized w.r.t. p
prod((dbinom(x,m,mean(x)/m)))
}

liknbinm<-function(r){
# negative binomial likelihood maximized w.r.t. beta
prod(dnbinom(x,r,1-mean(x)/(mean(x)+r)))
}

# Data Matrix; Three Samples, one in each Column;
# First Sample has Var<Mean
# Second Sample has Var=Mean
# Third Sample has Var>Mean

X<-cbind(c(2,5,6,8,9)+2,c(2,5,6,8,9),c(2,3,6,8,9))

# Used for creating the labels in the z matrix
ord_char<-c("<","=",">")

# Empty matrices;
Y<-matrix(1,ncol=2,nrow=0)
Z<-matrix(1,ncol=2,nrow=0)

for (i in (1:3)) {
# Work with data in the i-th sample

x<-X[,i]

# Binomial Likelihood
# Interval of n values covering the MLE

n<-(9:100)
# Evaluating the Likelihood at various values of n

ll<-sapply(n,likbinm)
# Finding the MLE of n

n[ll==max(ll[!is.na(ll)])]
# Storing the data and the labels

Y<-rbind(Y,cbind(n,ll))
Z<-rbind(Z,cbind(rep(paste("$\\hat{\\sigma}ˆ2",ord_char[i],

"\\hat{\\mu}$"),length(n)),rep("Binomial - L(m,\\overline{x}/m)$",
length(n))))

# Negative Binomial Likelihood
# Interval of r values

r<-(1:100)
# Evaluating the Likelihood at various values of r

ll<-sapply(r,liknbinm)
# Finding the MLE of r

ll[is.na(ll)]=0
r[ll==max(ll[!is.na(ll)])]

# Storing the data and the labels
Y<-rbind(Y,cbind(r,ll))
Z<-rbind(Z,cbind(rep(paste("$\\hat{\\sigma}ˆ2",ord_char[i],

"\\hat{\\mu}$"),length(r)),rep("Neg.Binomial -$L(r,\\overline{x}/r)$",
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length(r))))

# Poisson Likelihood
# Storing the data and the labels
# In the Poisson case MLE is the sample mean

Y<-rbind(Y,cbind(r,rep(prod(dpois(x,mean(x))),length(r))))
Z<-rbind(Z,cbind(rep(paste("$\\hat{\\sigma}ˆ2",ord_char[i],"\\hat{\\mu}$"),

length(r)),rep("Poisson - $L(\\overline{x})$",length(r))))
}

# Assigning Column Names
colnames(Y)<-c("x","lik")
colnames(Z)<-c("dataset","Distribution")

# Creating a Dataframe for using ggplot
dy<-cbind(data.frame(Y),data.frame(Z))

library(tikzDevice)
library(ggplot2)
options(tikzMetricPackages = c("\\usepackage[utf8]{inputenc}",

"\\usepackage[T1]{fontenc}",
"\\usetikzlibrary{calc}",
"\\usepackage{amssymb}",
"\\usepackage{amsmath}",
"\\usepackage[active]{preview}") )

tikz(file = "plot_test_2.tex", width = 6.25, height = 6.25)
ggplot(data=dy,aes(x=x,y=lik,col=Distribution)) +

geom_point(size=0.25) + facet_grid(dataset~.) +
labs(x="m/r",y="Likelihood",title="")

dev.off()



4
Modeling Loss Severity

Chapter Preview. The traditional loss distribution approach to modeling aggre-
gate losses starts by separately fitting a frequency distribution to the number of
losses and a severity distribution to the size of losses. The estimated aggregate
loss distribution combines the loss frequency distribution and the loss severity
distribution by convolution. Discrete distributions often referred to as counting
or frequency distributions were used in Chapter 3 to describe the number of
events such as number of accidents to the driver or number of claims to the
insurer. Lifetimes, asset values, losses and claim sizes are usually modeled
as continuous random variables and as such are modeled using continuous
distributions, often referred to as loss or severity distributions. A mixture
distribution is a weighted combination of simpler distributions that is used
to model phenomenon investigated in a heterogeneous population, such as
modeling more than one type of claims in liability insurance (small frequent
claims and large relatively rare claims). In this chapter we explore the use of
continuous as well as mixture distributions to model the random size of loss.

Sections 4.1 to 4.3 present key attributes that characterize continuous models
and means of creating new distributions from existing ones. Section 4.4.1
describes some principal non-parametric methods for estimating loss distribu-
tions: moment and percentile based, empirical, and density estimation methods.
Section 4.4.2 covers parametric estimation methods including method of mo-
ments and percentile matching, and deepens our understanding of maximum
likelihood methods. The frequency distributions from Chapter 3 will be com-
bined with the ideas from this chapter to describe the aggregate losses over
the whole portfolio in Chapter 7.

4.1 Basic Distributional Quantities

In this section, you learn how to define some basic distributional quantities:

• moments,

95
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• moment generating functions, and
• percentiles

4.1.1 Moments and Moment Generating Functions

Let X be a continuous random variable with probability density function (pdf )
fX (x) and distribution function FX (x). The k-th raw moment of X, denoted
by µ′

k, is the expected value of the k-th power of X, provided it exists. The
first raw moment µ′

1 is the mean of X usually denoted by µ. The formula for
µ′

k is given as
µ′

k = E
(
Xk

)
=
∫ ∞

0
xkfX (x) dx.

Note that the notation used here for moments differs from the notation used
in Section 3.2.1. The support of the random variable X is assumed to be
nonnegative since actuarial phenomena are rarely negative. For example, an
easy integration by parts shows that the raw moments for nonnegative variables
can also be computed using

µ′
k =

∫ ∞

0
k xk−1 [1 − FX(x)] dx,

that is based on the survival function, denoted as SX(x) = 1 − FX(x). This
formula is particularly useful when k = 1. Section 5.1.2 discusses this approach
in more detail.

The k-th central moment of X, denoted by µk, is the expected value of the
k-th power of the deviation of X from its mean µ. The formula for µk is given
as

µk = E
[
(X − µ)k

]
=
∫ ∞

0
(x− µ)k fX (x) dx.

The second central moment µ2 defines the variance of X, denoted by σ2. The
square root of the variance is the standard deviation σ.

From a classical perspective, further characterization of the shape of the
distribution includes its degree of symmetry as well as its flatness compared
to the normal distribution. The ratio of the third central moment to the cube
of the standard deviation

(
µ3/σ

3
)

defines the coefficient of skewness which is
a measure of symmetry. A positive coefficient of skewness indicates that the
distribution is skewed to the right (positively skewed). The ratio of the fourth
central moment to the fourth power of the standard deviation

(
µ4/σ

4
)

defines
the coefficient of kurtosis. The normal distribution has a coefficient of kurtosis
of 3. Distributions with a coefficient of kurtosis greater than 3 have heavier
tails than the normal, whereas distributions with a coefficient of kurtosis less
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than 3 have lighter tails and are flatter. Section 13.2 describes the tails of
distributions from an insurance and actuarial perspective.

Example 4.1.1. Actuarial Exam Question. Assume that the rv X has
a gamma distribution with mean 8 and skewness 1. Find the variance of X.
(Hint: The gamma distribution is reviewed in Section 4.2.1.)

Example Solution. The pdf of X is given by

fX (x) = (x/θ)α

x Γ (α)e−x/θ

for x > 0. For α > 0, the k-th raw moment is

µ′
k = E

(
Xk
)

=
∫ ∞

0

1
Γ (α) θα

xk+α−1e−x/θdx = Γ (k + α)
Γ (α) θk

Given Γ (r + 1) = rΓ (r) and Γ (1) = 1, then µ′
1 = E (X) = αθ, µ′

2 = E
(
X2) =

(α + 1) αθ2, µ′
3 = E

(
X3) = (α + 2) (α + 1) αθ3, and Var (X) = (α + 1)αθ2 −

(αθ)2 = αθ2.

Skewness = E[(X−µ′
1)3]

(VarX)3/2 = µ′
3−3µ′

2µ′
1+2µ′

1
3

(VarX)3/2

= (α+2)(α+1)αθ3−3(α+1)α2θ3+2α3θ3

(αθ2)3/2

= 2
α1/2 = 1.

Hence, α = 4. Since, E (X) = αθ = 8, then θ = 2 and finally, Var (X) = αθ2 = 16.

The moment generating function (mgf), denoted by MX(t) uniquely charac-
terizes the distribution of X. While it is possible for two different distributions
to have the same moments and yet still differ, this is not the case with the
moment generating function. That is, if two random variables have the same
moment generating function, then they have the same distribution. The moment
generating function is given by

MX(t) = E
(
etX

)
=
∫ ∞

0
etxfX (x) dx

for all t for which the expected value exists. The mgf is a real function whose
k-th derivative at zero is equal to the k-th raw moment of X. In symbols, this
is

dk

dtk
MX(t)

∣∣∣∣∣
t=0

= E
(
Xk

)
.

Example 4.1.2. Actuarial Exam Question. The random variable X has
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an exponential distribution with mean 1
b . It is found that MX

(
−b2

)
= 0.2.

Find b. (Hint: The exponential is a special case of the gamma distribution
which is reviewed in Section 4.2.1.)

Example Solution. With X having an exponential distribution with mean 1
b ,

we have that

MX(t) = E
(
etX
)

=
∫ ∞

0
etxbe−bxdx =

∫ ∞

0
be−x(b−t)dx = b

(b − t) .

Then,
MX

(
−b2) = b

(b + b2) = 1
(1 + b) = 0.2.

Thus, b = 4.

Example 4.1.3. Actuarial Exam Question. Let X1, . . . , Xn be independent
random variables, where Xi has a gamma distribution with parameters αi and
θ. Find the distribution of S = ∑n

i=1 Xi, the mean E(S), and the variance
Var(S).

Example Solution. The mgf of S is

MS(t) = E
(
etS
)

= E
(
et
∑n

i=1 Xi

)
= E

(
n∏

i=1
etXi

)
.

Using independence, we get

MS(t) =
n∏

i=1
E
(
etXi

)
=

n∏
i=1

MXi(t).

The moment generating function of the gamma distribution Xi is MXi(t) =
(1 − θt)αi . Then,

MS(t) =
n∏

i=1
(1 − θt)−αi = (1 − θt)−

∑n

i=1 αi .

This indicates that the distribution of S is gamma with parameters
∑n

i=1 αi and
θ.

This is a demonstration of how we can use the uniqueness property of the moment
generating function to determine the probability distribution of a function of
random variables.



4.2 Basic Distributional Quantities 99

We can find the mean and variance from the properties of the gamma distribution.
Alternatively, by finding the first and second derivatives of MS(t) at zero, we can
show that E (S) = ∂MS(t)

∂t

∣∣∣
t=0

= αθ where α =
∑n

i=1 αi, and

E
(
S2) = ∂2MS(t)

∂t2

∣∣∣∣∣
t=0

= (α + 1) αθ2.

Hence, Var (S) = αθ2.

One can also use the moment generating function to compute the probability
generating function

PX(z) = E
(
zX
)

= MX (log z) .

As introduced in Section 3.2.2, the probability generating function is more
useful for discrete random variables.

4.1.2 Quantiles

Quantiles can also be used to describe the characteristics of the distribution of
X. When the distribution of X is continuous, for a given fraction 0 ≤ p ≤ 1
the corresponding quantile is the solution of the equation

FX (πp) = p.

For example, the middle point of the distribution, π0.5, is the median. A
percentile is a type of quantile; a 100p percentile is the number such that
100 × p percent of the data is below it.

Example 4.1.4. Actuarial Exam Question. Let X be a continuous random
variable with density function fX (x) = θe−θx, for x > 0 and 0 elsewhere. If
the median of this distribution is 1

3 , find θ.

Example Solution. The distribution function is FX (x) = 1 − e−θx. So,
FX (π0.5) = 1 − e−θπ0.5 = 0.5. As, π0.5 = 1

3 , we have FX

(1
3
)

= 1 − e−θ/3 = 0.5 and
θ = 3 log 2.

Section 4.4.1 extends the definition of quantiles to include distributions that
are discrete, continuous, or a hybrid combination.
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4.2 Continuous Distributions for Modeling Loss Severity

In this section, you learn how to define and apply four fundamental severity
distributions:

• gamma,
• Pareto,
• Weibull, and
• generalized beta distribution of the second kind.

4.2.1 Gamma Distribution

Recall that the traditional approach in modeling losses is to fit separate models
for frequency and claim severity. When frequency and severity are modeled
separately it is common for actuaries to use the Poisson distribution (introduced
in Section 3.2.3) for claim count and the gamma distribution to model severity.
An alternative approach for modeling losses that has recently gained popularity
is to create a single model for pure premium (average claim cost).

The continuous variable X is said to have the gamma distribution with shape
parameter α and scale parameter θ if its probability density function is given
by

fX (x) = (x/θ)α

x Γ (α) exp (−x/θ) for x > 0.

Note that α > 0, θ > 0.

The two panels in Figure 4.1 demonstrate the effect of the scale and shape
parameters on the gamma density function.

When α = 1 the gamma reduces to an exponential distribution and when
α = n

2 and θ = 2 the gamma reduces to a chi-square distribution with n degrees
of freedom. As we will see in Section 17.4.1, the chi-square distribution is used
extensively in statistical hypothesis testing.

The distribution function of the gamma model is the incomplete gamma
function, denoted by Γ

(
α; x

θ

)
, and defined as

FX (x) = Γ
(
α; x
θ

)
= 1

Γ (α)

∫ x/θ

0
tα−1e−t dt,
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FIGURE 4.1: Gamma Densities. The left-hand panel is with shape=2 and
varying scale. The right-hand panel is with scale=100 and varying shape.
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with α > 0, θ > 0. For an integer α, it can be written as Γ
(
α; x

θ

)
= 1 −

e−x/θ ∑α−1
k=0

(x/θ)k

k! .

The k-th raw moment of the gamma distributed random variable for any
positive k is given by

E
(
Xk

)
= θk Γ (α + k)

Γ (α) .

The mean and variance are given by E (X) = αθ and Var (X) = αθ2, respec-
tively.

Since all moments exist for any positive k, the gamma distribution is considered
a light tailed distribution, which may not be suitable for modeling risky assets
as it will not provide a realistic assessment of the likelihood of severe losses.

4.2.2 Pareto Distribution

The Pareto distribution, named after the Italian economist Vilfredo Pareto
(1843-1923), has many economic and financial applications. It is a positively
skewed and heavy-tailed distribution which makes it suitable for modeling
income, high-risk insurance claims and severity of large casualty losses. The
survival function of the Pareto distribution which decays slowly to zero was
first used to describe the distribution of income where a small percentage of the
population holds a large proportion of the total wealth. For extreme insurance
claims, the tail of the severity distribution (losses in excess of a threshold) can
be modeled using a Generalized Pareto distribution.

The continuous variable X is said to have the (two parameter) Pareto dis-
tribution with shape parameter α and scale parameter θ if its pdf is given
by

fX (x) = αθα

(x+ θ)α+1 x > 0, α > 0, θ > 0. (4.1)

The two panels in Figure 4.2 demonstrate the effect of the scale and shape
parameters on the Pareto density function. There are other formulations of
the Pareto distribution including a one parameter version given in Appendix
Section 20.2. Henceforth, when we refer the Pareto distribution, we mean the
version given through the pdf in equation (4.1).

The distribution function of the Pareto distribution is given by

FX (x) = 1 −
(

θ

x+ θ

)α

x > 0, α > 0, θ > 0.

It can be easily seen that the hazard function of the Pareto distribution is
a decreasing function in x, another indication that the distribution is heavy
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FIGURE 4.2: Pareto Densities. The left-hand panel is with scale=2000 and
varying shape. The right-hand panel is with shape=3 and varying scale.
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tailed. Again using the analogy of the income of a population, when the hazard
function decreases over time the population dies off at a decreasing rate resulting
in a heavier tail for the distribution. The hazard function reveals information
about the tail distribution and is often used to model data distributions in
survival analysis. The hazard function is defined as the instantaneous potential
that the event of interest occurs within a very narrow time frame.

The k-th raw moment of the Pareto distributed random variable exists, if and
only if, α > k. If k is a positive integer then

E
(
Xk

)
= θk k!

(α− 1) · · · (α− k) α > k.

The mean and variance are given by

E (X) = θ

α− 1 for α > 1

and
Var (X) = αθ2

(α− 1)2 (α− 2)
for α > 2,

respectively.

Example 4.2.1. The claim size of an insurance portfolio follows the Pareto
distribution with mean and variance of 40 and 1800, respectively. Find

a. The shape and scale parameters.
b. The 95-th percentile of this distribution.

Example Solution.

a. As, X ∼ Pa(α, θ), we have E (X) = θ
α−1 = 40 and Var (X) = αθ2

(α−1)2(α−2) =
1800. By dividing the square of the first equation by the second we get α−2

α = 402

1800 .
Thus, α = 18.02 and θ = 680.72.

b. The 95-th percentile, π0.95, satisfies the equation

FX (π0.95) = 1 −
( 680.72

π0.95 + 680.72

)18.02
= 0.95.

Thus, π0.95 = 122.96.
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4.2.3 Weibull Distribution

The Weibull distribution, named after the Swedish physicist Waloddi Weibull
(1887-1979) is widely used in reliability, life data analysis, weather forecasts
and general insurance claims. Truncated data arise frequently in insurance
studies. The Weibull distribution has been used to model excess of loss treaty
over automobile insurance as well as earthquake inter-arrival times.

The continuous variable X is said to have the Weibull distribution with shape
parameter α and scale parameter θ if its pdf is given by

fX (x) = α

θ

(
x

θ

)α−1
exp

(
−
(
x

θ

)α)
x > 0, α > 0, θ > 0.

The two panels in Figure 4.3 demonstrate the effects of the scale and shape
parameters on the Weibull density function.
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FIGURE 4.3: Weibull Densities. The left-hand panel is with shape=3 and
varying scale. The right-hand panel is with scale=100 and varying shape.

The distribution function of the Weibull distribution is given by

FX (x) = 1 − exp
(

−
(
x

θ

)α )
x > 0, α > 0, θ > 0.
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It can be easily seen that the shape parameter α describes the shape of the
hazard function of the Weibull distribution. The hazard function is a decreasing
function when α < 1 (heavy tailed distribution), constant when α = 1 and
increasing when α > 1 (light tailed distribution). This behavior of the hazard
function makes the Weibull distribution a suitable model for a wide variety of
phenomena such as weather forecasting, electrical and industrial engineering,
insurance modeling, and financial risk analysis.

The k-th raw moment of the Weibull distributed random variable is given by

E
(
Xk

)
= θk Γ

(
1 + k

α

)
.

The mean and variance are given by

E (X) = θ Γ
(

1 + 1
α

)
and

Var(X) = θ2
(

Γ
(

1 + 2
α

)
−
[
Γ
(

1 + 1
α

)]2)
,

respectively.

Example 4.2.2. Suppose that the probability distribution of the lifetime of
AIDS patients (in months) from the time of diagnosis is described by the
Weibull distribution with shape parameter 1.2 and scale parameter 33.33.

a. Find the probability that a randomly selected person from this popu-
lation survives at least 12 months.

b. A random sample of 10 patients will be selected from this population.
What is the probability that at most two will die within one year of
diagnosis.

c. Find the 99-th percentile of the distribution of lifetimes.

Example Solution.

a. Let X be the lifetime of AIDS patients (in months) having a Weibull distribution
with parameters (1.2, 33.33). We have,

Pr (X ≥ 12) = SX (12) = e−( 12
33.33 )1.2

= 0.746.

b. Let Y be the number of patients who die within one year of diagnosis. Then,
Y ∼ Bin (10, 0.254) and Pr (Y ≤ 2) = 0.514.
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c. Let π0.99 denote the 99-th percentile of this distribution. Then,

SX (π0.99) = exp
{

−
(

π0.99

33.33

)1.2
}

= 0.01.

Solving for π0.99, we get π0.99 = 118.99.

4.2.4 The Generalized Beta Distribution of the Second Kind

The Generalized Beta Distribution of the Second Kind (GB2 ) was introduced
by Venter (1983) in the context of insurance loss modeling and by McDonald
(1984) as an income and wealth distribution. It is a four-parameter, very
flexible, distribution that can model positively as well as negatively skewed
distributions.

The continuous variable X is said to have the GB2 distribution with parameters
σ, θ, α1 and α2 if its pdf is given by

fX (x) = (x/θ)α2/σ

xσ B (α1, α2)
[
1 + (x/θ)1/σ

]α1+α2
for x > 0, (4.2)

σ, θ, α1, α2 > 0, and where the beta function B (α1, α2) is defined as

B (α1, α2) =
∫ 1

0
tα1−1 (1 − t)α2−1 dt.

The GB2 provides a model for heavy as well as light tailed data. It includes
the exponential, gamma, Weibull, Burr, Lomax, F, chi-square, Rayleigh, log-
normal and log-logistic as special or limiting cases. For example, by setting the
parameters σ = α1 = α2 = 1, the GB2 reduces to the log-logistic distribution.
When σ = 1 and α2 → ∞, it reduces to the gamma distribution, and when
α = 1 and α2 → ∞, it reduces to the Weibull distribution.

A GB2 random variable can be constructed as follows. Suppose that G1 and
G2 are independent random variables where Gi has a gamma distribution
with shape parameter αi and scale parameter 1. Then, one can show that the
random variable X = θ

(
G1
G2

)σ
has a GB2 distribution with pdf summarized in

equation (4.2). This theoretical result has several implications. For example,
when the moments exist, one can show that the k-th raw moment of the GB2
distributed random variable is given by

E
(
Xk

)
= θk B (α1 + kσ, α2 − kσ)

B (α1, α2) , k > 0.
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As will be described in Section 4.3.1, the GB2 is also related to an F -
distribution, a result that can be useful in simulation and residual analysis.

Earlier applications of the GB2 were on income data and more recently have
been used to model long-tailed claims data (Section 13.2 describes different
interpretations of the descriptor “long-tail”). The GB2 has been used to model
different types of automobile insurance claims, severity of fire losses, as well as
medical insurance claim data.

4.3 Methods of Creating New Distributions

In this section, you learn how to:

• Understand connections among the distributions
• Give insights into when a distribution is preferred when compared to alter-

natives
• Provide foundations for creating new distributions

4.3.1 Functions of Random Variables and their Distributions

In Section 4.2 we discussed some elementary known distributions. In this
section we discuss means of creating new parametric probability distributions
from existing ones. Specifically, let X be a continuous random variable with a
known pdf fX(x) and distribution function FX(x). We are interested in the
distribution of Y = g (X), where g(X) is a one-to-one transformation defining
a new random variable Y . In this section we apply the following techniques
for creating new families of distributions: (a) multiplication by a constant (b)
raising to a power, (c) exponentiation and (d) mixing.

Multiplication by a Constant

If claim data show change over time then such transformation can be useful
to adjust for inflation. If the level of inflation is positive then claim costs are
rising, and if it is negative then costs are falling. To adjust for inflation we
multiply the cost X by 1+ inflation rate (negative inflation is deflation). To
account for currency impact on claim costs we also use a transformation to
apply currency conversion from a base to a counter currency.

Consider the transformation Y = cX, where c > 0, then the distribution
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function of Y is given by

FY (y) = Pr (Y ≤ y) = Pr (cX ≤ y) = Pr
(
X ≤ y

c

)
= FX

(
y

c

)
.

Using the chain rule for differentiation, the pdf of interest fY (y) can be written
as

fY (y) = 1
c
fX

(
y

c

)
.

Suppose that X belongs to a certain set of parametric distributions and define
a rescaled version Y = cX, c > 0. If Y is in the same set of distributions
then the distribution is said to be a scale distribution. When a member of a
scale distribution is multiplied by a constant c (c > 0), the scale parameter for
this scale distribution meets two conditions:

• The parameter is changed by multiplying by c;
• All other parameters remain unchanged.

Example 4.3.1. Actuarial Exam Question. Losses of Eiffel Auto Insurance
are denoted in Euro currency and follow a lognormal distribution with µ = 8
and σ = 2. Given that 1 euro = 1.3 dollars, find the set of lognormal parameters
which describe the distribution of Eiffel’s losses in dollars.

Example Solution. Let X and Y denote the aggregate losses of Eiffel Auto
Insurance in euro currency and dollars respectively. As Y = 1.3X, we have,

FY (y) = Pr (Y ≤ y) = Pr (1.3X ≤ y) = Pr
(

X ≤ y

1.3

)
= FX

(
y

1.3

)
.

X follows a lognormal distribution with parameters µ = 8 and σ = 2. The *pdf*
of X is given by

fX (x) = 1
xσ

√
2π

exp
{

−1
2

( log x − µ

σ

)2
}

for x > 0.

As
∣∣∣dx

dy

∣∣∣ = 1
1.3 , the *pdf* of interest fY (y) is

fY (y) = 1
1.3fX

( y
1.3
)

= 1
1.3

1.3
yσ

√
2π

exp
{

−1
2

(
log(y/1.3)−µ

σ

)2
}

= 1
yσ

√
2π

exp
{

−1
2

(
log y−(log 1.3+µ)

σ

)2
}

.

Then Y follows a lognormal distribution with parameters log 1.3 + µ = 8.26 and
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σ = 2.00. If we let µ = log(m) then it can be easily seen that m = eµ is the
scale parameter which was multiplied by 1.3 while σ is the shape parameter that
remained unchanged.

Example 4.3.2. Actuarial Exam Question. Demonstrate that the gamma
distribution is a scale distribution.

Example Solution. Let X ∼ Ga(α, θ) and Y = cX. As
∣∣∣dx

dy

∣∣∣ = 1
c , then

fY (y) = 1
c

fX

(
y

c

)
=

( y
cθ

)α
y Γ (α) exp

(
− y

cθ

)
.

We can see that Y ∼ Ga(α, cθ) indicating that gamma is a scale distribution and
θ is a scale parameter.

Using the same approach as in the example, you can demonstrate that other
distributions introduced in Section 4.2 are also scale distributions. In actuarial
modeling, working with a scale distribution is very convenient because it
allows to incorporate the effect of inflation and to accommodate changes in
the currency unit.

Raising to a Power

In Section 4.2.3 we talked about the flexibility of the Weibull distribution
in fitting reliability data. Looking to the origins of the Weibull distribution,
we recognize that the Weibull is a power transformation of the exponential
distribution. This is an application of another type of transformation which
involves raising the random variable to a power.

Consider the transformation Y = Xτ , where τ > 0, then the distribution
function of Y is given by

FY (y) = Pr (Y ≤ y) = Pr (Xτ ≤ y) = Pr
(
X ≤ y1/τ

)
= FX

(
y1/τ

)
.

Hence, the pdf of interest fY (y) can be written as

fY (y) = 1
τ
y(1/τ)−1fX

(
y1/τ

)
.

On the other hand, if τ < 0, then the distribution function of Y is given by

FY (y) = Pr (Y ≤ y) = Pr (Xτ ≤ y) = Pr
(
X ≥ y1/τ

)
= 1 − FX

(
y1/τ

)
,

and
fY (y) =

∣∣∣∣1τ
∣∣∣∣ y(1/τ)−1fX

(
y1/τ

)
.
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Example 4.3.3. We assume that X follows the exponential distribution with
mean θ and consider the transformed variable Y = Xτ . Show that Y follows
the Weibull distribution when τ is positive and determine the parameters of
the Weibull distribution.

Example Solution. As X follows the exponential distribution with mean θ, we
have

fX(x) = 1
θ

e−x/θ x > 0.

Solving for *x* yields x = y1/τ . Taking the derivative, we have∣∣∣∣dx

dy

∣∣∣∣ = 1
τ

y
1
τ

−1.

Thus,

fY (y) = 1
τ

y
1
τ

−1fX

(
y

1
τ

)
= 1

τθ
y

1
τ

−1e− y
1
τ

θ = α

β

(
y

β

)α−1
e−(y/β)α

.

where α = 1
τ and β = θτ . Then, Y follows the Weibull distribution with shape

parameter α and scale parameter β.

Special Case. Relating a GB2 to an F - Distribution. We can use
tranforms such as multiplication by a constant and raising to a power to verify
that the GB2 distribution is related to an F -distribution, a distribution widely
used in applied statistics.

To see this relationship, we first note that 1
2G1 has a gamma distribution with

shape parameter α1 and scale parameter 0.5. Readers with some background
in applied statistics may also recognize this to be a chi-square distribution
with degrees of freedom 2α1. The ratio of independent chi-squares has an
F -distribution. That is

G1

G2
= 0.5G1

0.5G2
= F

has an F -distribution with numerator degrees of freedom 2α1 and denominator
degrees of freedom 2α2. Thus, a random variable X with a GB2 distribution
can be expressed as X = θ

(
G1
G2

)σ
= θ F σ. With this, you can think of a GB2

as a “power F ” or a “generalized F ”, as it is sometimes known in the literature.

Simulation, discussed in Chapter 8, provides a direct application of this result.
Suppose we know how to simulate an outcome with an F − distribution (that
is easy to do using, for example, the R function rf(n,df1,df2)), say F . Then
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we raise it to the power σ and multiply it by θ so that θ F σ is an outcome
that has a GB2 distribution.

Residual analysis provides another direct application. Suppose we have an
outcome, say X, that we think comes from a GB2 distribution. Then we can
examine the transformed version X∗ = (X/θ)1/σ. If the original specification
is correct, then X∗ has an F− distribution and there are many well-known
techniques, some described in Chapter 6, for verifying this assertion.

Exponentiation

The normal distribution is a very popular model for a wide number of ap-
plications and when the sample size is large, it can serve as an approximate
distribution for other models. If the random variable X has a normal distribu-
tion with mean µ and variance σ2, then Y = eX has a lognormal distribution
with parameters µ and σ2. The lognormal random variable has a lower bound
of zero, is positively skewed and has a long right tail. A lognormal distribution
is commonly used to describe distributions of financial assets such as stock
prices. It is also used in fitting claim amounts for automobile as well as health
insurance. This is an example of another type of transformation which involves
exponentiation.

In general, consider the transformation Y = eX . Then, the distribution function
of Y is given by

FY (y) = Pr (Y ≤ y) = Pr
(
eX ≤ y

)
= Pr (X ≤ log y) = FX (log y) .

Taking derivatives, we see that the pdf of interest fY (y) can be written as

fY (y) = 1
y
fX (log y) .

As an important special case, suppose that X is normally distributed with
mean µ and variance σ2. Then, the distribution of Y = eX is

fY (y) = 1
y
fX (log y) = 1

yσ
√

2π
exp

−1
2

(
log y − µ

σ

)2
 .

This is known as a lognormal distribution.

Example 4.3.4. Actuarial Exam Question. Assume that X has a uniform
distribution on the interval (0, c) and define Y = eX . Find the distribution of
Y .
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Example Solution. We begin with the cdf of Y ,

FY (y) = Pr (Y ≤ y) = Pr
(
eX ≤ y

)
= Pr (X ≤ log y) = FX (log y) .

Taking the derivative, we have,

fY (y) = 1
y

fX (log y) = 1
cy

.

Since 0 < x < c, then 1 < y < ec.

4.3.2 Mixture Distributions for Severity

Mixture distributions represent a useful way of modeling data that are drawn
from a heterogeneous population. This parent population can be thought to
be divided into multiple subpopulations with distinct distributions.

Finite Mixtures

Two-point Mixture

If the underlying phenomenon is diverse and can actually be described as
two phenomena representing two subpopulations with different modes, we can
construct the two-point mixture random variable X. Given random variables
X1 and X2, with pdf s fX1 (x) and fX2 (x) respectively, the pdf of X is the
weighted average of the component pdf fX1 (x) and fX2 (x). The pdf and
distribution function of X are given by

fX (x) = afX1 (x) + (1 − a) fX2 (x) ,

and
FX (x) = aFX1 (x) + (1 − a)FX2 (x) ,

for 0 < a < 1, where the mixing parameters a and (1 − a) represent the
proportions of data points that fall under each of the two subpopulations
respectively. This weighted average can be applied to a number of other
distribution related quantities. The k-th raw moment and moment generating
function of X are given by E

(
Xk

)
= aE

(
XK

1

)
+ (1 − a) E

(
Xk

2

)
, and

MX(t) = aMX1(t) + (1 − a)MX2(t),

respectively.

Example 4.3.5. Actuarial Exam Question. A collection of insurance
policies consists of two types. 25% of policies are Type 1 and 75% of policies
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are Type 2. For a policy of Type 1, the loss amount per year follows an
exponential distribution with mean 200, and for a policy of Type 2, the loss
amount per year follows a Pareto distribution with parameters α = 3 and
θ = 200. For a policy chosen at random from the entire collection of both types
of policies, find the probability that the annual loss will be less than 100, and
find the average loss.

Example Solution. The two types of losses are the random variables X1 and X2.
X1 has an exponential distribution with mean 100, so FX1 (100) = 1 − e− 100

200 =
0.393. X2 has a Pareto distribution with parameters α = 3 and θ = 200,
so FX1 (100) = 1 −

(
200

100+200

)3
= 0.704. Hence, FX (100) = (0.25 × 0.393) +

(0.75 × 0.704) = 0.626.

The average loss is given by

E (X) = 0.25E (X1) + 0.75E (X2) = (0.25 × 200) + (0.75 × 100) = 125.

k-point Mixture

In case of finite mixture distributions, the random variable of interest X has
a probability pi of being drawn from homogeneous subpopulation i, where
i = 1, 2, . . . , k and k is the initially specified number of subpopulations in our
mixture. The mixing parameter pi represents the proportion of observations
from subpopulation i. Consider the random variable X generated from k
distinct subpopulations, where subpopulation i is modeled by the continuous
distribution fXi (x). The probability distribution of X is given by

fX (x) =
k∑

i=1
pifXi (x),

where 0 < pi < 1 and ∑k
i=1 pi = 1.

This model is often referred to as a finite mixture or a k-point mixture. The
distribution function, r-th raw moment and moment generating functions of
the k point mixture are given as

FX (x) =
k∑

i=1
piFXi (x),

E (Xr) =
k∑

i=1
piE (Xr

i ), and

MX(t) =
k∑

i=1
piMXi(t),
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respectively.

Example 4.3.6. Actuarial Exam Question. Y1 is a mixture of X1 and X2
with mixing weights a and (1 − a). Y2 is a mixture of X3 and X4 with mixing
weights b and (1 − b). Z is a mixture of Y1 and Y2 with mixing weights c and
(1 − c).

Show that Z is a mixture of X1, X2, X3 and X4, and find the mixing weights.

Example Solution. Applying the formula for a mixed distribution, we get

fY1 (x) = afX1 (x) + (1 − a) fX2 (x)

fY2 (x) = bfX3 (x) + (1 − b) fX4 (x)

fZ (x) = cfY1 (x) + (1 − c) fY2 (x) .

Substituting the first two equations into the third, we get

fZ (x) = c [afX1 (x) + (1 − a) fX2 (x)] + (1 − c) [bfX3 (x) + (1 − b) fX4 (x)]

= cafX1 (x) + c (1 − a) fX2 (x) + (1 − c) bfX3 (x) + (1 − c) (1 − b) fX4 (x) .

Then, Z is a mixture of X1, X2, X3 and X4, with mixing weights ca, c (1 − a),
(1 − c) b and (1 − c) (1 − b), respectively. It can be easily seen that the mixing
weights sum to one.

Continuous Mixtures

A mixture with a very large number of subpopulations (k goes to infinity) is
often referred to as a continuous mixture. In a continuous mixture, subpopula-
tions are not distinguished by a discrete mixing parameter but by a continuous
variable Θ, where Θ plays the role of pi in the finite mixture. Consider the
random variable X with a distribution depending on a parameter Θ, where
Θ itself is a continuous random variable. This description yields the following
model for X

fX (x) =
∫ ∞

−∞
fX (x |θ ) gΘ(θ)dθ,

where fX (x|θ) is the conditional distribution of X at a particular value of
Θ = θ and gΘ (θ) is the probability statement made about the unknown
parameter θ. In a Bayesian context (to be described in Chapter 9), this is
known as the prior distribution of Θ (the prior information or expert opinion
to be used in the analysis).

The distribution function, k-th raw moment and moment generating functions
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of the continuous mixture are given as

FX (x) =
∫ ∞

−∞
FX (x |θ ) gΘ(θ)dθ,

E
(
Xk

)
=
∫ ∞

−∞
E
(
Xk |θ

)
gΘ(θ)dθ,

MX(t) = E
(
etX

)
=
∫ ∞

−∞
E
(
etx |θ

)
gΘ(θ)dθ,

respectively.

The k-th raw moment of the mixture distribution can be rewritten as

E
(
Xk

)
=
∫ ∞

−∞
E
(
Xk |θ

)
gΘ(θ)dθ = E

[
E
(
Xk |Θ

)]
.

Using the law of iterated expectations (see Appendix Chapter 18), we can
define the mean and variance of X as

E (X) = E [E (X |Θ)]

and
Var (X) = E [Var (X |Θ)] + Var [E (X |Θ)] .

Example 4.3.7. Actuarial Exam Question. X has a normal distribution
with a mean of Λ and variance of 1. Λ has a normal distribution with a mean
of 1 and variance of 1. Find the mean and variance of X.

Example Solution. X is a continuous mixture with mean

E (X) = E [E (X|Λ)] = E (Λ) = 1

and

V (X) = V [E (X|Λ)] + E [V (X|Λ)] = V (Λ) + E (1) = 1 + 1 = 2.

Example 4.3.8. Actuarial Exam Question. Claim sizes, X, are uniform
on the interval (Θ,Θ + 10) for each policyholder. Θ varies by policyholder
according to an exponential distribution with mean 5. Find the unconditional
distribution, mean and variance of X.

Example Solution. The conditional distribution of X is fX (x|θ) = 1
10 for

θ < x < θ + 10. The prior distribution of θ is gΘ(θ) = 1
5e− θ

5 for 0 < θ < ∞.
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Multiplying and integrating yields the unconditional distribution of X

fX (x) =
∫

fX (x|θ) gΘ(θ)dθ.

For this example, this is

fX (x) =


∫ x

0
1
50e− θ

5 dθ = 1
10

(
1 − e− x

5

)
0 ≤ x ≤ 10,∫ x

x−10
1
50e− θ

5 dθ = 1
10

(
e− (x−10)

5 − e− x
5

)
10 < x < ∞.

One can use this to derive the mean and variance of the unconditional distribution.
Alternatively, start with the conditional mean and variance of X, given by

E (X|θ) = θ + θ + 10
2 = θ + 5

and
Var (X|θ) = [(θ + 10) − θ]2

12 = 100
12 ,

respectively. With these, the unconditional mean and variance of X are given by

E (X) = E [E (X |Θ)] = E (Θ + 5) = E (Θ) + 5 = 5 + 5 = 10,

and
Var (X) = E [V (X |Θ)] + Var [E (X |Θ)]

= E
(100

12
)

+ Var (Θ + 5) = 8.33 + Var (Θ) = 33.33.

4.4 Estimating Loss Distributions

In this section, you learn how to:

• Estimate moments, quantiles, and distributions without reference to a para-
metric distribution

• Summarize the data graphically without reference to a parametric distribution
• Use method of moments, percentile matching, and maximum likelihood

estimation to estimate parameters for different distributions.
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4.4.1 Nonparametric Estimation

In Section 3.4 for frequency and Section 4.1 for severity, we learned how to
summarize a distribution by computing means, variances, quantiles/percentiles,
and so on. To approximate these summary measures using a dataset, one
strategy is to:

i. assume a parametric form for a distribution, such as a negative bino-
mial for frequency or a gamma distribution for severity,

ii. estimate the parameters of that distribution, and then
iii. use the distribution with the estimated parameters to calculate the

desired summary measure.

This is the parametric approach. Another strategy is to estimate the de-
sired summary measure directly from the observations without reference to
a parametric model. Not surprisingly, this is known as the nonparametric
approach.

Let us start by considering the most basic type of sampling scheme and assume
that observations are realizations from a set of random variables X1, . . . , Xn

that are iid draws from an unknown population distribution F (·). An equivalent
way of saying this is that X1, . . . , Xn, is a random sample (with replacement)
from F (·). We now describe nonparametric estimators of many important
measures that summarize a distribution.

Moment Estimators

We learned how to define moments in Section 3.2.2 for frequency and Section
4.1.1 for severity. In particular, the k-th moment, E [Xk] = µ′

k, summarizes
many aspects of the distribution for different choices of k. Here, µ′

k is sometimes
called the kth population moment to distinguish it from the kth sample moment,

1
n

n∑
i=1

Xk
i ,

which is the corresponding nonparametric estimator. In typical applications, k
is a positive integer, although it need not be in theory. The sample estimator
for the population mean µ is called the sample mean, denoted with a bar on
top of the random variable:

X = 1
n

n∑
i=1

Xi.

A nonparametric, or sample, estimator of the k-th central moment, µk is
1
n

n∑
i=1

(
Xi −X

)k
.
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Properties of the sample moment estimator of the variance such as
n−1∑n

i=1

(
Xi −X

)2
have been studied extensively but is not the only possible

estimator. The most widely used version is one where the effective sample size
is reduced by one, and so we define

s2 = 1
n− 1

n∑
i=1

(
Xi −X

)2
.

Dividing by n − 1 instead of n matters little when you have a large sample
size n as is common in insurance applications. The sample variance estimator
s2 is unbiased in the sense that E [s2] = σ2, a desirable property particularly
when interpreting results of an analysis.

Empirical Distribution Function

We have seen how to compute nonparametric estimators of the kth moment
E [Xk]. In the same way, for any known function g(·), we can estimate E [g(X)]
using n−1∑n

i=1 g(Xi).

Now consider the function g(X) = I(X ≤ x) for a fixed x. Here, the notation
I(·) is the indicator function; it returns 1 if the event (·) is true and 0 otherwise.
Note that now the random variable g(X) has Bernoulli distribution (a binomial
distribution with n = 1). We can use this distribution to readily calculate
quantities such as the mean and the variance. For example, for this choice
of g(·), the expected value is E [I(X ≤ x)] = Pr(X ≤ x) = F (x), the
distribution function evaluated at x. We define the nonparametric estimator of
the distribution function

Fn(x) = 1
n

n∑
i=1

I (Xi ≤ x)

= number of observations less than or equal to x
n

.

As Fn(·) is based on only observations and does not assume a parametric
family for the distribution, it is nonparametric and also known as the empirical
distribution function. It is also known as the empirical cumulative distribution
function and, in R, one can use the ecdf(.) function to compute it.

Example 4.4.1. Toy Data Set. To illustrate, consider a fictitious, or “toy,”
data set of n = 10 observations. Determine the empirical distribution function.

i 1 2 3 4 5 6 7 8 9 10
Xi 10 15 15 15 20 23 23 23 23 30

You should check that the sample mean is X = 19.7 and that the sample
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variance is s2 = 34.45556. The corresponding empirical distribution function is

Fn(x) =



0 for x < 10
0.1 for 10 ≤ x < 15
0.4 for 15 ≤ x < 20
0.5 for 20 ≤ x < 23
0.9 for 23 ≤ x < 30
1 for x ≥ 30,

as shown in Figure 4.4. The empirical distribution is generally discrete and
continuous from the right.

5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(
x)

FIGURE 4.4: Empirical Distribution Function of a Toy Example

Quartiles, Percentiles and Quantiles

We have already seen in Section 4.1.2 the median, which is the number such
that approximately half of a data set is below (or above) it. The first quartile
is the number such that approximately 25% of the data is below it and the
third quartile is the number such that approximately 75% of the data is below
it. A 100p percentile is the number such that 100 × p percent of the data is
below it.

To generalize this concept, consider a distribution function F (·), which may or
may not be continuous, and let q be a fraction so that 0 < q < 1. We want to
define a quantile, say qF , to be a number such that F (qF ) ≈ q. Notice that
when q = 0.5, qF is the median; when q = 0.25, qF is the first quartile, and so
on. In the same way, when q = 0, 0.01, 0.02, . . . , 0.99, 1.00, the resulting qF is a
percentile. So, a quantile generalizes the concepts of median, quartiles, and
percentiles.

To be precise, for a given 0 < q < 1, define the qth quantile qF to be any
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number that satisfies
F (qF −) ≤ q ≤ F (qF ) (4.3)

Here, the notation F (x−) means to evaluate the function F (·) as a left-hand
limit.

To get a better understanding of this definition, let us look at a few special
cases. First, consider the case where X is a continuous random variable so that
the distribution function F (·) has no jump points, as illustrated in Figure 4.5.
In this figure, a few fractions, q1, q2, and q3 are shown with their corresponding
quantiles qF,1, qF,2, and qF,3. In each case, it can be seen that F (qF −) = F (qF )
so that there is a unique quantile. Because we can find a unique inverse of the
distribution function at any 0 < q < 1, we can write qF = F−1(q).

x

F
(x
)

q1

q2

q3

qF,1 qF,2 qF,3

FIGURE 4.5: Continuous Quantile Case

Figure 4.6 shows three cases for distribution functions. The left panel corre-
sponds to the continuous case just discussed. The middle panel displays a jump
point similar to those we already saw in the empirical distribution function
of Figure 4.4. For the value of q shown in this panel, we still have a unique
value of the quantile qF . Even though there are many values of q such that
F (qF −) ≤ q ≤ F (qF ), for a particular value of q, there is only one solution to
equation (4.3). The right panel depicts a situation in which the quantile cannot
be uniquely determined for the q shown as there is a range of qF ’s satisfying
equation (4.3).

Example 4.4.2. Toy Data Set: Continued. Determine quantiles corre-
sponding to the 20th, 50th, and 95th percentiles.

Solution. Consider Figure 4.4. The case of q = 0.20 corresponds to the middle
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FIGURE 4.6: Three Quantile Cases

panel of Figure Figure 4.6, so the 20th percentile is 15. The case of q = 0.50
corresponds to the right panel, so the median is any number between 20 and 23
inclusive. Many software packages use the average 21.5 (e.g. R, as seen below).
For the 95th percentile, the solution is 30. We can see from Figure 4.4 that 30
also corresponds to the 99th and the 99.99th percentiles.
xExample <- c(10, rep(15, 3), 20, rep(23, 4), 30)
quantile(xExample, probs = c(0.2, 0.5, 0.95), type = 6)

20% 50% 95%
15.0 21.5 30.0

By taking a weighted average between data observations, smoothed empirical
quantiles can handle cases such as the right panel in Figure 4.6. The qth
smoothed empirical quantile is defined as

π̂q = (1 − h)X(j) + hX(j+1)

where j = ⌊(n + 1)q⌋, h = (n + 1)q − j, and X(1), . . . , X(n) are the ordered
values (known as the order statistics) corresponding to X1, . . . , Xn. (Recall
that the brackets ⌊·⌋ are the floor function denoting the greatest integer value.)
Note that π̂q is simply a linear interpolation between X(j) and X(j+1).

Example 4.4.3. Toy Data Set: Continued. Determine the 50th and 20th
smoothed percentiles.

Example Solution. Take n = 10 and q = 0.5. Then, j = ⌊(11)(0.5)⌋ = ⌊5.5⌋ = 5
and h = (11)(0.5) − 5 = 0.5. Then the 0.5-th smoothed empirical quantile is

π̂0.5 = (1 − 0.5)X(5) + (0.5)X(6) = 0.5(20) + (0.5)(23) = 21.5.
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Now take n = 10 and q = 0.2. In this case, j = ⌊(11)(0.2)⌋ = ⌊2.2⌋ = 2 and
h = (11)(0.2) − 2 = 0.2. Then the 0.2-th smoothed empirical quantile is

π̂0.2 = (1 − 0.2)X(2) + (0.2)X(3) = 0.8(15) + (0.2)(15) = 15.

Density Estimators

Discrete Variable. When the random variable is discrete, estimating the
probability mass function f(x) = Pr(X = x) is straightforward. We simply use
the sample average, defined to be

fn(x) = 1
n

n∑
i=1

I(Xi = x),

which is the proportion of the sample equal to x.

Continuous Variable within a Group. For a continuous random variable,
consider a discretized formulation in which the domain of F (·) is partitioned
by constants {c0 < c1 < · · · < ck} into intervals of the form [cj−1, cj), for
j = 1, . . . , k. The data observations are thus “grouped” by the intervals into
which they fall. Then, we might use the basic definition of the empirical mass
function, or a variation such as

fn(x) = nj

n× (cj − cj−1) cj−1 ≤ x < cj ,

where nj is the number of observations (Xi) that fall into the interval [cj−1, cj).

Continuous Variable (not grouped). Extending this notion to instances
where we observe individual data, note that we can always create arbitrary
groupings and use this formula. More formally, let b > 0 be a small positive
constant, known as a bandwidth, and define a density estimator to be

fn(x) = 1
2nb

n∑
i=1

I(x− b < Xi ≤ x+ b) (4.4)

Snippet of Theory. The idea is that the estimator fn(x) in equation (4.4) is
the average over n iid realizations of a random variable with mean

E
[ 1
2bI(x− b < X ≤ x+ b)

]
= 1

2b (F (x+ b) − F (x− b))

→ F ′(x) = f(x),

as b → 0. That is, fn(x) is an asymptotically unbiased estimator of f(x) (its
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expectation approaches the true value as sample size increases to infinity).
This development assumes some smoothness of F (·), in particular, twice
differentiability at x, but makes no assumptions on the form of the distribution
function F . Because of this, the density estimator fn is said to be nonparametric.

More generally, define the kernel density estimator of the pdf at x as

fn(x) = 1
nb

n∑
i=1

w
(
x−Xi

b

)
, (4.5)

where w is a probability density function centered about 0. Note that equation
(4.4) is a special case of the kernel density estimator where w(x) = 1

2I(−1 <
x ≤ 1), also known as the uniform kernel. Other popular choices are shown in
Table 4.1.

Table 4.1. Popular Kernel Choices

Kernel w(x)
Uniform 1

2I(−1 < x ≤ 1)
Triangle (1 − |x|) × I(|x| ≤ 1)
Epanechnikov 3

4(1 − x2) × I(|x| ≤ 1)
Gaussian ϕ(x)

Here, ϕ(·) is the standard normal density function. As we will see in the following
example, the choice of bandwidth b comes with a bias-variance tradeoff between
matching local distributional features and reducing the volatility.

Example 4.4.4. Property Fund. Figure 4.7 shows a histogram (with shaded
gray rectangles) of logarithmic property claims from 2010. The (blue) thick
curve represents a Gaussian kernel density where the bandwidth was selected
automatically using an ad hoc rule based on the sample size and volatility of
these data. For this dataset, the bandwidth turned out to be b = 0.3255. For
comparison, the (red) dashed curve represents the density estimator with a
bandwidth equal to 0.1 and the green smooth curve uses a bandwidth of 1.
As anticipated, the smaller bandwidth (0.1) indicates taking local averages
over less data so that we get a better idea of the local average, but at the
price of higher volatility. In contrast, the larger bandwidth (1) smooths out
local fluctuations, yielding a smoother curve that may miss perturbations in
the local average. For actuarial applications, we mainly use the kernel density
estimator to get a quick visual impression of the data. From this perspective,
you can simply use the default ad hoc rule for bandwidth selection, knowing
that you have the ability to change it depending on the situation at hand.
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FIGURE 4.7: Histogram of Logarithmic Property Claims with Super-
imposed Kernel Density Estimators

Nonparametric density estimators, such as the kernel estimator, are regularly
used in practice. The concept can also be extended to give smooth versions of
an empirical distribution function. Given the definition of the kernel density
estimator, the kernel estimator of the distribution function can be found as

F̃n(x) = 1
n

n∑
i=1

W
(
x−Xi

b

)
.

where W is the distribution function associated with the kernel density w. To
illustrate, for the uniform kernel, we have w(y) = 1

2I(−1 < y ≤ 1), so

W (y) =


0 y < −1
y+1

2 −1 ≤ y < 1
1 y ≥ 1

.

Example 4.4.5. Actuarial Exam Question. You study five lives to estimate
the time from the onset of a disease to death. The times to death are:

2 3 3 3 7

Using a triangular kernel with bandwidth 2, calculate the density function
estimate at 2.5.
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Example Solution. For the kernel density estimate, we have

fn(x) = 1
nb

n∑
i=1

w

(
x − Xi

b

)
,

where n = 5, b = 2, and x = 2.5. For the triangular kernel, w(x) = (1 − |x|) ×
I(|x| ≤ 1). Thus,

Xi
x−Xi

b w
(

x−Xi

b

)
2 2.5−2

2 = 1
4 (1 − 1

4)(1) = 3
4

3
3 2.5−3

2 = −1
4

(
1 −

∣∣−1
4
∣∣) (1) = 3

4
3
7 2.5−7

2 = −2.25 (1 − | − 2.25|)(0) = 0

Then the kernel density estimate at x = 2.5 is

fn(2.5) = 1
5(2)

(3
4 + (3)3

4 + 0
)

= 3
10 .

4.4.2 Parametric Estimation

Section 4.2 has focused on parametric distributions that are commonly used
in insurance applications. However, to be useful in applied work, these dis-
tributions must use “realistic” values for the parameters. In this section we
cover three methods for estimating parameters: Method of moments, Percentile
matching, and Maximum likelihood estimation.

Method of Moments

Under the method of moments, we approximate the moments of the parametric
distribution using the empirical moments described in Section 4.4.1. We can
then algebraically solve for the parameter estimates.

Example 4.4.6. Property Fund. For the 2010 property fund, there are
n = 1, 377 individual claims (in thousands of dollars) with

m1 = 1
n

n∑
i=1

Xi = 26.62259 and m2 = 1
n

n∑
i=1

X2
i = 136154.6.

Fit the parameters of the gamma and Pareto distributions using the method
of moments.
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Solution. To fit a gamma distribution, we have µ1 = αθ and µ′
2 = α(α+ 1)θ2.

Equating the two yields the method of moments estimators, easy algebra shows
that

α = µ2
1

µ′
2 − µ2

1
and θ = µ′

2 − µ2
1

µ1
.

Thus, the method of moment estimators are

α̂ = 26.622592

136154.6 − 26.622592 = 0.005232809

θ̂ = 136154.6 − 26.622592

26.62259 = 5, 087.629.

For comparison, the maximum likelihood values (see Section 4.4.2) turn out to
be α̂MLE = 0.2905959 and θ̂MLE = 91.61378, so there are big discrepancies
between the two estimation procedures. This is one indication, as we have seen
before, that the gamma model fits poorly.

In contrast, now assume a Pareto distribution so that µ1 = θ/(α − 1) and
µ′

2 = 2θ2/((α − 1)(α − 2)). Note that this expression for µ′
2 is only valid for

α > 2. Easy algebra shows

α = 1 + µ′
2

µ′
2 − µ2

1
and θ = (α− 1)µ1.

Thus, the method of moment estimators are

α̂ = 1 + 136154.6
136154.6 − 26, 622592 = 2.005233

θ̂ = (2.005233 − 1) · 26.62259 = 26.7619.

The maximum likelihood values turn out to be α̂MLE = 0.9990936 and θ̂MLE =
2.2821147. It is interesting that α̂MLE < 1; for the Pareto distribution, recall
that α < 1 means that the mean is infinite. This is another indication that the
property claims data set is a long tail distribution.

As the above example suggests, there is flexibility with the method of moments.
For example, we could have matched the second and third moments instead
of the first and second, yielding different estimators. Furthermore, there is
no guarantee that a solution will exist for each problem. For data that are
censored or truncated, matching moments is possible for a few problems but,
in general, this is a more difficult scenario. Finally, for distributions where the
moments do not exist or are infinite, method of moments is not available. As
an alternative, one can use the percentile matching technique.
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Percentile Matching

Under percentile matching, we approximate the quantiles or percentiles of the
parametric distribution using the empirical quantiles or percentiles described
in Section 4.4.1.

Example 4.4.7. Property Fund. For the 2010 property fund, we illustrate
matching on quantiles. In particular, the Pareto distribution is intuitively
pleasing because of the closed-form solution for the quantiles. Recall that the
distribution function for the Pareto distribution is

F (x) = 1 −
(

θ

x+ θ

)α

.

Easy algebra shows that we can express the quantile as

F−1(q) = θ
(
(1 − q)−1/α − 1

)
,

for a fraction q, 0 < q < 1.

Determine estimates of the Pareto distribution parameters using the 25th and
95th empirical quantiles.

Example Solution. The 25th percentile (the first quartile) turns out to be
0.78853 and the 95th percentile is 50.98293 (both in thousands of dollars). With
two equations

0.78853 = θ
(
1 − (1 − .25)−1/α

)
and 50.98293 = θ

(
1 − (1 − .75)−1/α

)
and two unknowns, the solution is α̂ = 0.9412076 and θ̂ = 2.205617 .

We remark here that a numerical routine is required for these solutions as no
analytic solution is available. Furthermore, recall that the maximum likelihood
estimates are α̂MLE = 0.9990936 and θ̂MLE = 2.2821147, so the percentile
matching provides a better approximation for the Pareto distribution than the
method of moments.

Example 4.4.8. Actuarial Exam Question. You are given:

(i) Losses follow a loglogistic distribution with cumulative distribution
function:

F (x) = (x/θ)γ

1 + (x/θ)γ
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(ii) The sample of losses is:

10 35 80 86 90 120 158 180 200 210 1500

Calculate the estimate of θ by percentile matching, using the 40th and 80th
empirically smoothed percentile estimates.

Example Solution. With 11 observations, we have j = ⌊(n+1)q⌋ = ⌊12(0.4)⌋ =
⌊4.8⌋ = 4 and h = (n + 1)q − j = 12(0.4) − 4 = 0.8. By interpolation, the
40th empirically smoothed percentile estimate is π̂0.4 = (1 − h)X(j) + hX(j+1) =
0.2(86) + 0.8(90) = 89.2.

Similarly, for the 80th empirically smoothed percentile estimate, we have 12(0.8) =
9.6 so the estimate is π̂0.8 = 0.4(200) + 0.6(210) = 206.

Using the loglogistic cumulative distribution, we need to solve the following two
equations for parameters θ̂ and γ̂:

0.4 = (89.2/θ̂)γ̂

1 + (89.2/θ̂)γ̂
and 0.8 = (206/θ̂)γ̂

1 + (206/θ̂)γ̂
.

Solving for each parenthetical expression gives 2
3 = (89.2/θ)γ̂ and 4 = (206/θ̂)γ̂ .

Taking the ratio of the second equation to the first gives 6 = (206/89.2)γ̂ ⇒ γ̂ =
log(6)

log(206/89.2) = 2.1407. Then 41/2.1407 = 206/θ̂ ⇒ θ̂ = 107.8.

Like the method of moments, percentile matching is almost too flexible in the
sense that estimators can vary depending on different percentiles chosen. For
example, one actuary may use estimation on the 25th and 95th percentiles
whereas another uses the 20th and 80th percentiles. In general estimated
parameters will differ and there is no compelling reason to prefer one over the
other. Also as with the method of moments, percentile matching is appealing
because it provides a technique that can be readily applied in selected situations
and has an intuitive basis. Although most actuarial applications use maximum
likelihood estimators, it can be convenient to have alternative approaches such
as method of moments and percentile matching available.

Maximum Likelihood Estimators for Complete Data

At a foundational level, we assume that the analyst has available a random
sample X1, . . . , Xn from a distribution with distribution function FX (for
brevity, we sometimes drop the subscript X). As is common, we use the vector
θ to denote the set of parameters for F . This basic sample scheme is reviewed
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in Appendix Section 17.1.1. Although basic, this sampling scheme provides the
foundations for understanding more complex schemes that are regularly used
in practice, and so it is important to master the basics.

Before drawing from a distribution, we consider potential outcomes summarized
by the random variable Xi (here, i is 1, 2, . . . , n). After the draw, we observe
xi. Notationally, we use uppercase roman letters for random variables and lower
case ones for realizations. We have seen this set-up already in Section 3.4, where
we used Pr(X1 = x1, . . . , Xn = xn) to quantify the “likelihood” of drawing a
sample {x1, . . . , xn}. With continuous data, we use the joint probability density
function instead of joint probabilities. With the independence assumption, the
joint pdf may be written as the product of pdfs. Thus, we define the likelihood
to be

L(θ) =
n∏

i=1
f(xi). (4.6)

From the notation, note that we consider this to be a function of the parameters
in θ, with the data {x1, . . . , xn} held fixed. The maximum likelihood estimator
is that value of the parameters in θ that maximize L(θ).

From calculus, we know that maximizing a function produces the same results
as maximizing the logarithm of a function (this is because the logarithm is a
monotone function). Because we get the same results, to ease computational
considerations, it is common to consider the logarithmic likelihood, denoted
as

l(θ) = logL(θ) =
n∑

i=1
log f(xi). (4.7)

Appendix Section 17.2.2 reviews the foundations of maximum likelihood esti-
mation with more mathematical details in Appendix Chapter 19.

Example 4.4.9. Actuarial Exam Question. You are given the following
five observations: 521, 658, 702, 819, 1217. You use the single-parameter Pareto
with distribution function:

F (x) = 1 −
(500
x

)α

, x > 500.

With n = 5, the log-likelihood function is

l(α) =
5∑

i=1
log f(xi;α) = 5α log 500 + 5 logα− (α + 1)

5∑
i=1

log xi.

Figure 4.8 shows the logarithmic likelihood as a function of the parameter α.

We can determine the maximum value of the logarithmic likelihood by taking
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FIGURE 4.8: Logarithmic Likelihood for a One-Parameter Pareto

derivatives and setting it equal to zero. This yields

∂
∂α l(α) = 5 log 500 + 5/α−∑5

i=1 log xi =set 0 ⇒
α̂MLE = 5∑5

i=1 log xi−5 log 500
= 2.453.

Naturally, there are many problems where it is not practical to use hand
calculations for optimization. Fortunately there are many statistical routines
available such as the R function optim.

This code confirms our hand calculation result where the maximum likelihood
estimator is αMLE = 2.453125.

We present a few additional examples to illustrate how actuaries fit a parametric
distribution model to a set of claim data using maximum likelihood.

Example 4.4.10. Actuarial Exam Question. Consider a random sample
of claim amounts: 8000 10000 12000 15000. You assume that claim amounts
follow an inverse exponential distribution, with parameter θ. Calculate the
maximum likelihood estimator for θ.

Example Solution. The pdf is

fX (x) = θe− θ
x

x2 ,

where x > 0.
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The likelihood function, L (θ), can be viewed as the probability of the observed
data, written as a function of the model’s parameter θ

L (θ) =
4∏

i=1
fXi (xi) = θ4e

−θ
∑4

i=1
1

xi∏4
i=1 x2

i

.

The log-likelihood function, log L (θ), is the sum of the individual logarithms

log L (θ) = 4 log θ − θ
4∑

i=1

1
xi

− 2
4∑

i=1
log xi.

Taking a derivative, we have

d log L (θ)
dθ

= 4
θ

−
4∑

i=1

1
xi

.

The maximum likelihood estimator of θ, denoted by θ̂, is the solution to the
equation

4
θ̂

−
4∑

i=1

1
xi

= 0.

Thus, θ̂ = 4∑4
i=1

1
xi

= 10, 667.

The second derivative of log L (θ) is given by

d2 log L (θ)
dθ2 = −4

θ2 .

Evaluating the second derivative of the loglikelihood function at θ̂ = 10, 667
gives a negative value, indicating θ̂ as the value that maximizes the loglikelihood
function.

Example 4.4.11. Actuarial Exam Question. A random sample of size 6 is
from a lognormal distribution with parameters µ and σ. The sample values are

200 3000 8000 60000 60000 160000.

Calculate the maximum likelihood estimator for µ and σ.

Example Solution. The pdf is

fX (x) = 1
xσ

√
2π

exp
−1

2

(
log x− µ

σ

)2
 ,

where x > 0.
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The likelihood function, L (µ, σ), is the product of the pdf for each data point.

L (µ, σ) =
6∏

i=1
fXi (xi) = 1

σ6 (2π)3∏6
i=1 xi

exp
−1

2

6∑
i=1

(
log xi − µ

σ

)2
 .

Taking a logarithm yields the loglikelihood function, logL (µ, σ), which is the
sum of the individual logarithms.

logL (µ, σ) = −6 log σ − 3 log (2π) −
6∑

i=1
log xi − 1

2

6∑
i=1

(
log xi − µ

σ

)2

.

The first partial derivatives are
∂ log L(µ,σ)

∂µ = 1
σ2
∑6

i=1 (log xi − µ)
∂ log L(µ,σ)

∂σ = −6
σ + 1

σ3
∑6

i=1 (log xi − µ)2 .

The maximum likelihood estimators of µ and σ, denoted by µ̂ and σ̂, are the
solutions to the equations

1
σ̂2
∑6

i=1 (log xi − µ̂) = 0
−6
σ̂ + 1

σ̂3
∑6

i=1 (log xi − µ̂)2 = 0.
These yield the estimates

µ̂ =
∑6

i=1 log xi

6 = 9.38 and σ̂2 =
∑6

i=1 (log xi − µ̂)2

6 = 5.12.

To check that these estimates maximize, and do not minimize, the likelihood,
you may also wish to compute the second partial derivatives. These are

∂2 logL (µ, σ)
∂µ2 = −6

σ2 ,
∂2 logL (µ, σ)

∂µ∂σ
= −2
σ3

6∑
i=1

(log xi − µ)

and
∂2 logL (µ, σ)

∂σ2 = 6
σ2 − 3

σ4

6∑
i=1

(log xi − µ)2 .

Two follow-up questions rely on large sample properties that you may have
seen in an earlier course. Appendix Chapter 19 reviews the definition of the
likelihood function, introduces its properties, reviews the maximum likelihood
estimators, extends their large-sample properties to the case where there are
multiple parameters in the model, and reviews statistical inference based
on maximum likelihood estimators. In the solutions of these examples we
derive the asymptotic variance of maximum-likelihood estimators of the model
parameters. We use the delta method to derive the asymptotic variances of
functions of these parameters.

Example 4.4.10 - Follow - Up. Refer to Example 4.4.10.
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a. Approximate the variance of the maximum likelihood estimator.
b. Determine an approximate 95% confidence interval for θ.
c. Determine an approximate 95% confidence interval for

Pr (X ≤ 9, 000) .

Example Solution.

a. Taking reciprocal of negative expectation of the second derivative of log L (θ),
we obtain an estimate of the variance of θ̂, V̂ ar

(
θ̂
)

=
[
E
(

d2 log L(θ)
dθ2

)]−1
∣∣∣∣
θ=θ̂

=
θ̂2

4 = 28, 446, 222.

It should be noted that as the sample size n → ∞, the distribution of the
maximum likelihood estimator θ̂ converges to a normal distribution with mean
θ and variance V̂

(
θ̂
)
. The approximate confidence interval in this example is

based on the assumption of normality, despite the small sample size, only for the
purpose of illustration.

b. The 95
10, 667 ± 1.96

√
28, 446, 222 = (213.34, 21120.66) .

c. The distribution function of X is F (x) = 1 − e− x
θ . Then, the maximum

likelihood estimate of gΘ(θ) = F (9, 000) is

g
(
θ̂
)

= 1 − e− 9,000
10,667 = 0.57.

We use the delta method to approximate the variance of g
(
θ̂
)
.

dg (θ)
dθ

= −9000
θ2 e

− 9000
θ

.

V̂ ar
[
g
(
θ̂
)]

=
(
−9000

θ̂2 e
− 9000

θ̂

)2
V̂
(
θ̂
)

= 0.0329.

The 95
0.57 ± 1.96

√
0.0329 = (0.214, 0.926) .

Example 4.4.11 - Follow - Up. Refer to Example 4.4.11.

a. Estimate the covariance matrix of the maximum likelihood estimator.
b. Determine approximate 95% confidence intervals for µ and σ.
c. Determine an approximate 95% confidence interval for the mean of

the lognormal distribution.
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a. To derive the covariance matrix of the mle we need to find the expectations
of the second derivatives. Since the random variable X is from a lognormal
distribution with parameters µ and σ, then logX is normally distributed with
mean µ and variance σ2.

E
(
∂2log L (µ, σ)

∂µ2

)
= E

(−6
σ2

)
= −6
σ2 ,

E
(

∂2log L(µ,σ)
∂µ∂σ

)
= −2

σ3
∑6

i=1 E (log xi − µ)
= −2

σ3
∑6

i=1 [E (log xi) − µ] = −2
σ3
∑6

i=1 (µ− µ) = 0,
and

E
(

∂2log L(µ,σ)
∂σ2

)
= 6

σ2 − 3
σ4
∑6

i=1 E (log xi − µ)2

= 6
σ2 − 3

σ4
∑6

i=1 Var (log xi) = 6
σ2 − 3

σ4
∑6

i=1 σ
2

= −12
σ2 .

Using the negatives of these expectations we obtain the Fisher information
matrix [ 6

σ2 0
0 12

σ2

]
.

The covariance matrix, Σ, is the inverse of the Fisher information matrix

Σ =
[

σ2

6 0
0 σ2

12

]
.

The estimated matrix is given by

Σ̂ =
[
0.8533 0

0 0.4267

]
.

b. The 95% confidence interval for µ is given by 9.38 ± 1.96
√

0.8533 =
(7.57, 11.19).

The 95% confidence interval for σ2 is given by 5.12 ± 1.96
√

0.4267 =
(3.84, 6.40).

c. The mean of X is exp
(
µ+ σ2

2

)
. Then, the maximum likelihood estimate of

g (µ, σ) = exp
(
µ+ σ2

2

)

is
g (µ̂, σ̂) = exp

(
µ̂+ σ̂2

2

)
= 153, 277.
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We use the delta method to approximate the variance of the mle g (µ̂, σ̂).
∂g(µ,σ)

∂µ = exp
(
µ+ σ2

2

)
and ∂g(µ,σ)

∂σ = σ exp
(
µ+ σ2

2

)
.

Using the delta method, the approximate variance of g (µ̂, σ̂) is given by

V̂ ar (g (µ̂, σ̂)) =
[

∂g(µ,σ)
∂µ

∂g(µ,σ)
∂σ

]
Σ
∂g(µ,σ)

∂µ
∂g(µ,σ)

∂σ

∣∣∣∣∣∣
µ=µ̂,σ=σ̂

=
[
153, 277 346, 826

] [0.8533 0
0 0.4267

] [
153, 277
346, 826

]
= 71, 374, 380, 000.

The 95% confidence interval for exp
(
µ+ σ2

2

)
is given by

153277 ± 1.96
√

71, 374, 380, 000 = (−370356, 676910) .

Since the mean of the lognormal distribution cannot be negative, we should
replace the negative lower limit in the previous interval by a zero.

Example 4.4.12. Wisconsin Property Fund. To see how maximum like-
lihood estimators work with real data, we return to the 2010 claims data
introduced in Section 1.3.

The following snippet of code shows how to fit the exponential, gamma, Pareto,
lognormal, and GB2 models. For consistency, the code employs the R package
VGAM. The acronym stands for Vector Generalized Linear and Additive Models;
as suggested by the name, this package can do far more than fit these models
although it suffices for our purposes. The one exception is the GB2 density
which is not widely used outside of insurance applications; however, we can
code this density and compute maximum likelihood estimators using the optim
general purpose optimizer.

Results from the fitting exercise are summarized in Figure 4.9. Here, the black
“longdash” curve is a density estimator of the actual data (introduced in
Section 4.4.1); the other curves are parametric curves where the parameters
are computed via maximum likelihood. We see poor fits in the red dashed line
from the exponential distribution fit and the blue dotted line from the gamma
distribution fit. Fits of the other curves, Pareto, lognormal, and GB2, all seem
to provide reasonably good fits to the actual data. Chapter 6 describes in more
detail the principles of model selection.
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FIGURE 4.9: Density Comparisons for the Wisconsin Property Fund

Starting Values

Generally, maximum likelihood is the preferred technique for parameter esti-
mation because it employs data more efficiently. (See Appendix Chapter 19 for
precise definitions of efficiency.) However, methods of moments and percentile
matching are useful because they are easier to interpret and therefore allow the
actuary or analyst to explain procedures to others. Additionally, the numerical
estimation procedure (e.g. if performed in R) for the maximum likelihood is
iterative and requires starting values to begin the recursive process. Although
many problems are robust to the choice of the starting values, for some complex
situations it can be important to have a starting value that is close to the
(unknown) optimal value. Method of moments and percentile matching can
produce desirable estimates without a serious computational investment and
can thus be used as a starting value for computing maximum likelihood.
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4.5 Exercises with a Practical Focus

Exercise 4.1. Corporate Travel This exercise is based on the data set
introduced in Exercise 1.1 where now the focus is on severity modeling. As in
Exercise 3.14, we fit data for the period 2006-2021 but restrict claims to be
greater than or equal to 10 (Australian dollars).

• a. Using the R function density, provide a nonparametric density estimate
of the claims on both the original and logarithmic scale over the range of the
data. Use this display to verify that the display is more interpretable on the
logarithmic scale.

• b. Fit a normal distribution to logarithmic claims and compare the fitted
distribution to the nonparametric (empirical) distribution. Interpret this
comparison to mean that the lognormal distribution is an excellent candidate
to represent these data.

• c. As an alternative, fit a Pareto distribution to the claims data using
maximum likelihood. To check your work, do this in two ways. A basic
approach is to create a log likelihood function and minimize it (using the
function optim). A second approach is to the the vglm function from the
VGAM package.

• d. We have fit X to be a Pareto distribution but wish to plot Y = ln(X).
From Section 4.3.1.3, we saw that FY (y) = FX(ey) and fY (y) = eyfX(ey).
Use this transformation to augment the plot in part (b) to include the Pareto
distribution.

From this analysis, you learn that the lognormal and Pareto distribution fit
the data approximately the same with the lognormal as a slight favorite.

Exercise 4.2. Wisconsin Property Fund. Replicate the real-data example
introduced in Example 4.4.12 using the techniques demonstrated in Exercise
4.1.

Exercise 4.3. Group Personal Accident. This exercise is based on the
data set introduced in Exercise 1.2. We use incurred claims for all available
years, still omitting those less than 10.

One can fit a distribution to the losses. An analysis, summarized in Figure 4.10,
shows the results from fitting via maximum likelihood the gamma, Pareto,
and lognormal distributions to incurred losses. This figure suggests that the
lognormal distribution appears to be the best fit.

Following the outlines in Exercises 4.1 and 4.2, fit these data via maximum
likelihood and reproduce the figure that summarizes the results.
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5
Modeling Claim Severity

Chapter Preview. In Chapter 4 we explored the use of continuous as well as
mixture distributions to model the random size of loss. Often the risk of loss is
shared between the policyholder (the insured) and the insurer. Sharing risk can
take the form of a deductible that is paid out-of-pocket of the insured before
the insurer contributes to the loss, the form of a limit that caps the insured’s
liability for loss to a certain amount, or the form of a portion of the loss the
insurer is responsible for covering after the insured covers his/her share of the
cost, among other forms of cost-sharing. In Sections 5.1.1 to 5.1.3 we introduce
the policy deductible feature of the insurance contract, the limited policy, and
the co-insurance cost-sharing arrangement. In Section 5.1.4 we explore how
insurance companies transfer part of the underlying insured risk by securing
coverage from a reinsurer. Section 5.2 covers parametric estimation methods
for modified data including grouped, censored and truncated data. In Section
5.3 we apply some non-parametric estimation tools like the ogive estimator, the
plug-in principle, the Kaplan-Meier product-limit estimator, and the Nelson
Aalon estimator on the modified data.

5.1 Coverage Modifications

In this section, you learn how to:

• Describe the policy deductible feature of the insurance contract, the limited
policy, and the coinsurance factor.

• Describe the distinction between the loss incurred to the insured and the
amount of paid claim by the insurer under different policy modifications.

• Derive the distribution functions and raw moments for the amount of paid
claim by the insurer for the different insurance contracts.

• Calculate the percentage decrease in the expected payment of the insurer as
a result of imposing the deductible.

• Describe the insurance mechanism for insurance companies (reinsurance).

141
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• Calculate the raw moments of the amount retained by the primary insurer
in the reinsurance agreement.

In this section we evaluate the impacts of coverage modifications: a) deductibles,
b) policy limit, c) coinsurance and d) inflation on insurer’s costs.

5.1.1 Policy Deductibles

Under an ordinary deductible policy, the insured (policyholder) agrees to cover
a fixed amount of an insurance claim before the insurer starts to pay. This
fixed expense paid out of pocket is called the deductible and often denoted by
d. If the loss exceeds d then the insurer is responsible for covering the loss X
less the deductible d. Depending on the agreement, the deductible may apply
to each covered loss or to the total losses during a defined benefit period (such
as a month, year, etc.)

Deductibles reduce premiums for the policyholders by eliminating a large
number of small claims, the costs associated with handling these claims, and
the potential moral hazard arising from having insurance. Moral hazard occurs
when the insured takes more risks, increasing the chances of loss due to perils
insured against, knowing that the insurer will incur the cost (e.g. a policyholder
with collision insurance may be encouraged to drive recklessly). The larger the
deductible, the less the insured pays in premiums for an insurance policy.

Let X denote the loss incurred to the insured and Y denote the amount of
paid claim by the insurer. Speaking of the benefit paid to the policyholder, we
differentiate between two variables: The payment per loss and the payment
per payment. The payment per loss variable, denoted by Y L or (X − d)+ is
left censored because values of X that are less than d are set equal to zero.
This variable is defined as

Y L = (X − d)+ =
{

0 X ≤ d,
X − d X > d

.

Y L is often referred to as left censored and shifted variable because the values
below d are not ignored and all losses are shifted by a value d.

On the other hand, the payment per payment variable, denoted by Y P , is
defined only when there is a payment. Specifically, Y P equals X − d on the
event {X > d}, denoted as Y P = X − d|X > d. Another way of expressing
this that is commonly used is

Y P =
{

Undefined X ≤ d
X − d X > d.
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Here, Y P is often referred to as left truncated and shifted variable or excess
loss variable because the claims smaller than d are not reported and values
above d are shifted by d.

Even when the distribution of X is continuous, the distribution of Y L is a
hybrid combination of discrete and continuous components. The discrete part
of the distribution is concentrated at Y = 0 (when X ≤ d) and the continuous
part is spread over the interval Y > 0 (when X > d). For the discrete part, the
probability that no payment is made is the probability that losses fall below
the deductible; that is,

Pr
(
Y L = 0

)
= Pr (X ≤ d) = FX (d) .

Using the transformation Y L = X−d for the continuous part of the distribution,
we can find the pdf of Y L given by

fY L (y) =
{

FX (d) y = 0
fX (y + d) y > 0.

We can see that the payment per payment variable is the payment per loss
variable conditional on the loss exceeding the deductible (X > d); that is,
Y P = Y L

∣∣∣X > d. Alternatively, it can be expressed as Y P = (X − d)|X > d,
that is, Y P is the loss in excess of the deductible given that the loss exceeds
the deductible. Hence, the pdf of Y P is given by

fY P (y) = fX (y + d)
1 − FX (d) ,

for y > 0. Accordingly, the distribution functions of Y Land Y P are given by

FY L (y) =
{

FX (d) y = 0
FX (y + d) y > 0,

and
FY P (y) = FX (y + d) − FX (d)

1 − FX (d) ,

for y > 0, respectively.

The raw moments of Y L and Y P can be found directly using the pdf of X as
follows

E
[(
Y L

)k
]

=
∫ ∞

d
(x− d)k fX (x) dx,

and

E
[(
Y P

)k
]

=
∫∞

d (x− d)k fX (x) dx
1 − FX (d) =

E
[(
Y L

)k
]

1 − FX (d) ,



144 5 Modeling Claim Severity

respectively. For k = 1, we can use the survival function to calculate E(Y L) as

E(Y L) =
∫ ∞

d
[1 − FX(x)] dx.

This could be easily proved if we start with the initial definition of E(Y L) and
use integration by parts.

We have seen that the deductible d imposed on an insurance policy is the
amount of loss that has to be paid out of pocket before the insurer makes
any payment. The deductible d imposed on an insurance policy reduces the
insurer’s payment. The loss elimination ratio (LER) is the percentage decrease
in the expected payment of the insurer as a result of imposing the deductible.
It is defined as

LER =
E (X) − E

(
Y L

)
E (X) .

A little less common type of policy deductible is the franchise deductible.
The franchise deductible will apply to the policy in the same way as ordinary
deductible except that when the loss exceeds the deductible d, the full loss
is covered by the insurer. The payment per loss and payment per payment
variables are defined as

Y L =
{

0 X ≤ d,
X X > d,

and
Y P =

{
Undefined X ≤ d,

X X > d,

respectively.

Example 5.1.1. Actuarial Exam Question. A claim severity distribution
is exponential with mean 1000. An insurance company will pay the amount
of each claim in excess of a deductible of 100. Calculate the variance of the
amount paid by the insurance company for one claim, including the possibility
that the amount paid is 0.

Example Solution. Let Y L denote the amount paid by the insurance company
for one claim.

Y L = (X − 100)+ =
{

0 X ≤ 100,
X − 100 X > 100.

The first and second moments of Y L are

E
(
Y L
)

=
∫ ∞

100
(x − 100) fX (x) dx =

∫ ∞

100
SX (x)dx = 1000e

− 100
1000

,
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and
E

[(
Y L
)2
]

=
∫ ∞

100
(x − 100)2 fX (x) dx = 2 × 10002e− 100

1000 .

So,
Var

(
Y L
)

=
(
2 × 10002e− 100

1000

)
−
(
1000e− 100

1000

)2
= 990, 944.

An arguably simpler path to the solution is to make use of the relationship
between X and Y P . If X is exponentially distributed with mean 1000, then
Y P is also exponentially distributed with the same mean, because of the
memoryless property of the exponential distribution. Hence, E

(
Y P

)
=1000

and
E
[(
Y P

)2
]

= 2 × 10002.

Using the relationship between Y L and Y P we find

E
(
Y L

)
= E

(
Y P

)
SX (100) = 1000e− 100

1000

E
[(
Y L

)2
]

= E
[(
Y P

)2
]
SX (100) = 2 × 10002e− 100

1000 .

The relationship between X and Y P can also be used when dealing with the
uniform or the Pareto distributions. You can easily show that if X is uniform
over the interval (0, θ) then Y P is uniform over the interval (0, θ − d) and if X
is Pareto with parameters α and θ then Y P is Pareto with parameters α and
θ + d.

Example 5.1.2. Actuarial Exam Question. For an insurance:

• Losses have a density function

fX (x) =
{

0.02x 0 < x < 10,
0 elsewhere.

• The insurance has an ordinary deductible of 4 per loss.
• Y P is the claim payment per payment random variable.

Calculate E
(
Y P

)
.

Example Solution. We define Y P as follows

Y P =
{

Undefined X ≤ 4,
X − 4 X > 4.

So, E
(
Y P
)

=
∫ 10

4 (x − 4) 0.02x dx/1 − F X (4) = 2.88
0.84 = 3.43.
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Note that we divide by SX(4) = 1 − FX(4), as this is the probability where the
variable Y P is defined.

Example 5.1.3. Actuarial Exam Question. You are given:

• Losses follow an exponential distribution with the same mean in all years.
• The loss elimination ratio this year is 70%.
• The ordinary deductible for the coming year is 4/3 of the current deductible.

Compute the loss elimination ratio for the coming year.

Example Solution. Let the losses X ∼ Exp(θ) and the deductible for the
coming year d′ = 4

3d, the deductible of the current year. The LER for the current
year is

E (X) − E
(
Y L
)

E (X) = θ − θe−d/θ

θ
= 1 − e−d/θ = 0.7.

Then, e−d/θ = 0.3.

The LER for the coming year is

θ−θ exp(− d′
θ

)
θ =

θ−θ exp
(

−
4
3 d

θ

)
θ

= 1 − exp
(

−
4
3 d

θ

)
= 1 −

(
e−d/θ

)4/3
= 1 − 0.34/3 = 0.8.

5.1.2 Policy Limits

Under a limited policy, the insurer is responsible for covering the actual loss X
up to the limit of its coverage. This fixed limit of coverage is called the policy
limit and often denoted by u. If the loss exceeds the policy limit, the difference
X − u has to be paid by the policyholder. While a higher policy limit means a
higher payout to the insured, it is associated with a higher premium.

Let X denote the loss incurred to the insured and Y denote the amount of
paid claim by the insurer. The variable Y is known as the limited loss variable
and is denoted by X ∧ u. It is a right censored variable because values above u
are set equal to u. The limited loss random variable Y is defined as

Y = X ∧ u =
{
X X ≤ u
u X > u.

It can be seen that the distinction between Y L and Y P is not needed under
limited policy as the insurer will always make a payment.
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Using the definitions of (X − u)+ and (X ∧ u), it can be easily seen that
the expected payment without any coverage modification, X, is equal to
the sum of the expected payments with deductible u and limit u. That is,
X = (X − u)+ + (X ∧ u).

Even when the distribution of X is continuous, the distribution of Y is a hybrid
combination of discrete and continuous components. The discrete part of the
distribution is concentrated at Y = u (when X > u), while the continuous part
is spread over the interval Y < u (when X ≤ u). For the discrete part, the
probability that the benefit paid is u, is the probability that the loss exceeds
the policy limit u; that is,

Pr (Y = u) = Pr (X > u) = 1 − FX (u) .

For the continuous part of the distribution Y = X, hence the pdf of Y is given
by

fY (y) =
{

fX (y) 0 < y < u
1 − FX (u) y = u.

Accordingly, the distribution function of Y is given by

FY (y) =
{
FX (x) 0 < y < u

1 y ≥ u.

The raw moments of Y can be found directly using the pdf of X as follows

E
(
Y k
)

= E
[
(X ∧ u)k

]
=
∫ u

0
xkfX (x) dx+

∫ ∞

u
ukfX (x)dx =

∫ u

0
xkfX (x) dx+uk [1 − FX (u)] .

An alternative expression using the survival function is

E
[
(X ∧ u)k

]
=
∫ u

0
kxk−1 [1 − FX(x)] dx.

In particular, for k = 1, this is

E (Y ) = E (X ∧ u) =
∫ u

0
[1 − FX(x)]dx.

This could be easily proved if we start with the initial definition of E (Y ) and
use integration by parts. Alternatively, see the following justification of this
limited expectation result.

E
[
(X ∧ u)k

]
= E

[∫X∧u
0 kxk−1dx

]
= E

[∫ u
0 kx

k−1I(X > x)dx
]

=
∫ u

0 kx
k−1EI(X > x)dx

=
∫ u

0 kx
k−1 [1 − FX(x)] dx.
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This approach uses the Fubini-Tonelli theorem to exchange the expectation
and integration. Note that it does not make any continuity assumptions about
the distribution of X.

When a loss is subject to a deductible d and a limit u, the per-loss variable
Y L is defined as

Y L =


0 X ≤ d

X − d d < X ≤ u
u− d X > u.

Hence, Y L can be expressed as Y L = (X ∧ u) − (X ∧ d).

Example 5.1.4. Actuarial Exam Question. Under a group insurance policy,
an insurer agrees to pay 100% of the medical bills incurred during the year by
employees of a small company, up to a maximum total of one million dollars.
The total amount of bills incurred, X, has pdf

fX (x) =
{

x(4−x)
9 0 < x < 3
0 elsewhere.

where x is measured in millions. Calculate the total amount, in millions of
dollars, the insurer would expect to pay under this policy.

Example Solution. Define the total amount of bills paid by the insurer as

Y = X ∧ 1 =
{

X X ≤ 1
1 X > 1.

So E (Y ) = E (X ∧ 1) =
∫ 1

0 (x2(4 − x))/9 dx + 1 ·
∫ 3

1 (x (4 − x))/9 dx = 0.935.

5.1.3 Coinsurance and Inflation

As we have seen in Section 5.1.1, the amount of loss retained by the policyholder
can be losses up to the deductible d. The retained loss can also be a percentage
of the claim. The percentage α, often referred to as the coinsurance factor,
is the percentage of claim the insurance company is required to cover. If the
policy is subject to an ordinary deductible and policy limit, coinsurance refers
to the percentage of claim the insurer is required to cover, after imposing the
ordinary deductible and policy limit. The payment per loss variable, Y L, is
defined as

Y L =


0 X ≤ d,

α (X − d) d < X ≤ u,
α (u− d) X > u.
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The maximum amount paid by the insurer in this case is α (u− d), while u is
the maximum covered loss.

We have seen in Section 5.1.2 that when a loss is subject to both a de-
ductible d and a limit u the per-loss variable Y L can be expressed as
Y L = (X ∧ u) − (X ∧ d). With coinsurance, this becomes Y L can be expressed
as Y L = α [(X ∧ u) − (X ∧ d)].

The k-th raw moment of Y L is given by

E
[(
Y L

)k
]

=
∫ u

d
[α (x− d)]k fX (x) dx+ [α (u− d)]k [1 − FX (u)].

A growth factor (1 + r) may be applied to X resulting in an inflated loss
random variable (1 + r)X (the prespecified d and u remain unchanged). The
resulting per loss variable can be written as

Y L =


0 X ≤ d

1+r

α [(1 + r)X − d] d
1+r < X ≤ u

1+r

α (u− d) X > u
1+r .

The first and second moments of Y L can be expressed as

E
(
Y L

)
= α (1 + r)

[
E
(
X ∧ u

1 + r

)
− E

(
X ∧ d

1 + r

)]
,

and

E
[(
Y L

)2
]

= α2 (1 + r)2
{

E
[(
X ∧ u

1+r

)2
]

− E
[(
X ∧ d

1+r

)2
]

−2
(

d
1+r

) [
E
(
X ∧ u

1+r

)
− E

(
X ∧ d

1+r

)]}
,

respectively.

The formulas given for the first and second moments of Y L are general. Under
full coverage, α = 1, r = 0, u = ∞, d = 0 and E

(
Y L

)
reduces to E (X). If

only an ordinary deductible is imposed, α = 1, r = 0, u = ∞ and E
(
Y L

)
reduces to E (X) − E (X ∧ d). If only a policy limit is imposed α = 1, r = 0,
d = 0 and E

(
Y L

)
reduces to E (X ∧ u).

Example 5.1.5. Actuarial Exam Question. The ground up loss random
variable for a health insurance policy in 2006 is modeled with X, a random
variable with an exponential distribution having mean 1000. An insurance
policy pays the loss above an ordinary deductible of 100, with a maximum
annual payment of 500. The ground up loss random variable is expected to
be 5% larger in 2007, but the insurance in 2007 has the same deductible and
maximum payment as in 2006. Find the percentage increase in the expected
cost per payment from 2006 to 2007.
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Example Solution. We define the amount per loss Y L in both years as

Y L
2006 =


0 X ≤ 100,
X − 100 100 < X ≤ 600,
500 X > 600.

Y L
2007 =


0 X ≤ 95.24,
1.05X − 100 95.24 < X ≤ 571.43,
500 X > 571.43.

So,
E
(
Y L

2006
)

= E (X ∧ 600) − E (X ∧ 100)
= 1000

(
1 − e− 600

1000

)
− 1000

(
1 − e− 100

1000

)
= 356.026.

Further,

E
(
Y L

2007
)

= 1.05 [E (X ∧ 571.43) − E (X ∧ 95.24)]
= 1.05

[
1000

(
1 − e− 571.43

1000

)
− 1000

(
1 − e− 95.24

1000

)]
= 361.659.

E
(
Y P

2006
)

= 356.026
e−(100/1000) = 393.469.

E
(
Y P

2007
)

= 361.659
e−(95.24/1000) = 397.797.

Because E(Y P
2007)

E(Y P
2006) − 1 = 0.011, there is an increase of 1.1 percent from 2006 to

2007. Due to the policy limit, the cost per payment event grew by only 1.1 percent
between 2006 and 2007 even though the ground up losses increased by 5 percent
between the two years.

5.1.4 Reinsurance

In Section 5.1.1 we introduced the policy deductible feature of the insurance
contract. In this feature, there is a contractual arrangement under which an
insured transfers part of the risk by securing coverage from an insurer in return
for an insurance premium. Under that policy, the insured must pay all losses
up to the deductible, and the insurer only pays the amount (if any) above
the deductible. We now introduce reinsurance, a mechanism of insurance for
insurance companies. Reinsurance is a contractual arrangement under which an
insurer transfers part of the underlying insured risk by securing coverage from
another insurer (referred to as a reinsurer) in return for a reinsurance premium.
Although reinsurance involves a relationship between three parties: the original
insured, the insurer (often referred to as cedent or cedant) and the reinsurer,
the parties of the reinsurance agreement are only the primary insurer and the
reinsurer. There is no contractual agreement between the original insured and
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the reinsurer. Though many different types of reinsurance contracts exist, a
common form is excess of loss coverage. In such contracts, the primary insurer
must make all required payments to the insured until the primary insurer’s
total payments reach a fixed reinsurance deductible. The reinsurer is then only
responsible for paying losses above the reinsurance deductible. The maximum
amount retained by the primary insurer in the reinsurance agreement (the
reinsurance deductible) is called retention.

Reinsurance arrangements allow insurers with limited financial resources to
increase the capacity to write insurance and meet client requests for larger
insurance coverage while reducing the impact of potential losses and protecting
the insurance company against catastrophic losses. Reinsurance also allows the
primary insurer to benefit from underwriting skills, expertise and proficient
complex claim file handling of the larger reinsurance companies.

Example 5.1.6. Actuarial Exam Question. Losses arising in a certain
portfolio have a two-parameter Pareto distribution with α = 5 and θ = 3, 600.
A reinsurance arrangement has been made, under which (a) the reinsurer
accepts 15% of losses up to u = 5, 000 and all amounts in excess of 5,000 and
(b) the insurer pays for the remaining losses.

a) Express the random variables for the reinsurer’s and the insurer’s
payments as a function of X, the portfolio losses.

b) Calculate the mean amount paid on a single claim by the insurer.
c) By assuming that the upper limit is u = ∞, calculate an upper bound

on the standard deviation of the amount paid on a single claim by
the insurer (retaining the 15% copayment).

Example Solution.

a). The reinsurer’s portion is

Yreinsurer =
{

0.15X X < 5000,
0.15(5000) + X − 5000 X ≥ 5000 .

and the insurer’s portion is

Yinsurer =
{

0.85X X < 5000,
0.85(5000) X ≥ 5000 = 0.85(X ∧ 5000).
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b) Using the limited expected value tables for the Pareto distribution, we have

E (Yinsurer) = 0.85 E (X ∧ 5000) = 0.85 θ
α−1

[
1 −

(
θ

5000+θ

)α−1
]

= 0.85 3600
5−1

[
1 −

(
3600

5000+3600

)5−1
]

= 741.5103.

c) The unlimited variable is 0.85X. For the first moment, we have

0.85 E X = 0.85 θ

α − 1 = 0.85 3600
5 − 1 = 765.

For the second moment of the unlimited variable, we use the table of distributions
to get

0.852 E X2 = 0.852 θ2Γ(2 + 1)Γ(α − 2)
Γ(α) = 0.852 36002 · 2 · 2

24 = 1560600.

Thus, the variance is 1560600 − 7652 = 975375. Alternatively, you can use the
formula

0.852 Var X = 0.852 αθ2

(α − 1)2(α − 2) = 0.852 5(36002)
(5 − 1)2(5 − 2) = 975375.

Taking square roots, the standard deviation is
√

975375 ≈ 987.6108.

Further discussions of reinsurance will be provided in Section 13.4.

5.2 Parametric Estimation using Modified Data

In this section, you learn how to:

• Describe grouped, censored, and truncated data
• Estimate parametric distributions based on grouped, censored, and truncated

data

Basic theory and many applications are based on individual observations that
are “complete” and “unmodified,” as we have seen in the Chapter 4. Section
5.1.1 introduced the concept of observations that are “modified” due to two
common types of limitations: censoring and truncation. For example, it is



5.2 Parametric Estimation using Modified Data 153

common to think about an insurance deductible as producing data that are
truncated (from the left) or policy limits as yielding data that are censored
(from the right). This viewpoint is from the primary insurer (the seller of the
insurance). Another viewpoint is that of a reinsurer (an insurer of an insurance
company) that will be discussed more in Chapter 13. A reinsurer may not
observe a claim smaller than an amount, only that a claim exists; this is an
example of censoring from the left. So, in this section, we cover the full gamut
of alternatives. Specifically, this section will address parametric estimation
methods for three alternatives to individual, complete, and unmodified data:
interval-censored data available only in groups, data that are limited or
censored, and data that may not be observed due to truncation.

5.2.1 Parametric Estimation using Grouped Data

Consider a sample of size n observed from the distribution F (·), but in groups
so that we only know the group into which each observation fell, not the exact
value. This is referred to as grouped or interval-censored data. For example,
we may be looking at two successive years of annual employee records. People
employed in the first year but not the second have left sometime during the
year. With an exact departure date (individual data), we could compute the
amount of time that they were with the firm. Without the departure date
(grouped data), we only know that they departed sometime during a year-long
interval.

Formalizing this idea, suppose there are k groups or intervals delimited by
boundaries c0 < c1 < · · · < ck. For each observation, we only observe the
interval into which it fell (e.g. (cj−1, cj)), not the exact value. Thus, we only
know the number of observations in each interval. The constants {c0 < c1 <
· · · < ck} form some partition of the domain of F (·). Then the probability of
an observation Xi falling in the jth interval is

Pr (Xi ∈ (cj−1, cj ]) = F (cj) − F (cj−1).

The corresponding probability mass function for an observation is

f(x) =


F (c1) − F (c0) if x ∈ (c0, c1]
... ...
F (ck) − F (ck−1) if x ∈ (ck−1, ck]

=
k∏

j=1
{F (cj) − F (cj−1)}I(x∈(cj−1,cj ])

Now, define nj to be the number of observations that fall in the jth interval,
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(cj−1, cj ]. Thus, the likelihood function (with respect to the parameter(s) θ) is

L(θ) =
n∏

j=1
f(xi) =

k∏
j=1

{F (cj) − F (cj−1)}nj

And the log-likelihood function is

l(θ) = logL(θ) = log
n∏

j=1
f(xi) =

k∑
j=1

nj log {F (cj) − F (cj−1)}

Maximizing the likelihood function (or equivalently, maximizing the log-
likelihood function) would then produce the maximum likelihood estimates for
grouped data.

Example 5.2.1. Actuarial Exam Question. You are given:

(i) Losses follow an exponential distribution with mean θ.
(ii) A random sample of 20 losses is distributed as follows:

Loss Range Frequency
[0, 1000] 7
(1000, 2000] 6
(2000,∞) 7

Calculate the maximum likelihood estimate of θ.

Example Solution.

L(θ) = F (1000)7[F (2000) − F (1000)]6[1 − F (2000)]7

= (1 − e−1000/θ)7(e−1000/θ − e−2000/θ)6(e−2000/θ)7

= (1 − p)7(p − p2)6(p2)7

= p20(1 − p)13

where p = e−1000/θ. Maximizing this expression with respect to p is equivalent to
maximizing the likelihood with respect to θ. The maximum occurs at p = 20

33 and
so θ̂ = −1000

log(20/33) = 1996.90.

5.2.2 Censored Data

Censoring occurs when we record only a limited value of an observation. The
most common form is right-censoring, in which we record the smaller of
the “true” dependent variable and a censoring value. Using notation, let X
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represent an outcome of interest, such as the loss due to an insured event or
time until an event. Let CU denote the censoring amount. With right-censored
observations, we record X∗

U = min(X,CU ) = X ∧ CU . We also record whether
or not censoring has occurred. Let δU = I(X ≤ CU ) be a binary variable that
is 0 if censoring occurs and 1 if it does not, that is, δU indicates whether or
not X is uncensored.

For an example that we saw in Section 5.1.2, CU may represent the upper
limit of coverage of an insurance policy (we used u for the upper limit in that
section). The loss may exceed the amount CU , but the insurer only has CU

in its records as the amount paid out and does not have the amount of the
actual loss X in its records.

Similarly, with left-censoring, we record the larger of a variable of interest
and a censoring variable. If CL is used to represent the censoring amount, we
record X∗

L = max(X,CL) along with the censoring indicator δL = I(X > CL).

As an example, we gave a brief introduction to reinsurance (insurance for
insurers) in Section 5.1.4 and more is given in Chapter 13. Suppose a reinsurer
will cover insurer losses greater than CL; this means that the reinsurer is
responsible for the excess of X∗

L over CL. Using notation, the loss of the
reinsurer is Y = X∗

L − CL. To see this, first consider the case where the
policyholder loss X < CL. Then, the insurer will pay the entire claim and
Y = CL − CL = 0, no loss for the reinsurer. For contrast, if the loss X ≥ CL,
then Y = X − CL represents the reinsurer’s retained claims. Put another way,
if a loss occurs, the reinsurer records the actual amount if it exceeds the limit
CL and otherwise it only records that it had a loss of 0.

5.2.3 Truncated Data

Censored observations are recorded for study, although in a limited form. In
contrast, truncated outcomes are a type of missing data. An outcome is
potentially truncated when the availability of an observation depends on the
outcome.

In insurance, it is common for observations to be left-truncated at CL when
the amount is

Y =
{

we do not observe X X ≤ CL

X X > CL
.

In other words, if X is less than the threshold CL, then it is not observed.

For an example we saw in Section 5.1.1, CL may represent the deductible of an
insurance policy (we used d for the deductible in that section). If the insured
loss is less than the deductible, then the insurer may not observe or record the
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loss at all. If the loss exceeds the deductible, then the excess X − CL is the
claim that the insurer covers. In Section 5.1.1, we defined the per payment loss
to be

Y P =
{

Undefined X ≤ d
X − d X > d

,

so that if a loss exceeds a deductible, we record the excess amount X − d.
This is very important when considering amounts that the insurer will pay.
However, for estimation purposes of this section, it matters little if we subtract
a known constant such as CL = d. So, for our truncated variable Y , we use
the simpler convention and do not subtract d.

Similarly for right-truncated data, if X exceeds a threshold CU , then it is
not observed. In this case, the amount is

Y =
{

X X ≤ CU

we do not observe X X > CU .

Classic examples of truncation from the right include X as a measure of
distance to a star. When the distance exceeds a certain level CU , the star is no
longer observable.

Figure 5.1 compares truncated and censored observations.

No exact value under

left-censoring

No exact value under

right-censoring

No exact value under

interval-censoring

No observed value under

left-truncation

No observed value under

right-truncation

| | |

0 CL CU

X

FIGURE 5.1: Censoring and Truncation
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Example – Mortality Study. Suppose that you are conducting a two-
year study of mortality of high-risk subjects, beginning January 1, 2010 and
finishing January 1, 2012. Figure 5.2 graphically portrays the six types of
subjects recruited. For each subject, the beginning of the arrow represents that
the subject was recruited and the arrow end represents the event time where in
this example the event represents death. The arrow represents exposure time.

Calendar Time

A

B

C

D

E

F

1/1/2010 1/1/2011 1/1/2012

FIGURE 5.2: Timeline for Several Subjects on Test in a Mortality
Study

• Type A - Right-censored. This subject is alive at the beginning and the
end of the study. Because the time of death is not known by the end of the
study, it is right-censored. Most subjects are Type A.

• Type B - Complete information is available for a type B subject. The
subject is alive at the beginning of the study and the death occurs within
the observation period.

• Type C - Right-censored and left-truncated. A type C subject is
right-censored, in that death occurs after the observation period. However,
the subject entered after the start of the study and is said to have a delayed
entry time. Because the subject would not have been observed had death
occurred before entry, it is left-truncated.

• Type D - Left-truncated. A type D subject also has delayed entry. Because
death occurs within the observation period, this subject is not right censored.

• Type E - Left-truncated. A type E subject is not included in the study
because death occurs prior to the observation period.

• Type F - Right-truncated. Similarly, a type F subject is not included
because the entry time occurs after the observation period.

To summarize, for outcome X and constants CL and CU ,
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Limitation Type Limited Variable Recording Information
right censoring X∗

U = min(X,CU ) δU = I(X ≤ CU )
left censoring X∗

L = max(X,CL) δL = I(X > CL)
interval censoring
right truncation X observe X if X ≤ CU

left truncation X observe X if X > CL

5.2.4 Parametric Estimation using Censored and Truncated Data

For simplicity, we assume non-random censoring amounts and a continuous
outcome X. To begin, consider the case of right-censored data where we record
X∗

U = min(X,CU ) and censoring indicator δ = I(X ≤ CU ). If censoring occurs
so that δ = 0, then X > CU and the likelihood is Pr(X > CU ) = 1 − F (CU ).
If censoring does not occur so that δ = 1, then X ≤ CU and the likelihood is
f(x). Summarizing, we have the likelihood of a single observation as{

1 − F (CU ) if δ = 0
f(x) if δ = 1 = {f(x)}δ {1 − F (CU )}1−δ .

The right-hand expression allows us to present the likelihood more compactly.
Now, for an iid sample of size n, the likelihood is

L(θ) =
n∏

i=1
{f(xi)}δi {1 − F (CUi)}1−δi =

∏
δi=1

f(xi)
∏

δi=0
{1 − F (CUi)},

with potential censoring times {CU1, . . . , CUn}. Here, the notation “∏δi=1”
means to take the product over uncensored observations, and similarly for
“∏δi=0.”

On the other hand, truncated data are handled in likelihood inference via
conditional probabilities. Specifically, we adjust the likelihood contribution
by dividing by the probability that the variable was observed. To summarize,
we have the following contributions to the likelihood function for six types of
outcomes:

Outcome Likelihood Contribution
exact value f(x)
right-censoring 1 − F (CU )
left-censoring F (CL)
right-truncation f(x)/F (CU )
left-truncation f(x)/(1 − F (CL))
interval-censoring F (CU ) − F (CL)

For known outcomes and censored data, the likelihood is

L(θ) =
∏
E

f(xi)
∏
R

{1 − F (CUi)}
∏
L

F (CLi)
∏
I

(F (CUi) − F (CLi)),
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where “∏E” is the product over observations with Exact values, and similarly
for Right-, Left- and Interval-censoring.

For right-censored and left-truncated data, the likelihood is

L(θ) =
∏
E

f(xi)
1 − F (CLi)

∏
R

1 − F (CUi)
1 − F (CLi)

,

and similarly for other combinations. To get further insights, consider the
following.

Special Case: Exponential Distribution. Consider data that are right-
censored and left-truncated, with random variables Xi that are exponen-
tially distributed with mean θ. With these specifications, recall that f(x) =
θ−1 exp(−x/θ) and F (x) = 1 − exp(−x/θ).

For this special case, the log-likelihood is

l(θ) =
∑
E

{log f(xi) − log(1 − F (CLi))} +
∑
R

{log(1 − F (CUi)) − log(1 − F(CLi))}

=
∑
E

(− log θ − (xi − CLi)/θ) −
∑
R

(CUi − CLi)/θ.

To simplify the notation, define δi = I(Xi < CUi) to be a binary variable
that indicates right-censoring. Let X∗∗

i = min(Xi, CUi) − CLi be the amount
that the observed variable exceeds the lower truncation limit. With this, the
log-likelihood is

l(θ) = −
n∑

i=1

(
(1 − δi) log θ + x∗∗

i

θ

)
(5.1)

Taking derivatives with respect to the parameter θ and setting it equal to zero
yields the maximum likelihood estimator

θ̂ = 1
nu

n∑
i=1

x∗∗
i ,

where nu = ∑
i(1 − δi) is the number of uncensored observations.

Example 5.2.2. Actuarial Exam Question. You are given:

(i) A sample of losses is: 600 700 900
(ii) No information is available about losses of 500 or less.
(iii) Losses are assumed to follow an exponential distribution with mean θ.

Calculate the maximum likelihood estimate of θ.
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Example Solution. These observations are truncated at 500. The contribution
of each observation to the likelihood function is

f(x)
1 − F (500) = θ−1e−x/θ

e−500/θ

Then the likelihood function is

L(θ) = θ−1e−600/θθ−1e−700/θθ−1e−900/θ

(e−500/θ)3 = θ−3e−700/θ

The log-likelihood is

l(θ) = log L(θ) = −3 log θ − 700θ−1

Maximizing this expression by setting the derivative with respect to θ equal to 0,
we have

L′(θ) = −3θ−1 + 700θ−2 = 0 ⇒ θ̂ = 700
3 = 233.33.

Example 5.2.3. Actuarial Exam Question. You are given the following
information about a random sample:

(i) The sample size equals five.
(ii) The sample is from a Weibull distribution with τ = 2.
(iii) Two of the sample observations are known to exceed 50, and the

remaining three observations are 20, 30, and 45.

Calculate the maximum likelihood estimate of θ.

Example Solution. The likelihood function is

L(θ) = f(20)f(30)f(45)[1 − F (50)]2

= 2(20/θ)2e−(20/θ)2

20
2(30/θ)2e−(30/θ)2

30
2(45/θ)2e−(45/θ)2

45 (e−(50/θ)2)2

∝ 1
θ6 e−8325/θ2

The natural logarithm of the above expression is −6 log θ − 8325
θ2 . Maximizing this
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expression by setting its derivative to 0, we get

−6
θ

+ 16650
θ3 = 0 ⇒ θ̂ =

(16650
6

) 1
2

= 52.6783.

5.3 Nonparametric Estimation using Modified Data

In this section, you learn how to:

• Estimate the distribution function for grouped data using the ogive.
• Create a nonparametric estimator of the loss elimination ratio using the

plug-in principle.
• Apply the Kaplan-Meier product-limit and the Nelson Aalon estimators to

estimate the distribution function in the presence of censoring.
• Apply Greenwood’s formula to estimate the variance of the product-limit

estimator.

Nonparametric estimators provide useful benchmarks, so it is helpful to un-
derstand the estimation procedures for grouped, censored, and truncated data.

5.3.1 Grouped Data

As we have seen in Section 5.2.1, observations may be grouped (also referred
to as interval censored) in the sense that we only observe them as belonging in
one of k intervals of the form (cj−1, cj], for j = 1, . . . , k. At the boundaries,
the empirical distribution function is defined in the usual way:

Fn(cj) = number of observations ≤ cj

n
.

Ogive Estimator. For other values of x ∈ (cj−1, cj), we can estimate the
distribution function with the ogive estimator, which linearly interpolates
between Fn(cj−1) and Fn(cj), i.e. the values of the boundaries Fn(cj−1) and
Fn(cj) are connected with a straight line. This can formally be expressed as

Fn(x) = cj − x

cj − cj−1
Fn(cj−1) + x− cj−1

cj − cj−1
Fn(cj) for cj−1 ≤ x < cj
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The corresponding density is

fn(x) = F ′
n(x) = Fn(cj) − Fn(cj−1)

cj − cj−1
for cj−1 < x < cj .

Example 5.3.1. Actuarial Exam Question. You are given the following
information regarding claim sizes for 100 claims:

Claim Size Number of Claims
0 − 1, 000 16

1, 000 − 3, 000 22
3, 000 − 5, 000 25

5, 000 − 10, 000 18
10, 000 − 25, 000 10
25, 000 − 50, 000 5

50, 000 − 100, 000 3
over 100, 000 1

Using the ogive, calculate the estimate of the probability that a randomly
chosen claim is between 2000 and 6000.

Example Solution. At the boundaries, the empirical distribution function is
defined in the usual way, so we have

F100(1000) = 0.16, F100(3000) = 0.38, F100(5000) = 0.63, F100(10000) = 0.81.

For other claim sizes, the ogive estimator linearly interpolates between these
values:

F100(2000) = 0.5F100(1000) + 0.5F100(3000) = 0.5(0.16) + 0.5(0.38) = 0.27
F100(6000) = 0.8F100(5000) + 0.2F100(10000) = 0.8(0.63) + 0.2(0.81) = 0.666

Thus, the probability that a claim is between 2000 and 6000 is F100(6000) −
F100(2000) = 0.666 − 0.27 = 0.396.

5.3.2 Plug-in Principle

One way to create a nonparametric estimator of some quantity is to use the
analog or plug-in principle where one replaces the unknown cdf F with a
known estimate such as the empirical cdf Fn. So, if we are trying to estimate
E [g(X)] = EF [g(X)] for a generic function g, then we define a nonparametric
estimator to be EFn [g(X)] = n−1∑n

i=1 g(Xi).

To see how this works, as a special case of g we consider the loss per payment
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random variable is Y = (X − d)+ and the loss elimination ratio introduced in
Section 4.4.1. We can express this as

LER(d) = E [X − (X − d)+]
E [X] = E [min(X, d)]

E [X] ,

for a fixed deductible d.

Example. 5.3.2. Bodily Injury Claims and Loss Elimination Ratios

We use a sample of 432 closed auto claims from Boston from Derrig et al. (2001).
Losses are recorded for payments due to bodily injuries in auto accidents.
Losses are not subject to deductibles but are limited by various maximum
coverage amounts that are also available in the data. It turns out that only 17
out of 432 (≈ 4%) were subject to these policy limits and so we ignore these
data for this illustration.

The average loss paid is 6906 in U.S. dollars. Figure 5.3 shows other as-
pects of the distribution. Specifically, the left-hand panel shows the empirical
distribution function, the right-hand panel gives a nonparametric density plot.
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FIGURE 5.3: Bodily Injury Claims. The left-hand panel gives the empirical
distribution function. The right-hand panel presents a nonparametric density
plot.
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The impact of bodily injury losses can be mitigated by the imposition of limits
or purchasing reinsurance policies (see Section 10.3). To quantify the impact
of these risk mitigation tools, it is common to compute the loss elimination
ratio (LER) as introduced in Section 4.4.1. The distribution function is not
available and so must be estimated in some way. Using the plug-in principle, a
nonparametric estimator can be defined as

LERn(d) = n−1∑n
i=1 min(Xi, d)

n−1∑n
i=1 Xi

=
∑n

i=1 min(Xi, d)∑n
i=1 Xi

.

Figure 5.4 shows the estimator LERn(d) for various choices of d. For example,
at d = 1, 000, we have LERn(1000) ≈ 0.1442. Thus, imposing a limit of 1,000
means that expected retained claims are 14.42 percent lower when compared
to expected claims with a zero deductible.
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FIGURE 5.4: LER for Bodily Injury Claims. The figure presents the loss
elimination ratio (LER) as a function of deductible d.

5.3.3 Right-Censored Empirical Distribution Function

It can be useful to calibrate parametric estimators with nonparametric methods
that do not rely on a parametric form of the distribution. The product-limit
estimator due to (Kaplan and Meier, 1958) is a well-known estimator of the
distribution function in the presence of censoring.

Motivation for the Kaplan-Meier Product Limit Estimator. To explain
why the product-limit works so well with censored observations, let us first
return to the “usual” case without censoring. Here, the empirical distribution
function Fn(x) is an unbiased estimator of the distribution function F (x).
This is because Fn(x) is the average of indicator variables each of which are
unbiased, that is, E [I(Xi ≤ x)] = Pr(Xi ≤ x) = F (x).
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Now suppose the random outcome is censored on the right by a limiting
amount, say, CU , so that we record the smaller of the two, X∗ = min(X,CU ).
For values of x that are smaller than CU , the indicator variable still provides an
unbiased estimator of the distribution function before we reach the censoring
limit. That is, E [I(X∗ ≤ x)] = F (x) because I(X∗ ≤ x) = I(X ≤ x) for
x < CU . In the same way, E [I(X∗ > x)] = 1 −F (x) = S(x). But, for x > CU ,
I(X∗ ≤ x) is in general not an unbiased estimator of F (x).

As an alternative, consider two random variables that have different censor-
ing limits. For illustration, suppose that we observe X∗

1 = min(X1, 5) and
X∗

2 = min(X2, 10) where X1 and X2 are independent draws from the same
distribution. For x ≤ 5, the empirical distribution function F2(x) is an unbiased
estimator of F (x). However, for 5 < x ≤ 10, the first observation cannot be
used for the distribution function because of the censoring limitation. Instead,
the strategy developed by (Kaplan and Meier, 1958) is to use S2(5) as an
estimator of S(5) and then to use the second observation to estimate the
survival function conditional on survival to time 5, Pr(X > x|X > 5) = S(x)

S(5) .
Specifically, for 5 < x ≤ 10, the estimator of the survival function is

Ŝ(x) = S2(5) × I(X∗
2 > x).

Kaplan-Meier Product Limit Estimator. Extending this idea, for each
observation i, let ui be the upper censoring limit (= ∞ if no censoring). Thus,
the recorded value is xi in the case of no censoring and ui if there is censoring.
Let t1 < · · · < tk be k distinct points at which an uncensored loss occurs, and
let sj be the number of uncensored losses xi’s at tj. The corresponding risk
set is the number of observations that are active (not censored) at a value less
than tj , denoted as Rj = ∑n

i=1 I(xi ≥ tj) +∑n
i=1 I(ui ≥ tj).

With this notation, the product-limit estimator of the distribution function
is

F̂ (x) =
{ 0 x < t1

1 −∏
j:tj≤x

(
1 − sj

Rj

)
x ≥ t1

. (5.2)

For example, if x is smaller than the smallest uncensored loss, then x < t1
and F̂ (x) = 0. As another example, if x falls between then second and third
smallest uncensored losses, then x ∈ (t2, t3] and F̂ (x) = 1−

(
1 − s1

R1

) (
1 − s2

R2

)
.

As usual, the corresponding estimate of the survival function is Ŝ(x) = 1−F̂ (x).

Example 5.3.3. Actuarial Exam Question. The following is a sample of
10 payments:

4 4 5+ 5+ 5+ 8 10+ 10+ 12 15
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where + indicates that a loss has exceeded the policy limit.

Using the Kaplan-Meier product-limit estimator, calculate the probability that
the loss on a policy exceeds 11, Ŝ(11).

Example Solution. There are four event times (non-censored observations).
For each time tj , we can calculate the number of events sj and the risk set Rj as
the following:

j tj sj Rj

1 4 2 10
2 8 1 5
3 12 1 2
4 15 1 1

Thus, the Kaplan-Meier estimate of S(11) is

Ŝ(11) =
∏

j:tj≤11

(
1 − sj

Rj

)
=

2∏
j=1

(
1 − sj

Rj

)

=
(

1 − 2
10

)(
1 − 1

5

)
= (0.8)(0.8) = 0.64.

Example. 5.3.4. Bodily Injury Claims. We consider again the Boston auto
bodily injury claims data from Derrig et al. (2001) that was introduced in
Example 5.1.11. In that example, we omitted the 17 claims that were censored
by policy limits. Now, we include the full dataset and use the Kaplan-Meier
product limit to estimate the survival function. This is given in Figure 5.5.
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FIGURE 5.5: Kaplan-Meier Estimate of the Survival Function for
Bodily Injury Claims
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Right-Censored, Left-Truncated Empirical Distribution Function.
In addition to right-censoring, we now extend the framework to allow for
left-truncated data. As before, for each observation i, let ui be the upper
censoring limit (= ∞ if no censoring). Further, let di be the lower truncation
limit (0 if no truncation). Thus, the recorded value (if it is greater than di) is
xi in the case of no censoring and ui if there is censoring. Let t1 < · · · < tk be
k distinct points at which an event of interest occurs, and let sj be the number
of recorded events xi’s at time point tj . The corresponding risk set is

Rj =
n∑

i=1
I(xi ≥ tj) +

n∑
i=1

I(ui ≥ tj) −
n∑

i=1
I(di ≥ tj).

With this new definition of the risk set, the product-limit estimator of the
distribution function is as in equation (5.2).

Greenwood’s Formula. (Greenwood, 1926) derived the formula for the
estimated variance of the product-limit estimator to be

V̂ ar(F̂ (x)) = (1 − F̂ (x))2 ∑
j:tj≤x

sj

Rj(Rj − sj)
.

As usual, we refer to the square root of the estimated variance as a standard
error, a quantity that is routinely used in confidence intervals and for hy-
pothesis testing. To compute this, R‘s survfit method takes a survival data
object and creates a new object containing the Kaplan-Meier estimate of the
survival function along with confidence intervals. The Kaplan-Meier method
(type='kaplan-meier') is used by default to construct an estimate of the
survival curve. The resulting discrete survival function has point masses at the
observed event times (discharge dates) tj, where the probability of an event
given survival to that duration is estimated as the number of observed events
at the duration sj divided by the number of subjects exposed or ’at-risk’ just
prior to the event duration Rj .

Alternative Estimators. Two alternate types of estimation are also available
for the survfit method. The alternative (type='fh2') handles ties, in essence,
by assuming that multiple events at the same duration occur in some arbitrary
order. Another alternative (type='fleming-harrington') uses the Nelson-
Aalen (see (Aalen, 1978)) estimate of the cumulative hazard function to
obtain an estimate of the survival function. The estimated cumulative hazard
Ĥ(x) starts at zero and is incremented at each observed event duration tj by
the number of events sj divided by the number at risk Rj. With the same
notation as above, the Nelson-Äalen estimator of the distribution function is

F̂NA(x) =
{ 0 x < t1

1 − exp
(
−∑

j:tj≤x
sj

Rj

)
x ≥ t1

.
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Note that the above expression is a result of the Nelson-Äalen estimator of the
cumulative hazard function

Ĥ(x) =
∑

j:tj≤x

sj

Rj

and the relationship between the survival function and cumulative hazard
function, ŜNA(x) = e−Ĥ(x).

Example 5.3.5. Actuarial Exam Question. For observation i of a survival
study:

• di is the left truncation point
• xi is the observed value if not right censored
• ui is the observed value if right censored

You are given:

Observation (i) 1 2 3 4 5 6 7 8 9 10
di 0 0 0 0 0 0 0 1.3 1.5 1.6
xi 0.9 − 1.5 − − 1.7 − 2.1 2.1 −
ui − 1.2 − 1.5 1.6 − 1.7 − − 2.3

Calculate the Kaplan-Meier product-limit estimate, Ŝ(1.6)

Example Solution. Recall the risk set Rj =∑n
i=1 {I(xi ≥ tj) + I(ui ≥ tj) − I(di ≥ tj)}. Then

j tj sj Rj Ŝ(tj)
1 0.9 1 10 − 3 = 7 1 − 1

7 = 6
7

2 1.5 1 8 − 2 = 6 6
7
(
1 − 1

6
)

= 5
7

3 1.7 1 5 − 0 = 5 5
7
(
1 − 1

5
)

= 4
7

4 2.1 2 3 4
7
(
1 − 2

3
)

= 4
21

The Kaplan-Meier estimate is therefore Ŝ(1.6) = 5
7 .

Example 5.3.6. Actuarial Exam Question. - Continued.

a) Using the Nelson-Äalen estimator, calculate the probability that the
loss on a policy exceeds 11, ŜNA(11).

b) Calculate Greenwood’s approximation to the variance of the product-
limit estimate Ŝ(11).
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Example Solution. As before, there are four event times (non-censored obser-
vations). For each time tj , we can calculate the number of events sj and the risk
set Rj as the following:

j tj sj Rj

1 4 2 10
2 8 1 5
3 12 1 2
4 15 1 1

The Nelson-Aalen estimate of S(11) is ŜNA(11) = e−Ĥ(11) = e−0.4 = 0.67, since

Ĥ(11) =
∑

j:tj≤11

sj

Rj
=

2∑
j=1

sj

Rj

= 2
10 + 1

5 = 0.2 + 0.2 = 0.4.

From earlier work, the Kaplan-Meier estimate of S(11) is Ŝ(11) = 0.64. Then
Greenwood’s estimate of the variance of the product-limit estimate of S(11) is

V̂ ar(Ŝ(11)) = (Ŝ(11))2
∑

j:tj≤11

sj

Rj(Rj − sj)
= (0.64)2

( 2
10(8) + 1

5(4)

)
= 0.0307.

5.4 Further Resources and Contributors
Exercises
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• Zeinab Amin, The American University in Cairo, is the principal author
of this chapter. Email: zeinabha@aucegypt.edu for chapter comments and
suggested improvements.

• Edward W. (Jed) Frees and Lisa Gao, University of Wisconsin-Madison,
are the principal authors of the sections on estimation using modified data
which appeared in chapter 4 of the first edition of the text.

• Chapter reviewers include: Vytaras Brazauskas, Yvonne Chueh, Eren Dodd,
Hirokazu (Iwahiro) Iwasawa, Joseph Kim, Andrew Kwon-Nakamura, Jian-
dong Ren, and Di (Cindy) Xu.
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Further Readings and References

If you would like additional practice with R coding, please visit our companion
LDA Short Course. In particular, see the Model Selection and Estimation
Chapter.

https://openacttexts.github.io/LDACourse1
https://openacttexts.github.io/LDACourse1/model-selection-and-estimation.html
https://openacttexts.github.io/LDACourse1/model-selection-and-estimation.html


6
Model Selection

Chapter Preview. Model selection is a fundamental aspect of statistical model-
ing. In this chapter, the process of model selection is summarized, including
tools for model comparisons and diagnostics. In addition to nonparametric
tools for model selection based on marginal distributions of outcomes ignoring
explanatory variables, this chapter underscores the idea that model selection
is an iterative process in which models are cyclically (re)formulated and tested
for appropriateness before using them for inference. After an overview, we
describe the model selection process based on:

• an in-sample or training dataset,
• an out-of-sample or test dataset, and
• a method that combines these approaches known as cross-validation.

Although our focus is predominantly on data from continuous distributions,
the same process can be used for discrete versions or data that come from a
hybrid combination of discrete and continuous distributions.

In this chapter, you learn how to:

• Determine measures that summarize deviations of a parametric from a
nonparametric fit

• Describe the iterative model selection specification process
• Outline steps needed to select a parametric model
• Describe pitfalls of model selection based purely on in-sample data when

compared to the advantages of out-of-sample model validation

6.1 Tools for Model Selection and Diagnostics

Section 4.1.1 introduced nonparametric estimators in which there was no
parametric form assumed about the underlying distributions. However, in
many actuarial applications, analysts seek to employ a parametric fit of a

171
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distribution for ease of explanation and the ability to readily extend it to
more complex situations such as including explanatory variables in a regression
setting. When fitting a parametric distribution, one analyst might try to use a
gamma distribution to represent a set of loss data. However, another analyst
may prefer to use a Pareto distribution. How does one determine which model
to select?

Nonparametric tools can be used to corroborate the selection of parametric
models. Essentially, the approach is to compute selected summary measures
under a fitted parametric model and to compare it to the corresponding quantity
under the nonparametric model. As the nonparametric model does not assume
a specific distribution and is merely a function of the data, it is used as a
benchmark to assess how well the parametric distribution/model represents the
data. Also, as the sample size increases, the empirical distribution converges
almost surely to the underlying population distribution (by the strong law
of large numbers). Thus the empirical distribution is a good proxy for the
population. The comparison of parametric to nonparametric estimators may
alert the analyst to deficiencies in the parametric model and sometimes point
ways to improving the parametric specification. Procedures geared towards
assessing the validity of a model are known as model diagnostics.

6.1.1 Graphical Comparison of Distributions

We have already seen the technique of overlaying graphs for comparison
purposes. To reinforce the application of this technique, Figure 6.1 compares
the empirical distribution to two parametric fitted distributions for log claims
from the Property Fund data introduced in Section 1.3. The left panel shows the
distribution functions of claims distributions. The dots forming an “S-shaped”
curve represent the empirical distribution function at each observation. The
thick blue curve gives corresponding values for the fitted gamma distribution
and the light purple is for the fitted Pareto distribution. Because the Pareto
is much closer to the empirical distribution function than the gamma, this
provides evidence that the Pareto is the better model for this dataset. The
right panel gives similar information for the density function and provides a
consistent message. Based (only) on these figures, the Pareto distribution is
the clear choice for the analyst.

For another way to compare the appropriateness of two fitted models, con-
sider the probability-probability (pp) plot. A pp plot compares cumulative
probabilities under two models. For our purposes, these two models are the
nonparametric empirical distribution function and the parametric fitted model.
Figure 6.2 shows pp plots for the Property Fund data. The fitted gamma is on
the left and the fitted Pareto is on the right, compared to the same empirical
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FIGURE 6.1: Nonparametric Versus Fitted Parametric Distribution
and Density Functions. The left-hand panel compares distribution functions,
with the dots corresponding to the empirical distribution, the thick blue curve
corresponding to the fitted gamma and the light purple curve corresponding
to the fitted Pareto. The right hand panel compares these three distributions
summarized using probability density functions.
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distribution function of the data. The straight line represents equality between
the two distributions being compared, so points close to the line are desirable.
As seen in earlier demonstrations, the Pareto is much closer to the empirical
distribution than the gamma, providing additional evidence that the Pareto is
the better model.
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FIGURE 6.2: Probability-Probability (pp) Plots. The horizontal axis gives
the empirical distribution function at each observation. In the left-hand panel,
the corresponding distribution function for the gamma is shown in the vertical
axis. The right-hand panel shows the fitted Pareto distribution. Lines of y = x
are superimposed.

A pp plot is useful in part because no artificial scaling is required, such as
with the overlaying of densities in Figure 6.1, in which we switched to the
log scale to better visualize the data. Note further that pp plots are available
in multivariate settings where more than one outcome variable is available.
However, a limitation of the pp plot is that, because it plots cumulative
distribution functions, it can sometimes be difficult to detect where a fitted
parametric distribution is deficient. As an alternative, it is common to use a
quantile-quantile (qq) plot, as demonstrated in Figure 6.3.

A qq plot compares two fitted models through their quantiles. As with pp
plots, we compare the nonparametric to a parametric fitted model. Quan-
tiles may be evaluated at each point of the dataset, or on a grid (e.g., at
0, 0.001, 0.002, . . . , 0.999, 1.000), depending on the application. In Figure 6.3,
for each point on the aforementioned grid, the horizontal axis displays the
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empirical quantile and the vertical axis displays the corresponding fitted para-
metric quantile (gamma for the upper two panels, Pareto for the lower two).
Quantiles are plotted on the original scale in the left panels and on the log scale
in the right panels to allow us to see where a fitted distribution is deficient.
The straight line represents equality between the empirical distribution and
fitted distribution. From these plots, we again see that the Pareto is an overall
better fit than the gamma. Furthermore, the lower-right panel suggests that
the Pareto distribution does a good job with large claims, but provides a poorer
fit for small claims.
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FIGURE 6.3: Quantile-Quantile (qq) Plots. The horizontal axis gives the
empirical quantiles at each observation. The right-hand panels they are graphed
on a logarithmic basis. The vertical axis gives the quantiles from the fitted
distributions; gamma quantiles are in the upper panels, Pareto quantiles are
in the lower panels.

Example 6.1.1. Actuarial Exam Question. Figure 6.4 shows a pp plot of
a fitted distribution compared to a sample.

Comment on the two distributions with respect to left tail, right tail, and
median probabilities.
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FIGURE 6.4: Example 6.1.1 Plot

Example Solution. The tail of the fitted distribution is too thick on the left,
too thin on the right, and the fitted distribution has less probability around
the median than the sample. To see this, recall that the pp plot graphs the
cumulative distribution of two distributions on its axes (empirical on the x-axis
and fitted on the y-axis in this case). For small values of x, the fitted model
assigns greater probability to being below that value than occurred in the sample
(i.e. F (x) > Fn(x)). This indicates that the model has a heavier left tail than
the data. For large values of x, the model again assigns greater probability to
being below that value and thus less probability to being above that value (i.e.
S(x) < Sn(x)). This indicates that the model has a lighter right tail than the
data. In addition, as we go from 0.4 to 0.6 on the horizontal axis (thus looking
at the middle 20data), the pp plot increases from about 0.3 to 0.4. This indicates
that the model puts only about 10

6.1.2 Statistical Comparison of Distributions

When selecting a model, it is helpful to make the graphical displays presented.
However, for reporting results, it can be effective to supplement the graphical
displays with selected statistics that summarize model goodness of fit. Table
6.1 provides three commonly used goodness of fit statistics. In this table, Fn

is the empirical distribution, F is the fitted or hypothesized distribution, and
F ∗

i = F (xi).
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Table 6.1. Three Goodness of Fit Statistics

Statistic Definition Computational Expression
Kolmogorov- maxx |Fn(x) − F (x)| max(D+, D−) where

Smirnov D+ = maxi=1,...,n

∣∣∣ i
n − F ∗

i

∣∣∣
D− = maxi=1,...,n

∣∣∣F ∗
i − i−1

n

∣∣∣
Cramer-von Mises n

∫
(Fn(x) − F (x))2f(x)dx 1

12n +
∑n

i=1 (F ∗
i − (2i− 1)/n)2

Anderson-Darling n
∫ (Fn(x)−F (x))2

F (x)(1−F (x)) f(x)dx −n− 1
n

∑n
i=1(2i− 1) log (F ∗

i (1 − Fn+1−i))2

The Kolmogorov-Smirnov statistic is the maximum absolute difference between
the fitted distribution function and the empirical distribution function. Instead
of comparing differences between single points, the Cramer-von Mises statistic
integrates the difference between the empirical and fitted distribution functions
over the entire range of values. The Anderson-Darling statistic also integrates
this difference over the range of values, although weighted by the inverse of the
variance. It therefore places greater emphasis on the tails of the distribution
(i.e when F (x) or 1 − F (x) = S(x) is small).

Example 6.1.2. Actuarial Exam Question (modified). A sample of claim
payments is:

29 64 90 135 182
Compare the empirical claims distribution to an exponential distribution with
mean 100 by calculating the value of the Kolmogorov-Smirnov test statistic.

r SolnBegin()‘ For an exponential distribution with mean 100, the cumulative
distribution function is F (x) = 1 − e−x/100. Thus,

x F (x) Fn(x) Fn(x−) max(|F (x) − Fn(x)|, |F (x) − Fn(x−)|)
29 0.2517 0.2 0 max(0.0517, 0.2517) = 0.2517
64 0.4727 0.4 0.2 max(0.0727, 0.2727) = 0.2727
90 0.5934 0.6 0.4 max(0.0066, 0.1934) = 0.1934
135 0.7408 0.8 0.6 max(0.0592, 0.1408) = 0.1408
182 0.8380 1 0.8 max(0.1620, 0.0380) = 0.1620

The Kolmogorov-Smirnov test statistic is therefore

KS = max(0.2517, 0.2727, 0.1934, 0.1408, 0.1620) = 0.2727.

r SolnEnd()‘
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Pearson’s chi-square test

In this section we introduce another goodness of fit test - Pearson’s chi-square
test - which can be used for testing whether a discrete distribution provides a
good fit to discrete data. For more details on the Pearson’s chi-square test, at
an introductory mathematical statistics level, we refer the reader to Section
9.1 of Hogg et al. (2015).

To illustrate application of the Pearson’s chi-square test, we use the example
introduced in Section 3.7: In 1993, a portfolio of n = 7, 483 automobile insurance
policies from a major Singaporean insurance company had the distribution of
auto accidents per policyholder as given in Table 6.2.

Table 6.2. Singaporean Automobile Accident Data

Count (k) 0 1 2 3 4 Total
No. of Policies with k accidents (mk) 6, 996 455 28 4 0 7, 483

If we a fit a Poisson distribution, then the mle for λ, the Poisson mean, is the
sample mean which is given by

N = 0 · 6996 + 1 · 455 + 2 · 28 + 3 · 4 + 4 · 0
7483 = 0.06989.

Now if we use Poisson (λ̂MLE) as the fitted distribution, then a tabular
comparison of the fitted counts and observed counts is given by Table 6.3, where
p̂k represents the estimated probabilities under the fitted Poisson distribution.

Table 6.3. Comparison of Observed to Fitted Counts: Singaporean
Auto Data

Count Observed Fitted Counts
(k) (mk) Using Poisson (np̂k)
0 6, 996 6, 977.86
1 455 487.70
2 28 17.04
3 4 0.40

≥ 4 0 0.01
Total 7, 483 7, 483.00

While the fit seems reasonable, the Pearson’s chi-square statistic is a goodness
of fit measure that can be used to test the hypothesis that the underlying
distribution is Poisson. To explain this statistic let us suppose that a dataset
of size n is grouped into k cells with mk/n and p̂k, for k = 1 . . . , K being the
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observed and estimated probabilities of an observation belonging to the k-th
cell, respectively. The Pearson’s chi-square test statistic is then given by

K∑
k=1

(mk − np̂k)2

np̂k
.

The motivation for the above statistic derives from the fact that
K∑

k=1

(mk − npk)2

npk

has a limiting chi-square distribution with K − 1 degrees of freedom if pk, k =
1, . . . , K are the true cell probabilities. Now suppose that only the summarized
data represented by mk, k = 1, . . . , K is available. Further, if pk’s are functions
of s parameters, replacing pk’s by any efficiently estimated probabilities p̂k’s
results in the statistic continuing to have a limiting chi-square distribution but
with degrees of freedom given by K − 1 − s. Such efficient estimates can be
derived for example by using the mle method (with a multinomial likelihood)
or by estimating the s parameters which minimizes the Pearson’s chi-square
statistic above. For example, the R code below does calculate an estimate for
λ doing the latter and results in the estimate 0.06623153, close but different
from the mle of λ using the full data:
m <- c(6996,455,28,4,0);
op <- m/sum(m);
g <- function(lam){ sum( (op-c(dpois(0:3,lam),1-ppois(3,lam)) )ˆ2) };
optim( sum(op*(0:4)), g, method="Brent", lower=0, upper=10)$par

When one uses the full data to estimate the probabilities, the asymptotic
distribution is in between chi-square distributions with parameters K − 1 and
K − 1 − s. In practice it is common to ignore this subtlety and assume the
limiting chi-square has K−1−s degrees of freedom. Interestingly, this practical
shortcut works quite well in the case of the Poisson distribution.

For the Singaporean auto data the Pearson’s chi-square statistic equals 41.98
using the full data mle for λ. Using the limiting distribution of chi-square with
5 − 1 − 1 = 3 degrees of freedom, we see that the value of 41.98 is way out in
the tail (99-th percentile is below 12). Hence we can conclude that the Poisson
distribution provides an inadequate fit for the data.

In the above, we started with the cells as given in the above tabular summary.
In practice, a relevant question is how to define the cells so that the chi-square
distribution is a good approximation to the finite sample distribution of the
statistic. A rule of thumb is to define the cells in such a way to have at least
80%, if not all, of the cells having expected counts greater than 5. Also, it is
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clear that a larger number of cells results in a higher power of the test, and
hence a simple rule of thumb is to maximize the number of cells such that each
cell has at least 5 observations.

6.2 Iterative Model Selection

In our model development, we examine the data graphically, hypothesize a
model structure, and compare the data to a candidate model in order to
formulate an improved model. Box (1980) describes this as an iterative process
which is shown in Figure 6.5.

FIGURE 6.5: Iterative Model Specification Process

This iterative process provides a useful recipe for structuring the task of
specifying a model to represent a set of data.

1. The first step, the model formulation stage, is accomplished by exam-
ining the data graphically and using prior knowledge of relationships,
such as from economic theory or industry practice.

2. The second step in the iteration is fitting based on the assumptions
of the specified model. These assumptions must be consistent with
the data to make valid use of the model.

3. The third step is diagnostic checking; the data and model must be
consistent with one another before additional inferences can be made.
Diagnostic checking is an important part of the model formulation;
it can reveal mistakes made in previous steps and provide ways to
correct these mistakes.

The iterative process also emphasizes the skills you need to make data analytics
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work. First, you need a willingness to summarize information numerically and
portray this information graphically. Second, it is important to develop an
understanding of model properties. You should understand how a probabilistic
model behaves in order to match a set of data to it. Third, theoretical properties
of the model are also important for inferring general relationships based on
the behavior of the data.

6.3 Model Selection Based on a Training Dataset

As introduced in Section 2.2, it is common to refer to a dataset used for
fitting the model as a training or an in-sample dataset. Techniques available
for selecting a model depend upon whether the outcomes X are discrete,
continuous, or a hybrid of the two, although the principles are the same.

Graphical and other Basic Summary Measures. Begin by summarizing
the data graphically and with statistics that do not rely on a specific parametric
form, as summarized in Section 4.4.1. Specifically, you will want to graph both
the empirical distribution and density functions. Particularly for loss data that
contain many zeros and that can be skewed, deciding on the appropriate scale
(e.g., logarithmic) may present some difficulties. For discrete data, tables are
often preferred. Determine sample moments, such as the mean and variance, as
well as selected quantiles, including the minimum, maximum, and the median.
For discrete data, the mode (or most frequently occurring value) is usually
helpful.

These summaries, as well as your familiarity of industry practice, will suggest
one or more candidate parametric models. Generally, start with the simpler
parametric models (for example, one parameter exponential before a two
parameter gamma), gradually introducing more complexity into the modeling
process.

Critique the candidate parametric model numerically and graphically. For the
graphs, utilize the tools introduced in Section 6.1 such as pp and qq plots. For
the numerical assessments, examine the statistical significance of parameters
and try to eliminate parameters that do not provide additional information.
In addition to statistical significance of parameters, you may use the following
model comparison tools.

Likelihood Ratio Tests. For comparing model fits, if one model is a subset
of another, then a likelihood ratio test may be employed; the general approach
to likelihood ratio testing is described in Appendix Sections 17.4.3 and 19.1.
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Goodness of Fit Statistics. Generally, models are not proper subsets of
one another in which case overall goodness of fit statistics are helpful for
comparing models. Information criteria are one type of goodness of statistic.
The most widely used examples are Akaike’s Information Criterion (AIC ) and
the (Schwarz) Bayesian Information Criterion (BIC ); they are widely cited
because they can be readily generalized to multivariate settings. Appendix
Section 17.4.4 provides a summary of these statistics.

For selecting the appropriate distribution, statistics that compare a parametric
fit to a nonparametric alternative, summarized in Section 6.1.2, are useful for
model comparison. For discrete data, a goodness of fit statistic is generally
preferred as it is more intuitive and simpler to explain.

6.4 Model Selection Based on a Test Dataset

Model validation introduced in Section 2.2 is the process of confirming that
the proposed model is appropriate based on a test or an out-of-sample dataset,
especially in light of the purposes of the investigation. Model validation is
important since the model selection process based only on training or in-sample
data can be susceptible to data-snooping, that is, fitting a great number of
models to a single set of data. By looking at a large number of models, we may
overfit the data and understate the natural variation in our representation.

Selecting a model based only on in-sample data also does not support the goal
of predictive inference. Particularly in actuarial applications, our goal is to
make statements about new experience rather than a dataset at hand. For
example, we use claims experience from one year to develop a model that can
be used to price insurance contracts for the following year. As an analogy, we
can think about the training dataset as experience from one year that is used
to predict the behavior of the next year’s test dataset.

We can respond to these criticisms by using a technique known as out-of-sample
validation. The ideal situation is to have available two sets of data, one for
training, or model development, and the other for testing, or model validation.
We initially develop one or several models on the first dataset that we call
candidate models. Then, the relative performance of the candidate models can
be measured on the second set of data. In this way, the data used to validate
the model are unaffected by the procedures used to formulate the model.

Random Split of the Data. Unfortunately, rarely will two sets of data be
available to the investigator. As mentioned in Section 2.2, we can implement the
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validation process by splitting the dataset into training and test subsamples,
respectively. Figure 6.6 illustrates this splitting of the data.

1 2 3 4 5 6 ... n
ORIGINAL
SAMPLE
SIZE n

TRAINING
SUBSAMPLE SIZEn1

TEST
SUBSAMPLE
SIZE n2

FIGURE 6.6: Model Validation. A dataset is randomly split into two sub-
samples.

Various researchers recommend different proportions for the allocation. Snee
(1977) suggests that data-splitting not be done unless the sample size is
moderately large. The guidelines of Picard and Berk (1990) show that the
greater the number of parameters to be estimated, the greater the proportion
of observations is needed for the training subsample for model development.

Selecting a Distribution. Still, our focus so far has been to select a distribu-
tion for a dataset that can be used for actuarial modeling without additional
explanatory or input variables x1, . . . , xk. Even in this more fundamental prob-
lem, the model validation approach is valuable. If we base all inference on only
in-sample data, then there is a tendency to select more complicated models
than needed. For example, we might select a four parameter GB2, generalized
beta of the second kind, distribution when only a two parameter Pareto is
needed. Information criteria such as AIC and BIC introduced in Appendix
Section 17.4.4 include penalties for model complexity and thus provide pro-
tection against over-fitting, but using a test sample may also help achieve
parsimonious models. From a quote often attributed to Albert Einstein, we
want to “use the simplest model as possible but no simpler.”

Example 6.4.1. Wisconsin Property Fund. For the 2010 property fund
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data from Section 1.3, we may try to select a severity distribution based on out-
of-sample prediction. In particular, we may randomly select 1,000 observations
as our training data, and use the remaining 377 claims to validate the two
models based respectively on gamma and Pareto distributions. For illustration
purposes, We compare the Kolmogorov-Smirnov statistics respectively for the
training and test datasets using the models fitted from training data.

Based on in-sample prediction, the Kolmogorov-Smirnov goodness of fit statis-
tic for the gamma distribution turns out to be 0.2771 and for the Pareto
distribution is 0.046. Based on out-of-sample prediction, the Kolmogorov-
Smirnov goodness of fit statistic for the gamma distribution turns out to be
0.2693 and for the Pareto distribution is 0.0746. Based on both in-sample
and out-of-sample prediction, the Pareto model seems to give considerably
better goodness of fit under the random seed used in the code for splitting the
training and test data.

Model Validation Statistics. In addition to the nonparametric tools intro-
duced earlier for comparing marginal distributions of the outcome or output
variables ignoring potential explanatory or input variables, much of the litera-
ture supporting the establishment of a model validation process is based on
regression and classification models that you can think of as an input-output
problem (James et al. (2013)). That is, we have several inputs or predictor
variables x1, . . . , xk that are related to an output or outcome y through a
function such as

y = g (x1, . . . , xk) .

For model selection, one uses the training sample to develop an estimate of g,
say, ĝ, and then calibrate the average distance from the observed outcomes to
the predictions using a criterion of the form

1
n

∑
i

d(yi, ĝ (xi1, . . . , xik)). (6.1)

Here, “d” is some measure of distance and the sum i is over the test data.
The function g may not have an analytical form and can be estimated for
each observation using the different different types of algorithms and models
introduced earlier in Section 2.4. In many regression applications, it is common
to use the squared Euclidean distance of the form d(yi, g) = (yi − g)2 under
which the criterion in equation (6.1) is called the mean squared error (MSE).
Using data simulated from linear models, Example 2.3.1 uses the root mean
squared error (Rmse) which is the squared root of the MSE. From equation
(6.1), the MSE criteria works the best for linear models under normal distribu-
tions with constant variance, as minimizing MSE is equivalent to the maximum
likelihood and least squares criterion in training data. In data analytics and
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linear regression, one may consider transformations of the outcome variable in
order for the MSE criteria to work more effectively. In actuarial applications,
the mean absolute error (MAE) under the Euclidean distance d(yi, g) = |yi −g|
may be preferred because of the skewed nature of loss data. For right-skewed
outcomes, it may require a larger sample size for the validation statistics to
pickup the correct model when large outlying values of y can have a large effect
on the measures.

Following Example 2.3.1, we use simulated data in Examples 6.4.2 through
6.4.4 to compare the AIC information criteria from Appendix Chapter 17.4.4
with out-of-sample MSE and MAE criterion for selecting the distribution and
input variables for outcomes that are respectively from normal and right-
skewed distributions including lognormal and gamma distributions. For right
skewed distributions, we find that the AIC information criteria seems to work
consistently for selecting the correct distributional form and mean structure
(input variables), whereas out-of-sample MSE and MAE may not work for
right-skewed outcomes like those from gamma distributions, even with relatively
large sample sizes. Therefore, model validation statistics commonly used in
data analytics may only work for minimizing specific cost functions, such as the
MAE that represents the average absolute error for out-of-sample prediction,
and do not necessarily guarantee correct selection of the underlying data
generating mechanism.

Example 6.4.2. In-sample AIC and out-of-sample MSE for normal
outcomes. Example 2.3.1 assumes that there is a set of claims that potentially
varies by a single categorical variable with six levels. To illustrating in-sample
over-fitting, it also assumes that two of the six levels share a common mean
that differs from rest of levels. For Example 2.3.1, the claim amounts were
generated from a linear model with constant variance, for which in-sample AIC
and out-of-sample Rmse provide consistent results from the cross-validation
procedure to be introduced in the next section. Here, we may use the same
data generation mechanism to compare the performance of in-sample AIC with
the in-sample and out-of-sample Rmse criteria. In particular, we generate a
total of 200 samples and split them equally into the training and test datasets.
From Table 6.4, we observe the two-level model was correctly selected by
both in-sample AIC and out-of-sample MSE criteria, whereas in-sample MSE
prefers an over-fitted model with six levels. Thus, due to concerns of model
over-fitting, we do not use in-sample distance measures such as the MSE and
MAE criterion that favors more complicated models.
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TABLE 6.4: Model Selection based on MSE and AIC for normal
outputs

Community
Rating

Two
Levels

Six Levels

Rmse - Train 1.186 1.016 0.990
Rmse - Test 1.081 0.958 1.012
AIC - Train 321.935 293.028 295.694

Example 6.4.3. MSE and MAE for right-skewed outcomes - lognormal
claims. For claims modeling, one may wonder how the MSE and MAE types
of criterion may perform for right-skewed data. Using the same data generating
procedure, we may generate lognormal claim amounts by exponentiating the
normal outcomes from the previous example. We fit the lognormal claim
amounts with lognormal and gamma regression commonly used for ratemaking
and claims analytics. Results are summarized in Tables 6.5 and 6.6, respectively.
For the specific data generating mechanism, we observe that it requires a larger
sample size for out-of-sample Rmse and MAE to select the correct distributional
form and mean structure, when compared with in-sample AIC criteria. The
AIC criteria is able to pick out the correct model with a sample size of 200,
while out-of-sample MSE and MAE fail to. Thus, for right skewed output,
precautions need to be taken when using model validation statistics that may
be sensitive to large claim values, particularly when the sample size is relatively
small.
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TABLE 6.5: Model Selection based on in-sample AIC and out-of-
sample MSE and MAE from lognormal model

Community
Rating

Two
Levels

Six Levels

Rmse - Train 4.365 4.185 4.192
Rmse - Test 3.881 3.686 3.679
MAE - Train 2.077 1.821 1.807
MAE - Test 2.166 2.056 2.073
AIC - Train 1800.716 1681.550 1686.142

TABLE 6.6: Model Selection based on in-sample AIC and out-of-
sample MSE and MAE from gamma model

Community
Rating

Two
Levels

Six Levels

Rmse - Train 4.634 4.572 4.572
Rmse - Test 4.298 4.232 4.235
MAE - Train 1.862 1.815 1.817
MAE - Test 2.127 2.123 2.128
AIC - Train 1906.398 1789.312 1795.662

Example 6.4.4. MSE and MAE for right-skewed outcomes - gamma
claims. For right-skewed outcomes, we may be interested in studying how the
MSE and MAE types of measures work for another loss severity distribution,
the gamma distribution, that is widely used in ratemaking and claims analytics.
Here, we use a similar mean structure for generating claims amounts based
on a gamma regression with the log link function. We fit the data using
lognormal and gamma regression. Results are summarized in Tables 6.7 and
6.8, respectively. For gamma outcomes, Table 6.8 shows that out-of-sample
MSE and MAE criterion fail to select the correct distributional form or the
mean structure even with a total of 1000 samples. By changing the gamma
shape parameter, you may see that the out-of-sample MSE and MAE criterion
work in certain settings for correctly selecting the distributional form or the
mean structure, but the performance of such model validation statistics does
not seem to be consistent across different parameter values and sample sizes for
right-skewed gamma outcomes. Again, the AIC criteria seems to be working
consistently in selecting the correct distribution and mean structure for the
data generated from gamma distributions, even with a smaller sample size of
200.



188 6 Model Selection

TABLE 6.7: Model Selection based on in-sample AIC and out-of-
sample MSE and MAE from lognormal model

Community
Rating

Two
Levels

Six Levels

Rmse - Train 1.083 0.763 0.760
Rmse - Test 1.128 0.815 0.812
MAE - Train 0.800 0.535 0.529
MAE - Test 0.830 0.565 0.566
AIC - Train 1212.218 864.776 868.794

TABLE 6.8: Model Selection based on in-sample AIC and out-of-
sample MSE and MAE from gamma model

Community
Rating

Two
Levels

Six Levels

Rmse - Train 1.553 1.476 1.475
Rmse - Test 1.594 1.523 1.522
MAE - Train 1.121 1.226 1.227
MAE - Test 1.138 1.253 1.253
AIC - Train 1249.211 852.292 856.850

6.5 Model Selection Based on Cross-Validation

Although out-of-sample validation is the gold standard in predictive modeling,
it is not always practical to do so. The main reason is that we have limited
sample sizes and the out-of-sample model selection criterion in equation (6.1)
depends on a random split of the data. This means that different analysts,
even when working the same dataset and same approach to modeling, may
select different models. This is likely in actuarial applications because we work
with skewed datasets where there is a large chance of getting some very large
outcomes and large outcomes may have a great influence on the parameter
estimates.

Cross-Validation Procedure. Alternatively, one may use cross-validation,
as follows.

• The procedure begins by using a random mechanism to split the data into
K subsets of roughly equal size known as folds, where analysts typically use
5 to 10.

• Next, one uses the first K-1 subsamples to estimate model parameters. Then,
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“predict” the outcomes for the Kth subsample and use a measure such as in
equation (6.1) to summarize the fit.

• Now, repeat this by holding out each of the K subsamples, summarizing with
an out-of-sample statistic. Thus, summarize these K statistics, typically by
averaging, to give a single overall statistic for comparison purposes.

Repeat these steps for several candidate models and choose the model with
the lowest overall cross-validation statistic.

In Example 2.3.1, you have seen that the MSE criteria seems to work with k-fold
cross-validation in selecting the correct mean structure for claims outcome data
generated from linear models with constant variance. From Examples 6.4.3
and 6.4.4, however, the out-of-sample MSE and MAE criterion does not seem
to provide consistent performance for selecting the distributional form and the
mean structure under right-skewed claims distributions. Thus, we may use the
k-folder cross-validation instead of out-of-sample prediction to see whether the
MSE and MAE types of criterion work for right-skewed distributions based on
lognormal and gamma regression with a log link function.

Example 6.5.1. Cross-validation in right-skewed outcomes - lognormal
claims For lognormal claims, we use the data generating mechanism from
Example 6.4.3 to generate a total of 100 samples, and use the k-fold cross
validation procedure in Example 2.3.1 to select the distributional form and
mean structure. Using cross-validation, we note that both AIC and out-of-
sample MSE and MAE seem to be working for selecting the model with the
correct distribution and mean structure, even with a total of 100 samples.

Example 6.5.2. Cross-validation in right-skewed outcomes - gamma
claims For gamma claims, we use the data generating mechanism from Example
6.4.4 to generate a total of 100 samples, and use the k-fold cross validation
procedure to select the distributional form and mean structure. Using cross-
validation, we note that in-sample AIC seems to be working for selecting the
model with the correct distribution and mean structure, while out-of-sample
MSE and MAE seem to fail in selecting the distributional form or the mean
structure correctly even after we increase the sample size to 1000.

Cross-validation is widely used because it retains the predictive flavor of the
out-of-sample model validation process but, due to the re-use of the data,
is more stable over random samples. In addition, Example 8.4.1 in Chapter
8 uses the Wisconsin Property Fund to perform k-fold cross-validation of
the gamma and Pareto models based on the Kolmogorov-Smirnov goodness
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TABLE 6.9: Cross-validation based on in-sample AIC, and out-of-
sample MSE and MAE from lognormal model

Community
Rating

Two
Levels

Six Levels

Rmse - Fold 1 1.808 1.750 1.891
Rmse - Fold 2 2.145 1.773 1.813
Rmse - Fold 3 3.461 3.335 3.333
Rmse - Fold 4 1.425 1.723 1.865
Rmse - Fold 5 4.848 4.450 4.454

Rmse - Average 2.738 2.606 2.671
MAE - Fold 1 1.341 1.408 1.502
MAE - Fold 2 1.881 1.264 1.255
MAE - Fold 3 2.037 2.142 2.146
MAE - Fold 4 1.225 1.345 1.476

MAE - Fold 5 2.421 2.022 2.051
MAE - Average 1.781 1.636 1.686
AIC - Average 286.257 266.223 271.200

TABLE 6.10: Cross-validation based on in-sample AIC, and out-of-
sample MSE and MAE from gamma model

Community
Rating

Two
Levels

Six Levels

Rmse - Fold 1 2.557 2.642 2.677
Rmse - Fold 2 1.930 1.999 2.005
Rmse - Fold 3 4.088 4.155 4.187
Rmse - Fold 4 1.181 1.273 1.318
Rmse - Fold 5 5.232 5.262 5.286

Rmse - Average 2.998 3.066 3.095
MAE - Fold 1 1.929 2.069 2.114
MAE - Fold 2 1.060 1.116 1.124
MAE - Fold 3 2.488 2.660 2.725
MAE - Fold 4 0.887 0.949 0.999

MAE - Fold 5 2.251 2.312 2.345
MAE - Average 1.723 1.821 1.861
AIC - Average 299.063 281.455 282.816
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TABLE 6.11: Cross-validation based on in-sample AIC, and out-of-
sample MSE and MAE from lognormal model

Community
Rating

Two
Levels

Six Levels

Rmse - Fold 1 1.080 0.794 0.799
Rmse - Fold 2 0.953 0.639 0.639
Rmse - Fold 3 1.354 0.914 0.916
Rmse - Fold 4 1.097 0.725 0.727
Rmse - Fold 5 1.171 0.695 0.695

Rmse - Average 1.131 0.753 0.755
MAE - Fold 1 0.837 0.579 0.583
MAE - Fold 2 0.755 0.473 0.474
MAE - Fold 3 0.952 0.600 0.602
MAE - Fold 4 0.852 0.523 0.525

MAE - Fold 5 0.897 0.503 0.507
MAE - Average 0.859 0.536 0.538
AIC - Average 1980.018 1381.321 1388.351

TABLE 6.12: Cross-validation based on in-sample AIC, and out-of-
sample MSE and MAE from gamma model

Community
Rating

Two
Levels

Six Levels

Rmse - Fold 1 1.455 1.620 1.620
Rmse - Fold 2 1.347 1.543 1.543
Rmse - Fold 3 1.865 2.006 2.005
Rmse - Fold 4 1.558 1.738 1.738
Rmse - Fold 5 1.690 1.838 1.838

Rmse - Average 1.583 1.749 1.749
MAE - Fold 1 1.003 1.223 1.223
MAE - Fold 2 0.975 1.195 1.195
MAE - Fold 3 1.301 1.478 1.479
MAE - Fold 4 1.118 1.342 1.342

MAE - Fold 5 1.228 1.420 1.420
MAE - Average 1.125 1.332 1.332
AIC - Average 2047.108 1349.855 1357.246
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of fit statistic. Additional information and examples regarding re-sampling
procedures including leave-one-out cross-validation and bootstrap can also be
found in Chapter 8.

6.6 Model Selection for Modified Data

So far we have discussed model selection using unmodified data. For modified
data including grouped, censored and truncated data, you learned parametric
and nonparametric estimation of distribution functions in Chapter 5. For model
selection, the tools from Section 6.1 can be extended to cases of modified data.

For selection of distributions, the nonparametric tools introduced in Section 6.1
are based on estimated parametric and nonparametric distribution functions,
and thus can be extended to modified data for which both types of estimators
exist.

For graphical comparisons, the pp and qq plots introduced earlier can be
created for modified data by plotting the parametric estimates from Section
5.2 against nonparametric estimates of the probability or distribution functions
from Section 5.3. For example, the qqPlotCensored and qqtrunc functions
in R generate qq plots respectively for censored (left or right) and truncated
data, whereas the probPlot function creates both pp and qq plots with a larger
selection of distributions for right-censored and unmodified data. Additional
graphical tools such as cumulative hazard plots are available in the R package
GofCens.

Example 6.6.1. Bodily Injury Claims and qq-Plots. For the Boston auto
bodily injury claims data from Example 5.3.2, we include the full dataset
with right-censoring, and use the qq-plot to compare the estimated quantiles
from lognormal, normal and exponential distributions with those from the
nonparametric Kaplan-Meier method. From the qq-plots in Figure 6.7, the
lognormal distribution seems to fit the censored data much better those based
on the normal and exponential distributions.

In addition to graphical tools, you may use tools from Section 6.1.2 for statistical
comparisons of models fitted from modified data based on parametric and
nonparametric estimates of distribution functions. For example, the R package
GofCens provides functions calculating the three goodness of fit statistics from
Section 6.1.2 for both right-censored and unmodified data. The R package
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FIGURE 6.7: Quantile-Quantile (qq) Plots for Bodily Injury Claims.
The horizontal axis gives the empirical quantiles at each observation. The
vertical axis gives the quantiles from the fitted distributions; lognormal quantiles
are in the left-hand panel, normal quantiles are in the middle, and exponential
in the right-hand panel.

TABLE 6.13: Nonparametric goodness of fit statistics for right-
censored Bodily Injury Claims

Kolmogorov-
Smirnov

Cramer-
von Mises

Anderson-
Darling

Lognormal 1.994 0.305 1.770
Normal 3.096 1.335 9.437
Exponential 4.811 4.065 21.659

truncgof, on the other hand, provides functions for calculating the three
goodness of fit statistics for left-truncated data.

Example 6.6.2. Bodily Injury Claims and Goodness of Fit Stastistics.
For the Boston auto bodily injury claims with right-censoring, we may use
the goodness of fit statistics to evaluate the fitted lognormal, normal and
exponential distributions. For the Kolmogorov-Smirnov, Cramer-von Mises
and Anderson-Darling statistics, the lognormal distribution gives values that
are much lower than those from normal and exponential distributions. The
conclusion from the goodness of fit statistics is consistent to that revealed by
the qq plots.

Other than selecting the distributional form, model comparison measures such
as the likelihood ratio test and information criterion including the AIC from
Section 6.3 can be obtained for models fitted based on likelihood criteria based
on the likelihood functions introduced earlier for modified data. For modified
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data, the survreg and flexsurvreg functions in R fit parametric regression
models on censored and/or truncated outcomes based on maximum likelihood
estimation which allows use of likelihood ratio tests and information criterion
such as AIC for in-sample model comparisons. For censored and truncated
data, the functions also provide output of residuals that allow calculation of
model validation statistics such as the MSE and MAE for the iterative model
selection procedure introduced in Section 6.2.

6.7 Further Resources and Contributors
Contributors

• Lei (Larry) Hua and Michelle Xia, Northern Illinois University, are the
principal authors of the second edition of this chapter.

• Edward (Jed) Frees and Lisa Gao, University of Wisconsin-Madison, are
the principal authors of the initial version of this chapter.

• Chapter reviewers include: Vytaras Brazauskas, Yvonne Chueh, Eren Dodd,
Hirokazu (Iwahiro) Iwasawa, Joseph Kim, Andrew Kwon-Nakamura, Jian-
dong Ren, and Di (Cindy) Xu.

Further Readings and References

If you would like additional practice with R coding, please visit our companion
LDA Short Course. In particular, see the Model Selection and Estimation
Chapter.

https://openacttexts.github.io/LDACourse1
https://openacttexts.github.io/LDACourse1/model-selection-and-estimation.html
https://openacttexts.github.io/LDACourse1/model-selection-and-estimation.html


7
Aggregate Loss Models

Chapter Preview. This chapter introduces probability models for describing
the aggregate (total) claims that arise from a portfolio of insurance contracts.
We present two standard modeling approaches, the individual risk model and
the collective risk model. Further, we discuss strategies for computing the
distribution of the aggregate claims, including exact methods for special cases,
recursion, and simulation. Finally, we examine the effects of individual policy
modifications such as deductibles, coinsurance, and inflation, on the frequency
and severity distributions, and thus on the aggregate loss distribution.

7.1 Introduction

In this section, you learn:

• the concept of aggregate claims for an insurance system
• alternative methods to describe the aggregate losses
• the interpretation of different models for aggregate claims

The objective of this chapter is to build a probability model to describe the
aggregate claims by an insurance system occurring in a fixed time period.
The insurance system could be a single policy, a group insurance contract,
a business line, or an entire book of an insurer’s business. In this chapter,
aggregate claims refer to either the number or the amount of claims from a
portfolio of insurance contracts. However, the modeling framework can be
readily applied in a general setup.

Consider an insurance portfolio of n individual contracts, and let S denote
the aggregate losses of the portfolio in a given time period. There are two
approaches to modeling the aggregate losses S, the individual risk model and
the collective risk model. The individual risk model emphasizes the loss from

195
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each individual contract and represents the aggregate losses as:

Sn = X1 +X2 + · · · +Xn,

where Xi (i = 1, . . . , n) is interpreted as the loss amount from the ith contract.
It is worth stressing that n denotes the number of contracts in the portfolio
and thus is a fixed number rather than a random variable. For the individual
risk model, one usually assumes the Xi’s are independent. Because of different
contract features such as coverage and exposure, the Xi’s are not necessarily
identically distributed. A notable feature of the distribution of each Xi is the
probability mass at zero corresponding to the event of no claims.

The collective risk model represents the aggregate losses in terms of a frequency
distribution and a severity distribution:

SN = X1 +X2 + · · · +XN .

Here, one thinks of a random number of claims N that may represent either
the number of losses or the number of payments. In contrast, in the individual
risk model, we use a fixed number of contracts n. We think of X1, X2, . . . , XN

as representing the amount of each loss. Each loss may or may not correspond
to a unique contract. For instance, there may be multiple claims arising from
a single contract. It is natural to think about Xi > 0 because if Xi = 0
then no claim has occurred. Typically we assume that conditional on N = n,
X1, X2, . . . , Xn are iid random variables. The distribution of N is known as
the frequency distribution, and the common distribution of X is known as
the severity distribution. We further assume N and X are independent. With
the collective risk model, we may decompose the aggregate losses into the
frequency (N) process and the severity (X) model. This flexibility allows the
analyst to comment on these two separate components. For example, sales
growth due to lower underwriting standards could lead to higher frequency
of losses but might not affect severity. Similarly, inflation or other economic
forces could have an impact on severity but not on frequency.

The rest of the chapter is structured as follows: Section 7.2 and Section
7.3 provide details on the individual risk model and collective risk model
respectively. Section 7.4 presents methods for computing the distribution of
aggregate claims. Section 7.5 discusses the effect of coverage modifications on
the aggregate losses. Technical materials are summarized in Section 7.6.
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7.2 Individual Risk Model

In this section, you learn:

• mathematical representation of the individual risk model
• applications of individual risk model to life and non-life insurance
• how to evaluate moments, generating functions, and the distribution function

of the individual risk model

7.2.1 Moments and Distribution

As noted earlier, for the individual risk model, we think of Xi as the loss from
ith contract and interpret

Sn = X1 +X2 + · · · +Xn,

to be the aggregate loss from all contracts in a portfolio or group of contracts.
Here, the Xi’s are not necessarily identically distributed and we have

E(Sn) =
n∑

i=1
E(Xi) .

Under the independence assumption on Xi’s (which implies Cov (Xi, Xj) = 0
for all i ̸= j), it can further be shown that

Var(Sn) =
n∑

i=1
Var(Xi)

PSn(z) =
n∏

i=1
PXi(z)

MSn(t) =
n∏

i=1
MXi(t),

where PSn(·) and MSn(·) are the probability generating function (pgf ) and
the moment generating function (mgf ) of Sn, respectively. The distribution of
each Xi contains a probability mass at zero, corresponding to the event of no
claims from the ith contract. One strategy to incorporate the zero mass in the
distribution is to use the two-part framework:

Xi = Ii ×Bi =
{

0 , if Ii = 0
Bi , if Ii = 1.
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Here, Ii is a Bernoulli variable indicating whether or not a loss occurs for the ith
contract, and Bi is a random variable with nonnegative support representing
the amount of losses of the contract given loss occurrence. Assume that
I1, . . . , In, B1, . . . , Bn are mutually independent. Denote Pr(Ii = 1) = qi,
µi = E(Bi), and σ2

i = Var(Bi). It can be shown (see Technical Supplement
7.A.1 in Section 7.6 for details) that

E(Sn) =
n∑

i=1
qi µi

Var(Sn) =
n∑

i=1

(
qiσ

2
i + qi(1 − qi)µ2

i

)
PSn(z) =

n∏
i=1

(1 − qi + qiPBi(z))

MSn(t) =
n∏

i=1
(1 − qi + qiMBi(t)) .

A special case of the above model is when Bi follows a degenerate distribution
with µi = bi and σ2

i = 0. One example is term life insurance or a pure
endowment insurance where bi represents the insurance benefit amount of the
ith contract.

Another strategy to accommodate the zero mass in the loss from each contract
is to consider them in aggregate at the portfolio level, as in the collective risk
model. Here, the aggregate loss is SN = X1 + · · · +XN , where N is a random
variable representing the number of non-zero claims that occurred out of the
entire group of contracts. Thus, not every contract in the portfolio may be
represented in this sum, and SN = 0 when N = 0. The collective risk model
will be discussed in detail in the next section.

Example 7.2.1. Actuarial Exam Question. An insurance company sold
300 fire insurance policies as follows:

Number of Policy Probability of
Policies Maximum Claim Per Policy

(Mi) (qi)
100 400 0.05
200 300 0.06

You are given:
(i) The claim amount for each policy, Xi, is uniformly distributed between 0
and the policy maximum Mi.
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(ii) The probability of more than one claim per policy is 0.
(iii) Claim occurrences are independent.

Calculate the mean, E (S300), and variance, Var (S300), of the aggregate claims.
How would these results change if every claim is equal to the policy maximum?

Example Solution. The aggregate claims are S300 = X1 + · · · + X300, where
X1, . . . , X300 are independent but not identically distributed. Policy claims
amounts are uniformly distributed on (0, Mi), so the mean claim amount is
Mi/2 and the variance is M2

i /12. Thus, for policy i = 1, . . . , 300, we have

Number of Policy Probability of Mean Variance
Policies Maximum Claim Per Policy Amount Amount

(Mi) (qi) (µi) (σ2
i )

100 400 0.05 200 4002/12
200 300 0.06 150 3002/12

The mean of the aggregate claims is

E (S300) =
300∑
i=1

qiµi = 100 {0.05(200)} + 200 {0.06(150)} = 2, 800

The variance of the aggregate claims is

Var (S300) =
∑300

i=1
(
qiσ

2
i + qi(1 − qi)µ2

i

)
since Xi’s are independent

= 100
{

0.05
(

4002

12

)
+ 0.05(1 − 0.05)2002

}
+200

{
0.06

(
3002

12

)
+ 0.06(1 − 0.06)1502

}
= 600, 467.

Example 7.2.1. Continued.

Now suppose everybody receives the policy maximum Mi if a claim occurs.
What is the expected aggregate loss E (S̃) and variance of the aggregate loss
Var (S̃)?

Example Solution. Each policy claim amount Xi is now deterministic and
fixed at Mi instead of a randomly distributed amount, so σ2

i = Var (Xi) = 0 and
µi = Mi. Again, the probability of a claim occurring for each policy is qi. Under
these circumstances, the expected aggregate loss is

E (S̃) =
300∑
i=1

qiµi = 100 {0.05(400)} + 200 {0.06(300)} = 5, 600.
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The variance of the aggregate loss is

Var (S̃) =
300∑
i=1

(
qiσ

2
i + qi(1 − qi)µ2

i

)
=

300∑
i=1

(
qi(1 − qi)µ2

i

)
= 100

{
(0.05)(1 − 0.05)4002}+ 200

{
(0.06)(1 − 0.06)3002}

= 1, 775, 200.

The individual risk model can also be used for claim frequency. If Xi denotes
the number of claims from the ith contract, then Sn is interpreted as the
total number of claims from the portfolio. In this case, the above two-part
framework still applies since there is a probability mass at zero for contracts
that do not experience any claims. Assume Xi belongs to the (a, b, 0) class with
pmf denoted by pik = Pr(Xi = k) for k = 0, 1, . . . (see Section 3.3). Let XT

i

denote the associated zero-truncated distribution in the (a, b, 1) class with pmf
pT

ik = pik/(1 − pi0) for k = 1, 2, . . . (see Section 3.5.1). Using the relationship
between their probability generating functions (see Technical Supplement 7.A.2
in Section 7.6 for details):

PXi(z) = pi0 + (1 − pi0)PXT
i

(z),

we can write Xi = Ii × Bi with qi = Pr(Ii = 1) = Pr(Xi > 0) = 1 − pi0 and
Bi = XT

i . Notice that in this case, we have a zero-modified distribution since
the Ii variable covers the modified probability mass at zero with qi = Pr(Ii =
1), while the Bi = XT

i covers the discrete non-zero frequency portion. See
Section 3.5.1 for the relationship between zero-truncated and zero-modified
distributions.

Example 7.2.2. An insurance company sold a portfolio of 100 independent
homeowners insurance policies, each of which has claim frequency following a
zero-modified Poisson distribution, as follows:

Type of Number of Probability of λ
Policy Policies At Least 1 Claim

Low-risk 40 0.03 1
High-risk 60 0.05 2

Find the expected value and variance of the claim frequency for the entire
portfolio.
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Example Solution. For each policy, we can write the zero-modified Poisson
claim frequency Ni as Ni = Ii × Bi, where

qi = Pr(Ii = 1) = Pr(Ni > 0) = 1 − pi0.

For the low-risk policies, we have qi = 0.03 and for the high-risk policies, we have
qi = 0.05. Further, Bi = NT

i , the zero-truncated version of Ni. Thus, we have

µi = E(Bi) = E(NT
i ) = λ

1 − e−λ

σ2
i = Var(Bi) = Var(NT

i ) = λ[1 − (λ + 1)e−λ]
(1 − e−λ)2 .

Using n = 100, let the portfolio claim frequency be S100 =
∑100

i=1 Ni. Using the
formulas above, the expected claim frequency of the portfolio is

E (S100) =
100∑
i=1

qiµi

= 40
[
0.03

( 1
1 − e−1

)]
+ 60

[
0.05

( 2
1 − e−2

)]
= 40(0.03)(1.5820) + 60(0.05)(2.3130) = 8.8375.

The variance of the claim frequency of the portfolio is

Var (S100) =
100∑
i=1

(
qiσ

2
i + qi(1 − qi)µ2

i

)
= 40

[
0.03

(
1 − 2e−1

(1 − e−1)2

)
+ 0.03(0.97)(1.58202)

]

+ 60
[
0.05

(
2[1 − 3e−2]
(1 − e−2)2

)
+ 0.05(0.95)(2.31302)

]
= 23.7214.

Note that equivalently, we could have calculated the mean and variance of an
individual policy directly using the relationship between the zero-modified and
zero-truncated Poisson distributions (see Section 3.3).

7.2.2 Aggregate Loss Distribution

To understand the distribution of the aggregate loss, one could use the central
limit theorem to approximate the distribution of Sn for large n. Denote µSn =
E(Sn) and σ2

Sn
= Var(Sn) and let Z ∼ N(0, 1), a standard normal random
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variable with cdf Φ. Then the cdf of Sn can be approximated as follows:

FSn(s) = Pr(Sn ≤ s) = Pr
(
Sn − µSn

σSn

≤ s− µSn

σSn

)

≈ Pr
(
Z ≤ s− µSn

σSn

)
= Φ

(
s− µSn

σSn

)
.

Example 7.2.3. Actuarial Exam Question - Follow-Up. As in the Ex-
ample 7.2.1 earlier, an insurance company sold 300 fire insurance policies,
with claim amounts Xi uniformly distributed between 0 and the policy maxi-
mum Mi. Using the normal approximation, calculate the probability that the
aggregate claim amount S300 exceeds $3, 500.

Example Solution. We have seen earlier that E(S300) = 2, 800 and Var(S300) =
600, 467. Then

Pr(S300 > 3, 500) = 1 − Pr(S300 ≤ 3, 500)

≈ 1 − Φ
(3, 500 − 2, 800√

600, 467

)
= 1 − Φ (0.90334)

= 1 − 0.8168 = 0.1832.

For small n, the distribution of Sn is likely skewed, and the normal approxima-
tion would be a poor choice. To examine the aggregate loss distribution, we go
back to first principles. Specifically, the distribution can be derived recursively.
Define Sk = X1 + · · · +Xk, k = 1, . . . , n.

For k = 1:
FS1(s) = Pr(S1 ≤ s) = Pr(X1 ≤ s) = FX1(s).

For k = 2, . . . , n:

FSk
(s) = Pr(X1 + · · · +Xk ≤ s) = Pr(Sk−1 +Xk ≤ s)

= EXk
[Pr(Sk−1 ≤ s−Xk|Xk)] = EXk

[
FSk−1(s−Xk)

]
.

A special case is when Xi’s are identically distributed. Let FX(x) = Pr(X ≤ x)
be the common distribution of Xi, i = 1, . . . , n. We define

F ∗n
X (x) = Pr(X1 + · · · +Xn ≤ x),

the n-fold convolution of FX . More generally, we can compute F ∗n
X recursively.
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Begin the recursion at k = 1 using F ∗1
X (x) = FX(x). Next, for k = 2, we have

F ∗2
X (x) = Pr(X1 +X2 ≤ x) = EX2 [Pr(X1 ≤ x−X2|X2)]

= EX2 [F (x−X2)]

=
{ ∫ x

0 F (x− y)f(y)dy for continuous Xi’s∑
y≤x F (x− y)f(y) for discrete Xi’s

Recall F (0) = 0.

Similarly for k = n, we have Sn = X1 +X2 + · · · +Xn and

F ∗n (x) = Pr(Sn ≤ x) = Pr(Sn−1 +Xn ≤ x)
= EXn [Pr(Sn−1 ≤ x−Xn|Xn)]
= EX

[
F ∗(n−1)(x−X)

]
=

{ ∫ x
0 F

∗(n−1)(x− y)f(y)dy for continuous Xi’s∑
y≤x F

∗(n−1)(x− y)f(y) for discrete Xi’s

When the Xi’s are independent and belong to the same family of distributions,
there are some simple cases where Sn has a closed form. This makes it easy
to compute Pr(Sn ≤ x). This property is known as closed under convolution,
meaning the distribution of the sum of independent random variables belongs
to the same family of distributions as that of the component variables, just
with different parameters. Table 7.1 provides a few examples.

Table 7.1. Closed Form Partial Sum Distributions

Distribution of Xi Abbreviation Distribution of Sn

Normal with mean µi and variance σ2
i N(µi, σ

2
i ) N

(∑n
i=1 µi,

∑n
i=1 σ

2
i

)
Exponential with mean θ Exp(θ) Gam(n, θ)
Gamma with shape αi and scale θ Gam(αi, θ) Gam (

∑n
i=1 αi, θ)

Poisson with mean (and variance) λi Poi(λi) Poi (
∑n

i=1 λi)
Binomial with mi trials and q success probability Bin(mi, q) Bin (

∑n
i=1 mi, q)

Geometric with mean β Geo(β) NB(β, n)
Negative binomial with mean riβ NB(β, ri) NB (β,

∑n
i=1 ri)

and variance riβ(1 + β)

Example 7.2.4. Gamma Distribution. Assume that X1, . . . , Xn are in-
dependent random variables with Xi ∼ Gam(αi, θ). The mgf of Xi is
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MXi(t) = (1 − θt)−αi . Thus, the mgf of the sum Sn = X1 + · · · +Xn is

MSn(t) =
n∏

i=1
MXi(t) from the independence of Xi’s

=
n∏

i=1
(1 − θt)−αi = (1 − θt)−

∑n

i=1 αi ,

which is the mgf of a gamma random variable with parameters (∑n
i=1 αi, θ).

Thus, Sn ∼ Gam(∑n
i=1 αi, θ).

Example 7.2.5. Negative Binomial Distribution. Assume that X1, . . . , Xn

are independent random variables with Xi ∼ NB(β, ri). The pgf of Xi is
PXi(z) = [1 − β(z − 1)]−ri . Thus, the pgf of the sum Sn = X1 + · · · +Xn is

PSn(z) = E
[
zSn

]
= E

[
zX1

]
· · · E

[
zXn

]
from the independence of Xi’s

=
n∏

i=1
PXi(z) =

n∏
i=1

[1 − β(z − 1)]−ri = [1 − β(z − 1)]−
∑n

i=1 ri ,

which is the pgf of a negative binomial random variable with parameters
(β,∑n

i=1 ri). Thus, Sn ∼ NB(β,∑n
i=1 ri).

Example 7.2.6. Actuarial Exam Question (modified). The annual num-
ber of doctor visits for each individual in a family of 4 has geometric distribution
with mean 1.5. The annual numbers of visits for the family members are mu-
tually independent. An insurance pays 100 per doctor visit beginning with the
4th visit per family. Calculate the probability that the family will not receive
an insurance payment this year.

Example Solution. Let Xi ∼ Geo(β = 1.5) be the number of doctor visits
for one individual in the family and S4 = X1 + X2 + X3 + X4 be the number
of doctor visits for the family. The sum of 4 independent geometric random
variables each with mean β = 1.5 follows a negative binomial distribution, i.e.
S4 ∼ NB(β = 1.5, r = 4).

If the insurance pays 100 per visit beginning with the 4th visit for the family,
then the family will not receive an insurance payment if they have less than 4
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claims. This probability is

Pr(S4 < 4) = Pr(S4 = 0) + Pr(S4 = 1) + Pr(S4 = 2) + Pr(S4 = 3)

= (1 + 1.5)−4 + 4(1.5)
(1 + 1.5)5 + 4(5)(1.52)

2(1 + 1.5)6 + 4(5)(6)(1.53)
3!(1 + 1.5)7

= 0.0256 + 0.0614 + 0.0922 + 0.1106 = 0.2898.

7.3 Collective Risk Model

In this section, you learn:

• mathematical representation of the collective risk model
• how to evaluate moments, generating functions, and the distribution function

of the collective risk model
• applications of collective risk model in stop-loss insurance
• Tweedie compound Poisson distribution as a special case of the collective

risk model

7.3.1 Moments and Distribution

Under the collective risk model SN = X1 + · · · + XN , {Xi} are iid, and
independent of N . Let µ = E (Xi) and σ2 = Var (Xi) for all i. Thus, conditional
on N , we have that the expectation of the sum is the sum of expectations and
that the variance of the sum is the sum of variances,

E(S|N) = E(X1 + · · · +XN |N) = µN

Var(S|N) = Var(X1 + · · · +XN |N) = σ2N.

Using the law of iterated expectations from Appendix Section 18.2, the mean
of the aggregate loss is

E(SN ) = EN [ES(S|N)] = EN (Nµ) = µ E(N).
Using the law of total variance from Appendix Section 18.2, the variance of
the aggregate loss is

Var(SN ) = EN [Var(SN |N)] + VarN [E(SN |N)]
= EN

[
σ2N

]
+ VarN [µN ]

= σ2 E[N ] + µ2 Var[N ].
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Special Case: Poisson Distributed Frequency. If N ∼ Poi(λ), then

E(N) = Var(N) = λ

E(SN ) = λ E(X)
Var(SN ) = λ(σ2 + µ2) = λ E(X2).

Example 7.3.1. Actuarial Exam Question. The number of accidents
follows a Poisson distribution with mean 12. Each accident generates 1, 2, or 3
claimants with probabilities 1/2, 1/3, and 1/6 respectively.

Calculate the variance in the total number of claimants.

Example Solution.

E(X2) = 12
(1

2

)
+ 22

(1
3

)
+ 32

(1
6

)
= 10

3

⇒Var(SN ) = λ E(X2) = 12
(10

3

)
= 40.

Alternatively, using the general approach, Var(SN ) = σ2E(N)+µ2Var(N), where

E(N) = Var(N) = 12

µ = E(X) = 1
(1

2

)
+ 2

(1
3

)
+ 3

(1
6

)
= 5

3

σ2 = E(X2) − [E(X)]2 = 10
3 − 25

9 = 5
9

⇒ Var(SN ) =
(5

9

)
(12) +

(5
3

)2
(12) = 40.

In general, the moments of SN can be derived from its moment generating
function (mgf ). Because Xi’s are iid, we denote the mgf of X as MX(t) =
E (etX). Using the law of iterated expectations, the mgf of SN is

MSN
(t) = E(etSN ) = EN [ E(etSN |N) ]

= EN

[
E
(
et(X1+···+XN )

) ]
= EN

[
E(etX1) · · · E(etXN )

]
since Xi’s are independent

= EN [ (MX(t))N ].

Now, recall that the probability generating function (pgf ) of N is PN(z) =
E(zN ). Denote MX(t) = z. Substituting into the expression for the mgf of SN

above, it is shown

MSN
(t) = E (zN ) = PN (z) = PN [MX(t)].
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Similarly, if SN is discrete, one can show the pgf of SN is:

PSN
(z) = PN [PX(z)].

To get E(SN ) = M ′
SN

(0), we use the chain rule

M ′
SN

(t) = ∂

∂t
PN (MX(t)) = P ′

N (MX(t))M ′
X(t)

and recall MX(0) = 1,M ′
X(0) = E(X) = µ, P ′

N (1) = E(N). So,

E(SN ) = M ′
SN

(0) = P ′
N (MX(0))M ′

X(0) = µE(N).

Similarly, one could use relation E(S2
N ) = M ′′

SN
(0) to get

Var(SN ) = σ2E(N) + µ2Var(N).

Special Case. Poisson Frequency. Let N ∼ Poi(λ). Thus, the pgf of N is
PN (z) = eλ(z−1) and the mgf of SN is

MSN
(t) = PN [MX(t)] = eλ(MX(t)−1).

Taking derivatives yields

M ′
SN

(t) = eλ(MX(t)−1) λ M ′
X(t) = MSN

(t) λ M ′
X(t)

M ′′
SN

(t) = MSN
(t) λ M ′′

X(t) + [ MSN
(t) λ M ′

X(t) ] λ M ′
X(t).

Evaluating these at t = 0 yields

E(SN ) = M ′
SN

(0) = λE(X) = λµ

and
M ′′

SN
(0) = λE(X2) + λ2µ2

⇒ Var(SN ) = λE(X2) + λ2µ2 − (λµ)2 = λ E(X2).

Example 7.3.2. Actuarial Exam Question. You are the producer of a
television quiz show that gives cash prizes. The number of prizes, N , and prize
amount, X, have the following distributions:

n Pr(N = n) x Pr(X = x)
1 0.8 0 0.2
2 0.2 100 0.7

1000 0.1

Your budget for prizes equals the expected aggregate cash prizes plus the
standard deviation of aggregate cash prizes. Calculate your budget.
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Example Solution. We need to calculate the mean and standard deviation of
the aggregate (sum) of cash prizes. The moments of the frequency distribution
N are

E(N) = 1(0.8) + 2(0.2) = 1.2
E(N2) = 12(0.8) + 22(0.2) = 1.6

Var(N) = E(N2) − [E(N)]2 = 0.16.

The moments of the severity distribution X are

E(X) = 0(0.2) + 100(0.7) + 1000(0.1) = 170 = µ

E(X2) = 02(0.2) + 1002(0.7) + 10002(0.1) = 107, 000
Var(X) = E(X2) − [E(X)]2 = 78, 100 = σ2.

Thus, the mean and variance of the aggregate cash prize are

E(SN ) = µE(N) = 170(1.2) = 204
Var(SN ) = σ2E(N) + µ2Var(N)

= 78, 100(1.2) + 1702(0.16) = 98, 344.

This gives the following required budget

Budget = E(SN ) +
√

Var(SN )

= 204 +
√

98, 344 = 517.60.

The distribution of SN is called a compound distribution, and it can be derived
based on the convolution of FX as follows:

FSN
(s) = Pr (X1 + · · · +XN ≤ s)

= E [Pr (X1 + · · · +XN ≤ s|N = n)]
= E

[
F ∗N

X (s)
]

= p0 +
∞∑

n=1
pnF

∗n
X (s).

Example 7.3.3. Actuarial Exam Question. The number of claims in a
period has a geometric distribution with mean 4. The amount of each claim X
follows Pr(X = x) = 0.25, x = 1, 2, 3, 4, i.e. a discrete uniform distribution on
{1, 2, 3, 4}. The number of claims and the claim amounts are independent. Let
SN denote the aggregate claim amount in the period. Calculate FSN

(3).
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Example Solution. By definition, we have

FSN
(3) = Pr

(
N∑

i=1
Xi ≤ 3

)
=

∞∑
n=0

Pr
(

n∑
i=1

Xi ≤ 3|N = n

)
Pr(N = n)

=
∑

n

F ∗n (3) pn =
3∑

n=0
F ∗n(3)pn

= p0 + F ∗1(3) p1 + F ∗2(3) p2 + F ∗3(3) p3.

Because N ∼ Geo(β = 4), we know that

pn = 1
1 + β

(
β

1 + β

)n

= 1
5

(4
5

)n

.

For the claim severity distribution, recursively, we have

F ∗1(3) = Pr(X ≤ 3) = 3
4

F ∗2(3) =
∑
y≤3

F ∗1(3 − y)f(y) = F ∗1(2)f(1) + F ∗1(1)f(2)

= 1
4
[
F ∗1(2) + F ∗1(1)

]
= 1

4 [Pr(X ≤ 2) + Pr(X ≤ 1)]

= 1
4

(2
4 + 1

4

)
= 3

16

F ∗3(3) = Pr(X1 + X2 + X3 ≤ 3) = Pr(X1 = X2 = X3 = 1) =
(1

4

)3
.

Notice that we did not need to recursively calculate F ∗3(3) by recognizing that
each X ∈ {1, 2, 3, 4}, so the only way of obtaining X1 + X2 + X3 ≤ 3 is to have
X1 = X2 = X3 = 1. Additionally, for n ≥ 4, F ∗n(3) = 0 since it is impossible
for the sum of 4 or more X’s to be less than 3. For n = 0, F ∗0(3) = 1 since
the sum of 0 X’s is 0, which is always less than 3. Laying out the probabilities
systematically,

x F ∗1(x) F ∗2(x) F ∗3(x)
0
1 1

4 0
2 2

4
(1

4
)2

3 3
4

3
16

(1
4
)3

Finally,

FSN
(3) = p0 + F ∗1(3) p1 + F ∗2(3) p2 + F ∗3(3) p3

= 1
5 + 3

4

( 4
25

)
+ 3

16

( 16
125

)
+ 1

64

( 64
625

)
= 0.3456.
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Example 7.3.4. Convolution Method to Compute the Aggregate
Loss Distribution. Consider the Wisconsin Property Fund data that was
introduced in Section 1.3 and is available in Appendix Section 22.1. Specifically,
we examine building and content claims with frequence of claims given by
the variable Freq and amount of claims given by BCClaim. Assume a Poisson
distribution for the frequency and a gamma distribution for the severity. The
following block of R code illustrates how to retrieve the data and reviews
parameter estimation from prior chapters.
datraw <- read.csv("Data/WiscPropFund.csv")
# remove extreme observations to speed up the evaluation of distribution of
# aggregate losses
index <- which(datraw$Freq < 100 & datraw$BCClaim < 250000)
dat <- datraw[index, ]
# head(dat,n=3) tail(dat,n=3)

# Assume a Poisson for claim frequency
lambda <- mean(dat$Freq)
# print(lambda) Assume a gamma for claim severity
index <- which(dat$BCClaim > 0)
n <- dat$Freq[index]
xbar <- dat$BCClaim[index]/dat$Freq[index]
fit <- glm(xbar ~ 1, family = Gamma(link = "log"), weight = 1/n)
mu <- unname(exp(fit$coefficients))
phi <- summary(fit)$dispersion
a = 1/phi
s = mu * phi
# print(c(a,s))

With the parameter estimates in place, we are now in a position to calculate
distribution of S = X1 + X2 + · · · + XN using convolution method. Figure
7.1 summarizes the aggregate loss distribution. The following block of code
demonstrates its calculation.
Nmax <- 1000
# CDF
FAgg <- function(y) {

re <- dpois(0, lambda)
for (i in 1:Nmax) {

re <- re + dpois(i, lambda) * pgamma(y, shape = i * a, scale = s)
}
re <- ifelse(y < 0, NA, re)
return(re)

}
# PDF
fAgg <- function(y) {

re <- dpois(0, lambda)
for (i in 1:Nmax) {

re <- re + dpois(i, lambda) * dgamma(y * (y > 0) - 1 * (y <= 0), shape = i *
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a, scale = s)
}
re <- ifelse(y < 0, NA, re)
return(re)

}
# Numerical examples
obs <- c(-1, 0, 1, 10, 100, 1000, 10000, 100000, 1000000)
# FAgg(obs) fAgg(obs)
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FIGURE 7.1: Aggregate Loss Distribution for Wisconsin Property
Fund Building and Loss Claims

When E(N) and Var(N) are known, one may also use a type of central limit
theorem to approximate the distribution of SN as in the individual risk model.
That is, SN −E(SN )√

Var(SN )
approximately follows the standard normal distribution

N(0, 1). From this type of central limit theorem, the approximation works well
if E[N ] is sufficiently large.

Example 7.3.5. Actuarial Exam Question. You are given:
Mean Standard Deviation

Number of Claims 8 3
Individual Losses 10, 000 3, 937

As a benchmark, use the normal approximation to determine the probability
that the aggregate loss will exceed 150% of the expected loss.



212 7 Aggregate Loss Models

Example Solution. To use the normal approximation, we must first find the
mean and variance of the aggregate loss S

E(SN ) = µ E(N) = 10, 000(8) = 80, 000
Var(SN ) = σ2 E(N) + µ2 Var(N)

= 39372(8) + 100002(32) = 1, 023, 999, 752√
Var(SN ) = 31, 999.996 ≈ 32, 000.

Then under the normal approximation, aggregate loss SN is approximately normal
with mean 80,000 and standard deviation 32,000. The probability that SN will
exceed 150% of the expected aggregate loss is therefore

Pr(SN > 1.5E(SN ) ) = Pr
(

SN − E(SN )√
Var(SN )

>
1.5 E(SN ) − E(SN )√

Var(SN )

)

≈ Pr
(

Z >
0.5 E(SN )√

Var(SN )

)
, where Z ∼ N(0, 1)

= Pr
(

Z >
0.5(80, 000)

32, 000

)
= Pr(Z > 1.25)

= 1 − Φ(1.25) = 0.1056.

Example 7.3.6. Actuarial Exam Question. For an individual over 65:

(i) The number of pharmacy claims is a Poisson random variable with
mean 27.

(ii) The amount of each pharmacy claim is uniformly distributed between
5 and 97.

(iii) The amounts of the claims and the number of claims are mutually
independent.

Estimate the probability that aggregate claims for this individual will exceed
2000 using the normal approximation.

Example Solution. We have claim frequency N ∼ Poi(λ = 25) and claim
severity X ∼ U (5, 95). To use the normal approximation, we need to find the
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mean and variance of the aggregate claims SN . Note

E(N) = 25 Var(N) = 25
E(X) = 5+95

2 = 50 = µ Var(X) = (95−5)2

12 = 675 = σ2.

Then for SN ,
E(SN ) = µ E(N) = 50(25) = 1, 250

Var(SN ) = σ2 E(N) + µ2 Var(N)
= 675(25) + 502(25) = 79, 375.

Using the normal approximation, SN is approximately normal with mean 1,250
and variance 79,375. The probability that SN exceeds 2,000 is

Pr(SN > 2, 000) = Pr
(

SN − E(SN )√
Var(SN )

>
2, 000 − E(SN )√

Var(SN )

)

≈ Pr
(

Z >
2, 000 − 1, 250√

79, 375

)
, where Z ∼ N(0, 1)

= Pr(Z > 2.662) = 1 − Φ(2.662) = 0.003884.

7.3.2 Stop-loss Insurance

Recall the coverage modifications on the individual policy level in Section 5.1.
Insurance on the aggregate loss SN , subject to a deductible d, is called net
stop-loss insurance. The expected value of the amount of the aggregate loss in
excess of the deductible,

E[(SN − d)+]

is known as the net stop-loss premium.

To calculate the net stop-loss premium, we have

E(SN − d)+ =
{ ∫∞

d (s− d)fSN
(s)ds for continuous SN∑

s>d(s− d)fSN
(s) for discrete SN

= E(SN ) − E(SN ∧ d)

Example 7.3.7. Actuarial Exam Question. In a given week, the number
of projects that require you to work overtime has a geometric distribution
with β = 2. For each project, the distribution of the number of overtime hours
in the week, X, is as follows:
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x f(x)
5 0.2
10 0.3
20 0.5

The number of projects and the number of overtime hours are independent.
You will get paid for overtime hours in excess of 15 hours in the week. Calculate
the expected number of overtime hours for which you will get paid in the week.

Example Solution. The number of projects in a week requiring overtime work
has distribution N ∼ Geo(β = 2), while the number of overtime hours worked
per project has distribution X as described above. The aggregate number of
overtime hours in a week is SN and we are therefore looking for

E(SN − 15)+ = E(SN ) − E(SN ∧ 15).

To find E(SN ) = E(X) E(N), we have

E(X) = 5(0.2) + 10(0.3) + 20(0.5) = 14
E(N) = 2

⇒ E(S) = E(X) E(N) = 14(2) = 28.

To find E(SN ∧15) = 0 Pr(SN = 0)+5 Pr(SN = 5)+10 Pr(SN = 10)+15 Pr(SN ≥
15), we have

Pr(SN = 0) = Pr(N = 0) = 1
1 + β

= 1
3

Pr(SN = 5) = Pr(X = 5, N = 1) = 0.2
(2

9

)
= 0.4

9
Pr(SN = 10) = Pr(X = 10, N = 1) + Pr(X1 = X2 = 5, N = 2)

= 0.3
(2

9

)
+ (0.2)(0.2)

( 4
27

)
= 0.0726

Pr(SN ≥ 15) = 1 −
(1

3 + 0.4
9 + 0.0726

)
= 0.5496

⇒ E(SN ∧ 15) = 0 Pr(SN = 0) + 5 Pr(SN = 5) + 10 Pr(SN = 10) + 15 Pr(SN ≥ 15)

= 0
(1

3

)
+ 5

(0.4
9

)
+ 10(0.0726) + 15(0.5496) = 9.193.

Therefore,
E(SN − 15)+ = E(SN ) − E(SN ∧ 15)

= 28 − 9.193 = 18.807.
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Recursive Net Stop-Loss Premium Calculation. For the discrete case,
this can be computed recursively as

E
[
(SN − (j + 1)h)+

]
= E [(SN − jh)+] − h [1 − FSN

(jh)] .

This assumes that the support of SN is equally spaced over units of h.

To establish this, we assume that h = 1. We have

E
[
(SN − (j + 1))+

]
= E(SN ) − E[SN ∧ (j + 1)] , and

E
[
(SN − j)+

]
= E(SN ) − E[SN ∧ j]

Thus,

E
[
(SN − (j + 1))+

]
− E [(SN − j)+] = {E(SN ) − E(SN ∧ (j + 1))} − {E(SN ) − E(SN ∧ j)}

= E (SN ∧ j) − E [S ∧ (j + 1)]

We can write

E [SN ∧ (j + 1)] =
j∑

x=0
xfSN

(x) + (j + 1) Pr(SN ≥ j + 1)

=
j−1∑
x=0

xfSN
(x) + j Pr(SN = j) + (j + 1) Pr(SN ≥ j + 1)

Similarly,

E(SN ∧ j) =
j−1∑
x=0

xfSN
(x) + j Pr(SN ≥ j)

With these expressions, we have

E
[
(SN − (j + 1))+

]
− E [(SN − j)+]

= E (SN ∧ j) − E [S ∧ (j + 1)]

=


j−1∑
x=0

xfSN
(x) + j Pr(SN ≥ j)

−


j−1∑
x=0

xfSN
(x) + j Pr(SN = j) + (j + 1) Pr(SN ≥ j + 1)


= j [Pr(SN ≥ j) − Pr(SN = j)] − (j + 1) Pr(SN ≥ j + 1)
= j Pr(SN > j) − (j + 1) Pr(SN ≥ j + 1) (note Pr(SN > j) = Pr(SN ≥ j + 1))
= − Pr(SN ≥ j + 1) = − [1 − FSN

(j)] ,

as required.
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Example 7.3.8. Actuarial Exam Question - Continued. Recall that the
goal of this question was to calculate E (SN − 15)+. Note that the support
of SN is equally spaced over units of 5, so this question can also be done
recursively, using the expression above with steps of h = 5:

• Step 1:

E (SN − 5)+ = E(SN ) − 5[1 − Pr(SN ≤ 0)]

= 28 − 5
(

1 − 1
3

)
= 74

3 = 24.6667.

• Step 2:

E (SN − 10)+ = E (SN − 5)+ − 5[1 − Pr(SN ≤ 5)]

= 74
3 − 5

(
1 − 1

3 − 0.4
9

)
= 21.555.

• Step 3:

E (SN − 15)+ = E (SN − 10)+ − 5[1 − Pr(SN ≤ 10)]
= E (SN − 10)+ − 5 Pr(SN ≥ 15)
= 21.555 − 5(0.5496) = 18.807.

7.3.3 Closed-form Distributions

There are a few combinations of claim frequency and severity distributions
that result in an easy-to-compute distribution for aggregate losses. This section
provides some simple examples. Although these examples are computationally
convenient, they are generally too simple to be used in practice.

Example 7.3.9. Geometric Frequency, Exponential Severity. One has
a closed-form expression for the aggregate loss distribution by assuming a
geometric frequency distribution and an exponential severity distribution.

Assume that claim count N is geometric with mean E(N) = β, and that claim
amount X is exponential with E(X) = θ. Recall that the pgf of N and the
mgf of X are:

PN (z) = 1
1 − β(z − 1)

MX(t) = 1
1 − θt

.
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Thus, the mgf of aggregate loss SN can be expressed two ways (for details, see
Technical Supplement 7.A.3 )

MSN
(t) = PN [MX(t)] = 1

1 − β
(

1
1−θt − 1

)
= 1 + β

1 + β

(
[1 − θ(1 + β)t]−1 − 1

)
(7.1)

= 1
1 + β

(1) + β

1 + β

(
1

1 − θ(1 + β)t

)
. (7.2)

From (7.1), we note that SN is equivalent to the compound distribution of
SN = X∗

1 + · · · +X∗
N∗ , where N∗ is a Bernoulli with mean β/(1 + β) and X∗

is an exponential with mean θ(1 + β). To see this, we examine the mgf of S:

MSN
(t) = PN [MX(t)] = PN∗ [MX∗(t)],

where
PN∗(z) = 1 + β

1 + β
(z − 1),

MX∗(t) = 1
1 − θ(1 + β)t .

From (7.2), we note that SN is also equivalent to a two-point mixture of 0 and
X∗. Specifically,

SN =
{

0 with probability Pr(N∗ = 0) = 1/(1 + β)
Y ∗ with probability Pr(N∗ = 1) = β/(1 + β).

The distribution function of SN is:

Pr(SN = 0) = 1
1 + β

Pr(SN > s) = Pr(X∗ > s) = β

1 + β
exp

(
− s

θ(1 + β)

)

with pdf for s > 0,

fSN
(s) = β

θ(1 + β)2 exp
(

− s

θ(1 + β)

)
.

Example 7.3.10. Exponential Severity. Consider a collective risk model
with an exponential severity and an arbitrary frequency distribution. Recall
that if Xi ∼ Exp(θ), then the sum of iid exponential random variables,
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Sn = X1 + · · · +Xn, has a gamma distribution, i.e. Sn ∼ Gam(n, θ). This has
cdf:

F ∗n
X (s) = Pr(Sn ≤ s) =

∫ s

0

1
Γ(n)θn

sn−1 exp
(

−s

θ

)
ds

= 1 −
n−1∑
j=0

1
j!

(
s

θ

)j

e−s/θ.

The last equality is derived by applying integration by parts n− 1 times.

For the aggregate loss distribution, we can interchange the order of summations
in the second line below to get

FS (s) = p0 +∑∞
n=1 pnF

∗n
X (s)

= 1 −∑∞
n=1 pn

∑n−1
j=0

1
j!

(
s
θ

)j
e−s/θ

= 1 − e−s/θ ∑∞
j=0

1
j!

(
s
θ

)j
P j

where P j = pj+1 + pj+2 + · · · = Pr(N > j) is the “survival function” of the
claims count distribution.

7.3.4 Tweedie Distribution

In this section, we examine a particular compound distribution where the
number of claims has a Poisson distribution and the amount of claims has a
gamma distribution. This specification leads to what is known as a Tweedie
distribution. The Tweedie distribution has a mass probability at zero and a
continuous component for positive values. Because of this feature, it is widely
used in insurance claims modeling, where the zero mass is interpreted as no
claims and the positive component as the amount of claims.

Specifically, consider the collective risk model SN = X1 + · · · +XN . Suppose
that N has a Poisson distribution with mean λ, and each Xi has a gamma
distribution with shape parameter α and scale parameter γ. The Tweedie
distribution is derived as the Poisson sum of gamma variables. To understand
the distribution of SN , we first examine the mass probability at zero. The
aggregate loss is zero when no claims occurred, i.e.

Pr(SN = 0) = Pr(N = 0) = e−λ.

In addition, note that SN conditional on N = n, denoted by Sn = X1+· · ·+Xn,
follows a gamma distribution with shape nα and scale γ. Thus, for s > 0, the
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density of a Tweedie distribution can be calculated as

fSN
(s) =

∞∑
n=1

pnfSn(s)

=
∞∑

n=1
e−λ (λ)n

n!
γna

Γ(nα)s
nα−1e−sγ .

Thus, the Tweedie distribution can be thought of a mixture of zero and a
positive valued distribution, which makes it a convenient tool for modeling
insurance claims and for calculating pure premiums. The mean and variance
of the Tweedie compound Poisson model are:

E(SN ) = λ
α

γ
and Var(SN ) = λ

α(1 + α)
γ2 .

As another important feature, the Tweedie distribution is a special case of
exponential dispersion models, a class of models used to describe the random
component in generalized linear models. To see this, we consider the following
reparameterization:

λ = µ2−p

ϕ(2 − p) , α = 2 − p

p− 1 ,
1
γ

= ϕ(p− 1)µp−1.

With the above relationships, one can show that the distribution of SN is

fSN
(s) = exp

[
1
ϕ

(
−s

(p− 1)µp−1 − µ2−p

2 − p

)
+ C(s;ϕ)

]

where

C(s;ϕ) =


0 if s = 0

log
∑
n≥1

{
(1/ϕ)1/(p−1)s(2−p)/(p−1)

(2 − p)(p− 1)(2−p)/(p−1)

}n 1
n! Γ[n(2 − p)/(p− 1)]s if s > 0.

Hence, the distribution of SN belongs to the exponential family with parameters
µ, ϕ, and 1 < p < 2, and we have

E(SN ) = µ and Var(SN ) = ϕµp.

This allows us to use the Tweedie distribution with generalized linear models to
model claims. It is also worth mentioning the two limiting cases of the Tweedie
model: p → 1 results in the Poisson distribution and p → 2 results in the
gamma distribution. Thus, the Tweedie model accommodates the situations in
between the gamma and Poisson distributions, which makes intuitive sense as
it is the Poisson sum of gamma random variables.
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7.4 Computing the Aggregate Claims Distribution

In this section, you learn:

• the recursive method to compute the aggregate claims distribution
• the simulation approach to compute the aggregate claims distribution

Computing the distribution of aggregate losses is a difficult, yet important,
problem. As we have seen, for both individual risk model and collective risk
model, computing the distribution frequently involves the evaluation of a n-fold
convolution. To make the problem tractable, one strategy is to use a distribution
that is easy to evaluate to approximate the aggregate loss distribution. For
instance, normal distribution is a natural choice based on central limit theorem
where parameters of the normal distribution can be estimated by matching the
moments. This approach has its strength and limitations. Its main advantage
is the ease of computation. The disadvantages are: first, the size and direction
of approximation error are unknown; second, the approximation may fail to
capture some special features of the aggregate loss such as mass point at zero.

This section discusses two practical approaches to computing the distribution
of aggregate loss, the recursive method and simulation.

7.4.1 Recursive Method

The recursive method applies to compound models where the frequency com-
ponent N belongs to either (a, b, 0) or (a, b, 1) class (see Sections 3.3 and 3.5.1)
and the severity component X has a discrete distribution. For continuous X,
a common practice is to first discretize the severity distribution, after which
the recursive method is ready to apply.

Assume that N is in the (a, b, 1) class so that pk =
(
a+ b

k

)
pk−1, k = 2, 3, . . ..

Further assume that the support of X is {0, 1, . . . ,m}, discrete and finite.
Then, the probability function of SN is:

fSN
(s) = Pr(SN = s)

= 1
1 − afX(0)

{
[p1 − (a+ b)p0] fX(s) +

s∧m∑
x=1

(
a+ bx

s

)
fX(x)fSN

(s− x)
}
.
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If N is in the (a, b, 0) class, then p1 = (a+ b)p0 and so

fSN
(s) = 1

1 − afX(0)

{
s∧m∑
x=1

(
a+ bx

s

)
fX(x)fSN

(s− x)
}
.

Special Case: Poisson Frequency. If N ∼ Poi(λ), then a = 0 and b = λ,
and thus

fSN
(s) = λ

s

{
s∧m∑
x=1

xfX(x)fSN
(s− x)

}
.

Example 7.4.1. Actuarial Exam Question. The number of claims in a
period N has a geometric distribution with mean 4. The amount of each claim
X follows Pr(X = x) = 0.25, for x = 1, 2, 3, 4. The number of claims and
the claim amount are independent. SN is the aggregate claim amount in the
period. Calculate FSN

(3).

Example Solution. The severity distribution X follows

fX(x) = 1
4 , x = 1, 2, 3, 4.

The frequency distribution N is geometric with mean 4, which is a member of
the (a, b, 0) class with b = 0, a = β

1+β = 4
5 , and p0 = 1

1+β = 1
5 . The support of

severity component X is {1, . . . , m = 4}, discrete and finite. Thus, we can use
the recursive method

fSN
(x) = 1

x∧m∑
y=1

(a + 0)fX(y)fSN
(x − y)

= 4
5

x∧m∑
y=1

fX(y)fSN
(x − y).
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Specifically, we have

fSN
(0) = Pr(N = 0) = p0 = 1

5

fSN
(1) = 4

5

1∑
y=1

fX(y)fSN
(1 − y) = 4

5fX(1)fSN
(0)

= 4
5

(1
4

)(1
5

)
= 1

25

fSN
(2) = 4

5

2∑
y=1

fX(y)fSN
(2 − y) = 4

5 [fX(1)fSN
(1) + fX(2)fSN

(0)]

= 4
5

[1
4

( 1
25 + 1

5

)]
= 4

5

( 6
100

)
= 6

125

fSN
(3) = 4

5 [fX(1)fSN
(2) + fX(2)fSN

(1) + fX(3)fSN
(0)]

= 4
5

[1
4

( 1
25 + 1

5 + 6
125

)]
= 1

5

(5 + 25 + 6
125

)
= 0.0576

⇒ FSN
(3) = fSN

(0) + fSN
(1) + fSN

(2) + fSN
(3) = 0.3456.

Example 7.4.2. Convolution Method to Compute the Aggregate Loss
Distribution - Continued. This is a continuation of Example 7.3.4 where
we now compute the aggregate loss distribution using the recursive method.
This requires discretization of the severity amounts and this illustration rounds
claims to the nearest thousand. The following block of code illustrates the
calculation.
# Discretized severity distribution
round_any = function(y, accuracy, f = round) {

f(y/accuracy) * accuracy
}
# round to $1000
acc <- 1000
xbar_disc <- round_any(xbar, acc)/acc
dSev <- function(y) {

re <- ecdf(xbar_disc)(y) - ecdf(xbar_disc)(y - 1)
re

}

Fs0 <- function(y) {
if (y < 0)

return(NA)
y_scale <- round_any(y, acc)/acc
y_scale <- ifelse(y_scale > max(xbar_disc), max(xbar_disc), y_scale)
s.out <- rep(NA, y_scale + 1)
s.out[1] <- exp(-lambda)
if (y_scale > 0) {

for (i in 1:y_scale) {
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re <- 0
for (j in 1:i) {

re <- re + j * dSev(j) * s.out[i + 1 - j]
}
s.out[i + 1] <- re * lambda/i

}
}
return(sum(s.out))

}
Fs <- function(y) sapply(y, Fs0)
obs <- c(-1, 0, 1, 10, 100, 1000, 10000, 100000, 1000000)
# Fs(obs)

7.4.2 Simulation

The distribution of aggregate loss can be evaluated using Monte Carlo simula-
tion. You can get a broad introduction to simulation procedures in Chapter
8. For aggregate losses, the idea is that one can calculate the empirical dis-
tribution of SN using a random sample. The expected value and variance of
the aggregate loss can also be estimated using the sample mean and sample
variance of the simulated values.

We now summarize simulation procedures for aggregate loss models. Let R be
the size of the generated random sample of aggregate losses.

1. Individual Risk Model: Sn = X1 + · · · +Xn

•Let j = 1, . . . , R be a counter. Start by setting j = 1.
•Generate each individual loss realization xij for i = 1, . . . , n.

For example, this can be done using the inverse transformation
method (Section 8.1.2).

•Calculate the aggregate loss sj = x1j + · · · + xnj .
•Repeat the above two steps for j = 2, . . . , R to obtain a size-R

sample of Sn, i.e. {s1, . . . , sR}.

2. Collective Risk Model: SN = X1 + · · · +XN

•Let j = 1, . . . , R be a counter. Start by setting j = 1.
•Generate the number of claims nj from the frequency distribution
N .

•Given nj , generate the amount of each claim independently from
severity distribution X, denoted by x1j , . . . , xnjj .

•Calculate the aggregate loss sj = x1j + · · · + xnjj .
•Repeat the above three steps for j = 2, . . . , R to obtain a size-R

sample of SN , i.e. {s1, . . . , sR}.
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Given the random sample of S, the empirical distribution can be calculated as

F̂S(s) = 1
R

R∑
j=1

I(sj ≤ s),

where I(·) is an indicator function. The empirical distribution F̂S(s) will
converge to FS(s) almost surely as the sample size R → ∞.

The above procedure assumes that the probability distributions, including the
parameter values, of the frequency and severity distributions are known. In
practice, one would need to first assume these distributions, estimate their
parameters from data, and then assess the quality of model fit using various
model validation tools (see Chapter 6). For instance, the assumptions in
the collective risk model suggest a two-stage estimation where one model is
developed for the number of claims N from data on claim counts, and another
model is developed for the severity of claims X from data on the amount of
claims.

Example 7.4.3. Recall Example 7.3.6 with an individual’s claim frequency
N has a Poisson distribution with mean λ = 25 and claim severity X is
uniformly distributed on the interval (5, 95). Using a simulated sample of
10,000 observations, estimate the mean and variance of the aggregate loss
SN . In addition, use the simulated sample to estimate the probability that
aggregate claims for this individual will exceed 2,000 and compare with the
normal approximation estimates from Example 7.3.6.

Solution. We follow the algorithm for the collective risk model, where we first
simulate frequencies n1, . . . , n10000, and conditional on nj , j = 1, . . . , 10000,
simulate each individual loss xij , i = 1, . . . nj .
set.seed(4321) # For reproducibility of results
m <- 10000 # Number of observations to simulate
lambda <- 25 # Parameter for frequency distribution N
a <- 5
b <- 95 # Parameters for severity distribution X
S <- rep(NA, m) # Initialize an empty vector to store S observations

n <- rpois(m, lambda) # Generate m=10000 observations of N from Poisson
for (j in 1:m) {

n_j <- n[j] # Given each n_j (j=1,...,m), generate n_j observations of X from uniform
x_j <- runif(n_j, min = a, max = b)
s_j <- sum(x_j) # Calculate the aggregate loss s_j
S[j] <- s_j # Store s_j in the vector of observations

}
# mean(S) # Compare to theoretical value of 1,250 var(S) # Compare to
# theoretical value of 79,375 mean(S>2000) # Proportion of simulated

Ex:7.3.6
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# observations s_j that are > 2000 Compare to normal approximation method of
# 0.003884

Using simulation, we estimate the mean and variance of the aggregate claims
to be approximately 1248 and 77441 respectively, compared to the theoretical
values of 1,250 and 79,375. In addition, we estimate the probability that aggre-
gate losses exceed 2000 to be 0.0062, compared to the normal approximation
estimate of 0.003884.

We can assess the appropriateness of the normal approximation by comparing
the empirical distribution of the simulated aggregate losses to the density of the
normal distribution used for the normal approximation, N(µ = 1, 250 , σ2 =
79, 375):

Distribution of Simulated Aggregate Losses

Aggregate Loss S
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500 1000 1500 2000
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00

00
0.

00
04

0.
00

08
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Normal density

The simulated losses are slightly more right-skewed than the normal distri-
bution, with a longer right tail. This explains why the normal approximation
estimate of Pr(SN > 2000) is lower than the simulated estimate.

7.5 Effects of Coverage Modifications

In this section, you learn to evaluate:

• the effect of exposure change on the aggregate claim count
• the effect of per-occurrence deductible on the claim frequency
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• the effect of coverage modifications on the aggregate losses

7.5.1 Impact of Exposure on Frequency

This section focuses on an individual risk model for claim counts. Recall the
individual risk model involves a fixed n number of contracts and independent
loss random variables Xi. Consider the number of claims from a group of n
policies:

S = X1 + · · · +Xn,

where we assume Xi are iid representing the number of claims from policy i.
In this case, the exposure for the portfolio is n, using policy as exposure base.
In Section 10.4 we will introduce other exposure bases. The pgf of S is

PS(z) = E(zS) = E
(
z
∑n

i=1 Xi

)
=

n∏
i=1

E(zXi) = [PX(z)]n.

Special Case: Poisson. If Xi ∼ Poi(λ), its pgf is PX(z) = eλ(z−1). Then the
pgf of S is

PS(z) = [eλ(z−1)]n = enλ(z−1).

So S ∼ Poi(nλ). That is, the sum of n independent Poisson random variables
each with mean λ has a Poisson distribution with mean nλ.

Special Case: Negative Binomial. If Xi ∼ NB(β, r), its pgf is PX(z) =
[1 − β(z − 1)]−r. Then the pgf of S is

PS(z) = [[1 − β(z − 1)]−r]n = [1 − β(z − 1)]−nr.

So S ∼ NB(β, nr).

Example 7.5.1. Assume that the number of claims for each vehicle is Poisson
with mean λ. Given the following data on the observed number of claims for
each household, calculate the MLE of λ.

Household ID Number of vehicles Number of claims
1 2 0
2 1 2
3 3 2
4 1 0
5 1 1
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Example Solution. Each of the 5 households has number of exposures nj

(number of vehicles) and number of claims Sj , j = 1, ..., 5. Note for each household,
the number of claims Sj ∼ Poi(njλ). The likelihood function is

L(λ) =
5∏

j=1
Pr(Sj = sj) =

5∏
j=1

e−njλ(njλ)sj

sj !

=
(

e−2λ(2λ)0

0!

)(
e−1λ(1λ)2

2!

)(
e−3λ(3λ)2

2!

)(
e−1λ(1λ)0

0!

)(
e−1λ(1λ)1

1!

)
∝ e−8λλ5

Taking the logarithm, we have

l(λ) = log L(λ) = −8λ + 5 log(λ).

Setting the first derivative of the log-likelihood to 0, we get λ̂ = 5
8 .

If the exposure of the portfolio changes from n1 to n2, we can establish the
following relation between the aggregate claim counts:

PSn2
(z) = [PX(z)]n2 = [PX(z)n1 ]n2/n1 = PSn1

(z)n2/n1 .

7.5.2 Impact of Deductibles on Claim Frequency

This section examines the effect of deductibles on claim frequency. Intuitively,
there will be fewer claims filed when a policy deductible is imposed because a
loss below the deductible level may not result in a claim. Even if an insured
does file a claim, this may not result in a payment by the policy, since the
claim may be denied or the loss amount may ultimately be determined to
be below deductible. Let NL denote the number of losses (i.e. the number of
claims with no deductible), and NP denote the number of payments when a
deductible d is imposed. Our goal is to identify the distribution of NP given
the distribution of NL. We show below that the relationship between NL and
NP can be established within an aggregate risk model framework.

Note that sometimes changes in deductibles will affect policyholder claim
behavior. We assume that this is not the case, i.e. the underlying distributions
of losses for both frequency and severity remain unchanged when the deductible
changes.

Given there are NL losses, let X1, X2 . . . , XNL be the associated amount of
losses. For j = 1, . . . , NL, define

Ij =
{

1 if Xj > d
0 otherwise .
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Then we establish
NP = I1 + I2 + · · · + INL ,

that is, the total number of payments is equal to the number of losses above the
deductible level. Given that Ij’s are independent Bernoulli random variables
with probability of success v = Pr(X > d), the sum of a fixed number of such
variables is then a binomial random variable. Thus, conditioning on NL, NP

has a binomial distribution, i.e. NP |NL ∼ Bin(NL, v), where v = Pr(X > d).
This implies that

E
(
zNP |NL

)
= [1 + v(z − 1)]N

L

So the pgf of NP is

PNP (z) = ENP

(
zNP

)
= ENL

[
ENP

(
zNP |NL

)]
= ENL

[
(1 + v(z − 1))NL

]
= PNL (1 + v(z − 1)) .

Thus, we can write the pgf of NP as the pgf of NL, evaluated at a new
argument z∗ = 1 + v(z − 1). That is, PNP (z) = PNL(z∗).

Special Cases:

• NL ∼ Poi(λ). The pgf of NL is PNL = eλ(z−1). Thus the pgf of NP is

PNP (z) = eλ(1+v(z−1)−1)

= eλv(z−1),

So NP ∼ Poi(λv). This means the number of payments has the same
distribution as the number of losses, but with the expected number of
payments equal to λv = λPr(X > d).

• NL ∼ NB(β, r). The pgf of NL is PNL (z) = [1 − β (z − 1)]−r. Thus the pgf
of NP is

PNP (z) = (1 − β(1 + v(z − 1) − 1))−r

= (1 − βv(z − 1))−r ,

So NP ∼ NB(βv, r). This means the number of payments has the same
distribution as the number of losses, but with parameters βv and r.

Example 7.5.2. Suppose that loss amounts Xi ∼ Pareto(α = 4, θ = 150).
You are given that the loss frequency is NL ∼ Poi(λ) and the payment
frequency distribution is NP

1 ∼ Poi(0.4) at deductible level d1 = 30. Find
the distribution of the payment frequency NP

2 when the deductible level is
d2 = 100.
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Example Solution. Because the loss frequency NL is Poisson, we can relate the
means of the loss distribution NL and the first payment distribution NP

1 (under
deductible d1 = 30) through 0.4 = λv1, where

v1 = Pr(X > 30) =
( 150

30 + 150

)4
=
(5

6

)4

⇒ λ = 0.4
(6

5

)4
.

With this, we can assess the second payment distribution NP
2 (under deductible

d2 = 100) as being Poisson with mean λ2 = λv2, where

v2 = Pr(X > 100) =
( 150

100 + 150

)4
=
(3

5

)4

⇒ λ2 = λv2 = 0.4
(6

5

)4 (3
5

)4
= 0.1075.

Example 7.5.3. Follow-Up. Now suppose instead that the loss frequency
is NL ∼ NB(β, r) and for deductible d1 = 30, the payment frequency NP

1 is
negative binomial with mean 0.4. Find the mean of the payment frequency
NP

2 for deductible d2 = 100.

Example Solution. Because the loss frequency NL is negative binomial, we can
relate the parameter β of the NL distribution and the parameter β1 of the first
payment distribution NP

1 using β1 = βv1, where

v1 = Pr(X > 30) =
(5

6

)4

Thus, the mean of NP
1 and the mean of NL are related via

0.4 = rβ1 = r (βv1)

⇒ rβ = 0.4
v1

= 0.4
(6

5

)4
.

Note that v2 = Pr(X > 100) =
(3

5
)4 as in the original example. Then the second

payment frequency distribution under deductible d2 = 100 is NP
2 ∼ NB(βv2, r)

with mean
r(βv2) = (rβ)v2 = 0.4

(6
5

)4 (3
5

)4
= 0.1075.
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Next, we examine the more general case where NL is a zero-modified distri-
bution. Recall that a zero-modified distribution can be defined in terms of an
unmodified one (as was shown in Section 3.5.1). That is,

pM
k = c p0

k, for k = 1, 2, 3, . . . , with c = 1 − pM
0

1 − p0
0
,

where p0
k is the pmf of the unmodified distribution. In the case that pM

0 = 0,
we call this a zero-truncated distribution, or ZT . For other arbitrary values
of pM

0 , this is a zero-modified, or ZM , distribution. The pgf for the modified
distribution is shown as

PM (z) = 1 − c+ c P 0(z),

expressed in terms of the pgf of the unmodified distribution, P 0(z). When NL

follows a zero-modified distribution, the distribution of NP is established using
the same relation from earlier, PNP (z) = PNL (1 + v(z − 1)).

Special Cases:

• NL is a ZM-Poisson random variable with parameters λ and pM
0 . The pgf of

NL is
PNL(z) = 1 −

1 − pM
0

1 − e−λ
+

1 − pM
0

1 − e−λ

(
eλ(z−1)

)
.

Thus the pgf of NP is

PNP (z) = 1 −
1 − pM

0
1 − e−λ

+
1 − pM

0
1 − e−λ

(
eλv(z−1)

)
.

So the number of payments is also a ZM-Poisson distribution with parameters
λv and pM

0 . The probability at zero can be evaluated using Pr(NP = 0) =
PNP (0).

• NL is a ZM-negative binomial random variable with parameters β, r, and
pM

0 . The pgf of NL is

PNL(z) = 1 −
1 − pM

0
1 − (1 + β)−r

+
1 − pM

0
1 − (1 + β)−r

[1 − β (z − 1)]−r .

Thus the pgf of NP is

PNP (z) = 1 −
1 − pM

0
1 − (1 + β)−r

+
1 − pM

0
1 − (1 + β)−r

[1 − βv (z − 1)]−r .

So the number of payments is also a ZM-negative binomial distribution with
parameters βv, r, and pM

0 . Similarly, the probability at zero can be evaluated
using Pr(NP = 0) = PNP (0).
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Example 7.5.4. Aggregate losses are modeled as follows:
(i) The number of losses follows a zero-modified Poisson distribution with
λ = 3 and pM

0 = 0.5.
(ii) The amount of each loss has a Burr distribution with α = 3, θ = 50, γ = 1.
(iii) There is a deductible of d = 30 on each loss.
(iv) The number of losses and the amounts of the losses are mutually indepen-
dent.

Calculate E(NP ) and Var(NP ).

Example Solution. Since NL follows a ZM-Poisson distribution with parameters
λ and pM

0 , we know that NP also follows a ZM-Poisson distribution, but with
parameters λv and pM

0 , where

v = Pr(X > 30) =
( 1

1 + (30/50)

)3
= 0.2441.

Thus, NP follows a ZM-Poisson distribution with parameters λ∗ = λv = 0.7324
and pM

0 = 0.5. Finally,

E(NP ) = (1 − pM
0 ) λ∗

1 − e−λ∗ = 0.5
( 0.7324

1 − e−0.7324

)
= 0.7053

Var(NP ) = (1 − pM
0 )
(

λ∗[1 − (λ∗ + 1)e−λ∗ ]
(1 − e−λ∗)2

)
+ pM

0 (1 − pM
0 )
(

λ∗

1 − e−λ∗

)2

= 0.5
(

0.7324(1 − 1.7324e−0.7324)
(1 − e−0.7324)2

)
+ 0.52

( 0.7324
1 − e−0.7324

)2

= 0.7244.

7.5.3 Impact of Policy Modifications on Aggregate Claims

In this section, we examine how a change in the deductible affects the aggregate
payments from an insurance portfolio. We assume that the presence of policy
limits (u), coinsurance (α), and inflation (r) have no effect on the underlying
distribution of frequency of payments made by an insurer. As in the previous
section, we further assume that deductible changes do not impact the underlying
distributions of losses for both frequency and severity.

Recall the notation NL for the number of losses. With ground-up loss amount
X and policy deductible d, we use NP for the number of payments (as defined
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in the previous section 7.5.2). Also, define the amount of payment on a per-loss
basis as

Y L =



0 , if X <
d

1 + r

α[(1 + r)X − d] , if
d

1 + r
≤ X <

u

1 + r

α(u− d) , if X ≥
u

1 + r

,

and the amount of payment on a per-payment basis as

Y P =



undefined , if X <
d

1 + r

α[(1 + r)X − d] , if
d

1 + r
≤ X <

u

1 + r

α(u− d) , if X ≥
u

1 + r
.

.

In the above, r, u, and α represent the inflation rate, policy limit, and coinsur-
ance, respectively. Hence, aggregate costs (payment amounts) can be expressed
either on a per loss or per payment basis:

S = Y L
1 + · · · + Y L

NL

= Y P
1 + · · · + Y P

NP .

(Recall that when we introduced the per-loss and per-payment bases in Section
5.1, we used another letter Y to distinguish losses from insurance payments,
or claims. At this point in our development, we use the letter X to reduce
notation complexity.)

The fundamentals regarding collective risk models are ready to apply. For
instance, we have:

E(S) = E
(
NL

)
E
(
XL

)
= E

(
NP

)
E
(
Y P

)
Var(S) = E

(
NL

)
Var

(
Y L

)
+
[
E
(
Y L

)]2
Var(NL)

= E
(
NP

)
Var

(
Y P

)
+
[
E
(
Y P

)]2
Var(NP )

MS(z) = PNL [MY L(z)] = PNP [MY P (z)] .

Example 7.5.5. Actuarial Exam Question. A group dental policy has a
negative binomial claim count distribution with mean 300 and variance 800.
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Ground-up severity is given by the following table:

Severity Probability
40 0.25
80 0.25
120 0.25
200 0.25

You expect severity to increase 50% with no change in frequency. You decide
to impose a per claim deductible of 100. Calculate the expected total claim
payment S after these changes.

Example Solution. The cost per loss with a 50% increase in severity and a 100
deductible per claim is

XL =
{

0 1.5x < 100
1.5x − 100 1.5x ≥ 100

This has expectation

E(XL) = 1
4
[
(1.5(40) − 100)+ + (1.5(80) − 100)+ + (1.5(120) − 100)+ + (1.5(200) − 100)+

]
= 1

4 [(60 − 100)+ + (120 − 100)+ + (180 − 100)+ + (300 − 100)+]

= 1
4 [0 + 20 + 80 + 200] = 75.

Thus, the expected aggregate loss is

E(S) = E(N) E
(
XL
)

= 300(75) = 22, 500..

Example 7.5.6. Follow-Up. What is the variance of the total claim payment,
Var (S)?

Example Solution. On a per loss basis, we have

Var(S) = E(N) Var
(
XL
)

+
[
E
(
XL
)]2

Var(N)

where E(N) = 300 and Var(N) = 800. We find

E
[
(XL)2

]
= 1

4
[
02 + 202 + 802 + 2002] = 11, 700

⇒ Var(XL) = E
[
(XL)2

]
−
[
E(XL)

]2
= 11, 700 − 752 = 6, 075
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Thus, the variance of the aggregate claim payment is

Var(S) = 300(6, 075) + 752(800) = 6, 322, 500.

Alternative Method: Using the Per Payment Basis. Previously, we calculated
the expected total claim payment by multiplying the expected number of
losses by the expected payment per loss. Recall that we can also multiply the
expected number of payments by the expected payment per payment. In this
case, we have

S = XP
1 + · · · +XP

NP

The probability of a payment is

Pr(1.5X ≥ 100) = Pr(X ≥ 66.6̄) = 3
4 .

Thus, the number of payments, NP has a negative binomial distribution (see
negative binomial special case in Section 7.5.2) with mean

E(NP ) = E(NL) Pr(1.5X ≥ 100) = 300
(3

4

)
= 225.

The cost per payment is

XP =
{

undefined , if 1.5x < 100
1.5x− 100 , if 1.5x ≥ 100

This has expectation

E(XP ) = E(XL)
Pr(1.5X > 100) = 75

(3/4) = 100.

Thus, as before, the expected aggregate loss is

E(S) = E(XP ) E(NP ) = 100(225) = 22, 500.

Example 7.5.7. Actuarial Exam Question. A company insures a fleet
of vehicles. Aggregate losses have a compound Poisson distribution. The
expected number of losses is 20. Loss amounts, regardless of vehicle type, have
exponential distribution with θ = 200. To reduce the cost of the insurance, two
modifications are to be made:
(i) A certain type of vehicle will not be insured. It is estimated that this will
reduce loss frequency by 20%.
(ii) A deductible of 100 per loss will be imposed.

Calculate the expected aggregate amount paid by the insurer after the modifi-
cations.
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Example Solution. On a per loss basis, we have a 100 deductible. Thus, the
expectation per loss is

E(XL) = E[(X − 100)+] = E(X) − E(X ∧ 100)
= 200 − 200(1 − e−100/200) = 121.31.

Loss frequency has been reduced by 20%, resulting in an expected number of
losses

E(NL) = 0.8(20) = 16.

Thus, the expected aggregate amount paid after the modifications is

E(S) = E(XL) E(NL) = 121.31(16) = 1, 941.

Alternative Method: Using the Per Payment Basis. We can also use the per
payment basis to find the expected aggregate amount paid after the modifi-
cations. With the deductible of 100, the probability that a payment occurs
is Pr(X > 100) = e−100/200. For the per payment severity, plugging in the
expression for E(XL) from the original example, we have

E(XP ) = E(XL)
Pr(X > 100) = 200 − 200(1 − e−100/200)

e−100/200 = 200

This is not surprising – recall that the exponential distribution is memoryless,
so the expected claim amount paid in excess of 100 is still exponential with
mean 200.

Now we look at the payment frequency

E(NP ) = E(NL) Pr(X > 100) = 16 e−100/200 = 9.7.

Putting this together, we produce the same answer using the per payment
basis as the per loss basis from earlier

E(S) = E(XP ) E(NP ) = 200(9.7) = 1, 941.

7.6 Further Resources and Contributors
Contributors

• Peng Shi and Lisa Gao, University of Wisconsin-Madison, are the principal
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236 7 Aggregate Loss Models

• Peng Shi, University of Wisconsin-Madison, is the author of the second
edition of this chapter. Email: pshi@bus.wisc.edu for chapter comments and
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• Chapter reviewers include: Himchan Jeong, Vytaras Brazauskas, Mark
Maxwell, Jiadong Ren, Sherly Paola Alfonso Sanchez, and Di (Cindy) Xu.

Further Readings and References

If you would like additional practice with R coding, please visit our companion
LDA Short Course. In particular, see the Aggregate Loss Models Chapter.

TS 7.A.1. Individual Risk Model Properties

For the expected value of the aggregate loss under the individual risk model,

E(Sn) =
n∑

i=1
E(Xi) =

n∑
i=1

E(Ii ×Bi) =
n∑

i=1
E(Ii) E(Bi) from independence of Ii’s and Bi’s

=
n∑

i=1
Pr(Ii = 1) µi since E(Ii) is the probability Ii is 1

=
n∑

i=1
qi µi.

For the variance of the aggregate loss under the individual risk model,

Var(Sn) =
n∑

i=1
Var(Xi) from independence of Xi’s

=
n∑

i=1
( E [Var(Xi|Ii)] + Var [E(Xi|Ii)] ) from conditional variance formulas

=
n∑

i=1

(
qi σ

2
i + qi (1 − qi) µ2

i

)
.

To see this, note that

E [Var(Xi|Ii)] = Var(Xi|Ii = 0) Pr(Ii = 0) + Var(Xi|Ii = 1) Pr(Ii = 1)
= qi σ

2
i + (1 − qi) (0) = qi σ

2
i ,

and
Var [E(Xi|Ii)] = qi (1 − qi) µ2

i ,

using the Bernoulli variance shortcut since E(Xi|Ii) = 0 when Ii = 0 (prob-
ability Pr(Ii = 0) = 1 − qi) and E(Xi|Ii) = µi when Ii = 1 (probability
Pr(Ii = 1) = qi).

mailto:pshi@bus.wisc.edu
https://openacttexts.github.io/LDACourse1
https://openacttexts.github.io/LDACourse1/aggregate-loss-models.html
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For the probability generating function of the aggregate loss under the indi-
vidual risk model,

PSn(z) =
n∏

i=1
PXi(z) from the independence of Xi’s

=
n∏

i=1
E(z Xi) =

n∏
i=1

E(z Ii×Bi) =
n∏

i=1
E
[
E(z Ii×Bi |Ii)

]
from law of iterated expectations

=
n∏

i=1

[
E
(
z Ii×Bi|Ii = 0

)
Pr(Ii = 0) + E

(
z Ii×Bi |Ii = 1

)
Pr(Ii = 1)

]
=

n∏
i=1

[ (1) (1 − qi) + PBi(z) qi ] =
n∏

i=1
( 1 − qi + qi PBi(z) )

Lastly, for the moment generating function of the aggregate loss under the
individual risk model,

MSn(t) =
n∏

i=1
MXi(t) from the independence of Xi’s

=
n∏

i=1
E(et Xi) =

n∏
i=1

E
(
e t (Ii×Bi)

)
=

n∏
i=1

E
[
E
(
e t (Ii×Bi)|Ii

)]
from law of iterated expectations

=
n∏

i=1

[
E
(
e t (Ii×Bi)|Ii = 0

)
Pr(Ii = 0) + E

(
e t (Ii×Bi)|Ii = 1

)
Pr(Ii = 1)

]
=

n∏
i=1

[ (1) (1 − qi) +MBi(t) qi ] =
n∏

i=1
( 1 − qi + qi MBi(t) ) .

TS 7.A.2. Relationship Between Probability Generating Functions of Xi

and XT
i

Let Xi belong to the (a, b, 0) class with pmf pik = Pr(Xi = k) for k = 0, 1, . . .
and XT

i be the associated zero-truncated distribution in the (a, b, 1) class with
pmf pT

ik = pik/(1 − pi0) for k = 1, 2, . . .. Then the relationship between the pgf
of Xi and the pgf of XT

i is shown by

PXi(z) = E (zXi) = E
[
E
(
zXi |Xi

)]
from law of iterated expectations

= E
(
zXi |Xi = 0

)
Pr(Xi = 0) + E

(
zXi|Xi > 0

)
Pr(Xi > 0)

= (1) pi0 + E(zXT
i ) (1 − pi0) since (Xi|Xi > 0) is zero-truncated r.v. XT

i

= pi0 + (1 − pi0)PXT
i

(z).



238 7 Aggregate Loss Models

TS 7.A.3. Moment Generating Function of Aggregate Loss SN in Example
7.3.9

For N ∼ Geo(β) and X ∼ Exp(θ), we have

PN (z) = 1
1 − β(z − 1)

MX(t) = 1
1 − θt

.

Thus, the mgf of aggregate loss SN is

MSN
(t) = PN [MX(t)] = 1

1 − β
(

1
1−θt − 1

)
= 1

1 − β
(

θt
1−θt

) + 1 − 1 = 1 +
β
(

θt
1−θt

)
1 − β

(
θt

1−θt

)
= 1 + βθt

(1 − θt) − βθt
= 1 + βθt

1 − θt(1 + β) · 1 + β

1 + β

= 1 + β

1 + β

[
θ(1 + β)t

1 − θ(1 + β)t

]

= 1 + β

1 + β

[
1

1 − θ(1 + β)t − 1
]
,

which gives the expression (7.1). For the alternate expression of the mgf (7.2),
we continue from where we just left off:

MSN
(t) = 1 + β

1 + β

[
θ(1 + β)t

1 − θ(1 + β)t

]

= 1 + β

1 + β
+ β

1 + β

[
θ(1 + β)t

1 − θ(1 + β)t

]

= 1
1 + β

+ β

1 + β
+ β

1 + β

[
θ(1 + β)t

1 − θ(1 + β)t

]

= 1
1 + β

+ β

1 + β

[
1 + θ(1 + β)t

1 − θ(1 + β)t

]

= 1
1 + β

+ β

1 + β

[
1

1 − θ(1 + β)t

]
.
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Simulation and Resampling

Chapter Preview. Simulation is a computationally intensive method used to
solve difficult problems. Instead of creating physical processes and experi-
menting with them in order to understand their operational characteristics, a
simulation study is based on a computer representation - it considers various
hypothetical conditions as inputs and summarizes the results. Through simula-
tion, a vast number of hypothetical conditions can be quickly and inexpensively
examined. Section 8.1 introduces simulation as a valuable computational tool,
particularly effective in complex, multivariate settings.

Analysts find simulation especially useful for computing measures that summa-
rize intricate distributions, as discussed in Section 8.2. This encompasses all the
examples mentioned in the book thus far, such as measures that summarize the
frequency and severity of losses, along with many additional cases. Simulation
can also be used to compute complex distributions necessary for hypothesis
testing. In addition, we can also use simulation to draw from an empirical
distribution - this process is known as resampling. Resampling allows us to
assess the uncertainty of estimates in complex models. Section 8.3 introduces
resampling in the context of bootstrapping to determine the precision of esti-
mators. Section 8.4 on cross-validation shows how to use it for model selection
and validation.

8.1 Random Number Generation

In this section, you learn how to:

• Generate approximately independent realizations that are uniformly dis-
tributed

• Transform the uniformly distributed realizations to observations from a
probability distribution of interest

• Generate simulated values directly from common distributions using ready-
made random number generators

239
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• Generate simulated values from complex distributions by combining simulated
values from common distributions

• Generate simulated values from distributions whose domain is restricted to
specific regions of interest, such as with deductible and long-tailed actuarial
applications.

8.1.1 Generating Independent Uniform Observations

The simulations that we consider are generated by computers. A major strength
of this approach is that they can be replicated, allowing us to check and
improve our work. Naturally, this also means that they are not really random.
Nonetheless, algorithms have been produced so that results appear to be
random for all practical purposes. Specifically, they pass sophisticated tests of
independence and can be designed so that they come from a single distribution
- our iid assumption, identically and independently distributed.

To get a sense as to what these algorithms do, we consider a historically
prominent method.

Linear Congruential Generator. To generate a sequence of random num-
bers, start with B0, a starting value that is known as a seed. This value is
updated using the recursive relationship

Bn+1 = (aBn + c) modulo m, n = 0, 1, 2, . . . .

This algorithm is called a linear congruential generator. The case of c = 0 is
called a multiplicative congruential generator; it is particularly useful for really
fast computations.

For illustrative values of a and m, Microsoft’s Visual Basic uses m = 224,
a = 1, 140, 671, 485, and c = 12, 820, 163 (see https://en.wikipedia.org/wiki/
Linear_congruential_generator). This is the engine underlying the random
number generation in Microsoft’s Excel program.

The sequence used by the analyst is defined as Un = Bn/m. The analyst may
interpret the sequence {Ui} to be (approximately) identically and independently
uniformly distributed on the interval (0,1). To illustrate the algorithm, consider
the following.

Example 8.1.1. Illustrative Sequence. Take m = 15, a = 3, c = 2 and
B0 = 1. Then we have:

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
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step n Bn Un

0 B0 = 1
1 B1 = mod (3 × 1 + 2) = 5 U1 = 5

15
2 B2 = mod (3 × 5 + 2) = 2 U2 = 2

15
3 B3 = mod (3 × 2 + 2) = 8 U3 = 8

15
4 B4 = mod (3 × 8 + 2) = 11 U4 = 11

15

The linear congruential generator is just one method of producing pseudo-
random outcomes. It is easy to understand and is widely used. The linear
congruential generator does have limitations, including the fact that it is
possible to detect long-run patterns over time in the sequences generated
(recall that we can interpret independence to mean a total lack of functional
patterns). Not surprisingly, advanced techniques have been developed that
address some of this method’s drawbacks. The random number generated by R
utilizes such advanced techniques.

Sometimes computer generated random results are known as pseudo-random
numbers to reflect the fact that they are machine generated and can be
replicated. That is, despite the fact that {Ui} appears to be i.i.d, it can be
reproduced by using the same seed number (and the same algorithm).

Example 8.1.2. Generating Uniform Random Numbers in R. The
following code shows how to generate three uniform (0,1) numbers in R using
the runif command. The set.seed() function sets the initial seed. In many
computer packages, the initial seed is set using the system clock unless specified
otherwise.

Three Uniform Random Variates

set.seed(2017)
U <- runif(3)
knitr::kable(U, digits = 5, align = "c", col.names = "Uniform") %>%

kableExtra::kable_classic(full_width = F) %>%
kable_styling(latex_options = "hold_position", font_size = 10)

Uniform
0.92424
0.53718
0.46920

8.1.2 Inverse Transform Method

With the sequence of uniform random numbers, we next transform them to a
distribution of interest, say F . A prominent technique is the inverse transform



242 8 Simulation and Resampling

method, defined as
Xi = F−1 (Ui) .

Here, recall from Section 4.1.1 that we introduced the inverse of the distribution
function, F−1, and referred to it also as the quantile function. Specifically, it
is defined to be

F−1(y) = inf
x

{F (x) ≥ y}.

Recall that inf stands for infimum or the greatest lower bound. It is essentially
the smallest value of x that satisfies the inequality {F (x) ≥ y}. The result is
that the sequence {Xi} is iid with distribution function F if the {Ui} are iid
with uniform on (0, 1) distribution function.

The inverse transform result is available when the underlying random variable
is continuous, discrete or a hybrid combination of the two. We now present a
series of examples to illustrate its scope of applications.

Example 8.1.3. Generating Exponential Random Numbers. Suppose
that we would like to generate observations from an exponential distribution
with scale parameter θ so that F (x) = 1 − e−x/θ. To compute the inverse
transform, we can use the following steps:

y = F (x) ⇔ y = 1 − e−x/θ

⇔ −θ ln(1 − y) = x = F−1(y).

Thus, if U has a uniform (0,1) distribution, then X = −θ ln(1 − U) has an
exponential distribution with parameter θ.

The following R code shows how we can start with the same three uniform
random numbers as in Example 8.1.2 and transform them to independent
exponentially distributed random variables with a mean of 10. Alternatively,
you can directly use the rexp function in R to generate random numbers from
the exponential distribution. The algorithm built into this routine is different
so even with the same starting seed number, individual realizations will differ.
set.seed(2017)
U <- runif(3)
X1 <- -10 * log(1 - U)
set.seed(2017)
X2 <- rexp(3, rate = 1/10)

Three Uniform Random Variates

Example 8.1.4. Generating Pareto Random Numbers. Suppose that we
would like to generate observations from a Pareto distribution with parameters
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Uniform Exponential 1 Exponential 2
0.92424 25.80219 3.25222
0.53718 7.70409 8.47652
0.46920 6.33362 5.40176

α and θ so that F (x) = 1 −
(

θ
x+θ

)α
. To compute the inverse transform, we can

use the following steps:

y = F (x) ⇔ 1 − y =
(

θ

x+ θ

)α

⇔ (1 − y)−1/α = x+ θ

θ
= x

θ
+ 1

⇔ θ
(
(1 − y)−1/α − 1

)
= x = F−1(y).

Thus, X = θ
(
(1 − U)−1/α − 1

)
has a Pareto distribution with parameters α

and θ.

Inverse Transform Justification. Why does the random variable X =
F−1(U) have a distribution function F?

This is easy to establish when F is strictly increasing, where the distribution
is continuous. Because U is a uniform random variable on (0,1), we know that
Pr(U ≤ y) = y, for 0 ≤ y ≤ 1. Thus,

Pr[X ≤ x] = Pr[F −1(U) ≤ x]
= Pr[F (F −1(U)) ≤ F (x)]
= Pr[U ≤ F (x)] = F (x),

as required. The key step is that F [F −1(u)] = u for each u, which is true when
F is strictly increasing.

We now consider some discrete examples.

Example 8.1.5. Generating Bernoulli Random Numbers. Suppose
that we wish to simulate random variables from a Bernoulli distribution with
parameter q = 0.85.

A graph of the cumulative distribution function in Figure 8.1 shows that the
quantile function can be written as

F−1(y) =
{

0 0 < y ≤ 0.85
1 0.85 < y ≤ 1.0.
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FIGURE 8.1: Distribution Function of a Binary Random Variable

Thus, with the inverse transform we may define

X =
{

0 0 < U ≤ 0.85
1 0.85 < U ≤ 1.0

For illustration, we generate three random numbers to get
set.seed(2017)
U <- runif(3)
X <- 1 * (U > 0.85)

Three Random Variates

Uniform Binary X
0.92424 1
0.53718 0
0.46920 0

Example 8.1.6. Generating Random Numbers from a Discrete Dis-
tribution. Consider the time of a machine failure in the first five years. The
distribution of failure times is given as:

Discrete Distribution

Time 1.0 2.0 3.0 4.0 5.0
Probability 0.1 0.2 0.1 0.4 0.2
Distribution Function 0.1 0.3 0.4 0.8 1.0

Using the graph of the distribution function in Figure 8.2, with the inverse
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FIGURE 8.2: Distribution Function of a Discrete Random Variable

transform we may define

X =



1 0 < U ≤ 0.1
2 0.1 < U ≤ 0.3
3 0.3 < U ≤ 0.4
4 0.4 < U ≤ 0.8
5 0.8 < U ≤ 1.0.

For general discrete random variables there may not be an ordering of outcomes.
For example, a person could own one of five types of life insurance products
and we might use the following algorithm to generate random outcomes:

X =



whole life 0 < U ≤ 0.1
endowment 0.1 < U ≤ 0.3

term life 0.3 < U ≤ 0.4
universal life 0.4 < U ≤ 0.8
variable life 0.8 < U ≤ 1.0.

Another analyst may use an alternative procedure such as:

X =



whole life 0.9 < U < 1.0
endowment 0.7 ≤ U < 0.9

term life 0.6 ≤ U < 0.7
universal life 0.2 ≤ U < 0.6
variable life 0 ≤ U < 0.2.

Both algorithms produce (in the long-run) the same probabilities, e.g.,
Pr(whole life) = 0.1, and so forth. So, neither is incorrect. You should be
aware that there is more than one way to accomplish a goal. Similarly, you
could use an alternative algorithm for ordered outcomes (such as failure times
1, 2, 3, 4, or 5, above).
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8.1.3 Ready-made Random Number Generators

Sections 8.1.1 and 8.1.2 showed how one can generate simulated values from the
foundations. This approach is important so that analyst can appreciate why
the simulation works so well. However, because simulation is used so widely, it
is not surprising that packages have been developed as time-saving devices.

For example, we have already seen in Example 8.1.3 that one can generate expo-
nentially distributed random variates through the rexp function. This function
means that analyst need not generate uniform random variates and then trans-
form them using the inverse exponential distribution function. Instead, this is
done in a single step using the rexp function.

Table 8.2 summarizes a few of the standard random number generators in R;
the r at the beginning of each function refers to a random number generator.
Additional documentation for these functions are in Appendix Chapter 20.
Note that the Pareto distribution requires the package actuar.

Table 8.2. Random Number Generators (RNGs)

Discrete Distributions Continuous Distributions
Distribution RNG Function Distribution RNG Function
Binomial rbinom Exponential rexp
Poisson rpoisson Gamma rgamma
Negative Binomial rnbinom Pareto actuar::rpareto

Normal rnorm
Weibull rweibull

8.1.4 Simulating from Complex Distributions

In statistical software programs such as R, analysts will find several ready-made
random number generators. However, for many complex actuarial applications,
it is likely that ready-made generators will not be available and so one must
return to the foundations.

To illustrate, consider the aggregate claims distributions introduced in Chapter
7. There, in Section 7.4.2, we have already seen how to simulate aggregate loss
distributions. As we saw in [Example 7.4.2], the process is to first simulate the
number of losses and then simulate individual losses.

As another example of a complex distribution, consider the following example.

Example 8.1.7. Generating Random Numbers from a Hybrid Dis-
tribution. Consider a random variable that is 0 with probability 70% and is
exponentially distributed with parameter θ = 10, 000 with probability 30%. In
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an insurance application, this might correspond to a 70% chance of having no
insurance claims and a 30% chance of a claim - if a claim occurs, then it is
exponentially distributed. The distribution function, depicted in Figure 8.3, is
given as

F (y) =
{

0 x < 0
1 − 0.3 exp(−x/10000) x ≥ 0.
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FIGURE 8.3: Distribution Function of a Hybrid Random Variable

From Figure 8.3, we can see that the inverse transform for generating random
variables with this distribution function is

X = F−1(U) =
{

0 0 < U ≤ 0.7
−1000 ln(1−U

0.3 ) 0.7 < U < 1.

For discrete and hybrid random variables, the key is to draw a graph of the
distribution function that allows you to visualize potential values of the inverse
function.

You can think of this hybrid distribution as a special case of a mixture model
that was introduced in Sections 3.6 and 4.3.2. Mixture models are straight-
forward to evaluate using simulation. In the first stage, one simulates a variable
indicating the subpopulation. In the second stage, one simulates from that
subpopulation. The resulting variate is a realization from the mixture model.
To illustrate, let’s revisit Example 4.3.5.

Example 4.3.5. Continued. In this problem, we can label draws from the
Type 1 subpopulation as X1 from an exponential distribution with mean 200,
and those from the Type 2 subpopulation as X2 from a Pareto distribution

./ChapSeverity.html#Ex:4.3.5


248 8 Simulation and Resampling

with parameters α = 3 and θ = 200. Here, 25% of policies are Type 1 and 75%
of policies are Type 2.

We can use simulation to find the probability that the annual loss will be less
than 100, and find the average loss. The illustrative code uses the ready-made
random number generator functions rbinom, rexp, and actuar::pareto.
nsim <- 100000
Z <- rbinom(nsim, prob = 0.75, size = 1)
X1 <- rexp(nsim, rate = 1/200)
X2 <- actuar::rpareto(nsim, shape = 3, scale = 200)
X <- (1 - Z) * X1 + Z * X2
# sum(X<100)/nsim mean(X)

8.1.5 Importance Sampling

Another class of important problems utilize distributions that are from a
limited region. For example, when a loss has a deductible, the resulting claim
represents the payment by an insurer that is not observed for amounts less than
the deductible. This type of problem was considered extensively in Chapter
5. As another example, for claims that are extremely large, one may wish
to restrict an analysis to only extremely large outcomes - discussions of tails
of distributions will be taken up in Section 13.2. To address both types of
problems, we now suppose that we wish to draw according to X, conditional
on X ∈ [a, b].

To this end, one can use an accept-reject mechanism : draw x from distribution
F

• if x ∈ [a, b] : keep it (“accept”)
• if x /∈ [a, b] : draw another one (“reject”)

Observe that from n values initially generated, we keep here only [F (b)−F (a)]·n
draws, on average.

Example 8.1.8. Draws from a Normal Distribution. Suppose that we
draw from a normal distribution with mean 2.5 and variance 1, N(2.5, 1), but
are only interested in draws greater that a = 2 and less than b = 4. That is,
we can only use F (4) − F (2) = Φ(4 − 2.5) − Φ(2 − 2.5) = 0.9332 - 0.3085 =
0.6247 proportion of the draws. Figure 8.4 demonstrates that some draws lie
with the interval (2, 4) and some are outside.

Instead, one can draw according to the conditional distribution F ⋆ defined as

F ⋆(x) = Pr(X ≤ x|a < X ≤ b) = F (x) − F (a)
F (b) − F (a) , for a < x ≤ b.
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FIGURE 8.4: Demonstration of Draws In and Outside of (2,4)

Using the inverse transform method in Section 8.1.2, we have that the draw

X⋆ = F ⋆−1 (U) = F−1 (F (a) + U · [F (b) − F (a)])

has distribution F ⋆. Expressed another way, define

Ũ = (1 − U) · F (a) + U · F (b)

and then use F−1(Ũ). With this approach, each draw counts.

This can be related to the importance sampling mechanism : we draw more
frequently in regions where we expect to have quantities that have some
interest. This transform can be considered as a “a change of measure.”
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In Example 8.1.8, the inverse of the normal distribution is readily available (in
R, the function is qnorm). However, for other applications, this is not always
the case. Then, one simply uses numerical methods to determine X⋆ as the
solution of the equation F (X⋆) = Ũ where Ũ = (1 − U) · F (a) + U · F (b).
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8.2 Computing Distribution Parameters

In this section, you learn how to:

• Calculate quantities of interest and determine the precision of the calculated
quantities

• Determine the appropriate number of replications for a simulation study
• Calculate complex distributions needed for hypothesis testing.

8.2.1 Simulating Parameters

One use of the term parameter is as a quantity that serves as an index for a
known parametric family. For example, one usually thinks of a mean µ and
standard deviation σ as parameters of a normal distribution. Statisticians also
use the term parameter to mean any quantity that summarizes a distribution.
In this sense, a parameter can be written as θ(F ), that is, if one knows the
distribution function F (·), then one can compute the summary measure θ.

In the previous subsection, we learned how to generate independent simulated
realizations from a distribution of interest. With these realizations, we can
construct an empirical distribution and approximate the underlying distribution
as precisely as needed. As we introduce more actuarial applications in this
book, you will see that simulation can be applied in a wide variety of contexts.

Many of these applications can be reduced to the problem of approximating a
parameter E [h(X)], where h(·) is some known function. Based on R simulations
(replications), we get X1, . . . , XR. From this simulated sample, we calculate
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an average

hR = 1
R

R∑
i=1

h(Xi)

that we use as our simulated approximate (estimate) of E [h(X)]. To estimate
the precision of this approximation, we use the simulation variance

s2
h,R = 1

R − 1

R∑
i=1

(
h(Xi) − hR

)2
.

From the independence, the standard error of the estimate is sh,R/
√
R. This

can be made as small as we like by increasing the number of replications R.

Example 8.2.1. Portfolio Management. In Section 5.1, we learned how to
calculate the expected value of policies with deductibles. For an example of
something that cannot be done with closed form expressions, we now consider
two risks. This is a variation of a more complex example that will be covered
as Example 13.4.6.

We consider two property risks of a telecommunications firm:

• X1 - buildings, modeled using a gamma distribution with mean 200 and scale
parameter 100.

• X2 - motor vehicles, modeled using a gamma distribution with mean 400
and scale parameter 200.

Denote the total risk as X = X1 +X2. For simplicity, you assume that these
risks are independent.

To manage the risk, you seek some insurance protection. You are willing
to retain internally small building and motor vehicles amounts, up to M ,
say. Random amounts in excess of M will have an unpredictable affect on
your budget and so for these amounts you seek insurance protection. Stated
mathematically, your retained risk is Yretained = min(X1 + X2,M) and the
insurer’s portion is Yinsurer = X − Yretained.

To be specific, we use M = 400 as well as R = 1000000 simulations.

a. With these settings, we wish to determine the expected claim amount and
the associated standard deviation of (i) that retained by you, (ii) that accepted
by the insurer, and (iii) the total overall amount. b. For insured claims, the
standard error of the simulation approximation is sh,R/

√
1000000 = 280.86

/
√

1000000 = 0.281. For this example, simulation is quick and so a large value
such as 1000000 is an easy choice. However, for more complex problems, the
simulation size may be an issue.

Example Solution. For part (a), the results of these calculations are:
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Retained Insurer Total
Mean 365.17 235.01 600.18
Standard Deviation 69.51 280.86 316.36

For part (b), Figure 8.5 allows us to visualize the development of the approxi-
mation as the number of simulations increases.

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).
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FIGURE 8.5: Estimated Expected Insurer Claims versus Number of
Simulations

8.2.2 Determining the Number of Simulations

How many simulated values are recommended? 100? 1,000,000? We can use
the central limit theorem to respond to this question.

As one criterion for your confidence in the result, suppose that you wish
to be within 1% of the mean with 95% certainty. That is, you want
Pr
(
|hR − E [h(X)]| ≤ 0.01E [h(X)]

)
≥ 0.95. According to the central limit

theorem, your estimate should be approximately normally distributed and so we
want to have R large enough to satisfy 0.01E [h(X)]/

√
Var [h(X)]/R) ≥ 1.96.

(Recall that 1.96 is the 97.5th percentile from the standard normal distribu-
tion.) Replacing E [h(X)] and Var [h(X)] with estimates, you continue your
simulation until

0.01 hR

sh,R/
√
R

≥ 1.96
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or equivalently

R ≥ 38, 416
s2

h,R

h
2
R

. (8.1)

This criterion is a direct application of the approximate normality. Note that
hR and sh,R are not known in advance, so you will have to come up with
estimates, either by doing a small pilot study in advance or by interrupting
your procedure intermittently to see if the criterion is satisfied.

Example 8.2.1. Portfolio Management - continued. For this example, the
average insurance claim is 235.011 and the corresponding standard deviation
is 280.862. Using equation (8.1), to be within 1% of the mean, we would only
require at least 54.87 thousand simulations. In addition, to be within 0.1% we
would want at least 5.49 million simulations.

Example 8.2.2. Approximation Choices. An important application of
simulation is the approximation of E [h(X)]. In this example, we show that
the choice of the h(·) function and the distribution of X can play a role.

Consider the following question : what is Pr[X > 2] when X has a Cauchy
distribution, with density f(x) =

[
π(1 + x2)

]−1
, on the real line? The true

value is
Pr [X > 2] =

∫ ∞

2

dx

π(1 + x2) .

One can use an R numerical integration function (which usually works well on
improper integrals)

which is equal to 0.14758.

Approximation 1. Alternatively, one can use simulation techniques to approx-
imate that quantity. From calculus, you can check that the quantile function
of the Cauchy distribution is F−1(y) = tan [π(y − 0.5)]. Then, with simulated
uniform (0,1) variates, U1, . . . , UR, we can construct the estimator

p1 = 1
R

R∑
i=1

I(F−1(Ui) > 2) = 1
R

R∑
i=1

I(tan [π(Ui − 0.5)] > 2).

With one million simulations, we obtain an estimate of 0.14744 with standard
error 0.355 (divided by 1000). The estimated variance of p1 can be written as
0.127/R.

Approximation 2. With other choices of h(·) and F (·) it is possible to reduce
uncertainty even using the same number of simulations R. To begin, one can use
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the symmetry of the Cauchy distribution to write Pr[X > 2] = 0.5·Pr[|X| > 2].
With this, can construct a new estimator,

p2 = 1
2R

R∑
i=1

I(|F−1(Ui)| > 2).

With one million simulations, we obtain an estimate of 0.14748 with standard
error 0.228 (divided by 1000). The estimated variance of p2 can be written as
0.052/R.

Approximation 3. But one can go one step further. The improper integral
can be written as a proper one by a simple symmetry property (since the
function is symmetric and the integral on the real line is equal to 1)∫ ∞

2

dx

π(1 + x2) = 1
2 −

∫ 2

0

dx

π(1 + x2) .

From this expression, a natural approximation would be

p3 = 1
2 − 1

R

R∑
i=1

h3(2Ui), where h3(x) = 2
π(1 + x2) .

With one million simulations, we obtain an estimate of 0.14756 with standard
error 0.169 (divided by 1000). The estimated variance of p3 can be written as
0.0285/R.

Approximation 4. Finally, one can also consider some change of variable in
the integral ∫ ∞

2

dx

π(1 + x2) =
∫ 1/2

0

y−2dy

π(1 − y−2) .

From this expression, a natural approximation would be

p4 = 1
R

R∑
i=1

h4(Ui/2), where h4(x) = 1
2π(1 + x2) .

The expression seems rather similar to the previous one.

With one million simulations, we obtain an estimate of 0.14759 with standard
error 0.01 (divided by 1000). The estimated variance of p4 can be written as
0.00009/R, which is much smaller than what we had so far!

Table 8.1 summarizes the four choices of h(·) and F (·) to approximate Pr[X >
2] = 0.14758. The standard error varies dramatically. Thus, if we have a desired
degree of accuracy, then the number of simulations depends strongly on how
we write the integrals we try to approximate.

Table 8.1. Summary of Four Choices to Approximate Pr[X > 2]
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Estimator Definition Support Function Estimate Standard Error

p1
1
R

∑R
i=1 I(F −1(Ui) > 2) F −1(u) = tan (π(u − 0.5)) 0.147439 0.000355

p2
1

2R

∑R
i=1 I(|F −1(Ui)| > 2) F −1(u) = tan (π(u − 0.5)) 0.147477 0.000228

p3
1
2 − 1

R

∑R
i=1 h3(2Ui) h3(x) = 2

π(1+x2) 0.147558 0.000169
p4

1
R

∑R
i=1 h4(Ui/2) h4(x) = 1

2π(1+x2) 0.147587 0.000010

8.2.3 Simulation and Statistical Inference

Simulations not only help us approximate expected values but are also useful
in calculating other aspects of distribution functions. As described in Section
8.2.1, the logic is that one wishes to calculate a parameter θ(F ), use the same
rule for calculating the parameter but replace the distribution function F (·)
with an empirical one from a simulated sample. For example, in addition
to expected values, analysts can use simulation to compute quantiles from
complex distributions.

In addition, simulation is very useful when distributions of test statistics are
too complicated to derive; in this case, one can use simulations to approximate
the reference distribution. We now illustrate this with the Kolmogorov-Smirnov
test which we learned about in Section 6.1.2.

Example 8.2.3. Kolmogorov-Smirnov Test of Distribution. Suppose
that we have available n = 100 observations {x1, · · · , xn} that, unknown to the
analyst, were generated from a gamma distribution with parameters α = 6 and
θ = 2. The analyst believes that the data come from a lognormal distribution
with parameters 1 and 0.4 and would like to test this assumption.

The first step is to visualize the data.

With this set-up, Figure 8.6 provides a graph of a histogram and empirical dis-
tribution. For reference, superimposed are red dashed lines from the lognormal
distribution.

Recall that the Kolmogorov-Smirnov statistic equals the largest discrepancy
between the empirical and the hypothesized distribution. This is maxx |Fn(x)−
F0(x)|, where F0 is the hypothesized lognormal distribution. We can calculate
this directly.

Fortunately, for the lognormal distribution, R has built-in tests that allow us
to determine this without complex programming:
ks.test(x, plnorm, mean = 1, sd = 0.4)

Asymptotic one-sample Kolmogorov-Smirnov test

data: x
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FIGURE 8.6: Histogram and Empirical Distribution Function of Data
used in Kolmogorov-Smirnov Test. The red dashed lines are fits based on
(incorrectly) hypothesized lognormal distribution.
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D = 0.09703666, p-value = 0.303148
alternative hypothesis: two-sided

However, for many distributions of actuarial interest, pre-built programs are
not available. We can use simulation to test the relevance of the test statistic.
Specifically, to compute the p-value, let us generate thousands of random
samples from a LN(1, 0.4) distribution (with the same size), and compute
empirically the distribution of the statistic,
ns <- 10000
d_KS <- rep(NA, ns)
# compute the test statistics for a large (ns) number of simulated samples
for (s in 1:ns) d_KS[s] <- D(rlnorm(n, 1, 0.4), function(x) plnorm(x, 1, 0.4))
mean(d_KS > D(x, function(x) plnorm(x, 1, 0.4)))

[1] 0.2843
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FIGURE 8.7: Simulated Distribution of the Kolmogorov-Smirnov Test
Statistic. The vertical red dashed line marks the test statistic for the sample
of 100.

The simulated distribution based on 10,000 random samples is summarized in
Figure 8.7. Here, the statistic exceeded the empirical value (0.09704) in 28.43%
of the scenarios, while the theoretical p-value is 0.3031. For both the simulation
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and the theoretical p-values, the conclusions are the same; the data do not
provide sufficient evidence to reject the hypothesis of a lognormal distribution.

Although only an approximation, the simulation approach works in a variety
of distributions and test statistics without needing to develop the nuances of
the underpinning theory for each situation. We summarize the procedure for
developing simulated distributions and p-values as follows:

1. Draw a sample of size n, say, X1, . . . , Xn, from a known distribution
function F . Compute a statistic of interest, denoted as θ̂(X1, . . . , Xn).
Call this θ̂r for the rth replication.

2. Repeat this r = 1, . . . , R times to get a sample of statistics, θ̂1, . . . , θ̂R.
3. From the sample of statistics in Step 2, {θ̂1, . . . , θ̂R}, compute a

summary measure of interest, such as a p-value.

8.3 Bootstrapping and Resampling

In this section, you learn how to:

• Generate a nonparametric bootstrap distribution for a statistic of interest
• Use the bootstrap distribution to generate estimates of precision for the

statistic of interest, including bias, standard deviations, and confidence
intervals

• Perform bootstrap analyses for parametric distributions

8.3.1 Bootstrap Foundations

Simulation presented up to now is based on sampling from a known distri-
bution. Section 8.1 showed how to use simulation techniques to sample and
compute quantities from known distributions. However, statistical science is
dedicated to providing inferences about distributions that are unknown. We
gather summary statistics based on this unknown population distribution. But
how do we sample from an unknown distribution?

Naturally, we cannot simulate draws from an unknown distribution but we
can draw from a sample of observations. If the sample is a good representation
from the population, then our simulated draws from the sample should well
approximate the simulated draws from a population. The process of sampling
from a sample is called resampling or bootstrapping. The term bootstrap comes
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from the phrase “pulling oneself up by one’s bootstraps” Efron (1979). With
resampling, the original sample plays the role of the population and estimates
from the sample play the role of true population parameters.

The resampling algorithm is the same as introduced in Section 8.2.3 except that
now we use simulated draws from a sample. It is common to use {X1, . . . , Xn}
to denote the original sample and let {X∗

1 , . . . , X
∗
n} denote the simulated

draws. We draw them with replacement so that the simulated draws will
be independent from one another, the same assumption as with the original
sample. For each sample, we also use n simulated draws, the same number as
the original sample size. To distinguish this procedure from the simulation, it
is common to use B (for bootstrap) to be the number of simulated samples.
We could also write {X(b)

1 , . . . , X(b)
n }, b = 1, . . . , B to clarify this.

There are two basic resampling methods, model-free and model-based, which are,
respectively, as nonparametric and parametric. In the nonparametric approach,
no assumption is made about the distribution of the parent population. The
simulated draws come from the empirical distribution function Fn(·), so each
draw comes from {X1, . . . , Xn} with probability 1/n.

In contrast, for the parametric approach, we assume that we have knowledge of
the distribution family F. The original sample X1, . . . , Xn is used to estimate
parameters of that family, say, θ̂. Then, simulated draws are taken from the
F (θ̂). Section 8.3.4 discusses this approach in further detail.

Nonparametric Bootstrap

The idea of the nonparametric bootstrap is to use the inverse transform method
on Fn, the empirical cumulative distribution function, depicted in Figure 8.8.

y=F(x)

x = F-1(y)0

0

FIGURE 8.8: Inverse of an Empirical Distribution Function
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Because Fn is a step-function, F−1
n takes values in {x1, · · · , xn}. More precisely,

as illustrated in Figure 8.9.

• if y ∈ (0, 1/n) (with probability 1/n) we draw the smallest value (min{xi})
• if y ∈ (1/n, 2/n) (with probability 1/n) we draw the second smallest value,
• ... ... ...
• if y ∈ ((n − 1)/n, 1) (with probability 1/n) we draw the largest value

(max{xi}).

FIGURE 8.9: Inverse of an Empirical Distribution Function

Using the inverse transform method with Fn means sampling from {x1, · · · , xn},
with probability 1/n. Generating a bootstrap sample of size B means sampling
from {x1, · · · , xn}, with probability 1/n, with replacement. See the following
illustrative R code.
set.seed(1)
n <- 10
x <- rexp(n, 1/6)
m <- 10
bootvalues <- sample(x, size = m, replace = TRUE)

[1] 2.6164 5.7394 5.7394 2.6164 2.6164 7.0899 0.8823 5.7394 4.5311 0.8388

Observe that value 5.7394 was obtained three times.

8.3.2 Bootstrap Precision: Bias, Standard Deviation, and Mean Square
Error

We summarize the nonparametric bootstrap procedure as follows:

1. From the sample {X1, . . . , Xn}, draw a sample of size n (with re-
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placement), say, X∗
1 , . . . , X

∗
n. From the simulated draws compute a

statistic of interest, denoted as θ̂(X∗
1 , . . . , X

∗
n). Call this θ̂∗

b for the bth
replicate.

2. Repeat this b = 1, . . . , B times to get a sample of statistics, θ̂∗
1, . . . , θ̂

∗
B.

3. From the sample of statistics in Step 2, {θ̂∗
1, . . . , θ̂

∗
B}, compute a

summary measure of interest.

In this section, we focus on three summary measures, the bias, the standard
deviation, and the mean square error (MSE). Table 8.3 summarizes these three
measures. Here, θ̂∗ is the average of {θ̂∗

1, . . . , θ̂
∗
B}.

Table 8.3. Bootstrap Summary Measures

Population Measure Population Definition Bootstrap Approximation Bootstrap Symbol
Bias E(θ̂) − θ θ̂∗ − θ̂ Biasboot(θ̂)

Standard Deviation
√

Var(θ̂)
√

1
B−1

∑B
b=1

(
θ̂∗

b − θ̂∗
)2

sboot(θ̂)

Mean Square Error E(θ̂ − θ)2 1
B

∑B
b=1

(
θ̂∗

b − θ̂
)2

MSEboot(θ̂)

Example 8.3.1. Bodily Injury Claims and Loss Elimination Ratios.
To show how the bootstrap can be used to quantify the precision of estimators,
we return to the Example 5.3.2 bodily injury claims data where we introduced
a nonparametric estimator of the loss elimination ratio.

Table 8.4 summarizes the results of the bootstrap estimation. For example,
at d = 14000, the nonparametric estimate of LER is 0.97678. This has an
estimated bias of 0.00016 with a standard deviation of 0.00687. For some
applications, you may wish to apply the estimated bias to the original estimate
to give a bias-corrected estimator. This is the focus of the next example. For
this illustration, the bias is small and so such a correction is not relevant.

Table 8.4. Bootstrap Estimates of LER at Selected Deductibles

d NP Bootstrap Bootstrap Lower Normal Upper Normal

Estimate Bias SD 95% CI 95% CI

4000 0.54113 0.00011 0.01237 0.51678 0.56527
5000 0.64960 0.00027 0.01412 0.62166 0.67700

10500 0.93563 0.00004 0.01017 0.91567 0.95553
11500 0.95281 -0.00003 0.00941 0.93439 0.97128
14000 0.97678 0.00016 0.00687 0.96316 0.99008

18500 0.99382 0.00014 0.00331 0.98719 1.00017

../docs/ChapClaimSeverity.html#Ex:53.2
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The bootstrap standard deviation gives a measure of precision. For one appli-
cation of standard deviations, we can use the normal approximation to create a
confidence interval. For example, the R function boot.ci produces the normal
confidence intervals at 95%. These are produced by creating an interval of
twice the length of 1.95994 bootstrap standard deviations, centered about
the bias-corrected estimator (1.95994 is the 97.5th quantile of the standard
normal distribution). For example, the lower normal 95% CI at d = 14000
is (0.97678 − 0.00016) − 1.95994 × 0.00687 = 0.96316. We further discuss
bootstrap confidence intervals in the next section.

Example 8.3.2. Estimating log(µ). The bootstrap can be used to quantify
the bias of an estimator, for instance. Consider here a sample x = {x1, · · · , xn}
that is iid with mean µ.
sample_x <- c(2.46, 2.8, 3.28, 3.86, 2.85, 3.67, 3.37, 3.4, 5.22, 2.55, 2.79, 4.5,

3.37, 2.88, 1.44, 2.56, 2, 2.07, 2.19, 1.77)

Suppose that the quantity of interest is θ = log(µ). A natural estimator would
be θ̂1 = log(x). This estimator is biased (due to the Jensen inequality) but is
asymptotically unbiased. For our sample, the estimate is as follows.
(theta_1 <- log(mean(sample_x)))

[1] 1.08231352

One can use a bootstrap strategy to get a correction: given a bootstrap sample,
x∗

b , let x∗
b denote its mean, and set

θ̂2 = 1
B

B∑
b=1

log(x∗
b).

To implement this, we have the following code where we now use the function
boot from the R package boot.
library(boot)
results <- boot(data = sample_x, statistic = function(y, indices) {

log(mean(y[indices]))
}, R = 1000)
theta_2 <- 2 * theta_1 - mean(results$t)
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Then, you can plot(results) and print(results) to see the following.
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FIGURE 8.10: Distribution of Bootstrap Replicates. The left-hand panel
is a histogram of replicates. The right-hand panel is a quantile-quantile plot,
comparing the bootstrap distribution to the standard normal distribution.

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = sample_x, statistic = function(y, indices) {

log(mean(y[indices]))
}, R = 1000)

Bootstrap Statistics :
original bias std. error

t1* 1.08231352 -0.00438957075 0.0669312212

This results in two estimators, the raw estimator θ̂1 = 1.082 and the bootstrap
estimator θ̂2 = 1.087.

How does this work with differing sample sizes? We now suppose that the xi’s
are generated from a gamma distribution with shape parameter α = 0.25 and
scale parameter θ = 12. We use simulation to draw the sample sizes but then
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act as if they were a realized set of observations. See the following illustrative
code.
param <- function(x) {

n <- length(x)
theta_1 <- log(mean(x))
results <- boot(data = x, statistic = function(y, indices) {

log(mean(y[indices]))
}, R = 999)
theta_2 <- 2 * theta_1 - mean(results$t)
return(c(theta_1, theta_2))

}
set.seed(2074)
ns <- 200
est <- function(n) {

call_param <- function(i) {
param(rgamma(n, shape = 0.25, scale = 12))

}
V <- Vectorize(call_param)(1:ns)
apply(V, 1, median)

}
VN <- seq(15, 100, by = 5)
Est <- Vectorize(est)(VN)

save(VN, Est, file = "../IntermediateCalcs/SimulationChapter/Section832Bootstrap.Rdata")

The results of the comparison are summarized in Figure 8.11. This figure shows
that the bootstrap estimator is closer to the true parameter value for many
of the sample sizes. The bias of both estimators decreases as the sample size
increases.
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FIGURE 8.11: Comparison of Estimates. True value of the parameter is
given by the solid horizontal line at log(3) ≈ 1.099.



8.3 Bootstrapping and Resampling 265

Although successful in this example, we remark that the bootstrap bias ad-
justed estimator is generally not used in practice because the bias adjustment
introduces extra variability into the estimator. Instead, the bias estimate
provides information as to whether or not the estimate contains bias; this
information gives additional information about the reliability of the estimate.

8.3.3 Confidence Intervals

The bootstrap procedure generates B replicates θ̂∗
1, . . . , θ̂

∗
B of the estimator θ̂.

In Example 8.3.1, we saw how to use standard normal approximations to create
a confidence interval for parameters of interest. However, given that a major
point is to use bootstrapping to avoid relying on assumptions of approximate
normality, it is not surprising that there are alternative confidence intervals
available.

For an estimator θ̂, the basic bootstrap confidence interval is(
2θ̂ − qU , 2θ̂ − qL

)
, (8.2)

where qL and qU are lower and upper 2.5% quantiles from the bootstrap sample
θ̂∗

1, . . . , θ̂
∗
B.

To see where this comes from, start with the idea that (qL, qU) provides a
95% interval for θ̂∗

1, . . . , θ̂
∗
B. So, for a random θ̂∗

b , there is a 95% chance that
qL ≤ θ̂∗

b ≤ qU . Reversing the inequalities and adding θ̂ to each side gives a 95%
interval

θ̂ − qU ≤ θ̂ − θ̂∗
b ≤ θ̂ − qL.

So,
(
θ̂ − qU , θ̂ − qL

)
is an 95% interval for θ̂− θ̂∗

b . The bootstrap approximation
idea says that this is also a 95% interval for θ − θ̂. Adding θ̂ to each side gives
the 95% interval in equation (8.2).

Many alternative bootstrap intervals are available. The easiest to explain is
the percentile bootstrap interval which is defined as (qL, qU ). However, this has
the drawback of potentially poor behavior in the tails which can be of concern
in some actuarial problems of interest.

Example 8.3.3. Bodily Injury Claims and Risk Measures. To see how
the bootstrap confidence intervals work, we return to the bodily injury auto
claims considered in Example 8.3.1. Instead of the loss elimination ratio,
suppose we wish to estimate the 95th percentile F−1(0.95) and a measure
defined as

ES0.95[X] = E[X|X > F−1(0.95)].
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This measure is called the expected shortfall. In this formulation, it is the
expected value of X conditional on X exceeding the 95th percentile which is
also sometimes known as the conditional value at risk. Section 13.2 explains how
quantiles and the expected shortfall are the two most important examples of
so-called risk measures. For now, we will simply think of these as measures that
we wish to estimate. For the percentile, we use the nonparametric estimator
F−1

n (0.95) defined in Section 4.4.1. For the expected shortfall, we use the
plug-in principle to define the nonparametric estimator

ESn,0.95[X] =
∑n

i=1 XiI[Xi > F−1
n (0.95)]∑n

i=1 I[Xi > F−1
n (0.95)] .

In this expression, the denominator counts the number of observations that
exceed the 95th percentile F−1

n (0.95). The numerator adds up losses for those
observations that exceed F−1

n (0.95). Table 8.5 summarizes the estimator for
selected fractions.

Table 8.5. Bootstrap Estimates of Quantiles at Selected Fractions

Fraction NP Bootstrap Bootstrap Lower Normal Upper Normal Lower Basic Upper Basic Lower Percentile Upper Percentile

Estimate Bias SD 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI

0.50 6500.00 -128.02 200.36 6235.32 7020.72 6300.00 7000.00 6000.00 6700.00
0.80 9078.40 89.51 200.27 8596.38 9381.41 8533.20 9230.40 8926.40 9623.60
0.90 11454.00 55.95 480.66 10455.96 12340.13 10530.49 12415.00 10493.00 12377.51
0.95 13313.40 13.59 667.74 11991.07 14608.55 11509.70 14321.00 12305.80 15117.10
0.98 16758.72 101.46 1273.45 14161.34 19153.19 14517.44 19326.95 14190.49 19000.00

For example, when the fraction is 0.50, we see that lower and upper 2.5th quan-
tiles of the bootstrap simulations are qL = 6000 and qu = 6700, respectively.
These form the percentile bootstrap confidence interval. With the nonpara-
metric estimator 6500, these yield the lower and upper bounds of the basic
confidence interval 6300 and 7000, respectively. Table 8.5 also shows bootstrap
estimates of the bias, standard deviation, and a normal confidence interval,
concepts introduced in Section 8.3.2.

Table 8.6 shows similar calculations for the expected shortfall. In each case, we
see that the bootstrap standard deviation increases as the fraction increases.
This is because there are fewer observations to estimate quantiles as the fraction
increases, leading to greater imprecision. Confidence intervals also become
wider. Interestingly, there does not seem to be the same pattern in the estimates
of the bias.
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Table 8.6. Bootstrap Estimates of ES at Selected Risk Levels

Fraction NP Bootstrap Bootstrap Lower Normal Upper Normal Lower Basic Upper Basic Lower Percentile Upper Percentile
Estimate Bias SD 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI

0.50 9794.69 -120.82 273.35 9379.74 10451.27 9355.14 10448.87 9140.51 10234.24
0.80 12454.18 30.68 481.88 11479.03 13367.96 11490.62 13378.52 11529.84 13417.74
0.90 14720.05 17.51 718.23 13294.82 16110.25 13255.45 16040.72 13399.38 16184.65
0.95 17072.43 5.99 1103.14 14904.31 19228.56 14924.50 19100.88 15043.97 19220.36
0.98 20140.56 73.43 1587.64 16955.40 23178.85 16942.36 22984.40 17296.71 23338.75

8.3.4 Parametric Bootstrap

The idea of the nonparametric bootstrap is to resample by drawing independent
variables from the empirical cumulative distribution function Fn. In contrast,
with parametric bootstrap, we draw independent variables from F

θ̂
where the

underlying distribution is assumed to be in a parametric family such as a
gamma or lognormal distribution. Typically, parameters from this distribution
are estimated based on a sample and denoted as θ̂.

Example 8.3.4. Lognormal distribution. Consider again the dataset
sample_x <- c(2.46, 2.8, 3.28, 3.86, 2.85, 3.67, 3.37, 3.4, 5.22, 2.55, 2.79, 4.5,

3.37, 2.88, 1.44, 2.56, 2, 2.07, 2.19, 1.77)

The classical (nonparametric) bootstrap was based on the following samples.
x <- sample(sample_x, replace = TRUE)

Instead, for the parametric bootstrap, we have to assume that the distribution
of xi’s is from a specific family. As an example, the following code utilizes a
lognormal distribution.
library(MASS)
fit <- fitdistr(sample_x, dlnorm, list(meanlog = 1, sdlog = 1))
fit

meanlog sdlog
1.0363069735 0.3059343996

(0.0684090114) (0.0483702729)

Then we draw from that distribution.
x <- rlnorm(length(sample_x), meanlog = fit$estimate[1], sdlog = fit$estimate[2])

Figure 8.12 compares the bootstrap distributions for the coefficient of variation,
one based on the nonparametric approach and the other based on a parametric
approach, assuming a lognormal distribution.
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FIGURE 8.12: Comparison of Nonparametric and Parametric Boot-
strap Distributions for the Coefficient of Variation

Example 8.3.5. Bootstrapping Censored Observations. The parametric
bootstrap draws simulated realizations from a parametric estimate of the
distribution function. In the same way, we can draw simulated realizations
from estimates of a distribution function. As one example, we might draw
from smoothed estimates of a distribution function introduced in Section
4.4.1. Another special case, considered here, is to draw an estimate from the
Kaplan-Meier estimator introduced in Section 5.3.3. In this way, we can handle
observations that are censored.

Specifically, return to the bodily injury data in Examples 8.2.1 and 8.2.3 but
now we include the 17 claims that were censored by policy limits. In Example
4.3.6, we used this full dataset to estimate the Kaplan-Meier estimator of the
survival function introduced in Section 5.3.3. Table 8.7 presents bootstrap
estimates of the quantiles from the Kaplan-Meier survival function estimator.
These include the bootstrap precision estimates, bias and standard deviation,
as well as the basic 95% confidence interval.
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Table 8.7. Bootstrap Kaplan-Meier Estimates of Quantiles at Selected
Fractions

Fraction KM NP Bootstrap Bootstrap Lower Basic Upper Basic

Estimate Bias SD 95% CI 95% CI

0.50 6500 18.77 177.38 6067 6869
0.80 9500 167.08 429.59 8355 9949
0.90 12756 37.73 675.21 10812 13677
0.95 18500 Inf NaN 12500 22300
0.98 25000 Inf NaN -Inf 27308

Results in Table 8.7 are consistent with the results for the uncensored subsample
in Table 8.5. In Table 8.7, we note the difficulty in estimating quantiles at
large fractions due to the censoring. However, for moderate size fractions (0.50,
0.80, and 0.90), the Kaplan-Meier nonparametric (KM NP) estimates of the
quantile are consistent with those Table 8.5. The bootstrap standard deviation
is smaller at the 0.50 (corresponding to the median) but larger at the 0.80 and
0.90 levels. The censored data analysis summarized in Table 8.7 uses more data
than the uncensored subsample analysis in Table 8.5 but also has difficulty
extracting information for large quantiles.

8.4 Model Selection and Cross-Validation

In this section, you learn how to:

• Compare and contrast cross-validation to simulation techniques and bootstrap
methods.

• Use cross-validation techniques for model selection
• Explain the jackknife method as a special case of cross-validation and calculate

jackknife estimates of bias and standard errors

Cross-validation, briefly introduced in Chapter 2 and Section 6.5, is a tech-
nique based on simulated outcomes that is especially useful for selecting an
appropriate model. We now compare and contrast cross-validation to other
simulation techniques already introduced in this chapter.

• Simulation, or Monte-Carlo, introduced in Section 8.1, allows us to compute
expected values and other summaries of statistical distributions, such as
p-values, readily.
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• Bootstrap, and other resampling methods introduced in Section 8.3, provides
estimators of the precision, or variability, of statistics.

• Cross-validation is important when assessing how accurately a predictive
model will perform in practice.

Overlap exists but nonetheless it is helpful to think about the broad goals
associated with each statistical method.

To discuss cross-validation, let us recall from Chapter 2 some of the key
ideas of model validation. When assessing, or validating, a model, we look to
performance measured on new data, or at least not those that were used to
fit the model. A classical approach is to split the sample in two: a subpart
(the training dataset) is used to fit the model and the other one (the testing
dataset) is used to validate. However, a limitation of this approach is that
results depend on the split; even though the overall sample is fixed, the split
between training and test subsamples varies randomly. A different training
sample means that model estimated parameters will differ. Different model
parameters and a different test sample means that validation statistics will
differ. Two analysts may use the same data and same models yet reach different
conclusions about the viability of a model (based on different random splits),
a frustrating situation.

8.4.1 k-Fold Cross-Validation

To mitigate this difficulty, it is common to use a cross-validation approach as
introduced in Section 4.2.4. The key idea is to emulate the basic test/training
approach to model validation by repeating it many times through averaging
over different splits of the data. A key advantage is that the validation statistic
is not tied to a specific parametric (or nonparametric) model - one can use a
nonparametric statistic or a statistic that has economic interpretations - and
so this can be used to compare models that are not nested (unlike likelihood
ratio procedures).

Example 8.4.1. Wisconsin Property Fund. For the 2010 property fund
data introduced in Section 1.3, we fit gamma and Pareto distributions to the
1,377 claims data. For details of the related goodness of fit, see Appendix
Section 15.4.4. We now consider the Kolmogorov-Smirnov statistic introduced
in Section 6.1.2. When the entire dataset was fit, the Kolmogorov-Smirnov
goodness of fit statistic for the gamma distribution turns out to be 0.2639 and
for the Pareto distribution is 0.0478. The lower value for the Pareto distribution
indicates that this distribution is a better fit than the gamma.

To see how k-fold cross-validation works, we randomly split the data into
k = 8 groups, or folds, each having about 1377/8 ≈ 172 observations. Then,
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we fit gamma and Pareto models to a data set with the first seven folds (about
172 × 7 = 1, 204 observations), determine estimated parameters, and then
used these fitted models with the held-out data to determine the Kolmogorov-
Smirnov statistic.

The results appear in Figure 8.13 where horizontal axis is Fold=1. This process
was repeated for the other seven folds. The results summarized in Figure
8.13 show that the Pareto consistently provides a more reliable predictive
distribution than the gamma.
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FIGURE 8.13: Cross Validated Kolmogorov-Smirnov (KS) Statistics
for the Property Fund Claims Data. The solid black line is for the Pareto
distribution, the green dashed line is for the gamma distribution. The KS
statistic measures the largest deviation between the fitted distribution and the
empirical distribution for each of 8 groups, or folds, of randomly selected data.

8.4.2 Leave-One-Out Cross-Validation

A special case where k = n is known as leave-one-out cross validation. This
case is historically prominent and is closely related to jackknife statistics, a
precursor of the bootstrap technique.

Even though we present it as a special case of cross-validation, it is helpful
to given an explicit definition. Consider a generic statistic θ̂ = t(x) that is an
estimator for a parameter of interest θ. The idea of the jackknife is to compute
n values θ̂−i = t(x−i), where x−i is the subsample of x with the i-th value
removed. The average of these values is denoted as
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θ̂(·) = 1
n

n∑
i=1

θ̂−i.

These values can be used to create estimates of the bias of the statistic θ̂

Biasjack = (n− 1)
(
θ̂(·) − θ̂

)
(8.3)

as well as a standard deviation estimate

sjack =
√√√√n− 1

n

n∑
i=1

(
θ̂−i − θ̂(·)

)2
. (8.4)

Example 8.4.2. Coefficient of Variation. To illustrate, consider a small
fictitious sample x = {x1, . . . , xn} with realizations
sample_x <- c(2.46, 2.8, 3.28, 3.86, 2.85, 3.67, 3.37, 3.4, 5.22, 2.55, 2.79, 4.5,

3.37, 2.88, 1.44, 2.56, 2, 2.07, 2.19, 1.77)

Suppose that we are interested in the coefficient of variation θ = CV =√
Var [X]/E [X].

With this dataset, the estimator of the coefficient of variation turns out to
be 0.31196. But how reliable is it? To answer this question, we can compute
the jackknife estimates of bias and its standard deviation. The following code
shows that the jackknife estimator of the bias is Biasjack = -0.00627 and the
jackknife standard deviation is sjack = 0.01293.
# Sample Code for Example 8.4.2
CVar <- function(x) sqrt(var(x))/mean(x)
JackCVar <- function(i) sqrt(var(sample_x[-i]))/mean(sample_x[-i])
JackTheta <- Vectorize(JackCVar)(1:length(sample_x))
BiasJack <- (length(sample_x) - 1) * (mean(JackTheta) - CVar(sample_x))
sdJack <- sd(JackTheta)

Example 8.4.3. Bodily Injury Claims and Loss Elimination Ratios.
In Example 8.3.1, we showed how to compute bootstrap estimates of the
bias and standard deviation for the loss elimination ratio using the Example
4.1.11 bodily injury claims data. We follow up now by providing comparable
quantities using jackknife statistics.

Table 8.8 summarizes the results of the jackknife estimation. It shows that
jackknife estimates of the bias and standard deviation of the loss elimination
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ratio E [min(X, d)]/E [X] are largely consistent with the bootstrap method-
ology. Moreover, one can use the standard deviations to construct normal
based confidence intervals, centered around a bias-corrected estimator. For
example, at d = 14000, we saw in Example 4.1.11 that the nonparametric
estimate of LER is 0.97678. This has an estimated bias of 0.00010, resulting in
the (jackknife) bias-corrected estimator 0.97688. The 95% confidence intervals
are produced by creating an interval of twice the length of 1.96 jackknife
standard deviations, centered about the bias-corrected estimator (1.96 is the
approximate 97.5th quantile of the standard normal distribution).

Table 8.8. Jackknife Estimates of LER at Selected Deductibles

d NP Bootstrap Bootstrap Jackknife Jackknife Lower Jackknife Upper Jackknife
Estimate Bias SD Bias SD 95% CI 95% CI

4000 0.54113 0.00011 0.01237 0.00031 0.00061 0.53993 0.54233
5000 0.64960 0.00027 0.01412 0.00033 0.00068 0.64825 0.65094

10500 0.93563 0.00004 0.01017 0.00019 0.00053 0.93460 0.93667
11500 0.95281 -0.00003 0.00941 0.00016 0.00047 0.95189 0.95373
14000 0.97678 0.00016 0.00687 0.00010 0.00034 0.97612 0.97745
18500 0.99382 0.00014 0.00331 0.00003 0.00017 0.99350 0.99415

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).

Discussion. One of the many interesting things about the leave-one-out special
case is the ability to replicate estimates exactly. That is, when the size of
the fold is only one, then there is no additional uncertainty induced by the
cross-validation. This means that analysts can exactly replicate work of one
another, an important consideration.

Jackknife statistics were developed to understand precision of estimators,
producing estimators of bias and standard deviation in equations (8.3) and
(8.4). This crosses into goals that we have associated with bootstrap techniques,
not cross-validation methods. This demonstrates how statistical techniques
can be used to achieve different goals.

8.4.3 Cross-Validation and Bootstrap

The bootstrap is useful in providing estimators of the precision, or variability, of
statistics. It can also be useful for model validation. The bootstrap approach to
model validation is similar to the leave-one-out and k-fold validation procedures:

• Create a bootstrap sample by re-sampling (with replacement) n indices in



274 8 Simulation and Resampling

{1, · · · , n}. That will be our training sample. Estimate the model under
consideration based on this sample.

• The test, or validation sample, consists of those observations not selected for
training. Evaluate the fitted model (based on the training data) using the
test data.

Repeat this process many (say B) times. Take an average over the results and
choose the model based on the average evaluation statistic.

Example 8.4.4. Wisconsin Property Fund. Return to Example 8.3.1
where we investigate the fit of the gamma and Pareto distributions on the
property fund data. We again compare the predictive performance using the
Kolmogorov-Smirnov (KS) statistic but this time using the bootstrap procedure
to split the data between training and testing samples. The following provides
illustrative code.

We did the sampling using B = 100 replications. The average KS statistic
for the Pareto distribution was 0.058 compared to the average for the gamma
distribution, 0.262. This is consistent with earlier results and provides another
piece of evidence that the Pareto is a better model for these data than the
gamma.

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).

8.5 Further Resources and Contributors

Section 8.4.2 presented the jackknife statistic as an application of (leave one
out) cross-validation methods. Another way to present this material is to
consider the historical development. Efron (1982) attributes the jackknife idea
to Quenouille (1949). Even in this simpler time before modern computing
power became widely available, the jackknife provided a handy tool to estimate
the bias and standard deviation for virtually any statistic. In addition, this
provided motivation for the 1979 introduction of the bootstrap in Efron (1979)
(see also Efron (1992)). The bootstrap provided a tool to understand the
uncertainty of a statistic, including the standard deviation.

The presentation in this book, outlined in Chapter 2, follows strategies adopted
by analysts. We think of the jackknife and the bootstrap as tools that helps
one understand qualities of a statistic of interest. In addition, cross-validation
is a resampling strategy primarily devoted to model validation. As noted in
Efron (1982), the historical development of cross-validation is a bit murkier. It
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is a method borne from the very simple strategy of splitting a sample in half,
then using a model trained on one half to predict performance in the other
half. Comparing cross-validation methods to the jackknifing and bootstrapping
techniques, all are based on resampling. In addition, questions of statistical
inference naturally overlap with model validation issues, so there is a natural
overlap among these methods.

• For further reading, a classic, and still very readable, introduction to the
jackknife and bootstrap is provided by Efron (1982).

• Here are some links to learn more about reproducibility and randomness and
how to go from a random generator to a sample function.
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9
Bayesian Statistics and Modeling

Chapter Preview. Up to this point in the book, we have focused almost ex-
clusively on the frequentist approach to estimate our various loss distribution
parameters. In this chapter, we switch gears and discuss a different paradigm:
Bayesianism. These approaches are different as Bayesian and frequentist statis-
ticians disagree on the source of the uncertainty: Bayesian statistics assumes
that the observed data sample is fixed and that model parameters are random,
whereas frequentism considers the opposite (i.e., the sample data are random,
and the model parameters are fixed but unknown).

In this chapter, we introduce Bayesian statistics and modeling with a particular
focus on loss data analytics. We begin in Section 9.1 by explaining the basics of
Bayesian statistics: we compare it to frequentism and provide some historical
context for the paradigm. We also introduce the seminal Bayes’ rule that serves
as a key component in Bayesian statistics. Then, building on this, we present the
main ingredients of Bayesian statistics in Section 9.2: the posterior distribution,
the likelihood function, and the prior distribution. Section 9.3 provides some
examples of simple cases where the prior distribution is chosen for algebraic
convenience, giving rise to a closed-form expression for the posterior; these are
called conjugate families in the literature. Section 9.4 is dedicated to cases where
we cannot get closed-form expressions and for which numerical integration
is needed. Specifically, we discuss two influential Markov chain Monte Carlo
samplers: the Gibbs sampler and the Metropolis–Hastings algorithm. We also
discuss how to interpret the chains obtained by these methods (i.e., Markov
chain diagnostics). Finally, the last section of this chapter, Section 9.5, explains
the main computing resources available and gives an illustration in the context
of loss data.

277
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9.1 A Gentle Introduction to Bayesian Statistics

In Section 9.1, you learn how to:

• Describe qualitatively Bayesianism as an alternative to the frequentist ap-
proach.

• Give the historical context for Bayesian statistics.
• Use Bayes’ rule to find conditional probabilities.
• Understand the basics of Bayesian statistics.

9.1.1 Bayesian versus Frequentist Statistics

Classic frequentist statistics rely on frequentist probability—an interpretation
of probability in which an event’s probability is defined as the limit of its
relative frequency (or propensity) in many, repeatable trials. It draws conclusion
from a sample that is one of many hypothetical datasets that could have been
collected; the uncertainty is therefore due to the sampling error associated
with the sample, while model parameters and various quantities of interest are
fixed (but unknown to the experimenter).

Example 9.1.1. Coin Toss. Considering the simple case of coin tossing, if we
flip a fair coin many times, we expect to see heads about 50% of the time. If
we flip the coin only a few times, however, we could see a different sample just
by chance. Indeed, there is a non-zero probability of observing all heads (and
this even if the sample is very large). Figure 9.1 illustrates this the number of
heads observed in 100 samples of five iid tosses; in this specific example, we
observe six samples for which all tosses are heads.1

Yet, as the sample size increases, the relative frequency of heads should get
closer to 50% if the coin is fair. Figure 9.2 reports that, if the number of tosses
increases, then relative frequency of heads gets closer to 0.5—the probability
of seeing heads on a given coin toss. In other words, increasing the sample size
makes the resulting parameter estimate less uncertain, and the experimenter
should be reaching a probability of 0.5 in the limit, assuming they can reproduce
the experiment an infinite number of times.

1Each coin toss can be seen as a Bernoulli random variable, meaning that their sum is a
binomial with parameters q = 0.5 and m = 5. See Chapter 20.1 for more details.
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FIGURE 9.1: Frequency histogram of the number of heads in a sample
of five data points
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FIGURE 9.2: Cumulative relative frequencies of heads for an increasing
sample size
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Bayesians see things differently: they interpret probabilities as degrees of
certainty about some quantity of interest. To find such probabilities, they draw
on prior knowledge about those quantities, expressing one’s beliefs before some
data are taken into account. Then, as data are collected, knowledge about
the world is updated, allowing us to incorporate such new information in a
consistent manner; the resulting distribution is referred to as the posterior,
which summarizes the information in both the prior and the data.

In the context of Bayesian statistics and modeling, this interpretation of prob-
ability implies that model parameters are assumed to be random variables—
unlike the frequentist approach that considers them fixed. Starting from the
prior distribution, the data—summarized via the likelihood function—are used
to update the prior distribution and create a posterior distribution of the
parameters (see Section 9.2 for more details on the posterior distribution,
the likelihood function, and the prior distribution). The influence of the prior
distribution on the posterior distribution becomes weaker as the size of the
observed data sample increases: the prior information is less and less relevant
as new information comes in.

Example 9.1.1. Coin Toss, continued. We now reconsider the coin tossing
experiment above through a Bayesian lens. Let us first assume that we have a
(potentially unfair) coin, and we wish to understand the probability of obtaining
heads, denoted by q in this example. Consistent with the Bayesian paradigm,
this parameter is random; let us assume that the random variable associated
with the probability of observing heads is denoted by Q. For simplicity, we
assume that we do not have prior information on the specific coin under
investigation.2 Assuming again that our sample contains only five iid tosses,
we know that the probability of observing x heads is given by the binomial
distribution with m = 5 such that

pX|Q=q(x) = Pr(X = x |Q = q) =
(

5
x

)
qx(1 − q)5−x, x ∈ {0, 1, ..., 5},

where 0 ≤ q ≤ 1, which emphasizes the fact that this probability depends on
parameter q by explicitly conditioning on it (unlike the notation used so far in
this book, note that we append subscripts to the various pdf and pmf in this
chapter to denote the random variables under study; this additional notation
allows us to consider the pdf and pmf of different random variables in the same
problem).

2Specifically, we use a uniform over [0, 1] for our prior distribution. As explained in
Section 9.2.3, this type of prior is said to be noninformative.
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Let us generate a sample of these five tosses:
set.seed(1)
nbheads <- c(1)
num_flips <- 5
coin <- c("heads", "tails")
flips <- sample(coin, size = 5, replace = TRUE)
nbheads <- sum(flips == "heads")
cat("Number of heads:", nbheads)

Number of heads: 3

Based on this simulation, we obtain a data sample that contains three heads
and two tails. Therefore, using Bayesian statistics, we can show that

fQ|X=3(q) ∝ q3(1 − q)2,

where ∝ means proportional to (note that obtaining this equation requires
some tools that will be introduced in Section 9.2).3 Figure 9.3 illustrates this
pdf and reports the uncertainty about parameter q based on this sample of
five data points. In this example, one can see that the uncertainty is quite
large; this is a by-product of using only five data points. Indeed, based on
these five observations, one could argue that the probability should be close to
3
5 = 0.6. This Bayesian analysis shows that 0.6 is likely, but that it is also very
uncertain—a conclusion that is not direct in the frequentist approach.
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FIGURE 9.3: Posterior probability density function of parameter q
for a sample of five data points

Figure 9.4 reports the analog of Figure 9.2 through a Bayesian lens: we see the
3This is also an application of the beta–binomial conjugate family that will be explained

in Section 9.3.1
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evolution of the posterior density of parameter q as a function of the sample
size for the same sample used in Figure 9.2. As we obtain more evidence, the
posterior density becomes more concentrated around 0.5—a consequence of
using a fair coin in the simulations above. Yet, even if the sample size if 1,000,
we still see some parameter uncertainty.

FIGURE 9.4: Posterior probability density function of parameter q as
a function of the sample size

But why be Bayesian? There are indeed several advantages to the Bayesian
approach. First, this approach allows us to describe the entire distribution
of parameters conditional on the data and to provide probability statements
regarding the parameters that could be interpreted as such. Second, it provides a
unified approach for estimating parameters. Some non-Bayesian methods, such
as least squares, require a separate approach to estimate variance components.
In contrast, in Bayesian methods, all parameters can be treated in a similar
fashion. Third, it allows experimenters to blend prior information from other
sources with the data in a coherent manner.4

Are there any disadvantages to being Bayesian? Well, of course: while
the Bayesian approach has many advantages, it is not without its disadvan-

4There is also a rich history blending prior information with data in loss modeling and in
actuarial science, generally speaking; it is known as credibility. In technical terms, credibility
theory’s main challenge lies in identifying the optimal linear approximation to the mean
of the Bayesian predictive density. This is the reason credibility theory shares numerous
outcomes with both linear filtering and the broader field of Bayesian statistics. For more
details on experience rating using credibility theory, see Chapter 12.
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tages. First, it tends to be very computationally demanding (i.e., Bayesian
methods often require complex computations, especially when dealing with
high-dimensional problems or large datasets). For instance, complex models
may not have closed-form solutions and require specialized computational
techniques, which can be time-consuming. Second, there is some subjectivity
in selecting priors—our initial beliefs and knowledge about the parameters—
and this can lead to different results in the end. Third, Bayesian analysis
often produces results that can be challenging to communicate effectively to
non-experts.

Despite these disadvantages, the Bayesian approach remains powerful and
flexible for many actuarial problems.

Do I need to be a Bayesian to embrace Bayesian statistics? No, this can
be decided on a case-by-case basis. Consider a Bayesian study when you have
prior knowledge or beliefs about the parameters, need to explicitly quantify
uncertainty in your estimates, have limited data, require a flexible framework
for complex models, or when decision-making under uncertainty is a key aspect
of your analysis.

Even if one does not want to be a Bayesian truly, they can still recognize the
usefulness of some of the methods. Indeed, some modern statistical tools in
artificial intelligence and machine learning rely heavily on Bayesian techniques
(e.g., Bayesian neural networks, Gaussian processes, and Bayesian classifiers,
to name a few).

9.1.2 A Brief History Lesson

Interestingly, some have argued that the birth of Bayesian statistics is intimately
related to insurance; see, for instance, Cowles (2013). Specifically, the Great
Fire of London in 1666—destroying more than 10,000 homes and about 100
churches—led to the rise of insurance as we know it today. Shortly after,
the first full-fledged fire insurance company came into existence in England
during the 1680s. By the turn of the century, the idea of insurance was well
ingrained and its use was booming in England; see, for instance, Haueter (2017).
Yet, the lack of statistical models and methods—much needed to understand
risk—drove some insurers to bankruptcy.

Thomas Bayes, an English statistician, philosopher and Presbyterian minister,
applied his mind to some of these important statistical questions raised by
insurers. This culminated into Bayes’ theory of probability in his seminal essay
entitled Essay towards solving a problem in the doctrine of chances, published
posthumously in 1763. This essay laid out the foundation of what we now
know as Bayesian statistics.
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FIGURE 9.5: Portrait of an unknown Presbyterian clergyman identi-
fied as Thomas Bayes in O’Donnell (1936)

Thomas Bayes’ work also helped Pierre-Simon Laplace, a famous French
scholar and polymath, to develop and popularize the Bayesian interpretation
of probability in the late 1700s and early 1800s. He also moved beyond Bayes’
essay and generalized his framework. Laplace’s efforts were followed by many,
and Bayesian thinking continued to progress throughout the years with the
help of statisticians like Bruno de Finetti, Harold Jeffreys, Dennis Lindley, and
Leonard Jimmie Savage.

Nowadays, Bayesian statistics and modeling is widely used in science, thanks to
the increase in computational power over the past 30 years. Actuarial science
and loss modeling, more specifically, have also been breeding grounds for
Bayesian methodology. So, Bayesian statistics circles back to insurance, in a
sense, where it all started.

9.1.3 Bayes’ Rule

This subsection introduces how the Bayes’ rule is applied to calculating condi-
tional probabilities for events.

Conditional Probability. The concept of conditional probability considers
the relationship between probabilities of two (or more) events happening. In
its most simple form, being interested in conditional probability boils down to
answering this question: given that event B happened, how does this affect the
probability that A happens? To answer this question, we can define formally
the concept of conditional probability:

Pr (A |B) = Pr(A ∩B)
Pr(B) .

To be properly defined, we must assume that Pr(B) is larger than zero; that
is, event B is not impossible. Simply put, a conditional probability turns B
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into the new probability space, and then cares only about the part of A that
is inside B (i.e., A ∩B).

Example 9.1.2. Actuarial Exam Question. An insurance company esti-
mates that 40% of policyholders who have an extended health policy but no
long-term disability policy will renew next year, and 70% of policyholders who
have a long-term disability policy but no extended health policy will renew
next year. The company also estimates that 50% of their clients who have both
policies will renew at least one next year. The company records report that
65% of clients have an extended health policy, 40% have a long-term disability
policy, and 10% have both. Using the data above, calculate the percentage of
policyholders that will renew at least one policy next year.5

Example Solution. Let E be the event that a policyholder has an extended
health policy, D be the event that a policyholder has a long-term disability policy,
and R be the event that a policyholder renews a policy. We are given:

- Pr(E) = 0.65, - Pr(D) = 0.40, - Pr(E ∩ D) = 0.10, - Pr(R | E ∩ Dc) = 0.40, -
Pr(R | Ec ∩ D) = 0.70, - Pr(R | E ∩ D) = 0.50.

We are looking for Pr(R).

Note that

Pr(E ∩ Dc) = Pr(E) − Pr(E ∩ D) = 0.65 − 0.10 = 0.55,

and
Pr(Ec ∩ D) = Pr(D) − Pr(E ∩ D) = 0.40 − 0.10 = 0.30.

Moreover, note that E ∩ Dc, Ec ∩ D, and E ∩ D are mutually disjoint, and that=

Pr(R) = Pr(R ∩ (E ∩ Dc)) + Pr(R ∩ (Ec ∩ D)) + Pr(R ∩ (E ∩ D))
= Pr(R | (E ∩ Dc)) Pr(E ∩ Dc) + Pr(R | (Ec ∩ D)) Pr(Ec ∩ D)

+ Pr(R | (E ∩ D)) Pr(E ∩ D)
= 0.40 × 0.55 + 0.70 × 0.30 + 0.50 × 0.10
= 0.48.

Independence. If two events are unrelated to one another, we say that they
are independent. Specifically, A and B are independent if

Pr(A ∩B) = Pr(A) Pr(B).
5This question was adapted from the Be An Actuary website. See here for more details.

https://www.beanactuary.org/do_the_math/do-the-math-q4/
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For positive probability events, independence between A and B is also equiva-
lent to

Pr(A |B) = Pr(A) and Pr(B |A) = Pr(B),

which means that the occurrence of event B does not have an impact on the
occurrence of A, and vice versa.

Bayes’ Rule. Intuitively speaking, Bayes’ rule provides a mechanism to put
our Bayesian thinking into practice. It allows us to update our information by
combining the data—from the likelihood—and the prior together to obtain a
posterior probability.

Proposition 9.1.1. Bayes’ Rule for Events. For events A and B, the
posterior probability of event A given B follows

Pr(A |B) = Pr(B |A) Pr(A)
Pr(B) ,

where the law of total probability allows us to find

Pr(B) = Pr(A) Pr(B |A) + Pr(Ac) Pr(B |Ac).

Note, again, that this works as long as event B is possible (i.e., Pr(B) > 0).6

Proof. Bayes’ rule may be derived from the definition of conditional probability
shown above:

Pr(A | B) = Pr(A ∩ B)
Pr(B)

if Pr(B) > 0. Similarly,

Pr(B | A) = Pr(A ∩ B)
Pr(A)

if Pr(A) > 0. Solving for Pr(A ∩ B) in the last equation and substituting into
the first one yields Bayes’ rule:

Pr(A | B) = Pr(B | A) Pr(A)
Pr(B) .

6The law of total probability states that the total probability of an event B is equal
to the sum of the probabilities of B occurring under different conditions, weighted by the
probabilities of those conditions. In the case where there are only two different conditions
(let us say A and Ac), we simply need to consider these two conditions. In all generality,
however, we would need to consider more possibilities if the sample space cannot be divided
into only two events.
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Simply put, the posterior probability of event A given B is obtained by
combining the likelihood of B given a fixed A—proxied by Pr(B |A)—with
the prior probability of observing A, and then dividing it by the marginal
probability of event B to make sure that the probabilities sum up to one.

Example 9.1.3. Actuarial Exam Question. An automobile insurance
company insures drivers of all ages. An actuary compiled the probability of
having an accident for some age bands as well as an estimate of the portion of
the company’s insured drivers in each age band:

Age of Driver Probability of Accident Portion of Company’s
Insured Drivers

16-20 0.06 0.08
21-30 0.03 0.15
31-65 0.02 0.49
66-99 0.04 0.28

A randomly selected driver that the company insures has an accident. Calculate
the probability that the driver was age 16-20.7

Example Solution. Let B be the event of an insured driver having an accident,
and let

- A1 be the event related to the driver’s age being in the range 16-20,
- A2 be the event related to the driver’s age being in the range 21-30,
- A3 be the event related to the driver’s age being in the range 31-65,
- A4 be the event related to the driver’s age being in the range 66-99.

Then,

Pr(A1 | B) = Pr(B | A1) Pr(A1)
Pr(B | A1) Pr(A1) + Pr(B | A2) Pr(A2) + Pr(B | A3) Pr(A3) + Pr(B | A4) Pr(A4)

= 0.06 × 0.08
0.06 × 0.08 + 0.03 × 0.15 + 0.02 × 0.49 + 0.04 × 0.28

= 0.1584.

9.1.4 An Introductory Example of Bayes’ Rule

The example above illustrates how to use Bayes’ rule in an academic context;
the focus of this book is, nonetheless, data analytics. We therefore also wish to
illustrate Bayes’ rule by using real data. In this introductory example, we use

7This question was taken from the Society of Actuaries Sample Questions for Exam P.
See here for more details.

https://www.soa.org/globalassets/assets/files/edu/edu-exam-p-sample-quest.pdf
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the Singapore auto data sgautonb of the R package CASdatasets that was
already used in Chapter 3.
library("CASdatasets")
data(sgautonb)

This dataset contains information about the number of car accidents and some
risk factors (i.e., the type of the vehicle insured, the age of the vehicle, the
sex of the policyholder, and the age of the policyholder grouped into seven
categories).8

Example 9.1.4. Singapore Insurance Data. A new insurance company—
targeting an older segment of the population—estimates that 20% of their
policyholders will be 65 years old and older. The actuaries working at the
insurance company believes that the Singapore insurance dataset is credible
to understand the accident occurrence of the new company. Based on this
information, find the probability that a randomly selected driver who has (at
least) one accident, is 65 years or older.

Example Solution. Let O denote the event related to the policyholder being
65 years old and older (i.e., Age Category 6 in the dataset), and A the event of a
policyholder having at least an accident. Using Bayes’ rule, we have that

Pr(O | A) = Pr(A | O) Pr(O)
Pr(A) ,

where the prior probability Pr(O) is given by the problem statement: Pr(O) =
0.20. This implies that Pr(Oc) = 1 − 0.20 = 0.80. From the Singapore insurance
data, we know that Pr(A | O) = 0.1082803 and Pr(A | Oc) = 0.06415506, which
allow us to use the law of total probability to obtain:

Pr(A) = Pr(A | O) Pr(O) + Pr(A | Oc) Pr(Oc).

# Example 9.1.4 Illustrative Code
n <- length(sgautonb$AgeCat)
nO <- sum(sgautonb$AgeCat == 6)
nOc <- sum(sgautonb$AgeCat != 6)
nAandO <- sum(sgautonb$AgeCat == 6 & sgautonb$Clm_Count > 0)

8The data are from the General Insurance Association of Singapore, an organization
consisting of non-life insurers in Singapore. These data contain the number of car accidents
for n = 7,483 auto insurance policies with several categorical explanatory variables and the
exposure for each policy.
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nAandOc <- sum(sgautonb$AgeCat != 6 & sgautonb$Clm_Count > 0)

PAO <- nAandO/nO
PAOc <- nAandOc/nOc

POA <- PAO * 0.2/(PAO * 0.2 + PAOc * 0.8)
cat("The probability that policyholder having accident \n is 65 years old and older is",

POA)

The probability that policyholder having accident
is 65 years old and older is 0.296739115

The probability that a randomly selected driver who has (at least) one accident,
is 65 years or older is therefore about 29.7

In the next section, we expand on the idea of Bayes’ rule and apply it to
slightly more general cases involving random variables instead of events.

9.2 Building Blocks of Bayesian Statistics

In Section 9.2, you learn how to:

• Describe the main components of Bayesian statistics; that is, the posterior
distribution, the likelihood function, and the prior distribution.

• Summarize the different classes of priors used in practice.

Proposition 9.1.1 above deals with the elementary case of Bayes’ rule for events.
Although this version of Bayes’ rule is useful to understand the foundation of
Bayesian statistics, we will need slightly more general versions of it to achieve
our aim. Specifically, Proposition 9.1.1 needs to be generalized to the case of
random variables.

Let us first consider the case of discrete random variables. Assume X and Y
are both discrete random variables that allow for the following joint pmf of

pX,Y (x, y) = Pr(X = x and Y = y)
as well as the following marginal distributions for X and Y :
pX(x) = Pr(X = x) =

∑
k

pX,Y (x, k) and pY (y) = Pr(Y = y) =
∑

k

pX,Y (k, y),
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respectively. Using the result of Proposition 9.1.1 and setting event A as
{Y = y} and B as {X = x} yields

pY |X=x(y) =
pX|Y =y(x) pY (y)

pX(x) ,

where pY |X=x(y) = Pr (Y = y |X = x) is the conditional pmf of Y conditional
on X being equal to x. Using the law of total probability,

pX(x) =
∑

k

pX,Y (x, k) =
∑

k

pX|Y =k(x) pY (k),

we can rewrite the denominator above to get the following version of Bayes’
rule:

pY |X=x(y) =
pX|Y =y(x) pY (y)∑
k pX|Y =k(x) pY (k) .

We can also obtain a similar Bayes’ rule for continuous random variables by
replacing probability mass functions by probability density functions, and sums
by integrals.

Proposition 9.2.1. Bayes’ Rule for Continuous Random Variables.
For two continuous random variables X and Y , the conditional probability
density function of Y given X = x follows

fY |X=x(y) =
fX|Y =y(x) fY (y)

fX(x) ,

where the marginal distributions of X and Y are given as follows:

fX(x) =
∫ ∞

−∞
fX,Y (x, u) du and fY (y) =

∫ ∞

−∞
fX,Y (u, y) du,

respectively. Similar to the discrete random variable case, we can swap the
denominator of the equation above for

fX(x) =
∫ ∞

−∞
fX,Y (x, u) du =

∫ ∞

−∞
fX|Y =u(x) fY (u) du

by using the law of total probability.

Proof. Bayes’ rule for continuous random variables may be derived from the
definition of conditional probability density functions:

fY |X=x(y) = fX,Y (x, y)
fX(x) ,
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if fX(x) > 0. Similarly,

fX|Y =y(x) = fX,Y (x, y)
fY (y) .

if fY (y) > 0. Solving for fX,Y (x, y) in the last equation and substituting into the
first one yields Bayes’ rule for continuous random variables:

fY |X=x(y) =
fX|Y =y(x) fY (y)

fX(x) .

Note that one can mix the discrete and continuous definitions of Bayes’ rule to
accommodate for cases where the parameters have continuous random variables
and the observations are expressed via discrete random variables, or vice versa.

9.2.1 Posterior Distribution

Model parameters are assumed to be random variables under the Bayesian
paradigm, meaning that Bayes’ rule for (discrete or continuous) random vari-
ables can be applied to update the prior knowledge about parameters by using
new data. This is indeed similar to the process used in Section 9.1.1.

Let us consider only one unknown model parameter θ associated with random
variable Θ for now.9 Further, consider n observations

x = (x1, x2, ..., xn),

which are realizations of the collection of random variables

X = (X1, X2, ..., Xn).

If Y in Proposition 9.2.1 is replaced by Θ and X by X, we obtain

fΘ|X=x(θ) =
fX|Θ=θ(x) fΘ(θ)

fX(x) ,

which represents the posterior distribution of the model parameter after up-
dating the distribution based on the new observations x, and where

• fX|Θ=θ(x) is the likelihood function, also known as the conditional joint pdf
of the observations assuming a given value of parameter θ,

• fΘ(θ) is the unconditional pdf of the parameter that represents the prior
information, and

9For the sake of simplicity, we only consider one parameter in our derivation here. Note
that, later, we will consider cases with more than one parameter and that this extension
does not change the bulk of our results and derivations.
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• fX(x) is the marginal likelihood, which is a constant term with respect to θ,
making the posterior density integrate to one.

In other words, Bayes’ rule provides a way to update the prior distribution of
the parameter into a posterior distribution—by considering the observations x.

Note that the marginal likelihood is constant once we have the observations.
It does not depend on θ and does not impact the overall shape of the pdf: it
only provides the adequate scaling to ensure that the density integrates to one.
For this reason, it is common to write down the posterior distribution using a
proportional relationship instead:

fΘ|X=x(θ) ∝ fX|Θ=θ(x)︸ ︷︷ ︸
Likelihood

fΘ(θ)︸ ︷︷ ︸
Prior

.

Example 9.2.1. A Problem Inspired from Meyers (1994). A car in-
surance pays the following (independent) claim amounts on an automobile
insurance policy:

1050, 1250, 1550, 2600, 5350, 10200.

The amount of a single payment is distributed as a single-parameter Pareto
distribution with θ = 1000 and α unknown, such that

fXi|A=α(xi) = α 1000α

xα+1
i

, xi ∈ R+.

We assume that the prior distribution of α is given by a gamma distribution
with shape parameter 2 and scale parameter 1, and its pdf is given by

fA(α) = α e−α, α ∈ R+.

Find the posterior distribution of parameter α.

Example Solution. The likelihood function is constructed by multiplying the
pdf of the single payment amounts because they are independent; that is,

fX|A=α(x) =
6∏

i=1
fXi|A=α(x) = α6 10006α∏6

i=1 xα+1
i

= α6 e−5.66518α−41.44653.

The posterior distribution is given by

fA|X=x(α) = α7 e−6.66518α−41.44653∫∞
0 α7 e−6.66518α−41.44653 dα

= α7 e−6.66518α∫∞
0 α7 e−6.66518α dα

.

Interestingly, we do not need to solve the integral in the denominator to find this
distribution. As we know that the results should be a proper pdf and that the
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numerator looks like a gamma distribution, we can deduce that

fA|X=x(α) = 6.665188

Γ(8) α7 e−6.66518 α,

which is a gamma distribution with shape parameter 8 and scale parameter
1

6.66518 . Figure 9.6 reports the posterior distribution of α.
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FIGURE 9.6: Posterior densities of parameter α

The discussion above considered continuous random variables, but the same
logic can be applied to discrete random variables by replacing probability
density functions by probability mass functions.

Example 9.2.2. Coin Toss Revisited. Assume that you observe three heads
out of five (independent) tosses. Each toss has a probability of q of observing
heads and 1−q of observing tails. Find the posterior distribution of q assuming
a uniform prior distribution over the interval [0, 1].

Example Solution. The prior distribution of q is given by

fQ(q) = 1, q ∈ [0, 1].

Assuming the likelihood function conditional on Q = q is given by a binomial
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distribution with m = 5 and x = 3,

pX|Q=q(x) =
(

5
3

)
q3(1 − q)2,

we have that the posterior distribution of q is given by

fQ|X=3(q) ∝ pX|Q=q(x) fQ(q) = q3 (1 − q)2,

which is a beta distribution with a = 4, b = 3, and θ = 1; that is, we can easily
deduce that

fQ|X=3(q) = Γ(7)
Γ(4)Γ(3) q3 (1 − q)2.

In the following subsections, we will discuss at greater length the two main
building blocks used to build the posterior distribution: the likelihood function
and the prior distribution.

9.2.2 Likelihood Function

The likelihood function is a fundamental concept in statistics. It is used to
estimate the parameters of a statistical model based on observed data. As
mentioned in previous chapters, the likelihood function can be used to find the
maximum likelihood estimator. In Bayesian statistics, the likelihood function
is used to update the prior based on the evidence (or data).

As explained above and in Chapter 17, the likelihood function is defined as the
conditional joint pdf or pmf of the observed data, given the model parameters.
In other words, it is the probability of observing the data given a specific
parameter values.

Mathematically, the likelihood function is written as fX|Θ=θ(x) (for continuous
random variables) or pX|Θ=θ(x) (for discrete random variables). Note that,
throughout the book, the notation L(θ|x) has also been used for the likelihood
function, and we will use both interchangeably in this chapter.

Special Case: Independent and Identically Distributed Observations.
Oftentimes, in many problems and real-world applications, the observations are
assumed to be iid. If they are, then we can easily write the likelihood function
as:

fX|Θ=θ(x) =
n∏

i=1
fXi|Θ=θ(xi) or pX|Θ=θ(x) =

n∏
i=1

pXi|Θ=θ(xi).
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9.2.3 Prior Distribution

In the Bayesian paradigm, the prior distribution represents our knowledge
or beliefs about the unknown parameters before we observe any data. It is a
probability distribution that expresses the uncertainty about the values of the
parameters. The prior distribution is typically specified by choosing a family
of probability distributions and selecting specific values for its parameters.

The choice of prior distribution is subjective and often based on external
information or previous studies. In some cases, noninformative priors can be
used, which represent minimal prior knowledge or assumptions about the
parameters. In other cases, informative and weakly informative priors can be
used, which incorporate prior knowledge or assumptions based on external
sources. The selection of the prior distribution should be carefully considered,
and sensitivity analysis can be performed to assess the robustness of the results
to different prior assumptions.

Why Does It Matter? The choice of prior distribution can have a significant
impact on the results of a Bayesian analysis. Different prior distributions can
lead to different posterior distributions, which are the updated probability
distributions for the parameters after we observe the data. Therefore, it is
important to choose a prior distribution that reflects our prior knowledge or
beliefs about the parameters.

Informative and Weakly Informative Priors

Informative and weakly informative priors are terms used to describe the
amount of prior knowledge or beliefs that is incorporated into a statistical
model. Informative priors contain substantial prior knowledge about the pa-
rameters of a model, while weakly informative priors contain moderate prior
knowledge.

Informative priors are useful when there is strong, potentially subjective prior
information available about the model parameters, which can help to constrain
the posterior distribution and improve inference. For example, in an insurance
claims analysis study, an informative prior may be used to incorporate previous
knowledge, such as the results of a previous claims study.

On the other hand, weakly informative priors are used when there is some—yet
little—prior knowledge available or when the goal is to allow the data to
drive the analysis. Weakly informative priors are designed to mildly impact
the posterior distribution and are often chosen based on principles such as
symmetry or scale invariance.

Overall, the choice of prior depends on the specific problem at hand and the
available prior knowledge or beliefs. Informative priors can be useful when
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prior information is available and can improve the precision of the posterior
distribution. In contrast, weakly informative priors can be useful when the
goal is to allow the data to drive the analysis and avoid imposing strong prior
assumptions.

Example 9.2.3. Actuarial Exam Question. You are given:

• Annual claim frequencies follow a Poisson distribution with mean λ.
• The prior distribution of λ has the following pdf:

fΛ(λ) = (0.3)1
6e

− λ
6 + (0.7) 1

12e
− λ

12 , where λ > 0.

Ten claims are observed for an insured in Year 1. Calculate the expected value
of the posterior distribution of λ.10

Example Solution. The posterior distribution can be found from:

fΛ|X=10(λ) =
pX|Λ=λ(10)fΛ(λ)

pX(10)

=
e−λλ10

10!

(
(0.3)1

6e− λ
6 + (0.7) 1

12e− λ
12

)
∫∞

0
e−λλ10

10!

(
(0.3)1

6e− λ
6 + (0.7) 1

12e− λ
12

)
dλ

=
λ10

(
0.3
6 e− 7λ

6 + 0.7l
12 e− 13λ

12

)
121050 .

The posterior mean is therefore given by

E [Λ | X = 10] = 1
121050

∫ ∞

0
λ11

(0.3
6 e− 7λ

6 + 0.7
12 e− 13λ

12

)
dλ

= 1
118170

(0.3
6 (11!)(6/7)12 + 0.7

12 (11!)(12/13)12
)

= 9.95442.

Noninformative Priors

It is possible to take the idea of weakly informative priors to the extreme by
using noninformative priors. A noninformative prior is a prior distribution that
is intentionally chosen to allow the data to have a more decisive influence on
the posterior distribution rather than being overly influenced by prior beliefs
or assumptions.

10This question is a modified version of Sample Question 184 of the Society of Actuaries
Exam C sample questions.
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Noninformative priors can take different forms, such as flat priors, for instance.
A flat prior assigns equal probability to all possible parameter values without
additional information or assumptions.

Example 9.2.4. Informative Versus Noninformative Priors. You wish
to investigate the impact of having informative and noninformative priors on
a claim frequency analysis. Assume that the claim frequency for each policy
follows a Bernoulli random variable with a probability of q such that

qXi|Q=q(xi) = qxi(1 − q)1−xi , xi ∈ {0, 1},

where q ∈ [0, 1], and consider two different prior distributions:

• Informative: Based on past experience, you know that the claim probability
is typically less than 5%, thus justifying the use of a uniform distribution
over [0, 0.05].

• Noninformative: You do not wish your posterior distribution to be impacted
by your prior assumption and simply select a uniform distribution over the
domain of q, which is [0, 1].

Using the first 100 lines of the Singapore insurance dataset (see Example 9.1.4
for more details on this dataset), find the two posterior distributions as well as
the posterior expected value of the probability q under both prior assumptions.

Example Solution. Let us start with the informative prior, where

fQ(q) = 1
0.05 − 0 = 20, if q ∈ [0, 0.05],

and zero otherwise. In this case, assuming x =
∑100

i=1 xi, the posterior density is
given by

fQ|X=x(q) ∝ fX|Q=q(x)fQ(q)

∝
100∏
i=1

qxi(1 − q)1−xi

= qx(1 − q)100−x, if 0 ≤ q ≤ 0.05,

and zero otherwise. We can numerically obtain the shape of this posterior
distribution by dividing qx(1 − q)100−x by∫ 0.05

0
qx(1 − q)100−x dq.
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Note that this prior makes it impossible for the estimated frequency to be greater
than 0.05.

The second prior is still uniform, but over [0, 1] this time, which is given mathe-
matically by

fQ(q) = 1
1 − 0 = 1, if q ∈ [0, 1],

and zero otherwise, leading to the following posterior distribution:

fQ|X=x(q) ∝ fX|Q=q(x)fQ(q)

∝
100∏
i=1

qxi(1 − q)1−xi

= qx(1 − q)100−x, if 0 ≤ q ≤ 1,

and zero otherwise.

qs <- seq(from = 0, to = 0.12, by = 0.0001)
x <- sum(sgautonb$Clm_Count[1:100])

integrandposterior1 <- function(q) {
qˆx * (1 - q)ˆ(100 - x) * ifelse(q >= 0 & q <= 0.05, 1, 0)

}
marglikelihood1 <- integrate(integrandposterior1, 0, 1, abs.tol = .Machine$double.epsˆ2)$value
posterior1 <- integrandposterior1(qs)/marglikelihood1

integrandposterior2 <- function(q) {
qˆx * (1 - q)ˆ(100 - x) * ifelse(q >= 0 & q <= 1, 1, 0)

}
marglikelihood2 <- integrate(integrandposterior2, 0, 1, abs.tol = .Machine$double.epsˆ2)$value
posterior2 <- integrandposterior2(qs)/marglikelihood2

We also wish to obtain the expected value of q for both posterior distribution.
This can be obtained by numerically integrating the following equation:

E[Q|X = x] =
∫ 1

0
q fQ|X=x(q) dq.

integrandexpvalue1 <- function(q) {
integrandposterior1(q)/marglikelihood1 * q

}
expectedvalue1 <- integrate(integrandexpvalue1, 0, 1, abs.tol = .Machine$double.epsˆ2)$value
cat("The posterior expected value of the parameter \n

when using the informative prior is",
expectedvalue1)

The posterior expected value of the parameter

when using the informative prior is 0.0304525117
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FIGURE 9.7: Posterior densities based on informative (gray) and
noninformative priors (black)

integrandexpvalue2 <- function(q) {
integrandposterior2(q)/marglikelihood2 * q

}
expectedvalue2 <- integrate(integrandexpvalue2, 0, 1, abs.tol = .Machine$double.epsˆ2)$value
cat("The posterior expected value of the parameter \n

when using the noninformative prior is",
expectedvalue2)

The posterior expected value of the parameter

when using the noninformative prior is 0.0392156863

As one can see, these values are different, meaning that the prior distribution
can have a material impact on the posterior distribution. One should therefore
be careful when selecting a prior distribution.

Improper Priors

An improper prior is a prior distribution that is not a proper probability
distribution, meaning that it does not integrate (or sum) to one over the
entire parameter space. Improper priors can be used in Bayesian analyses,
but they require careful handling because they can lead to improper posterior
distributions.

Improper priors are typically used when there is little or no prior informa-
tion about the parameter of interest—some noninformative priors are indeed
improper—and they can be thought of as representing a very diffuse or non-
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committal prior belief. For instance, the uniform distribution on an infinite
interval is a common choice of improper prior.

Example 9.2.5. Improper Prior, Proper Posterior. Let us assume a
random sample x of size n, which is a realization of the collection of random
variables X = (X1, X2, ..., Xn). Further, assume that each random variable Xi

is independent and normally distributed with mean of µ and variance of 1:

fXi|M=µ(xi) = 1√
2π

exp
(

−1
2 (xi − µ)2

)
, xi ∈ R,

where µ is a (random) parameter. Obtain the posterior distribution of µ
assuming that its prior distribution is improper and given by fM (µ) ∝ 1, where
µ ∈ R.

Example Solution. According to Bayes’ rule, we have that

fM |X=x(µ) =
fX|M=µ(x) fM (µ)

fX(x) ∝
n∏

i=1
fXi|M=µ(xi)

because fM (µ) ∝ 1 and fX(x) does not depend on µ. Using the equation above,
we can obtain the posterior distribution by simplifying the following equation:

fM |X=x(µ) ∝
( 1√

2π

)n

exp
(

−1
2

n∑
i=1

(xi − µ)2
)

∝ exp
(

−1
2

(
n∑

i=1
x2

i − 2µ
n∑

i=1
xi + nµ2

))

∝ exp
(

−n

2

(∑n
i=1 x2

i

n
− 2µ

∑n
i=1 xi

n
+ µ2

))

∝ exp
(

−n

2

(
−2µ

∑n
i=1 xi

n
+ µ2

))
∝ exp

(
−n

2

(
µ −

∑n
i=1 xi

n

)2)

∝ 1√
2π 1

n

exp

−1
2

(
µ −

∑n

i=1 xi

n

)2

1
n

 ,

which is a normal distribution with mean
∑n

i=1 xi

n and variance 1
n . Interestingly,
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this posterior distribution is proper even though the prior distribution was
improper.

Special care is needed when dealing with improper priors. Indeed, if one can
derive the posterior distribution in closed form and show that it is proper—like
in Example 9.2.5—it should not be a concern. On the other hand, in cases
where the posterior distribution cannot be obtained in closed form, there is no
assurance that the posterior will be proper and extra attention is required.

Choice of the Prior Distribution

The selection of a prior in Bayesian statistics is a crucial step that reflects the
experimenter’s prior beliefs, knowledge, or assumptions about the parameters
of interest. There are different approaches to selecting priors.

1. Informative priors are generally based on the experimenter’s subjective
beliefs, knowledge, or experience. For instance, one might have a
subjective belief that a parameter is likely to fall within a certain
range, and this belief is formalized as an informative prior distribution.

2. Noninformative priors are chosen to be minimally informative, ex-
pressing little or no prior information about the parameters. For
example, uniform priors are commonly used as noninformative priors,
expressing a lack of prior preference for any particular parameter
value.

3. Empirical Bayes priors rely on the data itself, combining empirical
information with Bayesian methodology. This can be done by estimat-
ing a prior distribution hyperparameter by using the observed data
to inform the prior distribution.

4. Priors that rely on expert elicitation involves seeking input from
domain experts to inform the prior. For instance, the experimenter
might have additional knowledge about the problem at hand and use
a prior distribution that represents their beliefs about the parameters.

Prior Sensitivity Analysis

Prior sensitivity analysis is an important step in Bayesian modeling processes.
It refers to the examination and evaluation of the impact of different prior
assumptions on the results of a statistical analysis. In other words, such analyses
aim to verify the robustness of the conclusions drawn from Bayesian inference
to the choice of the prior distribution. By exploring a range of plausible prior
distributions, experimenters can gain insights into how much the choice of prior
influences the final results and whether those conclusions remain consistent
under different prior assumptions.



302 9 Bayesian Statistics and Modeling

For instance, prior distributions may significantly influence the posterior esti-
mates, leading to different conclusions. Some of these might be subjective (i.e.,
informative priors) or based on expert knowledge, and assessing the impact of
such assumptions promotes transparency and objectivity in the analysis.

9.3 Conjugate Families

In Section 9.3, you learn how to:

• Describe three specific classes of conjugate families.
• Use conjugate distributions to determine posterior distributions of parame-

ters.
• Understand the pros and cons of conjugate family models.

In Bayesian statistics, if a posterior distribution comes from the same distri-
bution as the prior distribution, the prior and posterior are called conjugate
distributions. Note that both posterior and prior have similar shapes but will
have different parameters, generally speaking.

But Why? Two main reasons explain why conjugate families have been so
popular historically:

1. They are easy to use from a computational standpoint: posterior
distributions in most conjugate families can be obtained in closed
form, making this class of models easy to use even if we do not have
access to computing power.

2. They tend to be easy to interpret: posterior distributions are com-
promises between data and prior distributions. Having both prior
and posterior distributions in the same family—but with different
parameters—allows us to understand and quantify how the data
changed our initial assumptions.

9.3.1 The Beta–Binomial Conjugate Family

The first conjugate family that we investigate in this book is the beta–binomial
family. Let X = (X1, X2, ...Xm) represent a sample of iid Bernoulli random
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variables such that

Xi =

1 if success
0 if failure

,

with probabilities q and 1 − q, respectively. Let us further define x = ∑m
i=1 xi

the sum of the realized successes.

We know from elementary probability that X = ∑m
i=1 Xi follows a binomial

distribution (i.e., the number of successes x in m Bernoulli trials) with unknown
probability of success q in [0, 1], similar to the coin tossing case of Example
9.1.1, such that the likelihood function is given by

pX|Q=q(x) =
(
m

x

)
qx(1 − q)m−x, x ∈ {0, 1, ...,m},

where x = ∑m
i=1 xi. The latter represents our evidence. Then, we combine it

with its usual conjugate prior—the beta distribution with parameters a and b.
The pdf of the beta distribution is given as follows:

fQ(q) = Γ(a+ b)
Γ(a)Γ(b)q

a−1(1 − q)b−1, q ∈ [0, 1],

where a and b are shape parameters of the beta distribution.11

We can now combine the prior distribution—beta—with the likelihood
function—binomial—to obtain the posterior distribution.

Proposition 9.3.1. Beta–Binomial Conjugate Family. Consider a sample
of m iid Bernoulli experiments (X1, X2, ..., Xm) each with success probabil-
ity q. Further assume that the random variable associated with the success
probability, Q, has a prior that is beta with shape parameters a and b. The
posterior distribution of Q is therefore given by

fQ|X=x(q) = Γ(a+ b+m)
Γ(a+ x)Γ(b+m− x)q

a+x−1(1 − q)b+m−x−1,

where x = ∑m
i=1 xi, which is a beta distribution with shape parameters a+ x

and b+m− x.

11Here, we assume that the domain of the beta is [0, 1], meaning that θ = 1. For more
details, see Chapter 20.
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Proof. From Section 9.2.1, we know that

fQ|X=x(q) =
pX|Q=q(x) fQ(q)

pX(x) ∝
(

m

x

)
qx(1 − q)m−x Γ(a + b)

Γ(a)Γ(b)qa−1(1 − q)b−1

∝ qa+x−1(1 − q)b+m−x−1.

We therefore only need to find the normalizing constant that ensures that the
right-hand of the equation above is a density. Interestingly, the right-hand side
looks like a beta distribution; specifically,∫ 1

0
qa+x−1(1 − q)b+m−x−1 dq

= Γ(a + x)Γ(b + m − x)
Γ(a + b + m)

∫ 1

0

Γ(a + b + m)
Γ(a + x)Γ(b + m − x)qa+x−1(1 − q)b+m−x−1 dq

= Γ(a + x)Γ(b + m − x)
Γ(a + b + m) ,

and
fQ|X=x(q) = Γ(a + b + m)

Γ(a + x)Γ(b + m − x)qa+x−1(1 − q)b+m−x−1.

Parameters Versus Hyperparameters. In this context, a and b are called
hyperparameters—parameters of the prior. These are different from parameters
of the underlying model (i.e., q in the beta–binomial family). Hyperparame-
ters are typically assumed and determined by the experimenter, whereas the
underlying model parameters are random in the Bayesian context.

Example 9.3.1. Actuarial Exam Question. You are given:

• The annual number of claims in Year i for a policyholder has a binomial
distribution with pmf

pXi|Q=q(xi) =
(

2
x

)
qxi(1 − q)2−xi , xi ∈ {0, 1, 2}.

• The prior distribution is
fQ(q) = 4q3, q ∈ [0, 1].

The policyholder had one claim in each of Years 1 and 2. Calculate the
Bayesian estimate of the expected number of claims in Year 3.12

12This question is Sample Question 5 of the Society of Actuaries Exam C sample questions.
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Example Solution. The likelihood function based on this policyholder’s number
of claims in Years 1 and 2 is given by:

pX|Q=q(x) = pX1|Q=q(1) pX2|Q=q(1) =
(

2
1

)
q1(1 − q)1

(
2
1

)
q1(1 − q)1 ∝ q2(1 − q)2,

which is proportional to a binomial pmf with m = 4, two successes, and a success
probability of q. Because the prior distribution is beta distributed with a = 4
and b = 1, we know that the posterior distribution of parameter q is given by

fQ|X=x(q) = Γ(4 + 1 + 4)
Γ(4 + 2)Γ(1 + 4 − 2)q4+2−1(1 − q)1+4−2−1

= Γ(9)
Γ(6)Γ(3)q5(1 − q)2

= 168q5(1 − q)2,

which is also a beta distribution with shape parameters 6 and 3, respectively.

The expected number of claim in Year 3 is

E [E [X3 | Q = q ] | X1, X2] = E [2q | X1, X2] = 2 E [q | X1, X2] ,

and E [q | X1, X2] is the expected value of the beta distribution, which is given by

E [q | X1, X2] = 6
6 + 3 = 2

3 .

Ultimately, this leads to an expected number of claim in Year 3 of 2
(2

3
)

= 4
3 .

Example 9.3.2. Impact of Beta Prior on Posterior. You wish to inves-
tigate the impact of having different beta hyperparameters on the posterior
distribution. Assume that the claim frequency for each policy follows a Bernoulli
random variable with a probability of q such that

pXi|Q=q(xi) = qxi(1 − q)1−xi , xi ∈ {0, 1},

where q ∈ [0, 1], and consider two different sets of hyperparameters:

• Set 1: a = 1 and b = 10.
• Set 2: a = 2 and b = 2.

Figure 9.8 shows the pdf of these two prior distributions. The first prior assumes
a small prior mean frequency of 1

11 , whereas the second prior distribution has
a mean of 1

2 .
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FIGURE 9.8: Beta prior densities: a = 1 and b = 10 (gray), and a = 2
and b = 2 (black)

Using again the first 100 lines of the Singapore insurance dataset (see Example
9.1.4 for more details on this dataset), find the two posterior distributions.

Example Solution. The likelihood function associated with the observations is
given by

pX|Q=q(x) =
(

100
x

)
qx(1 − q)100−x, where x =

100∑
i=1

xi,

as mentioned already in Example 9.2.4. Combining this likelihood with a beta
prior gives a beta posterior:

fQ|X=x(q) = Γ(a + b + 100)
Γ (a + x) Γ (b + 100 − x) qa+x−1(1 − q)b+100−x−1,

that can be evaluated for various values of a and b. Figure 9.9 reports the two
posterior distributions associated with the priors mentioned above.

x <- sum(sgautonb$Clm_Count[1:100])

posterior1 <- dbeta(qs, shape1 = 1 + x, shape2 = 10 + 100 - x)
posterior2 <- dbeta(qs, shape1 = 2 + x, shape2 = 2 + 100 - x)
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dataposterior <- data.frame(x = qs, y1 = posterior1, y2 = posterior2)

ggplot(dataposterior, aes(x = x, y = y1)) + geom_line(color = "darkgray", lwd = 1.5) +
geom_line(aes(y = y2), color = "black", lwd = 1.5) + xlim(0, 1) + ylim(0, 35) +
xlab(expression(italic("q"))) + ylab("Posterior density")
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FIGURE 9.9: Posterior densities based on two different priors: a = 1
and b = 10 (gray), and a = 2 and b = 2 (black)

The prior distribution (and its hyperparameters) clearly have an impact on the
posterior distribution. As a general rule of thumb for the beta prior, a higher
a puts more weight on higher values of q and a higher b puts more weight on
lower values of q.

9.3.2 The Gamma–Poisson Conjugate Family

We now present a second conjugate family: the gamma–Poisson family. Let
X = (X1, X2, ..., Xn) be a sample of iid Poisson random variables such that

pXi|Λ=λ(xi) = λxi e−λ

xi!
, xi ∈ R+.
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The likelihood function associated with this sample would therefore be given
by

fX|Λ=λ(x) =
n∏

i=1
pXi|Λ=λ(xi) =

n∏
i=1

λxi e−λ

xi!
= λx e−nλ∏n

i=1 xi!
∝ λx e−nλ,

where x = ∑n
i=1 xi. The shape of this likelihood function, as a function of λ, is

reminiscent of a gamma distribution, hinting to the fact that this distribution
would be a good contender for a conjugate prior. Indeed, if we let the prior
distribution be gamma with shape hyperparameter α and scale hyperparameter
θ,

fΛ(λ) = 1
Γ(α)θα

λα−1 e− λ
θ , λ ∈ R+,

we can show that the posterior distribution of λ is also gamma.

Proposition 9.3.2. Gamma–Poisson Conjugate Family. Consider a
sample of n iid Poisson experiments (X1, X2, ..., Xn), each with rate parameter
λ. Further assume that the random variable associated with the rate, Λ, has
a prior that is gamma distributed with shape hyperparameter α and scale
hyperparameter θ. The posterior distribution of Λ is therefore given by

fΛ|X=x(λ) = 1
Γ(α + x)

(
θ

nθ+1

)α+xλ
α+x−1 e− λ (nθ+1)

θ ,

where x = ∑n
i=1 xi, which is a gamma distribution with shape parameter α+ x

and scale parameter θ
nθ+1 .

Proof. From Section 9.2.1, we know that

fΛ|X=x(λ) =
pX|Λ=λ(x) fΛ(λ)

pX(x) ∝ λx e−nλ λα−1 e− λ
θ

∝ λα+x−1 e− λ(nθ+1)
θ ,

where x =
∑n

i=1 xi. We therefore only need to find the normalizing constant that
ensures that the right-hand of the equation above is a density. Interestingly, the
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right-hand side looks like a gamma distribution; specifically,∫ ∞

0
λα+x−1 e− λ(nθ+1)

θ dλ

= Γ(α + x)
(

θ

nθ + 1

)α+x ∫ ∞

0

1

Γ(α + x)
(

θ
nθ+1

)α+x λα+x−1 e− λ(nθ+1)
θ dλ

= Γ(α + x)
(

θ

nθ + 1

)α+x

,

and
fΛ|X=x(λ) = 1

Γ(α + x)
(

θ
nθ+1

)α+x λα+x−1 e− λ (nθ+1)
θ .

Example 9.3.3. Actuarial Exam Question. You are given:

• The number of claims incurred in a month by any insured has a Poisson
distribution with mean λ.

• The claim frequencies of different insured are iid.
• The prior distribution is gamma with pdf

fΛ(λ) = (100λ)6

120λ e−100λ, λ ∈ R+.

• The number of claims every month is distributed as follows:

Month Number of Insured Number of Claims
1 100 6
2 150 8
3 200 11
4 300 ?

Calculate the expected number of claims in Month 4.

Example Solution. The likelihood function based on this policyholder’s number
of claims in Months 1, 2, and 3 is given by:

pX|Λ=λ(x) = pX1|Λ=λ(6) pX2|Λ=λ(8) pX3|Λ=λ(11) ∝ λ6+8+11 e−λ(100+150+200).

Because the prior distribution is gamma distributed with α = 6 and θ = 1
100 , we

know that the posterior distribution of parameter λ is also gamma distributed
with shape parameter

α + x = 6 + 6 + 8 + 11 = 31
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and scale parameter

θ

nθ + 1 =
1

100
(100 + 150 + 200) 1

100 + 1
= 1

550 .

The expected number of claim in Month 4 conditional on the information of
Months 1, 2, and 3 is

E [E [X4 | Λ = λ ] | X1, X2, X3] = E [300λ | X1, X2, X3] = 300 E [λ | X1, X2, X3] ,

and E [λ | X1, X2, X3] is the expected value of the posterior distribution, which is
given by

E [λ | X1, X2, X3] = 31
550 .

Ultimately, this leads to an expected number of claim in Month 4 of 300
( 31

550
)

=
930
55 ≈ 16.91.

9.3.3 The Normal–Normal Conjugate Family

The last conjugate family is the normal–normal family. Let X =
(X1, X2, ..., Xn) be a sample of iid normal random variables such that

fXi|M=µ(xi) = 1√
2πσ2

exp
(

−1
2

(xi − µ)2

σ2

)
, xi ∈ R.

Further, to keep our focus on µ, we will assume throughout our analysis that
the variance parameter σ2 is known.13 The likelihood function associated with
this sample would therefore be given by

fX|M=µ(x) =
n∏

i=1
fXi|M=µ(xi)

=
(

1√
2πσ2

)n

exp
(

−1
2

n∑
i=1

(xi − µ)2

σ2

)

∝ exp
(

−1
2

n∑
i=1

(xi − µ)2

σ2

)
.

A very natural prior distribution that matches the likelihood structure is
unsurprisingly the normal distribution. Let us assume that the prior distribution

13Conjugate families for the normal distribution with unknown σ2 can also be derived.
For the sake of simplicity, we will only focus on the case with known variance parameter in
this book.



9.3 Conjugate Families 311

for µ is given by

fM (µ) = 1√
2πτ 2

exp
(

−1
2

(µ− θ)2

τ 2

)
,

where θ is the mean parameter and τ 2 is the variance parameter. We can
then easily show that the posterior distribution of µ is also given by a normal
distribution.

Proposition 9.3.3. Normal–Normal Conjugate Family. Consider a sam-
ple of n iid normals (X1, X2, ..., Xn), each with mean parameter µ and variance
parameter σ2 that is known. Further assume that the random variable associ-
ated with the mean, M , has a prior that is normally distributed with mean
hyperparameter θ and variance hyperparameter τ 2. The posterior distribution
of M is therefore given by

fM |X=x(µ) = 1√
2π
(

τ2σ2

nτ2+σ2

) exp

−1
2

(
µ−

(
x
n

τ2

nτ2+σ2 + θ σ2

nτ2+σ2

))2

τ2σ2

nτ2+σ2

 ,
where x = ∑n

i=1 xi, which is a normal distribution with mean parameter

x

n

nτ 2

nτ 2 + σ2 + θ
σ2

nτ 2 + σ2

and variance parameter
τ 2σ2

nτ 2 + σ2 .
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Proof. From Section 9.2.1, we know that

fM |X=x(µ) =
fX|M=µ(x) fM (µ)

fX(x)

∝ exp
(

−1
2

n∑
i=1

(xi − µ)2

σ2

)
exp

(
−1

2
(µ − θ)2

τ 2

)

∝ exp
(

−1
2

∑n
i=1 x2

i − 2µx + nµ2

σ2 − 1
2

µ2 − 2µθ + θ2

τ 2

)

∝ exp
(

−1
2

nµ2 − 2µx

σ2 − 1
2

µ2 − 2µθ

τ 2

)

∝ exp
(

−1
2

µ2 (nτ 2 + σ2)− 2µτ 2x − 2µσ2θ

τ 2σ2

)

∝ exp

−1
2

µ2 − 2µ
(
x τ2

nτ2+σ2 + θ σ2

nτ2+σ2

)
τ2σ2

nτ2+σ2


∝ 1√

2π
(

τ2σ2

nτ2+σ2

) exp

−1
2

(
µ −

(
x
n

nτ2

nτ2+σ2 + θ σ2

nτ2+σ2

))2

τ2σ2

nτ2+σ2

 ,

where x =
∑n

i=1 xi.

The prior distribution hyperparameters and posterior distribution parameters
can be interpreted in the normal–normal conjugate family:

• For the prior, θ represents the a priori value of the mean parameter, and τ 2

is related to the precision of that prior mean (i.e., the larger the value, the
less precise the prior mean is, and vice versa).

• For the posterior, the new mean parameter is a weighted average between the
prior mean parameter θ and the sample mean x

n . The new variance parameter
is informed by the prior variability τ 2 and the variability of the data σ2.

Example 9.3.4. Impact of Normal Prior on Posterior. Assume the
following observed automobile claims for a small portfolio of policies:

1050, 1250, 1550, 2600, 5350, 10200.

Further assume that the logarithm of the claim amount follows a normal
distribution with parameters µ and σ2 = 1. Find the posterior distribution of
the mean parameter µ for a normal prior distribution where θ = 7. Consider
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different values of τ 2; that is, τ 2 = 0.1, τ 2 = 1, and τ 2 = 10. Figure 9.10 shows
the pdf of these three prior distributions.
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FIGURE 9.10: Normal prior densities: τ 2 = 0.1 (light gray), τ 2 = 1
(gray), and τ 2 = 10 (black)

Example Solution. Using the results of Proposition 9.3.3, we can obtain the
following posterior distributions:

xi <- c(1050, 1250, 1550, 2600, 5350, 10200)
x <- sum(log(xi))
n <- length(xi)
sigma2 <- 1

mean1 <- theta * (sigma2/(n * tau21 + sigma2)) + x/n * ((n * tau21)/(n * tau21 +
sigma2))

mean2 <- theta * (sigma2/(n * tau22 + sigma2)) + x/n * ((n * tau22)/(n * tau22 +
sigma2))

mean3 <- theta * (sigma2/(n * tau23 + sigma2)) + x/n * ((n * tau23)/(n * tau23 +
sigma2))

var1 <- (tau21 * sigma2)/(n * tau21 + sigma2)
var2 <- (tau22 * sigma2)/(n * tau22 + sigma2)
var3 <- (tau23 * sigma2)/(n * tau23 + sigma2)

posterior1 <- dnorm(xs, mean = mean1, sd = sqrt(var1))
posterior2 <- dnorm(xs, mean = mean2, sd = sqrt(var2))
posterior3 <- dnorm(xs, mean = mean3, sd = sqrt(var3))
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dataposterior <- data.frame(x = xs, y1 = posterior1, y2 = posterior2, y3 = posterior3)

ggplot(dataposterior, aes(x = x, y = y1)) + geom_line(color = "lightgray", lwd = 1.5) +
geom_line(aes(y = y2), color = "darkgray", lwd = 1.5) + geom_line(aes(y = y3),
color = "black", lwd = 1.5) + xlim(1, 13) + ylim(0, 1.75) + xlab(expression(italic(mu))) +
ylab("Posterior density")
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FIGURE 9.11: Posterior densities based on three different priors:
τ 2 = 0.1 (light gray), τ 2 = 1 (gray), and τ 2 = 10 (black)

Interestingly, as shown in Example 9.3.4, the prior distribution can have some
impact on the final posterior distribution. When the prior assumption about
the mean is very precise, having a few data points do not create a huge gap
between the prior and the posterior (see the light gray curves in Figures 9.10
and 9.11). When the prior is very imprecise, on the other hand, then the data
are allow to speak, and the posterior can be quite different from the prior
distribution.

9.3.4 Criticism of Conjugate Family Models

While conjugate family models have some advantages, such as ease of inter-
pretation and computational simplicity, they also have some limitations:

1. Conjugate families are oftentimes chosen for their mathematical con-
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venience rather than their ability to accurately model the data under
study. This can lead to models that are too simplistic and lack the
flexibility needed to model real-world phenomena.

2. Conjugate family models rely on the choice of prior distribution, and
different choices of possibly non-conjugate priors can lead to very
different posterior distributions.

3. Conjugate family models are only applicable to a narrow range of
problems, which limit their usefulness in practical applications.

It is important to note that while conjugate family models have their limitations,
they can still be useful in certain situations, especially when the assumptions
of the model are well understood and the data are relatively simple.

9.4 Posterior Simulation

In Section 9.4, you learn how to:

• Use the standard computational tools for Bayesian statistics.
• Diagnose Markov chain convergence.

9.4.1 Introduction to Markov Chain Monte Carlo Methods

Sometimes, using conjugate family models is ill-suited for the problem at hand,
and more complicated priors need to be selected. Under other circumstances,
complex models involve many parameters making the posterior distribution
intractable. In these cases, the posterior distribution of the parameters will not
have a closed-form solution, generally speaking, and will need to be estimated
via numerical methods.

A common way to generate draws of the parameter posterior distribution is to
create Markov chains for which their stationary distributions—the probability
distribution that remains unchanged when the Markov chain has reached a
state where the transition probabilities no longer evolve over time—correspond
to the posterior of interest. These Markov chain-based methods are known as
Markov chain Monte Carlo (MCMC) methods in the literature. This section
provides a brief overview of these methods and of their uses. We do not intend
to give much of the theory behind these methods, which would require a
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deep understanding of Markov chains and their theory.14 Instead, we focus
on their applications in insurance and loss modeling. Specifically, in the next
two subsections, we introduce the two most common MCMC methods; that is,
the Gibbs sampler of Gelfand and Smith (1990) and the Metropolis–Hastings
algorithm of Hastings (1970) and Metropolis et al. (1953).

9.4.2 The Gibbs Sampler

As mentioned above, sometimes, we cannot use conjugate families. In other
cases where the parameter space is large, it can be very hard to find the
marginal likelihood fX(x) (also known as the normalizing constant); that is,
assuming that the model parameters are given by θθθ = [ θ1 ...θ2 ... θk ] and
contains k parameters, the marginal likelihood given by

fX(x) =
∫ ∫

...
∫
fX|ΘΘΘ=θθθ(x)fΘΘΘ(θθθ) dθ1 dθ2 ... dθk

is hard to compute even when using typical quadrature-based rules, especially
if k is large.

Fortunately, under very mild regularity conditions, samples of the joint esti-
mates of parameters can be obtained by sequentially sampling each parameter
individually and by keeping all the other parameters constant. To do so, the
distribution of any given parameter conditional on all the other parameters
(and the data) needs to be known. These distributions are known as full
conditional distributions; that is,

fΘi | X=x,ΘΘΘ\i=θθθ\i
(θi),

for parameter θi, where θθθ\i represents all parameters except for the ith one,
and ΘΘΘ\i is the random variable associated with this set of parameters.

The full conditional distribution is an important building block in Gibbs
sampling. Indeed, if one can obtain each parameter’s distribution conditional
on having the value of all the other parameters in closed form, then it is possible
to generate samples for each parameter. Specifically, starting from an arbitrary
set of starting values θθθ(0) = [ θ(0)

1 θ
(0)
2 ... θ

(0)
k ], samples for each parameter

can be generated by performing the following steps for m = 1, 2, ...,M :

1. Draw θ
(m)
1 from fΘ1 | X=x, Θ2= θ

(m−1)
2 , ..., Θk= θ

(m−1)
k

(θ1).

2. Draw θ
(m)
2 from fΘ2 | X=x, Θ1= θ

(m)
1 , Θ3= θ

(m−1)
3 , ..., Θk= θ

(m−1)
k

(θ2).

14For an overview of the theory behind MCMC methods, see Robert and Casella (1999).
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3. Draw θ
(m)
3 from fΘ3 | X=x, Θ1= θ

(m)
1 , Θ2= θ

(m)
2 , Θ4= θ

(m−1)
4 , ..., Θk= θ

(m−1)
k

(θ3).

...

k. Draw θ
(m)
k from fΘk | X=x, Θ1= θ

(m)
1 , ..., Θk−1= θ

(m)
k−1

(θk).

The sample, especially at first, will depend on the initial values, θθθ(0), and it
might take some time until the sampler can get to the stationary distribution.
For this reason, in practice, experimenters discard the first M∗ iterations to
make sure their analysis is not impacted by the choice of initial parameter;
this initial period of discarded sample is known as the burn-in period.

The rest of the sample—the remaining M −M∗ iterations—is kept to estimate
the posterior distribution and any quantities of interest.

Application to Bayesian Linear Regression

In statistics and in its most simple form, a linear regression is an approach
for modeling the relationship between a scalar response and an explanatory
variable. The former quantity is denoted by xi for i ∈ {1, ..., n}, and the latter
quantity is denoted by zi for i ∈ {1, ..., n} in this chapter. Mathematically, we
can write this relationship as

xi = α + βzi + εi,

where εi is a disturbance term that captures the potential for errors in the linear
relationship. This error term is typically assumed to be normally distributed
with mean zero and variance σ2.

In general, the coefficients α and β are unknown and need to be estimated.
The experimenter can rely on Bayesian statistics to find out the posterior
distribution of the parameters α and β along with that of σ2. For the rest of
the subsection, we investigate a specific application of Gibbs sampling to the
context of linear regression.

We begin by computing the likelihood function conditional on the parameter
values:

fX | A=α, B=β, Σ2=σ2(x) =
n∏

i=1

1√
2πσ2

exp
(

−(xi − α− βzi)2

2σ2

)

=
(
2πσ2

)− n
2 exp

(
−
∑n

i=1 (xi − α− βzi)2

2σ2

)
,

which is the first building block to construct our posterior distribution.
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Then, we need a prior distribution, which could be informative, weakly infor-
mative, or noninformative. In this application, we select a prior that allows
us to obtain each parameter’s full conditional distribution in closed form.
Specifically, we use a normal distribution for α and β, and an inverse gamma
distribution for σ2 with shape parameter nσ

2 and scale parameter θσ

2 , where

fA(α) = 1√
2πτ 2

α

exp
(

−1
2

(α− θα)2

τ 2
α

)
,

fB(β) = 1√
2πτ 2

β

exp
(

−1
2

(β − θβ)2

τ 2
β

)
,

fΣ2(σ2) = (θσ/2)nσ/2

Γ(nσ/2)

( 1
σ2

)nσ/2+1
exp

(
−θσ/2

σ2

)
.

Proposition 9.4.1. Full Conditional Distributions of Bayesian Linear
Regression Parameters. Consider a sample of n observations x = (x1, ..., xn)
for which

xi = α + βzi + εi,

where εi is normally distributed with mean zero and variance σ2. The full
conditional distributions of parameters α, β, and σ2 are given by the following
expressions:

A ∼ Normal
(

1
n

(
n∑

i=1
xi − βzi

)
nτ 2

α

nτ 2
α + σ2 + θα

σ2

nτ 2
α + σ2 ,

τ 2
ασ

2

nτ 2
α + σ2

)
,

B ∼ Normal
(

1
n

(
n∑

i=1
zi (xi − α)

)
nτ 2

β

τ 2
β

∑n
i=1 z

2
i + σ2 + θβ

σ2

τ 2
β

∑n
i=1 z

2
i + σ2 ,

τ 2
βσ

2

τ 2
β

∑n
i=1 z

2
i + σ2

)
,

Σ2 ∼ Inverse Gamma
(
nσ + n

2 ,
θσ +∑n

i=1 (yi − α− βzi)2

2

)
,

respectively, assuming the prior distributions mentioned above.

Proof. From Section
refS:Sec92, we know that

fA,B,Σ2|X=x(α, β, σ2) ∝ fX|A=α, B=β, Σ2=σ2(x) fA(α) fB(β) fΣ2(σ2),

which is useful to derive the full conditional distributions of α, β, and σ2.
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Let us begin with α:

fA|X=x, B=β, Σ2=σ2(α)

∝ exp
(

−1
2

∑n
i=1 (xi − α − βzi)2

σ2

)
exp

(
−1

2
(α − θα)2

τ 2
α

)

∝ exp
(

−1
2

(
nα2 − 2α

∑n
i=1(xi − βzi)

σ2 + α2 − 2αθα

τ 2
α

))

∝ exp

−1
2

α2 − 2α
(

1
n (
∑n

i=1 xi − βzi) nτ2
α

nτ2
α+σ2 + θα

σ2

nτ2
α+σ2

)
τ2

ασ2

nτ2
α+σ2


∝ 1√

2π
(

τ2
ασ2

nτ2
α+σ2

) exp

−1
2


(
α −

(
1
n (
∑n

i=1 xi − βzi) nτ2
α

nτ2
α+σ2 + θα

σ2

nτ2
α+σ2

))2

τ2
ασ2

nτ2
α+σ2




which is a normal distribution with mean parameter

1
n

(
n∑

i=1
xi − βzi

)
nτ 2

α

nτ 2
α + σ2 + θα

σ2

nτ 2
α + σ2

and variance parameter
τ 2

ασ2

nτ 2
α + σ2 .

The derivation to obtain the full conditional distribution of β is similar to that
of α:
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fB|X=x, A=α, Σ2=σ2(β)

∝ exp
(

−1
2

∑n
i=1 (xi − α − βzi)2

σ2

)
exp

(
−1

2
(β − θβ)2

τ 2
β

)

∝ exp
(

−1
2

(
β2∑n

i=1 z2
i − 2β

∑n
i=1 zi(xi − α)

σ2 + β2 − 2βθβ

τ 2
β

))

∝ exp

−1
2

β2 − 2β

(
1
n (
∑n

i=1 zi (xi − α)) nτ2
β

τ2
β

∑n

i=1 z2
i +σ2 + θβ

σ2

τ2
β

∑n

i=1 z2
i +σ2

)
σ2

β
σ2

τ2
β

∑n

i=1 z2
i +σ2




∝ 1√
2π

(
τ2

β
σ2

τ2
β

∑n

i=1 z2
i +σ2

)

× exp

−1
2


(

β −
(

1
n (
∑n

i=1 zi (xi − α)) nτ2
β

τ2
β

∑n

i=1 z2
i +σ2 + θβ

σ2

τ2
β

∑n

i=1 z2
i +σ2

))2

τ2
ασ2

τ2
β

∑n

i=1 z2
i +σ2




which is a normal distribution with mean parameter

1
n

(
n∑

i=1
zi (xi − α)

)
nτ 2

β

τ 2
β

∑n
i=1 z2

i + σ2 + θβ
σ2

τ 2
β

∑n
i=1 z2

i + σ2

and variance parameter
τ 2

βσ2

τ 2
β

∑n
i=1 z2

i + σ2 .

Finally, we apply the same logic to the variance parameter, σ2:

fΣ2|X=x, A=α, B=β(σ2)

∝
(
2πσ2)−n/2 exp

(
−1

2

∑n
i=1 (xi − α − βzi)2

σ2

)( 1
σ2

)nσ/2+1
exp

(
−θσ/2

σ2

)

∝ exp
(

−1
2

θσ +
∑n

i=1 (xi − α − βzi)2

σ2

)( 1
σ2

)(nσ+n)/2+1

∝

(
θσ+
∑n

i=1(xi−α−βzi)2

2

)(nσ+n)/2

Γ((nσ + n)/2)

( 1
σ2

)(nσ+n)/2+1
exp

−
θσ+
∑n

i=1(xi−α−βzi)2

2
σ2

 ,
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which is an inverse gamma distribution with shape parameter nσ+n
2 and scale

parameter
θσ +

∑n
i=1 (xi − α − βzi)2

2 .

We now apply the Gibbs sampler on real data. The example will use motor-
cycle insurance data from Wasa, a Swedish insurance company, taken from
dataOhlsson of the R package insuranceData; see Wolny-Dominiak and
Trzesiok (2014) for more details.
library("insuranceData")
data(dataOhlsson)

This dataset contains information about the number of motorcycle accidents,
their claim cost, and some risk factors (e.g., the age of the driver, the age of
the vehicle, the geographic zone).

Example 9.4.1. Bayesian Linear Regression. You wish to understand the
relationship between the age of the driver and the (logarithm of the) claim
cost. Let xi be the logarithm of the ith claim cost and zi be the age associated
with the ith claim. Further assume the following linear relationship between
the two quantities:

xi = α + βzi + εi,

where εi is normally distributed with mean zero and variance σ2. Find the
posterior density of the three parameters α, β, and σ2 using the Gibbs sampler.

Example Solution. Let us begin by visualizing the data. Figure 9.12 reports
the logarithm of the claim cost as a function of the driver’s age. At first sight, it
seems that the relationship between the claim cost and age is negative, so we
should expect a negative β, generally speaking.

Let us now turn to Bayesian computation via Gibbs sampling to find the posterior
distribution of the three parameters of interest. We will use 10,000 iterations and
discard the first 5,000 iterations (i.e., burn-in period). For our prior distributions,
we use weakly informative priors by setting θα = 1

n

∑n
i=1 xi = x, θβ = 0,

τ 2
α = τ 2

β = 10, nσ = 1, and θσ = 0.1. The initial values of the parameters are set
to: α(0) = x, β(0) = 0, and σ2 (0) = 1

n

∑n
i=1(xi − x)2.
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FIGURE 9.12: Logarithm of the claim cost as a function of the driver’s
age

set.seed(1)
library("nimble")
dataOhlsson <- dataOhlsson[dataOhlsson$skadkost > 0, ]
dataOhlsson$logskadkost <- log(dataOhlsson$skadkost)

x <- dataOhlsson$logskadkost
z <- dataOhlsson$agarald

n <- length(x)
M <- 10000
Mstar <- 5000
thetaa <- mean(x)
tau2a <- 10
thetab <- 0
tau2b <- 10
nsigma <- 1
thetasigma <- 0.1

alphas <- rep(NA, M + 1)
betas <- rep(NA, M + 1)
sigma2s <- rep(NA, M + 1)

alphas[1] <- mean(x)
betas[1] <- 0
sigma2s[1] <- var(x)

for (m in 2:(M + 1)) {



9.4 Posterior Simulation 323

# Generate alpha
den_alpha <- n * tau2a + sigma2s[m - 1]
mean_alpha <- (1/n) * (sum(x - betas[m - 1] * z)) * (n * tau2a)/den_alpha + thetaa *

sigma2s[m - 1]/den_alpha
var_alpha <- tau2a * sigma2s[m - 1]/den_alpha

alphas[m] <- rnorm(1, mean = mean_alpha, sd = sqrt(var_alpha))

# Generate beta
den_beta <- tau2b * sum(zˆ2) + sigma2s[m - 1]
mean_beta <- (1/n) * (sum(z * (x - alphas[m]))) * (n * tau2b)/den_beta + thetab *

sigma2s[m - 1]/den_beta
var_beta <- tau2b * sigma2s[m - 1]/den_beta

betas[m] <- rnorm(1, mean = mean_beta, sd = sqrt(var_beta))

# Generate sigmaˆ2
shape_sigma <- (nsigma + n)/2
scale_sigma <- (thetasigma + sum((x - alphas[m] - betas[m] * z)ˆ2))/2

sigma2s[m] <- rinvgamma(1, shape = shape_sigma, scale = scale_sigma)
}

Once we have the posterior parameter samples, we can get multiple quantities of
interest. For instance, the posterior mean of parameters α, β, and σ2 are 9.843,
−0.0208, and 2.551, respectively. These posterior means are obtained by simply
taking the sample means of the respective posterior draws; that is, these are
Monte Carlo estimates of the posterior means.

The posterior mean for coefficient alpha is 9.84259435

The posterior mean for coefficient beta is -0.0207847772

The posterior mean for the variance parameter is 2.55090494

We can also get histograms of the posterior distribution for α, β, and σ2; Figure
9.13 reports histograms for the three parameters. The uncertainty around each
parameter is very small.

The top panel of Figure 9.14 reports a plot of the post-burn-in values of α as a
function of the iteration number; this type of plot is known as a trace plot in
the literature. These samples are not impacted by the initial parameter value
that was selected. Indeed, after about 20–30 iterations, the posterior parameter
values obtained by the Gibbs sampler are very close to their posterior means.
For instance, the bottom panel of Figure
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FIGURE 9.13: Histogram of the posterior distribution for parameters
α (top panel), β (middle panel), and σ2 (bottom panel)

reffig:Fig914 shows a plot of the first 50 values of α as a function of the iteration
number.

9.4.3 The Metropolis–Hastings Algorithm

Gibbs sampling works well when the full conditional distribution for each
parameter in the model can be found and is of a common form. This, un-
fortunately, is not always possible, meaning that we need to rely on other
computational tools to find the posterior distribution of the parameters. One
very popular method that copes with the shortcomings of Gibbs’ method is
the Metropolis–Hastings sampler.

Let us assume that the current value of the first model parameter is θ(0)
1 . From

this current value, we now wish to find a new value for this parameter. To
do so, we propose a new value for this parameter, θ∗

1, from a candidate (or
proposal) density q

(
θ∗

1

∣∣∣ θ(0)
1

)
. Since this proposal has nothing to do with the

posterior distribution of the parameter, we should not keep all candidates in
our final sample—we only accept those samples that are representative of the
posterior distribution of interest. To determine whether we accept or reject
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FIGURE 9.14: Trace plot of α for the post-burn-in iterations (top
panel) and for the first 50 iterations (bottom panel)

the candidate, we compute a so-called acceptance ratio α
(
θ

(0)
1 , θ∗

1

)
using

α
(
θ

(0)
1 , θ∗

1

)
=

h
(
θ∗

1

)
q
(
θ

(0)
1

∣∣∣ θ∗
1

)
h
(
θ

(1)
1

)
q
(
θ∗

1

∣∣∣ θ(0)
1

)
where

h(θ1) = fX | Θ1= θ1,ΘΘΘ\1=θθθ\1(x) fΘ1,ΘΘΘ\1

(
θ1, θθθ\1

)
and θθθ\1 represents all parameters except for the first one. Then, we accept the
proposed value θ∗

1 with probability α
(
θ

(0)
1 , θ∗

1

)
and reject it with probability

1 − α
(
θ

(0)
1 , θ∗

1

)
. Specifically,

θ
(1)
1 =

 θ∗
1 with probability α

(
θ

(0)
1 , θ∗

1

)
θ

(0)
1 with probability 1 − α

(
θ

(0)
1 , θ∗

1

)
We can repeat the same process for all other parameters to obtain θ

(1)
2 to

θ
(1)
k , while replacing the parameters θθθ\i by their most current values in the

chain. Once we have updated all values, we can repeat this process for all m
in {2, 3, ...,M}, similar to the iterative process used in the Gibbs sampler.15

15The Gibbs sampler can be seen as a special case of the more general Metropolis–Hastings
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Special Case: Symmetric Proposal Distribution. If a proposal distribu-
tion is symmetric, then

q
(
θ

(m)
i

∣∣∣ θ∗
i

)
= q

(
θ∗

i

∣∣∣ θ(m)
i

)
,

and those terms cancel out, leaving

α
(
θ

(m)
i , θ∗

1

)
=

h
(
θ∗

i

)
h
(
θ

(m)
i

) .
This special case is called the Metropolis algorithm.

The Metropolis–Hastings sampler requires a lot of fine-tuning, generally speak-
ing, because the experimenter needs to select a proposal distribution for each
parameter. A common approach is to assume a normal proposal distribution
centered at the previous value; that is,

Θ∗
i ∼ Normal

(
θ

(m−1)
i , δ2

i

)
,

at step m, where δ2
i is the variance of the ith parameter’s proposal distribution.

Example 9.4.2. Impact of Proposal Density on the Acceptance Rate.
Assume that each policyholder’s claim count (frequency) is distributed as a
Poisson random variable such that

pNi | Λ=λ(ni) = λnie−λ

ni!
,

where ni is the number of claims associated with the ith policyholder. Further
assume a noninformative, flat prior over [0,∞]; that is,

fΛ(λ) ∝ 1, λ ∈ [0,∞].

Find the posterior distribution of the parameter using 1,000 iterations of the
Metropolis–Hastings sampler assuming the claim count data of the Singapore
Insurance Data (see Example 9.1.4 for more details). Use a normal proposal
with small (1 × 10−7), moderate (1 × 10−4), and large (1 × 10−1) values as the
proposal variance δ in your tests and comment on the differences.

algorithm. Specifically, with Gibbs’ method, all proposals are automatically accepted; that
is, α

(
θ

(0)
1 , θ∗

1

)
= 1.
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Example Solution. Starting from the the likelihood function and the prior
distribution, we have that

h(λ) ∝
N∏

i=1

λnie−λ

ni!
.

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).
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FIGURE 9.15: Trace plots based on three different proposals: σ2 =
1 × 10−7 (top panel), σ2 = 1 × 10−4 (middle panel), and σ2 = 1 × 10−1

(bottom panel)

Different variance parameters lead to different results. In this example, if δ2 is
too small, then the experimenter tends to draw samples that are very similar
from one iteration to the other. This increases the acceptance rate (i.e., the rate
at which we accept the proposal), but also means that the chain is travelling
slowly around the posterior distribution. This ultimately imply that it will take
longer chains to visit the whole posterior distribution. One way to see this issue in
practice is by computing autocorrelation coefficients for the sample of parameter
(more details on this in Section 9.4.4). The top panel of Figure 9.1.5 indeed shows
this strong autocorrelation and slow travelling around the posterior distribution.

On the other hand, if δ2 is too large, then the proposal are seldom accepted, and
the chain will tend to stick—exhibiting long period for which the chain stays
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constant. For instance, the case with large proposal variance above leads to an
acceptance rate of 1.2 percent, which is very low. The bottom panel of Figure
9.1.5 reports this issue.

The moderate proposal variance case reports an acceptance rate of 32.4 percent,
which is not too high nor too low. The general behavior of this chain resembles
that of a hairy caterpillar—a good sign—meaning that the mixing seems adequate
and that we accept a decent amount of proposed values.

Finding the right proposal variance values for problems of interest requires some
fine-tuning. As a general guideline, experimenters should target acceptance rates
between 20 and 50 percent.
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FIGURE 9.16: Posterior densities based on three different proposals:
σ2 = 1×10−7 (top panel), σ2 = 1×10−4 (middle panel), and σ2 = 1×10−1

(bottom panel)

Using the wrong proposal distribution can have an impact on the computational
efficiency of the Metropolis–Hastings algorithm, as shown in Figure 9.16. A small
variance takes a long time to travel throughout the posterior distribution, whereas
a large variance tends to stick.

Example 9.4.3. Impact of Initial Parameters. Consider the motorcycle
insurance data from Wasa used in Example 9.4.1. We wish to model the claim
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amount from motorcycle losses with a gamma distribution; that is,

fXi | Θ=θ, A=α(xi) = 1
θαΓ(α)x

α−1
i e− xi

θ ,

where xi is the ith claim amount. We assume that the prior distributions for
both θ and α are noninformative and flat; that is,

fΘ,A(θ, α) ∝ 1, θ ∈ [0,∞], α ∈ [0,∞].

Find the posterior distribution of the parameter using 1,000 iterations of the
Metropolis–Hastings sampler. Use a normal proposal with a proposal variance
5 × 107 for θ and 1 × 10−2 for α, and rely on θ(0) = 50, 000 and α(0) = 0.5 to
start the Metropolis–Hastings sampler. Redo the experiment with θ(0) = 10, 000
and α(0) = 2.5.

Example Solution. Starting from the the likelihood function and the prior
distribution, we have that

h(θ, α) ∝
N∏

i=1

1
θαΓ(α)xα−1

i e− xi
θ .

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).

Clearly, from Figure 9.17, the initial parameter value matters: for the first set, the
starting value is close to the posterior mode, meaning that the final sample does
not depend much on the starting value. For the second set, on the other hand,
it takes about 200 iterations to get closer to where most of the density resides.
Having a burn-in in the case of Metropolis–Hastings sampler is therefore a good
idea to reduce the impact of initial guesses on the final posterior distribution.

In the next subsection, we learn a few methods and metrics to diagnose the
convergence of the Markov chains generated via MCMC methods.

9.4.4 Markov Chain Diagnostics

There are many different tuning parameters in MCMC schemes, and they
all have an impact on the convergence of the Markov chains generated by
these methods. To understand the impact of these choices on the chains (e.g.,
number of iterations, length of burn-in, proposal distribution), we introduce a
few methods to analyze their convergence.
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FIGURE 9.17: Trace plots based on two different starting parameter
sets: θ(0) = 50, 000 and α(0) = 0.5 (left panels), and θ(0) = 10, 000 and
α(0) = 2.5 (right panels)

Examining Trace Plots and Autocorrelation

Trace Plot. The most elementary tool to assess whether MCMC chains have
converged to the posterior distribution is the trace plot. As mentioned above,
a trace plot displays the sequence of samples as a function of the iteration
number, with the sample value on the y-axis and the iteration number on
the x-axis. If the chain has converged, the trace plot should show a stable
sequence of samples around the true posterior distribution that looks like a
hairy caterpillar. However, if the chain has not yet converged, the trace plot
may show a sequence of samples that still appear to be changing or have not
yet settled into a stable pattern.

In addition to assessing convergence, trace plots can also be used to diagnose
potential problems with MCMC algorithms, such as poor mixing or autocorre-
lation. For example, if the trace plot shows long periods of no change followed
by abrupt jumps, this may indicate poor mixing and suggest that the MCMC
algorithm needs to be adjusted or a different method should be used.

Lag-1 Autocorrelation. Another quantity that might be helpful is the lag-1
autocorrelation—the correlation between consecutive samples in a given chain:

Cov
[
θ

(m)
i , θ

(m−1)
i

]
.
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Note that if the autocorrelation is too high, it can indicate that the chain is
not mixing well and is not sampling the posterior distribution effectively. This
can result in poor convergence, longer run times, and decreased precision of
the estimates obtained from the MCMC algorithm.

In addition to examining trace plots and computing autocorrelation coefficients,
we can use other, more formal tools to evaluate whether the chains obtained
are reliable and have converged.

Comparing Parallel Chains

Gelman–Rubin Statistic Another way to assess convergence is to run
multiple chains in parallel from different starting points and check if their
behavior is similar. In addition to comparing their trace plots, the chains can
be compared by using a statistical test—the Gelman–Rubin test of Gelman
and Rubin (1992). The latter test compares the within-chain variance to the
between-chain variance; to calculate the statistic, we need to generate a small
number of chains (say, R), each for M −M∗ post-burn-in iterations.

If the chains have converged, the within-chain variance should be similar to
the between-chain variance. Assuming the parameter of interest is θi, the
within-chain variance is

W = 1
R(M −M∗ − 1)

R∑
r=1

M∑
m=M∗+1

(
θ

(m)
i,r − θi,r

)2
,

where θ(m)
i,r is the mth draw of θi in the rth chain and θi,r is the sample mean

of θi for the rth chain. The between-chain variance is given by

B = M −M∗

R − 1

R∑
r=1

(
θi,r − θi

)
,

where θi is the overall sample mean of θi from all chains. The Gelman–Rubin
statistic is √√√√(M −M∗ − 1

M −M∗ + R + 1
R(M −M∗)

B

W

)
df

df − 2 ,

where df is the degrees of freedom from Student’s t-distribution that approxi-
mates the posterior distribution. The statistic should produce a value close to
1 if the chain has converged. On the other hand, if the statistic value is greater
than 1.1 or 1.2, this indicates that the chains may not have converged, and
further analysis may be needed to determine why the chains are not mixing
well.
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Calculating Effective Sample Sizes

Effective Sample Size. The effective sample size (ESS) is a measure of the
number of independent samples obtained from an MCMC chain. Recall that
in an MCMC chain, each sample is correlated with the previous sample; as a
result, the effective number of independent samples is usually much smaller
than the total number of samples generated by the MCMC algorithm. The
ESS takes this correlation into account and provides an estimate of the number
of independent samples that are equivalent to the correlated samples in the
chain.

In general, a higher effective sample size indicates that the MCMC algorithm
has produced more independent samples and is more likely to have accurately
sampled the posterior distribution. A lower effective sample size, on the other
hand, suggests that the MCMC algorithm may require further tuning or
optimization to produce reliable posterior estimates.

The function multiESSof the R package mcmcse contains a function that gives
the ESS of a multivariate Markov chain as described in Vats et al. (2019). The
package also includes an estimate of the minimum ESS required for a specified
relative tolerance level (see function minESS).

We now apply these various diagnostics to an example.

Example 9.4.4. Markov Chain Diagnostics. Consider the setup of Example
9.4.2. Using chains of 51,000 iterations and a burn-in of 1,000 iterations,
calculate the various Markov chain diagnostics mentioned above.

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).

Example Solution. Let us begin by generating five chains.

Figure 9.18 reports the trace plot for the first chain: it indeed looks like a hairy
caterpillar, which is a good sign.

The lag-1 autocorrelation coefficient is 0.651510865

The autocorrelation is also mild at 65%, again pointing towards good conver-
gence behavior.

The Gelman-Rubin statistic is 1.00012696

The Gelman–Rubin statistic is very close to 1 in this case, meaning that the
chains converged.

The ESS is 9927.29934 and the minimum ESS is 6146
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FIGURE 9.18: Trace plot for parameter λ

The last diagnostic refers to the ESS, and its comparison to the minimum ESS.
In our case, the ESS is about 9,927, and the minimum ESS is 6,146. Since
our ESS is above the minimum, we know we have a large enough sample to
adequately capture the posterior distribution of λ.

9.5 Bayesian Statistics in Practice

In Section 9.5, you learn how to:

• Describe the main computing resources available for Bayesian statistics and
modeling.

• Apply one of them to loss data.

Fortunately for end users, some of these methods are readily available in R,
meaning that they are quite accessible. Some popular computing resources
used in Bayesian statistics are listed below:
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• RSTAN, named in honor of Stanislaw Ulam, is an R implementation of the
widely used STAN probabilistic programming language for Bayesian statis-
tical modeling and inference. It is highly flexible and allows users to define
complex statistical models.

• nimble stands for Numerical Inference for Bayesian and Likelihood Estima-
tion and is an R package designed for statistical computing and hierarchical
modeling. nimble provides a high-level programming language that allows
users to define complex statistical models with ease.

• R2OpenBUGS allows R users to use OpenBUGS, a classic and widely-used
software package for Bayesian data analysis. It uses MCMC techniques like
Gibbs sampling to obtain samples from the posterior distribution.

• rjags is an R implementation of the JAGS (Just Another Gibbs Sampler)
program. It is an open-source software that was developed as an extension of
BUGS. It provides a platform-independent engine for the BUGS language,
allowing for the use of BUGS models in various environments. Like BUGS,
JAGS is also used for Bayesian analysis through MCMC sampling techniques.

In what follows, we will use the nimble package in the context of loss data.

Example 9.5.1. The nimble package. Similar to the setup of Example
9.4.2, consider that each policyholder’s claim count (frequency) is distributed
as a Poisson random variable such that

pNi | Λ=λ(ni) = λnie−λ

ni!
,

where ni is the number of claims associated with the ith policyholder. Unlike
the previous example, however, let us assume an inverse gamma prior with a
shape parameter of 2 and a scale parameter of 5.16

Find the posterior distribution of the parameter by creating a chain of 51,000
iterations and a burn-in of 1,000 iterations using the nimble package.

Example Solution. First, we need to define the model using the ‘nimble‘
language. Simply put, the model is comprised of a likelihood density and a
prior density. The former links the observations to a Poisson distribution with
parameter λ, and the latter states the prior distribution, which is inverse gamma
with shape and scale parameters of 2 and 5, respectively.

16Note that the inverse gamma prior combined with a Poisson distribution does not
generally lead to closed-form posterior densities and thus requires us to use MCMC methods.
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claimmodel <- nimbleCode({
for (i in 1:N) {

# Likelihood
count[i] ~ dpois(lambda)

}
# Prior distribution
lambda ~ dinvgamma(shape = 2, scale = 5)

})

Then, we define the data, the constant (i.e., the number of observations in this
case), the parameter list (i.e., only λ here), and the initial value set to 0.05 in
this illustration.
claimdata <- list(count = sgautonb$Clm_Count)
claimconstant <- list(N = length(sgautonb$Clm_Count))
claimparameters <- c("lambda")
claiminitial <- list(lambda = 0.05)

The MCMC chain is then run using for 51,000 iterations and a burn-in of 1,000
iterations.
mcmcoutput <- nimbleMCMC(code = claimmodel, data = claimdata, constants = claimconstant,

inits = claiminitial, monitors = claimparameters, niter = 51000, nburnin = 1000,
nchains = 1)

save(mcmcoutput, file = "../IntermediateCalcs/BayesChap/Example951.Rdata")

Finally, we display the trace plot, obtain the histogram of the posterior distri-
bution of λ, and compute some descriptive statistics of the parameter.

The posterior mean of the parameter is 0.0781913941

The posterior standard deviation of the parameter is 0.00309462947

This simple illustration demonstrates the simplicity of utilizing R packages to
generate MCMC chains, all without the need for writing extensive code. For
more details on the nimble package, see Valpine et al. (2017).

9.6 Further Resources and Contributors

Many great books exist on Bayesian statistics and MCMC schemes. We refer
the interested reader to Bernardo and Smith (2009) and Robert and Casella
(1999) for an advanced treatment of these topics.

A number of academic articles in actuarial science relied on Bayesian statistics
and MCMC schemes over the past 40 years; see, for instance, Heckman and
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Meyers (1983), Meyers and Schenker (1983), Cairns (2000), Cairns et al.
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10
Premium Foundations

Chapter Preview. Setting prices for insurance products, i.e., premiums, is an
important task for actuaries and other data analysts. This chapter introduces
the foundations for pricing non-life products.

The presentation of this chapter follows the premium equation.

• In Section 10.2, we first present the sources of information that support
premium development.

• We discuss this development of the pure premiums in Section 10.5.
• In Section 10.6, we discuss fixed and variable non-claim expenses.
• In Section 10.7.3, we discuss the provision for profit.
• Section 10.9 summarizes alternative premium principles that incorporate

uncertainty into our pricing.

10.1 Introduction to Ratemaking

In this section, you will learn how to:

• Describe relationship between between exposures, rates, and premiums
• Describe the components of the rate

This chapter explains how you can determine the appropriate price for an
insurance product. As described in Section 1.2, one of the core actuarial
functions is ratemaking, where the analyst seeks to determine the right price
for a risk.

A price is the consideration exchanged for a good or service. In insurance, we
refer to this consideration as the premium and the service provided by the
insurer is protection against contingent events.

The amount of protection will vary by risk being insured. For example, in
homeowners insurance, the amount of insurance protection depends on the

337
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home value. In life insurance, the amount of protection may depend on a
policyholder’s financial status (e.g., income and wealth) and their perceived
need for financial security. So, it is common to express insurance prices as
a unit of the protection being purchased, for example, a price per thousand
dollars of coverage on a home or benefit in the event of death. We refer to the
unit of protection as the exposure. These prices/premiums are known as rates
because they are expressed in standardized units.

Unlike other products, the costs of insurance protection are not known at the
sale of the contract. If the insured contingent event, such as an automobile
accident of the loss of life, does not occur, then the contract costs are only
administrative (e.g., to set up the contract) and are relatively minor. If an
insured event occurs, then the cost includes not only administrative costs but
also claim payment(s) and expenses to settle claims. So, the cost is random
when the contract is written, and protection from that randomness is the basis
of insurance.

Because costs are unknown at the time of sale, insurance pricing differs from
common economic approaches. This chapter introduces traditional actuarial
approaches to determine prices as a function of insurance costs. Insurance
involves a promise of the insurer to pay a claim when presented by the insured.
For this reason, insurance is a regulated business, particularly for personal
lines insurance. The role of the regulator is to ensure that the insurer is able to
satisfy its promise to its policyholders. In executing this mandate, the regulator
often requires the insurer to file support for its rates. The regulator will review
that filing to determine whether those rates are reasonable, not excessive, not
inadequate, and not unfairly discriminatory.

The actuarial pricing approach we present is sufficient for some insurance
markets, such as personal automobile or homeowners, where the insurer has a
portfolio of many similar independent risks. However, there are other insurance
markets where actuarial prices only provide an input to general market prices.
To reinforce this distinction, actuarial cost-based premiums are sometimes
known as technical prices.

To develop technical prices, it is helpful to think of a premium as revenue
source that provides for

• Pure Premium - Claim payments are amounts due to the insured under the
terms of the insurance contract. Pure premiums include claim payments costs
to administer and investigate such claims.

• Insurer expenses - Non-claim Expenses include insurer costs that vary by
premium (such as sales commissions), and those that do not (such as building
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costs and employee salaries). We include those costs through the Fixed
Expenses and Variable Expense Rate of the (10.2).

• Profit - An insurer requires capital to support operations. The capital provider
will reasonably expect to earn a profit from insuring risk. Insurers have two
sources of profit: underwriting income and investment income.

We formalize this relationship in our simplified premium equation.

Premium = Pure Premiums + Fixed Expenses
1 − Variable Expense Rate − Profit (10.1)

where

Pure Premiums = Estimated Claims and Claims Adjustment Expense
Exposures

or

Pure Premiums = Estimated Claim Counts
Exposures

× Estimated Claims and Claims Adjustment Expense
Estimated Claim Counts

This simplified premium equation promotes a general understanding of the
Relationship of insurance costs and revenue. We refer to this equation as the
simplified premium equation because (i) it does not include explicit considera-
tion for investment income, and (ii) we combine consideration of claims and
claims adjustment expenses. We will refine the simplified premium equation to
consider these items later in this chapter.

We observe that the pure premium in equation (10.1) is a ratio of claims and
exposures. We discuss the development of the claims provision in Section 10.3
and the development of exposures in Section 10.4.

10.2 Data Sources

In this section, you will learn how to:

• Describe the types of data used to develop rates

Insurers consider aggregate information for ratemaking such as exposures,
premiums, expenses, claims, and payments. This aggregate information is
also useful for managing an insurer’s activities. The information is typically
summarized in financial reports which are commonly compiled at least annually
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and often quarterly. At any given financial reporting date, information about
recent policies and claims will be ongoing and necessarily incomplete; this
section introduces concepts for projecting risk information so that it is useful
for ratemaking purposes.

Insurers generally store information about insured risks, such as exposures,
premiums, claim counts, losses, and rating factors, in a relational database
that will include:

• policy database - contains information about the risk being insured, the
policyholder, and the contract provisions

• claims database - contains information about each claim. The claims database
is linked to the policy database.

• payment database - contains information on each claims transaction, typically
payments but may also include changes to case reserves. The payment
database is linked to the claims database.

Insurers will aggregate the information in these detailed databases to develop
the information needed for financial reports. As described in this chapter,
insurers’ actuaries will also use this information to develop the premiums.

10.3 Claims

In this section, you will learn how to:

• Describe the basis for the provision for claims, the numerator of the pure
premium

• Adjust claims to the level of the prospective period

The terms loss and claim refer to the amount of compensation paid or payable
to the claimant under the terms of the insurance policy. Definitions can vary:

• Sometimes, claim is used interchangeably with the term loss.
• In some insurance and actuarial sources, loss is the amount of damage

sustained in an insured event. The claim is the amount paid by the insurer.
Differences between loss and claim amounts are typically due to the coverage
terms such as deductibles and policy limits.

• In economics, a claim is a demand for payment by an insured or by an injured
third party under the terms and conditions of the insurance contract, and
the loss is the amount paid by the insurer.
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This text will follow the convention of the second bullet.

Also, there are two categories of claim adjustment expenses.

• Allocated claim adjustment expenses are attributed to a specific claim and
are generally comprised of investigation and legal expenses to defend or settle
the claim.

Claims and allocated claim adjustment expenses are sometimes inversely
correlated, as additional defense expenses may result in lower claim payments.
In this section, references to claims also include allocated claims adjustment
expenses.

• Unallocated claim adjustment expenses cannot be assigned to individual
claims (e.g., claim adjuster salaries.) Actuaries often review claims and
allocated claim adjustment expenses in aggregate, as the latter is often a
function of the former.

Insurers will include a provision for unallocated claims adjustment expenses
either as a percentage of claims and allocated claims expenses or premiums,
or a combination thereof. We discuss unallocated claims adjustment expenses
separately in Section 10.3.2.

10.3.1 Estimated Ultimate Claims

Recall that a claim is the amount paid or payable to claimants under the
terms of insurance policies. In more detail, one can consider paid claims, those
losses for a particular period that have actually been paid to claimants. When
there is an expectation that payment will be made in the future, a claim will
have an associated case reserve representing the estimated amount of that
payment. Case adjusters establish case reserves separately for each open claim
based on the information available. In addition, reported claims, also known
as case incurred claims or incurred claims, are the sum of paid claims and
case reserves. The ultimate claim is the amount required to close and settle all
claims for a defined group of policies. We describe the estimation of ultimate
claims and claims adjustment expenses in Section 14.

Alternatively, we can estimate projected claims and claims expenses as the
product of projected claim frequency and claims severity:

Claims and Claims Expenses(t)
i = E[X] × E[N ]

where:

• E[X] is the projected average ultimate severity per claim, and
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• E[N ] is the projected ultimate number of claims.

We note the frequency-severity alternatives to support our discussion of trends
in the following section.

10.3.2 Adjustments to Claims and Allocated Claims Adjustment Expenses

In this section, we review adjustments to experience period ultimate claims that
are required to support the development of prospective rates. These adjustments
include trending, large loss adjustments and provisions for catastrophes. Finally,
we discuss approaches to incorporate unallocated claims adjustment expense.

Trending

Each of the years of the experience period has a different underlying cost level;
our goal is to estimate claims at the cost level of the prospective policy period.
Consider, for example, if costs were rising at a rate of 5% per annum. All else
equal, the estimated ultimate cost for time t+ 2 would be 1.052 times the costs
of claims from time t. Trending is the process of adjusting ultimate losses from
the cost level of the experience period to prospective cost levels.

Actuaries will often consider separate trends for the frequency of claims and
the severity of claims. Actuaries often state past trends separately from future
trends. Past trends reflect changes that have taken place between the experience
period of the rate calculation and the valuation date. Future trends reflect
expectations of change between the valuation date and the prospective policy
period.

There are various approaches to estimating severity trend rates. Two common
approaches include the estimation of trend rates based on external cost indices
and the estimation of trend rates based on claims experience. The former
approach generally uses government data such as the consumer price index or
components thereof. In the latter approach, actuaries will often fit regression
models to discern the rate of change in average claims values over time.

Due to the lack of external indices that would be appropriate as a basis for
claims frequency models, actuaries generally either estimate frequency trend
based on company experience or assume that the frequency trend is 0%.

It is also common to review pure premium trends directly. Although the pure
premium trend is effectively a combination of the frequency and severity trends,
direct analysis of pure premiums may mask underlying changes in frequency
and severity when they are inversely correlated.
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Large Loss and Catastrophe Provisions

Consider, for example, if a five-year experience period included a one-in-20-year
event. If we did not adjust the data, we would effectively overestimate claim
amounts for that category of claims.

In ratemaking, we remove these unusual large losses and catastrophe losses
from the experience period data, and then add a provision consistent with
the longer-term average cost of large losses or catastrophes. Although large
loss adjustments are commonly based on the insurer’s claims experience, the
provision for catastrophes is often based on models developed by specialists.
Adjustments for catastrophes are more common in property insurance, while
adjustments for large losses are more common in liability insurance.

Unallocated Claims Adjustment Expenses

Some insurers include unallocated claims adjustment expenses as a percentage
of claims and allocated claims adjustment expenses, while other insurers
include unallocated claims adjustment expenses as a percentage of premiums.
In our discussion, we use the former approach. For insurers that use the
latter approach, the inclusion of a provision for unallocated claims adjustment
expenses would follow that described below for other non-claim expenses.
Generally, insurers estimate UE by reviewing historical ratios of those payments
to claims and allocated claims adjustment expense payments.

10.4 Exposures

In this section, you will learn how to:

• Describe the consideration exposures in the developing pure premiums
• Select an exposure base
• Adjust historical exposures to the level of the prospective period

The denominator of the pure premium equation is “exposure.” We use exposures
to standardize heterogeneous risks. To explain exposures, we can consider scale
distributions that we learned about in Chapter 4. To recall a scale distribution,
suppose that X has a parametric distribution and define a rescaled version
R = X/E, E > 0. If R is in the same parametric family as X, then the
distribution is said to be a scale distribution. As we have seen, the gamma,
exponential, and Pareto distributions are examples of scale distributions.
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Intuitively, the idea behind exposures is to make risks more comparable to one
another. For example, it may be that risks X1, . . . , Xn are from different dis-
tributions and yet, with the choice of the right exposures, the rates R1, . . . , Rn

are from the same distribution. Here, we interpret the rate Ri = Ci/Ei as the
loss divided by exposure.

Table 10.5.1 provides a few examples.

Table 10.5.1. Commonly used Exposures in Different Types of Insur-
ance

Type of Insurance Exposure Basis
Personal Automobile Earned Car Year, Amount of Insurance Coverage
Homeowners Earned House Year, Amount of Insurance Coverage
Workers Compensation Payroll
Commercial General Liability Sales Revenue, Payroll, Square Footage, Number of Units
Commercial Business Property Amount of Insurance Coverage
Physician’s Professional Liability Number of Physician Years
Professional Liability Number of Professionals (e.g., Lawyers or Accountants)
Personal Articles Floater Value of Item

10.4.1 Criteria for Choosing an Exposure

An exposure base should meet the following criteria. It should:

• be an accurate measure of the quantitative exposure to loss
• be easy for the insurer to determine (at the time the policy is initiated) and

not subject to manipulation by the insured,
• be easy to understand by the insured and easy to calculate by the insurer,
• consider any preexisting exposure base established within the industry.

To illustrate, consider personal automobile coverage. Instead of the exposure
basis “earned car year,” a more accurate measure of the quantitative exposure
to loss might be number of miles driven. Historically, this measure had been
difficult to determine at the time the policy is issued and subject to potential
manipulation by the insured, so it was not typically used. Modern telematic
devices that allow for accurate mileage recording support the use of this
exposure base in some marketplaces.

As another example, the exposure measure in commercial business property,
e.g., fire insurance, is typically the amount of insurance coverage. As property
values grow with inflation, so will the amount of insurance coverage. Thus, rates
quoted on a per amount of insurance coverage are less sensitive to inflation.
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10.4.2 Written and Earned Exposures

In developing premiums and rates, it’s important that we use claims information
and exposure information that is comparable. Most ratemaking uses an accident
year approach. In this approach, we relate claims incurred during a specified
period to the premium or exposure “earned” during that same period without
consideration of the period in which the underlying policy was written. For
example, a 12-month policy issued on 1 July 2019 insures claims events in
2019 or 2020, and the claims are assigned to the year of the event. Generally,
we earn premiums and exposures on a pro-rata as to time basis as presented
in Table 10.5.2, which displays illustrative calculations for a portfolio of four
illustrative policies.

Table 10.5.2. Exposures for Four 12-Month Policies

In-Force
Effective Written Exposure Earned Exposure Unearned Exposure Exposure

Policy Date 2019 2020 2019 2020 1/1/2019 1/1/2020 1/1/2020
A 1 Jan 2019 1.00 0.00 1.00 0.00 0.00 0.00 0.00
B 1 April 2019 1.00 0.00 0.75 0.25 0.25 0.00 1.00
C 1 July 2019 1.00 0.00 0.50 0.50 0.50 0.00 1.00
D 1 Oct 2019 1.00 0.00 0.25 0.75 0.75 0.00 1.00

Total 4.00 0.00 2.50 1.50 1.50 0.00 3.00

10.4.3 Adjustments to Exposures
Exposure Trend

Sometimes exposure units are inflation sensitive. For example, payroll is a
common exposure base for workers compensation coverage. Even if the insured
firm does not grow, it’s payroll may increase due to wage inflation. We refer to
the adjustment applied to inflation sensitive exposures as exposure trend.

10.5 Pure Premiums

In this section, you will learn how to:

• Calculate the expected pure premium

The pure premium in equation (10.1) is a random variable, and so, as a
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baseline, we use the expected costs to determine rates. To develop our initial
understanding, we will consider the insurer that enters into many contracts
with risks that are similar except, by pure chance, in some cases, there are
losses on some contracts but not on others. The insurer is obligated to pay
the total amount of claim payments for all contracts. If the risks are similar,
then all policyholders are equally likely to contribute to the total loss. From
probability theory, specifically the law of large numbers, we know that the
average of iid risks is close to the expected amount, so we use the expectation
as a baseline pricing principle.

In this chapter, we present the development of average premium levels for
a portfolio of homogeneous risks. In Chapter 11, we present approaches to
develop classification plans which adjust those average premiums to recognize
various risk characteristics. In Chapter 15, we present approaches to develop
premiums that consider the claim experience of an individual insured.

10.5.1 Experience Period

To develop expected pure premiums, actuaries will typically review claims and
exposure experience over a multi-year (typically three to seven years) period.
The use of a multi-year period smooths the year-to-year randomness. We refer
to this multi-year period as the experience period.

10.5.2 Expected Pure Premium

The expected pure premium is generally calculated as the weighted average of
the observations in the experience period. The weights balance responsiveness
to more recent experience and the stability of a longer-term average.

Pure Premium(t) = Exposuret×
n∑

i=1
wi

Ultimate Claims and Claims Expenses(t)
i

Exposure(t)
i

where:

• wi is the weight for year i in an n year experience period.

The superscript (t) indicates that the ultimate claim estimate for accident
year i is adjusted to the level of the prospective program period t. We discussed
these adjustments in Section 10.3.2. The following equation demonstrates this
process of adjustment.

Claims and Claims Expenses(t)
i = CxLL,xCat

i × T
(t)
i × LL× CP × UE

Exposure(t)
i = Exposurei × E

(t)
i
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where:

• CxLL,xCat
i is the estimated ultimate claims for year i, excluding large losses

and catastrophes
• Ti is a claim trend factor to adjust year i experience to the cost level of year
t

• E
(t)
i is an exposure trend factor to adjust year i experience to the cost level

of year t
• LL is a large loss factor
• CP is a catastrophe provision
• UE is the unallocated claims adjustment expense factor

We discussed these adjustments earlier in this chapter.

10.6 Non-Claim Expenses

In this section, you will learn how to:

• Describe the consideration of operational expenses in the development of
premiums

Non-claim insurer Operating expense costs include commissions, premium
taxes, and other expenses such as salaries, rent, and inspections.

• Some expenses (such as commissions and premium taxes) vary with premiums
are “variable” or “premium variable expenses.”

• Other expenses (such as general administrative and head office costs) are not
proportional to the premium.

For non-claim expenses, insurers will typically rely on either historical expense
ratios, budgeted amounts, or financial forecasts.

We include fixed expenses in our premium equation on a per-exposure basis
and we include variable expenses as a rate per unit premium.

10.7 Investment Income
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In this section, you will learn how to:

• Describe the consideration of the timing of cash flows in the development of
the rate

• Calculate a required provision for underwriting profit

A portion of the required profit is earned from investment income from two
sources: policyholder cash flows and investment of the insurer’s surplus. To the
extent that investment income is insufficient to provide the required rate of
return, the premiums will also need to include an underwriting profit provision.

As we described, we presented a simplified premium equation in Section 10.5.2
to promote the understanding of the claims and expense provisions in Section
10.3 and exposures in Section 10.6. We now refine the equation to consider
investment income. We now consider the other source of an insurer’s profit,
investment income.

10.7.1 Investment Income on Policyholder Cash Flows

We first consider policyholder cash flows, i.e., premiums, claims, claim adjust-
ment expenses, and non-claim expenses. We consider investment income on
policyholder cash flows by discounting each of the cash flows of each of these
components of the premium equation.

• There may be a delay in the insurer’s receipt of premium, perhaps because
the insurer offers payment plans to the insured.

• Claims and claims adjustment expenses are paid over a period that typically
extends beyond the policy term. Generally, property coverages have the
shortest payment stream, with all claims being settled and paid over a period
that extends between 2 and 5 years, depending on the complexity of the
determination of damages. Litigated liability coverages will have intermediate
payment streams that range from three to 10 years. Finally, coverages such
as workers compensation, offer lifetime benefits that can extend forty years
or longer.

• Non-claim expenses are generally paid over the term of the policy period.

We can rewrite our premium equation to capture the discounting. We replace
the unity in the denominator with a premium delay factor and we discount the
claims and claims adjustments expenses (in the pure premium) and non-claim
expenses.

Premium = Discounted Pure Premiums + Discounted Fixed Expenses
Premium Delay − Variable Expense Rate − Profit

.

We recognize that the discounting effect on the numerator is significantly
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greater than the effect on the denominator. As a result, consideration of
investment income on policyholder cash flows serves to reduce the premium.

The consideration of profit serves in the denominator serves to increase the
required premium. We now turn to the determination of that profit provision.

10.7.2 Investment Income on Surplus

The insurer’s surplus is also comprised of invested assets which provide a rate
of return. In ratemaking we assume that the investment income on surplus is
earned over the policy term, generally 12 months. Investment income of surplus
will reduce the required profit provision. For example, if the insurer were able
to earn a rate of return on assets of 5% per annum, then the insurer would
realize a return of 2.5% of premiums assuming a 2:1 premium: surplus ratio.

10.7.3 The Underwriting Profit Provisions

An insurer requires capital to support operations. The insured pays a premium
for the promise of the insurer to pay a claim in the future. Capital serves as
protection for the policyholder in the event that premiums are insufficient to
pay claims. The capital provider will reasonably expect to earn a profit to
insure the risk and subject its capital to loss. Generally, the required profit is
expressed as after-tax return on equity.

If the profit provision in the premium equation were 0, then the premium
would equal the present value of the present value of cash flows of the insurance
policy. However, as we discussed the insurer will require a return on its capital.
Generally, coverages that are riskier, i.e., have more variability, will require
more supporting capital. Every claim submitted to the insurer has access to all
of the capital of the insurer. In insurance, capital is often referred to as surplus.
For ratemaking, we notionally allocate capital to coverage using premium to
surplus ratios and we state the required rate of return on an after-tax basis.
We have to convert that return to a “percent of premium basis” to include
in our premium equation. For example, if we assume a 2:1 premium:surplus
ratio, a required after-tax rate of return of 12% and a tax rate of 30%, then
the profit provision in the premium would be:

12% after tax return
surplus × 1 × surplus

2 × premium × 1 pre-tax
0.7 after tax

= 8.6% pre-tax return
premium .

We can then reduce the required underwriting profit to consider investment
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income on surplus. Using the example of Section 10.7.2, the resulting required
underwriting profit provision would reduce from 8.6% to 6.1%.

10.8 The Premium Equation

In this section, you learn how to:

• Calculate the rate for a class of risk
• Calculate premiums

We can now remove the simplifying assumptions included in Equation (10.1)
and provide our final premium equation. The term “pure premium” can be
used to refer to rate per exposure unit of provision for claims costs included in
the premium for an insured (which may have a quantum of exposure more or
less than one exposure unit). In this section, we use the latter definition.

Premium = Discounted Pure Premium + Discounted Fixed Expenses
Premium Delay − Variable Expense Rate − Required Underwriting Profit .

(10.2)

10.9 Pricing Principles

In this section, you learn how to:

• Describe common actuarial pricing principles
• Describe properties of pricing principles
• Choose a pricing principle based on a desired property

Approaches to pricing vary by the type of contract. For example, personal
automobile is a widely available product throughout the world and is known
as part of the retail general insurance market in the United Kingdom. Here,
one can expect to do pricing based on a large pool of independent contracts, a
situation in which expectations of losses provide an excellent starting point.
In contrast, an actuary may wish to price an insurance contract issued to a
large employer that covers complex health benefits for thousands of employees.
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In this example, knowledge of the entire distribution of potential losses, not
just the expected value, is critical for starting the pricing negotiations. To
cover a range of potential applications, this section describes general premium
principles and their properties that one can use to decide whether or not a
specific principle is applicable in a given situation.

10.9.1 Premium Principles

The prior sections of this chapter introduce traditional actuarial pricing prin-
ciples that provide a price based only target rates of return and the cost to
insure the risk; the price does not depend on the demand for insurance.

Assume that the loss X has distribution function F (·) and that there exists
some rule (which in mathematics is known as a functional), say H, that takes
F (·) into the positive real line, denoted as P = H(F ). For notation purposes,
it is often convenient to substitute the random variable X for its distribution
function and write P = H(X). Table 10.8.1 provides several examples.

Table 10.8.1. Common Premium Principles

Description Definition (H(X))
Net (pure) premium E[X]
Expected value (1 + α)E[X]
Standard deviation E[X] + α SD(X)
Variance E[X] + α Var(X)
Zero utility solution of u(w) = E[u(w + P −X)]
Exponential 1

α log E[eαX ]

A premium principle is similar to a risk measure that is introduced in Section
13.3. Mathematically, both are rules that map the loss rv of interest to a
numerical value. From a practical viewpoint, a premium principle provides a
guide as to how much an insurer will charge for accepting a risk X. In contrast,
a risk measure quantifies the level of uncertainty, or riskiness, that an insurer
can use to decide on a capital level to be assured of remaining solvent.

The net, or pure, premium essentially assumes no uncertainty. The expected
value, standard deviation, and variance principles each add an explicit loading
for uncertainty through the risk parameter α ≥ 0. For the principle of zero
utility, we think of an insurer with utility function u(·) and wealth w as being
indifferent to accepting and not accepting risk X. In this case, P is known as an
indifference price or, in economics, a reservation price. With exponential utility,
the principle of zero utility reduces to the exponential premium principle, that
is, assuming u(x) = (1 − e−αx)/α.
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For small values of the risk parameters, the variance principle is approximately
equal to exponential premium principle, as illustrated in the following special
case.

Special Case: Gamma Distribution. Consider a loss that is gamma dis-
tributed with parameters η and θ (we usually use α for the location parameter
but, to distinguish it from the risk parameter, for this example we call it η). From
the Appendix Chapter 20, the mean is η θ and the variance is η θ2. Using αV ar

for the risk parameter, the variance premium is HV ar(X) = η θ + αV ar (η θ2).
From this appendix, it is straightforward to derive the well-known moment gen-
erating function, M(t) = E[etX ] = (1 − tθ)−η. With this and a risk parameter
αExp, we may express the exponential premium as

HExp(X) = −η
αExp

log (1 − αExpθ) .

To see the relationship between HExp(X) and HV ar(X), we choose αExp =
2αV ar. With an approximation from calculus (log(1 −x) = −x−x2/2 −x3/3 −
· · ·), we write

HExp(X) = −η
αExp

log (1 − αExp θ) = −η
αExp

{
−αExp θ − (αExp θ)2/2 − · · ·

}
≈ η θ + αExp

2 (η θ2) = HV ar(X).

10.9.2 Properties of Premium Principles

Properties of premium principles help guide the selection of a premium principle
in applications. Table 10.8.2 provides examples of properties of premium
principles.

Table 10.8.2. Common Properties of Premium Principles

Description Definition
Nonnegative loading H(X) ≥ E[X]
Additivity H(X1 +X2) = H(X1) +H(X2), for independent X1, X2
Scale invariance H(cX) = cH(X), for c ≥ 0
Consistency H(c+X) = c+H(X)
No rip-off H(X) ≤ max{X}

This is simply a subset of the many properties quoted in the actuarial literature.
For example, the review paper of Young (2014) lists 15 properties. See also the
properties described as coherent axioms that we introduce for risk measures in
Section 13.3.
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Some of the properties listed in Table 10.8.2 are mild in the sense that they
will nearly always be satisfied. For example, the no rip-off property indicates
that the premium charge will be smaller than the largest or “maximal” value
of the loss X (here, we use the notation max{X} for this maximal value which
is defined as an “essential supremum” in mathematics). Other properties may
not be so mild. For example, for a portfolio of independent risks, the actuary
may want the additivity property to hold. It is easy to see that this property
holds for the expected value, variance, and exponential premium principles but
not for the standard deviation principle. Another example is the consistency
property that does not hold for the expected value principle when the risk
loading parameter α is positive.

The scale invariance principle is known as homogeneity of degree one in
economics. For example, it allows us to work in different currencies (e.g., from
dollars to Euros) as well as a host of other applications. Although a generally
accepted principle, we note that this principle does not hold for a large value
of X that may border on a surplus constraint of an insurer; if an insurer has
a large probability of becoming insolvent, then that insurer may not wish to
use linear pricing. It is easy to check that this principle holds for the expected
value and standard deviation principles, although not for the variance and
exponential principles.

10.10 Reviewing Rate Adequacy

After establishing the initial premiums, insurance company actuaries will
perform rate reviews to measure the current adequacy of those rates. For many
regulated coverages (typically, personal lines insurance), actuaries file those
rate reviews with the insurance regulator. Actuaries review rates regularly as
rate levels require updates to keep pace with inflationary pressures. At times,
the required rate will have a decreasing trend; for example with improvements
in vehicle safety technology or workplace safety. Of course, the primary purpose
of the rate is to test whether the experience of the rate program is consistent
with loss and expense assumptions underlying the current rates.

10.10.1 The Loss Ratio Method

The “loss ratio method” is a common approach to assess rate adequacy. The
loss ratio is the ratio of loss to the premium.

Loss Ratio = Loss
Premium

.
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When determining premiums, it is a bit counter-intuitive to emphasize this
ratio because the premium component is built into the denominator. As we
will see, the loss ratio method develops rate changes rather than rates; we
can use rate changes to adjust the current rate to the current costs levels.

We calculate rate changes by comparing the loss ratio of the experience period
to the target loss ratio. This adjustment factor is then applied to current rates
to determine new indicated rates.

10.10.2 Target Loss Ratio

Let us return to equation (10.2). Noting that the “pure premium” is the
provision for loss in the rates, we can start with

Premium = Discounted Losses + Discounted Fixed Expenses
Premium Delay − Variable Expense Rate − Profit

With this, we have

Premium Delay - Variable Expense Rate - Profit
= Discounted Losses

Premium + Discounted Fixed Expenses
Premium

Premium Delay - Variable Expense Rate - Profit − Discounted Fixed Expenses
Premium

= Discounted Losses
Premium

= Target Discounted Loss Ratio.

For simplification, we will not repeat that the components of the rate change
factor are discounted. In the loss ratio method, we compare the projected loss
ratio to the target loss ratio. A projected loss ratio that exceeds the target loss
ratio implies the need for a rate increase. A projected loss ratio that is less
than the target loss ratio implies the need for a rate decrease.

10.10.3 Experience Period Loss Ratios

Earlier in this section, we described the required adjustments to estimate
premiums. We apply those same adjustments to the experience period loss
ratios.

10.10.4 Adjustments to Loss

• As with the development of pure premiums described above, actuaries will
typically review claims experience over a multi-year (typically three to seven
years) period to smooth the year-to-year randomness. The years in the
experience period are similarly weighted to balance responsiveness to more
recent experience and the stability of a longer-term period.
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• The numerator of the loss ratio will be ultimate losses.

• We will consider the presence of catastrophe and large losses in the claims
experience.

• We need to adjust the experience period losses to the cost level of the proposed
rate program. We discussed this trend adjustment in Section 10.3.2. We apply
the trend factor from the average accident date of the experience period
to the average accident date of the proposed rate program. For example, if
we are estimating rates that will underlie twelve month policies written in
calendar year 2025, the average accident date of the prospective rate program
will be 31 December 2025 (sometimes rounded to 1 January 2026). The first
policy of the prospective period will be written on 1 January 2025 and expire
on 31 December 2025. Assuming even distribution of claim events during the
policy, the average accident date (midpoint) of that policy is 1 July 2025.
Correspondingly, the last policy of the prospective period will be written on
31 December 2025 and expire on 31 December 2026 with an average accident
date (midpoint) of that policy is 1 July 2026. Therefore, the midpoint of all
policies written under the proposed rate program is 31 December 2025. To
adjust experience for accident year 2022, we apply 3.5 years of trend. The
average accident date of accident year 2022 is 1 July 2022 - so 3.5 years is the
distance in time to the average accident date of the proposed rate program.

10.10.5 Premium On-Level Adjustment

We also need to adjust premiums for the effect of rate changes. We refer to this
adjustment as “on-leveling.” There are two common approaches to on-leveling.

• The Parallelogram Method: Premium on-level factors use historical rate
change calculations. For example, if the company adopted a +10% rate
change on 1 July 2022, then the 2022 earned premium would need to be
adjusted by +7.5%. - Policies written prior to 1 July 2022 would need to
be adjusted by +10%; - For the premium earned after 1 July 2022, half
would be earned on policies written under the old rate levels and require
the 10% adjustment and half would be written on policies written under the
higher rate levels and require no adjustment. The weighted average of these
adjustments if +7.5%.

• Extension of Exposures: The extension of exposures method is a more detailed
approach which involves the re-rating of all historical policies at current rates.
It is more precise as the parallelogram method relies on rate changes that
were calculated as the average rate change given the mix of business at that
time. However, the mix of business may change and the rate change effect
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on the current mix may be different. The extension of exposures does not
rely on those average rate changes and instead relies only on current rates.

10.10.6 Premium Trend

Experience period premiums must also be adjusted for for premium trend,
and the basis of premium must match the loss trend. For example, insureds
may purchase higher limits of coverage to protect against higher inflation.
These higher limits would be reflected in the internal claims experience and
may underlie the data used to measure loss trend. If we are considering these
changes in the loss trend, then we also need to consider the effect of higher
limit purchases in premium trend.

10.10.7 Credibility

Oftentimes, the experience being reviewed is not “fully credible.” That is,
the predictive value of the data is limited. We, therefore, need to consider
an alternative indication of the projected loss ratio to calculate a credibility-
weighted loss ratio. We refer to this alternative indicator as the complement of
credibility. A common complement is the net loss trend (loss trend/premium
trend). The assumption underlying the use of net loss trend as a complement
is that in the absence of an alternative indication, we would need to adjust the
rate level to consider changes in cost level. Chapter 12 describes credibility in
detail.

Example. Loss Ratio Indicated Change Factor. Assume the following
information:

• Experience period loss and LAE ratio = 65%
• Experience period credibility = 80%
• Loss Trend = 5%
• Premium On-Level Adjustment = 1.075
• Premium Trend = 2%
• Premium Delay Factor = 0.99
• Projected fixed expense ratio = 6.5%
• Variable expense = 25%
• Target UW profit = 6.1% .

With these assumptions, the indicated change factor can be calculated as
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Experience Period Loss Ratio = 65% × 1.05
1.075 × 1.02 = 62.2%

Target Loss Ratio = 0.99 − 6.5% − 25% − 6.1% = 61.4%
Complement of Credibility = 0.614 × 1.05

1.02 = 63.2%
Credibility-weighted loss ratio = 62.2% × 80% + 63.2% × (1 − 80%) = 62.4%
Indicated loss ratio = 62.4%/61.4% = 1.016.

This means that overall average rate level should be increased by 1.6%.

10.11 Further Resources and Contributors

This chapter serves as a bridge between the technical introduction of this
book and an introduction to pricing and ratemaking for practicing actuaries.
For readers interested in learning practical aspects of pricing, we recommend
introductions by the Society of Actuaries in Friedland (2013) and by the
Casualty Actuarial Society in Werner and Modlin (2016). For a classic risk
management introduction to pricing, see Niehaus and Harrington (2003). See
also Finger (2006) and Frees (2014).

Bühlmann (1985) was the first in the academic literature to argue that pricing
should be done first at the portfolio level (he referred to this as a top down
approach) which would be subsequently reconciled with pricing of individual
contracts. See also the discussion in Kaas et al. (2008), Chapter 5.

For more background on pricing principles, a classic treatment is by Gerber
(1979) with a more modern approach in Kaas et al. (2008). For more discussion
of pricing from a financial economics viewpoint, see Bauer et al. (2013).

• Edward (Jed) Frees, University of Wisconsin-Madison, and José Garrido,
Concordia University were the principal authors of the initial version of this
chapter.

– Chapter reviewers included Chun Yong Chew, Curtis Gary Dean, Brian
Hartman, and Jeffrey Pai.

• Rajesh Sahasrabuddhe, Oliver Wyman, is the author of the second edition
of this chapter. Email: rajesh1004@gmail.com for chapter comments and
suggested improvements.

TS 10.A. Rate Regulation

Insurance regulation helps to ensure the financial stability of insurers and to
protect consumers. Insurers receive premiums in return for promises to pay

mailto:rajesh1004@gmail.com
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in the event of a contingent (insured) event. Like other financial institutions
such as banks, there is a strong public interest in promoting the continuing
viability of insurers.

Market Conduct

To help protect consumers, regulators impose administrative rules on the be-
havior of market participants. These rules, known as market conduct regulation,
provide systems of regulatory controls that require insurers to demonstrate that
they are providing fair and reliable services, including rating, in accordance
with the statutes and regulations of a jurisdiction.

1. Product regulation serves to protect consumers by ensuring that in-
surance policy provisions are reasonable and fair, and do not contain
major gaps in coverage that might be misunderstood by consumers
and leave them unprotected.

2. The insurance product is the insurance contract (policy) and the cov-
erage it provides. Insurance contracts are regulated for these reasons:
a. Insurance policies are complex legal documents that are often

difficult to interpret and understand.
b. Insurers write insurance policies and sell them to the public on a

“take it or leave it” basis.

Market conduct includes rules for intermediaries such as agents (who sell
insurance to individuals) and brokers (who sell insurance to businesses). Market
conduct also includes competition policy regulation, designed to ensure an
efficient and competitive marketplace that offers low prices to consumers.

Rate Regulation

Rate regulation helps guide the development of premiums and so is the focus
of this chapter. As with other aspects of market conduct regulation, the intent
of these regulations is to ensure that insurers not take unfair advantage of
consumers. Rate (and policy form) regulation is common worldwide.

The amount of regulatory scrutiny varies by insurance product. Rate regulation
is uncommon in life insurance. Further, in non-life insurance, most commercial
lines and reinsurance are free from regulation. Rate regulation is common
in automobile insurance, health insurance, workers compensation, medical
malpractice, and homeowners insurance. These are markets in which insurance
is mandatory or in which universal coverage is thought to be socially desirable.

There are three principles that guide rate regulation: rates should

• be adequate (to maintain insurance company solvency),
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• but not excessive (not so high as to lead to exorbitant profits),
• nor unfairly discriminatory (price differences must reflect expected claim and

expense differences).

Recently, in auto and home insurance, the twin issues of availability and
affordability, which are not explicitly included in the guiding principles, have
been assuming greater importance in regulatory decisions.

Rates are Not Unfairly Discriminatory

Some government regulations of insurance restrict the amount, or level, of
premium rates. These are based on the first two of the three guiding rate
regulation principles, that rates be adequate but not excessive. This type
of regulation is discussed further in the following section on types of rate
regulation.

Other government regulations restrict the type of information that can be used
in risk classification. These are based on the third guiding principle, that rates
not be unfairly discriminatory. “Discrimination” in an insurance context has a
different meaning than commonly used; for our purposes, discrimination means
the ability to distinguish among things or, in our case, policyholders. The real
issue is what is meant by the adjective “fair.”

In life insurance, it has long been held that it is reasonable and fair to charge
different premium rates by age. For example, a life insurance premium differs
dramatically between an 80 year old and someone aged 20. In contrast, it is
unheard of to use rates that differ by:

• ethnicity or race,
• political affiliation, or
• religion.

It is not a matter of whether data can be used to establish statistical significance
among the levels of any of these variables. Rather, it is a societal decision as
to what constitutes notions of “fairness.”

Different jurisdictions have taken different stances on what constitutes a fair
rating variable. For example, in some jurisdictions for some insurance products,
gender is no longer a permissible variable. As an illustration, the European
Union now prohibits the use of gender for automobile rating. As another
example, in the U.S., many discussions have revolved around the use of credit
ratings to be used in automobile insurance pricing. Credit ratings are designed
to measure consumer financial responsibility. Yet, some argue that credit scores
are good proxies for ethnicity and hence should be prohibited.

In an age where more data is being used in imaginative ways, discussions
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of what constitutes a fair rating variable will only become more important
going forward and much of that discussion is beyond the scope of this text.
However, it is relevant to the discussion to remark that actuaries and other
data analysts can contribute to societal discussions on what constitutes a
“fair” rating variable in unique ways by establishing the magnitude of price
differences when using variables under discussion.

Types of Rate Regulation

There are several methods, that vary by the level of scrutiny, by which regulators
may restrict the rates that insurers offer.

The most restrictive is a government prescribed regulatory system, where the
government regulator determines and promulgates the rates, classifications,
forms, and so forth, to which all insurers must adhere. Also restrictive are prior
approval systems. Here, the insurer must file rates, rules, and so forth, with
government regulators. Depending on the statute, the filing becomes effective
when a specified waiting period elapses (if the government regulator does not
take specific action on the filing, it is deemed approved automatically) or when
the government regulator formally approves the filing.

The least restrictive is a no file or record maintenance system where the insurer
need not file rates, rules, and so forth, with the government regulator. The
regulator may periodically examine the insurer to ensure compliance with the
law. Another relatively flexible system is the file only system, also known as
competitive rating, where the insurer simply keeps files to ensure compliance
with the law.

In between these two extremes are the (1) file and use, (2) use and file, (3)
modified prior approval, and (4) flex rating systems.

1. File and Use: The insurer must file rates, rules, and so forth, with the
government regulator. The filing becomes effective immediately or on
a future date specified by the filer.

2. Use and File: The filing becomes effective when used. The insurer
must file rates, rules, and so forth, with the government regulator
within a specified time period after first use.

3. Modified Prior Approval: This is a hybrid of “prior approval” and “file
and use” laws. If the rate revision is based solely on a change in loss
experience then “file and use” may apply. However, if the rate revision
is based on a change in expense relationships or rate classifications,
then “prior approval” may apply.

4. Flex (or Band) Rating: The insurer may increase or decrease a rate
within a “flex band,” or range, without approval of the government
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regulator. Generally, either “file and use” or “use and file” provisions
apply.

For a broad introduction to government insurance regulation from a global
perspective, see the website of the International Association of Insurance
Supervisors (IAIS).

https://www.iaisweb.org/home
https://www.iaisweb.org/home
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Risk Classification

Chapter Preview. This chapter motivates the use of risk classification in in-
surance pricing and introduces readers to Poisson regression as a prominent
example of risk classification. In Section 11.1 we explain why insurers need
to incorporate various risk characteristics, or rating factors, of individual
policyholders in pricing insurance contracts. In Section 11.2, we introduce
Poisson regression as a pricing tool to achieve such premium differentials. The
concept of exposure is also introduced in this section. As most rating factors
are categorical, we show in Section 11.3 how the multiplicative tariff model
can be incorporated into a Poisson regression model in practice, along with
numerical examples for illustration.

11.1 Introduction

In this section, you learn:

• Why premiums should vary across policyholders with different risk
characteristics.

• The meaning of the adverse selection spiral.

• The need for risk classification.

Through insurance contracts, the policyholders effectively transfer their risks
to the insurer in exchange for premiums. For the insurer to stay in business,
the premium income collected from a pool of policyholders must at least equal
the benefit outgo. In general insurance products where a premium is charged
for a single period, say annually, the gross insurance premium based on the
equivalence principle is stated as

Gross Premium = Expected Losses + Expected Expenses + Profit.

363
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Thus, ignoring frictional expenses associated with the administrative expenses
and profit, the net or pure premium charged by the insurer should be equal
to the expected losses occurring from the risk that is transferred from the
policyholder.

If all policyholders in the insurance pool have identical risk profiles, the
insurer simply charges the same premium for all policyholders because they
have the same expected loss. In reality, however, the policyholders are hardly
homogeneous. For example, mortality risk in life insurance depends on the
characteristics of the policyholder, such as, age, sex and lifestyle. In auto
insurance, those characteristics may include age, occupation, the type or use
of the car, and the area where the driver resides. The knowledge of these
characteristics or variables can enhance the ability of calculating fair premiums
for individual policyholders, as they can be used to estimate or predict the
expected losses more accurately.

Adverse Selection. Indeed, if the insurer does not differentiate the risk
characteristics of individual policyholders and simply charges the same premium
to all insureds based on the average loss in the portfolio, the insurer would
face adverse selection, a situation where individuals with a higher chance of
loss are attracted in the portfolio and low-risk individuals are repelled.

For example, consider a health insurance where smoking status is an important
risk factor for mortality and morbidity. Most health insurers in the market
require different premiums depending on smoking status, so smokers pay
higher premiums than non-smokers, with other characteristics being identical.
Now suppose that there is an insurer, we will call EquitabAll, that offers
the same premium to all insureds regardless of smoking status, unlike other
competitors. The net premium of EquitabAll is naturally an average mortality
loss accounting for both smokers and non-smokers. That is, the net premium
is a weighted average of the losses with the weights being the proportions of
smokers and non-smokers, respectively. Thus it is easy to see that that a smoker
would have a good incentive to purchase insurance from EquitabAll than from
other insurers as the offered premium by EquitabAll is relatively lower. At
the same time non-smokers would prefer buying insurance from somewhere
else where lower premiums, computed from the non-smoker group only, are
offered. As a result, there will be more smokers and less non-smokers in the
EquitabAll’s portfolio, which leads to larger-than-expected losses and hence a
higher premium for insureds in the next period to cover the higher costs. With
the raised new premium in the next period, non-smokers in EquitabAll will
have even greater incentives to switch insurers. As this cycle continues over
time, EquitabAll would gradually retain more smokers and less non-smokers
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in its portfolio with the premium continually raised, eventually leading to
business collapse.

In the literature, this phenomenon is known as the adverse selection spiral
or death spiral. Therefore, incorporating and differentiating important risk
characteristics of individuals in the insurance pricing process are a perti-
nent component for both the determination of fair premium for individual
policyholders and the long term sustainability of insurers.

Rating Factors. In order to incorporate relevant risk characteristics of poli-
cyholders in the pricing process, insurers maintain some classification system
that assigns each policyholder to one of the risk classes based on a relatively
small number of risk characteristics that are deemed most relevant. These
characteristics used in the classification system are called rating factors, which
are a priori variables in the sense that they are known before the contract begins
(e.g., sex, health status, vehicle type, etc, are known during underwriting). All
policyholders sharing identical risk factors thus are assigned to the same risk
class, and are considered homogeneous from a pricing viewpoint; the insurer
consequently charges them the same premium or rate.

Regarding the risk factors and premiums, the Actuarial Standard of Practice
(ASOP) No. 12 of the Actuarial Standards Board (2018) states that the actuary
should select risk characteristics that are related to expected outcomes, and
that rates within a risk classification system would be considered equitable
if differences in rates reflect material differences in expected cost for risk
characteristics. In the process of choosing risk factors, ASOP also requires
the actuary to consider the following: relationship of risk characteristics and
expected outcomes, causality, objectivity, practicality, applicable law, industry
practices, and business practices.

On the quantitative side, an important task for the actuary in building a risk
classification framework is to construct a statistical model that can determine
the expected loss given various rating factors of a policyholder. The standard
approach is to adopt a regression model which produces the expected loss
as the output when the relevant risk factors are given as the inputs. In this
chapter we learn about Poisson regression, which can be used when the loss is
a count variable, as a prominent example of an insurance pricing tool.

11.2 Poisson Regression Model

The Poisson regression model has been successfully used in a wide range of
applications and has an advantage of allowing closed-form expressions for
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important quantities. In this section we introduce Poisson regression as a
natural extension of the Poisson distribution.

In this section you will:

• Understand Poisson regression as a convenient tool for combining individual
Poisson distributions.

• Sharpen your understanding of the concept of exposure and its importance.

• Formally learn how to formulate a Poisson regression model using indicator
variables when the explanatory variables are categorical.

11.2.1 Need for Poisson Regression

Poisson Distribution

To introduce Poisson regression, let us consider a hypothetical health insurance
portfolio where all policyholders are of the same age and only one risk factor,
smoking status, is relevant. Smoking status thus is a categorical variable with
two levels: smoker and non-smoker. As there are two levels for smoking status,
we may denote smoker and non-smoker by level 1 and 2, respectively. Here the
numbering is arbitrary; smoking status is a nominal categorical variable. (See
Section 2.3.1 an introduction to categorical and nominal variables.) Suppose
now that we are interested in pricing a health insurance where the premium for
each policyholder is determined by the number of outpatient visits to doctor’s
office during a year. The medical cost for each visit is assumed to be the same
regardless of smoking status for simplicity. Thus if we believe that smoking
status is a valid risk factor in this health insurance, it is natural to consider
observations from smokers separately from non-smokers. In Table 11.1 we
present data for this portfolio.
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Table 11.1. Number of Visits to Doctor’s Office in Last Year

Smoker (level 1) Non-smoker (level 2) Both
Count Observed Count Observed Count Observed

0 2213 0 6671 0 8884
1 178 1 430 1 608
2 11 2 25 2 36
3 6 3 9 3 15
4 0 4 4 4 4
5 1 5 2 5 3

Total 2409 Total 7141 Total 9550
Mean 0.0926 Mean 0.0746 Mean 0.0792

As this dataset contains random counts, we try to fit a Poisson distribution
for each level.

As introduced in Section 3.2.3, the probability mass function of the Poisson
with mean µ is given by

Pr(Y = y) = µye−µ

y! , y = 0, 1, 2, . . . (11.1)

and E (Y ) = Var (Y ) = µ. In regression contexts, it is common to use µ
for mean parameters instead of the Poisson parameter λ although certainly
both symbols are suitable. As we saw in Section 3.4.2, the mle of the Poisson
distribution is given by the sample mean. Thus if we denote the Poisson mean
parameter for each level by µ(1) (smoker) and µ(2) (non-smoker), we see from
Table 11.1 that µ̂(1) = 0.0926 and µ̂(2) = 0.0746. This simple example shows the
basic idea of risk classification. Depending on smoking status, a policyholder
will have a different risk characteristic that can be incorporated via varying
Poisson mean parameters to compute the fair premium. In this example the
ratio of expected loss frequencies is µ̂(1)/µ̂(2) = 1.2402, implying that smokers
tend to visit a doctor’s office 24.02% times more frequently compared to
non-smokers.

It is also informative to note that if the insurer charges the same premium to all
policyholders regardless of smoking status, based on the average characteristic
of the portfolio, as was the case for EquitabAll described in Introduction, the
expected frequency (or premium) µ̂ is 0.0792, obtained from the last column
of Table 11.1. It can be verified that

µ̂ =
(

n1

n1 + n2

)
µ̂(1) +

(
n2

n1 + n2

)
µ̂(2) = 0.0792, (11.2)

where ni is the number of observations in each level. Clearly, this premium is
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a weighted average of the premiums for each level with the weight equal to the
proportion of insureds in that level.

A simple Poisson regression
In the example above, we have fitted a Poisson distribution for each level
separately, but we can actually combine them together in a unified fashion so
that a single Poisson model can encompass both smoking and non-smoking
statuses. This can be done by relating the Poisson mean parameter with the
risk factor. In other words, we make the Poisson mean, which is the expected
loss frequency, respond to the change in the smoking status. The conventional
approach to deal with a categorical variable is to adopt indicator or dummy
variables that take either 1 or 0, so that we turn the switch on for one level
and off for others. Therefore we may propose to use

µ = β0 + β1x1 (11.3)

or, more commonly, a log linear form

log µ = β0 + β1x1, (11.4)

where x1 is an indicator variable with

x1 =

1 if smoker,
0 otherwise.

(11.5)

We generally prefer the log linear relation in (11.4) to the linear one in (11.3)
to prevent producing negative µ values, which can happen when there are
many different risk factors and levels. The setup in (11.4) and (11.5) then
results in different Poisson frequency parameters depending on the level in the
risk factor:

log µ =

β0 + β1

β0
or equivalently, µ =

eβ0+β1 if smoker (level 1),
eβ0 if non-smoker (level 2).

(11.6)
This is the simplest form of Poisson regression. Note that we require a single
indicator variable to model two levels in this case. Alternatively, it is also
possible to use two indicator variables through a different coding scheme. This
scheme requires dropping the intercept term so that (11.4) is modified to

log µ = β1x1 + β2x2, (11.7)

where x2 is the second indicator variable with

x2 =

1 if non-smoker,
0 otherwise.
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Then we have, from (11.7),

log µ =

β1

β2
or µ =

eβ1 if smoker (level 1),
eβ2 if non-smoker (level 2).

(11.8)

The numerical result of (11.6) is the same as (11.8) as all coefficients are given
as numbers in actual estimation, with the former setup more common in most
texts; we also stick to the former.

With this Poisson regression model we can readily understand how the co-
efficients β0 and β1 are linked to the expected loss frequency in each level.
According to (11.6), the Poisson mean of the smokers, µ(1), is given by

µ(1) = eβ0+β1 = µ(2) e
β1 or µ(1)/µ(2) = eβ1

where µ(2) is the Poisson mean for the non-smokers. This relation between the
smokers and non-smokers suggests a useful way to compare the risks embedded
in different levels of a given risk factor. That is, the proportional increase in the
expected loss frequency of the smokers compared to that of the non-smokers
is simply given by a multiplicative factor eβ1 . Put another way, if we set the
expected loss frequency of the non-smokers as the base value, the expected
loss frequency of the smokers is obtained by applying eβ1 to the base value.

Dealing with multi-level case
We can readily extend the two-level case to a multi-level one where l different
levels are involved for a single rating factor. For this we generally need l − 1
indicator variables to formulate

log µ = β0 + β1x1 + · · · + βl−1xl−1, (11.9)

where xk is an indicator variable that equals 1 if the policy belongs to level k and
0 otherwise, for k = 1, 2, . . . , l−1. By omitting the indicator variable associated
with the last level in (11.9) we effectively chose level l as the base case, or
reference level, but this choice is arbitrary and does not matter numerically.
The resulting Poisson parameter for policies in level k then becomes, from
(11.9),

µ =

eβ0+βk if the policy belongs to level k, (k = 1, 2, ..., l − 1),
eβ0 if the policy belongs to level l.

Thus if we denote the Poisson parameter for policies in level k by µ(k), we
can relate the Poisson parameter for different levels through µ(k) = µ(l) e

βk ,
k = 1, 2, . . . , l− 1. This indicates that, just like the two-level case, the expected
loss frequency of the kth level is obtained from the base value multiplied by
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the relative factor eβk . This relative interpretation becomes more powerful
when there are many risk factors with multi-levels, and leads us to a better
understanding of the underlying risk and a more accurate prediction of future
losses. Finally, we note that the varying Poisson mean is completely driven by
the coefficient parameters βk’s, which are to be estimated from the dataset; the
procedure of the parameter estimation will be discussed later in this chapter.

11.2.2 Poisson Regression

We now describe Poisson regression in a formal and more general setting. Let
us assume that there are n independent policyholders with a set of rating
factors characterized by a k-variate vector1. The ith policyholder’s rating
factor is thus denoted by vector xi = (1, xi1, . . . , xik)′, and the policyholder
has recorded the loss count yi ∈ {0, 1, 2, . . .} from the last period of loss
observation, for i = 1, . . . , n. In the regression literature, the values xi1, . . . , xik

are generally known as explanatory variables, as these are measurements
providing information about the variable of interest yi. In essence, regression
analysis is a method to quantify the relationship between a variable of interest
and explanatory variables.

We also assume, for now, that all policyholders have the same one unit period
for loss observation, or equal exposure of 1, to keep things simple; we will
discuss more details regarding the exposure in the following subsection.

We describe Poisson regression through its mean function. For this we first
denote µi as the expected loss count of the ith policyholder under the Poisson
specification (11.1):

µi = E (yi|xi), yi ∼ Pois(µi), i = 1, . . . , n. (11.10)

The condition inside the expectation in equation (11.10) indicates that the loss
frequency µi is the model expected response to the given set of risk factors or
explanatory variables. In principle the conditional mean E (yi|xi) in (11.10)
can take different forms depending on how we specify the relationship between
x and y. The standard choice for Poisson regression is to adopt the exponential
function, as we mentioned previously, so that

µi = E (yi|xi) = ex′
iβ, yi ∼ Pois(µi), i = 1, . . . , n. (11.11)

Here β = (β0, . . . , βk)′ is the vector of coefficients so that x′
iβ = β0 + β1xi1 +

. . . + βkxik. The exponential function in (11.11) ensures that µi > 0 for any
set of rating factors xi. Often (11.11) is rewritten as a log linear form

log µi = log E (yi|xi) = x′
iβ, yi ∼ Pois(µi), i = 1, . . . , n (11.12)

1For example, if there are 3 risk factors each of which the number of levels are 2, 3 and 4,
respectively, we have k = (2 − 1) × (3 − 1) × (4 − 1) = 6.
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to reveal the relationship when the right side is set as the linear form, x′
iβ.

Again, we see that the mapping works well as both sides of (11.12), log µi and
xiβ, can now cover all real values. This is the formulation of Poisson regression,
assuming that all policyholders have the same unit period of exposure. When
the exposures differ among the policyholders, however, as is the case in most
practical cases, we need to revise this formulation by adding an exposure
component as an additional term in (11.12).

11.2.3 Incorporating Exposure

Concept of Exposure

We first saw the concept of exposures in Section 10.4. In order to determine
the size of potential losses in any type of insurance, one must always know the
corresponding exposure. The concept of exposure is an extremely important
ingredient in insurance pricing, though we usually take it for granted. For
example, when we say the expected claim frequency of a health insurance policy
is 0.2, it does not mean much without the specification of the exposure such
as, in this case, per month or per year. In fact, all premiums and losses need
the exposure precisely specified and must be quoted accordingly; otherwise all
subsequent statistical analyses and predictions will be distorted.

In the previous section we assumed the same unit of exposure across all
policyholders, but this is hardly realistic in practice. In health insurance,
for example, two different policyholders with different lengths of insurance
coverage (e.g., 3 months and 12 months, respectively) could have recorded
the same number of claim counts. As the expected number of claim counts
would be proportional to the length of coverage, we should not treat these
two policyholders’ loss experiences identically in the modeling process. This
motivates the need of the concept of exposure in Poisson regression.

The Poisson distribution in (11.1) is parametrized via its mean. To understand
the exposure, we alternatively parametrize the Poisson pmf in terms of the
rate parameter λ, based on the definition of the Poisson process:

Pr(Y = y) = (λt)ye−λt

y! , y = 0, 1, 2, . . . (11.13)

with E (Y ) = Var (Y ) = λt. Here λ is known as the rate or intensity per unit
period of the Poisson process and t represents the length of time or exposure, a
known constant value. For given λ the Poisson distribution (11.13) produces a
larger expected loss count as the exposure t gets larger. Clearly, (11.13) reduces
to (11.1) when t = 1, which means that the mean and the rate become the
same for an exposure of 1, the case we considered in the previous subsection.
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In principle, the exposure does not need to be measured in units of time and
may represent different things depending the problem at hand. For example:

1. In health insurance, the rate may be the occurrence of a specific
disease per 1,000 people and the exposure is the number of people
considered in the unit of 1,000.

2. In auto insurance, the rate may be the number of accidents per year
of a driver and the exposure is the length of the observed period for
the driver in the unit of year.

3. For workers compensation that covers lost wages resulting from an
employee’s work-related injury or illness, the rate may be the probabil-
ity of injury in the course of employment per dollar and the exposure
is the payroll amount in dollars.

4. In marketing, the rate may be the number of customers who enter a
store per hour and the exposure is the number of hours observed.

5. In civil engineering, the rate may be the number of major cracks on
the paved road per 10 kms and the exposure is the length of road
considered in the unit of 10 kms.

6. In credit risk modelling, the rate may be the number of default
events per 1000 firms and the exposure is the number of firms under
consideration in the unit of 1,000.

Actuaries may be able to use different exposure bases for a given insurable
loss. For example, in auto insurance, both the number of kilometers driven
and the number of months covered by insurance can be used as exposure
bases. Here the former is more accurate and useful in modelling the losses from
car accidents, but more difficult to measure and manage for insurers. Thus,
a good exposure base may not be the theoretically best one due to various
practical constraints. As a rule, an exposure base must be easy to determine,
accurately measurable, legally and socially acceptable, and free from potential
manipulation by policyholders.

Incorporating exposure in Poisson regression

As exposures affect the Poisson mean, constructing Poisson regressions requires
us to carefully separate the rate and exposure in the modelling process. Focusing
on the insurance context, let us denote the rate of the loss event of the ith
policyholder by λi, the known exposure (the length of coverage) by mi and
the expected loss count under the given exposure by µi. Then the Poisson
regression formulation in (11.11) and (11.12) should be revised in light of
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(11.13) as

µi = E (yi|xi) = mi λi = mi e
x′

iβ, yi ∼ Pois(µi), i = 1, . . . , n, (11.14)

which gives

log µi = logmi + x′
iβ, yi ∼ Pois(µi), i = 1, . . . , (11.15)

Adding logmi in (11.15) does not pose a problem in fitting as we can always
specify this as an extra explanatory variable, as it is a known constant, and fix
its coefficient to 1. In the literature the log of exposure, logmi, is commonly
called the offset.

11.3 Categorical Variables and Multiplicative Tariff

In this section you will learn:

• The multiplicative tariff model when the rating factors are categorical.

• How to construct a Poisson regression model based on the multiplicative
tariff structure.

11.3.1 Rating Factors and Tariff

In practice most rating factors in insurance are categorical variables, meaning
that they take one of the predetermined number of possible values. Examples
of categorical variables include sex, type of cars, the driver’s region of residence
and occupation. Continuous variables, such as age or auto mileage, can also be
grouped by bands and treated as categorical variables. Thus we can imagine
that, with a small number of rating factors, there will be many policyholders
falling into the same risk class, charged with the same premium. For the
remaining of this chapter we assume that all rating factors are categorical
variables.

To illustrate how categorical variables are used in the pricing process, we
consider a hypothetical auto insurance with only two rating factors:

• Type of vehicle: Type A (personally owned) and B (owned by corporations).
We use index j = 1 and 2 to respectively represent each level of this rating
factor.
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• Age band of the driver: Young (age < 25), middle (25 ≤ age < 60) and old
age (age ≥ 60). We use index k = 1, 2 and 3, respectively, for this rating
factor.

From this classification rule, we may create an organized table or list, such as
the one shown in Table 11.2, collected from all policyholders. Clearly there
are 2 × 3 = 6 different risk classes in total. Each row of the table shows a
combination of different risk characteristics of individual policyholders. Our
goal is to compute six different premiums for each of these combinations. Once
the premium for each row has been determined using the given exposure and
claim counts, the insurer can replace the last two columns in Table 11.2 with
a single column containing the computed premiums. This new table then can
serve as a manual to determine the premium for a new policyholder given
rating factors during the underwriting process. In non-life insurance, a table
(or a set of tables) or list that contains each set of rating factors and the
associated premium is referred to as a tariff. Each unique combination of the
rating factors in a tariff is called a tariff cell; thus, in Table 11.2 the number
of tariff cells is six, same as the number of risk classes.

Table 11.2. Loss Record of the Illustrative Auto Insurer

Rating factors Exposure Claim count
Type (j) Age (k) in year observed

1 1 89.1 9
1 2 208.5 8
1 3 155.2 6
2 1 19.3 1
2 2 360.4 13
2 3 276.7 6

Let us now look at the loss information in Table 11.2 more closely. The exposure
in each row represents the sum of the length of insurance coverages, or in-force
times, in years, of all the policyholders in that tariff cell. Similarly the claim
counts in each row is the number of claims in each cell. Naturally the exposures
and claim counts vary due to the different number of drivers across the cells,
as well as different in-force time periods among the drivers within each cell.

In light of the Poisson regression framework, we denote the exposure and claim
count of cell (j, k) as mjk and yjk, respectively, and define the claim count per
unit exposure as

zjk = yjk

mjk
, j = 1, 2; k = 1, 2, 3.

For example, z12 = 8/208.5 = 0.03837, meaning that a policyholder in tariff cell
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(1,2) would have 0.03837 accidents if insured for a full year on average. The set
of zij values then corresponds to the rate parameter in the Poisson distribution
(11.13) as they are the event occurrence rates per unit exposure. That is, we
have zjk = λ̂jk where λjk is the Poisson rate parameter. Producing zij values
however does not do much beyond comparing the average loss frequencies
across risk classes. To fully exploit the dataset, we will construct a pricing
model from Table 11.2 using Poisson regression, for the remaining part of the
chapter.

We comment that actual loss records used by insurers typically include many
more risk factors, in which case the number of cells grows exponentially. The
tariff would then consist of a set of tables, instead of one, separated by some
of the basic rating factors, such as sex or territory.

11.3.2 Multiplicative Tariff Model

In this subsection, we introduce the multiplicative tariff model, a popular
pricing structure that can be naturally used within the Poisson regression
framework. The developments here are based on Table 11.2. Recall that the
loss count of a policyholder is described by a Poisson regression model with
rate λ and the exposure m, so that the expected loss count becomes mλ. As
m is a known constant, we are essentially concerned with modelling λ, so that
it responds to the change in rating factors. Among other possible functional
forms, we commonly choose the multiplicative2 relation to model the Poisson
rate λjk for cell (j, k):

λjk = f0 × f1j × f2k, j = 1, 2; k = 1, 2, 3. (11.16)

Here {f1j , j = 1, 2} are the parameters associated with the two levels in the first
rating factor, car type, and {f2k, k = 1, 2, 3} associated with the three levels
in the age band, the second rating factor. For instance, the Poisson rate for a
mid-aged policyholder with a Type B vehicle is given by λ22 = f0 × f12 × f22.
The first term f0 is some base value to be discussed shortly. Thus these six
parameters are understood as numerical representations of the levels within
each rating factor, and are to be estimated from the dataset.

The multiplicative form (11.16) is easy to understand and use, because it
clearly shows how the expected loss count (per unit exposure) changes as each
rating factor varies. For example, if f11 = 1 and f12 = 1.2, then the expected
loss count of a policyholder with a vehicle of type B would be 20% larger
than type A, when the other factors are the same. In non-life insurance, the

2Preferring the multiplicative form to others (e.g., additive one) was already hinted in
(11.4).
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parameters f1j and f2k are known as relativities as they determine how much
expected loss should change relative to the base value f0. The idea of relativity
is quite convenient in practice, as we can decide the premium for a policyholder
by simply multiplying a series of corresponding relativities to the base value.

Dropping an existing rating factor or adding a new one is also transparent
with this multiplicative structure. In addition, the insurer may adjust the
overall premium for all policyholders by controlling the base value f0 without
changing individual relativities. However, by adopting the multiplicative form,
we implicitly assume that there is no serious interaction among the risk factors.

When the multiplicative form is used we need to address an identification issue.
That is, for any c > 0, we can write

λjk = f0 × f1j

c
× c f2k.

By comparing with (11.16), we see that the identical rate parameter λjk can
be obtained for very different individual relativities. This over-parametrization,
meaning that many different sets of parameters arrive at an identical model,
obviously calls for some restriction on f1j and f2k. The standard practice is
to make one relativity in each rating factor equal to one. This can be made
arbitrarily in theory, but the standard practice is to make the relativity of
most common class (base class) equal to one. We will assume that type A
vehicles and young drivers to be the most common classes, that is, f11 = 1 and
f21 = 1. This way all other relativities are uniquely determined. The tariff cell
(j, k) = (1, 1) is then called the base tariff cell, where the rate simply becomes
λ11 = f0, corresponding to the base value according to (11.16). Thus the base
value f0 is generally interpreted as the Poisson rate of the base tariff cell.

Again, (11.16) is log-transformed and rewritten as

log λjk = log f0 + log f1j + log f2k, (11.17)

as it is easier to estimate, similar to (11.12). This log linear form makes
the log relativities of the base level in each rating factor equal to zero, i.e.,
log f11 = log f21 = 0, and leads to the following alternative, more explicit
expression for (11.17):

log λjk =



log f0 + 0 + 0 for a policy in cell (1, 1),
log f0 + 0 + log f22 for a policy in cell (1, 2),
log f0 + 0 + log f23 for a policy in cell (1, 3),
log f0 + log f12 + 0 for a policy in cell (2, 1),
log f0 + log f12 + log f22 for a policy in cell (2, 2),
log f0 + log f12 + log f23 for a policy in cell (2, 3).

(11.18)
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This shows that the Poisson rate parameter λ varies across different tariff cells,
with the same log linear form used in a Poisson regression framework. In fact
the reader may see that (11.18) is an extended version of the early expression
(11.6) with multiple risk factors and that the log relativities now play the role
of βi parameters. Therefore all the relativities can be readily estimated via
fitting a Poisson regression with a suitably chosen set of indicator variables.

11.3.3 Poisson Regression for Multiplicative Tariff

Indicator Variables for Tariff Cells

We now explain how the relativities can be incorporated into Poisson regression.
As seen early in this chapter we use indicator variables to deal with categorical
variables. For our illustrative auto insurer, therefore, we define an indicator
variable for the first rating factor as

x1 =

1 for vehicle type B,
0 otherwise.

For the second rating factor, we employ two indicator variables for the age
band, that is,

x2 =

1 for age band 2,
0 otherwise.

and

x3 =

1 for age band 3,
0 otherwise.

The triple (x1, x2, x3) then can effectively and uniquely determine each risk
class. By observing that the indicator variables associated with Type A and
Age band 1 are omitted, we see that tariff cell (j, k) = (1, 1) plays the role of
the base cell. We emphasize that our choice of the three indicator variables
above has been carefully made so that it is consistent with the choice of the
base levels in the multiplicative tariff model in the previous subsection (i.e.,
f11 = 1 and f21 = 1).

With the proposed indicator variables we can rewrite the log rate (11.17) as

log λ = log f0 + log f12 × x1 + log f22 × x2 + log f23 × x3, (11.19)

which is identical to (11.18) when each triple value is actually applied. For
example, we can verify that the base tariff cell (j, k) = (1, 1) corresponds to
(x1, x2, x3) = (0, 0, 0), and in turn produces log λ = log f0 or λ = f0 in (11.19)
as required.

Poisson regression for the tariff model
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Under this specification, let us consider n policyholders in the portfolio with the
ith policyholder’s risk characteristic given by a vector of explanatory variables
xi = (1, xi1, xi2, xi3)′, for i = 1, . . . , n. We then recognize (11.19) as

log λi = β0 + β1 xi1 + β2 xi2 + β3 xi3 = x′
iβ, i = 1, . . . , n,

where β0, . . . , β3 can be mapped to the corresponding log relativities in (11.19).
This is exactly the same setup as in (11.15) except for the exposure component.
Therefore, by incorporating the exposure in each risk class, a Poisson regression
model for this multiplicative tariff model finally becomes

log µi = log λi + logmi = logmi + β0 + β1 xi1 + β2 xi2 + β3 xi3
= logmi + x′

iβ,

for i = 1, . . . , n. As a result, the relativities are given by

f0 = eβ0 , f12 = eβ1 , f22 = eβ2 , and f23 = eβ3 , (11.20)

with f11 = 1 and f21 = 1 from the original construction. For the actual dataset,
βi, i = 0, 1, 2, 3, is replaced with the mle bi using the method in the technical
supplement at the end of this chapter (Section 11.A).

11.3.4 Numerical Examples

We present two numerical examples of Poisson regression. In the first example
we construct a Poisson regression model from Table 11.2, which is a dataset of a
hypothetical auto insurer. The second example uses an actual industry dataset
with more risk factors. As our purpose is to show how a Poisson regression
model can be used under a given classification rule, we are not concerned with
the quality of the Poisson model fit in this chapter.

Example 11.1: Poisson regression for the illustrative auto insurer.
In the last few subsections we considered a dataset of a hypothetical auto
insurer with two risk factors, as given in Table 11.2. We now apply a Poisson
regression model to this dataset. As done before, we have set (j, k) = (1, 1) as
the base tariff cell, so that f11 = f21 = 1. The result of the regression gives
the coefficient estimates (b0, b1, b2, b3) = (−2.3359,−0.3004,−0.7837,−1.0655),
which in turn produces the corresponding estimated relativities

f0 = 0.0967, f12 = 0.7405, f22 = 0.4567 and f23 = 0.3445,

from the relation given in (11.20). The R script and the output are as follows.
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Example 11.2. Poisson regression for Singapore insurance claims
data. This actual dataset is a subset of the data used by Frees and Valdez
(2008). The data are from the General Insurance Association of Singapore,
an organization consisting of non-life insurers in Singapore. These data con-
tains the number of car accidents for n = 7, 483 auto insurance policies with
several categorical explanatory variables and the exposure for each policy.
The explanatory variables include four risk factors: the type of the vehicle
insured (either automobile (A) or other (O), denoted by Vtype), the age of
the vehicle in years (Vage), gender of the policyholder (Sex) and the age of
the policyholder (in years, grouped into seven categories, denoted Age).

Based on the data description, there are several things to consider before
constructing a model. First, there are 3,842 policies with vehicle type A
(automobile) and 3,641 policies with other vehicle types. However, age and sex
information is available for the policies of vehicle type A only; the drivers of all
other types of vehicles are recorded to be aged 21 or less with sex unspecified,
except for one policy, indicating that no driver information has been collected
for non-automobile vehicles. Second, type A vehicles are all classified as private
vehicles and all the other types are not.

When we include these risk factors, we assume all unspecified sex to be male.
As the age information is only applicable to type A vehicles, we set the model
accordingly. That is, we apply the age variable only to vehicles of type A.
Also we used five vehicle age bands, simplifying the original seven bands, by
combining vehicle ages 0,1 and 2; the combined band is marked as level 23 in
the data file. Thus our Poisson model has the following explicit form:

log µi = x′
iβ+ logmi = β0 + β1I(Sexi = M) +

6∑
t=2

βt I(V agei = t)

+
13∑

t=7
βt I(V typei = A) × I(Agei = t− 7) + logmi.

The fitting result is given in Table 11.3, for which we have several comments.

• The claim frequency is higher for males by 17.3%, when other rating factors
are held fixed. However, this may have been affected by the fact that all
unspecified sex has been assigned to male.

• Regarding the vehicle age, the claim frequency gradually decreases as the
vehicle age increases, when other rating factors are held fixed. The level
starts from 2 for this variable but, again, the numbering is nominal and does

3corresponding to VAgecat1.
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not affect the numerical result.

• The policyholder age variable only applies to type A (automobile) vehicle,
and there are no policies in the first age band. We may speculate that
younger drivers less than age 21 drive their parents’ cars rather than having
their own because of high insurance premiums or related regulations. The
missing relativity may be estimated by some extrapolation or the professional
judgement of the actuary. The claim frequency is the lowest for age band 3
and 4, but gets substantially higher for older age bands, a reasonable pattern
seen in many auto insurance loss datasets.

We also note that there is no base level in the policyholder age variable, in
the sense that no relativity is equal to 1. This is because the variable is only
applicable to vehicle type A. This does not cause a problem numerically, but
one may set the base relativity as follows if necessary for other purposes.
Since there is no policy in age band 0, we consider band 1 as the base case.
Specifically, we treat its relativity as a product of 0.918 and 1, where the former
is the common relativity (that is, the common premium reduction) applied to
all policies with vehicle type A and the latter is the base value for age band 1.
Then the relativity of age band 2 can be seen as 0.917 = 0.918 × 0.999, where
0.999 is understood as the relativity for age band 2. The remaining age bands
can be treated similarly.
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Table 11.3. Singapore Insurance Claims Data

Rating factor Level Relativity in the tariff Note
Base value 0.167 f0

Sex 1(F ) 1.000 Base level
2(M) 1.173

Vehicle age 2(0 − 2 yrs) 1.000 Base level
3(3 − 5 yrs) 0.843
4(6 − 10 yrs) 0.553
5(11 − 15 yrs) 0.269
6(16 + yrs) 0.189

Policyholder age 0(0 − 21) N/A No policy
(Only applicable to 1(22 − 25) 0.918

vehicle type A) 2(26 − 35) 0.917
3(36 − 45) 0.758
4(46 − 55) 0.632
5(56 − 65) 1.102
6(65+) 1.179

Let us try several examples based on Table 11.3. Suppose a male policyholder
aged 40 who owns a 7-year-old vehicle of type A. The expected claim frequency
for this policyholder is then given by

λ = 0.167 × 1.173 × 0.553 × 0.758 = 0.082.

As another example consider a female policyholder aged 60 who owns a 3-
year-old vehicle of type O. The expected claim frequency for this policyholder
is

λ = 0.167 × 1 × 0.843 = 0.141.

Note that for this policy the age band variable is not used as the vehicle type
is not A. The R script is given as follows.

As a concluding remark, we comment that Poisson regression is not the only
possible count regression model. Actually, the Poisson distribution can be
restrictive in the sense that it has a single parameter and its mean and the
variance are always equal. There are other count regression models that allow
more flexible distributional structure, such as negative binomial regressions
and zero-inflated (ZI) regressions; details of these alternative regressions can
be found in other texts listed in the next section.
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11.4 Risk Classification vs Discrimination

We have so far developed a quantitative model to deal with risk classification.
There are however important qualitative aspects of risk classification as well,
which have important moral and regulatory and legal implications. We briefly
survey various issues related to risk classification in this section; see Frees and
Huang (2023) for a more comprehensive treatment.

We start by acknowledging that risk classification, by definition, differentiates
or discriminates among insureds or potential buyers based on a wide variety
of attributes. That is, insurers divide individuals into subgroups and charge
different premiums on the ground that each subgroup, when suitably formed,
exhibits a different risk profile and thus produces insurance events (such as
medical claims or car accidents) that are different in number and size. In
this sense discrimination, of which the meaning is simply treating subgroups
differently, is an essential element in insurance business.

Insurers can discriminate among customers in various stages. For example, they
may decide not to insure potential customers at the marketing or underwrit-
ing stage by excluding particular subgroups intentionally, an issue known as
redlining. Also insurers may refuse to renew existing customers, or restrict the
insurance coverage. Another form of discrimination can be made by charging
unfair prices for certain subgroups. This price discrimination is a standard
practice in insurance and not an issue provided that the price differences are
made based on the underlying risk level of each subgroup. However, non-risk
price discrimination is more problematic in that the price differs for the identi-
cal product and coverage. These non-risk rating factors tend to be prohibited
in many jurisdictions.

11.4.1 Economic Commodity versus Social Good

While economic arguments view insurance as an economic commodity and thus
support insurers’ risk-based discrimination, others such as consumer advocates
perceive insurance as a social good that should benefit the general public thus
argue that discrimination must be avoided especially for disadvantaged groups.
These two opposing views can be understood as two extremes of a continual
spectrum of fairness when implemented in the real world. To give an idea let
us consider the following examples:

• Stock insurance company is located at one end of the spectrum. Here the
company issues individual contracts, and insurance is viewed as a collection of
separate agreements rather than a collective concept. Actuarially fair pricing
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is then determined by the expected value of the uncertain event, reflecting
the risk transferred from the insured to the insurer. Fairness in this case
is defined as each customer paying for their own risk only, supported by
economic theory.

• Government-sponsored social insurance is at the other end of the spectrum.
Here contracts typically involve subsidies between different subgroups. Gov-
ernments frequently employ such social policies to redistribute risk or income
among individuals, though adherence to the principle of actuarial fairness
can vary significantly depending on the target level of the redistribution.

• Group insurance lies in the of the spectrum. For example, consider a disability
income contract issued to the employees of an employer. In this case premium
differentials by risk factors are not a major issue if the employer pays all or
a major portion of the premiums.

Clearly the issue of discrimination and fairness in insurance is a multi-layered
problem; it involves not only technical modeling but is also affected by the
social consensus depending on the goal and characteristics of the insurance
program.

11.4.2 Information Asymmetry

Discrimination in insurance may also arise from information asymmetry which
means that insurers and the current or potential customers have unequal
knowledge or access to relevant information on the underlying risk.

Adverse selection described in Introduction of this chapter is an example
of information asymmetry. For an insurer adverse selection can occur when
customers know better about their own risks than the insurer or when other
competitors in the market have better knowledge about the risk of the cus-
tomers, as illustrated at the beginning of this chapter. Generally speaking
adverse selection can be reduced as more information on the customers is made
available.

Another type of information asymmetry is moral hazard. In a typical case of
moral hazard, policyholders become more risk-seeking or less cautious about
the risk when the corresponding risk has already been insured. In other words,
the insureds have the incentive to take on more risk because of the safety
net provided by the insurance, leading to raised costs for the insurer. One
remedy to moral hazard is to offer incentives to policyholders so that they can
act more responsively or the exposure of the risk itself can be reduced. To
illustrate, consider a customer who bought a homeowner’s insurance contract
and thus becomes less careful about fire and theft. To mitigate such moral
hazard, the insurer may offer some premium discount on the condition that fire
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and security alarms be installed in the house. Some moral hazard applies to
insurer’s side. For example, insurers may collect protected or sensitive variables
and create pricing models to unfairly discriminate customers. The moral hazard
of the insurer’s side is generally managed and prevented based on insurance
regulations and laws.

Another recently emerging area of information asymmetry is the knowledge
imbalance created from big data models used by insurers. Consumer advocates
point out that the information gap between the customers and insurers will get
wider as more big data are available only to insurers. As a result, insurers can
cherry pick potentially more profitable customers, and customers without big
data tools will be unable to access to such information and thus at disadvantage.
This implies that free market competition between insurers may be insufficient
to protect policyholders if the insurers collectively monopolize the exclusive
knowledge on the customers.

11.4.3 Sensitive Variables and Regulation

Some attributes or variables used in risk classification may be perceived to
be unfair or sensitive. In the literature the following list of criteria is often
considered in deciding whether an attribute is acceptable or fair as a rating
variable.

• Control: An attribute that can be controlled by an insured is generally
considered to be an acceptable variable to be used for rating purposes.
Smoking status is an example of such attribute. In contrast, race and gender
at birth cannot be controlled by insureds.

• Mutability: Some attributes change over time, but they may be used as rating
variables if they are deemed fair to everyone. For example, aging applies
fairly to us all over the course of a lifetime.

• Statistical Discrimination: If a variable does not have predictive value of an
underlying risk, it is generally viewed as unacceptable.

• Causality: A variable known to cause an insured event can be used for rating
purposes, but establishing a causal relationship may not be always easy
because it requires strong evidence beyond a simple association.

• Limiting or Reversing the Effects of Past Prejudice: If an attribute is related
to negative stereotypes or otherwise disadvantaged groups, it may not be
used for rating purposes.

• Inhibiting Socially Valuable Behavior: If an insurer’s use of an attribute
prevents socially desirable behaviors, it may not be used for rating purposes.
For example, U.S. laws prohibit insurers from discriminating on the basis of
intimate partner violence because such reporting could dissuade victims of
violence from seeking needed medical care or police intervention.
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In light of these complications, many jurisdictions have so-called rate regu-
lations which prohibit insurers from engaging problematic pricing practices.
For example, in the US, the model rating law of the National Association of
Insurance Commissioners (NAIC, 2010) says that “rates shall not be excessive,
inadequate or unfairly discriminatory.” It further notes that “unfair discrimi-
nation exists if, after allowing for practical limitations, price differentials fail
to reflect equitably the differences in expected losses and expenses.” Different
jurisdictions maintain different standards on the strictness of rate regulations.
In countries where rate regulations are heavily enforced the regulators prescribe
the actual rates whereas in other countries the regulators may only require
approval of rates.

11.4.4 Big Data Models and Proxy Discrimination

Big data models such as deep learning, machine learning and AI algorithms
are now ubiquitous in virtually every area of our society. These models are
known to detect new patterns and connections that were previously unknown
using advanced algorithms and various data sources.

From the viewpoint of risk classification or rating discrimination in insurance,
it is argued that big data models would bring significant changes in privacy
and proxy discrimination. The issue of privacy protection is well known. When
data from various sources, e.g., the location information from GPS, wearable
devices, social networks, credit cards, are combined together, big data models
may reveal the identity of individuals or their sensitive information. Given that
these collected data consists of seemingly innocuous or voluntarily provided
variables, the potential risk of privacy breach and sensitive variable fabrication
is becoming a reality.

Proxy discrimination arises when insurers discriminate based on a facially
neutral attribute that is highly correlated with a protected and sensitive
information. By employing these proxy variables in pricing models insurers
could get the same quantitative results that would be obtained from using
the protected variables directly. This is problematic because insurers are
able to effectively use prohibited variables, without actually violating the
rate regulation. Discovery or synthesis of such proxies can be made through
statistical and big data models; proxy discrimination is harder to detect in
the latter models as their algorithms tend to be less transparent. Though it
is impossible to eliminate proxy discrimination completely, several strategies
have been suggested to mitigate it:

1. Community Rating: If all policyholders pay the same price, proxy
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discrimination can be eliminated. This kind of rating can be found in
social insurance programs, but rare in general.

2. Approved Variables: Regulators may specify a set of variables allowed
in rating, prohibiting others. For example, in the US individual health
insurance market under the Affordable Care Act, insurers are allowed
to use only four rating factors: (1) whether a plan covers an individual
or family, (2) geographic area, (3) age, and (4) smoking status.

3. Actuarial Justification: In this strategy regulators specify a set of
protected or sensitive variables that should not be used in rating. In
addition, outside these variables, only variables that are actuarially
justifiable or statistically significant are allowed.

4. Limited Prohibitions. Alternatively, regulators specify a set of pro-
tected variables and no restriction is made for other variables outside
this set.

5. No Restrictions. In this extreme strategy regulators impose no pro-
hibitions on rating variables, which actually is the case for most
commercial insurance lines.

In practice the most viable option would be to adopt the third or fourth
strategy with suitable modifications, with some disclosure requirement for the
pricing model and data source used in the rating process.

11.5 Exercises

11.1. Regarding Table 11.1 answer the following.
(a) Verify the mean values in the table.
(b) Verify the number in equation (11.2).
(c) Produce the fitted Poisson counts for each smoking status in the table.

11.2. In a Poisson regression formulation (11.10), consider using µi =
E (yi|xi) = (x′

iβ)2, for i = 1, . . . , n, instead of the exponential function.
What potential issue would you have?



11.6 Further Resources and Contributors 387

11.6 Further Resources and Contributors
Further Reading and References

Poisson regression is a special member of a more general regression model
class known as the generalized linear model (GLM). The GLM develops a
unified regression framework for datasets when the response variables are
continuous, binary or discrete. The classical linear regression model with a
normally distributed error is also a member of the GLM. There are many
standard statistical texts dealing with the GLM, including McCullagh and
Nelder (1989). More accessible texts are Dobson and Barnett (2008), Agresti
(1996) and Faraway (2016). For actuarial and insurance GLM applications, see
Frees (2009), De Jong and Heller (2008). Also, Ohlsson and Johansson (2010)
discusses GLM in non-life insurance pricing context with tariff analyses.

In fact there is a notable historical connection between the GLM and an
influential actuarial model. In 1960s the actuarial community has developed
an auto ratemaking model that produces coherent and consistent rates across
subgroups in both additive and multiplicative form. This method, known as
Bailey minimum bias method (Bailey and Simon, 1960 and Bailey, 1963),
turned out to be equivalent to the solution of a statistical model known as the
GLM which made its first appearance in 1970s by Nelder and Wedderburn
(1972). This strong connection has helped actuaries use and adopt the GLM
models in a wide range of actuarial problems; see Frees, Derrig, Meyers (2014)
and references therein for a more detailed historical note on this.

Contributor

• Joseph H. T. Kim, Yonsei University, is the principal author of the initial
version of this chapter. Email: jhtkim@yonsei.ac.kr for chapter comments
and suggested improvements.

• Chapter reviewers include: Chun Yong Chew, Lina Xu, Jeffrey Zheng.

TS 11.A. Estimating Poisson Regression Models

The principles of maximum likelihood estimation (mle) are introduced in
Sections 3.4.2 and 4.4.2, defined in Section 17.2.2, and theoretically developed
in Chapter 19. Here we present the mle procedure of Poisson regression so that
the reader can see how the explanatory variables are treated in maximizing
the likelihood function in the regression setting.

Maximum Likelihood Estimation for Individual Data

In Poisson regression the varying Poisson mean is determined by parameters

mailto:jhtkim@yonsei.ac.kr
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βi’s, as shown in (11.15). In this subsection we use the maximum likelihood
method to estimate these parameters. Again, we assume that there are n
policyholders and the ith policyholder is characterized by xi = (1, xi1, . . . , xik)′

with the observed loss count yi. Then, from (11.14) and (11.15), the log-
likelihood function of vector β = (β0, . . . , βk) is given by

logL(β) = l(β) =
n∑

i=1
(−µi + yi log µi − log yi!)

=
n∑

i=1
(−mi exp(x′

iβ) + yi (logmi + x′
iβ) − log yi!) (11.21)

To obtain the mle of β = (β0, . . . , βk)′, we differentiate4 l(β) with respect to
vector β and set it to zero:

∂

∂β
l(β)

∣∣∣∣∣∣
β=b

=
n∑

i=1
(yi −mi exp(x′

ib)) xi = 0. (11.22)

Numerically solving this equation system gives the mle of β, denoted by
b = (b0, b1, . . . , bk)′. Note that, as xi = (1, xi1, . . . , xik)′ is a column vector,
equation (11.22) is a system of k + 1 equations with both sides written as
column vectors of size k + 1. If we denote µ̂i = mi exp(x′

ib), we can rewrite
(11.22) as

n∑
i=1

(yi − µ̂i) xi = 0.

Since the solution b satisfies this equation, it follows that the first among the
array of k + 1 equations, corresponding to the first constant element of xi,
yields

n∑
i=1

(yi − µ̂i) × 1 = 0,

which implies that we must have

n−1
n∑

i=1
yi = ȳ = n−1

n∑
i=1

µ̂i.

This is an interesting property saying that the average of the individual losses,
ȳ, is same as the average of the estimated values. That is, the sample mean is
preserved under the fitted Poisson regression model.

Maximum Likelihood Estimation for Grouped Data

Sometimes the data are not available at the individual policy level. For example,
4We use matrix derivative here.
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Table 11.2 provides collective loss information for each risk class after grouping
individual policies. When this is the case, yi and mi, the quantities needed for
the mle calculation in (11.22), are unavailable for each i. However this does
not pose a problem as long as we have the total loss counts and total exposure
for each risk class.

To elaborate, let us assume that there are K different risk classes, and further
that, in the kth risk class, we have nk policies with the total exposure m(k) and
the average loss count ȳ(k), for k = 1, . . . , K; the total loss count for the kth
risk class is then nk ȳ(k). We denote the set of indices of the policies belonging
to the kth class by Ck. As all policies in a given risk class share the same risk
characteristics, we may denote xi = x(k) for all i ∈ Ck. With this notation, we
can rewrite (11.22) as

n∑
i=1

(yi −mi exp(x′
ib)) xi =

K∑
k=1

{ ∑
i∈Ck

(yi −mi exp(x′
ib)) xi

}

=
K∑

k=1

{ ∑
i∈Ck

(
yi −mi exp(x′

(k)b)
)

x(k)

}

=
K∑

k=1

{( ∑
i∈Ck

yi −
∑

i∈Ck

mi exp(x′
(k)b)

)
x(k)

}

=
K∑

k=1

(
nk ȳ(k) −m(k) exp(x′

(k)b)
)

x(k) = 0. (11.23)

Since nk ȳ(k) in (11.23) represents the total loss count for the kth risk class
and m(k) is its total exposure, we see that for Poisson regression the mle b is
the same whether if we use the individual data or the grouped data.

Information matrix. Section 19.1 defines information matrices. Taking second
derivatives to (11.21) gives the information matrix of the mle estimators,

I(β) = −E
(

∂2

∂β∂β′ l(β)
)

=
n∑

i=1
mi exp(x′

iβ)xix′
i =

n∑
i=1

µixix′
i. (11.24)

For actual datasets, µi in (11.24) is replaced with µ̂i = mi exp(x′
ib) to estimate

the relevant variances and covariances of the mle b or its functions.

For grouped datasets, we have

I(β) =
K∑

k=1

{ ∑
i∈Ck

mi exp(x′
iβ)xix′

i

}
=

K∑
k=1

m(k) exp(x′
(k)β)x(k)x′

(k).
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TS 11.B. Selecting Rating Factors

A complete discussion of rating factor selection is beyond the scope of this
book. In addition to technical analyses, you have to think carefully about the
type of business (personal, commercial) as well as the regulatory landscape.
Nonetheless, a broad overview of some key concerns may serve to ground the
reader as one thinks about the pricing of insurance contracts.

Statistical Criteria

From an analyst’s perspective, the discussion starts with the statistical signifi-
cance of a rating factor. If the factor is not statistically significant, then the
variable is not even worthy of consideration for inclusion in a rating plan. The
statistical significance is judged not only on an in-sample basis but also on
how well it fares on an out-of-sample basis, as per our discussion in Chapter 6.

It is common in insurance applications to have many rating factors. Handling
multivariate aspects can be difficult with traditional univariate methods.
Analysts employ techniques such as generalized linear models as described in
Section 11.3.

Rating factors are introduced to create cells that contain similar risks. A rating
group should be large enough to measure costs with sufficient accuracy. There
is an inherent trade-off between theoretical accuracy and homogeneity.

As an example, most insurers charge the same automobile insurance premiums
for drivers between the ages of 30 and 50, not varying the premium by age.
Presumably costs do not vary much by age, or cost variances are due to other
identifiable factors.

Operational Criteria

From a business perspective, statistical criteria only provide a starting point
for discussions of potential inclusion of rating factors. Inclusion of a rating
factor must also induce economically meaningful results. From an insured’s
perspective, if differentiation by a factor produces little change in a rate then it
is not worth including. From an insurer’s perspective, the inclusion of a factor
should help segment the marketplace in a way that helps attract the business
that they seek.

Rating factors should also be objective, inexpensive to administer, and verifi-
able. For example, automobile insurance underwriters often talk of “maturity”
and “responsibility” as important criteria for youthful drivers. Yet, these are
difficult to define objectively and to apply consistently. As another example, in
automobile it has long been known that amount of miles (or kilometers) driven
is an excellent rating factor. However, insurers have been reluctant to adopt
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this factor because it is subject to abuse. Historically, driving mileage has not
been used because of the difficulty in verifying this variable (it is far too easy to
alter the car’s odometer to change reported mileage). Going forward, modern
day drivers and cars are equipped with global positioning devices and other
equipment that allow insurers to use distance driven as a rating factor because
it can be verified.

Rating Factors from the Perspective of a Consumer

Insurance companies sell insurance products to a variety of consumers; conse-
quently, companies are affected by public perception. On the one hand, free
market competition dictates rating factors that insurers use, as is common in
commercial insurance. On the other hand, insurance may be required by law.
This is common in personal insurance such as third party automobile liability
and homeowners. In these instances, the mandatory and de facto mandatory
purchase of insurance may mean that free market competition is insufficient to
protect policyholders. Here, the following items affect the social acceptability
of using a particular risk characteristic as a rating variable:

• Affordability - introduction of some variables may be mitigated by resulting
high costs of insurance.

• Causality - other things being equal, a rating variable is easier to justify if
there is a “causal” relationship with losses. A good example is the effects
of smoking in life insurance. For many years, this factor was viewed with
suspicion by the industry. However, over time, scientific evidence provided
overwhelming evidence as this an important predictor of mortality.

• Controllability - A controllable variable is one that is under the control of
the insured, e.g., installing burglar alarms. The use of controllable rating
variables encourages accident prevention.

• Privacy concerns - people are reluctant to disclose personal information. In
today’s world with increasing emphasis on social media and the availability
of personal information, consumer advocates are concerned that the benefits
of big data skew heavily in insurers’ favor. They reason that insureds do
not have equivalent new tools to compare quality of coverage/policies and
performance of insurance companies.

Example: Youthful Drivers. In some cases, a particular risk characteristic
may identify a small group of insureds whose risk level is extremely high, and
if used as a rating variable, the resulting premium may be unaffordable for
that high-risk class. To the extent that this occurs, companies may wish to
or be required by regulators to combine classes and introduce subsidies. For
example, 16-year-old drivers are generally higher risk than 17-year-old drivers.
Some companies have chosen to use the same rates for 16- and 17-year-old
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drivers to minimize the affordability issues that arise when a family adds a
16-year-old to the auto policy.

Societal Effects of Rating Factors

With public discussions of rating factors, it is also important to think about
the societal effects of classification.

For example, does a rating variable encourage “good” behavior? As an example,
we return to the use of distance driven as a rating factor. Many people advocate
for including this variable as a factor. The motivation is that if insurance, like
fuel, is priced based on distance driven, this will induce consumers to reduce
the amount driven, thereby benefiting society.

One can consider other aspects of societal effects of classification, see, for
example, Niehaus and Harrington (2003):

• Re-distributive Effects - provide a cross-subsidy from e.g., high risks to low
risks

• Classification Costs - Money spent by society, insurers, to classify people
appropriately.

Legal Criteria

For example, some states have statutes prohibiting the use of gender in rating
insurance while others permit it as a rating variable. As a result, an insurer
writing in multiple states may include gender as a rating variable in those
states where it is permitted, but not include it in a state that prohibits its use
for rating.

If allowed by law, the company may continue to charge the average rate but
utilize the characteristic to identify, attract, and select the lower-risk insureds
that exist in the insured population; this is called skimming the cream. See
Frees and Huang (2023) for a broad discussion of the discrimination in pricing.
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Experience Rating Using Credibility Theory

Chapter Preview. This chapter introduces credibility theory as an important
actuarial tool for estimating pure premiums, frequencies, and severities for
individual risks or classes of risks. Credibility theory provides a convenient
framework for combining the experience for an individual risk or class with
other data to produce more stable and accurate estimates. Several models
for calculating credibility estimates will be discussed including Bühlmann,
Bühlmann-Straub, limited fluctuation, and nonparametric and semiparametric
credibility methods. The chapter will also show a connection between credibility
theory and Bayesian estimation which was introduced in Chapter 9, Bayesian
Inference and Modeling.

12.1 Introduction to Applications of Credibility Theory

What premium should be charged to provide insurance? The answer depends
upon the exposure to the risk of loss. A common method to compute an
insurance premium is to rate an insured using a classification rating plan. A
classification plan is used to select an insurance rate based on an insured’s
rating characteristics such as geographic territory, age, etc. All classification
rating plans use a limited set of criteria to group insureds into a “class” and
there will be variation in the risk of loss among insureds within the class.

An experience rating plan attempts to capture some of the variation in the
risk of loss among insureds within a rating class by using the insured’s own
loss experience to complement the rate from the classification rating plan. One
way to do this is to use a credibility weight Z with 0 ≤ Z ≤ 1 to compute

R̂ = ZX̄ + (1 − Z)M,

R̂ = credibility weighted rate for risk,
X̄ = average loss for the risk over a specified time period,
M = the rate for the classification group, often called the manual rate.

393
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For a risk whose loss experience is stable from year to year, Z might be close
to 1. For a risk whose losses vary widely from year to year, Z may be close to
0.

Credibility theory is also used for computing rates for individual classes within
a classification rating plan. When classification plan rates are being determined,
some or many of the groups may not have sufficient data to produce stable
and reliable rates. The actual loss experience for a group will be assigned a
credibility weight Z and the complement of credibility 1 − Z may be given to
the average experience for risks across all classes. Or, if a class rating plan is
being updated, the complement of credibility may be assigned to the current
class rate. Credibility theory can also be applied to the calculation of expected
frequencies and severities.

Computing numeric values for Z requires analysis and understanding of the
data. What are the variances in the number of losses and sizes of losses for
risks? What is the variance between expected values across risks?

12.2 Bühlmann Credibility

In this section, you learn how to:

• Compute a credibility-weighted estimate for the expected loss for a risk or
group of risks.

• Determine the credibility Z assigned to observations.
• Calculate the values required in Bühlmann credibility including the Expected

Value of the Process Variance (EPV ), Variance of the Hypothetical Means
(V HM) and collective mean µ.

A classification rating plan groups policyholders together into classes based
on risk characteristics. Although policyholders within a class have similarities,
they are not identical and their expected losses will not be exactly the same.
An experience rating plan can supplement a class rating plan by credibility
weighting an individual policyholder’s loss experience with the class rate to
produce a more accurate rate for the policyholder. Chapter 15 Experience
Rating using Bonus-Malus provides examples of rating plans that adjust a
policyholder’s rate to recognize their loss experience.
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The Bühlmann credibility model introduced in this section is often called
greatest accuracy credibility, least-squares credibility, or Bayesian credibility.

In this presentation a risk parameter θ will be assigned to each policyholder.
Losses X for the policyholder with parameter θ will have a pdf fX|Θ=θ(x) and
mean

µ(θ) = EX(X|θ) =
∫
xfx|Θ=θ(x) dx (12.1)

and variance

σ2(θ) = VarX(X|θ) =
∫

(x− µ(θ))2fx|Θ=θ(x) dx. (12.2)

The integrals are over the support for the distributions. Losses X can represent
pure premiums, aggregate losses, number of claims, claim severities, or some
other measure of loss for a period of time, often one year. Risk parameter
θ may be continuous or discrete and may be multivariate depending on the
model. For a randomly selected risk the risk parameter θ is unknown but the
probability density function for θ is modeled with fΘ(θ). Averaging across the
policyholders in the class the collective mean loss is

µ = EΘ[EX(X|θ)] =
∫
fΘ(θ)µ(θ)dθ =

∫
fΘ(θ)

∫
xfx|Θ=θ(x) dxdθ. (12.3)

Example 12.2.1. The number of claims X for an insured in a class has a
Poisson distribution with mean θ > 0. The risk parameter θ is exponentially
distributed within the class with pdf f(θ) = e−θ. What is the expected number
of claims for an insured chosen at random from the class?

Example Solution. Random variable X is Poisson with mean θ so µ(θ) =
EX(X|θ) = θ. The expected number of claims for a randomly chosen insured is
µ = EΘ(µ(θ)) = EΘ(EX(X|θ)) = EΘ(θ) =

∫∞
0 θe−θdθ = 1.

In the prior example the risk parameter θ is a continuous random variable
with an exponential distribution. In the next example there are three types of
risks and the risk parameter has a discrete distribution.

Example 12.2.2. For any risk (policyholder) in a population the number of
losses N in a year has a Poisson distribution with parameter λ. Individual loss
amounts Xi for a risk are independent of N and are iid with Type II Pareto
distribution F (x) = 1 − [θ/(x + θ)]α. There are three types of risks in the
population as follows:
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Risk Percentage Poisson Pareto
Type of Population Parameter Parameters
A 50% λ = 0.5 θ = 1000, α = 2.0
B 30% λ = 1.0 θ = 1500, α = 2.0
C 20% λ = 2.0 θ = 2000, α = 2.0

If a risk is selected at random from the population, what is the expected
aggregate loss in a year?

Example Solution. The expected number of claims for a risk is EN (N |λ)=λ. The
expected value for a Pareto distributed random variable is EX(X|θ, α)=θ/(α−1).
The expected value of the aggregate loss random variable S = X1 + · · · + XN

for a risk with parameters λ, α, and θ assuming independence of N and Xi’s
is E(S|λ, θ, α) = EN (N |λ)EX(X|θ, α) = λθ/(α − 1). The expected aggregate
loss for a risk of type A is E(SA)=(0.5)(1000)/(2-1)=500. The expected ag-
gregate loss for a risk selected at random from the population is E(S) =
0.5[(0.5)(1000)]+0.3[(1.0)(1500)]+0.2[(2.0)(2000)]=1500.

What is the risk parameter for a risk (policyholder) in the prior example? One
could say that the risk parameter has three components (λ, θ, α) with possible
values (0.5,1000,2.0), (1.0,1500,2.0), and (2.0,2000,2.0) depending on the type
of risk.

Note that in both of the examples the risk parameter is a random quantity
with its own probability distribution. We do not know the value of the risk
parameter for a randomly chosen risk.

12.2.1 Credibility-Weighted Estimate for the Expected Loss

If a policyholder with risk parameter θ has losses x1, . . . , xn during n time
periods then the goal is to find EΘ(µ(θ)|x1, . . . , xn), the conditional expectation
of µ(θ) given observations x1, . . . , xn. Section 12.3, Bayesian Inference and
Bühlmann Credibility explains how to evaluate EΘ(µ(θ)|x1, . . . , xn) using
Bayesian inference.

The Bühlmann credibility model calculates a linear approximation µ̂(θ) =
Zx̄+ (1 −Z)µ to estimate EΘ(µ(θ)|x1, . . . , xn) with x̄ = (x1 + . . .+xn)/n. We
can rewrite this as µ̂(θ) = a+ bx̄ which makes it obvious that the credibility
estimate is a linear function of the mean.

In the Bühlmann model, EΘ(µ(θ)|X1, . . . , Xn) is approximated by the linear
function a+ bX̄ and constants a and b are calculated to minimize the square
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of the difference between these two quantities

G(a, b) = EX([EΘ(µ(θ)|X1, . . . , Xn) − (a+ bX̄)]2), (12.4)

hence the alternative name least-squares credibility. Minimizing the expectation
yields b = n/(n+K) and a = (1−b)µ. Quantity n is the number of observations
and µ = EΘ(µ(θ)) is the population mean. For the moment we will assign K the
mysterious equation K = (Expected Value of the Process Variance) / (Variance
of the Hypothetical Means)=EPV/V HM and will clarify the meaning at the
beginning of the next section. More details about this model and calculation of
a and b can be found in references (Bühlmann, 1967), (Bühlmann and Gisler,
2005), (Klugman et al., 2012), and (Tse, 2009).

The Bühlmann credibility-weighted estimate for EΘ(µ(θ)|x1, . . . , xn) for the
policyholder is

µ̂(θ) = Zx̄+ (1 − Z)µ (12.5)

with

θ = a risk parameter that identifies a policyholder’s risk level
µ̂(θ) = estimated expected loss for a policyholder with parameter θ

and loss experience x̄
x̄ = (x1 + · · · + xn)/n is the average of n observations of the policyholder
Z = credibility assigned to n observations = n/(n+K)
K = EPV/V HM

µ = the expected loss for a randomly chosen policyholder in the class.

For a selected policyholder, random variables Xj are assumed to be iid for
j = 1, . . . , n because it is assumed that the policyholder’s exposure to loss is
not changing through time and EX(X̄|θ) = EX(Xj|θ) = µ(θ).

If a policyholder is randomly chosen from the class and there is no loss
information about the risk then the expected loss is µ = EΘ(µ(θ)) where the
expectation is taken over all θ’s in the class. In this situation Z = 0 and the
expected loss is µ̂(θ) = µ for the risk. The quantity µ can also be written as
µ = E(Xj) or µ = E(X̄) and is referred to as the overall mean, population
mean, or collective mean. Note that E(Xj) is evaluated with the law of total
expectation: E(Xj) = EΘ[EX(Xj|θ)].

Although formula (12.5) was introduced using experience rating as an example,
the Bühlmann credibility model has wider application. Suppose that a rating
plan has multiple classes. Credibility formula (12.5) can be used to determine
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individual class rates. The overall mean µ would be the average loss for all
classes combined, x̄ would be the experience for the individual class, and µ̂(θ)
would be the estimated loss for the class.

12.2.2 Credibility Z, EPV, and VHM

When computing the credibility estimate µ̂(θ) = ZX̄ + (1 − Z)µ, how much
weight Z should go to experience X̄ and how much weight (1 − Z) to the
overall mean µ? In Bühlmann credibility there are three factors that need to
be considered:

1. How much variation is there in a single observation Xj for a selected
risk? With X̄ = (X1 + · · ·+Xn)/n and assuming that the observations
are iid conditional on θ, it follows that VarX(X̄|θ) = VarX(Xj|θ)/n.
For larger VarX(X̄|θ) less credibility weight Z should be given to ex-
perience X̄. The Expected Value of the Process Variance, abbreviated
EPV , is the expected value of VarX(Xj|θ) across all risks:

EPV = EΘ(VarX(Xj|θ)).

Because VarX(X̄|θ) = VarX(Xj|θ)/n it follows that EΘ(VarX(X̄|θ)) =
EPV/n.

2. How homogeneous is the population of risks whose experience was
combined to compute the overall mean µ? If all the risks are similar in
loss potential then more weight (1 − Z) would be given to the overall
mean µ because µ is the average for a group of similar risks whose
means µ(θ) are not far apart. The homogeneity or heterogeneity of the
population is measured by the Variance of the Hypothetical Means
with abbreviation V HM :

V HM = VarΘ(EX(Xj|θ)) = VarΘ(EX(X̄|θ)).

Note that we used EX(X̄|θ) = EX(Xj|θ) for the second equality.
3. How many observations n were used to compute X̄? A larger sample

would infer a larger Z.

Example 12.2.3. The number of claims N in a year for a risk in a population
has a Poisson distribution with mean λ > 0. The risk parameter λ is uniformly
distributed over the interval (0, 2). Calculate the EPV and V HM for the
population.

Example Solution. Random variable N is Poisson with parameter λ so
Var(N |λ) = λ. The Expected Value of the Process variance is EPV =
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E(Var(N |λ)) = E(λ) =
∫ 2

0 λ1
2dλ = 1. The Variance of the Hypothetical Means is

V HM = Var(E(N |λ)) = Var(λ) = E(λ2) − (E(λ))2 =
∫ 2

0 λ2 1
2dλ − (1)2 = 1

3 .

The Bühlmann credibility formula includes values for n, EPV , and V HM :

Z = n

n+K
, K = EPV

V HM
. (12.6)

If the V HM increases then Z increases. If the EPV increases then Z gets
smaller. Credibility Z asymptotically approaches 1 as the number of observa-
tions n goes to infinity.

If you multiply the numerator and denominator of the Z formula by (V HM/n)
then Z can be rewritten as

Z = V HM

VHM + (EPV/n) .

The number of observations n is captured in the term (EPV/n).

Example 12.2.4. The law of total variance can be written as Var(Y ) =
E(Var[Y |X]) + Var(E[Y |X]). Show that Var(X̄) = V HM + (EPV/n) and
derive a formula for Z in terms of X̄.

Example Solution. The quantity Var(X̄) is called the unconditional variance
or the total variance of X̄. The law of total variance says

Var(X̄) = EΘ(VarX(X̄|θ)) + VarΘ(EX(X̄|θ)).

In bullet (1) at the beginning of this section we showed EΘ(VarX(X̄|θ)) = EPV/n.
In bullet (2), VarΘ(EX(X̄|θ)) = V HM . Reordering the right hand side gives
Var(X̄) = V HM + (EPV/n). Another way to write the formula for credibility Z
is Z = VarΘ(EX(X̄|θ))/Var(X̄). This implies (1 − Z) = EΘ(VarX(X̄|θ))/Var(X̄).

The following long example and solution demonstrate how to compute the
credibility-weighted estimate with frequency and severity data.

Example 12.2.5. For any risk in a population the number of losses N in a
year has a Poisson distribution with parameter λ. Individual loss amounts
X for a selected risk are independent of N and are iid with exponential
distribution F (x) = 1 − e−x/β. There are three types of risks in the population
as shown below. A risk was selected at random from the population and all
losses were recorded over a five-year period. The total amount of losses over
the five-year period was 5,000. Use Bühlmann credibility to estimate the
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annual expected aggregate loss for the risk.

Risk Percentage Poisson Exponential
Type of Population Parameter Parameter
A 50% λ = 0.5 β = 1000
B 30% λ = 1.0 β = 1500
C 20% λ = 2.0 β = 2000

Example Solution. Because individual loss amounts X are exponentially dis-
tributed, E(X|β) = β and Var(X|β) = β2. For aggregate loss S = X1 + · · · + XN ,
the mean is E(S) = E(N)E(X) and process variance is Var(S) = E(N)Var(X) +
[E(X)]2Var(N).

With Poisson frequency and exponentially distributed loss amounts, E(S|λ, β) =
λβ and Var(S|λ, β) = λβ2 + β2λ = 2λβ2.

Population mean µ: Risk means are µ(A)=0.5(1000)=500; µ(B)=1.0(1500)=1500;
µ(C)=2.0(2000)=4000; and µ=0.50(500)+0.30(1500)+0.20(4000)=1,500.

VHM: V HM=0.50(500 − 1500)2 + 0.30(1500 − 1500)2 + 0.20(4000 −
1500)2=1,750,000.

EPV : Process variances are σ2(A) = 2(0.5)(1000)2 = 1, 000, 000; σ2(B) =
2(1.0)(1500)2 = 4, 500, 000; σ2(C) = 2(2.0)(2000)2 = 16, 000, 000; and
EPV =0.50(1,000,000)+0.30(4,500,000)+0.20(16,000,000)=5,050,000. X̄: X̄5 =
5, 000/5=1,000.

K: K = 5, 050, 000/1, 750, 000=2.89.

Z: There are five years of observations so n = 5. Z = 5/(5 + 2.89)=0.63.

µ̂(θ): µ̂(θ) = 0.63(1, 000) + (1 − 0.63)1, 500 = 1, 185.00 .

In real world applications of Bühlmann credibility the value of K =
EPV/V HM must be estimated. Sometimes a value for K is selected us-
ing judgment. A smaller K makes estimator µ̂(θ) more responsive to actual
experience X̄ whereas a larger K produces a more stable estimate by giving
more weight to µ. Judgment may be used to balance responsiveness and stabil-
ity. Section 12.5 in this chapter will discuss methods for determining K from
data.
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12.3 Bayesian Inference and Bühlmann Credibility

In this section, you learn how to:

• Calculate formulas for expected outcomes for beta-binomial and gamma-
Poisson models using Bayes Theorem or Bühlmann credibility .

• Understand the connection between the Bayesian and Bühlmann estimates
for conjugate families.

Chapter 9 presents Bayesian inference and modeling and it is assumed that
the reader is familiar with that material, in particular, Section 9.3 which
discusses conjugate families. This section will compare Bayesian inference with
Bühlmann credibility and show connections between the two models.

First we will look at a Bayesian model. Suppose a risk has n observed losses
x1, x2, ..., xn. These losses will be represented by the vector x = (x1, x2, ..., xn)
which are realizations of the random variables X = (X1, X2, ..., Xn) which we
will assume are iid.

A risk with risk parameter θ has expected loss µ(θ) = EX(X|θ). If the risk had
losses x then EΘ(µ(θ)|x) is the conditional expectation of µ(θ) given outcomes
x. The expected loss is updated to reflect the observations.

The expectation EΘ(µ(θ)|x) can be calculated using the conditional density
function fX|Θ=θ(x|θ) and the posterior distribution fΘ|X=x(θ|x)

µ(θ) = EΘ(X|θ) =
∫
xfX|Θ=θ(x|θ)dx

EΘ(µ(θ)|x) =
∫
µ(θ)fΘ|X=x(θ|x)dθ.

The integrations are over the support of the distributions. The posterior
distribution comes from Bayes theorem

fΘ|X=x(θ) =
fX|Θ=θ(x) fΘ(θ)

fX(x) .

The first function fX|Θ=θ(x) in the numerator is the likelihood function and
the second term fΘ(θ) is the prior distribution. The denominator fX(x) is the
joint density function for n losses x = (x1, . . . , xn).

Now we turn to the Bühlmann model. The Bühlmann credibility estimate for
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EΘ(µ(θ)|x) is µ̂(θ) = Zx̄ + (1 − Z)µ. This model requires credibility Z and
collective mean µ which can be computed from the distributions used in the
Bayesian model described above, if the distributions are known.

Example 12.3.1. Using n, conditional density function fX|Θ=θ(x|θ), and
prior distribution fΘ(θ), calculate credibility Z and collective mean µ for the
Bühlmann credibility estimate µ̂(θ).

Example Solution. The collective mean is

µ =
∫ ∫

xfX|Θ=θ(x|θ)fΘ(θ)dxdθ.

The Variance of the Hypothetical Means (VHM) is calculated as follows

µ(θ) =
∫

xfX|Θ=θ(x|θ)dx,

VHM =
∫

(µ(θ) − µ)2fΘ(θ)dθ.

The Expected Value of the Process Value (EPV) is calculated as follows

VarX(x|θ) =
∫

(x − µ(θ))2fX|Θ=θ(x|θ)dx,

EPV =
∫

VarX(x|θ)fΘ(θ)dθ.

The credibility is Z = n/(n + K) with K = EPV/V HM .

12.3.1 Beta-Binomial Model

Section 9.3.1 of the chapter Bayesian Inference and Modeling analyzes the
beta-binomial model.

The number of successes x in m Bernoulli trials with unknown probability of
success q is given by the binomial distribution

pX|Q=q(x) =
(
m

x

)
qx(1 − q)m−x, x ∈ {0, 1, ...,m}.

The probability of success q is modeled with the conjugate prior for the binomial
distribution: the beta distribution with parameters a and b. The pdf of the
beta distribution is

fQ(q) = Γ(a+ b)
Γ(a)Γ(b)q

a−1(1 − q)b−1, q ∈ [0, 1].
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Given x successes in m Bernoulli trials the posterior distribution for q was
shown in 9.3.1 to be

fQ|X=x(q) = Γ(a+ b+m)
Γ(a+ x)Γ(b+m− x)q

a+x−1(1 − q)b+m−x−1,

which is a beta distribution with parameters a+ x and b+m− x.

The mean for the beta distribution with parameters a and b is E(Q) = a/(a+b).
Given x successes in m trials in the beta-binomial model the mean of the
posterior distribution is

EQ(Q|x) = a+ x

a+ b+m
.

The Bühlmann credibility estimate for EQ(Q|x) exactly matches the Bayesian
estimate as demonstrated in the following example.

Example 12.3.2. The probability that a coin toss will yield heads is q. The
prior distribution for probability q is beta with parameters a and b. On m
tosses of the coin there were exactly x heads. Use Bühlmann credibility to
estimate the expected value of q.

Example Solution. Define random variables Yj such that Yj = 1 if the jth coin
toss is heads and Yj = 0 if tails for j = 1, . . . , m. Random variables Yj are iid
conditional on q with Pr(Y = 1|q) = q and Pr(Y = 0|q) = 1 − q The number of
heads in m tosses can be represented by the random variable X = Y1 + · · · + Ym.

We want to estimate q = E(Yj |X = x) using Buhlmann credibility: q̂ = Zx̄ +
(1 − Z)µ. The overall mean is µ = E(E(Yj |Q)) = E(Q) = a/(a + b). The sample
mean is x̄ = x/m.

The credibility is Z = m/(m + K) and K = EPV/V HM . With Var(Yj |q) =
q(1−q) it follows that EPV = E(Var[Yj |Q]) = E(Q(1−Q)). Because E(Yj |q) = q
then V HM = Var((E(Yj |Q)) = Var(Q). For the beta distribution

E(Q) = a

a + b
, E(Q2) = a(a + 1)

(a + b)(a + b + 1) , and Var(Q) = ab

(a + b)2(a + b + 1) .

Parameter K = EPV/V HM=[E(Q) − E(Q2)]/Var(Q). With some algebra this
reduces to K = a + b. The Buhlmann credibility-weighted estimate is

q̂ = m

m + a + b

(
x

m

)
+
(

1 − m

m + a + b

)
a

a + b

q̂ = a + x

a + b + m
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which is the same as the Bayesian posterior mean.

12.3.2 Gamma-Poisson Model

The chapter Bayesian Inference and Modeling also analyzes the gamma-Poisson
conjugate family. The results are summarized below.

Let X = (X1, X2, ..., Xn) be a sample of iid Poisson random variables with

pXi|Λ=λ(xi) = λxi e−λ

xi!
, xi ∈ R+.

Define the prior distribution for Λ to be gamma with parameters α and θ,

fΛ(λ) = 1
Γ(α)θα

λα−1 e− λ
θ , λ ∈ R+.

Given a sample of n observations x = (x1, x2, ..., xn), the posterior distribution
of Λ is

fΛ|X=x(λ) = 1
Γ(α + x)

(
θ

nθ+1

)α+xλ
α+x−1 e− λ (nθ+1)

θ ,

where x = ∑n
i=1 xi, which is a gamma distribution with parameters α + x and

θ
nθ+1 .

We are going to make a minor change to the formulas above. Instead of a
scale parameter θ, we will substitute a rate parameter β = 1/θ. The posterior
distribution becomes

fΛ|X=x(λ) = (β + n)(α+x)

Γ(α + x) λα+x−1 e−λ(β+n).

The posterior distribution is gamma and the expected value for Λ given
observations x is easy to calculate:

EΛ(Λ|x1, . . . , xn) = α + x

β + n
.

Prior to collecting a sample, E(Λ) = α/β using parameters from the prior
distribution.

The Bühlmann credibility model will give the same result as seen in the
following example.

Example 12.3.3 The number of claims X each year for a risk has a Pois-
son distribution p(x) = λxe−λ/x!. Each risk in a class has a constant risk
parameter λ. Parameter λ is gamma distributed across the class with pdf
f(λ) = βαλα−1e−λβ/Γ(α). A risk was selected at random from the population
and observed for n years. The claims counts were x = (x1, x2, ..., xn). Use
Bühlmann credibility to calculate the expected value of λ for the selected risk.
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Example Solution. The variance for a Poisson distribution with parameter
λ is λ so EPV = E(Var(X|λ)) = E(λ) = α/β. The mean number of claims
per year for the risk is λ so V HM = Var(E(X|λ)) = Var(λ) = α/β2. The
credibility parameter is K = EPV/V HM = (α/β)/(α/β2) = β. The overall
mean is E(E(X|λ)) = E(λ) = α/β. Letting x =

∑n
j=1 xj , the sample mean is

x̄ = x/n. The credibility-weighted estimate for the expected number of claims
for the risk is

µ̂ = n

n + β
x̄ +

(
1 − n

n + β

)
α

β
= α + x

β + n
.

We will leave it to the reader to compare the Bayesian and Bühlmann models
for the normal-normal conjugate family.

12.3.3 Exact Credibility

As demonstrated in the prior section, the Bühlmann credibility estimates for
the beta-binomial and gamma-Poisson models exactly match the Bayesian
analysis results. The term exact credibility is applied in these situations. Exact
credibility may occur if the probability distribution for Xj is in the linear
exponential family and the prior distribution is a conjugate prior. Besides these
two models, examples of exact credibility also include Gamma-Exponential
and Normal-Normal models.

If the conditional mean EΘ(µ(θ)|X1, ..., Xn) is linear in the mean of the obser-
vations, then the Bühlmann credibility estimate will coincide with the Bayesian
estimate. More information about exact credibility can be found in (Bühlmann
and Gisler, 2005), (Klugman et al., 2012), and (Tse, 2009).

12.4 Bühlmann-Straub Credibility

In this section, you learn how to:

• Compute a credibility-weighted estimate for the expected loss for a risk or
group of risks using the Bühlmann-Straub model.

• Determine the credibility Z assigned to observations.
• Calculate required values including the Expected Value of the Process Vari-

ance (EPV ), Variance of the Hypothetical Means (V HM) and collective
mean µ.
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• Recognize situations when the Bühlmann-Straub model is appropriate.

With standard Bühlmann credibility as described in the prior section, losses
X1, . . . , Xn arising from a selected policyholder are assumed to be iid. If the
subscripts indicate year 1, year 2 and so on up to year n, then the iid assumption
means that the policyholder has the same exposure to loss every year. For
commercial insurance this assumption is frequently violated.

Consider a commercial policyholder that uses a fleet of vehicles in its business.
In year 1 there are m1 vehicles in the fleet, m2 vehicles in year 2, .., and mn

vehicles in year n. The exposure to loss from ownership and use of this fleet is
not constant from year to year. The annual losses for the fleet are not iid.

Define Yjk to be the loss for the kth vehicle in the fleet for year j. Then, the
total losses for the fleet in year j are Yj1 + · · · + Yjmj where we are adding
up the losses for each of the mj vehicles. In the Bühlmann-Straub model it is
assumed that random variables Yjk are iid across all vehicles and years for the
policyholder. With this assumption the means EY (Yjk|θ) = µ(θ) and variances
VarY (Yjk|θ) = σ2(θ) are the same for all vehicles and years. The quantity µ(θ)
is the expected loss and σ2(θ) is the variance in the loss for one year for one
vehicle for a policyholder with risk parameter θ.

If Xj is the average loss per unit of exposure in year j, Xj = (Yj1 + · · · +
Yjmj )/mj, then EY (Xj|θ) = µ(θ) and VarY (Xj|θ) = σ2(θ)/mj for a policy-
holder with risk parameter θ. Note that we used the fact that the Yjk are iid
for a given policyholder. The average loss per vehicle for the entire n-year
period is

X̄ = 1
m

n∑
j=1

mjXj , m =
n∑

j=1
mj .

It follows that EY (X̄|θ) = µ(θ) and VarY (X̄|θ) = σ2(θ)/m where µ(θ) and
σ2(θ) are the mean and variance for a single vehicle for one year for the
policyholder.

Example 12.4.1. Prove that VarY (X̄|θ) = σ2(θ)/m for a risk with risk
parameter θ.
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Example Solution.

VarY (X̄|θ) = VarY

 1
m

n∑
j=1

mjXj |θ


= 1

m2

n∑
j=1

VarY (mjXj |θ) = 1
m2

n∑
j=1

m2
jVarY (Xj |θ)

= 1
m2

n∑
j=1

m2
j (σ2(θ)/mj) = σ2(θ)

m2

n∑
j=1

mj = σ2(θ)/m.

The Buhlmann-Straub credibility estimate is:

µ̂(θ) = Zx̄+ (1 − Z)µ (12.7)

with

θ = a risk parameter that identifies a policyholder’s risk level
µ̂(θ) = estimated expected loss for one exposure for the policyholder

with loss experience X̄

x̄ = 1
m

n∑
j=1

mjxj is the average loss per exposure for m exposures.

xj is the average loss per exposure and mj is the number of exposures in year j.
Z = credibility assigned to m exposures
µ = expected loss for one exposure for randomly chosen

policyholder from population.

Note that µ̂(θ) is the estimator for the expected loss for one exposure. If the
policyholder has mj exposures then the expected loss is mjµ̂(θ).

In Example 12.2.4, it was shown that Z = VarΘ(EX(X̄|θ))/Var(X̄) where X̄
is the average loss for n observations. In equation (12.7) the X̄ is the average
loss for m exposures and the same Z formula can be used:

Z = VarΘ(EY (X̄|θ))
Var(X̄)

= VarΘ(EY (X̄|θ))
EΘ(VarY (X̄|θ)) + VarΘ(EY (X̄|θ))

.

(Note that Xj is a sum of Yjk’s and X̄ is an average of Yjk’s.) The denominator
was expanded using the law of total variance. As noted above EY (X̄|θ) = µ(θ)
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so VarΘ(EY (X̄|θ)) = VarΘ(µ(θ)) = V HM . Because VarY (X̄|θ) = σ2(θ)/m
it follows that EΘ(VarY (X̄|θ)) = EΘ(σ2(θ))/m = EPV/m. Making these
substitutions and using a little algebra gives

Z = m

m+K
, K = EPV

V HM
. (12.8)

This is the same Z as for Bühlmann credibility except number of exposures m
replaces number of years or observations n.

Example 12.4.2. A commercial automobile policyholder had the following
exposures and claims over a three-year period:

Year Number of Vehicles Number of Claims
1 9 5
2 12 4
3 15 4

• The number of claims in a year for each vehicle in the policyholder’s fleet is
Poisson distributed with the same mean (parameter) λ.

• Parameter λ is distributed among the policyholders in the population with
pdf f(λ) = 6λ(1 − λ) with 0 < λ < 1.

The policyholder has 18 vehicles in its fleet in year 4. Use Bühlmann-Straub
credibility to estimate the expected number of policyholder claims in year 4.

Example Solution. The expected number of claims for one vehicle for a ran-
domly chosen policyholder is µ = E(λ) =

∫ 1
0 λ[6λ(1 − λ)]dλ = 1/2. The average

number of claims per vehicle for the policyholder is X̄=13/36. The expected
value of the process variance for a single vehicle is EPV = E(λ) = 1/2.

The variance of the hypothetical means across policyholders is V HM = Var(λ) =
E(λ2)-(E(λ))2 =

∫ 1
0 λ2[6λ(1−λ)]dλ−(1/2)2 = (3/10)−(1/4) = (6/20)−(5/20) =

1/20. So, K = EPV/V HM=(1/2)/(1/20)=10. The number of exposures in the
experience period is m = 9 + 12 + 15 = 36. The credibility is Z = 36/(36 + 10) =
18/23.

The credibility-weighted estimate for the number of claims for one vehicle is
µ̂(θ) = ZX̄ + (1 − Z)µ=(18/23)(13/36)+(5/23)(1/2)=9/23. With 18 vehicles in
the fleet in year 4 the expected number of claims is 18(9/23)=162/23=7.04 .

12.5 Estimating Credibility Parameters
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In this section, you learn how to:

• Perform nonparametric estimation with the Bühlmann and Bühlmann-Straub
credibility models.

• Identify situations when semiparametric estimation is appropriate.
• Use data to approximate the EPV and V HM .

The examples in this chapter have provided assumptions for calculating credi-
bility parameters. In actual practice the actuary must use real world data and
judgment to determine credibility parameters.

12.5.1 Nonparametric Estimation for Bühlmann and Bühlmann-Straub
Models

Bayesian analysis as described previously requires assumptions about a prior
distribution and likelihood. It is possible to produce estimates without these
assumptions and these methods are often referred to as empirical Bayes meth-
ods. Bühlmann and Bühlmann-Straub credibility with parameters estimated
from the data are included in the category of empirical Bayes methods.

Bühlmann Model. First we will address the simpler Bühlmann model.
Assume that there are r risks in a population. For risk i with risk parameter
θi the losses for n periods are Xi1, . . . , Xin. The losses for a given risk are
iid across periods as assumed in the Bühlmann model. For risk i the sample
mean is X̄i = ∑n

j=1 Xij/n and the unbiased sample process variance is s2
i =∑n

j=1(Xij −X̄i)2/(n−1). An unbiased estimator for the EPV can be calculated
by taking the average of s2

i for the r risks in the population:

ÊPV = 1
r

r∑
i=1

s2
i = 1

r(n− 1)

r∑
i=1

n∑
j=1

(Xij − X̄i)2. (12.9)

The individual risk means X̄i for i = 1, . . . , r can be used to estimate the
V HM . An unbiased estimator of Var(X̄i) is

V̂ar(X̄i) = 1
r − 1

r∑
i=1

(X̄i − X̄)2 and X̄ = 1
r

r∑
i=1

X̄i,

but Var(X̄i) is not the V HM . The total variance formula or unconditional
variance formula is

Var(X̄i) = EX(VarΘ(X̄i|θi)) + VarΘ(EX(X̄i|θi)).

The V HM is the second term on the right because µ(θi) = EX(X̄i|θi) is the
hypothetical mean for risk i. So,

V HM = Var(X̄i) − EΘ(VarX(X̄i|θi)).
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As discussed previously in Section 12.2.2, EPV/n = EΘ(VarX [X̄i|θi]) and
using the above estimators gives an estimator for the V HM :

V̂ HM = 1
r − 1

r∑
i=1

(X̄i − X̄)2 − ÊPV

n
. (12.10)

Although the expected loss for a risk with parameter θi is µ(θi)=EX(X̄i|θi),
the variance of the sample mean X̄i is greater than or equal to the variance
of the hypothetical means: Var(X̄i) ≥ Var(µ(θi)). The variance in the sample
means Var(X̄i) includes both the variance in the hypothetical means plus a
process variance term.

In some cases formula (12.10) can produce a negative value for V̂ HM because
of the subtraction of ÊPV /n, but a variance cannot be negative. The process
variance within risks is so large that it overwhelms the measurement of the
variance in means between risks. In this case we cannot use this method to
determine the values needed for Bühlmann credibility.

Example 12.5.1. Two policyholders had claims over a three-year period as
shown in the table below. Estimate the expected number of claims for each
policyholder using Bühlmann credibility and calculating necessary parameters
from the data.

Year Risk A Risk B
1 0 2
2 1 1
3 0 2

Example Solution. x̄A = 1
3(0 + 1 + 0) = 1

3 , x̄B = 1
3(2 + 1 + 2) = 5

3

x̄ = 1
2(1

3 + 5
3) = 1

s2
A = 1

3−1
[
(0 − 1

3)2 + (1 − 1
3)2 + (0 − 1

3)2] = 1
3

s2
B = 1

3−1
[
(2 − 5

3)2 + (1 − 5
3)2 + (2 − 5

3)2] = 1
3

ÊPV = 1
2
(1

3 + 1
3
)

= 1
3

V̂ HM = 1
2−1

[
(1

3 − 1)2 + (5
3 − 1)2]− 1/3

3 = 7
9

K = 1/3
7/9 = 3

7

Z = 3
3+(3/7)) = 7

8

µ̂A = 7
8
(1

3
)

+ (1 − 7
8)1 = 5

12
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µ̂B = 7
8
(5

3
)

+ (1 − 7
8)1 = 19

12

Example 12.5.2. Two policyholders had claims over a three-year period as
shown in the table below. Calculate the nonparametric estimate for the V HM .

Year Risk A Risk B
1 3 3
2 0 0
3 0 3

Example Solution. x̄A = 1
3(3 + 0 + 0) = 1, x̄B = 1

3(3 + 0 + 3) = 2

x̄ = 1
2(1 + 2) = 3

2

s2
A = 1

3−1
[
(3 − 1)2 + (0 − 1)2 + (0 − 1)2] = 3

s2
B = 1

3−1
[
(3 − 2)2 + (0 − 2)2 + (3 − 2)2] = 3

ÊPV = 1
2(3 + 3) = 3

V̂ HM = 1
2−1

[
(1 − 3

2)2 + (2 − 3
2)2]− 3

3 = −1
2 .

The process variance is so large that it is not possible to estimate the V HM .

Bühlmann-Straub Model Empirical formulas for EPV and V HM in the
Bühlmann-Straub model are more complicated because a risk’s number of
exposures can change from one period to another. Also, the number of experi-
ence periods does not have to be constant across the population. First some
definitions:

• Xij is the losses per exposure for risk i in period j. Losses can refer to number
of claims or amount of loss. There are r risks so i = 1, . . . , r.

• ni is the number of observation periods for risk i
• mij is the number of exposures for risk i in period j for j = 1, . . . , ni

Risk i with risk parameter θi has mij exposures in period j which means that
the losses per exposure random variable can be written as Xij = (Yi1 + · · · +
Yimij )/mij . Random variable Yik is the loss for one exposure. For risk i losses
Yik are iid with mean EY (Yik|θi) = µ(θi) and process variance VarY (Yik|θi) =
σ2(θi). It follows that VarY (Xij|θi) = σ2(θi)/mij .

Two more important definitions are:
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• X̄i = 1
mi

∑ni
j=1 mijXij withmi = ∑ni

j=1 mij . X̄i is the average loss per exposure
for risk i for all observation periods combined.

• X̄ = 1
m

∑r
i=1 miX̄i with m = ∑r

i=1 mi. X̄ is the average loss per exposure for
all risks for all observation periods combined.

An unbiased estimator for the process variance σ2(θi) of one exposure for risk
i is

si
2 =

∑ni
j=1 mij(Xij − X̄i)2

ni − 1 .

The weights mij are applied to the squared differences because the Xij are the
averages of mij exposures. The weighted average of the sample variances si

2

for each risk i in the population with weights proportional to the number of
(ni − 1) observation periods will produce the expected value of the process
variance (EPV ) estimate

ÊPV =
∑r

i=1(ni − 1)si
2∑r

i=1(ni − 1) =
∑r

i=1
∑ni

j=1 mij(Xij − X̄i)2∑r
i=1(ni − 1) .

The quantity ÊPV is an unbiased estimator for the expected value of the pro-
cess variance of one exposure for a risk chosen at random from the population.

To calculate an estimator for the variance in the hypothetical means (V HM)
the squared differences of the individual risk sample means X̄i and population
mean X̄ are used. An unbiased estimator for the V HM is

V̂ HM =
∑r

i=1 mi(X̄i − X̄)2 − (r − 1)ÊPV
m− 1

m

∑r
i=1 m

2
i

.

This complicated formula is necessary because of the varying number of
exposures. Proofs that the EPV and V HM estimators shown above are
unbiased can be found in several references mentioned at the end of this
chapter including (Bühlmann and Gisler, 2005), (Klugman et al., 2012), and
(Tse, 2009).

Example 12.5.3. Two policyholders had claims shown in the table below.
Estimate the expected number of claims per vehicle for each policyholder using
Bühlmann-Straub credibility and calculating parameters from the data.

Policyholder Year 1 Year 2 Year 3 Year 4
A Number of claims 0 2 2 3
A Insured vehicles 1 2 2 2

B Number of claims 0 0 1 2
B Insured vehicles 0 2 3 4
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Example Solution. x̄A = 0+2+2+3
1+2+2+2 = 1

x̄B = 0+1+2
2+3+4 = 1

3

x̄ = 7(1)+9(1/3)
7+9 = 5

8

s2
A = 1

4−1
[
1(0 − 1)2 + 2(1 − 1)2 + 2(1 − 1)2 + 2(3

2 − 1)2] = 1
2

s2
B = 1

3−1
[
2(0 − 1

3)2 + 3(1
3 − 1

3)2 + 4(1
2 − 1

3)2] = 1
6

ÊPV =
[
3
(1

2
)

+ 2
(1

6
)]

/(3 + 2) = 11
30 = 0.3667

V̂ HM =
[
(7(1 − 5

8)2 + 9(1
3 − 5

8)2 − (2 − 1)11
30
]
/
[
16 −

( 1
16
)

(72 + 92)
]

= 0.1757

K = 0.3667
0.1757 = 2.0871

mA = 7, mB = 9

ZA = 7
7+2.0871 = 0.7703, ZB = 9

9+2.0871 = 0.8118

µ̂A = 0.7703(1) + (1 − 0.7703)(5/8) = 0.9139

µ̂B = 0.8118(1/3) + (1 − 0.8118)(5/8) = 0.3882.

12.5.2 Semiparametric Estimation for Bühlmann and Bühlmann-Straub
Models

In the prior section on nonparametric estimation, there were no assumptions
about the distribution of the losses per exposure Xij . Assuming that the Xij

have a particular distribution and using properties of the distribution along with
the data to determine credibility parameters is referred to as semiparametric
estimation.

An example of semiparametric estimation would be the assumption of a Poisson
distribution when estimating claim frequencies. The Poisson distribution has
the property that the mean and variance are identical and this property can
simplify calculations. The following simple example comes from the prior
section but now includes a Poisson assumption about claim frequencies.

Example 12.5.4. Two policyholders had claims over a three-year period as
shown in the table below. Assume that the number of claims for each risk
has a Poisson distribution. Estimate the expected number of claims for each
policyholder using Bühlmann credibility and calculating necessary parameters
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from the data.
Year Risk A Risk B

1 0 2
2 1 1
3 0 2

Example Solution. x̄A = 1
3(0 + 1 + 0) = 1

3 , x̄B = 1
3(2 + 1 + 2) = 5

3

x̄ = 1
2(1

3 + 5
3) = 1

With Poisson assumption the estimated variance for risk A is σ̂2
A = x̄A = 1

3

Similarly, σ̂2
B = x̄B = 5

3

ÊPV = 1
2(1

3) + 1
2(5

3) = 1. This is also x̄ because of Poisson assumption.

V̂ HM = 1
2−1

[
(1

3 − 1)2 + (5
3 − 1)2]− 1

3 = 5
9

K = 1
5/9 = 9

5

ZA = ZB = 3
3+(9/5) = 5

8

µ̂A = 5
8
(1

3
)

+ (1 − 5
8)1 = 7

12

µ̂B = 5
8
(5

3
)

+ (1 − 5
8)1 = 17

12 .

Although we assumed that the number of claims for each risk was Poisson
distributed in the prior example, we did not need this additional assumption
because there was enough information to use nonparametric estimation. In
fact, the Poisson assumption might not be appropriate because for risk B the
sample mean is not equal to the sample variance: x̄B = 5

3 ̸= s2
B = 1

3 .

The following example is commonly used to demonstrate a situation where
semiparametric estimation is needed. There is insufficient information for
nonparametric estimation but with the Poisson assumption, estimates can be
calculated.

Example 12.5.5. A portfolio of 2,000 policyholders generated the following
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claims profile during a five-year period:

Number of Claims
In 5 Years Number of policies

0 923
1 682
2 249
3 70
4 51
5 25

In your model you assume that the number of claims for each policyholder has
a Poisson distribution and that a policyholder’s expected number of claims
is constant through time. Use Bühlmann credibility to estimate the annual
expected number of claims for policyholders with 3 claims during the five-year
period.

Example Solution. Let θi be the risk parameter for the ith risk in the portfolio
with mean µ(θi) and variance σ2(θi). With the Poisson assumption µ(θi) = σ2(θi).
The expected value of the process variance is EPV = E(σ2(θi)) where the
expectation is taken across all risks in the population. Because of the Poisson
assumption for all risks it follows that EPV = E(σ2(θi)) = E(µ(θi)). An estimate
for the annual expected number of claims is µ̂(θi)= (observed number of claims)/5.
This can also serve as the estimate for the expected value of the process variance
for a risk. Weighting the process variance estimates (or means) by the number of
policies in each group gives the estimators

ÊPV = x̄ = 923(0) + 682(1) + 249(2) + 70(3) + 51(4) + 25(5)
(5)(2000) = 0.1719.

Using the formula (
eqrefeq:VHM-estimate), the V HM estimator is

V̂ HM = 1
2000 − 1[923(0 − 0.1719)2 + 682(0.20 − 0.1719)2 + 249(0.40 − 0.1719)2

+70(0.60 − 0.1719)2 + 51(0.80 − 0.1719)2 + 25(1 − 0.1719)2] − 0.1719
5

= 0.0111
K̂ = ÊPV /V̂ HM = 0.1719/0.0111 = 15.49

Ẑ = 5
5 + 15.49 = 0.2440

µ̂3 claims = 0.2440(3/5) + (1 − 0.2440)0.1719 = 0.2764.
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12.6 Limited Fluctuation Credibility

In this section, you learn how to:

• Calculate full credibility standards for number of claims, average size of
claims, and aggregate losses.

• Learn how the relationship between means and variances of underlying
distributions affects full credibility standards.

• Determine credibility-weight Z using the square-root partial credibility for-
mula.

Limited fluctuation credibility, also called “classical credibility” and “American
credibility,” was given this name because the method explicitly attempts to
limit fluctuations in estimates for claim frequencies, severities, or losses. For
example, suppose that you want to estimate the expected number of claims N
for a group of risks in an insurance rating class. How many risks are needed in
the class to ensure that a specified level of accuracy is attained in the estimate?
First the question will be considered from the perspective of how many claims
are needed.

12.6.1 Full Credibility for Claim Frequency

Let N be a random variable representing the number of claims for a group of
risks, for example, risks within a particular rating classification. The observed
number of claims will be used to estimate µN = E[N ], the expected number of
claims. How big does µN need to be to get a good estimate? One way to quantify
the accuracy of the estimate would be with a statement like: “The observed
value of N should be within 5% of µN at least 90% of the time.” Writing this
as a mathematical expression would give Pr[0.95µN ≤ N ≤ 1.05µN ] ≥ 0.90.
Generalizing this statement by letting the range parameter k replace 5% and
probability level p replace 0.90 gives the equation

Pr[(1 − k)µN ≤ N ≤ (1 + k)µN ] ≥ p. (12.11)

The expected number of claims required for the probability on the left-hand
side of (12.11) to equal p is called the full credibility standard.

If the expected number of claims is greater than or equal to the full credibility
standard then full credibility can be assigned to the data so Z = 1. Usually
the expected value µN is not known so full credibility will be assigned to the
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data if the actual observed number of claims n is greater than or equal to the
full credibility standard. The k and p values must be selected and the actuary
may rely on experience, judgment, and other factors in making the choices.

Subtracting µN from each term in (12.11) and dividing by the standard
deviation σN of N gives

Pr
[

−kµN

σN
≤ N − µN

σN
≤ kµN

σN

]
≥ p. (12.12)

In limited fluctuation credibility the standard normal distribution is used to
approximate the distribution of (N − µN )/σN . If N is the sum of many claims
from a large group of similar risks and the claims are independent, then the
approximation may be reasonable.

Let yp be the value such that

Pr[−yp ≤ N − µN

σN
≤ yp] = Φ(yp) − Φ(−yp) = p

where Φ() is the cumulative distribution function of the standard normal.
Because Φ(−yp) = 1 − Φ(yp), the equality can be rewritten as 2Φ(yp) − 1 = p.
Solving for yp gives yp = Φ−1((p+ 1)/2) where Φ−1() is the inverse of Φ().

Equation (12.12) will be satisfied if kµN/σN ≥ yp assuming the normal ap-
proximation. First we will consider this inequality for the case when N has
a Poisson distribution: Pr[N = n] = λne−λ/n!. Because λ = µN = σ2

N for the
Poisson, taking square roots yields µ1/2

N = σN . So, kµN/µ
1/2
N ≥ yp which is

equivalent to µN ≥ (yp/k)2. Let’s define λkp to be the value of µN for which
equality holds. Then the full credibility standard for the Poisson distribution is

λkp =
(
yp

k

)2
with yp = Φ−1((p+ 1)/2). (12.13)

If the expected number of claims µN is greater than or equal to λkp then
equation (12.11) is assumed to hold and full credibility can be assigned to the
data. As noted previously, because µN is usually unknown, full credibility is
given if the observed number of claims n satisfies n ≥ λkp.

Example 12.6.1. The full credibility standard is set so that the observed
number of claims is to be within 5% of the expected value with probability
p = 0.95. If the number of claims has a Poisson distribution find the number
of claims needed for full credibility.
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Example Solution. Referring to a standard normal distribution table, yp =
Φ−1((p + 1)/2) = Φ−1((0.95 + 1)/2)=Φ−1(0.975) = 1.960. Using this value and
k = .05 then λkp = (yp/k)2 = (1.960/0.05)2 = 1, 536.64. After rounding up the
full credibility standard is 1,537.

If claims are not Poisson distributed then equation (12.12) does not imply
(12.13). Setting the upper bound of (N − µN)/σN in (12.12) equal to yp

gives kµN/σN = yp. Squaring both sides and moving everything to the right
side except for one of the µN ’s gives µN = (yp/k)2(σ2

N/µN). This is the full
credibility standard for frequency and will be denoted by nf ,

nf =
(
yp

k

)2
(
σ2

N

µN

)
= λkp

(
σ2

N

µN

)
. (12.14)

This is the same equation as the Poisson full credibility standard except for
the (σ2

N/µN) multiplier. When the claims distribution is Poisson this extra
term is one because the variance equals the mean.

Example 12.6.2. The full credibility standard is set so that the total number
of claims is to be within 5% of the observed value with probability p = 0.95.
The number of claims has a negative binomial distribution,

Pr(N = x) =
(
x+ r − 1

x

)(
1

1 + β

)r (
β

1 + β

)x

,

with β = 1. Calculate the full credibility standard.

Example Solution. From the prior example, λkp = 1, 536.64. The mean and
variance for the negative binomial are E(N) = rβ and Var(N) = rβ(1 + β)
so (σ2

N /µN ) = (rβ(1 + β)/(rβ)) = 1 + β which equals 2 when β = 1. So,
nf = λkp(σ2

N /µN ) = 1, 536.64(2) = 3, 073.28 and rounding up gives a full
credibility standard of 3,074.

We see that the negative binomial distribution with (σ2
N/µN) > 1 requires

more claims for full credibility than a Poisson distribution for the same k
and p values. The next example shows that a binomial distribution which has
(σ2

N/µN ) < 1 will need fewer claims for full credibility.

Example 12.6.3. The full credibility standard is set so that the total number
of claims is to be within 5% of the observed value with probability p = 0.95.
The number of claims has a binomial distribution

Pr(N = x) =
(
m

x

)
qx(1 − q)m−x.
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Calculate the full credibility standard for q = 1/4.

Example Solution. From the first example in this section λkp = 1, 536.64. The
mean and variance for a binomial are E(N) = mq and Var(N) = mq(1 − q)
so (σ2

N /µN ) = (mq(1 − q)/(mq)) = 1 − q which equals 3/4 when q = 1/4. So,
nf = λkp(σ2

N /µN ) = 1, 536.64(3/4) = 1, 152.48 and rounding up gives a full
credibility standard of 1,153.

Rather than using expected number of claims to define the full credibility
standard, the number of exposures can be used for the full credibility standard.
An exposure is a measure of risk. For example, one car insured for a full year
would be one car-year. Two cars each insured for exactly one-half year would
also result in one car-year. Car-years attempt to quantify exposure to loss.
Two car-years would be expected to generate twice as many claims as one
car-year if the vehicles have the same risk of loss. To translate a full credibility
standard denominated in terms of number of claims to a full credibility standard
denominated in exposures one needs a reasonable estimate of the expected
number of claims per exposure.

Example 12.6.4. The full credibility standard should be selected so that
the observed number of claims will be within 5% of the expected value with
probability p = 0.95. The number of claims has a Poisson distribution. If one
exposure is expected to have about 0.20 claims per year, find the number of
exposures needed for full credibility.

Example Solution. With p = 0.95 and k = .05, λkp = (yp/k)2 = (1.960/0.05)2 =
1, 536.64 claims are required for full credibility. The claims frequency rate is 0.20
claims per exposure. To convert the full credibility standard to a standard denom-
inated in exposures the calculation is: (1,536.64 claims)/(0.20 claims/exposures)
= 7,683.20 exposures. This can be rounded up to 7,684.

Frequency can be defined as the number of claims per exposure. Letting m
denote the number of exposures. Then, if observed claim frequency N/m is
used to estimate E(N/m):

Pr[(1 − k)E(N/m) ≤ N/m ≤ (1 + k)E(N/m)] ≥ p.

Because the number of exposures is not a random variable, E(N/m) =
E(N)/m = µN/m and the prior equation becomes

Pr
[
(1 − k)µN

m
≤ N

m
≤ (1 + k)µN

m

]
≥ p.
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Multiplying through by m results in equation (12.11) at the beginning of
the section. The full credibility standards that were developed for estimating
expected number of claims also apply to frequency.

12.6.2 Full Credibility for Aggregate Losses and Pure Premium

Aggregate losses are the total of all loss amounts for a risk or group of risks.
Letting S represent aggregate losses

S = X1 +X2 + · · · +XN .

The random variable N represents the number of losses and random variables
X1, X2, . . . , XN are the individual loss amounts. In this section it is assumed
that N is independent of the loss amounts and that X1, X2, . . . , XN are iid.

The mean and variance of S are

µS = E(S) = E(N)E(X) = µNµX

and

σ2
S = Var(S) = E(N)Var(X) + [E(X)]2Var(N) = µNσ

2
X + µ2

Xσ
2
N ,

where X is the amount of a single loss. See the discussion on collective risk
models in Section 7.3 for more discussion of this framework.

Observed losses S will be used to estimate expected losses µS = E(S). As with
the frequency model in the previous section, the observed losses must be close
to the expected losses as quantified in the equation

Pr[(1 − k)µS ≤ S ≤ (1 + k)µS] ≥ p.

After subtracting the mean and dividing by the standard deviation,

Pr
[

−kµS

σS
≤ (S − µS)/σS ≤ kµS

σS

]
≥ p.

As done in the previous section the distribution for (S − µS)/σS is assumed
to be standard normal and kµS/σS = yp = Φ−1((p + 1)/2). This equation
can be rewritten as µ2

S = (yp/k)2σ2
S. Using the prior formulas for µS and σ2

S

gives (µNµX)2 = (yp/k)2(µNσ
2
X + µ2

Xσ
2
N ). Dividing both sides by µNµ

2
X and

reordering terms on the right side results in a full credibility standard nS for
aggregate losses

nS =
(
yp

k

)2
(σ2

N

µN

)
+
(
σX

µX

)2
 = λkp

(σ2
N

µN

)
+
(
σX

µX

)2
 . (12.15)
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Example 12.6.5. The number of claims has a Poisson distribution. Individual
loss amounts are independently and identically distributed with a Pareto
distribution F (x) = 1 − [θ/(x+ θ)]α. The number of claims and loss amounts
are independent. If observed aggregate losses should be within 5% of the
expected value with probability p = 0.95, how many losses are required for full
credibility?

Example Solution. Because the number of claims is Poisson, (σ2
N /µN ) = 1. The

mean of the Pareto is µX = θ/(α−1) and the variance is σ2
X = θ2α/[(α−1)2(α−2)]

so (σX/µX)2 = α/(α − 2). Combining the frequency and severity terms gives
[(σ2

N /µN ) + (σX/µX)2] = 2(α − 1)/(α − 2). From a standard normal distribution
table yp = Φ−1((0.95 + 1)/2) = 1.960. The full credibility standard is nS =
(1.96/0.05)2[2(α − 1)/(α − 2)] = 3, 073.28(α − 1)/(α − 2). Suppose α = 3 then
nS = 6, 146.56 for a full credibility standard of 6,147. Note that considerably
more claims are needed for full credibility for aggregate losses than frequency
alone.

When the number of claims is Poisson distributed then equation (12.15) can
be simplified using (σ2

N/µN ) = 1. It follows that

[(σ2
N/µN ) + (σX/µX)2] = [1 + (σX/µX)2] = [(µ2

X + σ2
X)/µ2

X ] = E(X2)/E(X)2

using the relationship µ2
X + σ2

X = E(X2). The full credibility standard is
nS = λkp E(X2)/E(X)2.

The pure premium PP is equal to aggregate losses S divided by exposures m:
PP = S/m. The full credibility standard for pure premium will require

Pr [(1 − k)µP P ≤ PP ≤ (1 + k)µP P ] ≥ p.

The number of exposures m is assumed fixed and not a random variable so
µP P = E(S/m) = E(S)/m = µS/m.

Pr
[
(1 − k)

(
µS

m

)
≤
(
S

m

)
≤ (1 + k)

(
µS

m

)]
≥ p.

Multiplying through by m returns the bounds for losses

Pr[(1 − k)µS ≤ S ≤ (1 + k)µS] ≥ p.

This means that the full credibility standard nP P for the pure premium is the
same as that for aggregate losses

nP P = nS = λkp

(σ2
N

µn

)
+
(
σX

µX

)2
 .
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12.6.3 Full Credibility for Severity

Let X be a random variable representing the size of one claim. Claim severity
is µX = E(X). Suppose that X1, X2, . . . , Xn is a random sample of n claims
that will be used to estimate claim severity µX . The claims are assumed to be
iid. The average value of the sample is

X̄ = 1
n

(X1 +X2 + · · · +Xn) .

How big does n need to be to get a good estimate? Note that n is not a random
variable whereas it is in the aggregate loss model.

In Section 12.6.1 the accuracy of an estimator for frequency was defined
by requiring that the number of claims lie within a specified interval about
the mean number of claims with a specified probability. For severity this
requirement is

Pr[(1 − k)µX ≤ X̄ ≤ (1 + k)µX ] ≥ p,

where k and p need to be specified. Following the steps in Section 12.6.1,
the mean claim severity µX is subtracted from each term and the standard
deviation of the claim severity estimator σX̄ is divided into each term yielding

Pr
[

−k µX

σX̄

≤ (X̄ − µX)/σX̄ ≤ k µX

σX̄

]
≥ p.

As in prior sections, it is assumed that (X̄−µX)/σX̄ is approximately normally
distributed and the prior equation is satisfied if kµX/σX̄ ≥ yp with yp =
Φ−1((p+ 1)/2). Because X̄ is the average of individual claims X1, X2, . . . , Xn,
its standard deviation is equal to the standard deviation of an individual claim
divided by

√
n: σX̄ = σX/

√
n. So, kµX/(σX/

√
n) ≥ yp and with a little algebra

this can be rewritten as n ≥ (yp/k)2(σX/µX)2. The full credibility standard
for severity is

nX =
(
yp

k

)2
(
σX

µX

)2

= λkp

(
σX

µX

)2

. (12.16)

Note that the term σX/µX is the coefficient of variation for an individual
claim. Even though λkp is the full credibility standard for frequency given a
Poisson distribution, there is no assumption about the distribution for the
number of claims.

Example 12.6.6. Individual loss amounts are independently and identically
distributed with a Type II Pareto distribution F (x) = 1 − [θ/(x+ θ)]α. How
many claims are required for the average severity of observed claims to be
within 5% of the expected severity with probability p = 0.95?
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Example Solution. The mean of the Pareto is µX = θ/(α − 1) and the variance
is σ2

X = θ2α/[(α − 1)2(α − 2)] so (σX/µX)2 = α/(α − 2). From a standard normal
distribution table yp = Φ−1((0.95 + 1)/2) = 1.960. The full credibility standard
is nX = (1.96/0.05)2[α/(α − 2)] = 1, 536.64α/(α − 2). Suppose α = 3 then
nX = 4, 609.92 for a full credibility standard of 4,610.

12.6.4 Partial Credibility

In prior sections full credibility standards were calculated for estimating fre-
quency (nf ), pure premium (nP P ), and severity (nX) - in this section these
full credibility standards will be denoted by n0. In each case the full credibility
standard was the expected number of claims required to achieve a defined
level of accuracy when using empirical data to estimate an expected value. If
the observed number of claims is greater than or equal to the full credibility
standard then a full credibility weight Z = 1 is given to the data.

In limited fluctuation credibility, credibility weights Z assigned to data are

Z =
{ √

n/n0 if n < n0
1 if n ≥ n0,

where n0 is the full credibility standard. The quantity n is the number of
claims for the data that is used to estimate the expected frequency, severity,
or pure premium.

Example 12.6.7. The number of claims has a Poisson distribution. Individual
loss amounts are independently and identically distributed with a Type II
Pareto distribution F (x) = 1 − [θ/(x+ θ)]α. Assume that α = 3. The number
of claims and loss amounts are independent. The full credibility standard is
that the observed pure premium should be within 5% of the expected value
with probability p = 0.95. What credibility Z is assigned to a pure premium
computed from 1,000 claims?

Example Solution. Because the number of claims is Poisson,

E(X2)
[E (X)]2 = σ2

N

µN
+
(

σX

µX

)2
.

The mean of the Pareto is µX = θ/(α − 1) and the second moment is E(X2) =
2θ2/[(α − 1)(α − 2)] so E(X2)/[E (X)]2 = 2(α − 1)/(α − 2). From a standard
normal distribution table, yp = Φ−1((0.95 + 1)/2) = 1.960. The full credibility
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standard is

nP P = (1.96/0.05)2[2(α − 1)/(α − 2)] = 3, 073.28(α − 1)/(α − 2)

and if α = 3 then n0 = nP P = 6, 146.56 or 6,147 if rounded up. The credibility
assigned to 1,000 claims is Z = (1, 000/6, 147)1/2 = 0.40.

Limited fluctuation credibility uses the formula Z =
√
n/n0 to limit the

fluctuation in the credibility-weighted estimate to match the fluctuation allowed
for data with expected claims at the full credibility standard. Variance or
standard deviation is used as the measure of fluctuation. Next we show an
example to explain why the square-root formula is used.

Suppose that average claim severity is being estimated from a sample of size
n that is less than the full credibility standard n0 = nX . Applying credibility
theory, the estimate µ̂X would be

µ̂X = ZX̄ + (1 − Z)MX ,

with X̄ = (X1 +X2 + · · · +Xn)/n and iid random variables Xi representing
the sizes of individual claims. The complement of credibility is applied to MX

which could be last year’s estimated average severity adjusted for inflation,
the average severity for a much larger pool of risks, or some other relevant
quantity selected by the actuary. It is assumed that the variance of MX is zero
or negligible. With this assumption

Var(µ̂X) = Var(ZX̄) = Z2Var(X̄) = n

n0
Var(X̄).

Because X̄ = (X1 + X2 + · · · + Xn)/n it follows that Var(X̄) = Var(Xi)/n
where random variable Xi is one claim. So,

Var(µ̂X) = n

n0
Var(X̄) = n

n0

Var(Xi)
n

= Var(Xi)
n0

.

The last term is exactly the variance of a sample mean X̄ when the sample
size is equal to the full credibility standard n0 = nX .

12.6.5 Full Credibility Standard for Limited Fluctuation Credibility

Limited-fluctuation credibility requires a full credibility standard. The general
formula for aggregate losses or pure premium, as obtained in formula (12.15),
is

nS =
(
yp

k

)2
(σ2

N

µN

)
+
(
σX

µX

)2
 ,
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with N representing number of claims and X the size of claims. If one assumes
σX = 0 then the full credibility standard for frequency results. If σN = 0 then
the full credibility formula for severity follows. Probability p and k value are
often selected using judgment and experience.

In practice it is often assumed that the number of claims is Poisson distributed
so that σ2

N/µN = 1. In this case the formula can be simplified to

nS =
(
yp

k

)2
[

E(X2)
(E(X))2

]
.

An empirical mean and second moment for the sizes of individual claim losses
can be computed from past data, if available.

12.7 Balancing Credibility Estimators

The credibility weighted model µ̂(θi) = ZiX̄i + (1 − Zi)X̄, where X̄i is the
loss per exposure for risk i and X̄ is loss per exposure for the population,
can be used to estimate the expected loss for risk i. The overall mean is
X̄ = ∑r

i=1(mi/m)X̄i where mi and m are number of exposures for risk i and
population, respectively.

For the credibility weighted estimators to be in balance we want

X̄ =
r∑

i=1
(mi/m)X̄i =

r∑
i=1

(mi/m)µ̂(θi).

If this equation is satisfied then the estimated losses for each risk will add up
to the population total, an important goal in ratemaking, but this may not
happen if the complement of credibility is applied to X̄.

To achieve balance, we will set M̂X as the amount that is applied to the
complement of credibility and thus analyze the following equation:

r∑
i=1

(mi/m)X̄i =
r∑

i=1
(mi/m)

{
ZiX̄i + (1 − Zi) · M̂X

}
.

A little algebra gives
r∑

i=1
miX̄i =

r∑
i=1

miZiX̄i + M̂X

r∑
i=1

mi(1 − Zi),

and
M̂X =

∑r
i=1 mi(1 − Zi)X̄i∑r

i=1 mi(1 − Zi)
.
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Using this value for M̂X will bring the credibility weighted estimators into
balance.

If credibilities Zi were computed using the Bühlmann-Straub model, then
Zi = mi/(mi + K). The prior formula can be simplified using the following
relationship

mi(1 − Zi) = mi

(
1 − mi

mi +K

)
= mi

(
(mi +K) −mi

mi +K

)
= KZi.

Therefore, an amount when applied to the complement of credibility that will
bring the credibility-weighed estimators into balance with the overall mean
loss per exposure is

M̂X =
∑r

i=1 ZiX̄i∑r
i=1 Zi

.

Example 12.7.1. An example from the nonparametric Bühlmann-Straub
section had the following data for two risks. Find an amount for the complement
of credibility M̂X that will produce credibility-weighted estimates that are in
balance.

Policyholder Year 1 Year 2 Year 3 Year 4
A Number of claims 0 2 2 3
A Insured vehicles 1 2 2 2

B Number of claims 0 0 1 2
B Insured vehicles 0 2 3 4

Example Solution. The credibilities from the prior example are ZA = 7
7+2.0871 =

0.7703 and ZB = 9
9+2.0871 = 0.8118. The sample means are x̄A = 1 and x̄B = 1/3.

The balanced complement of credibility is

M̂X = 0.7703(1) + 0.8118(1/3)
0.7703 + 0.8118 = 0.6579.

The updated credibility estimates are M̂XA
= 0.7703(1) + (1 − 0.7703)(.6579) =

0.9214 versus the previous 0.9139 and M̂XB
= 0.8118(1/3)+(1−0.8118)(.6579) =

0.3944 versus the previous 0.3882. Checking the balance on the new estimators:
(7/16)(0.9214)+(9/16)(0.3944)=0.6250. This exactly matches X̄ = 10/16 =
0.6250.
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13
Insurance Portfolio Management including Reinsurance

Chapter Preview. An insurance portfolio is simply a collection of insurance
contracts. To help manage the uncertainty of the portfolio, this chapter

• quantifies unusually large obligations by examining the tail of the distribution,
• quantifies the overall riskiness by introducing summaries known as risk

measures, and
• discusses options of spreading portfolio risk through reinsurance, the purchase

of insurance protection by an insurer.

13.1 Introduction to Insurance Portfolios

In previous chapters, our analyses primarily focused on the contract level, which
represents agreements between policyholders and insurers. Insurers maintain
and manage portfolios, which are essentially collections of these individual
contracts. Conceptually, one can liken an insurance company to nothing more
than a collection, or portfolio, of insurance contracts. Similar to banking and
investments, there are management decisions that are made exclusively at the
portfolio level. Within this chapter, we address three crucial actuarial tasks:
quantifying the impact of extreme events, determining overall portfolio risk,
and managing insurance portfolios through reinsurance.

Insurance portfolios, representing the obligations of insurers, pique our interest
primarily due to the probabilities associated with significant outcomes. These
outcomes often translate to unusually large obligations. To illustrate, within
property and casualty insurance, large obligations frequently stem from unfore-
seen consequences of climate-related risks. For instance, consider the freezing
rain event of 1998 that swept through eastern Ontario and southwestern Que-
bec, lasting six days. This calamity resulted in double the typical precipitation
for the region during an ice storm and gave rise to a catastrophe, triggering
over 840,000 insurance claims. Astonishingly, this number exceeded the claims
filed in the wake of Hurricane Andrew, one of North America’s most extensive
natural disasters. The catastrophe led to insurance settlements exceeding 1.44
billion Canadian dollars, marking the highest loss burden in Canada’s history.

429
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Such incidents are not isolated; similar catastrophic events, like Hurricane
Harvey, Superstorm Sandy, the 2011 Japanese earthquake and tsunami, have
also caused extreme insurance losses. In our exploration of extreme events in
insurance, we introduce the concept of heavy-tailed distributions in Section
13.2.

Insurance companies engage in the buying and selling of risks as if they were
commodities. As we explored in Chapter 10, greater uncertainty associated
with risks typically translates into higher prices. In that chapter, pricing prin-
ciples were introduced to quantify the magnitude of these risks. Furthermore,
insurance portfolios represent the obligations of a company and, although
they are not traded on a marketplace, they require careful management. One
crucial aspect of this management is aligning the size of the obligations with
an equivalent amount of assets. The subsequent Chapter 14 on loss reserves
offers practical methods for achieving this alignment. Additionally, insurers
need to assess the extent of their obligations for purposes such as capacity
planning, policy formulation, and maintaining a balanced product portfolio
that fosters revenue growth while managing volatility. To facilitate these tasks,
Section 13.3 introduces risk measures that succinctly capture the uncertainty
inherent in the distribution of an insurance portfolio.

Similar to individuals, insurance companies manage their risk portfolios by
acquiring insurance, in this case, risk protection from reinsurers, which are
insurance companies serving insurers. Just as individuals can structure the
amount of risk they retain through mechanisms like deductibles and policy
limits, insurers employ similar strategies to structure their risk portfolios. This
practice of sharing insurance portfolio risk is detailed in Section 13.4, where
we delve into the concept of reinsurance.

These three actuarial tasks, quantifying the impact of extreme events, de-
termining overall portfolio risk, and managing insurance portfolios through
reinsurance, are based on the distribution of insurance portfolios. In Chapter
7, we delved into modeling the distribution of insurance portfolios as the sum
of individual contracts where we used S for aggregate losses. Now, this chapter
is dedicated to the direct exploration of portfolio distributions and so we revert
to the traditional X notation.

13.2 Tails of Distributions

In this section, you learn how to:
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• Describe a heavy tail distribution intuitively.
• Classify the heaviness of a distribution’s tails based on moments.
• Compare the tails of two distributions.

For extreme events such as those due to climate risks, a few major events hitting
a portfolio and then converting into losses usually represent the greatest part
of the indemnities paid by insurance companies. The aforementioned losses,
also called ‘extremes’, are quantitatively modeled by the tails of the associated
probability distributions. From the quantitative modeling standpoint, relying
on probabilistic models having lengthy tails can be daunting. For instance,
periods of financial stress may appear with a higher frequency than expected,
and insurance losses may occur with worse severity. Therefore, the study of
probabilistic behavior in the tail portion of actuarial models is important in
quantitative risk management. For this reason, this section introduces a few
mathematical notions that describe the tail weight of random variables. These
notions will benefit us in the construction and selection of appropriate models
with desired mathematical properties in the tail portion.

Formally, define X to be the random obligations that arise from a collection
(portfolio) of insurance contracts. At the portfolio level, we are particularly
interested in studying the right tail of the distribution of X which represents
the occurrence of large losses. Informally, a random variable is said to be
heavy-tailed if high probabilities are assigned to large values. This does not
imply that the probability density/mass function increases as the value of X
goes to infinity. Indeed, for a real-valued random variable, the pdf/pmf must
diminish at infinity in order to guarantee the total probability to be equal to
one. Instead, what we are concerned about is the rate of decay of the pdf/pmf.
Unwelcome outcomes are more likely to occur for an insurance portfolio that
is described by a loss random variable possessing a heavier (right) tail. Tail
weight can be an absolute or a relative concept. Specifically, for the former,
we may consider a random variable to be heavy-tailed if certain mathematical
properties of the probability distribution are met. For the latter, we can say the
tail of one distribution is heavier/lighter than the other if some tail measures
are larger/smaller.

Several quantitative approaches have been proposed to classify and compare
tail weights. For most of these approaches, the survival function serves as
the building block. In what follows, we introduce two simple yet useful tail
classification methods both of which are based on the behavior of the survival
function of X.
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13.2.1 Classification Based on Moments

One way of classifying the tail weight of a distribution is by determining
whether or not a raw moment is finite. Because our major interest lies in the
right tail of a distribution, we henceforth assume the obligation or loss random
variable X to be non-negative. At the outset, the k−th raw moment of a
continuous random variable X, introduced in Section 4.1, can be expressed as

µ′
k =

∫ ∞

0
xkf(x) dx = k

∫ ∞

0
xk−1S(x) dx,

where S(·) denotes the survival function of X. This expression emphasizes that
the finiteness of the raw moments depends on the asymptotic behavior of the
survival function at infinity. Namely, the faster the survival function decays to
zero, the higher is the order (k) is which the associated random variable may be
finite. To capture this idea, we can formally define k∗ = sup{k > 0 : µ′

k < ∞},
where sup represents the supremum operator. You may interpret k∗ to be the
largest value of k so that the moment is finite.

This definition leads us to a moment-based tail weight classification method
which is defined as follows.

Definition 13.1. Consider a non-negative loss random variable X.

• If all the positive raw moments exist, namely the maximal order of finite
moment k∗ = ∞, then X is said to be light tailed based on the moment
method.

• If k∗ < ∞, then X is said to be heavy tailed based on the moment method.
• Moreover, for two positive loss random variables X1 and X2 with maximal

orders of moment k∗
1 and k∗

2 respectively, we say X1 has a heavier (right)
tail than X2 if k∗

1 ≤ k∗
2.

The first part of Definition 13.1 is an absolute concept of tail weight, while the
second part is a relative concept of tail weight which compares the (right) tails
between two distributions. Next, we present a few examples that illustrate the
applications of the moment-based method for comparing tail weight.

Example 13.2.1. Light tail nature of the gamma distribution. Let
X ∼ gamma(α, θ), with α > 0 and θ > 0. Show that µ′

k < ∞ for all k > 0.

Example Solution. From the probability density functions expression in Section
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refS:ContinuousDistributions, the kth raw moment is

µ′
k =

∫ ∞

0
xk xα−1e−x/θ

Γ(α)θα
dx

=
∫ ∞

0
(yθ)k (yθ)α−1e−y

Γ(α)θα
θdy

= θk

Γ(α)Γ(α + k) < ∞.

Because all the positive moments exist, we have k∗ = ∞. Thus, in accordance
with the moment-based classification method in Definition 13.1, the gamma
distribution is light-tailed.

Example 13.2.2. Light tail nature of the Weibull distribution. Let
X ∼ Weibull(θ, τ), with θ > 0 and τ > 0. Show that µ′

k < ∞ for all k > 0.

Example Solution. From the probability density functions expression in Section
refS:ContinuousDistributions, the kth raw moment is

µ′
k =

∫ ∞

0
xk τxτ−1

θτ
e−(x/θ)τ

dx

=
∫ ∞

0

yk/τ

θτ
e−y/θτ

dy

= θkΓ(1 + k/τ) < ∞.

Again, due to the existence of all the positive moments, the Weibull distribution
is light-tailed.

The gamma and Weibull distributions are used extensively in the actuarial
practice. Applications of these two distributions are vast which include, but
are not limited to, insurance claim severity modeling, solvency assessment,
loss reserving, aggregate risk approximation, reliability engineering and failure
analysis. We have thus far seen two examples of using the moment-based
method to analyze light-tailed distributions. We document a heavy-tailed
example in what follows.

Example 13.2.3. Heavy tail nature of the Pareto distribution. Let
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X ∼ Pareto(α, θ), with α > 0 and θ > 0. Then, for k > 0,

µ
′

k =
∫ ∞

0
xk αθα

(x+ θ)α+1dx

= αθα
∫ ∞

θ
(y − θ)ky−(α+1)dy.

From basic calculus, recall that

INTk =
∫ ∞

θ
yk−α−1dy =

{
< ∞, for k < α;
= ∞, for k ≥ α.

Also note that:

lim
y→∞

(y − θ)ky−(α+1)

yk−α−1 = lim
y→∞

(1 − θ/y)k = 1.

Application of the limit comparison theorem for improper integrals yields µ′
k

is finite if and only if INTk is finite. Hence we can conclude that the raw
moments of Pareto random variables exist only up to k < α, i.e., k∗ = α, and
thus the distribution is heavy-tailed.

What is more, the maximal order of finite moment depends only on the shape
parameter α and it is an increasing function of α. In other words, based on
the moment method, the tail weight of Pareto random variables is solely
manipulated by α – the smaller the value of α, the heavier the tail weight
becomes. Since k∗ < ∞, the tail of Pareto distribution is heavier than those of
the gamma and Weibull distributions.

Despite its simple implementation and intuitive interpretation, there are certain
circumstances in which the application of the moment-based method is not
suitable.

• 1. For more complicated probabilistic models, the k-th raw moment
may not be simple to derive, and thus the identification of the
maximal order of finite moment can be challenging.

• 2. The moment-based method does not well comply with main body of
the well established heavy tail theory in the literature. Specifically,
the existence of moment generating functions is arguably the most
popular method for classifying heavy tail versus light tail within
the community of academic actuaries. However, for some random
variables such as the lognormal random variables, their moment
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generating functions do not exist even though all the positive mo-
ments are finite. In these cases, applications of the moment-based
methods can lead to different tail weight assessment.

• 3. When we need to compare the tail weight between two light-tailed
distributions (where both have all finite positive moments), the
moment-based method is no longer informative (see, e.g., Examples
13.2.1 and 13.2.2).

13.2.2 Comparison Based on Limiting Tail Behavior

In order to resolve the aforementioned issues of the moment-based classification
method, an alternative approach for comparing tail weight is to directly study
the limiting behavior of the survival functions.

Definition 13.2. For two random variables X and Y , let

γ = lim
t→∞

SX(t)
SY (t) .

We say that

• X has a heavier right tail than Y if γ = ∞,
• X and Y are proportionally equivalent in the right tail if γ = c ∈ (0,∞),

and
• X has a lighter right tail than Y if γ = 0.

Example 13.2.4. Comparison of Pareto to Weibull distributions. Let
X ∼ Pareto(α, θ) and Y ∼ Weibull(τ, θ), for α > 0, τ > 0, and θ > 0. Show
that the Pareto has a heavier right tail than the Weibull.

Example Solution.

lim
t→∞

SX(t)
SY (t) = lim

t→∞

(1 + t/θ)−α

exp{−(t/θ)τ }

= lim
t→∞

exp{t/θτ }
(1 + t1/τ /θ)α

= lim
t→∞

∑∞
i=0
(

t
θτ

)i
/i!

(1 + t1/τ /θ)α

= lim
t→∞

∞∑
i=0

(
t−i/α + t(1/τ−i/α)

θ

)−α

/θτii!

= ∞.

Therefore, the Pareto distribution has a heavier tail than the Weibull distribution.
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One may also realize that exponentials go to infinity faster than polynomials,
thus the aforementioned limit must be infinite.

For some distributions of which the survival functions do not admit explicit
expressions, we may find the following alternative formula useful:

lim
t→∞

SX(t)
SY (t) = lim

t→∞

S
′

X(t)
S

′
Y (t)

= lim
t→∞

−fX(t)
−fY (t)

= lim
t→∞

fX(t)
fY (t) ,

given that the density functions exist. This is an application of L’Hôpital’s
Rule from calculus.

Example 13.2.5. Comparison of Pareto to gamma distributions. Let
X ∼ Pareto(α, θ) and Y ∼ gamma(α, θ), for α > 0 and θ > 0. Show that the
Pareto has a heavier right tail than the gamma.

Example Solution.

lim
t→∞

fX(t)
fY (t) = lim

t→∞

αθα(t + θ)−α−1

tτ−1e−t/λλ−τ Γ(τ)−1

∝ lim
t→∞

et/λ

(t + θ)α+1tτ−1

= ∞,

as exponentials go to infinity faster than polynomials.

13.3 Risk Measures

In this section, you learn how to:

• Define the value-at-risk and calculate this quantity for a given distribution.
• Define the expected shortfall and calculate this quantity for a given distribu-

tion.
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• Define the idea of coherence and determine whether or not a risk measure is
coherent.

In the previous section, we studied two methods for classifying the weight of
distribution tails. We may claim that the risk associated with one distribution is
more dangerous (asymptotically) than the other if the tail is heavier. However,
knowing that one risk is more dangerous than the other may not provide
sufficient information for risk management purposes and, in addition, one
is also interested in quantifying how much more. In fact, the magnitude of
risk associated with a given loss distribution is an essential input for many
insurance applications, such as actuarial pricing, reserving, hedging, insurance
regulatory oversight, and so forth.

The literature on risk measures has been growing rapidly in popularity and
importance. In the next two subsections, we introduce two indices which have
earned interest among theoreticians, practitioners, and regulators. They are
namely the Value-at-Risk (V aR) and the Expected Shortfall (ES) measures.
The rationale underpinning these two risk measures is similar to that for the
tail classification methods – we hope to capture the uncertainty of extreme
losses.

13.3.1 Value-at-Risk

In Section 4.4.1, we defined the quantile of a distribution. We now look to a
special case of this and offer the formal definition of the value-at-risk, or VaR.

Definition 13.3. Consider an insurance loss random variable X. The value-
at-risk measure of X with confidence level q ∈ (0, 1) is formulated as

V aRq[X] = inf{x : FX(x) ≥ q}. (13.1)

Here, inf is the infimum operator so that the V aR measure outputs the
smallest value of x such that the associated cdf exceeds or equates to q. This
is simply the quantile that was introduced in Section 4.1.2.

Here is how we should interpret V aR in the context of actuarial applications.
The V aR is a measure of the ‘maximal’ probable loss for an insurance prod-
uct/portfolio or a risky investment occurring q× 100% of times, over a specific
time horizon (typically, one year). For instance, if we let X be the annual
loss random variable of an insurance product, then V aR0.95[X] = 100 million
means that there is no more than a 5% chance that the loss will exceed 100
million over a given year. Owing to this meaningful interpretation, V aR has
become the industry standard for measuring financial and insurance risks since
the 1990’s. Financial conglomerates, regulators, and academics often utilize
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V aR to measure risk capital, ensure the compliance with regulatory rules, and
disclose the financial positions.

Next, we present a few examples concerning the computation of V aR.

Example 13.3.1. V aR for the exponential distribution. Consider an
insurance loss random variable X with an exponential distribution having
parameter θ for θ > 0, then the cdf of X is given by

FX(x) = 1 − e−x/θ, for x > 0.

Give a closed-form expression for the V aR.

Example Solution. Because exponential distribution is a continuous distribu-
tion, the smallest value such that the cdf first exceeds or equates to q ∈ (0, 1)
must be at the point xq satisfying

q = FX(xq) = 1 − exp{−xq/θ}.

Thus
V aRq[X] = F −1

X (q) = −θ[log(1 − q)].

The result reported in Example 13.3.1 can be generalized to any continuous
random variables having a strictly increasing cdf. Specifically, the V aR of any
continuous random variables is simply the inverse of the corresponding cdf.
Let us consider another example of continuous random variable which has the
support from negative infinity to positive infinity.

Example 13.3.2. V aR for the normal distribution. Consider an insurance
loss random variable X ∼ Normal(µ, σ2) with σ > 0. In this case, one may
interpret the negative values of X as profit or revenue. Give a closed-form
expression for the V aR.

Example Solution. Because normal distribution is a continuous distribution,
the V aR of X must satisfy

q = FX(V aRq[X])
= Pr [(X − µ)/σ ≤ (V aRq[X] − µ)/σ]
= Φ((V aRq[X] − µ)/σ).

Therefore, we have
V aRq[X] = Φ−1(q) σ + µ.
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In many insurance applications, we have to deal with transformations of
random variables. For instance, in Example 13.3.2, the loss random variable
X ∼ Normal(µ, σ2) can be viewed as a linear transformation of a standard
normal random variable Z ∼ Normal(0, 1), namely X = Zσ + µ. By setting
µ = 0 and σ = 1, it is straightforward for us to check V aRq[Z] = Φ−1(q).
A useful finding revealed from Example 13.3.2 is that the V aR of a linear
transformation of the normal random variables is equivalent to the linear
transformation of the V aR of the original random variables. This finding can
be further generalized to any random variables as long as the transformations
are strictly increasing.

Example 13.3.3. V aR for transformed variables. Consider an insurance
loss random variable Y with a lognormal distribution with parameters µ ∈ R
and σ2 > 0. Give an expression of the V aR of Y in terms of the standard
normal inverse cdf.

Example Solution. Note that log Y ∼ Normal(µ, σ2), or equivalently let
X ∼ Normal(µ, σ2), then Y

d= eX which is strictly increasing transformation.
Here, the notation ‘ d=’ means equality in distribution. The V aR of Y is thus given
by the exponential transformation of the V aR of X. Precisely, for q ∈ (0, 1),

V aRq[Y ] = eV aRq [X] = exp{Φ−1(q) σ + µ}.

We have thus far seen a number of examples about the V aR for continuous
random variables, let us consider an example concerning the V aR for a discrete
random variable.

Example 13.3.4. V aR for a discrete random variable. Consider an
insurance loss random variable with the following probability distribution:

Pr[X = x] =


0.75, for x = 1
0.20, for x = 3
0.05, for x = 4.

Determine the V aR at q = 0.6, 0.9, 0.95, 0.95001.

Example Solution. The corresponding cdf of X is

FX(x) =


0, x < 1
0.75, 1 ≤ x < 3
0.95, 3 ≤ x < 4
1, 4 ≤ x.
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By the definition of V aR, we thus have

V aR0.6[X] = 1 , V aR0.9[X] = 3, V aR0.95[X] = 3, and V aR0.950001[X] = 4.

Let us now conclude the current subsection by an open discussion of the V aR
measure. Some advantages of utilizing V aR include

• possessing a practically meaningful interpretation, and
• relatively simple to compute for many distributions with closed-form distri-

bution functions.

On the other hand, the limitations of V aR can be particularly pronounced for
some risk management practices. We report some of them herein:

• the selection of the confidence level q ∈ (0, 1) is highly subjective, while
the V aR can be very sensitive to the choice of q (e.g., in Example 13.3.4,
V aR0.95[X] = 3 and V aR0.950001[X] = 4);

• the scenarios/loss information that are above the (1 − q) × 100% worst event,
are completely neglected;

• as will be seen in Section 13.3.3, the V aR is not a coherent risk measure.

The V aR represents the (1 − q) × 100% chance maximal loss. One major
drawback of the V aR measure is that it does not reflect the extremal losses
occurring beyond the (1 − q) × 100% chance worst scenario. For illustrative
purposes, let us consider the following slightly unrealistic yet inspiring example.

Example 13.3.5. Consider two loss random variable’s X ∼ Uniform[0, 100],
and Y with an exponential distribution having parameter θ = 31.71. We use
V aR at 95% confidence level to measure the riskiness of X and Y . Simple
calculation yields (see, also, Example 13.3.1),

V aR0.95[X] = V aR0.95[Y ] = 95,

and thus these two loss distributions have the same level of risk according to
V aR0.95. However, Y is riskier than X if extremal losses are of major concern
since X is bounded above while Y is unbounded. Simply quantifying risk by
using V aR at a specific confidence level could be misleading and may not
reflect the true nature of risk.

13.3.2 Expected Shortfall

Another commonly used risk measure is the expected shortfall, ES. Mathe-
matically, we can express this as

ESq(X) = 1
1 − q

∫ 1

q
V aRa(X)da. (13.2)
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That is, the ES is the average of V aRα[X] with varying degree of confidence
level over α ∈ [q, 1]. Thus, it is also known as the average value at risk. In this
respect, one can see that for any given q ∈ (0, 1)

ESq[X] ≥ V aRq[X].

The ES effectively resolves most of the limitations of V aR outlined in the
previous subsection. First, due to the averaging effect, the ES may be less
sensitive to the change of confidence level compared with V aR. Second, all the
extremal losses that are above the (1 − q) × 100% worst probable event are
taken in account.

There are a few other forms of the ES that will be useful to us. For notional
convenience, we write πq = V aRq[X] and have

ESq(X) =


1

1−q

∫ 1
q V aRa(X)da Expected Shortfall

πq + 1
1−q {E[X] − E[X ∧ πq]} Tail VaR

E(X|X > πq) Conditional VaR.
(13.3)

The different expressions in Display (13.3) hold under some additional (mild)
assumptions on the continuity of the distribution function at the point πq. As
we are interested in applications to portfolios, we employ such assumptions
in this chapter which allows us to describe alternative ways of thinking about
these measures. For example, from the third expression, we see that ES can
also be interpreted to be the expected amount given that the loss exceeds the
V aRq.

Naturally, analysts may work with distributions where the assumptions of
continuity do not hold, such as discrete distributions (see the examples Chapter
3). For these distributions, Display (13.3) provides a definition for some alter-
native risk measures, the Tail value-at-risk and the Conditional value-at-risk.
You can learn more about these alternative risk measures in the references
given in Section 13.6.

To see the connections between the second and third equalities, use a variable
substitution, z = V aRa(X) = F −1(a) so that F (z) = a and f(z)dz = da. With
this, we have

∫ b
a V aRa(X) da =

∫ b
a F −1

a da =
∫ F −1

b

F −1
a

zf(z)dz

= −z[1 − F (z)]|F
−1
b

F −1
a

+
∫ F −1

b

F −1
a

[1 − F (z)]dz

= F −1
a (1 − a) − F −1

b (1 − b)+
[E(X ∧ F −1

b ) − E(X ∧ F −1
a )].
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Thus,

1
1−q

∫ 1
q V aRa(X)da = 1

1−q {πq(1 − q) + [E(X) − E(X ∧ πq)]}
= πq + 1

1−q [E(X) − E(X ∧ πq)],

as claimed.

Using the third expression in Display (13.3), the computation of ES consists
of two major steps - the V aR and the average of losses that are above the
V aR. From this and a change of variables, the ES can be computed via

ESq[X] = 1
(1 − q)

∫ ∞

πq

xfX(x)dx. (13.4)

Example 13.3.6. ES for a normal distribution. Consider an insurance
loss random variable X ∼ Normal(µ, σ2) with µ ∈ R and σ > 0. Give an
expression for ES.

Example Solution. Let Z be the standard normal random variable. For q ∈
(0, 1), the ES of X can be computed via

ESq[X] = E[X|X > V aRq[X]]
= E[σZ + µ|σZ + µ > V aRq[X]]
= σE[Z|Z > (V aRq[X] − µ)/σ] + µ

(1)= σE[Z|Z > V aRq[Z]] + µ,

where ‘(1)= ’ holds because of the results reported in Example 13.3.2. Next, we turn
to study ESq[Z] = E[Z|Z > V aRq[Z]]. Let ω(q) = [Φ−1(q)]2/2, we have

(1 − q) ESq[Z] =
∫ ∞

Φ−1(q)
z

1√
2π

e−z2/2dz

=
∫ ∞

ω(q)

1√
2π

e−xdx

= 1√
2π

e−ω(q)

= ϕ[Φ−1(q)].

Thus,

ESq[X] = σ
ϕ[Φ−1(q)]

1 − q
+ µ.

We mentioned earlier in the previous subsection that the V aR of a strictly
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increasing function of random variable is equal to the function of V aR of the
original random variable. Motivated by the results in Example 13.3.6, one can
show that the ES of a strictly increasing linear transformation of random
variable is equal to the function of V aR of the original random variable. This
is due to the linearity property of expectations. However, the aforementioned
finding cannot be extended to non-linear functions. The following example of
lognormal random variable serves as a counter example.

Example 13.3.7. ES of a lognormal distribution. Consider an insurance
loss random variable X with a lognormal distribution having parameters µ ∈ R
and σ > 0. Show that

ESq[X] = eµ+σ2/2

(1 − q) Φ(Φ−1(q) − σ).

Example Solution. Recall that the pdf of lognormal distribution is formulated
as

fX(x) = 1
σ

√
2πx

exp{−(log x − µ)2/2σ2}, for x > 0.

Fix q ∈ (0, 1), then the expected shortfall can be computed via

ESq[X] = 1
(1 − q)

∫ ∞

πq

xfX(x)dx

= 1
(1 − q)

∫ ∞

πq

1
σ

√
2π

exp
{

−(log x − µ)2

2σ2

}
dx

(1)= 1
(1 − q)

∫ ∞

ω(q)

1√
2π

e− 1
2 w2+σw+µdw

= eµ+σ2/2

(1 − q)

∫ ∞

ω(q)

1√
2π

e− 1
2 (w−σ)2

dw

= eµ+σ2/2

(1 − q) Φ(ω(q) − σ), (13.5)

where (1)= holds by applying change of variable w = (log x − µ)/σ, and ω(q) =
(log πq − µ)/σ. Evoking the formula of V aR for lognormal random variable
reported in Example 13.3.2, we can simplify the expression
eqrefeq:cte-normal into

ESq[X] = eµ+σ2/2

(1 − q) Φ(Φ−1(q) − σ).

Clearly, the ES of lognormal random variable is not the exponential of the
ES of normal random variable.
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For distributions of which the survival distribution functions are more tractable
to work with, we may apply the integration by parts technique (assuming the
mean is finite) to rewrite equation (13.4) as

ESq[X] =
[
−xSX(x)

∣∣∣∞
πq

+
∫ ∞

πq

SX(x)dx
]

1
(1 − q)

= πq + 1
(1 − q)

∫ ∞

πq

SX(x)dx.

Example 13.3.8. ES of an exponential distribution. Consider an insur-
ance loss random variable X with an exponential distribution having parameter
θ for θ > 0. Give an expression for the ES.

Example Solution. We have seen from the previous subsection that

πq = −θ[log(1 − q)].

Let us now consider the ES:

ESq[X] = πq +
∫ ∞

πq

e−x/θdx/(1 − q)

= πq + θe−πq/θ/(1 − q)
= πq + θ.

The second expression in Display (13.3) shows how to express the ES in terms
of limited expected values. For many commonly used parametric distributions,
the formulas for calculating E[X] and E[X ∧ πq] can be found in a table of
distributions.

Example 13.3.9. ES of a Pareto distribution. Consider a loss random
variable X ∼ Pareto(θ, α) with θ > 0 and α > 0. The cdf of X is given by

FX(x) = 1 −
(

θ

θ + x

)α

, for x > 0.

Fix q ∈ (0, 1) and set FX(πq) = q, we readily obtain

πq = θ
[
(1 − q)−1/α − 1

]
. (13.6)

From Section 20.2, we know that E[X] = θ
α−1 , and

E[X ∧ πq] = θ

α− 1

1 −
(

θ

θ + πq

)α−1
 .
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The second expression in Display (13.3) yields

ESq[X] = πq + θ

α− 1
[θ/(θ + πq)]α−1

(θ/(θ + πq))α

= πq + θ

α− 1

(
πq + θ

θ

)

= πq + πq + θ

α− 1 ,

where πq is given by (13.6).

13.3.3 Coherent Risk Measures

The V aR and ES are widely used risk measures but how does the analyst
know which one to employ? Broadly speaking, we seek a function that maps
the loss random variable of interest to a numerical value indicating the level
of riskiness, which is termed the risk measure. Put mathematically, the risk
measure simply summarizes the distribution function of a random variable as
a single number.

The V aR and ES are risk measures but one might also consider two simpler
alternatives, the mean E[X] and the standard deviation SD(X) =

√
Var(X). In

addition, other classical special cases include the standard deviation principle

HSD(X) = E[X] + αSD(X), for α ≥ 0, (13.7)

and the variance principle

HVar(X) = E[X] + αVar(X), for α ≥ 0.

One can check that all the aforementioned functions are risk measures in which
we input the loss random variable and the functions output a numerical value.
In contrast, the function H∗(X) = αXβ for any real-valued α, β ̸= 0, is not
a risk measure because H∗ produces another random variable rather than a
single numerical value.

Because risk measures are scalar measures which aim to describe the stochastic
uncertainty of loss random variables distributions, it is not surprising that no
risk measure can capture all the risk information of the associated random
variables. Therefore, when seeking useful risk measures, it is important for us
to keep in mind that the measures should be:

• interpretable practically,

• computable conveniently, and
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• able to reflect the most critical information of risk underpinning the loss
distribution.

Several risk measures have been developed in the literature. Unfortunately,
there is no best risk measure that can outperform the others, and the selection
of appropriate risk measure depends on the application questions at hand. In
this respect, there are multiple approaches to assess the uncertainty. However,
for many risk management applications, there is a wide agreement that eco-
nomically grounded risk measures should satisfy four major axioms, described
as follows.

Consider a risk measure H(·). It is said to be a coherent risk measure for two
random variables X and Y if the following axioms are satisfied.

• Axiom 1. Subadditivity: H(X + Y ) ≤ H(X) +H(Y ).
– The economic implication of this axiom is that diversification benefits

exist if different risks are combined.

• Axiom 2. Monotonicity: if Pr[X ≤ Y ] = 1, then H(X) ≤ H(Y ).
– Recall that X and Y are random variables representing losses, the

underlying economic implication is that higher losses essentially leads to
a higher level of risk.

• Axiom 3. Positive homogeneity: H(cX) = cH(X) for any positive constant
c.

– A potential economic implication about this axiom is that risk measure
should be independent of the monetary units in which the risk is
measured. For example, let c be the currency exchange rate between the
US and Canadian dollars, then the risk of random losses measured in
terms of US dollars (i.e., X) and Canadian dollars (i.e., cX) should be
different only up to the exchange rate c (i.e., cH(x) = H(cX)).

• Axiom 4. Translation invariance: H(X + c) = H(X) + c for any positive
constant c.

– If the constant c is interpreted as risk-free cash and X is an insurance
portfolio, then adding cash to a portfolio only increases the portfolio risk
by the amount of cash.

Verifying these properties can be straightforward but can be also be challenging
at times. For example, it is a simple matter to check that the mean is a coherent
risk measure.

Special Case. The Mean is a Coherent Risk Measure.
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For any pair of random variables X and Y having finite means and constant
c > 0,

• validation of subadditivity: E[X + Y ] = E[X] + E[Y ];
• validation of monotonicity: if Pr[X ≤ Y ] = 1, then E[X] ≤ E[Y ];
• validation of positive homogeneity: E[cX] = cE[X];
• validation of translation invariance: E[X + c] = E[X] + c

With a little more effort, we can determine the following.

Special Case. The Standard Deviation is not a Coherent Risk Mea-
sure.

Verification of the Special Case. To see that the standard deviation is not a
coherent risk measure, start by checking that the standard deviation satisfies

Validation of Subadditivity.

SD[X + Y ] =
√

Var(X) + Var(Y ) + 2Cov(X, Y )

≤
√

SD(X)2 + SD(Y )2 + 2SD(X)SD(Y )
= SD(X) + SD(Y );

Validation of Positive Homogeneity: SD[cX] = c SD[X]. However, the standard
deviation does not comply with translation invariance property as for any positive
constant c,

SD(X + c) = SD(X) < SD(X) + c.

Moreover, the standard deviation also does not satisfy the monotonicity property.
To see this, consider the following two random variables:

X =
{

0, with probability 0.25
4, with probability 0.75,

(13.8)

and Y is a degenerate random variable such that

Pr[Y = 4] = 1. (13.9)

You can check that Pr[X ≤ Y ] = 1, but SD(X) =
√

42 · 0.25 · 0.75 =
√

3 >
SD(Y ) = 0.

We have so far checked that E[·] is a coherent risk measure and that SD(·) is not.
Exercise 13.1 asks you to study the coherent property for the standard deviation

Exer:13.1
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principle (13.7) which is a linear combination of coherent and incoherent risk
measures.

It turns out that the V aR is not a coherent risk measure. Specifically, the V aR
measure does not satisfy the subadditivity axiom, meaning that diversification
benefits may not be fully reflected.

In contrast, ES is a coherent risk measure and thus is able to more accurately
capture the diversification effects of insurance portfolio. Herein, we do not
intend to provide the proof of the coherent feature for ES, which is considered
to be challenging technically.

13.4 Reinsurance

In this section, you learn how to:

• Define basic reinsurance treaties including proportional, quota share, non-
proportional, stop-loss, excess of loss, and surplus share.

• Interpret the optimality of quota share for reinsurers and compute optimal
quota share agreements.

• Interpret the optimality of stop-loss for insurers.
• Interpret and calculate optimal excess of loss retention limits.

Recall from Section 5.1.4 that reinsurance is simply insurance purchased by an
insurer. Insurance purchased by non-insurers is sometimes known as primary
insurance to distinguish it from reinsurance. Reinsurance differs from personal
insurance purchased by individuals, such as auto and homeowners insurance, in
contract flexibility. Like insurance purchased by major corporations, reinsurance
programs are generally tailored more closely to the buyer. For contrast, in
personal insurance buyers typically cannot negotiate on the contract terms
although they may have a variety of different options (contracts) from which
to choose.

The two broad types are proportional and non-proportional reinsurance. A
proportional reinsurance contract is an agreement between a reinsurer and a
ceding company (also known as the reinsured) in which the reinsurer assumes
a given percent of losses and premium. A reinsurance contract is also known as
a treaty. Non-proportional agreements are simply everything else. As examples
of non-proportional agreements, this chapter focuses on stop-loss and excess of
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loss contracts. For all types of agreements, we split the total risk X into the
portion taken on by the reinsurer, Yreinsurer, and that retained by the insurer,
Yinsurer, that is, X = Yinsurer + Yreinsurer.

The mathematical structure of a basic reinsurance treaty is the same as the
coverage modifications of personal insurance introduced in Chapter 5. For
a proportional reinsurance, the transformation Yinsurer = cX is identical to
a coinsurance adjustment in personal insurance. For stop-loss reinsurance,
the transformation Yreinsurer = max(0, X − M) is the same as an insurer’s
payment with deductible M and Yinsurer = min(X,M) = X ∧M is equivalent
to what a policyholder pays with deductible M . For practical applications of the
mathematics, in personal insurance the focus is generally upon the expectation
as this is a key ingredient used in pricing. In contrast, for reinsurance the focus
is on the entire distribution of the risk, as the extreme events are a primary
concern of the financial stability of the insurer and reinsurer.

This section describes the foundational and most basic of reinsurance treaties:
Section 13.4.1 for proportional and Section 13.4.2 for non-proportional rein-
surance. Section 13.4.3 gives a flavor of more complex contracts.

13.4.1 Proportional Reinsurance

The simplest example of a proportional treaty is called quota share.

• In a quota share treaty, the reinsurer receives a flat percent, say 50%, of the
premium for the book of business reinsured.

• In exchange, the reinsurer pays 50% of losses, including allocated loss ad-
justment expenses.

• The reinsurer also pays the ceding company a ceding commission which is
designed to reflect the differences in underwriting expenses incurred.

The amounts paid by the primary insurer and the reinsurer are summarized as

Yinsurer = cX and Yreinsurer = (1 − c)X,

where c ∈ (0, 1) denotes the proportion retained by the insurer. Note that
Yinsurer + Yreinsurer = X.

Example 13.4.1. Distribution of losses under quota share. To develop
an intuition for the effect of quota-share agreement on the distribution of losses,
the following is a short R demonstration using simulation. The accompanying
figure provides the relative shapes of the distributions of total losses, the
retained portion (of the insurer), and the reinsurer’s portion.
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Quota Share is Desirable for Reinsurers

The quota share contract is particularly desirable for the reinsurer. To see this,
suppose that an insurer and reinsurer wish to enter a contract to share total
losses X such that

Yinsurer = g(X) and Yreinsurer = X − g(X),

for some generic function g(·) (known as the retention function). So that the
insurer does not retain more than the loss, we consider only functions so that
g(x) ≤ x. Suppose further that the insurer only cares about the variability of
retained claims and is indifferent to the choice of g as long as Var(Yinsurer) stays
the same and equals, say, Q. Then, the following result shows that the quota
share reinsurance treaty minimizes the reinsurer’s uncertainty as measured by
Var(Yreinsurer).

Proposition. Suppose that Var(Yinsurer) = Q and assume that Q ≤ Var(X).
Then, Var[(1 − c)X] ≤ Var(Yreinsurer) for all g(·).

Proof of the Proposition. With Yreinsurer = X − Yinsurer and the law of total
variation

Var(Yreinsurer) = Var(X − Yinsurer)
= Var(X) + Var(Yinsurer) − 2Cov(X, Yinsurer)
= Var(X) + Q − 2Corr(X, Yinsurer) ×

√
Q
√

Var(X).

In this expression, we see that Q and Var(X) do not change with the choice of
the retention function g. Thus, we can minimize Var(Yreinsurer) by maximizing
the correlation Corr(X, Yinsurer). If we use a quota share reinsurance agreement,
then Corr(X, Yinsurer) = Corr(X, cX) = 1, the maximum possible correlation.
This establishes the proposition.



13.4 Reinsurance 451

The proposition is intuitively appealing - with quota share insurance, the
insurer and reinsurer share the responsibility for very large claims in the tail
of the distribution. This is in contrast to non-proportional agreements where
reinsurers take responsibility for the very large claims.

Optimizing Quota Share Agreements for Insurers

Now assume n risks in the portfolio, X1, . . . , Xn, so that the portfolio sum is
X = X1 + · · · +Xn. For simplicity, we focus on the case of independent risks
(extensions to dependence is the subject of Chapter 16). Each risk Xi may
represent risk of an individual policy, claim, or a sub-portfolio, depending on
the application. As an example of the latter, the insurer may subdivide its
portfolio into subportfolios consisting of lines of business such as (1) personal
auto, (2) commercial auto, (3) homeowners, (4) workers’ compensation, and so
forth.

In general, let us consider a variation of the basic quota share agreement where
the amount retained by the insurer may vary with each risk, say ci. Thus, the
insurer’s portion of the portfolio risk is Yinsurer = ∑n

i=1 ciXi. What is the best
choice of the proportions ci?

To formalize this question, we seek to find those values of ci that minimize
Var(Yinsurer) subject to the constraint that E(Yinsurer) = K. The requirement
that E(Yinsurer) = K suggests that the insurers wishes to retain a revenue in
at least the amount of the constant K. Subject to this revenue constraint, the
insurer wishes to minimize the uncertainty of the retained risks as measured
by the variance.

The Optimal Retention Proportions. Minimizing Var(Yinsurer) subject to
E(Yinsurer) = K is a constrained optimization problem. We can use the method
of Lagrange multipliers, a calculus technique, to solve this. To this end, define
the Lagrangian

L = Var(Yinsurer) − λ(E(Yinsurer) − K)
=
∑n

i=1 c2
i Var(Xi) − λ(

∑n
i=1 ci E(Xi) − K)

Taking a partial derivative with respect to λ and setting this equal to zero simply
means that the constraint, E(Yinsurer) = K, is enforced and we have to choose the
proportions ci to satisfy this constraint. Moreover, taking the partial derivative
with respect to each proportion ci yields

∂

∂ci
L = 2ci Var(Xi) − λ E(Xi) = 0
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so that
ci = λ

2
E(Xi)

Var(Xi)
.

With our constraint, we may determine λ as the solution of

K =
∑n

i=1 ciE(Xi)
= λ

2
∑n

i=1
E(Xi)2

Var(Xi)

and use this value of λ to determine the proportions.

From the math, it turns out that the constant for the ith risk, ci is proportional
to E(Xi)

Var(Xi) . This is intuitively appealing. Other things being equal, a higher
revenue as measured by E(Xi) means a higher value of ci. In the same way,
a higher value of uncertainty as measured by Var(Xi) means a lower value
of ci. The proportional scaling factor is determined by the revenue require-
ment E(Yinsurer) = K. The following example helps to develop a feel for this
relationship.

Example 13.4.2. Three Pareto risks. Consider three risks that have a
Pareto distribution, each having a different set of parameters (so they are
independent but non-identical). Specifically, use the parameters:

• α1 = 3, θ1 = 1000 for the first risk X1,
• α2 = 3, θ2 = 2000 for the second risk X2, and
• α3 = 4, θ3 = 3000 for the third risk X3.

Provide a graph that gives values of c1, c2, and c3 for a required revenue K.
Note that these values increase linearly with K.

Solution.
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13.4.2 Non-Proportional Reinsurance
The Optimality of Stop-Loss Insurance

Under a stop-loss arrangement, the insurer sets a retention level M(> 0) and
pays in full total claims for which X ≤ M . Further, for claims for which
X > M , the primary insurer pays M and the reinsurer pays the remaining
amount X −M . That is, the insurer retains an amount M of the risk and the
reinsurer pays the excess. Summarizing this mathematically, the amounts paid
by the primary insurer and the reinsurer are

Yinsurer =

X for X ≤ M

M for X > M
= min(X,M) = X ∧M

and

Yreinsurer =

0 for X ≤ M

X −M for X > M
= max(0, X −M).

As before, note that Yinsurer + Yreinsurer = X.

The stop-loss type of contract is particularly desirable for the insurer. Similar
to earlier, suppose that an insurer and reinsurer wish to enter a contract so
that Yinsurer = g(X) and Yreinsurer = X − g(X) for some generic retention
function g(·). Suppose further that the insurer only cares about the variability
of retained claims and is indifferent to the choice of g as long as Var(Yinsurer)
can be minimized. Again, we impose the constraint that E(Yinsurer) = K; the
insurer needs to retain a revenue K. Subject to this revenue constraint, the
insurer wishes to minimize uncertainty of the retained risks (as measured by
the variance). Then, the following result shows that the stop-loss reinsurance
treaty minimizes the insurer’s uncertainty.
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Proposition. Suppose that E(Yinsurer) = K and choose M such that E(X ∧
M) = K. Then, Var(X ∧M) ≤ Var[g(X)] for all g(.) such that E[g(X)] = K.

Proof of the Proposition. Add and subtract a constant M and expand the
square to get

Var[g(X)] = E[g(X) − K]2 = E(g(X) − M + M − K)2

= E[g(X) − M ]2 + (M − K)2 + 2E[g(X) − M ](M − K)
= E[g(X) − M ]2 − (M − K)2,

because E[g(X)] = K.

Now, for any retention function, we have g(X) ≤ X, that is, the insurer’s retained
claims are less than or equal to total claims. Using the notation gSL(X) = X ∧ M
for stop-loss insurance, we have

M − gSL(X) = M − (X ∧ M)
= max(M − X, 0)
≤ max(M − g(X), 0).

Squaring each side yields

[M − gSL(X)]2 ≤ max([M − g(X)]2, 0) ≤ [M − g(X)]2.

Returning to our expression for the variance, we have

Var[gSL(X)] = E[gSL(X) − M ]2 − (M − K)2

≤ E[g(X) − M ]2 − (M − K)2 = Var[g(X)],

for any retention function g. This establishes the proposition.

The proposition is intuitively appealing - with stop-loss insurance, the reinsurer
takes the responsibility for very large claims in the tail of the distribution, not
the insurer.

Excess of Loss

A closely related form of non-proportional reinsurance is the excess of loss
coverage. Under this contract, we assume that the total risk X can be thought
of as composed as n separate risks X1, . . . , Xn and that each of these risks are
subject to an upper limit, say, Mi. So the insurer retains

Yinsurer =
n∑

i=1
Yi,insurer, where Yi,insurer = Xi ∧Mi.
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and the reinsurer is responsible for the excess, Yreinsurer = X − Yinsurer. The
retention limits may vary by risk or may be the same for all risks, that is,
Mi = M , for all i.

Optimal Choice for Excess of Loss Retention Limits

What is the best choice of the excess of loss retention limits Mi? To formalize
this question, we seek to find those values of Mi that minimize Var(Yinsurer)
subject to the constraint that E(Yinsurer) = K. Subject to this revenue con-
straint, the insurer wishes to minimize the uncertainty of the retained risks (as
measured by the variance).

The Optimal Retention Limits. Minimizing Var(Yinsurer) subject to
E(Yinsurer) = K is a constrained optimization problem. We can use the method
of Lagrange multipliers, a calculus technique, to solve this. As before, define the
Lagrangian

L = Var(Yinsurer) − λ(E(Yinsurer) − K)
=
∑n

i=1 Var(Xi ∧ Mi) − λ(
∑n

i=1 E(Xi ∧ Mi) − K).

We first recall the relationships

E(X ∧ M) =
∫ M

0
(1 − F (x))dx

and
E(X ∧ M)2 = 2

∫ M

0
x(1 − F (x))dx.

Taking a partial derivative of L with respect to λ and setting this equal to zero
simply means that the constraint, E(Yinsurer) = K, is enforced and we have
to choose the limits Mi to satisfy this constraint. Moreover, taking the partial
derivative with respect to each limit Mi yields

∂
∂Mi

L = ∂
∂Mi

Var(Xi ∧ Mi) − λ ∂
∂Mi

E(Xi ∧ Mi)
= ∂

∂Mi

(
E(Xi ∧ Mi)2 − (E(Xi ∧ Mi))2)− λ(1 − Fi(Mi))

= 2Mi(1 − Fi(Mi)) − 2E(Xi ∧ Mi)(1 − Fi(Mi)) − λ(1 − Fi(Mi)).

Setting ∂
∂Mi

L = 0 and solving for λ, we get

λ = 2(Mi − E(Xi ∧ Mi)).

From the math, it turns out that the retention limit less the expected insurer’s
claims, Mi − E(Xi ∧Mi), is the same for all risks. This is intuitively appealing.

Example 13.4.3. Excess of loss for three Pareto risks. Consider three
risks that have a Pareto distribution, each having a different set of parameters
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(so they are independent but non-identical). Use the same set of parameters
as in Example 13.4.2. For this example:

a. Show numerically that the optimal retention limits M1, M2, and M3
resulting retention limit minus expected insurer’s claims, Mi − E(Xi ∧
Mi), is the same for all risks, as we derived theoretically.

b. Further, graphically compare the distribution of total risks to that
retained by the insurer and by the reinsurer.

Solution

a. We first optimize the Lagrangian using the R package alabama for Augmented
Lagrangian Adaptive Barrier Minimization Algorithm.

The optimal retention limits M1, M2, and M3 resulting retention limit minus
expected insurer’s claims, Mi − E(Xi ∧ Mi), is the same for all risks, as we
derived theoretically.

[1] 1344.13508

[1] 1344.13325

[1] 1344.13349

b. We graphically compare the distribution of total risks to that retained by
the insurer and by the reinsurer.
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13.4.3 Additional Reinsurance Treaties
Surplus Share Proportional Treaty

Another proportional treaty is known as surplus share; this type of contract is
common in commercial property insurance.

• A surplus share treaty allows the reinsured to limit its exposure on a risk to
a given amount (the retained line).

• The reinsurer assumes a part of the risk in proportion to the amount that
the insured value exceeds the retained line, up to a given limit (expressed as
a multiple of the retained line, or number of lines).

For example, let the retained line be 100,000 and the given limit be 4 lines
(400,000). Then, if X is the loss, the reinsurer’s portion is min(400000, (X −
100000)+).

Layers of Coverage

One can also extend non-proportional stop-loss treaties by introducing addi-
tional parties to the contract. For example, instead of simply an insurer and
reinsurer or an insurer and a policyholder, think about the situation with all
three parties, a policyholder, insurer, and reinsurer, who agree on how to share
a risk. More generally, we consider k parties. If k = 3, it could be an insurer
and two different reinsurers.

Example 13.4.4. Layers of coverage for three parties.

• Suppose that there are k = 3 parties. The first party is responsible for the
first 100 of claims, the second responsible for claims from 100 to 3000, and
the third responsible for claims above 3000.

• If there are four claims in the amounts 50, 600, 1800 and 4000, then they
would be allocated to the parties as follows:

Layer Claim 1 Claim 2 Claim 3 Claim 4 Total
(0, 100] 50 100 100 100 350
(100, 3000] 0 500 1700 2900 5100
(3000, ∞) 0 0 0 1000 1000
Total 50 600 1800 4000 6450

To handle the general situation with k groups, partition the positive real line
into k intervals using the cut-points

0 = M0 < M1 < · · · < Mk−1 < Mk = ∞.
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Note that the jth interval is (Mj−1,Mj]. Now let Yj be the amount of risk
shared by the jth party. To illustrate, if a loss x is such that Mj−1 < x ≤ Mj ,
then 

Y1
Y2
...
Yj

Yj+1
...
Yk


=



M1 −M0
M2 −M1

...
x−Mj−1

0
...
0


More succinctly, we can write

Yj = min(X,Mj) − min(X,Mj−1).

With the expression Yj = min(X,Mj) − min(X,Mj−1), we see that the jth
party is responsible for claims in the interval (Mj−1,Mj]. With this, you can
check that X = Y1 + Y2 + · · · + Yk. As emphasized in the following example,
we also remark that the parties need not be different.

Example 13.4.5.

• Suppose that a policyholder is responsible for the first 100 of claims and
all claims in excess of 100,000. The insurer takes claims between 100 and
100,000.

• Then, we would use M1 = 100, M2 = 100000.
• The policyholder is responsible for Y1 = min(X, 100) and Y3 = X −

min(X, 100000) = max(0, X − 100000).

For additional reading, see the Wisconsin Property Fund site for an example
on layers of reinsurance.

Portfolio Management Example

Many other variations of the foundational contracts are possible. For one more
illustration, consider the following.

Example 13.4.6. Portfolio Management. You are the Chief Risk Officer of
a telecommunications firm. Your firm has several property and liability risks.
We will consider:

• X1 - buildings, modeled using a gamma distribution with mean 200 and scale
parameter 100.

• X2 - motor vehicles, modeled using a gamma distribution with mean 400
and scale parameter 200.

https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund/home/reinsurance
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• X3 - directors and executive officers risk, modeled using a Pareto distribution
with mean 1000 and scale parameter 1000.

• X4 - cyber risks, modeled using a Pareto distribution with mean 1000 and
scale parameter 2000.

Denote the total risk as X = X1 +X2 +X3 +X4. For simplicity, you assume
that these risks are independent. (Later, in Section 16.6, we will consider the
more complex case of dependence.)

To manage the risk, you seek some insurance protection. You wish to manage
internally small building and motor vehicles amounts, up to M1 and M2,
respectively. You seek insurance to cover all other risks. Specifically, the
insurer’s portion is

Yinsurer = (X1 −M1)+ + (X2 −M2)+ +X3 +X4,

so that your retained risk is Yretained = X − Yinsurer = min(X1,M1) +
min(X2,M2). Using deductibles M1 = 100 and M2 = 200:

a. Determine the expected claim amount of (i) that retained, (ii) that
accepted by the insurer, and (iii) the total overall amount.

b. Determine the 80th, 90th, 95th, and 99th percentiles for (i) that
retained, (ii) that accepted by the insurer, and (iii) the total overall
amount.

c. Compare the distributions by plotting the densities for (i) that re-
tained, (ii) that accepted by the insurer, and (iii) the total overall
amount.

Solution.

In preparation, here is the code needed to set the parameters.

With these parameters, we can now simulate realizations of the portfolio risks.

(a) Here are the results for the expected claim amounts.

Retained Insurer Total
[1,] 269.05 5274.41 5543.46

(b) Here are the results for the quantiles.

80% 90% 95% 99%
Retained 300.00 300.00 300.00 300.00
Insurer 6075.67 7399.80 9172.69 14859.02
Total 6351.35 7675.04 9464.20 15159.02

(c) Here are the results for the density plots of the retained, insurer, and total
portfolio risk.
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13.5 Exercises
Theoretical Exercise

Exercise 13.1. In this exercise, you will demonstrate that only under specific
circumstances can the standard deviation principle (13.7) be considered a
coherent risk measure.

• a. Show that subadditivity, positive homogeneity, and translation invariance,
hold for the standard deviation principle.

• b. Assume that 0 ≤ α ≤ 1/
√

3. Show that for these values of α that
monotonicity holds for standard deviation principle. Thus, for these values
of α, the standard deviation principle is coherent.

• c. For α > 1/
√

3, show that monotonicity does not hold and so the standard
deviation principle can not be considered coherent in general.

Verification of the Special Case. To this end, for a given α > 0, we check
the four axioms for HSD(X + Y ) one by one:

a1 validation of subadditivity:

HSD(X + Y ) = E[X + Y ] + αSD(X + Y )
≤ E[X] + E[Y ] + α[SD(X) + SD(Y )]
= HSD(X) + HSD(Y );
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a2 validation of positive homogeneity:

HSD(cX) = c E[X] + c α SD(X) = c HSD(X);

a3 validation of translation invariance:

HSD(X + c) = E[X] + c + α SD(X) = HSD(X) + c.

b/c validation of monotonicity

It only remains to verify the monotonicity property, which may or may not be
satisfied depending on the value of α. To see this, consider again the setup of
eqrefeq:special-x and
eqrefeq:special-y in which Pr[X ≤ Y ] = 1. Let α = 0.1 ·

√
3, then HSD(X) =

3 + 0.3 = 3.3 < HSD(Y ) = 4 and the monotonicity condition is met. On the other
hand, let α =

√
3, then HSD(X) = 3+3 = 6 > HSD(Y ) = 4 and the monotonicity

condition is not satisfied. More precisely, by setting

HSD(X) = 3 + α
√

3 ≤ 4 = HSD(Y ),

we find that the monotonicity condition is only satisfied for 0 ≤ α ≤ 1/
√

3, and
thus the standard deviation principle HSD is coherent.

This result appears to be very intuitive since the standard deviation principle
HSD is a linear combination of two risk measures of which one is coherent and
the other is incoherent. If α ≤ 1/

√
3, then the coherent measure dominates the

incoherent one, thus the resulting measure HSD is coherent and vice versa. Note
that the aforementioned conclusion may not be generalized to any pair of random
variables X and Y .

Exercises with a Practical Focus

Exercise 13.2. Property Fund. Consider commercial property claims from
the Wisconsin Property Fund, introduced in Section 1.3. This exercise is based
on 1,377 claims from 2010 for damages to state government properties and their
building contents. You will use these data to estimate an empirical distribution
function, without reference to a parametric model.

• a. Use the empirical distribution function to estimate V aR over several
confidence levels. Produce a graph similar to the left-hand panel of Figure
13.1.

• b. Use the empirical distribution function to estimate ES over several
confidence levels. Produce a graph similar to the middle panel of Figure 13.1.

• c. Compare the two measures from parts (a) and (b) to produce a graph
similar to the right-hand panel of Figure 13.1. This comparison shows, for
any given level of confidence, that the ES measure far exceeds the V aR.
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FIGURE 13.1: Property Fund VaR and ES Plots. The left-hand panel
shows the value at risk V aR for several confidence levels and the middle panel
gives similar information for the expected shortfall (ES). The confidence level
α = 0.80 is marked with a blue dashed vertical line. Note that the vertical
axes differ. This is emphasized by direct comparison in the right-hand panel
where the 45 degree solid line falls below the empirical values.

Exercise 13.3. Risk Measures with Stop-Loss. Consider the stop-loss
arrangement with retention level M described in Section 13.4.2.

a. Show that the value at risk for the retained portion can be expressed as

V aRα[X ∧M ] =
{
F−1

α if α < F (M)
M if α ≥ F (M) ,

where F−1
α = V aRα(X) is a quantile for a random variable X.

b. Show that the expected shortfall for the retained portion can be expressed
as

ESα[X ∧M ] =
{
F−1

α + 1
1−α

{
E(X ∧M) − E(X ∧ F−1

α )
}

if α < F (M)
M if α ≥ F (M) .

c. Let us continue Exercise 13.2 where we examined empirical estimates of the
distribution using 1,377 property damage claims. We now impose an upper
limit M . A confidence level of α = 0.99 is used for this illustration. Provide a
plot of the value at risk for retained losses under the stop-loss arrangement
versus the upper limit M . The plot should be comparable to the left-hand
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panel of Figure 13.2 where a blue dashed vertical line marks the V̂ aR0.99 =
236427.

d. Provide a plot of the expected shortfall for retained losses under the stop-loss
arrangement versus the upper limit M The plot should be comparable to the
right-hand panel of Figure 13.2.

By displaying the figures side-by-side in Figure 13.2, we learn that the ES is
smoother at this point when compared to the V aR.
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FIGURE 13.2: Property Fund VaR and ES Plots for Various Upper
Limits. The left-hand panel shows the retained risk V aR over different upper
limits and the right-hand panel gives similar information for the expected
shortfall (ES). The blue dashed vertical line marks V̂ aRα.

Example Solution. a. The distribution function for the limited random variable
X ∧ M is

Pr[X ∧ M ≤ z] = FX∧M (z) =
{

F (z) if z < M
1 if z ≥ M

.

(Draw a graph of this function.) From this, if α ≥ F (M), then F −1
X∧M (α) = M .

In the same way, if α < F (M), then F −1
X∧M (α) = F −1

α . This is sufficient for part
(a).

b. From equation
eqrefeq:ESExpressions, the expected shortfall for retained risks can be expressed
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as

ESα[X ∧ M ] = F −1
X∧M (α) + 1

1−α

{
E[X ∧ M ] − E[X ∧ M ∧ F −1

X∧M (α)]
}

=
{

F −1
α + 1

1−α

{
E[X ∧ M ] − E[X ∧ M ∧ F −1

α ]
}

if α < F (M)
M + 1

1−α {E[X ∧ M ] − E[X ∧ M ∧ M ]} if α ≥ F (M) .

=
{

F −1
α + 1

1−α

{
E[X ∧ M ] − E[X ∧ F −1

α ]
}

if α < F (M)
M if α ≥ F (M) ,

as desired.

c/d.

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).

13.6 Further Resources and Contributors

We refer the interested reader to Denuit et al. (2006) and Hardy (2006) for
more comprehensive discussions of alternative risk measures for both discrete
and continuous random variables. Note, however, that the definition in Denuit
et al. (2006) of “expected shortfall” differs from the one in this text. We use
the definition of expected shortfall from Wang and Zitikis (2022).

As summarized in Wang and Zitikis (2022), both V aR and ES have solid
axiomatic foundations and “appear in the banking regulation frameworks of
Basel III/IV, as well as in the insurance regulation frameworks of Solvency II
and the Swiss Solvency Test.” In addition to the coherence properties introduced
in Section 13.3.3, this paper introduces economic axioms to motivate the use
of ES. Thus, their usefulness in determining adequate solvency for banks and
insurers motivates our emphasis in Section 13.3 of these measures.

Concepts of pricing individual risks were introduced in Chapter 10. For a
comprehensive treatment of pricing portfolios, we refer to Mildenhall and
Major (2022).

There are many superb treatments of reinsurance in the literature. An out-
standing book-long introduction is Albrecher et al. (2017).

Some of the examples from this chapter were borrowed from Clark (1996), Klug-
man et al. (2012), and Bahnemann (2015). These resources provide excellent
sources for additional discussions and examples.
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14
Loss Reserving

Chapter Preview. This chapter introduces loss reserving (also known as claims
reserving) for property and casualty (P&C, or general, non-life) insurance
products. In particular, the chapter sketches some basic, though essential,
analytic tools to assess the reserves on a portfolio of P&C insurance products.
First, Section 14.1 motivates the need for loss reserving, then Section 14.2
studies the available data sources and introduces some formal notation to
tackle loss reserving as a prediction challenge. Next, Section 14.3 covers the
chain-ladder method and Mack’s distribution-free chain-ladder model. Section
14.4 then develops a fully stochastic approach to determine the outstanding
reserve with generalized linear models (GLMs), including the technique of
bootstrapping to obtain a predictive distribution of the outstanding reserve
via simulation.

14.1 Motivation

Our starting point is the lifetime of a P&C insurance claim. Figure 14.1 pictures
the development of such a claim over time and identifies the events of interest:

tocc trep t1 t2 t3 tset time

Occurrence

Reporting

Loss payments Settlement

reporting delay settlement delay

FIGURE 14.1: Lifetime or Run-off of a Claim

The insured event or accident occurs at time tocc. This incident is reported to the
insurance company at time trep, after some delay. If the filed claim is accepted
by the insurance company, payments will follow to reimburse the financial loss

467
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of the policyholder. In this example the insurance company compensates the
incurred loss with loss payments at times t1, t2 and t3. Eventually, the claim
settles or closes at time tset.

Often claims will not settle immediately due to the presence of delay in the
reporting of a claim, delay in the settlement process or both. The reporting
delay is the time that elapses between the occurrence of the insured event
and the reporting of this event to the insurance company. The time between
reporting and settlement of a claim is known as the settlement delay. For
example, it is very intuitive that a material or property damage claim settles
quicker than a bodily injury claim involving a complex type of injury. Closed
claims may also reopen due to new developments, e.g. an injury that requires
extra treatment. Put together, the development of a claim typically takes some
time. The presence of this delay in the run-off of a claim requires the insurer
to hold capital in order to settle these claims in the future.

14.1.1 Closed, IBNR, and RBNS Claims

Based on the status of the claim’s run-off we distinguish three types of claims
in the books of an insurance company. A first type of claim is a closed claim.
For these claims the complete development has been observed. With the red
line in Figure 14.2 indicating the present moment, all events from the claim’s
development take place before the present moment. Hence, these events are
observed at the present moment. For convenience, we will assume that a closed
claim can not reopen.

tocc trep t1 t2 tset time

Occurrence

Reporting

Loss Payments

Settlement

Present

FIGURE 14.2: Lifetime of a Closed Claim

An RBNS claim is one that has been Reported, But is Not fully Settled at
the present moment or the moment of evaluation (the valuation date), that is,
the moment when the reserves should be calculated and booked by the insurer.
Occurrence, reporting and possibly some loss payments take place before the
present moment, but the closing of the claim happens in the future, beyond
the present moment.

An IBNR claim is one that has Incurred in the past But is Not yet Reported.
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tocc trep t1 t2 time

Occurrence

Reporting
Loss Payments

Present

Uncertainty

FIGURE 14.3: Lifetime of an RBNS Claim

For such a claim the insured event took place, but the insurance company is
not yet aware of the associated claim. This claim will be reported in the future
and its complete development (from reporting to settlement) takes place in
the future.

tocc time

Occurrence
Present

Uncertainty

FIGURE 14.4: Lifetime of an IBNR Claim

Insurance companies will reserve capital to fulfill their future liabilities with
respect to both RBNS as well as IBNR claims. The future development of
such claims is uncertain and predictive modeling techniques will be used to
calculate appropriate reserves, from the historical development data observed
on similar claims.

14.1.2 Why Reserving?

The inverted production cycle of the insurance market and the claim dynamics
pictured in Section 14.1.2 motivate the need for reserving and the design of
predictive modeling tools to estimate reserves. In insurance, the premium
income precedes the costs. An insurer will charge a client a premium, before
actually knowing how costly the insurance policy or contract will become.
In typical manufacturing industry this is not the case and the manufacturer
knows - before selling a product - what the cost of producing this product
was. At a specified evaluation moment τ the insurer will predict outstanding
liabilities with respect to contracts sold in the past. This is the claims reserve
or loss reserve; it is the capital necessary to settle open claims from past
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exposures. It is a very important element on the balance sheet of the insurer,
more specifically on the liabilities side of the balance sheet.

14.2 Loss Reserve Data
14.2.1 From Micro to Macro

We now shed light on the data available to estimate the outstanding reserve for
a portfolio of P&C contracts. Insurance companies typically register data on the
development of an individual claim as sketched in the timeline on the left hand
side of Figure 14.5. We refer to data registered at this level as granular or
micro-level data. Typically, an actuary aggregates the information registered
on the individual development of claims across all claims in a portfolio. This
aggregation leads to data structured in a triangular format as shown on the
right hand side of Figure 14.5. Such data are called aggregate or macro-
level data because each cell in the triangle displays information obtained by
aggregating the development of multiple claims.

timetocc trep t1t2t3 tset

Occurrence

Reporting

Loss payments

Settlement
All claims in portfolio

Compress data

Payment delay

Y
ea
r
o
f
o
cc
u
rr
en

ce

FIGURE 14.5: From Granular Data to Run-off Triangle

The triangular display used in loss reserving is called a run-off or develop-
ment triangle. On the vertical axis the triangle lists the accident or occurrence
years during which a portfolio is followed. The loss payments booked for a
specific claim are connected to the year during the which the insured event
occurred. The horizontal axis indicates the payment delay since occurrence of
the insured event.

14.2.2 Run-off Triangles

A first example of a run-off triangle with incremental payments is displayed in
Figure 14.6 (taken from Wüthrich and Merz (2008), Table 2.2, also used in
Wüthrich and Merz (2015), Table 1.4). Accident years (or years of occurrence)
are shown on the vertical axis and run from 2004 up to 2013. These refer to the
year during which the insured event occurred. The horizontal axis indicates the
payment delay in years since occurrence of the insured event. 0 delay is used
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for payments made in the year of occurrence of the accident or insured event.
One year of delay is used for payments made in the year after occurrence of
the accident.

accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
2004 5,947.0 3,721.2 895.7 207.8 206.7 621.2 658.1 148.5 111.3 158.1
2005 6,346.8 3,246.4 723.2 151.8 678.2 366.0 527.5 111.9 116.5
2006 6,269.1 2,976.2 8470.5 262.8 152.7 654.4 535.5 892.4
2007 5,863 2,683.2 722.5 190.7 133.0 883.4 433.3
2008 5,778.9 2,745.2 653.9 273.4 230.3 105.2
2009 6,184.8 2,828.3 572.8 244.9 105.0
2010 5,600.2 2,893.2 563.1 225.5
2011 5,288.1 2,440.1 528.0
2012 5,290.8 2,357.9
2013 5,675.6

FIGURE 14.6: A Run-off Triangle with Incremental Payment Data.
Source: Wüthrich and Merz (2008), Table 2.2.

For example, cell (2004, 0) in the above triangle displays the number 5, 947, the
total amount paid in the year 2004 for all claims occurring in year 2004. Thus,
it is the total amount paid with 0 years of delay on all claims that occurred in
the year 2004. Similarly, the number in cell (2012, 1) displays the total 2, 357.9
paid in the year 2013 for all claims that occurred in year 2012.

accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
2004 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2005 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648
2006 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636
2007 5,863 8,546 9,269 9,459 9,592 9,681 9,724
2008 5,779 8,524 9,178 9,451 9,682 9,787
2009 6,185 9,013 9,586 9,831 9,936
2010 5,600 8,493 9,057 9,282
2011 5,288 7,728 8,256
2012 5,291 7,649
2013 5,676

FIGURE 14.7: A Run-off Triangle with Cumulative Payment Data.
Source: Wüthrich and Merz (2008), Table 2.2.

Whereas the triangle in Figure 14.6 displays incremental payment data, the
Figure 14.7 shows the same information in cumulative format. Now, cell
(2004, 1) displays the total claim amount paid up to payment delay 1 for all
claims that occurred in year 2004. Therefore, it is the sum of the amount paid
in 2004 and the amount paid in 2005 on accidents that occurred in 2004.

Different pieces of information can be stored in run-off triangles as those shown
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in Figure 14.6 and Figure 14.7. Depending on the kind of data stored, the
triangle will be used to estimate different quantities.

For example, in incremental format a cell may display:

• the claim payments, as motivated before
• the number of claims that occurred in a specific year and were reported with

a certain delay, when the goal is to estimate the number of IBNR claims
• the change in incurred amounts, where incurred claim amounts are the sum

of cumulative paid claims and the case estimates. The case estimate is the
claims handler’s expert estimate of the outstanding amount on a claim.

In cumulative format a cell may display:

• the cumulative paid amount, as motivated before
• the total number of claims from an occurrence year, reported up to a certain

delay
• the incurred claim amounts.

Other sources of information are potentially available, e.g. covariates (like the
type of claim), external information (like inflation, change in regulation). Most
claims reserving methods designed for run-off triangles are rather based on a
single source of information, although recent contributions focus on the use of
more detailed data for loss reserving.

14.2.3 Loss Reserve Notation
Run-off Triangles

To formalize the displays shown in Figures 14.6 and 14.7, we let i refer to the
occurrence or accident year, the year in which the insured event happened. In
our notation the first accident year considered in the portfolio is denoted with
1 and the latest, most recent accident year is denoted with I. Then, j refers to
the payment delay or development year, where a delay equal to 0 corresponds
to the accident year itself. Figure 14.8 shows a triangle where the same number
of years is considered in both the vertical as well as the horizontal direction,
hence j runs from 0 up to J = I − 1.

The random variable Xij denotes the incremental claims paid in development
period j on claims from accident year i. Thus, Xij is the total amount paid in
development year j for all claims that happened in occurrence year i. These
payments are actually paid out in accounting or calendar year i+ j. Taking
a cumulative point of view, Cij is the cumulative amount paid up until (and
including) development year j for accidents that occurred in year i. Ultimately,
a total amount CiJ is paid in the final development year J for claims that
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accident payment delay j
year i 0 1 2 3 4 . . . j . . . J − 1 J = I − 1
1
2
... observations DI = {Cij : i+ j ≤ I}
...
i
...
...

I − 2 to be predicted Dc
I = {Cij : i+ j > I}

I − 1
I

FIGURE 14.8: Mathematical notation for a run-off triangle. Source:
Wüthrich and Merz (2008)

occurred in accident year i. In this chapter time is expressed in years, though
other time units can be used as well, e.g. six-month periods or quarters.

The Loss Reserve

At the evaluation moment τ , the data in the upper triangle have been observed,
whereas the lower triangle has to be predicted. Here, the evaluation moment
is the end of accident year I which implies that a cell (i, j) with i+ j ≤ I is
observed, and a cell (i, j) with i+ j > I belongs to the future and has to be
predicted. Thus, for a cumulative run-off triangle, the goal of a loss reserving
method is to predict Ci,I−1, the ultimate claim amount for occurrence year
i, corresponding to the final development period I − 1 in Figure 14.7. We
assume that - beyond this period - no further payments will follow, although
this assumption can be relaxed.

Since Ci,I−1 is cumulative, it includes both an observed part as well as a part
that has to be predicted. Therefore, the outstanding liability or loss reserve
for accident year i is

R(0)
i =

I−1∑
ℓ=I−i+1

Xiℓ = Ci,I − Ci,I−i.

We express the reserve either as a sum of incremental data, the Xiℓ, or as
a difference between cumulative numbers. In the latter case the outstanding
amount is the ultimate cumulative amount Ci,I minus the most recently
observed cumulative amount Ci,I−i. Following Wüthrich and Merz (2015), the
notation R(0)

i refers to the reserve for occurrence year i where i = 1, . . . , I. The
superscript (0) refers to the evaluation of the reserve at the present moment,
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say τ = 0. We understand τ = 0 at the end of occurrence year I, the most
recent calendar year for which data are observed and registered.

14.2.4 R Code to Summarize Loss Reserve Data

We use the ChainLadder package (Gesmann et al., 2019) to import run-off
triangles in R and to explore the trends present in these triangles. The package’s
vignette nicely documents its functions for working with triangular data. First,
we explore two ways to import a triangle.

Long Format Data

The dataset triangle_W_M_long.txt stores the cumulative run-off triangle
from Wüthrich and Merz (2008) (Table 2.2) in long format. That is: each cell
in the triangle is one row in this data set, and three features are stored: the
payment size (cumulative, in this example), the year of occurrence (i) and the
payment delay (j). We import the .txt file and store the resulting data frame
as my_triangle_long:
my_triangle_long <- read.table("Data/triangle_W_M_long.txt", header = TRUE)

We use the as.triangle function from the ChainLadder package to transform
the data frame into a triangular display. The resulting object my_triangle is
now of type triangle.
my_triangle <- as.triangle(my_triangle_long, origin = "origin", dev = "dev", value = "payment")

We display the triangle and recognize the numbers (in thousands) in Figure
14.7. Cells in the lower triangle are indicated as not available, NA.

Triangular Format Data

Alternatively, the triangle may be stored in a .csv file with the occurrence
years in the rows and the development years in the column cells. We import
this .csv file and transform the resulting my_triangle_csv to a matrix.
my_triangle_csv <- read.csv2("Data/triangle_W_M.csv", header = FALSE)
my_triangle_matrix <- as.matrix(my_triangle_csv)
dimnames(my_triangle_matrix) <- list(origin = 2004:2013, dev = 0:(ncol(my_triangle_matrix) -

1))

We inspect the triangle:

From Cumulative to Incremental, and vice versa

The R functions cum2incr() and incr2cum() enable us to switch from cumu-
lative to incremental displays, and vice versa, in an easy way.
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my_triangle_incr <- cum2incr(my_triangle)

We recognize the incremental triangle from Figure 14.6.

Visualizing Triangles

To explore the evolution of the cumulative payments per occurrence year,
Figure 14.9 shows my_triangle using the plot function available for objects of
type triangle in the ChainLadder package. Each line in this plot depicts an
occurrence year (from 2004 to 2013, labelled as 1 to 10). Development periods
are labelled from 1 to 10 (instead of 0 to 9, as used above).

plot(my_triangle)
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FIGURE 14.9: Claim Development by Occurrence Year

Alternatively, the lattice argument creates one plot per occurrence year.

plot(my_triangle, lattice = TRUE)
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Instead of plotting the cumulative triangle stored in my_triangle, we can plot
the incremental run-off triangle.
plot(my_triangle_incr)
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plot(my_triangle_incr, lattice = TRUE)
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14.3 The Chain-Ladder Method

The most widely used method to estimate outstanding loss reserves is the
so-called chain-ladder method. The origins of this method are obscure but
was firmly entrenched in practical applications by the early 1970’s, Taylor
(1986). As will be seen, the name refers to the chaining of a sequence of (year-
to-year development) factors into a ladder of factors; immature losses climb
toward maturity when multiplied by this concatenation of ratios, hence the apt
descriptor chain-ladder method. We will start with exploring the chain-ladder
method in its deterministic or algorithmic version, hence without making
any stochastic assumptions. Then we will describe Mack’s distribution-free
chain-ladder model.

14.3.1 The Deterministic Chain-Ladder

The deterministic chain-ladder method focuses on the run-off triangle in
cumulative form. Recall that a cell (i, j) in this triangle displays the cumulative
amount paid up until development period j for claims that occurred in year i.
The chain-ladder method assumes that development factors fj (also called
age-to-age factors, link ratios or chain-ladder factors) exist such that

Ci,j+1 = fj × Ci,j .

Thus, the development factor tells you how the cumulative amount in develop-
ment year j grows to the cumulative amount in year j + 1. We highlight the
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cumulative amount in period 0 in blue and the cumulative amount in period 1
in red on the Figure 14.10 taken from Wüthrich and Merz (2008) (Table 2.2,
also used in Wüthrich and Merz (2015), Table 1.4).

accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
1 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648
3 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636
4 5,863 8,546 9,269 9,459 9,592 9,681 9,724
5 5,779 8,524 9,178 9,451 9,682 9,787
6 6,185 9,013 9,586 9,831 9,936
7 5,600 8,493 9,057 9,282
8 5,288 7,728 8,256
9 5,291 7,649
10 5,676

FIGURE 14.10: A Run-off Triangle with Cumulative Payment Data
Highlighting the Cumulative Amount in Period 0 in Blue and the
Cumulative Amount in Period 1 in Red. Source: Wüthrich and Merz
(2008), Table 2.2.

The chain-ladder method then presents an intuitive recipe to estimate or
calculate these development factors. Since the first development factor f0
describes the development of the cumulative claim amount from development
period 0 to development period 1, it can be estimated as the ratio of the
cumulative amounts in red and the cumulative amounts in blue, highlighted
in the Figure 14.10. We then obtain the following estimate f̂CL

0 for the first
development factor f0, given observations DI :

f̂CL
0 =

∑10−0−1
i=1 Ci,0+1∑10−0−1

i=1 Ci0
= 1.4925.

Note that the index i, used in the sums in the numerator and denominator,
runs from the first occurrence period (1) to the last occurrence period (9)
for which both development periods 0 and 1 are observed. As such, this
development factor measures how the data in blue grow to the data in red,
averaged across all occurrence periods for which both periods are observed. The
chain-ladder method then uses this development factor estimator to predict
the cumulative amount C10,1 (i.e. the cumulative amount paid up until and
including development year 1 for accidents that occurred in year 10). This
prediction is obtained by multiplying the most recent observed cumulative
claim amount for occurrence period 10 (i.e. C10,0 with development period 0)
with the estimated development factor f̂CL

0 :

Ĉ10,1 = C10,0 · f̂CL
0 = 5, 676 · 1.4925 = 8, 471.
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Going forward with this reasoning, the next development factor f1 can be
estimated. Since f1 captures the development from period 1 to period 2, it can
be estimated as the ratio of the numbers in red and the numbers in blue as
highlighted in Figure 14.11.

accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
1 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648
3 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636
4 5,863 8,546 9,269 9,459 9,592 9,681 9,724
5 5,779 8,524 9,178 9,451 9,682 9,787
6 6,185 9,013 9,586 9,831 9,936
7 5,600 8,493 9,057 9,282
8 5,288 7,728 8,256
9 5,291 7,649
10 5,676

FIGURE 14.11: A Run-off Triangle with Cumulative Payment Data
Highlighting the Cumulative Amount in Period 1 in Blue and the
Cumulative Amount in Period 2 in Red. Source: Wüthrich and Merz
(2008), Table 2.2.

The mathematical notation of the estimate f̂CL
1 for the next development

factor f1, given observations DI , equals:

f̂CL
1 =

∑10−1−1
i=1 Ci,1+1∑10−1−1

i=1 Ci1
= 1.0778.

Consequently, this factor measures how the cumulative paid amount in devel-
opment period 1 grows to period 2, averaged across all occurrence periods for
which both periods are observed. The index i now runs from period 1 to 8,
since these are the occurrence periods for which both development periods 1
and 2 are observed. This estimate for the second development factor is then
used to predict the missing, unobserved cells in development period 2:

Ĉ10,2 = C10,0 · f̂CL
0 · f̂CL

1 = Ĉ10,1 · f̂CL
1 = 8, 471 · 1.0778 = 9, 130

Ĉ9,2 = C9,1 · f̂CL
1 = 7, 649 · 1.0778 = 8, 244.

Note that for Ĉ10,2 you actually use the estimate Ĉ10,1 and multiply it with
the estimated development factor f̂CL

1 .

We continue analogously and obtain following predictions, printed in italics in
the Figure 14.12.

Eventually we need to estimate the values in the final column. The last
development factor f8 measures the growth from development period 8 to
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accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
1 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648
3 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636 10,647
4 5,863 8,546 9,269 9,459 9,592 9,681 9,724 9,735 9,745
5 5,779 8,524 9,178 9,451 9,682 9,787 9,837 9,848 9,858
6 6,185 9,013 9,586 9,831 9,936 10,005 10,057 10,067 10,078
7 5,600 8,493 9,057 9,282 9,420 9,485 9,534 9,545 9,555
8 5,288 7,728 8,256 8,445 8,570 8,630 8,675 8,684 8,693
9 5,291 7,649 8,243 8,432 8,557 8,617 8,661 8,671 8,680
10 5,676 8,471 9,130 9,339 9,477 9,543 9,592 9,603 9,613

f̂CL 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001

FIGURE 14.12: A Run-off Triangle with Cumulative Payment Data
Including Predictions in Italic Source: Wüthrich and Merz (2008), Table
2.2.

development period 9 in the triangle. Since only the first row in the triangle
has both cells observed, this last factor is estimated as the ratio of the value
in red and the value in blue in Figure 14.13.

accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
1 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648
3 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636 10,647
4 5,863 8,546 9,269 9,459 9,592 9,681 9,724 9,735 9,745
5 5,779 8,524 9,178 9,451 9,682 9,787 9,837 9,848 9,858
6 6,185 9,013 9,586 9,831 9,936 10,005 10,057 10,067 10,078
7 5,600 8,493 9,057 9,282 9,420 9,485 9,534 9,545 9,555
8 5,288 7,728 8,256 8,445 8,570 8,630 8,675 8,684 8,693
9 5,291 7,649 8,243 8,432 8,557 8,617 8,661 8,671 8,680
10 5,676 8,471 9,130 9,339 9,477 9,543 9,592 9,603 9,613

f̂CL 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001

FIGURE 14.13: A Run-off Triangle with Cumulative Payment Data
Highlighting the Cumulative Amount in Period 8 in Blue and the
Cumulative Amount in Period 9 in Red. Source: Wüthrich and Merz
(2008), Table 2.2.

Given observations DI , this factor estimate f̂CL
8 is equal to:

f̂CL
8 =

∑10−8−1
i=1 Ci,8+1∑10−8−1

i=1 Ci8
= 1.001.

Typically this last development factor is close to 1 and hence the cash flows
paid in the final development period are minor. Using this development factor
estimate, we can now estimate the remaining cumulative claim amounts in the
column by multiplying the values for development year 8 with this factor.
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The general math notation for the chain ladder predictions for the lower triangle
(i+ j > I) is as follows:

ĈCL
ij = Ci,I−i ·∏j−1

l=I−i f̂
CL
l

f̂CL
j =

∑I−j−1
i=1 Ci,j+1∑I−j−1

i=1 Cij
,

where Ci,I−i is on the last observed diagonal. It is clear that an important
assumption of the chain-ladder method is that the proportional developments
of claims from one development period to the next are similar for all occurrence
years.

This yields the following Figure 14.14:

accident payment delay (in years)
year 0 1 2 3 4 5 6 7 8 9
1 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648 10,663
3 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636 10,647 10,662
4 5,863 8,546 9,269 9,459 9,592 9,681 9,724 9,735 9,745 9,759
5 5,779 8,524 9,178 9,451 9,682 9,787 9,837 9,848 9,858 9,872
6 6,185 9,013 9,586 9,831 9,936 10,005 10,057 10,067 10,078 10,092
7 5,600 8,493 9,057 9,282 9,420 9,485 9,534 9,545 9,555 9,568
8 5,288 7,728 8,256 8,445 8,570 8,630 8,675 8,684 8,693 8,705
9 5,291 7,649 8,243 8,432 8,557 8,617 8,661 8,671 8,680 8,692
10 5,676 8,471 9,130 9,339 9,477 9,543 9,592 9,603 9,613 9,626

f̂CL 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001 1.001

FIGURE 14.14: A Run-off Triangle with Cumulative Payment Data
Including Predictions in Italic Source: Wüthrich and Merz (2008), Table
2.2.

The numbers in the last column show the estimates for the ultimate claim
amounts. The estimate for the outstanding claim amount R̂CL

i for a particular
occurrence period i = I − J + 1, . . . , I is then given by the difference between
the ultimate claim amount and the cumulative amount as observed on the
most recent diagonal:

R̂CL
i = ĈCL

iJ − Ci,I−i.

This is the chain-ladder estimate for the reserve necessary to fulfill future
liabilities with respect to claims that occurred in this particular occurrence
period. These reserves per occurrence period and for the total summed over
all occurrence periods are summarized in Figure 14.15.

14.3.2 Mack’s Distribution-Free Chain-Ladder Model

At this stage, the traditional chain-ladder method provides a point estimator
ĈCL

iJ for the forecast of CiJ , using the information DI . Since the chain-ladder
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Ci,I−i Dev.To.Date ĈCL
iJ R̂CL

i

1 11,148,123 1.000 11,148,123 0
2 10,648,192 0.999 10,663,317 15,125
3 10,635,750 0.998 10,662,007 26,257
4 9,724,069 0.996 9,758,607 34,538
5 9,786,915 0.991 9,872,216 85,301
6 9,935,752 0.984 10,092,245 156,493
7 9,282,022 0.970 9,568,142 286,120
8 8,256,212 0.948 8,705,378 449,166
9 7,648,729 0.880 8,691,971 1,043,242
10 5,675,568 0.590 9,626,383 3,950,815

totals 92,741,332.00 0.94 98,788,390.50 6,047,058.50

FIGURE 14.15: Reserves per Occurrence Period and for Total

method is a purely deterministic and intuitively natural algorithm to complete
a run-off triangle, we are not able to determine how reliable that point estimator
is or to model the variation of the future payments. To answer such questions an
underlying stochastic model that reproduces the chain-ladder reserve estimates
is needed.

In this section we will focus on the distribution-free chain-ladder model as an
underlying stochastic model, introduced in Mack (1993). This method allows
us to estimate the standard errors of the chain-ladder predictions. In the next
Section 14.4, generalized linear models are used to develop a fully stochastic
approach for predicting the outstanding reserve.

In Mack’s approach the following conditions (without assuming a distribution)
hold:

• Cumulative claims (Cij)j=0,...,J are independent over different occurrence
periods i.

• There exist fixed constants f0, . . . , fJ−1 and σ2
0, . . . , σ

2
J−1 such that for all

i = 1, . . . , I and j = 0, . . . , J − 1:

E[Ci,j+1|Ci0, . . . , Cij ] = fj · Cij

Var(Ci,j+1|Cij) = σ2
j · Cij .

This means that the cumulative claims (Cij)j=0,...,J are Markov processes
(in the development periods j) and hence the future only depends on the
present.

Under these assumptions, the expected value of the ultimate claim amount
Ci,J , given the available data in the upper triangle, is the cumulative amount
on the most recent diagonal (Ci,I−1) multiplied with appropriate development
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factors fj . In mathematical notation we obtain for known development factors
fj and observations DI :

E[CiJ |DI ] = Ci,I−i

J−1∏
j=I−i

fj .

This is exactly what the deterministic chain-ladder method does, as explained
in Section 14.3.1. In practice, the development factors are not known and need
to be estimated from the data that is available in the upper triangle. In Mack’s
approach we obtain exactly the same expression for estimating the development
factors fj at time I as in the deterministic chain-ladder algorithm:

f̂CL
j =

∑I−j−1
j=1 Ci,j+1∑I−j−1

i=1 Cij

.

The predictions for the cells in the lower triangle (i.e. for cells $C_{i,j} $where
i + j > I) are then obtained by replacing the unknown factors fj by their
corresponding estimates f̂CL

j :

ĈCL
ij = Ci,I−i

j−1∏
l=I−i

f̂CL
l .

To quantify the prediction error that comes with the chain-ladder predictions,
Mack also introduced variance parameters σ2

j . To gain insight in the estimation
of these variance parameters, so-called individual development factors fi,j are
introduced (which are specific to occurrence period i):

fi,j = Ci,j+1

Cij
.

These individual development also describe how the cumulative amount grows
from period j to period j + 1, but they consider the ratio of only two cells
(instead of taking the ratio of two sums over all available occurrence periods).
Note that the development factors can be written as a weighted average of
individual development factors:

f̂CL
j =

I−j−1∑
i=1

Cij∑I−j−1
i=1 Cij

fi,j ,

where the weights are equal to the cumulative claims Cij .

Let us now estimate the variance parameters σ2 by writing Mack’s variance
assumption in equivalent ways. First, the variance of the ratio of Ci,j+1 and
ci,j conditional on Ci,0, . . . , Ci,j is proportional to the inverse of Ci,j :

Var[Ci,j+1/Cij|Ci0, . . . , Cij ] ∝ 1
Cij

.
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This reminds us of a typical weighted least squares setting where the weights
are the inverse of the variability of a response. Therefore, a more volatile or
imprecise response variable will get less weight. The Ci,j play the role of the
weights. Using the unknown variance parameter σ2

j this variance assumption
can be written as:

Var[Ci,j+1|Ci0, . . . , Cij ] = σ2
j · Cij ,

The connection with weighted least squares then directly leads to an unbiased
estimate for the unknown variance parameter σ2

j in the form of a weighted
residual sum of squares:

σ̂2
j = 1

I − j − 2

I−j−1∑
i=1

Cij

(
Ci,j+1

Cij
− f̂CL

j

)2

.

The weights are again equal to Ci,j and the residuals are the differences between
the ratios Ci,j+1/Ci,j and the individual development factors.

We now have all ingredients required to calibrate the distribution-free chain-
ladder model to the data. The next step is then to analyze the prediction
uncertainty and the prediction error. Hereto we use the chain-ladder predictor
where we replace the unknown development factors with their estimators:

ĈCL
iJ = Ci,I−i

J−1∏
l=I−i

f̂CL
l

We use this expression either as an estimator for the conditional expectation of
the ultimate claim amount (given the observed upper triangle) or as a predictor
for the ultimate claim amount as a random variable (given the observed upper
triangle).

In statistics the simplest measure to analyze the uncertainty that comes with a
point estimate or prediction is the Mean Squared Error of Prediction (MSEP).
Here we consider a conditional MSEP, conditional on the data observed in the
upper triangle:

MSEPCiJ |DI

(
ĈCL

iJ

)
= E

[(
CiJ − ĈCL

iJ

)2
|DI

]
.

This conditional MSEP measures:

• the distance between the (true) ultimate claim CiJ and its chain-ladder
predictor ĈCL

iJ at time I, and
• the total prediction uncertainty over the entire run-off of the nominal ultimate

claim CiJ . It does not consider time value of money, a risk margin nor any
dynamics in claim development.
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The MSEP that comes with the estimate for the ultimate cumulative claim
amount is equal to the MSEP that measures the squared distance between the
true and the estimated reserve:

MSEPR̂I
i |DI

(R̂I
i ) = E[(R̂I

i − RI
i )2|DI ]

= E[(ĈCL
iJ − CiJ)2|DI ] = MSEP (ĈiJ).

The reason for this equivalence is the fact that the reserve is the ultimate
claim amount minus the most recently observed claim amount. The latter is
observed and used in both RI

i and R̂I
i .

It is interesting to decompose this MSEP into a component that captures
process variance and a component that captures parameter estimation variance:

MSEPCiJ|DI

(
ĈCL

iJ

)
= E

[(
CiJ − ĈiJ

)2
|DI

]
= Var(CiJ |DI) +

(
E[CiJ |DI ] − ĈCL

iJ

)2

= process variance + parameter estimation variance,

for a DI measurable estimator/predictor ĈiJ . The process variance component
captures the volatility or uncertainty in the random variable Ci,J and the
parameter estimation variance measures the error that arises from replacing
the unknown development factors fj with their estimated values. This result
follows immediately from following equality about the variance of a shifted
random variable X where the shift a is deterministic:

E (X − a)2 = Var(X) + [E(X) − a]2 .

Applied to the expression of the MSEP you treat Ĉi,J as fixed because you work
conditionally on the data in the upper triangle and Ĉi,J only uses information
from this upper triangle.

Mack (1993) then derived the important formula for the conditional MSEP in
the distribution-free chain-ladder model for a single occurrence period i:

̂MSEPCiJ |DI
=
(
ĈCL

iJ

)2 J−1∑
j=I−i

 σ̂2
j

(f̂CL
j )2

 1
ĈCL

ij

+ 1∑I−j−1
n=1 Cnj

 .
For the derivation of this popular formula, we refer to his paper. Note that it
is an estimate of the MSEP since the unknown parameters fj and σj need to
be estimated as the estimation error cannot be calculated explicitly.

Mack also derived a formula for the MSEP for the total reserve, across all
occurrence periods:

̂MSEP∑I

i=1 ĈCL
iJ

(∑I
i=1 Ĉ

CL
iJ

)
∑I

i=1 ̂MSEPCiJ |DI

(
ĈCL

iJ

)
+2∑1≤i<k≤I Ĉ

CL
iJ ĈCL

kJ

∑J−1
j=I−i

σ̂2
j /(f̂CL

j )2∑I−j−1
n=1 Cnj

.
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The result is the sum of the MSEPs per occurrence period plus a covariance
term. This covariance term is added because the MSEPs for different occurrence
periods i use the same parameter estimates f̂CL

j of fj for different accident
years i.

14.3.3 R code for Chain-Ladder Predictions

We use the object my_triangle of type triangle that was created in Section
14.2.4. The distribution-free chain-ladder model of Mack (1993) is implemented
in the ChainLadder package (Gesmann et al., 2019) (as a special form of
weighted least squares) and can be applied on the data my_triangle to predict
outstanding claim amounts and to estimate the standard error around those
forecasts.
CL <- MackChainLadder(my_triangle)

The development factors are obtained as follows:
round(CL$f, digits = 4)

[1] 1.4925 1.0778 1.0229 1.0148 1.0070 1.0051 1.0011 1.0010 1.0014 1.0000

We can also print the complete run-off triangle (including predictions).

The MSEP for the total reserve across all occurrence periods is given by:
CL$Total.Mack.S.Eˆ2

9
214348469061

It is strongly advised to validate Mack’s assumptions by checking that there
are no trends in the residual plots. The last four plots that we obtain with
the following command show respectively the standardized residuals versus
the fitted values, the origin period, the calendar period and the development
period.

plot(CL)
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The top left-hand plot is a bar-chart of the latest claims position plus IBNR
and Mack’s standard error by occurrence period. The top right-hand plot shows
the forecasted development patterns for all occurrence periods (starting with 1
for the oldest occurrence period).

When setting the argument lattice=TRUE we obtain a plot of the development,
including the prediction and estimated standard errors by occurrence period:

plot(CL, lattice = TRUE)
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14.4 GLMs and Bootstrap for Loss Reserves

This section is being written and is not yet complete nor edited. It
is here to give you a flavor of what will be in the final version.

This section covers regression models to analyze run-off triangles. When an-
alyzing the data in a run-off triangle with a regression model, the standard
toolbox for model building, estimation and prediction becomes available. Using
these tools we are able to go beyond the point estimate and standard error
as derived in Section 14.3. More specifically, we build a generalized linear
model (GLM) for the incremental payments Xij in Figure 14.6. Whereas the
chain-ladder method works with cumulative data, typical GLMs assume the
response variables to be independent and therefore work with incremental
run-off triangles.
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14.4.1 Model Specification

Let Xij denote the incremental payment in cell (i, j) of the run-off triangle.
We assume the Xijs to be independent with a density f(xij; θij , ϕ) from the
exponential family of distributions. We identify

• µij = E[Xij ] the expected value of cell Xij

• ϕ the dispersion parameter and Var[Xij] = ϕ · V (µij), where V (.) is the
variance function

• ηij the linear predictor such that ηij = g(µij) with g the link function.

Distributions from the exponential family and their default link functions are
listed on http://stat.ethz.ch/R-manual/R-patched/library/stats/html/family.
html. We now discuss three specific GLMs widely used for loss reserving.

First, the Poisson regression model was introduced in Section 11.2. In this
model, we assume that Xij has a Poisson distribution with parameter

µij = πi · γj ,

a cross-classified structure that captures a multiplicative effect of the occurrence
year i and the development period j. The proposed model structure is not
identifiable without an additional constraint on the parameters, e.g. ∑J

j=0 γj =
1. This constraint gives an explicit interpretation to πi (with i = 1, . . . , I) as
the exposure or volume measure for occurrence year i and γj as the fraction of
the total volume paid out with delay j. However, when calibrating GLMs in R
alternative constraints such as π1 = 1 or γ1 = 1, or a reparametrization where
µij = exp (µ+ αi + βj) are easier to implement. We continue with the latter
specification, including α1 = β0 = 0, the so-called corner constraints. This
GLM treats the occurrence year and the payment delay as factor variables
and fits a parameter per level, next to an intercept µ. The corner constraints
put the effect of the first level of a factor variable equal to zero. The Poisson
assumption is particularly useful for a run-off triangle with numbers of reported
claims, often used in the estimation of the number of IBNR claims (see Section
14.2).

Second, an interesting modification of the basic Poisson regression model
is the over-dispersed Poisson regression model where Zij has a Poisson
distribution with parameter µij/ϕ and

Xij ∼ ϕ · Zij

µij = exp (µ+ αi + βj).

Consequently, Xij has the same specification for the mean as in the basic
Poisson regression model, but now

Var[Xij ] = ϕ2 · Var[Zij ] = ϕ · exp (µ+ αi + βj).

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/family.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/family.html
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This construction allows for under (when ϕ < 1) and over-dispersion (with
ϕ > 1). Because Xij no longer follows a well-known distribution, this approach
is referred to as quasi-likelihood. It is particularly useful to model a run-off
triangle with incremental payments, as these typically reveal over-dispersion.

Third, the gamma regression model is relevant to model a run-off triangle
with claim payments. Recall from Section 4.2.1 (see also the Appendix Chapter
20) that the gamma distribution has shape parameter α and scale parameter
θ. From these, we reparameterize and define a new parameter µ = α · θ
while retaining the scale parameter θ. Further, assume that Xij has a gamma
distribution and allow µ to vary by ij such that

µij = exp (µ+ αi + βj).

14.4.2 Model Estimation and Prediction

We now estimate the regression parameters µ, αi and βj in the proposed GLMs.
In R the glm function is readily available to estimate these parameters via
maximum likelihood estimation (mle) or quasi-likelihood estimation (in the
case of the over-dispersed Poisson). Having the parameter estimates µ̂, α̂i and
β̂j available, a point estimate for each cell in the upper triangle follows

X̂ij = ˆE[Xij ] = exp (µ̂+ α̂i + β̂j), with i+ j ≤ I.

Similarly, a cell in the lower triangle will be predicted as

X̂ij = ˆE[Xij ] = exp (µ̂+ α̂i + β̂j), with i+ j > I.

Point estimates for outstanding reserves (per occurrence year i or the total
reserve) then follow by summing the cell-specific estimates. By combining the
observations in the upper triangle with their point estimates, we can construct
properly defined residuals and use these for residual inspection.

14.4.3 Bootstrap

14.5 Further Resources and Contributors
Contributors

• Katrien Antonio, KU Leuven and University of Amsterdam, Jan Beirlant,
KU Leuven, and Tim Veerdonck, University of Antwerp, are the principal
authors of the initial version of this chapter. Email: katrien.antonio@kuleuv
en.be for chapter comments and suggested improvements.

mailto:katrien.antonio@kuleuven.be
mailto:katrien.antonio@kuleuven.be
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Further Readings and References

As displayed in Figure 14.1, similar timelines and visualizations are discussed
(among others) in Wüthrich and Merz (2008), Antonio and Plat (2014) and
Wüthrich and Merz (2015).

Over time actuaries started to think about possible underlying models and we
mention some important contributions:

• Kremer (1982): two-way ANOVA
• Kremer (1984), Mack (1991): Poisson model
• Mack (1993): distribution-free chain-ladder model
• Renshaw (1989); Renshaw and Verrall (1998): over-dispersed Poisson model
• Gisler (2006); Gisler and Wüthrich (2008); Bühlmann et al. (2009): Bayesian

chain-ladder model.

The various stochastic models proposed in actuarial literature rely on different
assumptions and have different model properties, but have in common that they
provide exactly the chain-ladder reserve estimates. For more information we also
refer to Mack and Venter (2000) and to the lively discussion that was published
in ASTIN Bulletin: Journal of the International Actuarial Association in 2006
(Venter, 2006).

To read more about exponential families and generalized linear models, see,
for example, McCullagh and Nelder (1989) and Wüthrich and Merz (2008).
We refer to (Kremer, 1982), (Renshaw and Verrall, 1998) and (England and
Verrall, 2002), and the overviews in (Taylor, 2000), (Wüthrich and Merz, 2008)
and (Wüthrich and Merz, 2015) for more details on the discussed GLMs. XXX
presents alternative distributional assumptions and specifications of the linear
predictor.





15
Experience Rating using Bonus-Malus

Chapter Preview. This chapter introduces bonus-malus system used in motor
insurance ratemaking. In particular, the chapter discusses the features of bonus-
malus system and studies its modelling and properties via basic statistical
techniques. Section 15.1 introduces the use of bonus-malus system as an
experience rating scheme, followed by Section 15.2 which describes its practical
implementation in several countries. Section 15.3 covers its modelling setup by
a discrete time Markov Chain. Next, Section 15.4 studies a number of simple
relevant properties associated with the stationary distribution of bonus-malus
system. Section 15.5 focuses on the determination of a posteriori premium
rating to complement a priori ratemaking.

15.1 Introduction

In this section, you learn how to:

• Use bonus-malus system as an experience rating scheme.
• Compare bonus-malus system with risk classification (Chapter 8) and credi-

bility premium (Chapter 9).

Bonus-malus system, which is used interchangeably as “no-fault discount”,
“merit rating”, “experience rating” or “no-claim discount” in different countries,
is based on penalizing insureds who are responsible for one or more claims
by a premium surcharge (malus), and rewarding insureds with a premium
discount (bonus) if they do not have any claims. Insurers use bonus-malus
system (BMS) for two main purposes: to encourage drivers to drive more
carefully in a policy year without any claims, and to ensure insureds to pay

493
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premiums proportional to their risks based on their claims experience via an
experience rating mechanism.

BMS is an experience rating system commonly used in motor insurance. It
represents an attempt to categorize insureds into homogeneous groups who
pay premiums based on their claims experience. Depending on the rules in
the scheme, new policyholders may be required to pay full premium initially,
and obtain discounts in the future years as a result of claim-free years. BMS
rewards policyholders for not making any claims during a policy year. In other
words, it grants a bonus to a careful driver. This bonus principle may affect
policy holders’ decisions whether to claim or not to claim, especially when
involving accidents with slight damages, which is known as the ‘hunger for
bonus’ phenomenon. The ‘hunger for bonus’ under a BMS may reduce insurers’
claim costs, and may be able to offset the expected decrease in premium
income.

In motor insurance, BMS is a form of a posteriori rating to complement the
use of a priori risk classification described in Chapter 11. The a priori risk
classification divides portfolio of drivers into a number of homogeneous risk
classes based on rating factors, such that policyholders in the same risk class
pay the same premium. The ideal a posteriori mechanism is the credibility
premium developed in Chapter 12, whereby premiums are derived on an
individual basis for each policyholder by incorporating both the a priori and
a posteriori information. However, such individual premium determination is
overly complex from a commercial standpoint for practical implementations by
motor insurers. For this reason, BMS is the preferred solution and it consists
of three elements: bonus-malus classes, transition rules, and premium levels
(also known as premium relativities). The advantage of using BMS is that the
bonus-malus classes and the transition rules are pre-specified in advance by
insurers. The bonus-malus classes and transition rules will be discussed in the
next section.

15.2 BMS in Several Countries

In this section, you learn how to:

• Use BMS in Malaysia and other countries.
• Determine a transition rule.
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Many countries around the world have adopted some form of BMS in their
automobile insurance. The specifics of these systems can vary from country to
country, but the general idea is to reward safe driving behavior by reducing
premiums for policyholders who do not make claims, and increasing premiums
for those who do. Some of the countries that have implemented or adopted the
BMS are France, Germany, Italy, Spain and United Kingdom from Europe,
and Malaysia, Hong Kong, Taiwan, Singapore and Korea from Asia. Please
refer to Lemaire and Hongmin (1994), Lemaire (1998) and Park et. al (2010)
for implementation of other BMS around the world.

15.2.1 BMS in Malaysia

Before the liberalization of Motor Tariff on 1st July 2017, the rating of motor
insurance in Malaysia was governed by the Motor Tariff. Under the tariff, the
rate charged should not be lower than the rates specified under the classes of
risks. The basic risk classes considered were scope of insurance, cubic capacity
of vehicle and estimated value of vehicle (or sum insured, whichever is lower).
The final premium to be paid is adjusted by the policyholder’s claim experience,
or equivalently, his bonus-malus entitlement.

Effective on 1st July 2017, the premium rates for motor insurance are liberalized,
or de-tariffed. The pricing of premium is now determined by individual insurers
and takaful operators, and the consumers are able to enjoy a wider choice
of motor insurance products at competitive prices. Since tariff liberalization
encourages innovation and competition among insurers and takaful operators,
the premiums are based on broader risk factors other than the risk classes
specified in the Motor Tariff. Other rating factors may be defined in the risk
profile of an insured, such as age of vehicle, age of driver, safety and security
features of vehicle, geographical location of vehicle and traffic offences of
driver. However, the bonus-malus entitlement from the Motor Tariff remains
‘unchanged’ and continue to exist, and is ‘transferable’ from one insurer, or
from one takaful operator, to another.

The discounts in the Malaysian BMS are divided into six classes, starting from
the initial class of 0% discount, followed by classes of 25%, 30%, 38.3%, 45%
and 55% discounts. A claim-free policy year indicates that a policyholder is
entitled to move one-step forward to the next discount class, such as from a 0%
discount to a 25% discount in the renewal year. If a policyholder is already at
the highest class, which is at a 55% discount, a claim-free policy year indicates
that the policyholder remains in the same class. On the other hand, if one or
more claims are made within the policy year, the discount will be forfeited and
the policyholder has to start at 0% discount in the renewal year. This set of
transition rules can also be summarized as a rule of -1/Top, that is, a class of
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TABLE 15.1: Transition table for bonus-malus classes (Malaysia)

Classes Discounts (%)
0 0.00
1 25.00
2 30.00
3 38.33
4 45.00

5 (and above) 55.00

bonus for a claim-free year, and moving to the highest class after having one
or more claims. For an illustration purpose, Table 15.1 and Figure 15.1 show
the classes and the transition diagram for the Malaysian BMS.

FIGURE 15.1: Transition diagram for bonus-malus classes (Malaysia)

15.2.2 BMS in Other Countries

The BMS in Brazil are subdivided into seven classes, with the following
premium levels (Lemaire and Zi, 1994): 100, 90, 85, 80, 75, 70, and 65. These
premium levels are entitled to the following discounts: 0%, 10%, 15%, 20%,
25%, 30% and 35%. New policyholders have to start at 0% discount, or at
premium level 100. A claim-free policy year indicates that a policyholder can
move forward at a one-class discount. If one or more claims incurred within the
policy year, the policyholder has to move one-class backward for each claim.
Table 15.2 and Figure 15.2 show the classes and the transition diagram for the
BMS in Brazil. This set of transition rules can also be summarized as a rule
of -1/+1, that is, a class of bonus for a claim-free policy year, and a class of
malus for each claim reported.
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TABLE 15.2: Transition table for bonus-malus classes (Brazil)

Classes Discounts (%)
0 0
1 10
2 15
3 20
4 25
5 30

6 (and above) 35

FIGURE 15.2: Transition diagram for bonus-malus classes (Brazil)
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The BMS in Switzerland are subdivided into twenty-two classes, with the
following premium levels: 270, 250, 230, 215, 200, 185, 170, 155, 140, 130, 120,
110, 100, 90, 80, 75, 70, 65, 60, 55, 50 and 45 (Lemaire and Zi, 1994). The
premium levels 270, 250, 230, 215, 200, 185, 170, 155, 140, 130, 120 and 110
are the premiums with the following loadings (malus): 170%, 150%, 130%,
115%, 100%, 85%, 70%, 55%, 40%, 30%, 20%, and 10%. On the other hand,
the premium levels 100, 90, 80, 75, 70, 65, 60, 55, 50 and 45 are the premiums
with the following discounts (bonus): 0%, 10%, 20%, 25%, 30%, 35%, 40%,
45%, 50% and 55%. New policyholders have to start at 0% discount, or at
premium level 100, and a claim-free policy year indicates that a policyholder
can move one-class forward. If one or more claims incurred within the policy
year, the policyholder has to move four-classes backward for each claim. Table
15.3 and Figure 15.3 respectively show the classes and the transition diagram
for the BMS in Switzerland. This set of transition rule can be summarized as
a rule of -1/+4. It should be noted that the entry level is at class 12, which is
at premium level 100 (or 0% discount).

Table 15.3. Bonus-malus classes (Switzerland)

Classes Loadings (%) Classes Discounts (%)
0 170 12 0
1 150 13 10
2 130 14 20
3 115 15 25
4 100 16 30
5 85 17 35
6 70 18 40
7 55 19 45
8 40 20 50
9 30 21 55
10 20
11 10

15.3 BMS and Markov Chain Model

In this section, you learn how to:

• Represent bonus-malus classes using transition probabilities.
• Use year to year transition matrix.
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FIGURE 15.3: Transition diagram for bonus-malus classes (Switzer-
land)

A BMS can be represented by a discrete time Markov chain. A stochastic
process is said to possess the Markov property if the evolution of the process
in the future depends only on the present state but not the past. A discrete
time Markov Chain is a Markov process with discrete state space.

15.3.1 Transition Probability

A Markov Chain is determined by its transition probabilities. The transition
probability from state i (at time n) to state j (at time n+1) is called a one-step
transition probability, and is denoted by pij(n, n+ 1) = Pr(Xn+1 = j|Xn = i),
i = 1, 2, . . . , k, j = 1, 2, . . . , k. For general transition from time m to time n,
for m < n, by conditioning on Xo for m ≤ o ≤ n, we have the Chapman-
Kolmogorov equation of

pij(m,n) =
∑
l∈S

pil(m, o)plj(o, n).

A time-homogeneous Markov Chain satisfies the property of pij(n, n+ t) = p
(t)
ij

for all n. For instance, we have pij(n, n + 1) = p
(1)
ij ≡ pij. In this case, the

Chapman-Kolmogorov equation can be written as

pij(0,m+ n) =
∑
l∈S

pil(0,m)plj(m,m+ n) =
∑
l∈S

p
(m)
il p

(n)
lj .

In the context of BMS, the transition of the bonus-malus classes is governed
by the transition probability in a given policy year. The transition of the
bonus-malus classes is also a time-homogeneous Markov Chain since the set of
transition rules is fixed and independent of time. We can represent the one-step
transition probabilities by a k×k transition matrix P = (pij) that corresponds
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to bonus-malus classes 0, 1, 2, . . . , k − 1.

P =


p00 p01 . . . p0k−1
p10 p11 . . . p1k−1
... . . . ...

pk−10 pk−11 · · · pk−1k−1


Here, its (i, j)-th element is the transition probability from state i to state j.
In other words, each row of the transition matrix represents the transition of
flowing out of state, whereas each column represents the transition of flowing
into the state. The summation of transition probabilities of flowing out of state
must equal to 1, or each row of the matrix must sum to 1, i.e. ∑j pij = 1. All
probabilities must be non-negative, i.e. pij ≥ 0.

15.3.2 Some Applications

Consider the Malaysian BMS. Let {Xt : t = 0, 1, 2, . . .} be the bonus-malus
class occupied by a policyholder at time t with state space S = {0, 1, 2, 3, 4, 5}.
Therefore, the transition probability in a no-claim policy year is equal to the
probability of transition from state i to state i+ 1, i.e. pii+1. If an insured has
one or more claims within the policy year, the probability of transitioning back
to state 0 is represented by pi0 = 1 − pii+1. Hence, the Malaysian BMS can be
represented by the following 6 × 6 transition matrix:

P =



p00 p01 0 0 0 0
p10 0 p12 0 0 0
p20 0 0 p23 0 0
p30 0 0 0 p34 0
p40 0 0 0 0 p45
p50 0 0 0 0 p55

 =



1 − p01 p01 0 0 0 0
1 − p12 0 p12 0 0 0
1 − p23 0 0 p23 0 0
1 − p34 0 0 0 p34 0
1 − p45 0 0 0 0 p45
1 − p55 0 0 0 0 p55



Example 15.3.1. Provide the transition matrix for the BMS in Brazil.

Example Solution. Based on the bonus-malus classes and the transition diagram
shown in Figure 15.2, the probability of a no-claim policy year is equal to the
probability of moving one-class forward, whereas the probability of having one or
more claims within the policy year is equal to the probability of moving one-class
backward for each claim. Therefore, each row can contain two or more transition
probabilities; one probability for advancing to the next state, and one or more
probabilities for moving one-class backward. The transition matrix is:
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P =



1 − p01 p01 0 0 0 0 0
1 − p12 0 p12 0 0 0 0

1 −
∑

j p2j p21 0 p23 0 0 0
1 −

∑
j p3j p31 p32 0 p34 0 0

1 −
∑

j p4j p41 p42 p43 0 p45 0
1 −

∑
j p5j p51 p52 p53 p54 0 p56

1 −
∑

j p6j p61 p62 p63 p64 p65 p66



Example 15.3.2. Provide the transition matrix for the BMS in Switzerland.

Example Solution. From Table 15.3 and Figure 15.3, the probability of a
no-claim policy year is equal to the probability of moving one-class forward,
whereas the probability of having one or more claims within the policy year is
equal to the probability of moving four-classes backward for each claim. The
transition matrix is:

P =



1 − p01 p01 0 0 0 0 0 0 0 0 0 · · ·
1 − p12 0 p12 0 0 0 0 0 0 0 0 · · ·
1 − p23 0 0 p23 0 0 0 0 0 0 0 · · ·
1 − p34 0 0 0 p34 0 0 0 0 0 0 · · ·
1 − p45 0 0 0 0 p45 0 0 0 0 0 · · ·

1 −
∑
j
p5j p51 0 0 0 0 p56 0 0 0 0 · · ·

1 −
∑
j
p6j 0 p62 0 0 0 0 p67 0 0 0 · · ·

1 −
∑
j
p7j 0 0 p73 0 0 0 0 p78 0 0 · · ·

...
...

...
...

...
...

...
...

...
...

... . . .
1 −

∑
j
p19,j 0 0 p19,3 0 0 0 p19,7 0 0 0 · · ·

1 −
∑
j
p20,j 0 0 0 p20,4 0 0 0 p20,8 0 0 · · ·

1 −
∑
j
p21,j p21,1 0 0 0 p21,5 0 0 0 p21,9 0 · · ·



15.4 BMS and Stationary Distribution

In this section, you learn how to:
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• Calculate stationary probabilities.
• Observe a premium evolution.
• Measure the convergence rate.

15.4.1 Stationary Distribution

A stationary probability, which is also known as a steady-state probability,
is a probability of being in a state at equilibrium or in the long run. In a
Markov chain, each state has a corresponding stationary probability. These
probabilities do not change over time once the Markov chain has achieved
its steady state. Stationary probability is important for understanding the
long-term behavior, equilibrium states, and predictive aspects of a system
(such as BMS) which are modeled using a Markov chain. In this section, we
introduce a stationary probability because it offers some practical applications
of the BMS.

Stationary probabilities can be represented by a row vector π = (π1, π2, . . . , πk)
with the following properties:

0 ≤ πj ≤ 1,∑
j
πj = 1,

πj = ∑
i
πipij .

The last equation can be written in terms of matrix and vector, which is
πP = π, where π is the stationary probability vector and P is the transition
matrix. The first two conditions are necessary for the probability distribution,
whereas the last property indicates that π is invariant (i.e. unchanged) by
the one-step transition matrix. In other words, once the Markov Chain has
reached stationary state, its probability distribution will stay stationary over
time. Mathematically, the stationary vector π can also be obtained by finding
the left eigenvector of the one-step transition matrix.

Example 15.4.1. Find the stationary distribution for the BMS in Malaysia
assuming that the probability of a no-claim policy year for all bonus-malus
classes are equal, and it is equivalent to p0.
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Example Solution. The transition matrix can be re-written as:

P =



1 − p0 p0 0 0 0 0
1 − p0 0 p0 0 0 0
1 − p0 0 0 p0 0 0
1 − p0 0 0 0 p0 0
1 − p0 0 0 0 0 p0
1 − p0 0 0 0 0 p0


The stationary distribution can be calculated using πj =

∑
i

πipij or πP = π,

where π = (π0, π1, . . . , π5.) The solutions are:

π0 =
∑
i
πipi0 = (1 − p0)

∑
i
πi = 1 − p0

π1 =
∑
i
πipi1 = π0p01 = (1 − p0)p0

π2 =
∑
i
πipi2 = π1p12 = (1 − p0)p0

2

π3 =
∑
i
πipi3 = π2p23 = (1 − p0)p0

3

π4 =
∑
i
πipi4 = π3p34 = (1 − p0)p0

4

π5 =
∑
i
πipi5 = π4p45 + π5p55 = (1 − p0)p0

5 + π5p0

∴ π5 = (1−p0)p05

(1−p0) = p0
5

The stationary distribution shown in Example 15.4.1 represents the asymptotic
distribution of the BMS, or the distribution in the long run. As an example,
assuming that the probability of a no-claim policy year is p0 = 0.90, the
stationary probabilities are:

π0 = 1 − p0 = 0.1000
π1 = (1 − p0)p0 = 0.0900
π2 = (1 − p0)p0

2 = 0.0810
π3 = (1 − p0)p0

3 = 0.0729
π4 = (1 − p0)p0

4 = 0.0656
π5 = p0

5 = 0.5905

In other words, π0 = 0.10 indicates that 10% of insureds will eventually belong
to class 0, π1 = 0.09 indicates that 9% of insureds will eventually belong to
class 1, and so forth, until π5 = 0.59, which indicates that 59% of insureds will
eventually belong to class 5.
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15.4.2 R Code for a Stationary Distribution

We can use the left eigenvector of a transition matrix to calculate a station-
ary distribution. The following R code can be used to calculate a stationary
distribution in two stages:

1. Create a Transition Matrix
2. Find a stationary distribution using left eigenvector.

1. Create a Transition Matrix
#create transition matrix for Malaysian data
P=matrix(data=0,nrow=6,ncol=6)
P[1,2]=P[2,3]=P[3,4]=P[4,5]=P[5,6]=P[6,6]=0.9
P[,1]=0.1
P

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1 0.9 0.0 0.0 0.0 0.0
[2,] 0.1 0.0 0.9 0.0 0.0 0.0
[3,] 0.1 0.0 0.0 0.9 0.0 0.0
[4,] 0.1 0.0 0.0 0.0 0.9 0.0
[5,] 0.1 0.0 0.0 0.0 0.0 0.9
[6,] 0.1 0.0 0.0 0.0 0.0 0.9

2. Find a stationary distribution using left eigenvector
#for left eigenvector, use eigenvector of transpose of transition matrix
#then divide entry of 1st column by sum of 1st column so that all entries sum to 1
#provide stationary distribution in terms of a row vector (use transpose)
#provide stationary distribution with numeric/real values (use function Re())

Re(t(eigen(t(P))$vectors[,1]/sum(eigen(t(P))$vectors[,1])))

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1 0.09 0.081 0.0729 0.06561 0.59049

Example 15.4.2. Consider the BMS in Brazil where the transition rule is
-1/+1. Let the probability of a no-claim policy year (probability of one-class
forward) equal to p0, the probability of one or more claims in a policy year
(probability of one-class backward) equal to p1, the probability of one or more
claims in the next policy year (probability of two-classes backward) equal to
p2, and so on and so forth. Find the stationary distribution assuming that pk
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is distributed as Poisson with probability

pk = e−0.1(0.1)k

k! , k = 0, 1, 2, . . .

Example Solution. The transition matrix for the BMS in Brazil can be written
as:

P =



1 − p0 p0 0 0 0 0 0
1 − p0 0 p0 0 0 0 0

1 −
∑

i pi p1 0 p0 0 0 0
1 −

∑
i pi p2 p1 0 p0 0 0

1 −
∑

i pi p3 p2 p1 0 p0 0
1 −

∑
i pi p4 p3 p2 p1 0 p0

1 −
∑

i pi p5 p4 p3 p2 p1 p0



=



0.0952 0.9048 0 0 0 0 0
0.0952 0 0.9048 0 0 0 0
0.0047 0.0905 0 0.9048 0 0 0
0.0002 0.0045 0.0905 0 0.9048 0 0
0.0000 0.0002 0.0045 0.0905 0 0.9048 0
0.0000 0.0000 0.0002 0.0045 0.0905 0 0.9048
0.0000 0.0000 0.0000 0.0002 0.0045 0.0905 0.9048


Using the earlier ‘R‘ codes on this transition matrix P, the stationary probabilities
are obtained as: 

π0
π1
π2
π3
π4
π5
π6


=



0.0000
0.0000
0.0003
0.0022
0.0145
0.0936
0.8894


.

The probabilities indicate that 89% of insureds will eventually belong to class
6, 9% of insureds will eventually belong to class 5, and 1.5% of insureds will
eventually belong to class 4. Other classes would have less than 1% of insureds
in the long run.

Example 15.4.3. Using the results from Example 15.4.2, find the mean
premium under the steady state condition assuming that the premium prior
to implementing the bonus-malus discount is 1000.
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Example Solution. After using the discount, the premium for each class is

= (1000) × (1 - % of discount)

Using stationary probabilities from Example 15.4.2, the mean premium under
steady state condition is:

=
∑
j

(proportion in class j in the long run) × ($1000) × (1 - % of discount)

= $1000 × [π0(1) + π1(1 − 0.1) + π2(1 − 0.15) + . . . + π6(1 − 0.35)]
= $1000 × [0 + 0 + (0.0003)(0.85) + . . . + (0.8894)(0.65)]
= $656.5

The results indicate that the final premium reduce from 1000 to 656.5 in
the long run under stationary condition if the discount is considered. From a
financial standpoint, this implies that the collected premium is insufficient to
cover the expected claim cost of 1000. This result is not surprising because none
of the BMS classes in Brazil impose a malus loading for the policyholders. More
importantly, it indicates that the BMS will only be financially balanced if there
are both bonus and malus classes and the premium levels are re-calculated
such that the expected premium under the stationary distribution equals to
1000.

15.4.3 Premium Evolution

We may be interested to find out the evolution of the mean premium after n
years (or n steps). Under the BMS, the n-step transition probability, p(n)

ij =
Pr(Xn = j|X0 = i), can be used to calculate the evolution of the mean
premium. The probability p(n)

ij can be obtained as the (i, j)-th element of the
n-th power of transition matrix P, that is, Pn.

Example 15.4.4. Consider the BMS in Malaysia where the transition rule is
-1/Top. Let the probability of a no-claim policy year equal to p0 (probability
of one-class forward) and the probability of one or more claims in the policy
year equal to 1 − p0 (probability of moving back to class 1). Observe the
mean premiums in 20 years assuming that pk is distributed as Poisson with
probability pk = e−0.1(0.1)k

k! , k = 0. Let the mean premium prior to implementing
the bonus-malus discount equals to 1000.

Example Solution. Under the Malaysian BMS, the transition matrix in the
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first year is:

P(1) =



0.0952 0.9048 0 0 0 0
0.0952 0 0.9048 0 0 0
0.0952 0 0 0.9048 0 0
0.0952 0 0 0 0.9048 0
0.0952 0 0 0 0 0.9048
0.0952 0 0 0 0 0.9048


The mean premium in the first year, after implementing the discount, is:

=
∑
j

($1000) × (average proportion in class j) × (1 - % of discount)

= $1000 ×

∑i pi0

6 (1) +

∑
i

pi1

6 (1 − 0.25) + . . . +

∑
i

pi5

6 (1 − 0.55)


= $1000 × [0.0952(1) + 0.1508(0.75) + · · · + 0.3016(0.45)]
= $625.5

Using similar steps, the mean premium in the n-th year for n = 2, ..., 20 can be
observed. From ‘R‘, the mean premiums in 20 years are:

625.5, 598.7, 580.6, 570.6, 565.8, 565.8, 565.8, 565.8, 565.8, 565.8,

565.8, 565.8, 565.8, 565.8, 565.8, 565.8, 565.8, 565.8, 565.8, 565.8.

15.4.4 R Code for Premium Evolution

The following R code can be used to find the premium in the n-th year and
the premiums in 20 years under the BMS in Malaysia (to find the solution in
Example 15.4.4). A function for transition matrix is created so that it can be
used in the later sections (Section 15.5).

1. Create a function for transition matrix
2. Create a function for the n-th power of a square matrix
3. Create a function for premium in n-th year
4. Provide premiums for 20 years,

1. Create a function for transition matrix

#create transition probability using function of \lambda
TP=function(\lambda)
{ P=matrix(data=0,nrow=6,ncol=6)

P[1,2]=P[2,3]=P[3,4]=P[4,5]=P[5,6]=P[6,6]=exp(-\lambda)
P[,1]=1-exp(-\lambda)
P}
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TP(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.9048374 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.09516258 0.0000000 0.9048374 0.0000000 0.0000000 0.0000000
[3,] 0.09516258 0.0000000 0.0000000 0.9048374 0.0000000 0.0000000
[4,] 0.09516258 0.0000000 0.0000000 0.0000000 0.9048374 0.0000000
[5,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374
[6,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374

2. Create a function for the n-th power of a square matrix
#create function for nth power of square matrix
powA = function(n,\lambda)
{ if (n==1) return (TP(\lambda))

if (n==2) return (TP(\lambda)%*%TP(\lambda))
if (n>2) return (TP(\lambda)%*%powA(n-1,\lambda))}

powA(3,0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.08610666 0.07791253 0.7408182 0.0000000 0.0000000
[2,] 0.09516258 0.08610666 0.07791253 0.0000000 0.7408182 0.0000000
[3,] 0.09516258 0.08610666 0.07791253 0.0000000 0.0000000 0.7408182
[4,] 0.09516258 0.08610666 0.07791253 0.0000000 0.0000000 0.7408182
[5,] 0.09516258 0.08610666 0.07791253 0.0000000 0.0000000 0.7408182
[6,] 0.09516258 0.08610666 0.07791253 0.0000000 0.0000000 0.7408182

3. Create a function for premium in n-th year
#define BMS discount for Malaysia
BMS=c(1,0.75,0.7,0.6167,0.55,0.45)

#create function for mean premium in nth year, when prior premium is $1000
prem=function(n,\lambda)
{ p=numeric(0)

for (i in 1:length(BMS))
p[i]=mean(powA(n,\lambda)[,i])
1000*sum(p*BMS)}

#example for premium in 3rd year
prem(3,0.1)

#output
[1] 580.5789

4. Provide premiums for 20 years
#provide mean premium for all 20 years
allprem=function(n,\lambda)
{ p=numeric(0)
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for (i in 1:n)
p[i]=prem(i,\lambda)
p}

round(allprem(20,0.1),1)

#output
[1] 625.5 598.7 580.6 570.6 565.8 565.8 565.8 565.8 565.8 565.8 565.8
565.8 565.8 565.8 565.8 565.8 565.8 565.8 565.8 565.8

Example 15.4.5. Using the results from Example 15.4.2, observe the mean
premiums in 20 years under the BMS in Brazil, assuming that the premium
prior to implementing the bonus-malus discount is 1000.

Example Solution. From Example 15.4.2,the transition matrix for the BMS
in Brazil is:

P =



0.0952 0.9048 0 0 0 0 0
0.0952 0 0.9048 0 0 0 0
0.0047 0.0905 0 0.9048 0 0 0
0.0002 0.0045 0.0905 0 0.9048 0 0
0.0000 0.0002 0.0045 0.0905 0 0.9048 0
0.0000 0.0000 0.0002 0.0045 0.0905 0 0.9048
0.0000 0.0000 0.0000 0.0002 0.0045 0.0905 0.9048


Using ‘R‘, the premiums in 20 years are:

766.9, 737.6, 713.1, 693.8, 679.2, 669.3, 664.0, 660.5, 658.8, 657.8,

657.2, 656.9, 656.7, 656.6, 656.6, 656.6, 656.6, 656.5, 656.5, 656.5.

The results in Examples 15.4.4-15.4.5 allow us to observe the evolution of mean
premium for the BMS in Malaysia and Brazil. The evolution of premiums for
both countries are provided in Table 15.4, and are shown graphically in Figure
15.4.
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Table 15.4. Evolution of Premium (Malaysia and Brazil)

Year Premium Premium Year Premium Premium
Malaysia Brazil Malaysia Brazil

1 625.5 766.9 11 565.8 657.2
2 598.7 737.6 12 565.8 656.9
3 580.6 713.1 13 565.8 656.7
4 570.6 693.8 14 565.8 656.6
5 565.8 679.2 15 565.8 656.6
6 565.8 669.3 16 565.8 656.6
7 565.8 664.0 17 565.8 656.6
8 565.8 660.5 18 565.8 656.5
9 565.8 658.8 19 565.8 656.5
10 565.8 657.7 20 565.8 656.5

FIGURE 15.4: Evolution of Premium (Malaysia and Brazil)

The following R code can be used to create a function for the transition matrix
under the BMS in Brazil. The function can be used to find the mean premium
in the n-th year and the mean premiums in 20 years. The function can also be
used in the later section (Section 15.5).

1. Create a function for transition matrix
#create function for transition matrix without 1st column
TM=function(\lambda)
{ P=matrix(data=0,nrow=7,ncol=7)

P[1,2]=P[2,3]=P[3,4]=P[4,5]=P[5,6]=P[6,7]=P[7,7]=exp(-\lambda)
P[3,2]=P[4,3]=P[5,4]=P[6,5]=P[7,6]=\lambda*exp(-\lambda)
P[4,2]=P[5,3]=P[6,4]=P[7,5]=(1/2)*(\lambdaˆ2)*exp(-\lambda)
P[5,2]=P[6,3]=P[7,4]=(1/6)*(\lambdaˆ3)*exp(-\lambda)
P[6,2]=P[7,3]=(1/24)*(\lambdaˆ4)*exp(-\lambda)
P[7,2]=(1/120)*(\lambdaˆ5)*exp(-\lambda)
P}

#add 1st column in transition matrix
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TP=function(\lambda)
{P=TM(\lambda)
for (i in 1:7)
P[i,1]=1-sum(TM(\lambda)[i,-1])
P}

#provide transition matrix (in 4 decimal places)
round(TP(0.1),4)

#output
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.0952 0.9048 0.0000 0.0000 0.0000 0.0000 0.0000
[2,] 0.0952 0.0000 0.9048 0.0000 0.0000 0.0000 0.0000
[3,] 0.0047 0.0905 0.0000 0.9048 0.0000 0.0000 0.0000
[4,] 0.0002 0.0045 0.0905 0.0000 0.9048 0.0000 0.0000
[5,] 0.0000 0.0002 0.0045 0.0905 0.0000 0.9048 0.0000
[6,] 0.0000 0.0000 0.0002 0.0045 0.0905 0.0000 0.9048
[7,] 0.0000 0.0000 0.0000 0.0002 0.0045 0.0905 0.9048

2. Recall the nth power of a square matrix

round(powA(n=3,\lambda=0.1),4)

#output
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.0211 0.1602 0.0779 0.7408 0.0000 0.0000 0.0000
[2,] 0.0174 0.0157 0.2261 0.0000 0.7408 0.0000 0.0000
[3,] 0.0024 0.0233 0.0112 0.2222 0.0000 0.7408 0.0000
[4,] 0.0010 0.0023 0.0226 0.0111 0.2222 0.0000 0.7408
[5,] 0.0001 0.0009 0.0022 0.0226 0.0111 0.2222 0.7408
[6,] 0.0000 0.0001 0.0009 0.0024 0.0262 0.0815 0.8890
[7,] 0.0000 0.0000 0.0002 0.0017 0.0127 0.0927 0.8927

3. Recall the premium in n-th year
#define BMS discount for Brazil
BMS=c(1,0.9,0.85,0.8,0.75,0.7,0.65)

#call function for premium
prem(n=3,\lambda=0.1)

#output
[1] 713.117

4. Recall all premiums in 20 years

round(allprem(n=20,\lambda=0.1),1)

#output
[1] 766.9 737.6 713.1 693.8 679.2 669.3 664.0 660.5 658.8 657.7 657.2 656.9
656.7 656.6 656.6 656.6 656.5 656.5 656.5 656.5
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15.4.5 Convergence Rate

We may also be interested to determine the variation between the probability
in the n-th year, p(n)

ij , and the stationary probability, πj . The variation between
the probabilities can be measured using:∣∣∣average(p(n)

ij ) − πj

∣∣∣ .
Therefore, the total variation can be measured by the sum of variation in all
classes: ∑

j

∣∣∣average(p(n)
ij ) − πj

∣∣∣ .
The total variation is also called the convergence rate because it measures
the convergence rate after n years (or n transitions). A lower total variation
implies a better convergence rate between the n-step transition probabilities
and the stationary distribution.

Example 15.4.6. Using the results from Example 15.4.4, provide the total
variations (convergence rate) in 20 years under the BMS in Malaysia.

Example Solution. Using ‘R‘, the stationary probabilities are:

π0
π1
π2
π3
π4
π5


=



0.0952
0.0861
0.0779
0.0705
0.0638
0.6064


The transition matrix in the first year is:

P(1) =



0.0952 0.9048 0 0 0 0
0.0952 0 0.9048 0 0 0
0.0952 0 0 0.9048 0 0
0.0952 0 0 0 0.9048 0
0.0952 0 0 0 0 0.9048
0.0952 0 0 0 0 0.9048
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The variation can be computed as:∣∣∣∣∑
i

pi0
6 − π0

∣∣∣∣ = 0∣∣∣∣∑
i

pi1
6 − π1

∣∣∣∣ = 0.0647
...∣∣∣∣∑

i

pi5
6 − π5

∣∣∣∣ = .3048

Therefore, the total variation in the first year is

∑
j

∣∣∣∣∣∑
i

pij

6 − πj

∣∣∣∣∣ = 0.6096.

Using ‘R‘, the total variations (or convergence rate) in 20 years are:

0.6096, 0.3941, 0.2252, 0.0958, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

15.4.6 R Code for Convergence Rate

The following R code can be used to calculate the total variation in the nth
year, and the total variations (convergence rates) in 20 years under the BMS
in Malaysia (the solution in Example 15.4.6).

1. Recall the Transition Matrix
2. Create a function for stationary probabilities
3. Create a function for total variation in** **the n-th year
4. Provide total variations (convergence rate) in 20 years

1. Recall the Transition Matrix

TP(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.9048374 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.09516258 0.0000000 0.9048374 0.0000000 0.0000000 0.0000000
[3,] 0.09516258 0.0000000 0.0000000 0.9048374 0.0000000 0.0000000
[4,] 0.09516258 0.0000000 0.0000000 0.0000000 0.9048374 0.0000000
[5,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374
[6,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374

2. Create a function for stationary probabilities
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#create function for stationary probabilities
ST=function(\lambda)
{Re(t(eigen(t(TP(\lambda)))$vectors[,1]/sum(eigen(t(TP(\lambda)))$vectors[,1])))}
ST(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.08610666 0.07791253 0.07049817 0.06378939 0.6065307

3. Create a function for total variation in the n-th year
#create function for total variation in nth year
TV=function(n,\lambda)
{ dif=numeric(0)

for (j in 1:length(ST(\lambda)))
dif[j]=abs(mean(powA(n,\lambda)[,j])-ST(\lambda)[j])
sum(dif)}

#example for n=2
TV(2,0.1)

#output
[1] 0.3943306

4. Provide total variations (convergence rate) in 20 years

#provide total variation in each year for n years (4 decimal places)
tot.var=function(n,\lambda)
{ q=numeric(0)

for (t in 1:n)
q[t]=TV(t,\lambda)
q}

round(tot.var(20,0.1),4)

#output
[1] 0.6098 0.3943 0.2253 0.0959 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000
[13] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Example 15.4.7. Provide the total variations (or convergence rate) in 20
years under the BMS in Brazil using the results from example 15.4.5.

Example Solution. Using ‘R‘ code, the total variations (or convergence rates)
in 20 years for the BMS in Brazil are:

1.2617, 1.0536, 0.8465, 0.6412, 0.4362, 0.2316, 0.1531, 0.0747, 0.0480, 0.0232,

0.0145, 0.0071, 0.0043, 0.0021, 0.0013, 0.0006, 0.0004, 0.0002, 0.0001, 0.0001.
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Examples 15.4.6-15.4.7 provide the degree of convergence for two different BMS
(two different countries). The Malaysian BMS reaches full stationary only after
five years, while the BMS in Brazil takes a longer period. As mentioned in
Lemaire (1998), a more sophisticated BMS would converge more slowly, and is
considered as a drawback as it takes a longer period to stabilize. The main
objective of a BMS is to separate the good drivers from the bad drivers, and
thus, it is desirable to have a classification process that can be finalized (or
stabilized) as soon as possible.

15.5 BMS and Premium Rating

In this section, you learn how to:

• Integrate priori information into optimal relativities.
• Calculate probability of staying in BMS level.
• Calculate constrained optimal relativities.
• Calculate unconstrained optimal relativities.

15.5.1 Premium Rating

In motor insurance ratemaking, BMS is a form of a posteriori rating mechanism
to complement the use of a priori risk classification as described in Chapter 11.
The a priori risk segmentation introduced in Section 11.1 divides portfolio
of drivers into a number of homogeneous risk classes based on observable rating
factors (see also Section 11.3.1), such that policyholders in the same risk class
pay the same a priori premium. The underlying reason for utilizing BMS that
relies on claims experience information is to deal with the residual heterogeneity
within each homogeneous risk class (e.g., see the discussion before Example
2.6.2) since the observable variables are far from perfect in predicting the
riskiness of driving behaviors.

The ideal a posteriori mechanism is the credibility premium framework devel-
oped in Chapter 12 (see also Dionne and Vanasse (1989)), whereby premiums
are derived on an individual basis for each policyholder by incorporating both
the a priori and a posteriori information. However, such individual premium
determination is overly complex from a commercial standpoint for practical
implementations by motor insurers. For this reason, BMS is the preferred
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solution and it consists of the following three building blocks: (a) BMS classes;
(b) transition rules; (c) premium levels (also known as premium relativities or
premium adjustment coefficients).

The first two building blocks are pre-specified in advance and have been
discussed in previous sections, whereas the determination (instead of pre-
determined as discussed in the cases of Malaysian, Brazilian and Swiss systems)
of premium relativities are important for motor insurers precisely because of
its complementary and correction nature to account for the imperfection or
inaccuracies in the a priori risk classification. Note that the premium relativities
under BMS are different from the relativity measure defined in Section 11.3.2,
which is the ratio between the expected risk of a given risk class to a baseline
risk class, both of which are calculated from observable rating factors. In the
following subsections, we briefly introduce the required modelling setup to
study the determination of optimal relativities. We refer interested readers to
Denuit et al. (2007) for a fuller discussion on the technical details.

15.5.2 A Priori Risk Classification

Let us consider a portfolio of n policies, where the risk exposure (see Section
11.2.3) of driver i is denoted as mi and the number of claims reported is
represented by Yi, following from the notations used in Section 11.3.3. Let
xT

i = (xi1, xi2, . . . , xiq) be the vector of observable variables for i = 1, 2, . . . , n.
The Poisson regression as developed in Section 11.3.3 is commonly chosen to
model Yi under the generalized linear models (GLM) framework, see Section
13.3.2.2 and also McCullagh and Nelder (1989).

We can then express the predicted a priori expected claim frequency for
policyholder i as

µi = miλi = mi exp
(
β̂0 +

q∑
m=1

β̂mxim

)
,

where β̂0, β̂1, . . . , β̂q are the estimated regression coefficients. In other words,
λi = µi

mi
is the expected claim frequency per unit exposure, which is the main

focus of the a priori risk classification.

15.5.3 Modelling of Residual Heterogeneity

Since unobserved factors that may affect driving behaviors are not taken
into account in estimating the expected claim frequency, insurers would have
to account for the residual heterogeneity within each a priori risk class by
introducing a random effect component Θi into the conditional distribution of
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Yi. Given Θi = θ, Yi follows a Poisson distribution with mean λiθ, that is,

Pr(Yi = k|Θi = θ) = exp(−λiθ)
(λiθ)k

k! , k = 0, 1, 2, ...

Following from the setup of gamma-Poisson model in Section 9.3.2, we further
assume that all the Θi’s are independent and follow a gamma (a, a) distribution
with the following density function as introduced in Appendix 20.2

f(θ) = 1
Γ(a)a

aθa−1 exp(−aθ), θ > 0,

where the use of gamma-Poisson mixture produces a negative binomial distri-
bution for Yi (see Section 4.3.2). With these specifications, we obtain E(Θi) = 1
and hence E(Yi) = E(E(Yi|Θi)) = E(λiΘi) = λi. by the law of iterated expec-
tation in Appendix 18.2.

Furthermore, it can be shown that the posterior distribution of Θ|y1 = k1, y2 =
k2, . . . , yn = kn is gamma distributed with parameters a+∑n

j=1 kj and a+nλi

and therefore the Bayesian premium is given as

E(λiΘ|y1 = k1, . . . , yn = kn) = λi ×
a+∑n

j=1 kj

a+ nλi
.

On the other hand, applying the Bühlmann credibility-weighted estimate in
Section 12.2 to the gamma-Poisson model in Section 9.3.2, we obtain

EPV = E(Var(Y |λi)) = E(λiΘ) = λi,

V HM = Var(E(Y |λi)) = Var(λiΘ) = λ2
i

a ,
K = EP V

V HM = λi
λ2

i
a

= a
λi
,

Z = n
n+K = nλi

nλi+a ,

Ȳ =
∑n

j=1 yj

n =
∑n

j=1 kj

n ,
µ = E(E(Yi|λi)) = E(λiΘ) = λi,

and hence the credibility-weighted estimate as

E[E(Y |λi)|y1 = k1, ..., yn = kn] = E[λiΘ|yi = k1, ..., yn = kn]
= ZȲ + (1 − Z)µ
= nλi

nλi+a

∑n

j=1 kj

n + a
nλi+aλi

= λi(a+
∑n

j=1 kj)
a+nλi

that is, the Bühlmann credibility premium exactly matches the Bayesian
premium.

Despite the fact that the credibility premium derived on an individual basis
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above is the ideal a posteriori premium, in practice insurers make use of BMS as
a discrete approximation to the Bayesian premium, due to the relatively simpler
structure of BMS as compared to the individual calculations of credibility
premium.

15.5.4 Stationary Distribution Allowing for Residual Heterogeneity

Suppose that a driver is selected at random from the portfolio that has been
classified into h risk classes via the use of observed a priori variables. The
true expected claim frequency for this driver is given by ΛΘ, where Λ is the
unknown a priori expected claim frequency and Θ is the random residual
heterogeneity. Let us further denote wg as the proportion of drivers in the g-th
risk class, that is, wg = Pr(Λ = λg) = ng

n where ng is the number of drivers
classified in the g-th risk class. Note that since there are two different concepts
of risk classes (from a priori risk classification) and BMS (or NCD) classes
(for a posteriori rating mechanism), for the rest of this chapter we will refer
BMS classes as BMS levels instead to avoid unnecessary confusion.

Let pλ
ij(λθ) be the transition probability of moving from BMS level i to level j

for a driver with expected claim frequency λθ belonging to the risk class with
predicted claim frequency of λ. In other words, the one-step transition matrix
can be written as P(λθ;λ) = {pλ

ij(λθ)}. The row vector of the stationary
distribution π = (πλ

0 (λθ), πλ
1 (λθ), . . . , πλ

k−1(λθ)) can be obtained by solving
the following conditions:

π(λθ;λ)P(λθ;λ) = π(λθ;λ)
π(λθ;λ)1 = 1

where 1 is the column vector of 1’s and πλ
ℓ (λθ) is the stationary probability

for a driver with true expected claim frequency of λθ to be in level ℓ when the
equilibrium steady state is reached in the long run.

Note that the equation for stationary distribution that allows for residual
heterogeneity in this section, π(λθ)P(λθ) = π(λθ) , is similar to the equation
of stationary distribution in Section 15.4.1 where πP = π . The only difference
is that the stationary distribution π(λθ) and the transition matrix P (λθ) are
written in terms of a function of λθ .

With these setup, the probability of drivers staying in BMS level L = ℓ for
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ℓ = 0, 1, . . . , k − 1 in the context of the entire portfolio can be obtained as

Pr(L = ℓ) =
h∑

g=1
Pr(L = ℓ|Λ = λg) Pr(Λ = λg)

=
h∑

g=1
Pr(Λ = λg)

∫∞
0 Pr(L = ℓ|Λ = λg,Θ = θ)f(θ)dθ

=
h∑

g=1
wg
∫∞

0 π
λg

ℓ (λgθ)f(θ)dθ.

From previous section (section 15.5.3), Θi is the random effect component.
As an example, if we assume that all Θi’s are independent and follow a
gamma (a, a) distribution, then f(θ) is the density function of a gamma (a, a)
distribution.

For further understanding, we provide R program to calculate the probability
of staying in level L = ℓ, Pr(L = ℓ), for the Malaysian BMS. From previous
sections, the functions for transition matrix and stationary distribution are
functions of λ. Therefore, the functions allow us to write R program to calculate
Pr(L = ℓ). Similar R programs can be developed for the Brazilian BMS.

Example 15.5.1. Consider the BMS levels and the transition rules of the
Malaysian system (-1/Top). Assume that the following 3 values of a priori
expected claim frequency are given; λ1 = 0.1, λ2 = 0.3, λ3 = 0.5, with
the following proportions (weights); Pr(Λ = λ1) = 0.6, Pr(Λ = λ2) = 0.3,
Pr(Λ = λ3) = 0.1. We also assume that the gamma parameter is fixed at
a = 1.5. Calculate the probability of staying in level L = ℓ, Pr(L = ℓ).

Example Solution. We can use R program to calculate Pr(L = ℓ).

1. Define the Parameters
#define parameters
a.hat=1.5
\lambda.hat=c(0.1,0.3,0.5)
weight=c(0.6,0.3,0.1)

2. Recall the Transition Matrix

#As an example, \lambda=0.1, theta=1, so that \lambda*theta=0.1
TP(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.9048374 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.09516258 0.0000000 0.9048374 0.0000000 0.0000000 0.0000000
[3,] 0.09516258 0.0000000 0.0000000 0.9048374 0.0000000 0.0000000
[4,] 0.09516258 0.0000000 0.0000000 0.0000000 0.9048374 0.0000000
[5,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374
[6,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374
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3. Recall the Stationary Distribution

#As an example, \lambda=0.1, theta=1, so that \lambda*theta=0.1
ST(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.08610666 0.07791253 0.07049817 0.06378939 0.6065307

4. Calculate Pr(L = ℓ)
#create function for pi*fdist
int1=function(theta,s,a,\lambda)
{ a=a.hat

\lambda=\lambda.hat[j]
f.dist=gamma(a)ˆ(-1)*aˆa*thetaˆ(a-1)*exp(-a*theta)
p=ST(\lambda*theta)
return(p[1,s+1]*f.dist)}

#create matrix for integral of pi*fdist
#there are 3 rating classes (each with \lambda=0.1,0.3,0.5), so we need a 3x6 matrix
P1=matrix(nrow=3,ncol=6,data=0)
for (j in 1:3)
{for (i in 0:5) P1[j,i+1]=integrate(Vectorize(int1),lower=0,upper=Inf,s=i)$value}
P1

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09226953 0.0789042 0.0681005 0.05926000 0.05194672 0.6495191
[2,] 0.23927422 0.1570442 0.1095757 0.08001922 0.06053327 0.3535534
[3,] 0.35048094 0.1847610 0.1112046 0.07298753 0.05092619 0.2296397

#calculate probability of L (weight*matrix P1)
prob.L=t(weight)%*%P1
prob.L

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1621921 0.1129319 0.08485348 0.06686052 0.05442063 0.5187414

The results indicate that in the long run and under residual heterogeneity, 16%
of insureds will eventually belong to level ℓ = 0, 11% of insureds will eventually
belong to level ℓ = 1, and so forth. The majority of insureds (more than half,
i.e. 52%) will eventually occupy the highest level which is level ℓ = 5.

15.5.5 Determination of Optimal Relativities

The optimal relativity for each BMS level was first derived by Norberg (1976)
through the minimization of the following objective function, which is more
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commonly known as the Norberg’s criterion:

min E((λ̄Θ − λ̄rL)2) = min E((Θ − rL)2),

where λ̄ is the constant expected claim frequency for all policyholders in the
absence of a priori risk classification and rL is the premium relativity for BMS
level L. It should be noted that when there is no risk classification, all λ’s are
equal and they are represented by a constant λ̄.

Pitrebois et al. (2003) then incorporated the information of a priori risk
classification into the optimization of the same objective function of

min E((Θ − rL)2)

to derive rL analytically. Tan et al. (2015) further proposed the minimization
of the following objective function

min E((ΛΘ − ΛrL)2), subject to E(rL) = 1

under a financial balanced constraint (that is, the expected premium relativity
equals 1) to determine the optimal relativities of a BMS given pre-specified
BMS levels and transition rules, where

min E[(ΛΘ − ΛrL)2] =
k−1∑
ℓ=0

E[(ΛΘ − ΛrL)2|L = ℓ] Pr(L = ℓ)

=
k−1∑
ℓ=0

E(E[(ΛΘ − ΛrL)2|L = ℓ,Λ)|L = ℓ] Pr(L = ℓ)

=
k−1∑
ℓ=0

h∑
g−1

E((ΛΘ − ΛrL)2|L = ℓ,Λ = λg) Pr(Λ = λg|L = ℓ) Pr(L = ℓ)

=
k−1∑
ℓ=0

h∑
g=1

∫∞
0 (λgθ − λgrℓ)2πℓ(λgθ)wgf(θ)dθ

=
h∑

g=1
wg
∫∞

0
k−1∑
ℓ=0

(λgθ − λgrℓ)2πℓ(λgθ)f(θ)dθ.

It is crucially important that the optimal relativity has an average of 100%, so
that the bonuses and maluses exactly offset each other to result in a financial
equilibrium condition. Note that the approach considered by Pitrebois et al.
(2003) does not require the financial balanced constraint because the analytical
solution to its objective function is given by rℓ = E(Θ|L = ℓ), so it follows
that E(rL) = E (E(Θ|L)) = E(Θ) = 1 with the specific choice of gamma (a, a)
distribution for the random effect component Θ.

In this case, the optimization problem can be solved by specifying the La-
grangian as

L(r, α) = E((ΛΘ − ΛrL)2) + α(E(rL) − 1)

=
k−1∑
ℓ=0

E((ΛΘ − ΛrL)2|L = ℓ) Pr(L = ℓ) + α(
k−1∑
ℓ=0

rℓ Pr(L = ℓ) − 1),
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where r = (r0, r1, . . . , rk−1)T . The required first order conditions are given as
follows

Pr(L = ℓ)(2E(Λ2Θ − Λ2rL|L = ℓ) − α) = 0, ℓ = 0, 1, ..., k − 1
k−1∑
ℓ=0

rℓ Pr(L = ℓ) − 1 = 0.

Finally, the solution set for α and rℓ, ℓ = 0, 1, . . . , k − 1 is obtained as

α =
(

k−1∑
ℓ=0

E(Λ2Θ|L=ℓ)
E(Λ2|L=ℓ) )−1

k−1∑
ℓ=0

Pr(L=ℓ)
2E(Λ2|L=ℓ)

,

rℓ = E(Λ2Θ|L=ℓ)
E(Λ2|L=ℓ) − α

2E(Λ2|L=ℓ) ,

where
Pr(L = ℓ) =

h∑
g=1

wg
∫∞

0 π
λg

ℓ (λgθ)f(θ)dθ,

E(Λ2Θ|L = ℓ) =

h∑
g=1

wg

∫∞
0 λ2

gθπ
λg
ℓ (λgθ)f(θ)dθ

h∑
g=1

wg

∫∞
0 π

λg
ℓ (λgθ)f(θ)dθ

,

E(Λ2|L = ℓ) =

h∑
g=1

wg

∫∞
0 λ2

gπ
λg
ℓ (λgθ)f(θ)dθ

h∑
g=1

wg

∫∞
0 π

λg
ℓ (λgθ)f(θ)dθ

.

If we perform the optimization without the financial balanced constraint, then
we obtain

αunconstrained = 0, and runconstrained
ℓ = E(Λ2Θ|L=ℓ)

E(Λ2|L=ℓ) .

It should be noted that the optimal relativity rℓ of each level ℓ is the scale that
determines the premium’s discount/loading to the insureds. If rℓ < 1, then
the insured receives a discount based on his favorable past performance. If
rℓ > 1, then the insured is penalized and has to pay additional loading based
on his past performance. The concept is similar to the discount under the
BMS in Malaysia and Brazil which were discussed in previous sections. The
difference is that the discounts under the BMS in Malaysia and Brazil were
pre-determined (rℓ =100%, 75%, 70%, 61.67%, 55%, 45% respectively for ℓ
=0,1,2,3,4,5 for BMS in Malaysia; rℓ =100%, 90%, 85%, 80%, 75%, 70%, 65%
respectively for ℓ =0,1,2,3,4,5,6 for BMS in Brazil), whereas the relativities rℓ

under heterogeneous residual are determined using optimization (minimization
of an objective function which is subjected to a constraint).

For further understanding, we provide R program to calculate the optimal
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relativity rℓ under unconstrained method which allows for residual heterogeneity
for the Malaysian BMS. From previous sections, the functions for transition
matrix and stationary distribution are functions of λ. Therefore, the functions
allow us to write R program to calculate rℓ . Similar R program can be developed
for the Brazilian BMS.

It should be noted that the calculation of optimal relativity under constrained
method needs more formulas and codes. The reader can create the codes on
their own by referring to the codes under the unconstrained method provided
in Example 15.5.2.

Example 15.5.2. Consider the BMS levels and the transition rules of the
Malaysian system (-1/Top) in Example 15.5.1. Calculate the the optimal
relativity rℓ under unconstrained method which allows for residual heterogeneity.

Example Solution. We can use R program to calculate rℓ under unconstrained
method.

1. Recall the parameters from Example 15.5.1
a.hat=1.5

\lambda.hat=c(0.1,0.3,0.5)
weight=c(0.6,0.3,0.1)

2. Recall the Transition Matrix for Malaysian BMS

TP(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.9048374 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.09516258 0.0000000 0.9048374 0.0000000 0.0000000 0.0000000
[3,] 0.09516258 0.0000000 0.0000000 0.9048374 0.0000000 0.0000000
[4,] 0.09516258 0.0000000 0.0000000 0.0000000 0.9048374 0.0000000
[5,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374
[6,] 0.09516258 0.0000000 0.0000000 0.0000000 0.0000000 0.9048374

3. Recall the Stationary Distribution

ST(0.1)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09516258 0.08610666 0.07791253 0.07049817 0.06378939 0.6065307

4. Recall P1 from Example 15.5.1 (matrix for integral of pi*fdist)
P1
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#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.09226953 0.0789042 0.0681005 0.05926000 0.05194672 0.6495191
[2,] 0.23927422 0.1570442 0.1095757 0.08001922 0.06053327 0.3535534
[3,] 0.35048094 0.1847610 0.1112046 0.07298753 0.05092619 0.2296397

5. Calculate the optimal relativities under heterogeneity rℓ

#create function for theta*pi*fdist
int2=function(theta,s,a,\lambda)
{ a=a.hat

\lambda=\lambda.hat[j]
f.dist=gamma(a)ˆ(-1)*aˆa*thetaˆ(a-1)*exp(-a*theta)
p=ST(\lambda*theta)
return(theta*p[1,s+1]*f.dist)}

#create matrix for integral of theta*pi*fdist
#there are 3 rating classes (each with \lambda=0.1,0.3,0.5, so we need a 3x6 matrix)
P2=matrix(nrow=3,ncol=6,data=0)
for (j in 1:3)
{for (i in 0:5) P2[j,i+1]=integrate(Vectorize(int2),lower=0,upper=Inf,s=i)$value}
P2

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1490027 0.1196800 0.09737915 0.08014937 0.06664948 0.48713928
[2,] 0.3660619 0.2027370 0.12238497 0.07876803 0.05327145 0.17677669
[3,] 0.5128607 0.2082845 0.10207811 0.05653418 0.03412764 0.08611487

#calculate relativities, r
r=(t(weight*(\lambda.hat)ˆ2)%*%P2)/(t(weight*(\lambda.hat)ˆ2)%*%P1)
r

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.495888 1.221421 1.047722 0.9263311 0.8360428 0.5133785

The results show that under unconstrained method, the first 3 levels ( ℓ = 0,1,2
) have premium loadings ( rℓ = 150%, 122%, 105% ), and the last 3 levels (
ℓ = 3,4,5 ) have premium discounts ( rℓ = 93%, 84%, 51% ).

As mentioned above, the expected premium relativity equals 1, E(rL) = 1,
under a financial balanced constraint (constrained method). As expected, the
unconstrained method (in Example 15.5.2) does not provide expected premium
relativity equals 1. We can use R program to find the expected premium
relativity E(rL).

Example 15.5.3. Consider Example 15.5.2. Find the expected premium
relativity E(rL).
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Solution. We can use R program to find the expected premium relativity
E(rL).

1. Recall stationary probabilities from Example 15.5.1 and relativities
from Example 15.5.2

rbind(prob.L,r)

#output
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1621921 0.1129319 0.08485348 0.06686052 0.05442063 0.5187414
[2,] 1.4958885 1.2214214 1.04772189 0.92633112 0.83604284 0.5133785

2. Calculate the expected premium relativity E(rL).
#calculate E(r)
expected.r=sum(prob.L*r)
expected.r

#output
[1] 0.8432052

The results show that under unconstrained method, the expected premium
relativity is 84.32% (which is less than 100%).

15.5.6 Numerical Illustrations

In this section, we present two numerical illustrations that integrate a priori
information into the determination of optimal relativities. We consider the
BMS levels and the transition rules of both Malaysian and Brazilian systems
but choose to calculate the set of optimal relativities instead of the specified
premium levels given earlier. In our illustrations, by referring to Example 15.5.1-
Example 15.5.2, the following 3 values of a priori expected claim frequency
are given:

λ1 = 0.1, λ2 = 0.3, λ3 = 0.5

with the following proportions:

Pr(Λ = λ1) = 0.6,Pr(Λ = λ2) = 0.3,Pr(Λ = λ3) = 0.1.

The gamma parameter is fixed at a = 1.5. Note that while these modelling
assumptions are simple, the purpose here is to demonstrate the determination
of optimal relativities under a relatively simple setup, and that the optimization
procedure for the BMS remains the same even if the a priori risk classification
is performed extensively. We refer interested readers to the motor vehicle claims
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data as documented in De Jong and Heller (2008) to conduct the a priori risk
segmentation before proceeding to the determination of optimal relativities.

For the Malaysian BMS with 6 levels and the transition rule of -1/Top, the
obtained numerical values of optimal relativities are presented in Table 15.5
together with the stationary probabilities. We find that around half of the
policyholders will occupy the highest BMS level with the lowest premium
relativity over the long run when the stationary state has been reached.
We also observe that the constrained optimal relativities are higher than the
unconstrained counterparts because of the need to satisfy the financial balanced
constraint (E(rL) = 100%).

Table 15.5. Optimal Relativities with k = 6 levels and transition rule of
-1/Top

Level ℓ Pr(L = ℓ) rℓ runconstrained
ℓ

0 16.22% 131.99% 149.59%
1 11.29% 127.33% 122.14%
2 8.49% 120.64% 104.77%
3 6.69% 113.93% 92.63%
4 5.44% 107.79% 83.60%
5 51.87% 78.06% 51.34%

E(rL) 100% 84.32%

Moreover, we see that except for the highest BMS level (level 5), other BMS
levels will impose malus surcharges to policyholders occupying those levels. This
finding is not surprising since our theoretical framework here is to determine
optimal relativities given the calculation of a priori base premiums by solely
relying on claim frequency information but not claim severity. In practice,
insurers could afford to introduce NCD levels with only discounts (bonuses) but
not loadings (maluses) because the a priori base premiums have been inflated
accordingly taking into account both the information of claim frequency and
claim severity.

For the Brazilian BMS with 7 levels and the transition rule of -1/+1, the
corresponding numerical values of optimal relativities are shown in Table 15.6.
We find that around three quarters of the policyholders will occupy the highest
BMS level with the lowest premium relativity in the stationary state. This
finding is mainly due to the less severe penalty in the transition rule of -1/+1
in comparison to the rule of -1/Top, so more policyholders are expected to
occupy the highest BMS level. Similar to the earlier example, we find that
the unconstrained optimal relativities are lower and result in a lower value of
E(rL).
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Table 15.6. Optimal Relativities with k = 7 levels and transition rule of
-1/+1

Level ℓ Pr(L = ℓ) rℓ runconstrained
ℓ

0 3.28% 234.94% 228.65%
1 2.21% 196.24% 189.27%
2 2.00% 168.36% 160.59%
3 2.38% 145.96% 137.03%
4 4.02% 125.53% 114.63%
5 10.38% 106.25% 91.12%
6 75.74% 85.89% 61.74%

E(rL) 100% 78.97%

Note that the obtained values of optimal relativities may not be desirable for
commercial implementations because of the possibility of irregular differences
between adjacent BMS levels. To alleviate this problem, insurers could consider
imposing linear optimal relativities in the form of rlinear

L = a+ bL by solving
the following constrained optimization with an inequality constraint

min E
(
(ΛΘ − Λa− ΛbL)2

)
subject to a+ bE(L) ≥ 1.

We refer interested readers to Tan (2016) for a discussion on how to incorporate
further commercial constraints and also on the solution to this optimization
problem involving Kuhn-Tucker conditions.

15.6 Further Resources and Contributors
Further Reading and References

Note that our discussions in Section 15.5 focus on the classical frequency-driven
BMS, which implicitly assume that the information of frequency and severity
are independent, consistent with the collective risk model as discussed in
Section 7.3. However, a number of recent empirical studies (Frees et al. (2016a);
Garrido et al. (2016)) point towards the need due to their significant dependence
structure. In this regard, Oh et al. (2020a) and Oh et al. (2020c) propose recent
BMS framework that allows for such frequency-severity dependence based on
the bivariate random effect model, where the former utilize both frequency
and severity information in the specification of transition rule.

On the other hand, the framework presented in Section 15.5 is found to suffer
from a double-counting problem, which results in biased premiums due to
the dual role of the a priori rating factors in affecting both the a priori risk
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classification as well as a posteriori experience rating. We refer interested
readers to Oh et al. (2020b) who propose to incorporate the estimation of
a priori rate (in addition to the a posteriori rate) under a full optimization
process to resolve the double-counting problem.

Contributors

• Noriszura Ismail, Universiti Kebangsaan Malaysia and Chong It Tan,
Macquarie University, are the principal authors of the initial version of this
chapter.

• Noriszura Ismail, Universiti Kebangsaan Malaysia is the principal author
of the second edition of this chapter. Email: <ni@ukm.edu.my> for chapter
comments and suggested improvements.



16
Quantifying Dependence

Chapter Preview. Dependence modeling involves using statistical models to
describe the dependence structure between random variables and enables us
to understand the relationships between variables in a dataset. This chapter
introduces readers to techniques for modeling and quantifying dependence or
association of multivariate distributions. Section 16.1 elaborates basic measures
for modeling the dependence between variables.

Section 16.2 introduces an approach to modeling dependence using copulas
which is reinforced with practical illustrations in Section 16.3. The types
of copula families and basic properties of copula functions are explained in
Section 16.4. The chapter concludes by explaining why the study of dependence
modeling is important in Section 16.6.

16.1 Classic Measures of Scalar Associations

In this section, you learn how to:

• Estimate correlation using the Pearson method
• Use rank based measures like Spearman, Kendall to estimate correlation
• Measure tail dependency

In this chapter, we consider the first two variables from an insurance dataset
of sample size (n = 1500) introduced in Frees and Valdez (1998) and is now
readily available in the copula package; losses and expenses.

• LOSS, general liability claims from the Insurance Services Office, Inc. (ISO)
• ALAE, specifically attributable to the settlement of individual claims

(e.g. lawyer’s fees, claims investigation expenses)

We would like to know whether the distribution of LOSS depends on the
distribution of ALAE or whether they are statistically independent. To visualize

529
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the relationship between losses and expenses, the scatterplots in Figure 16.1
are created on dollar and log dollar scales. It is difficult to see any relationship
between the two variables in the left-hand panel. Their dependence is more
evident when viewed on the log scale, as in the right-hand panel. This section
elaborates basic measures for modeling the dependence between variables.
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FIGURE 16.1: Scatter Plot of LOSS and ALAE

16.1.1 Association Measures for Quantitative Variables

For this section, consider a pair of random variables (X, Y ) having joint
distribution function F (·) and a random sample (Xi, Yi), i = 1, . . . , n. For the
continuous case, suppose that F (·) has absolutely continuous marginals with
marginal density functions.

Pearson Correlation

Define the sample covariance function Ĉov(X, Y ) = 1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ ),

where X̄ and Ȳ are the sample means of X and Y , respectively. Then, the
product-moment (Pearson) correlation can be written as

r = Ĉov(X, Y )√
Ĉov(X,X)Ĉov(Y, Y )

= Ĉov(X, Y )√
V̂ ar(X)

√
V̂ ar(Y )

.

The correlation statistic r is widely used to capture linear association between
random variables. It is a (nonparametric) estimator of the correlation parameter
ρ, defined to be the covariance divided by the product of standard deviations.

This statistic has several important features. Unlike regression estimators,
it is symmetric between random variables, so the correlation between X
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and Y equals the correlation between Y and X. It is unchanged by linear
transformations of random variables (up to sign changes) so that we can
multiply random variables or add constants as is helpful for interpretation.
The range of the statistic is [−1, 1] which does not depend on the distribution
of either X or Y .

Further, in the case of independence, the correlation coefficient r is 0. However,
it is well known that zero correlation does not in general imply indepen-
dence, one exception is the case of normally distributed random variables.
The correlation statistic r is also a (maximum likelihood) estimator of the
association parameter for the bivariate normal distribution. So, for normally
distributed data, the correlation statistic r can be used to assess independence.
For additional interpretations of this well-known statistic, readers will enjoy
Lee Rodgers and Nicewander (1998).

You can obtain the Pearson correlation statistic r using the cor() function in
R and selecting the pearson method. This is demonstrated below by using the
LOSS rating variable in millions of dollars and ALAE amount variable in dollars
from the dataset in Figure 16.1.

From the R output above, r = 0.4, which indicates a positive association
between LOSS and ALAE. This means that as the loss amount of a claim
increases we expect expenses to increase.

16.1.2 Rank Based Measures
Spearman’s Rho

The Pearson correlation coefficient does have the drawback that it is not
invariant to nonlinear transforms of the data. For example, the correlation
between X and log Y can be quite different from the correlation between X and
Y . As we see from the R code for the Pearson correlation statistic above, the
correlation statistic r between the ALAE variable in logarithmic dollars and the
LOSS amounts variable in dollars is 0.33 as compared to 0.4 when we calculate
the correlation between the ALAE variable in dollars and the LOSS amounts
variable in dollars. This limitation is one reason for considering alternative
statistics.

Alternative measures of correlation are based on ranks of the data. Let R(Xj)
denote the rank of Xj from the sample X1, . . . , Xn and similarly for R(Yj).
Let R(X) = (R(X1), . . . , R(Xn))′ denote the vector of ranks, and similarly for
R(Y ). For example, if n = 3 and X = (24, 13, 109), then R(X) = (2, 1, 3). A
comprehensive introduction of rank statistics can be found in, for example,
Hettmansperger (1984). Also, ranks can be used to obtain the empirical distri-
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bution function, refer to Section 4.4.1 for more on the empirical distribution
function.

With this, the correlation measure of Spearman (1904) is simply the product-
moment correlation computed on the ranks:

rS = Ĉov(R(X), R(Y ))√
Ĉov(R(X), R(X))Ĉov(R(Y ), R(Y ))

= Ĉov(R(X), R(Y ))
(n2 − 1)/12 .

You can obtain the Spearman correlation statistic rS using the cor() function
in R and selecting the spearman method. From below, the Spearman correlation
between the LOSS variable and ALAE variable is 0.45.

We can show that the Spearman correlation statistic is invariant under strictly
increasing transformations. From the R Code for the Spearman correlation
statistic above, rS = 0.45 between the ALAE variable in logarithmic dollars and
LOSS amount variable in dollars.

Example 16.1.1. Calculation by Hand. You are given the following six
observations:

Observation x value y value
1 15 19
2 9 7
3 5 13
4 3 15
5 21 17
6 12 11

Calculate the sample Spearman’s ρ.

Example Solution. The Spearman correlation is simply the product-moment
correlation computed on the ranks:

rS = Ĉov(R(X), R(Y ))√
Ĉov(R(X), R(X))Ĉov(R(Y ), R(Y ))

= Ĉov(R(X), R(Y ))
(n2 − 1)/12 .

where Ĉov(X, Y ) = 1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ ).

Then we have:
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Obs x y Rank of Rank of R(X)i − ¯R(X) R(Y )i − ¯R(Y ) (R(X)i − ¯R(X))×
value value xi (R(X)) yi (R(Y )) (R(Y )i − ¯R(Y ))

1 15 19. 2 1 2 − 3.5 = −1.5 1 − 3.5 = −2.5 3.75
2 9 7 4 6 4 − 3.5 = 0.5 6 − 3.5 = 2.5 1.25
3 5 13 5 4 5 − 3.5 = 1.5 4 − 3.5 = 0.5 0.75
4 3 15 6 3 6 − 3.5 = 2.5 3 − 3.5 = −0.5 −1.25
5 21 17 1 2 1 − 3.5 = −2.5 2 − 3.5 = −1.5 3.75
6 12 11 3 5 3 − 3.5 = −0.5 5 − 3.5 = 1.5 −0.75

T otal 7.5

Note that: ¯R(X) = ¯R(Y ) = 1+2+3+4+5+6
6 = 3.5.

Then,

Ĉov(R(X), R(Y )) = 1
n

n∑
i=1

(R(X)i − ¯R(X))(R(Y )i − ¯R(Y )) = 7.5
6 = 1.25.

Applying the formula

rS = Ĉov(R(X), R(Y ))
(n2 − 1)/12 = 1.25

(62 − 1)/12 = 0.42857.

Kendall’s Tau

An alternative measure that uses ranks is based on the concept of concor-
dance. An observation pair (X, Y ) is said to be concordant (discordant) if the
observation with a larger value of X has also the larger (smaller) value of
Y . Then Pr(concordance) = Pr[(X1 −X2)(Y1 − Y2) > 0] , Pr(discordance) =
Pr[(X1 −X2)(Y1 − Y2) < 0], Pr(tie) = Pr[(X1 −X2)(Y1 − Y2) = 0] and

τ(X, Y ) = Pr(concordance) − Pr(discordance)
= 2 Pr(concordance) − 1 + Pr(tie).

Thus, the population parameter Kendall’s tau, τ = τ(X, Y ), measures whether
higher values of one variable generally correspond to higher values of another
variables, regardless of the actual values of those variables.

To estimate this, the pairs (Xi, Yi) and (Xj , Yj) are said to be concordant if
the product sgn(Xj −Xi)sgn(Yj − Yi) equals 1 and discordant if the product
equals -1. Here, sgn(x) = 1, 0,−1 as x > 0, x = 0, x < 0, respectively. With
this, we can express the (statistical) association measure of Kendall (1938),
known as Kendall’s tau, as

τ̂ = 2
n(n−1)

∑
i<j sgn(Xj −Xi) × sgn(Yj − Yi)

= 2
n(n−1)

∑
i<j sgn(R(Xj) −R(Xi)) × sgn(R(Yj) −R(Yi)).
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Interestingly, Hougaard (2000), page 137, attributes the original discovery of
this statistic to Fechner (1897), noting that Kendall’s discovery was independent
and more complete than the original work.

You can obtain Kendall’s tau using the cor() function in R and selecting the
kendall method. From below, τ̂ = 0.32 between the LOSS variable in dollars
and the ALAE variable in dollars. When there are ties in the data, the cor()
function computes Kendall’s tau_b as proposed by Kendall (1945).

Also, to show that the Kendall’s tau is invariant under strictly increasing
transformations, we see that τ̂ = 0.32 between the ALAE variable in logarithmic
dollars and the LOSS amount variable in dollars.

Example 16.1.2. Calculation by Hand. You are given the following six
observations:

Observation x value y value
1 15 19
2 9 7
3 5 13
4 3 15
5 21 17
6 12 11

Calculate the sample Kendall’s τ .

Example Solution. We can obtain the Kendall’s tau using:

τ̂ = 2
n(n − 1)

∑
i<j

sgn(Xj − Xi) × sgn(Yj − Yi)

Here, sgn(x) = 1, 0, −1 as x > 0, x = 0, x < 0, respectively. For each pair of
observations i, j so that i < j, the pairs (Xi, Yi) and (Xj , Yj) are said to be
concordant if the product sgn(Xj − Xi)sgn(Yj − Yi) equals 1 and discordant if
the product equals -1. This is summarized in the table below, where a 1 indicates
concordance, -1 sign indicates discordance. Note: The pairs compared are in the
upper triangle.

i/j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
i = 1 1 1 1 −1 1
i = 2 −1 −1 1 1
i = 3 −1 1 −1
i = 4 1 −1
i = 5 1
i = 6
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There are 9 concordant pairs and 6 discordant pairs. Applying the formula

τ̂ = 2
n(n − 1)

∑
i<j

sgn(Xj − Xi) × sgn(Yj − Yi) = 2
6(6 − 1)(3) = 0.2.

16.1.3 Tail Dependence Coefficients

Tail dependence is a statistical concept that measures the strength of the
dependence between two variables in the tails of their distribution. Specifically,
tail dependence measures the correlation or dependence between the extreme
values of two variables beyond a certain threshold, that is, the dependence in
the corner of the lower-left quadrant or upper-right quadrant of the bivariate
distribution. Tail dependence is essential in many areas of finance, economics,
and risk management. For example, it is relevant in analyzing extreme events,
such as financial crashes, natural disasters, and pandemics. In these situations,
tail dependence can help to determine the likelihood of joint extreme events
occurring and to develop strategies to manage the associated risks.

In Figure 16.2, the concept of tail dependence is demonstrated through an ex-
ample. The figure showcases two randomly generated variables with a Kendall’s
Tau of 0.7. On the left side of Figure 16.2, the variables (X and Y ) are sim-
ulated using the bivariate normal distribution, while on the right side, they
are generated using the bivariate t-distribution. Although both sides display a
Kendall’s Tau of 0.7, there is a difference in the upper right quadrant (above
the dashed lines) on each panel. In the left panel, the values in the upper right
quadrant (upper tails of X and Y ) are independent, while in the right panel,
the upper tail values appear to be correlated (the upper right corners of the
right panel contain 4 points). This suggests that the probability of Y occurring
above a high threshold (e.g., the dashed line in the figure) when X exceeds
the same threshold is higher in the right panel than in the left panel of Figure
16.2.

Consider a pair of random variables (X, Y ), from definitions provided in Joe
(1997), the upper tail dependent coefficient denoted by λup is given by:

λup= lim
u→1−

Pr
{
X > F−1

X (u) | Y > F−1
Y (u)

}
,

in case the limit exists. Here, F−1
X (u) and F−1

Y (u) denote the quantiles of X
and Y at the level u. Then, X and Y are said to be upper tail-dependent if
λup ∈ (0, 1] and upper tail-independent if λup = 0. When a variable reaches
an extreme high value, the upper tail-dependent condition indicates that the
other variable also reaches an extremely high value. On the other hand, the
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FIGURE 16.2: Left Panel: Upper tails of X and Y are independent.
Right Panel: Upper tails of X and Y appear to be dependent.

upper tail-independent suggests that the extreme values of the two variables
are not related to each other. Similarly, the lower tail dependence coefficient,
λlo, is defined as:

λlo= lim
u→0+

Pr
{
X ≤ F−1

X (u) | Y ≤ F−1
Y (u)

}
.

Let R(Xj) and R(Yj) denote the rank of Xj and Yj , j = 1, . . . , n, respectively.
From Schmidt (2005), non-parametric estimates of λup and λlo are given by:

λ̂lo = 1
k

n∑
j=1

I {R(Xj) ≤ k,R(Yj) ≤ k} ,

and
λ̂up = 1

k

n∑
j=1

I {R(Xj) > n− k,R(Yj) > n− k} ,

where k ∈ 1, ..., n is the threshold rank and a parameter to be chosen by the
analyst, k = k(n) → ∞ and k/n → 0 as n → ∞, . Here, n is the sample size,
and I{·} takes the value of 1 if the condition is satisfied, and 0 otherwise.

Figure 16.3 shows the scatter plot of the ranks of the LOSS variable and the ALAE
variable. You can obtain the upper and lower tail dependent coefficient using
the tdc() function from the FRAPO package in R. From below, λ̂up = 0.39, at
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k = 75 (note that n = 1500), between the LOSS variable and the ALAE variable
and λ̂lo = 0.13. The results implies the losses and expenses variables appear to
be more upper-tailed dependent.
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FIGURE 16.3: Scatter Plot of Ranks of LOSS and ALAE

16.2 Introduction to Copulas

In this section, you learn how to:

• Describe a multivariate distribution function in terms of a copula function.

16.2.1 Definition of a Copula

Copulas are widely used in insurance and many other fields to model the
dependence among multivariate outcomes as they expresses the dependence
between the variables explicitly. Recall that the joint cumulative distribution



538 16 Quantifying Dependence

function (cdf) for two variables Y1 and Y2 is given by:

F (y1, y2) = Pr(Y1 ≤ y1, Y2 ≤ y2).

For the multivariate case in p dimensions, we have:

F (y1, . . . , yp) = Pr(Y1 ≤ y1, . . . , Yp ≤ yp).

The joint distribution considers both the marginal distributions and how the
variables are related to each other. However, it expresses this dependence
implicitly. Copulas offer a different method that allows us to break down
the joint distribution of variables into individual components (the marginal
distributions and a copula) that can be adjusted separately.

A copula is a multivariate distribution function with uniform marginals. Specif-
ically, let {U1, . . . , Up} be p uniform random variables on (0, 1). Their distri-
bution function

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up),

is a copula. We seek to use copulas in applications that are based on more than
just uniformly distributed data. Thus, consider arbitrary marginal distribution
functions F1(y1),. . . ,Fp(yp). Then, we can define a multivariate distribution
function using the copula such that

F (y1, . . . , yp) = C(F1(y1), . . . , Fp(yp)). (16.1)

Here, F is a multivariate distribution function, and the resulting value from
the copula function is limited to a range of [0, 1] as it relates to probabilities.
Sklar (1959) showed that any multivariate distribution function F , can be
written in the form of equation (16.1), that is, using a copula representation.

Sklar also showed that, if the marginal distributions are continuous, then there
is a unique copula representation. Hence, copulas can be used instead of joint
distribution functions. In order to be considered valid, they must meet the
necessary requirements of a valid joint cumulative distribution function. In
this chapter we focus on copula modeling with continuous variables. A copula
C is considered to be absolutely continuous if the density

c(u1, . . . , up) = ∂p

∂up . . . ∂u1

C(u1, . . . , up),

exists. For the discrete case, readers can see Joe (2014) and Genest and Nešlohva
(2007). For the bivariate case where p = 2, we can write a copula and the
distribution function of two random variables as

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2)
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and
F (y1, y2) = C(F1(y1), Fp(y2)).

One example of a bivariate copula is the product copula, also called the
independence copula, as it captures the property of independence of the two
variables Y1 and Y2. The copula (distribution function) is

F (y1, y2) = C(F1(y1), Fp(y2)) = F1(y1)Fp(y2) = u1u2 = Π(u).

In Figure 16.4, both the distribution function and scatter plot of observa-
tions generated from the independence copula are displayed. The scatter plot
indicates that there is no correlation between the two components, U1 and U2.
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FIGURE 16.4: Independence Copula. Left: Scatterplot of observations from
Independence Copula. Right: Plot for distribution function for Independence
Copula.

There is another type of copula that is frequently utilized, known as Frank’s
Copula (Frank, 1979). This copula can represent both positive and negative de-
pendence and has a straightforward analytic structure. The copula (distribution
function) is

C(u1, u2) = 1
γ

log
(

1 + (exp(γu1) − 1)(exp(γu2) − 1)
exp(γ) − 1

)
. (16.2)

This is a bivariate distribution function with its domain on the unit square
[0, 1]2. Here γ is the dependence parameter, that is, the range of dependence is
controlled by the parameter γ. Positive association increases as γ increases. As
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we will see, this positive association can be summarized with Spearman’s rho
(ρS) and Kendall’s tau (τ).

In Figure 16.5, we can see scatterplots of data generated from the Frank’s
copula. As γ value changes, we observe that components U1 and U2 become
positively or negatively dependent. When θ approaches 0, (16.2) transforms
into an independence copula. Also, Figure 16.6 provides the distribution and
density functions for Frank’s copula when γ = 12. In Section 16.4, we will
explore copula functions other than the commonly used Frank’s copula.
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FIGURE 16.5: Scatterplot of Observations from Frank’s Copula. γ = 12
(left), γ = 0 (middle) and γ = −12 (right).

Example 16.2.1. Copula Representation Example

Suppose we have a variable X that follows a Pareto distribution with a scale
parameter of θ = 10 and a shape parameter of α = 1.6. Additionally, let Y be
an exponential variable with a mean value of 8. Write FX,Y (7.2, 4.1) in the
form C(u, v).

Note: FX,Y (x, y) is the joint distribution function and C(u, v) is the copula
that links X and Y .

Example Solution. Denote the marginal distribution functions of X and Y
as FX(x) and FY (y), respectively. Since FX,Y (7.2, 4.1) = C[FX(7.2), FY (4.1)], we
can use the marginal distribution functions to obtain the arguments of the copula
function:
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FIGURE 16.6: Left: Plot for distribution function for Frank’s Copula (γ = 12).
Right: Plot for the density function for Frank’s Copula (γ = 12).

For the Pareto variable, X:

FX(7.2) = 1 −
( 10

7.2 + 10

)1.6
= 0.58;

For the Exponential variable, Y :

FY (4.1) = 1 − e−0.125×4.1 = 0.40.

Hence, FX,Y (7.2, 4.1) = C[0.58, 0.40].

16.2.2 Sklar’s Theorem

In Sklar (1959), Sklar showcased how copulas can capture the dependence
structure of a group of random variables. This principle has since been referred
to as Sklar’s Theorem and serves as the cornerstone of copula theory. Depen-
dence modeling with copulas for continuous multivariate distributions allows
for the separation of modeling the univariate marginals and the dependence
structure, where a copula can represent the dependence structure.

1. For a p-variate distribution F , with marginal cumulative distribution
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functions F1, . . . , Fp, the copula associated with F is a distribution
function C : [0, 1]p → [0, 1] with U(0, 1) margins that satisfies:

F (y) = C (F1 (y1) , . . . , Fp (yp)) , y = {y1 . . . yp} ∈ Rp. (16.3)

If F is a continuous p-variate distribution function with univariate
margins F1, . . . , Fp and quantile functions F−1

1 , . . . , F−1
p , then:

C (u) = F
(
F−1

1 (u1) , . . . , F−1
p (up)

)
, u ∈ [0, 1]p,

is the unique choice.

2. The converse also holds: If C is a copula and F1, . . . , Fp are univari-
ate cumulative distribution functions, then the function F defined
by (16.3) is a joint cumulative distribution function with marginal
cumulative distribution functions F1, . . . , Fp.

Proof. Suppose we have Y1, . . . , Yp ∼ F , U ∼ U(0, 1) and assume Y1, . . . , Yp is
continuous, which implies F −1

1 (Ui) = Yi. Then, the random variables have a
multivariate distribution function C, given by:

C (u1, . . . , up) = Pr (U1 ≤ u1, . . . , Up ≤ up)
= Pr (F1 (Y1) ≤ u1, . . . , Fp (Yp) ≤ up)
= Pr

(
Y1 ≤ F −1

1 (u1), . . . , Yp ≤ F −1
p (up)

)
= F

(
F −1

1 (u1) , . . . , F −1
p (up)

)
= F (y1, . . . , yp) .

Hence:
C (F1(y1), . . . , Fp(yp)) = F (y1, . . . , yp) .

According to the first part of Sklar’s theorem, there is a unique underlying
copula that is unknown, and it can be estimated from the data available. After
estimating the margins and copula, they are usually combined using (16.3) to
give the estimated multivariate distribution function. Also, Sklar’s theorem’s
second part enables the construction of adaptable multivariate distribution
functions with specified univariate margins. These functions are useful in more
intricate models, like pricing models.
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16.3 Application Using Copulas

In this section, you learn how to:

• Discover dependence structure between random variables
• Model the dependence with a copula function

This section analyzes the insurance losses and expenses data with the statistical
program R. The data set is visualized in Figure 16.1. The model fitting process
is started by marginal modeling of each of the two variables, LOSS and ALAE.
Then we model the joint distribution of these marginal outcomes.

16.3.1 Marginal Models

We first examine the marginal distributions of losses and expenses before
going through the joint modeling. The histograms show that both LOSS and
ALAE are right-skewed and fat-tailed. Because of these features, for both
marginal distributions of losses and expenses, we consider a Pareto distribution,
distribution function of the form

F (y) = 1 −
(

θ

y + θ

)α

.

Here, θ is a scale parameter and α is a shape parameter. Section 20.2 provides
details of this distribution.

The marginal distributions of losses and expenses are fit using the method of
maximum likelihood. Specifically, we use the vglm function from the R VGAM
package. Firstly, we fit the marginal distribution of ALAE. Parameters are
summarized in Table 16.6.

We repeat this procedure to fit the marginal distribution of the LOSS variable.
Because the loss variable also seems right-skewed and heavy-tailed data, we
also model the marginal distribution with the Pareto distribution (although
with different parameters).

Table 16.6. Summary of Pareto Maximum Likelihood Fitted Param-
eters from the LGPIF Data

Shape θ̂ Scale α̂
ALAE 15133.60360 2.22304
LOSS 16228.14797 1.23766
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To visualize the fitted distribution of LOSS and ALAE variables, one can use the
estimated parameters and plot the corresponding distribution function and
density function. For more details on the selection of marginal models, see
Chapter 6.

16.3.2 Probability Integral Transformation

When studying simulation, in Section 8.1.2 we learned about the inverse
transform method. This is a way of mapping a U(0, 1) random variable into
a random variable X with distribution function F via the inverse of the
distribution, that is, X = F−1(U). The probability integral transformation
goes in the other direction, it states that F (X) = U . Although the inverse
transform result is available when the underlying random variable is continuous,
discrete or a hybrid combination of the two, the probability integral transform
is mainly useful when the distribution is continuous. That is the focus of this
chapter.

We use the probability integral transform for two purposes: (1) for diagnostic
purposes, to check that we have correctly specified a distribution function and
(2) as an input into the copula function in equation (16.1).

For the first purpose, we can check to see whether the Pareto is a reasonable
distribution to model our marginal distributions. Given the fitted Pareto
distribution, the variable ALAE is transformed to the variable u1, which follows
a uniform distribution on [0, 1]:

u1 = F̂1(ALAE) = 1 −

 θ̂

θ̂ + ALAE

α̂

.

After applying the probability integral transformation to the ALAE variable,
we plot the histogram of Transformed ALAE in Figure 16.7. This plot appears
reasonably close to what we expect to see with a uniform distribution, suggesting
that the Pareto distribution is a reasonable specification.

In the same way, the variable LOSS is also transformed to the variable u2,
which follows a uniform distribution on [0, 1]. The left-hand panel of Figure
16.8 shows a plot the histogram of Transformed ALAE, again reinforcing the
Pareto distribution specification. For another way of looking at the data, the
variable u2 can be transformed to a normal score with the quantile function
of standard normal distribution. As we see in Figure 16.8, normal scores of
the variable LOSS are approximately marginally standard normal. This figure
is helpful because analysts are used to looking for patterns of approximate
normality (which seems to be evident in the figure). The logic is that, if the
Pareto distribution is correctly specified, then transformed losses u2 should be
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FIGURE 16.7: Histogram of Transformed ALAE

approximately normal, and the normal scores Φ−1(u2), should be approximately
normal. (Here, Φ is the cumulative standard normal distribution function.)

16.3.3 Joint Modeling with Copula Function

Before jointly modeling losses and expenses, we draw the scatterplot of trans-
formed variables (U1, U2) and the scatterplot of normal scores in Figure 16.9.
The left-hand panel is a plot of U1 versus U2, where U1 = F̂1(ALAE) and
U2 = F̂2(LOSS)). Then we transform each one using an inverse standard
normal distribution function, Φ−1(·), or qnorm in R to get normal scores. As in
Figure 16.1, it is difficult to see patterns in the left-hand panel. However, with
rescaling, patterns are evident in the right-hand panel. To learn more details
about normal scores and their applications in copula modeling, see Joe (2014).

The right-hand panel of Figure 16.1 shows us there is a positive dependency
between these two random variables. This can be summarized using, for
example, Spearman’s rho that turns out to be 0.451. As we learned in Section
16.1.2, this statistic depends only on the order of the two variables through
their respective ranks. Therefore, the statistic is the same for (1) the original
data in Figure 16.1, (2) the data transformed to uniform scales in the left-hand
panel of Figure 16.9, and (3) the normal scores in the right-hand panel of
Figure 16.9.

The next step is to calculate estimates of the copula parameters. One option
is to use traditional maximum likelihood and determine all the parameters
at the same time which can be computationally burdensome. Even in our
simple example, this means maximizing a (log) likelihood function over five
parameters, two for the marginal ALAE distribution, two for the marginal
LOSS distribution, and one for the copula. A widely alternative, known as the
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FIGURE 16.8: Histogram of Transformed Loss. The left-hand panel shows
the distribution of probability integral transformed losses. The right-hand
panel shows the distribution for the corresponding normal scores.
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inference for margins (IFM) approach, is to simply use the fitted marginal
distributions, u1 and u2, as inputs when determining the copula. This is the
approach taken here. In the following code, you will see that the fitted copula
parameter becomes γ̂ = 3.114.

To visualize the fitted Frank’s copula, the distribution function and density
function perspective plots are drawn in Figure 16.10.
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FIGURE 16.10: Frank’s Copula. Left: Plot for distribution function for
Frank’s Copula. Right:Plot for density function for Frank’s Copula

We can estimate the anticipated expenses when losses surpass a specific thresh-
old by utilizing the fitted Frank copula based on the data on losses and
expenses. For instance, according to the data, the mean expense when losses
exceed $200, 000 is $58, 807. However, when we apply the fitted Frank copula,
the projected expenses when losses exceed $200, 000 is $26, 767. This suggests
that the Frank copula doesn’t provide an accurate estimate and may not be
suitable for this dataset. We will now explore other copula types.

16.4 Types of Copulas

In this section, you learn how to:
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• Define the basic types of elliptical copulas, including the normal, t
• Define basic types of Archimedean copulas

There are several families of copulas that have been described in the literature.
Two main families of the copula families are the Archimedean and Elliptical
copulas.

16.4.1 Normal (Gaussian) Copulas

We started our study with Frank’s copula in equation (16.2) because it can
capture both positive and negative dependence and has a readily understood
analytic form. However, extensions to multivariate cases where p > 2 are not
easy and so we look to alternatives. In particular, the normal, or Gaussian,
distribution has been used for many years in empirical work, starting with
Gauss in 1887. So, it is natural to turn to this distribution as a benchmark for
understanding multivariate dependencies.

For a multivariate normal distribution, think of p normal random variables,
each with mean zero and standard deviation one. Their dependence is controlled
by Σ, a correlation matrix, with ones on the diagonal. The number in the ith
row and jth column, say Σij, gives the correlation between the ith and jth
normal random variables. This collection of random variables has a multivariate
normal distribution with probability density function

ϕN (z) = 1
(2π)p/2

√
det Σ

exp
(

−1
2z′Σ−1z

)
. (16.4)

To develop the corresponding copula version, it is possible to start with equation
(16.1), evaluate this using normal variables, and go through a bit of calculus.
Instead, we simply state as a definition, the normal (Gaussian) copula density
function is

cN (u1, . . . , up) = ϕN

(
Φ−1(u1), . . . ,Φ−1(up)

) p∏
j=1

1
ϕ(Φ−1(uj))

.

Here, we use Φ and ϕ to denote the standard normal distribution and density
functions. Unlike the usual probability density function ϕN , the copula density
function has its domain on the hyper-cube [0, 1]p. For contrast, Figure 16.11
compares these two density functions.

16.4.2 t- and Elliptical Copulas

Another copula used widely in practice is the t- copula. Both the t- and the
normal copula are special cases of a family known as elliptical copulas, so we
introduce this general family first, then specialize to the case of the t- copula.
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FIGURE 16.11: Bivariate Normal Probability Density Function Plots.
The left-hand panel is a traditional bivariate normal probability density func-
tion. The right-hand plot is a plot of the copula density for the normal
distribution.

The normal and the t- distributions are examples of symmetric distributions.
More generally, elliptical distributions is a class of distributions that are
symmetric and can be multivariate. In short, an elliptical distribution is a
type of symmetric, multivariate distribution. The multivariate normal and
multivariate t- are special types of elliptical distributions.

Elliptical copulas are constructed from elliptical distributions. This copula
decomposes a (multivariate) elliptical distribution into their univariate elliptical
marginal distributions by Sklar’s theorem. Properties of elliptical copulas can
be obtained from the properties of the corresponding elliptical distributions,
see for example, Hofert et al. (2018).

In general, a p-dimensional vector of random variables has an elliptical distri-
bution if the density can be written as

hE(z) = kp√
det Σ

gp

(1
2(z − µ)′Σ−1(z − µ)

)
,

for z ∈ Rp and kp is a constant, determined so the density integrates to one.
The function gp(·) is called a generator because it can be used to produce
different distributions. Table 16.7 summarizes a few choices used in actuarial
practice. The choice gp(x) = exp(−x) gives rises to the normal pdf in equation
(16.4). The choice gp(x) = exp(−(1+2x/r)−(p+r)/2) gives rise to a multivariate
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t- distribution with r degrees of freedom with pdf

htr(z) = kp√
det Σ

exp
−

(
1 + (z − µ)′Σ−1(z − µ)

r

)−(p+r)/2 .
Table 16.7. Generator Functions (gp(·)) for Selected Elliptical Distri-
butions

Generator
Distribution gp(x)
Normal distribution e−x

t− distribution with r degrees of freedom (1 + 2x/r)−(p+r)/2

Cauchy (1 + 2x)−(p+1)/2

Logistic e−x/(1 + e−x)2

Exponential power exp(−rxs)

We can use elliptical distributions to generate copulas. Because copulas are
concerned primarily with relationships, we may restrict our considerations to
the case where µ = 0 and Σ is a correlation matrix. With these restrictions,
the marginal distributions of the multivariate elliptical copula are identical; we
use H to refer to this marginal distribution function and h is the corresponding
density. This marginal density is h(z) = k1g1(z2/2). For example, in the normal
case we have H(·) = Φ(·) and h(·) = ϕ(·).

We are now ready to define the pdf of the elliptical copula, a function defined
on the unit cube [0, 1]p as

cE(u1, . . . , up) = hE

(
H−1(u1), . . . , H−1(up)

) p∏
j=1

1
h(H−1(uj))

.

As noted above, most empirical work focuses on the normal copula and t-copula.
Specifically, t-copulas are useful for modeling the dependency in the tails of
bivariate distributions, especially in financial risk analysis applications. The
t-copulas with same association parameter in varying the degrees of freedom
parameter show us different tail dependency structures. For more information
about t-copulas, readers can see Joe (2014) and Hofert et al. (2018).

We used the same approach as with the fitted Frank copula to fit the Normal
and t copula. The R code below fits the Normal and t copula and estimates
the expected level of expenses when losses exceed $200, 000. The results show
that the estimated expenses using the fitted Normal copula when losses exceed
$200, 000 is $35, 411. However, this is not a good fit compared to the mean
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expense of $58, 807 from the losses and expenses data. When losses exceed
$200, 000, the fitted t copula estimates expenses to be $47, 354, making it a
better fit than the Normal copula.

16.4.3 Archimedean Copulas

This class of copulas is also constructed from a generator function. For
Archimedean copulas, we assume that g(·) is a convex, decreasing function
with domain [0,1] and range [0,∞) such that g(0) = 0. Use g−1 for the inverse
function of g. Then the function

Cg(u1, . . . , up) = g−1 (g(u1) + · · · + g(up))

is said to be an Archimedean copula distribution function.

For the bivariate case, p = 2, an Archimedean copula function can be written
by the function

Cg(u1, u2) = g−1 (g(u1) + g(u2)) .

Some important special cases of Archimedean copulas include the Frank,
Clayton/Cook-Johnson, and Gumbel/Hougaard copulas. Each copula class is
derived from different generator functions. As another useful special case, recall
the Frank’s copula described in Sections 16.2 and 16.3. To illustrate, we now
provide explicit expressions for the Clayton and Gumbel/Hougaard copulas.

Clayton Copula

For p = 2, the Clayton copula with parameter γ ∈ [−1,∞) is defined by

CC
γ (u) = max{u−γ

1 + u−γ
2 − 1, 0}1/γ , u ∈ [0, 1]2.

This is a bivariate distribution function defined on the unit square [0, 1]2.
The range of dependence is controlled by the parameter γ, similar to Frank’s
copula.

Gumbel-Hougaard Copula

The Gumbel-Hougaard copula is parametrized by γ ∈ [1,∞) and defined by

CGH
γ (u) = exp

−
( 2∑

i=1
(− log ui)γ

)1/γ
 , u ∈ [0, 1]2.
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For more information on Archimedean copulas, see Joe (2014), Frees and
Valdez (1998), and Genest and Mackay (1986).

We used the same approach to fit the Clayton and Gumbel-Hougaard copulas
as we did for the fitted Frank copula. The R code below fits these two copulas
and determines the expected expense level for losses higher than $200, 000. Our
analysis shows that the estimated expenses for losses exceeding $200, 000 using
the fitted Clayton copula are $14, 209, while the fitted Gumbel-Hougaard copula
predicts $58, 554. Of all the copula types considered, the Gumbel-Hougaard
copula provides the best fit for this data. For more on Goodness-of-fit tests,
see Hofert et al. (2018).

16.5 Properties of Copulas

In this section, you learn how to:

• Interpret bounds that limit copula distribution functions as the amount of
dependence varies

• Calculate measures of association for different copulas and interpret their
properties

• Interpret tail dependency for different copulas

With many choices of copulas available, it is helpful for analysts to understand
general features of how these alternatives behave.

16.5.1 Bounds on Association

Any distribution function is bounded below by zero and from above by one.
Additional types of bounds are available in multivariate contexts. These bounds
are useful when studying dependencies. That is, as an analyst thinks about
variables as being extremely dependent, one has available bounds that cannot
be exceeded, regardless of the dependence. The most widely used bounds in
dependence modeling are known as the Fréchet-Höeffding bounds, given as

max(u1 + · · · + up − p+ 1, 0) ≤ C(u1, . . . , up) ≤ min(u1, . . . , up).

To see the right-hand side of this equation, note that
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C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up) ≤ Pr(Uj ≤ uj),

for j = 1, . . . , p. The bound is achieved when U1 = · · · = Up. To see the
left-hand side when p = 2, consider U2 = 1 − U1. In this case, if 1 − u2 < u1
then

Pr(U1 ≤ u1, U2 ≤ u2) = Pr(1 − u2 ≤ U1 < u1) = u1 + u2 − 1.

See, for example, Nelson (1997) for additional discussion.

To see how these bounds relate to the concept of dependence, consider the case
of p = 2. As a benchmark, first note that the product copula, C(u1, u2) = u1 ·u2,
is the result of assuming independence between random variables. Now, from
the above discussion, we see that the lower bound is achieved when the two
random variables are perfectly negatively related (U2 = 1 − U1). Further, it
is clear that the upper bound is achieved when they are perfectly positively
related (U2 = U1). To emphasize this, the Frechet-Hoeffding bounds for two
random variables appear in Figure 16.12.
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FIGURE 16.12: Perfect Positive and Perfect Negative Dependence
Plots

Let’s assign the Fréchet-Höeffding lower bound as W and the upper bound
as M . That is, W = max(u1 + · · · + up − p+ 1, 0) and M = min(u1, . . . , up).
It’s important to note that W is a copula only if p = 2, while M is a copula
for all p ≥ 2. In dimension two, W = max(u1 + u2 − 1, 0) is known as the
counter-monotonic copula. It captures the inverse relationship between
two variables, that is, two random variables that are perfectly negatively
related. On the other hand, M = min(u1, u2) in dimension two is known as
the comonotone copula. It captures the relationship between two variables
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where one is related to the other by a strictly increasing function, that is, two
random variables that are perfectly positively dependent. The co-monotonic
copulas can be extended to the multivariate case. However, it’s not possible to
extend the counter-monotonic copula because it’s not possible to have three or
more variables where each pair has a direct inverse relationship.

Example 16.5.1. Largest Possible Value Example

Suppose we have a variable X that follows a Pareto distribution with a scale
parameter of θ = 10 and a shape parameter of α = 1.6. Additionally, let Y be
an exponential variable with a mean value of 8. Let FX,Y (x, y) be the joint
distribution function. What is the largest possible value of FX,Y (7.2, 4.1)?

Example Solution. Let C(u, v) is the copula that links X and Y . Denote the
marginal distribution functions of X and Y as FX(x) and FY (y), respectively.
Since FX,Y (7.2, 4.1) = C[FX(7.2), FY (4.1)], we can use the marginal distribution
functions to obtain the arguments of the copula function:

For the Pareto variable, X:

FX(7.2) = 1 −
( 10

7.2 + 10

)1.6
= 0.58.

For the Exponential variable, Y :

FY (4.1) = 1 − e−0.125×4.1 = 0.40.

Hence, FX,Y (7.2, 4.1) = C[0.58, 0.40]. Now:

The largest value of the joint distribution function is obtained when the de-
pendence structure is comonotonic, or C(u, v) = min(u, v). Hence, the answer
required is min(0.58, 0.40) = 0.40.

16.5.2 Measures of Association

Empirical versions of Spearman’s rho and Kendall’s tau were introduced in
Section 16.1.2, respectively. The interesting thing about these expressions is
that these summary measures of association are based only on the ranks of
each variable. Thus, any strictly increasing transform does not affect these
measures of association. Specifically, consider two random variables, Y1 and Y2,
and let m1 and m2 be strictly increasing functions. Then, the association, when
measured by Spearman’s rho or Kendall’s tau, between m1(Y1) and m2(Y2)
does not change regardless of the choice of m1 and m2. For example, this allows
analysts to consider dollars, Euros, or log dollars, and still retain the same
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essential dependence. As we have seen in Section 16.1, this is not the case with
the Pearson’s measure of correlation.

Schweizer et al. (1981) established that the copula accounts for all the depen-
dence in the sense that the way Y1 and Y2 “move together” is captured by the
copula, regardless of the scale in which each variable is measured. They also
showed that (population versions of) the two standard nonparametric mea-
sures of association could be expressed solely in terms of the copula function.
Spearman’s correlation coefficient is given by

ρS = 12
∫ 1

0

∫ 1

0
{C(u, v) − uv} dudv. (16.5)

Kendall’s tau is given by

τ = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1.

For these expressions, we assume that Y1 and Y2 have a jointly continuous
distribution function.

Example. Loss versus Expenses. Earlier, in Section 16.3, we saw that the
Spearman’s correlation was 0.452, calculated with the rho function. Then, we
fit Frank’s copula to these data, and estimated the dependence parameter to be
γ̂ = 3.114. As an alternative, the following code shows how to use the empirical
version of equation (16.5). In this case, the Spearman’s correlation coefficient
is 0.462, which is close to the sample Spearman’s correlation coefficient, 0.452.

16.5.3 Tail Dependency

As discussed in Section 16.1.3, there are applications in which it is useful to
distinguish the part of the distribution in which the association is strongest.
For example, in insurance it is helpful to understand association among the
largest losses, that is, association in the right tails of the data. This subsection
defines upper and lower tail dependency in terms of copulas.

To capture this type of dependency, we use the right-tail concentration function,
defined as

R(z) = Pr(U1 > z, U2 > z)
1 − z

= Pr(U1 > z|U2 > z) = 1 − 2z + C(z, z)
1 − z

.

As a benchmark, R(z) will be equal to z under independence. Joe (1997) uses
the term “upper tail dependence parameter” for R = limz→1 R(z).

In the same way, one can define the left-tail concentration function as

L(z) = Pr(U1 ≤ z, U2 ≤ z)
z

= Pr(U1 ≤ z|U2 ≤ z) = C(z, z)
z

,
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with the lower tail dependence parameter L = limz→0 L(z). A tail depen-
dency concentration function captures the probability of two random variables
simultaneously having extreme values.

It is of interest to see how well a given copula can capture tail dependence.
To this end, we calculate the left and right tail concentration functions for
four different types of copulas; Normal, Frank, Gumbel and t- copulas. The
results are summarized for concentration function values for these four copulas
in Table 16.8. As in Venter (2002), we show L(z) for z ≤ 0.5 and R(z) for
z > 0.5 in the tail dependence plot in Figure 16.13. We interpret the tail
dependence plot to mean that both the Frank and Normal copula exhibit
no tail dependence whereas the t- and the Gumbel do so. The t- copula is
symmetric in its treatment of upper and lower tails.

Table 16.8. Tail Dependence Parameters for Four Copulas

Copula Lower Upper
Frank 0 0
Gumbel 0 0.74
Normal 0 0
t− 0.10 0.10
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FIGURE 16.13: Tail Dependence Plots

Example 16.5.2. Lower Tail Dependence Coefficient Example

The bivariate distribution function C(u, v) = uv. What is the lower tail
dependence coefficient of this copula?
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Example Solution.

λlo = lim
u→0+

C(u, u)
u

= lim
u→0+

u2

u
= lim

u→0+
u = 0

16.6 Importance of Dependence Modeling

In this section, you learn how to:

• Explain the importance of dependence modeling
• Explain the importance of copulas for regression applications

16.6.1 Why is Dependence Modeling Important?

Dependence modeling is important because it enables us to understand the
dependence structure by defining the relationship between variables in a dataset.
In insurance, ignoring dependence modeling may not impact pricing but could
lead to misestimation of required capital to cover losses. For instance, from
Section 16.3 , it is seen that there was a positive relationship between LOSS
and ALAE. This means that, if there is a large loss then we expect expenses to
be large as well and ignoring this relationship could lead to mis-estimation of
reserves.

To illustrate the importance of dependence modeling, we refer you back to
portfolio management Example 13.4.6 that assumed that the property and
liability risks are independent. Now, we incorporate dependence by allowing
the four lines of business to depend on one another through a Gaussian copula.
In Table 16.9, we show that dependence affects the portfolio quantiles (V aRq),
although not the expected values. For instance, the V aR0.99 for total risk which
is the amount of capital required to ensure, with a 99% degree of certainty that
the firm does not become technically insolvent is higher when we incorporate
dependence. This leads to less capital being allocated when dependence is
ignored and can cause unexpected solvency problems.
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Table 16.9. Results for Portfolio Expected Value and Quantiles
(V aRq)

Independent Expected V aR0.9 V aR0.95 V aR0.99
Value

Retained 269 300 300 300
Insurer 2, 274 4, 400 6, 173 11, 859
Total 2, 543 4, 675 6, 464 12, 159
Gaussian Copula Expected V aR0.9 V aR0.95 V aR0.99

Value
Retained 269 300 300 300
Insurer 2, 340 4, 988 7, 339 14, 905
Total 2, 609 5, 288 7, 639 15, 205

It should be noted that there are various methods of conducting dependence
modeling, but copulas are effective for many actuarial applications. It’s im-
portant to stress that each copula function captures a distinct dependency
structure based on its functional form and dependence parameters. Therefore,
utilizing copulas without comprehending their limitations and properties can
lead to biased and statistically incorrect results. Since selecting the right copula
involves extensive effort, here are some general tips that can assist:

1. When analyzing data, diagnostic and exploratory analysis can provide
insight into the dependence structure of the data, which can help deter-
mine suitable copula functions. For Archimedean Copulas specifically,
understanding the dependence structure can narrow down the appro-
priate type of copula function. For instance, the Gumbel-Hougaard
copula is not suitable for negative dependency, but the Frank Copula
can effectively capture three distinct types of dependency in the data.

2. Researchers cannot rely on Normal copula or Frank copula functions
to capture the upper and lower tail dependency in data. Instead, a
t copula with low degrees of freedom works well for both tails. The
Gumbel-Hougaard copula shows some upper tail dependence but less
or no lower tail dependence, while the Clayton copula exhibits strong
lower tail dependence.

16.6.2 Copula Regression

In regression studies, the response variable is determined by a group of ex-
planatory variables. This is often one of the initial statistical methods used
to understand the connection between the response and explanatory vari-
ables. However, Linear Models and Generalized Linear Models can impose
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constraints on the selection of distributions for the response variables, which
can be restrictive for practical data scenarios. For example, insurance claim
amounts and financial asset returns typically exhibit heavy-tailed and skewed
distributions, and may not adhere to normality patterns, with the possibility
of having extreme values.

The use of copulas in regression is gaining attention in the field of actuarial sci-
ence. Copula regression separates the dependency structure from the selection
of marginal distributions, allowing for greater flexibility in choosing distribu-
tions for actuarial applications. The parameters for the marginal distributions
and the copula distribution can be estimated either separately or together. The
maximum likelihood method is often effective for estimating the parameters.
However, for copula regression parameter estimation, the inference for margins
method (IFM) is commonly used. Copula functions preserve the marginals and
make predictions using the dependent variable’s conditional mean given the
covariates. See Krämer et al. (2013), Parsa and Klugman (2011); for detailed
examples on copula regression.

16.7 Further Resources and Contributors
Contributors

• Edward (Jed) Frees and Nii-Armah Okine, University of Wisconsin-
Madison, and Emine Selin Sarıdaş, Mimar Sinan University, are the
principal authors of the initial version of this chapter.

– Chapter reviewers include: Runhuan Feng, Fei Huang, Himchan Jeong,
Min Ji, and Toby White.

• Nii-Armah Okine, Appalachian State University, and Emine Selin Sarı-
daş, Mimar Sinan University, are the principal authors of the second edition
of this chapter. Email: okinean@appstate.edu and selin.saridas@msgsu.edu.tr
for chapter comments and suggested improvements.

– Chapter reviewers include Mélina Mailhot.

TS 16.A. Other Classic Measures of Scalar Associations
TS 16.A.1. Blomqvist’s Beta

Blomqvist (1950) developed a measure of dependence now known as Blomqvist’s
beta, also called the median concordance coefficient and the medial correlation
coefficient. Using distribution functions, this parameter can be expressed as

βB = 4F
(
F−1

X (1/2), F−1
Y (1/2)

)
− 1.

mailto:okinean@appstate.edu
mailto:selin.saridas@msgsu.edu.tr
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That is, first evaluate each marginal at its median (F−1
X (1/2) and F−1

Y (1/2),
respectively). Then, evaluate the bivariate distribution function at the two
medians. After rescaling (multiplying by 4 and subtracting 1), the coefficient
turns out to have a range of [−1, 1], where 0 occurs under independence.

Like Spearman’s rho and Kendall’s tau, an estimator based on ranks is easy to
provide. First write βB = 4C(1/2, 1/2) − 1 = 2 Pr((U1 − 1/2)(U2 − 1/2)) − 1
where U1, U2 are uniform random variables. Then, define

β̂B = 2
n

n∑
i=1

I
(

(R(Xi) − n+ 1
2 )(R(Yi) − n+ 1

2 ) ≥ 0
)

− 1.

See, for example, Joe (2014), page 57 or Hougaard (2000), page 135, for more
details.

Because Blomqvist’s parameter is based on the center of the distribution,
it is particularly useful when data are censored; in this case, information in
extreme parts of the distribution are not always reliable. How does this affect
a choice of association measures? First, recall that association measures are
based on a bivariate distribution function. So, if one has knowledge of a good
approximation of the distribution function, then calculation of an association
measure is straightforward in principle. Second, for censored data, bivariate
extensions of the univariate Kaplan-Meier distribution function estimator
are available. For example, the version introduced in Dabrowska (1988) is
appealing. However, because of instances when large masses of data appear
at the upper range of the data, this and other estimators of the bivariate
distribution function are unreliable. This means that, summary measures of
the estimated distribution function based on Spearman’s rho or Kendall’s tau
can be unreliable. For this situation, Blomqvist’s beta appears to be a better
choice as it focuses on the center of the distribution. Hougaard (2000), Chapter
14, provides additional discussion.

You can obtain the Blomqvist’s beta, using the betan() function from the
copula library in R. From below, βB = 0.3 between the Coverage rating
variable in millions of dollars and Claim amount variable in dollars.

In addition, to show that the Blomqvist’s beta is invariant under strictly
increasing transformations, βB = 0.3 between the Coverage rating variable in
logarithmic millions of dollars and Claim amount variable in dollars.

TS 16.A.2. Nonparametric Approach Using Spearman Correlation with Tied
Ranks

For the first variable, the average rank of observations in the sth row is
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r1s = nm1• + · · · + ns−1,• + 1
2 (1 + ns•)

and similarly r2t = 1
2 [(n•m1 + · · · + n•,s−1 + 1) + (n•m1 + · · · + n•s)]. With

this, we have Spearman’s rho with tied rank is

ρ̂S =
∑m2

s=m1

∑m2
t=m1 nst(r1s − r̄)(r2t − r̄)[∑m2

s=m1 ns•(r1s − r̄)2∑m2
t=m1 n•t(r2t − r̄)2

]2
where the average rank is r̄ = (n+ 1)/2.

Special Case: Binary Data. Here, m1 = 0 and m2 = 1. For the first variable
ranks, we have r10 = (1 + n0•)/2 and r11 = (n0• + 1 + n)/2. Thus, r10 − r̄ =
(n0• −n)/2 and r11 − r̄ = n0•/2. This means that we have ∑1

s=0 ns•(r1s − r̄)2 =
n(n− n0•)n0•/4 and similarly for the second variable. For the numerator, we
have

1∑
s=0

1∑
t=0

nst(r1s − r̄)(r2t − r̄)

= n00
n0• − n

2
n•0 − n

2 + n01
n0• − n

2
n•0

2 + n10
n0•

2
n•0 − n

2 + n11
n0•

2
n•0

2
= 1

4(n00(n0• − n)(n•0 − n) + (n0• − n00)(n0• − n)n•0

+(n•0 − n00)n0•(n•0 − n) + (n− n•0 − n0• + n00)n0•n•0)

= 1
4(n00n

2 − n0•(n0• − n)n•0

+n•0n0•(n•0 − n) + (n− n•0 − n0•)n0•n•0)

= 1
4(n00n

2 − n0•n•0(n0• − n+ n•0 − n+ n− n•0 − n0•)

= n

4 (nn00 − n0•n•0).

This yields

ρ̂S = n(nn00 − n0•n•0)
4
√

(n(n− n0•)n0•/4)(n(n− n•0)n•0/4)

= nn00 − n0•n•0√
n0•n•0(n− n0•)(n− n•0)

= n00 − n(1 − π̂X)(1 − π̂Y )√
π̂X(1 − π̂X)π̂Y (1 − π̂Y )

where π̂X = (n− n0•)/n and similarly for π̂Y . Note that this is same form as
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the Pearson measure. From this, we see that the joint count n00 drives this
association measure.

You can obtain the ties-corrected Spearman correlation statistic rS using
the cor() function in R and selecting the spearman method. From below
ρ̂S = −0.09.
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Appendix A: Review of Statistical Inference

Chapter Preview. The appendix gives an overview of concepts and methods
related to statistical inference on the population of interest, using a random
sample of observations from the population. In the appendix, Section 17.1
introduces the basic concepts related to the population and the sample used
for making the inference. Section 17.2 presents the commonly used methods
for point estimation of population characteristics. Section 17.3 demonstrates
interval estimation that takes into consideration the uncertainty in the es-
timation, due to use of a random sample from the population. Section 17.4
introduces the concept of hypothesis testing for the purpose of variable and
model selection.

17.1 Basic Concepts

In this section, you learn the following concepts related to statistical inference.

• Random sampling from a population that can be summarized using a list of
items or individuals within the population

• Sampling distributions that characterize the distributions of possible outcomes
for a statistic calculated from a random sample

• The central limit theorem that guides the distribution of the mean of a
random sample from the population

Statistical inference is the process of making conclusions on the charac-
teristics of a large set of items/individuals (i.e., the population), using a
representative set of data (e.g., a random sample) from a list of items or
individuals from the population that can be sampled. While the process has a
broad spectrum of applications in various areas including science, engineering,
health, social, and economic fields, statistical inference is important to insur-
ance companies that use data from their existing policy holders in order to
make inference on the characteristics (e.g., risk profiles) of a specific segment

563
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TABLE 17.1: Wisconsin Property Fund Summary Statistics

Minimum First
Quartile

Median Mean Third
Quartile

Maximum Standard
Devia-
tion

Claim 1 789 2,250 26,623 6,171 12,922,218 368,030
Logarithmic Claims 0 6.67 7.719 7.804 8.728 16.374 1.683

of target customers (i.e., the population) whom the insurance companies do
not directly observe.

Example – Wisconsin Property Fund. Assume there are 1,377 individual
claims from the 2010 experience. Summary statistics are in Table 17.1 and a
visual summary is in Figure 17.1.
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FIGURE 17.1: Distribution of Claims for Wisconsin Property Fund

Using the 2010 claim experience (the sample), the Wisconsin Property Fund
may be interested in assessing the severity of all claims that could potentially
occur, such as 2010, 2011, and so forth (the population). This process is
important in the contexts of ratemaking or claim predictive modeling. In order
for such inference to be valid, we need to assume that

• the set of 2010 claims is a random sample that is representative of the
population,

• the sampling distribution of the average claim amount can be estimated, so
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that we can quantify the bias and uncertainty in the estimation due to use
of a finite sample.

17.1.1 Random Sampling

In statistics, a sampling error occurs when the sampling frame, the list from
which the sample is drawn, is not an adequate approximation of the population
of interest. A sample must be a representative subset of a population, or
universe, of interest. If the sample is not representative, taking a larger sample
does not eliminate bias, as the same mistake is repeated over again and again.
Thus, we introduce the concept for random sampling that gives rise to a simple
random sample that is representative of the population.

We assume that the random variable X represents a draw from a popula-
tion with a distribution function F (·) with mean E[X] = µ and variance
Var[X] = E[(X − µ)2], where E(·) denotes the expectation of a random vari-
able. In random sampling, we make a total of n such draws represented by
X1, . . . , Xn, each unrelated to one another (i.e., statistically independent). We
refer to X1, . . . , Xn as a random sample (with replacement) from F (·), taking
either a parametric or nonparametric form. Alternatively, we may say that
X1, . . . , Xn are identically and independently distributed (iid) with distribution
function F (·).

17.1.2 Sampling Distribution

Using the random sample X1, . . . , Xn, we are interested in making a conclusion
on a specific attribute of the population distribution F (·). For example, we
may be interested in making an inference on the population mean, denoted
µ. It is natural to think of the sample mean, X̄ = ∑n

i=1 Xi, as an estimate
of the population mean µ. We call the sample mean as a statistic calculated
from the random sample X1, . . . , Xn. Other commonly used summary statistics
include sample standard deviation and sample quantiles.

When using a statistic (e.g., the sample mean X̄) to make statistical inference
on the population attribute (e.g., population mean µ), the quality of inference
is determined by the bias and uncertainty in the estimation, owing to the
use of a sample in place of the population. Hence, it is important to study
the distribution of a statistic that quantifies the bias and variability of the
statistic. In particular, the distribution of the sample mean, X̄ (or any other
statistic), is called the sampling distribution. The sampling distribution
depends on the sampling process, the statistic, the sample size n and the
population distribution F (·). The central limit theorem gives the large-sample
(sampling) distribution of the sample mean under certain conditions.
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17.1.3 Central Limit Theorem

In statistics, there are variations of the central limit theorem (CLT) ensuring
that, under certain conditions, the sample mean will approach the population
mean with its sampling distribution approaching the normal distribution as the
sample size goes to infinity. We give the Lindeberg–Levy CLT that establishes
the asymptotic sampling distribution of the sample mean X̄ calculated using a
random sample from a universe population having a distribution F (·).

Lindeberg–Levy CLT. LetX1, . . . , Xn be a random sample from a population
distribution F (·) with mean µ and variance σ2 < ∞. The difference between
the sample mean X̄ and µ, when multiplied by

√
n, converges in distribution

to a normal distribution as the sample size goes to infinity. That is,
√
n(X̄ − µ) →d N(0, σ).

Note that the CLT does not require a parametric form for F (·). Based on the
CLT, we may perform statistical inference on the population mean (we infer,
not deduce). The types of inference we may perform include estimation of
the population, hypothesis testing on whether a null statement is true, and
prediction of future samples from the population.

17.2 Point Estimation and Properties

In this section, you learn how to

• estimate population parameters using method of moments estimation
• estimate population parameters based on maximum likelihood estimation

The population distribution function F (·) can usually be characterized by a
limited (finite) number of terms called parameters, in which case we refer
to the distribution as a parametric distribution. In contrast, in nonpara-
metric analysis, the attributes of the sampling distribution are not limited to
a small number of parameters.

For obtaining the population characteristics, there are different attributes
related to the population distribution F (·). Such measures include the mean,
median, percentiles (i.e., 95th percentile), and standard deviation. Because
these summary measures do not depend on a specific parametric reference,
they are nonparametric summary measures.
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In parametric analysis, on the other hand, we may assume specific families
of distributions with specific parameters. For example, people usually think
of logarithm of claim amounts to be normally distributed with mean µ and
standard deviation σ. That is, we assume that the claims have a lognormal
distribution with parameters µ and σ. Alternatively, insurance companies
commonly assume that claim severity follows a gamma distribution with a
shape parameter α and a scale parameter θ. Here, the normal, lognormal, and
gamma distributions are examples of parametric distributions. In the above
examples, the quantities of µ, σ, α, and θ are known as parameters. For a given
parametric distribution family, the distribution is uniquely determined by the
values of the parameters.

One often uses θ to denote a summary attribute of the population. In parametric
models, θ can be a parameter or a function of parameters from a distribution
such as the normal mean and variance parameters. In nonparametric analysis,
it can take a form of a nonparametric summary such as the population mean
or standard deviation. Let θ̂ = θ̂(X1, . . . , Xn) be a function of the sample
that provides a proxy, or an estimate, of θ. It is referred to as a statistic, a
function of the sample X1, . . . , Xn.

Example – Wisconsin Property Fund. The sample mean 7.804 and the
sample standard deviation 1.683 can be either deemed as nonparametric
estimates of the population mean and standard deviation, or as parametric
estimates of µ and σ of the normal distribution concerning the logarithmic
claims. Using results from the lognormal distribution, we may estimate the
expected claim, the lognormal mean, as 10,106.8 ( = exp(7.804 + 1.6832/2) ).

For the Wisconsin Property Fund data, we may denote µ̂ = 7.804 and σ̂ = 1.683,
with the hat notation denoting an estimate of the parameter based on the
sample. In particular, such an estimate is referred to as a point estimate, a
single approximation of the corresponding parameter. For point estimation,
we introduce the two commonly used methods called the method of moments
estimation and maximum likelihood estimation.

17.2.1 Method of Moments Estimation

Before defining the method of moments estimation, we define the the concept
of moments. Moments are population attributes that characterize the dis-
tribution function F (·). Given a random draw X from F (·), the expectation
µk = E[Xk] is called the kth moment of X, k = 1, 2, 3, . . . For example,
the population mean µ is the first moment. Furthermore, the expectation
E[(X −µ)k] is called a kth central moment. Thus, the variance is the second
central moment.
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Using the random sample X1, . . . , Xn, we may construct the corresponding
sample moment, µ̂k = (1/n)∑n

i=1 X
k
i , for estimating the population attribute

µk. For example, we have used the sample mean X̄ as an estimator for the
population mean µ. Similarly, the second central moment can be estimated as
(1/n)∑n

i=1(Xi−X̄)2. Without assuming a parametric form for F (·), the sample
moments constitute nonparametric estimates of the corresponding population
attributes. Such an estimator based on matching of the corresponding sample
and population moments is called a method of moments estimator (mme).

While the mme works naturally in a nonparametric model, it can be used to es-
timate parameters when a specific parametric family of distribution is assumed
for F (·). Denote by θ = (θ1, · · · , θm) the vector of parameters corresponding
to a parametric distribution F (·). Given a distribution family, we commonly
know the relationships between the parameters and the moments. In particular,
we know the specific forms of the functions h1(·), h2(·), · · · , hm(·) such that
µ1 = h1(θ), µ2 = h2(θ), · · · , µm = hm(θ). Given the mme µ̂1, . . . , µ̂m from
the random sample, the mme of the parameters θ̂1, · · · , θ̂m can be obtained by
solving the equations of

µ̂1 = h1(θ̂1, · · · , θ̂m)
µ̂2 = h2(θ̂1, · · · , θ̂m)
... ...
µ̂m = hm(θ̂1, · · · , θ̂m).

Example – Wisconsin Property Fund. Assume that the claims follow a
lognormal distribution, so that logarithmic claims follow a normal distribution.
Specifically, assume log(X) has a normal distribution with mean µ and variance
σ2, denoted as log(X) ∼ N(µ, σ2). It is straightforward that the mme µ̂ = X̄

and σ̂ =
√

(1/n)∑n
i=1(Xi − X̄)2. For the Wisconsin Property Fund example,

the method of moments estimates are µ̂ = 7.804 and σ̂ = 1.683.

17.2.2 Maximum Likelihood Estimation

When F (·) takes a parametric form, the maximum likelihood method is widely
used for estimating the population parameters θ. Maximum likelihood estima-
tion is based on the likelihood function, a function of the parameters given the
observed sample. Denote by f(xi|θ) the probability function of Xi evaluated
at Xi = xi (i = 1, 2, · · · , n); it is the probability mass function in the case of a
discrete X and the probability density function in the case of a continuous X.
Assuming independence, the likelihood function of θ associated with the
observation (X1, X2, · · · , Xn) = (x1, x2, · · · , xn) = x can be written as

L(θ|x) =
n∏

i=1
f(xi|θ),
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with the corresponding log-likelihood function given by

l(θ|x) = log(L(θ|x)) =
n∑

i=1
log f(xi|θ).

The maximum likelihood estimator (mle) of θ is the set of values of θ that
maximize the likelihood function (log-likelihood function), given the observed
sample. That is, the mle θ̂ can be written as

θ̂ = argmaxθ∈Θl(θ|x),

where Θ is the parameter space of θ, and argmaxθ∈Θl(θ|x) is defined as the
value of θ at which the function l(θ|x) reaches its maximum.

Given the analytical form of the likelihood function, the mle can be obtained
by taking the first derivative of the log-likelihood function with respect to θ,
and setting the values of the partial derivatives to zero. That is, the mle are
the solutions of the equations of

∂l(θ̂|x)
∂θ̂1

= 0
∂l(θ̂|x)

∂θ̂2
= 0

· · ·
∂l(θ̂|x)

∂θ̂m
= 0,

provided that the second partial derivatives are negative.

For parametric models, the mle of the parameters can be obtained either
analytically (e.g., in the case of normal distributions and linear estimators), or
numerically through iterative algorithms such as the Newton-Raphson method
and its adaptive versions (e.g., in the case of generalized linear models with a
non-normal response variable).

Normal distribution. Assume (X1, X2, · · · , Xn) to be a random sample from
the normal distribution N(µ, σ2). With an observed sample (X1, X2, · · · , Xn) =
(x1, x2, · · · , xn), we can write the likelihood function of µ, σ2 as

L(µ, σ2) =
n∏

i=1

[
1√

2πσ2
e− (xi−µ)2

2σ2

]
,

with the corresponding log-likelihood function given by

l(µ, σ2) = −n

2 [log(2π) + log(σ2)] − 1
2σ2

n∑
i=1

(xi − µ)2 .
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By solving
∂l(µ̂, σ2)
∂µ̂

= 0,

we obtain µ̂ = x̄ = (1/n)∑n
i=1 xi. It is straightforward to verify that

∂l2(µ̂,σ2)
∂µ̂2 |µ̂=x̄ < 0. Since this works for arbitrary x, µ̂ = X̄ is the mle of

µ. Similarly, by solving
∂l(µ, σ̂2)
∂σ̂2 = 0,

we obtain σ̂2 = (1/n)∑n
i=1(xi − µ)2. Further replacing µ by µ̂, we derive the

mle of σ2 as σ̂2 = (1/n)∑n
i=1(Xi − X̄)2.

Hence, the sample mean X̄ and σ̂2 are both the mme and MLE for the mean
µ and variance σ2, under a normal population distribution F (·). More details
regarding the properties of the likelihood function are given in Appendix
Section 19.1.

17.3 Interval Estimation

In this section, you learn how to

• derive the exact sampling distribution of the mle of the normal mean
• obtain the large-sample approximation of the sampling distribution using

the large sample properties of the mle
• construct a confidence interval of a parameter based on the large sample

properties of the mle

Now that we have introduced the mme and mle, we may perform the first type
of statistical inference, interval estimation that quantifies the uncertainty
resulting from the use of a finite sample. By deriving the sampling distribution
of mle, we can estimate an interval (a confidence interval) for the parameter.
Under the frequentist approach (e.g., that based on maximum likelihood
estimation), the confidence intervals generated from the same random sampling
frame will cover the true value the majority of times (e.g., 95% of the times),
if we repeat the sampling process and re-calculate the interval over and over
again. Such a process requires the derivation of the sampling distribution for
the mle.
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17.3.1 Exact Distribution for Normal Sample Mean

Due to the additivity property of the normal distribution (i.e., a sum of
normal random variables that follows a multivariate normal distribution still
follows a normal distribution) and that the normal distribution belongs to
the location–scale family (i.e., a location and/or scale transformation of a
normal random variable has a normal distribution), the sample mean X̄ of
a random sample from a normal F (·) has a normal sampling distribution for
any finite n. Given Xi ∼iid N(µ, σ2), i = 1, . . . , n, the mle of µ has an exact
distribution

X̄ ∼ N

(
µ,
σ2

n

)
.

Hence, the sample mean is an unbiased estimator of µ. In addition, the
uncertainty in the estimation can be quantified by its variance σ2/n, that
decreases with the sample size n. When the sample size goes to infinity, the
sample mean will approach a single mass at the true value.

17.3.2 Large-sample Properties of MLE

For the mle of the mean parameter and any other parameters of other paramet-
ric distribution families, however, we usually cannot derive an exact sampling
distribution for finite samples. Fortunately, when the sample size is sufficiently
large, mles can be approximated by a normal distribution. Due to the general
maximum likelihood theory, the mle has some nice large-sample properties.

• The mle θ̂ of a parameter θ, is a consistent estimator. That is, θ̂ converges
in probability to the true value θ, as the sample size n goes to infinity.

• The mle has the asymptotic normality property, meaning that the esti-
mator will converge in distribution to a normal distribution centered around
the true value, when the sample size goes to infinity. Namely,

√
n(θ̂ − θ) →d N (0, V ) , as n → ∞,

where V is the inverse of the Fisher Information. Hence, the mle θ̂ approxi-
mately follows a normal distribution with mean θ and variance V/n, when
the sample size is large.

• The mle is efficient, meaning that it has the smallest asymptotic vari-
ance V , commonly referred to as the Cramer–Rao lower bound. In
particular, the Cramer–Rao lower bound is the inverse of the Fisher in-
formation defined as I(θ) = −E(∂2 log f(X; θ)/∂θ2). Hence, Var(θ̂) can be
estimated based on the observed Fisher information that can be written as
−∑n

i=1 ∂
2 log f(Xi; θ)/∂θ2.
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For many parametric distributions, the Fisher information may be derived
analytically for the mle of parameters. For more sophisticated parametric
models, the Fisher information can be evaluated numerically using numerical
integration for continuous distributions, or numerical summation for discrete
distributions. More details regarding maximum likelihood estimation are given
in Appendix Section 19.2.

17.3.3 Confidence Interval

Given that the mle θ̂ has either an exact or an approximate normal distribution
with mean θ and variance Var(θ̂), we may take the square root of the variance
and plug-in the estimate to define se(θ̂) =

√
Var(θ̂). A standard error is an

estimated standard deviation that quantifies the uncertainty in the estimation
resulting from the use of a finite sample. Under some regularity conditions
governing the population distribution, we may establish that the statistic

θ̂ − θ

se(θ̂)
converges in distribution to a Student-t distribution with degrees of freedom
(a parameter of the distribution) n− p, where p is the number of parameters
in the model other than the variance. For example, for the normal distribution
case, we have p = 1 for the parameter µ; for a linear regression model with an
independent variable, we have p = 2 for the parameters of the intercept and the
independent variable. Denote by tn−p(1−α/2) the 100×(1−α/2)-th percentile
of the Student-t distribution that satisfies Pr [t < tn−p (1 − α/2)] = 1 − α/2.
We have,

Pr
−tn−p

(
1 − α

2

)
<
θ̂ − θ

se(θ̂)
< tn−p

(
1 − α

2

) = 1 − α,

from which we can derive a confidence interval for θ. From the above
equation we can derive a pair of statistics, θ̂1 and θ̂2, that provide an interval
of the form [θ̂1, θ̂2]. This interval is a 1 − α confidence interval for θ such that
Pr
(
θ̂1 ≤ θ ≤ θ̂2

)
= 1 − α, where the probability 1 − α is referred to as the

confidence level. Note that the above confidence interval is not valid for
small samples, except for the case of the normal mean.

Normal distribution. For the normal population mean µ, the mle has an
exact sampling distribution X̄ ∼ N(µ, σ/

√
n), in which we can estimate se(θ̂)

by σ̂/
√
n. Based on the Cochran’s theorem, the resulting statistic has an

exact Student-t distribution with degrees of freedom n − 1. Hence, we can
derive the lower and upper bounds of the confidence interval as

µ̂1 = µ̂− tn−1

(
1 − α

2

)
σ̂√
n
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and
µ̂2 = µ̂+ tn−1

(
1 − α

2

)
σ̂√
n
.

When α = 0.05, tn−1(1 − α/2) ≈ 1.96 for large values of n. Based on the
Cochran’s theorem, the confidence interval is valid regardless of the sample
size.

Example – Wisconsin Property Fund. For the lognormal claim model,
(7.715235, 7.893208) is a 95% confidence interval for µ.

More details regarding interval estimation based the mle of other parameters
and distribution families are given in Appendix Chapter 19.

17.4 Hypothesis Testing

In this section, you learn how to

• understand the basic concepts in hypothesis testing including the level of
significance and the power of a test

• perform hypothesis testing such as a Student-t test based on the properties
of the mle

• construct a likelihood ratio test for a single parameter or multiple parameters
from the same statistical model

• use information criteria such as the Akaike’s information criterion or the
Bayesian information criterion to perform model selection

For the parameter(s) θ from a parametric distribution, an alternative type
of statistical inference is called hypothesis testing that verifies whether a
hypothesis regarding the parameter(s) is true, under a given probability called
the level of significance α (e.g., 5%). In hypothesis testing, we reject the
null hypothesis, a restrictive statement concerning the parameter(s), if the
probability of observing a random sample as extremal as the observed one is
smaller than α, if the null hypothesis were true.
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17.4.1 Basic Concepts

In a statistical test, we are usually interested in testing whether a statement
regarding some parameter(s), a null hypothesis (denoted H0), is true given
the observed data. The null hypothesis can take a general form H0 : θ ∈ Θ0,
where Θ0 is a subset of the parameter space Θ of θ that may contain multiple
parameters. For the case with a single parameter θ, the null hypothesis usually
takes either the form H0 : θ = θ0 or H0 : θ ≤ θ0. The opposite of the
null hypothesis is called the alternative hypothesis that can be written as
Ha : θ ̸= θ0 or Ha : θ > θ0. The statistical test on H0 : θ = θ0 is called a two-
sided as the alternative hypothesis contains two inequalities of Ha : θ < θ0 or
θ > θ0. In contrast, the statistical test on either H0 : θ ≤ θ0 or H0 : θ ≥ θ0 is
called a one-sided test.

A statistical test is usually constructed based on a statistic T and its exact
or large-sample distribution. The test typically rejects a two-sided test when
either T > c1 or T < c2, where the two constants c1 and c2 are obtained based
on the sampling distribution of T at a probability level α called the level of
significance. In particular, the level of significance α satisfies

α = Pr(reject H0|H0 is true),

meaning that if the null hypothesis were true, we would reject the null hypoth-
esis only 5% of the times, if we repeat the sampling process and perform the
test over and over again.

Thus, the level of significance is the probability of making a type I error
(error of the first kind), the error of incorrectly rejecting a true null hypothesis.
For this reason, the level of significance α is also referred to as the type I error
rate. Another type of error we may make in hypothesis testing is the type II
error (error of the second kind), the error of incorrectly accepting a false null
hypothesis. Similarly, we can define the type II error rate as the probability
of not rejecting (accepting) a null hypothesis given that it is not true. That is,
the type II error rate is given by

Pr(accept H0|H0 is false).

Another important quantity concerning the quality of the statistical test is
called the power of the test β, defined as the probability of rejecting a false
null hypothesis. The mathematical definition of the power is

β = Pr(reject H0|H0 is false).

Note that the power of the test is typically calculated based on a specific
alternative value of θ = θa, given a specific sampling distribution and a given
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sample size. In real experimental studies, people usually calculate the required
sample size in order to choose a sample size that will ensure a large chance
of obtaining a statistically significant test (i.e., with a prespecified statistical
power such as 85%).

17.4.2 Student-t test based on mle

Based on the results from Section 17.3.1, we can define a Student-t test for
testing H0 : θ = θ0. In particular, we define the test statistic as

t-stat = θ̂ − θ0

se(θ̂)
,

which has a large-sample distribution of a student-t distribution with degrees
of freedom n− p, when the null hypothesis is true (i.e., when θ = θ0).

For a given level of significance α, say 5%, we reject the null hypothesis
if the event t-stat < −tn−p (1 − α/2) or t-stat > tn−p (1 − α/2) occurs (the
rejection region). Under the null hypothesis H0, we have

Pr
[
t-stat < −tn−p

(
1 − α

2

)]
= Pr

[
t-stat > tn−p

(
1 − α

2

)]
= α

2 .

In addition to the concept of rejection region, we may reject the test based
on the p-value defined as 2 Pr(T > |t-stat|) for the aforementioned two-sided
test, where the random variable T ∼ Tn−p. We reject the null hypothesis if
p-value is smaller than and equal to α. For a given sample, a p-value is defined
to be the smallest significance level for which the null hypothesis would be
rejected.

Similarly, we can construct a one-sided test for the null hypothesis H0 :
θ ≤ θ0 (or H0 : θ ≥ θ0). Using the same test statistic, we reject the null
hypothesis when t-stat > tn−p (1 − α) (or t-stat < −tn−p (1 − α) for the test
on H0 : θ ≥ θ0). The corresponding p-value is defined as Pr(T > |t-stat|) (or
Pr(T < |t-stat|) for the test on H0 : θ ≥ θ0). Note that the test is not valid for
small samples, except for the case of the test on the normal mean.

One-sample t Test for Normal Mean. For the test on the normal mean
of the form H0 : µ = µ0, H0 : µ ≤ µ0 or H0 : µ ≥ µ0, we can define the test
statistic as

t-stat = X̄ − µ0

σ̂/
√
n
,

for which we have an exact sampling distribution t-stat ∼ Tn−1 from the
Cochran’s theorem, with Tn−1 denoting a Student-t distribution with degrees
of freedom n − 1. According to the Cochran’s theorem, the test is valid for
both small and large samples.
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TABLE 17.2: Wisconsin Property Fund Parameter Estimates

Parameter
Estimate

Standard
Error

t-stat

Gamma 10.190 0.050 203.831
-1.236 0.030 -41.180

Lognormal 7.804 0.045 172.089
0.520 0.019 27.303

Pareto 7.733 0.093 82.853

-0.001 0.054 -0.016
GB2 2.831 1.000 2.832

1.203 0.292 4.120
6.329 0.390 16.220
1.295 0.219 5.910

Example – Wisconsin Property Fund. Assume that mean logarithmic
claims have historically been approximately by µ0 = log(5000) = 8.517. We
might want to use the 2010 data to assess whether the mean of the distribution
has changed (a two-sided test), or whether it has increased (a one-sided test).
Given the actual 2010 average µ̂ = 7.804, we may use the one-sample t test to
assess whether this is a significant departure from µ0 = 8.517 (i.e., in testing
H0 : µ = 8.517). The test statistic t-stat = (8.517 − 7.804)/(1.683/

√
1377) =

15.72 > t1376 (0.975). Hence, we reject the two-sided test at α = 5%. Similarly,
we will reject the one-sided test at α = 5%.

Example – Wisconsin Property Fund. For numerical stability and ex-
tensions to regression applications, statistical packages often work with trans-
formed versions of parameters. Table 17.2 provides estimates based on the R
package VGAM (the function). More details on the mle of other distribution
families are given in Appendix Chapter 19.

17.4.3 Likelihood Ratio Test

In the previous subsection, we have introduced the Student-t test on a single
parameter, based on the properties of the mle. In this section, we define an
alternative test called the likelihood ratio test (LRT ). The LRT may be
used to test multiple parameters from the same statistical model.

Given the likelihood function L(θ|x) and Θ0 ⊂ Θ, the likelihood ratio test
statistic for testing H0 : θ ∈ Θ0 against Ha : θ /∈ Θ0 is given by

L = supθ∈Θ0 L(θ|x)
supθ∈Θ L(θ|x) ,
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and that for testing H0 : θ = θ0 versus Ha : θ ̸= θ0 is

L = L(θ0|x)
supθ∈Θ L(θ|x) .

The LRT rejects the null hypothesis when L < c, with the threshold depending
on the level of significance α, the sample size n, and the number of parameters
in θ. Based on the Neyman–Pearson Lemma, the LRT is the uniformly
most powerful test for testing H0 : θ = θ0 versus Ha : θ = θa. That is, it
provides the largest power β for a given α and a given alternative value θa.

Based on the Wilks’s Theorem, the likelihood ratio test statistic −2 log(L)
converges in distribution to a Chi-square distribution with the degree of freedom
being the difference between the dimensionality of the parameter spaces Θ
and Θ0, when the sample size goes to infinity and when the null model is
nested within the alternative model. That is, when the null model is a special
case of the alternative model containing a restricted sample space, we may
approximate c by χ2

p1−p2(1−α), the 100×(1−α) th percentile of the Chi-square
distribution, with p1 − p2 being the degrees of freedom, and p1 and p2 being
the numbers of parameters in the alternative and null models, respectively.
Note that the LRT is also a large-sample test that will not be valid for small
samples.

17.4.4 Information Criteria

In real-life applications, the LRT has been commonly used for comparing
two nested models. The LRT approach as a model selection tool, however,
has two major drawbacks: 1) It typically requires the null model to be nested
within the alternative model; 2) models selected from the LRT tends to provide
in-sample over-fitting, leading to poor out-of-sample prediction. In order to
overcome these issues, model selection based on information criteria, applicable
to non-nested models while taking into consideration the model complexity, is
more widely used for model selection. Here, we introduce the two most widely
used criteria, the Akaike’s information criterion and the Bayesian information
criterion.

In particular, the Akaike’s information criterion (AIC) is defined as

AIC = −2 logL(θ̂) + 2p,

where θ̂ denotes the mle of θ, and p is the number of parameters in the model.
The additional term 2p represents a penalty for the complexity of the model.
That is, with the same maximized likelihood function, the AIC favors model
with less parameters. We note that the AIC does not consider the impact from
the sample size n.
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Alternatively, people use the Bayesian information criterion (BIC) that
takes into consideration the sample size. The BIC is defined as

BIC = −2 logL(θ̂) + p log(n).

We observe that the BIC generally puts a higher weight on the number
of parameters. With the same maximized likelihood function, the BIC will
suggest a more parsimonious model than the AIC.

Example – Wisconsin Property Fund. Both the AIC and BIC statistics
suggest that the GB2 is the best fitting model whereas gamma is the worst.

Distribution AIC BIC
Gamma 28,305.2 28,315.6

Lognormal 26,837.7 26,848.2
Pareto 26,813.3 26,823.7

GB2 26,768.1 26,789.0

In Figure 17.2,

• black represents actual (smoothed) logarithmic claims
• Best approximated by green which is fitted GB2
• Pareto (purple) and Lognormal (lightblue) are also pretty good
• Worst are the exponential (in red) and gamma (in dark blue)

Sample size: 6258

You can learn more about the R code for this example at the online version of
this book, Actuarial Community (2025).

Contributors
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18
Appendix B: Iterated Expectations

This appendix introduces the laws related to iterated expectations. In par-
ticular, Section 18.1 introduces the concepts of conditional distribution and
conditional expectation. Section 18.2 introduces the Law of Iterated Expecta-
tions and the Law of Total Variance.

In some situations, we only observe a single outcome but can conceptualize
an outcome as resulting from a two (or more) stage process. Such types of
statistical models are called two-stage, or hierarchical models. Some special
cases of hierarchical models include:

• models where the parameters of the distribution are random variables;
• mixture distribution, where Stage 1 represents the draw of a subpopula-

tion and Stage 2 represents a random variable from a distribution that is
determined by the subpopulation drew in Stage 1;

• an aggregate distribution, where Stage 1 represents the draw of the number
of events and Stage 2 represents the loss amount occurred per event.

In these situations, the process gives rise to a conditional distribution of a
random variable (the Stage 2 outcome) given the other (the Stage 1 outcome).
The Law of Iterated Expectations can be useful for obtaining the unconditional
expectation or variance of a random variable in such cases.

18.1 Conditional Distribution and Conditional Expectation

In this section, you learn

• the concepts related to the conditional distribution of a random variable
given another

• how to define the conditional expectation and variance based on the condi-
tional distribution function

581
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The iterated expectations are the laws regarding calculation of the expectation
and variance of a random variable using a conditional distribution of the variable
given another variable. Hence, we first introduce the concepts related to the
conditional distribution, and the calculation of the conditional expectation and
variance based on a given conditional distribution.

18.1.1 Conditional Distribution

Here we introduce the concept of conditional distribution respectively for
discrete and continuous random variables.

Discrete Case

Suppose that X and Y are both discrete random variables, meaning that
they can take a finite or countable number of possible values with a positive
probability. The joint probability (mass) function of (X, Y ) is defined as

p(x, y) = Pr[X = x, Y = y].

When X and Y are independent (the value of X does not depend on that of
Y ), we have

p(x, y) = p(x)p(y),
with p(x) = Pr[X = x] and p(y) = Pr[Y = y] being the marginal probability
functions of X and Y , respectively.

Given the joint probability function, we may obtain the marginal probability
function of Y as

p(y) =
∑

x

p(x, y),

where the summation is over all possible values of x, and the marginal proba-
bility function of X can be obtained in a similar manner.

The conditional probability (mass) function of (Y |X) is defined as

p(y|x) = Pr[Y = y|X = x] = p(x, y)
Pr[X = x] ,

where we may obtain the conditional probability function of (X|Y ) in a
similar manner. In particular, the above conditional probability represents the
probability of the event Y = y given the event X = x. Hence, even in cases
where Pr[X = x] = 0, the function may be given as a particular form, in real
applications.

Continuous Case

For continuous random variables X and Y , we may define their joint probability
(density) function based on the joint cumulative distribution function. The
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joint cumulative distribution function of (X, Y ) is defined as

F (x, y) = Pr[X ≤ x, Y ≤ y].

When X and Y are independent, we have

F (x, y) = F (x)F (y),

with F (x) = Pr[X ≤ x] and F (y) = Pr[Y ≤ y] being the cumulative
distribution functions (cdfs) of X and Y , respectively. The random variable
X is referred to as a continuous random variable if its cdf is continuous on x.

When the cdf F (x) is continuous on x, then we define f(x) = ∂F (x)/∂x as
the (marginal) probability density function (pdf) of X. Similarly, if the
joint cdf F (x, y) is continuous on both x and y, we define

f(x, y) = ∂2F (x, y)
∂x∂y

as the joint probability density function of (X, Y ), in which case we refer
to the random variables as jointly continuous.

When X and Y are independent, we have

f(x, y) = f(x)f(y).

Given the joint density function, we may obtain the marginal density function
of Y as

f(y) =
∫

x
f(x, y) dx,

where the integral is over all possible values of x, and the marginal probability
function of X can be obtained in a similar manner.

Based on the joint pdf and the marginal pdf, we define the conditional
probability density function of (Y |X) as

f(y|x) = f(x, y)
f(x) ,

where we may obtain the conditional probability function of (X|Y ) in a similar
manner. Here, the conditional density function is the density function of y
given X = x. Hence, even in cases where Pr[X = x] = 0 or when f(x) is not
defined, the function may be given in a particular form in real applications.

18.1.2 Conditional Expectation and Conditional Variance

Now we define the conditional expectation and variance based on the conditional
distribution defined in the previous subsection.
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Discrete Case

For a discrete random variable Y , its expectation is defined as E[Y ] =∑
y y p(y) if its value is finite, and its variance is defined as Var[Y ] = E{(Y −

E[Y ])2} = ∑
y y

2 p(y) − {E[Y ]}2 if its value is finite.

For a discrete random variable Y , the conditional expectation of the random
variable Y given the event X = x is defined as

E[Y |X = x] =
∑

y

y p(y|x),

where X does not have to be a discrete variable, as far as the conditional
probability function p(y|x) is given.

Note that the conditional expectation E[Y |X = x] is a fixed number. When we
replace x with X on the right-hand side of the above equation, we can define
the expectation of Y given the random variable X as

E[Y |X] =
∑

y

y p(y|X),

which is still a random variable, and the randomness comes from X.

In a similar manner, we can define the conditional variance of the random
variable Y given the event X = x as

Var[Y |X = x] = E[Y 2|X = x]−{E[Y |X = x]}2 =
∑

y

y2 p(y|x)−{E[Y |X = x]}2.

The variance of Y given X, Var[Y |X] can be defined by replacing x by X in the
above equation, and Var[Y |X] is still a random variable and the randomness
comes from X.

Continuous Case

For a continuous random variable Y , its expectation is defined as E[Y ] =∫
y y f(y)dy if the integral exists, and its variance is defined as Var[Y ] =

E{(X − E[Y ])2} =
∫

y y
2 f(y)dy − {E[Y ]}2 if its value is finite.

For jointly continuous random variables X and Y , the conditional expecta-
tion of the random variable Y given X = x is defined as

E[Y |X = x] =
∫

y
y f(y|x)dy.

where X does not have to be a continuous variable, as far as the conditional
probability function f(y|x) is given.

Similarly, the conditional expectation E[Y |X = x] is a fixed number. When we
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replace x with X on the right-hand side of the above equation, we can define
the expectation of Y given the random variable X as

E[Y |X] =
∫

y
y p(y|X) dy,

which is still a random variable, and the randomness comes from X.

In a similar manner, we can define the conditional variance of the random
variable Y given the event X = x as

Var[Y |X = x] = E[Y 2|X = x]−{E[Y |X = x]}2 =
∫

y
y2 f(y|x) dy−{E[Y |X = x]}2.

The variance of Y given X, Var[Y |X] can then be defined by replacing x by
X in the above equation, and similarly Var[Y |X] is also a random variable
and the randomness comes from X.

18.2 Iterated Expectations and Total Variance

In this section, you learn

• the Law of Iterated Expectations for calculating the expectation of a random
variable based on its conditional distribution given another random variable

• the Law of Total Variance for calculating the variance of a random variable
based on its conditional distribution given another random variable

• how to calculate the expectation and variance based on an example of a
two-stage model

18.2.1 Law of Iterated Expectations

Consider two random variables X and Y , and h(X, Y ), a random variable
depending on the function h, X and Y .

Assuming all the expectations exist and are finite, the Law of Iterated
Expectations states that

E[h(X, Y )] = E {E [h(X, Y )|X]} , (18.1)

where the first (inside) expectation is taken with respect to the random variable
Y and the second (outside) expectation is taken with respect to X.
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For the Law of Iterated Expectations, the random variables may be discrete,
continuous, or a hybrid combination of the two. We use the example of discrete
variables of X and Y to illustrate the calculation of the unconditional expecta-
tion using the Law of Iterated Expectations. For continuous random variables,
we only need to replace the summation with the integral, as illustrated earlier
in the appendix.

Given p(y|x) the conditional pmf of X and Y , the conditional expectation of
h(X, Y ) given the event X = x is defined as

E [h(X, Y )|X = x] =
∑

y

h(x, y)p(y|x),

and the conditional expectation of h(X, Y ) given X being a random variable
can be written as

E [h(X, Y )|X] =
∑

y

h(X, y)p(y|X).

The unconditional expectation of h(X, Y ) can then be obtained by taking the
expectation of E [h(X, Y )|X] with respect to the random variable X. That is,
we can obtain E[h(X, Y )] as

E {E [h(X, Y )|X]} =
∑

x

{∑
y

h(x, y)p(y|x)
}
p(x)

=
∑

x

∑
y

h(x, y)p(y|x)p(x)

=
∑

x

∑
y

h(x, y)p(x, y) = E[h(X, Y )]

.

The Law of Iterated Expectations for the continuous and hybrid cases can be
proved in a similar manner, by replacing the corresponding summation(s) by
integral(s).

18.2.2 Law of Total Variance

Assuming that all the variances exist and are finite, the Law of Total Variance
states that

Var[h(X, Y )] = E {Var [h(X, Y )|X]} + Var {E [h(X, Y )|X]} , (18.2)

where the first (inside) expectation/variance is taken with respect to the
random variable Y and the second (outside) expectation/variance is taken
with respect to X. Thus, the unconditional variance equals to the expectation
of the conditional variance plus the variance of the conditional expectation.
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In order to verify this rule, first note that we can calculate a conditional variance
as

Var [h(X, Y )|X] = E[h(X, Y )2|X] − {E [h(X, Y )|X]}2 .

From this, the expectation of the conditional variance is

E{Var [h(X, Y )|X]} = E
{
E
[
h(X, Y )2|X

]}
− E

(
{E [h(X, Y )|X]}2

)
= E

[
h(X, Y )2]− E

(
{E [h(X, Y )|X]}2

)
. (18.3)

Further, note that the conditional expectation, E [h(X, Y )|X], is a function of
X, denoted g(X). Thus, g(X) is a random variable with mean E[h(X, Y )] and
variance

Var {E [h(X, Y )|X]} = Var[g(X)]
= E[g(X)2] − {E[g(X)]}2

= E
(
{E [h(X, Y )|X]}2

)
− {E[h(X, Y )]}2 . (18.4)

Thus, adding Equations
eqrefeq:AppBEV1 and
eqrefeq:AppBVE2 leads to the unconditional variance Var [h(X, Y )].

18.2.3 Application

To apply the Law of Iterated Expectations and the Law of Total Variance, we
generally adopt the following procedure.

1. Identify the random variable that is being conditioned upon, typically
a stage 1 outcome (that is not observed).

2. Conditional on the stage 1 outcome, calculate summary measures such
as a mean, variance, and the like.

3. There are several results of the step 2, one for each stage 1 outcome.
Then, combine these results using the iterated expectations or total
variance rules.

Mixtures of Finite Populations. Suppose that the random variable N1
represents a realization of the number of claims in a policy year from the
population of good drivers and N2 represents that from the population of bad
drivers. For a specific driver, there is a probability α that (s)he is a good driver.
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For a specific draw N , we have

N =

N1, if (s)he is a good driver;
N2, otherwise.

Let T be the indicator whether (s)he is a good driver, with T = 1 representing
that the driver is a good driver with Pr[T = 1] = α and T = 2 representing
that the driver is a bad driver with Pr[T = 2] = 1 − α.

From equation (18.1), we can obtain the expected number of claims as

E[N ] = E {E [N |T ]} = E[N1] × α + E[N2] × (1 − α).

From equation (18.2), we can obtain the variance of N as

Var[N ] = E {Var [N |T ]} + Var {E [N |T ]} .

To be more concrete, suppose that Nj follows a Poisson distribution with the
mean λj , j = 1, 2. Then we have

Var[N |T = j] = E[N |T = j] = λj , j = 1, 2.

Thus, we can derive the expectation of the conditional variance as

E {Var [N |T ]} = αλ1 + (1 − α)λ2

and the variance of the conditional expectation as

Var {E [N |T ]} = (λ1 − λ2)2α(1 − α).

Note that the later is the variance for a Bernoulli with outcomes λ1 and λ2,
and the binomial probability α.

Based on the Law of Total Variance, the unconditional variance of N is given
by

Var[N ] = αλ1 + (1 − α)λ2 + (λ1 − λ2)2α(1 − α).

18.3 Conjugate Distributions

As described in Section 9.3, for conjugate distributions the posterior and the
prior come from the same family of distributions. In insurance applications,
this broadly occurs in a “family of distribution families” known as the linear
exponential family which we introduce first.
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18.3.1 Linear Exponential Family

Definition. The distribution function of the linear exponential family is

f(x; γ, θ) = exp
(
xγ − b(γ)

θ
+ S (x, θ)

)
.

Here, x is a dependent variable and γ is the parameter of interest. The quantity
θ is a scale parameter. The term b(γ) depends only on the parameter γ, not
the dependent variable. The statistic S (x, θ) is a function of the dependent
variable and the scale parameter, not the parameter γ.

The dependent variable x may be discrete, continuous or a hybrid combination
of the two. Thus, f (·) may be interpreted to be a density or mass function,
depending on the application. Table 18.1 provides several examples, including
the normal, binomial and Poisson distributions.

Table 18.1. Selected Distributions of the Linear Exponential Family

Density or
Distribution Parameters Mass Function Components
General γ, θ exp

(
xγ−b(γ)

θ + S (x, θ)
)

γ, θ, b(γ), S(x, θ)
Normal µ, σ2 1

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
µ, σ2, γ2

2 ,−
(

x2

2θ + log(2πθ)
2

)
Binomal π

(n
x

)
πx(1 − π)n−x log

(
π

1−π

)
, 1, n log(1 + eγ),
log
(n

x

)
Poisson λ λx

x! exp(−λ) log λ, 1, eγ ,− log(x!)
Negative r, p Γ(x+r)

x!Γ(r) p
r(1 − p)x log(1 − p), 1,−r log(1 − eγ),

Binomial∗ log
[

Γ(x+r)
x!Γ(r)

]
Gamma α, γ 1

Γ(α)γαx
α−1 exp(−x/γ) − γ

α ,
1
α ,− log(−γ),−γ−1 log γ

− log
(
Γ(γ−1)

)
+ (γ−1 − 1) log x

∗This assumes that the parameter r is fixed but need not be an integer.

The Tweedie (see Section ??) and inverse Gaussian distributions are also
members of the linear exponential family. The linear exponential family of
distribution families is extensively used as the basis of generalized linear models
as described in, for example, Frees (2009).

18.3.2 Conjugate Distributions

Now assume that the parameter γ is random with distribution π(γ, τ), where
τ is a vector of parameters that describe the distribution of γ. In Bayesian
models, the distribution π is known as the prior and reflects our belief or
information about γ. The likelihood f(x|γ) is a probability conditional on γ.
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The distribution of γ with knowledge of the random variables, π(γ, τ |x), is
called the posterior distribution. For a given likelihood distribution, priors and
posteriors that come from the same parametric family are known as conjugate
families of distributions.

For a linear exponential likelihood, there exists a natural conju-
gate family. Specifically, consider a likelihood of the form f(x|γ) =
exp {(xγ − b(γ))/θ} exp {S (x, θ)}. For this likelihood, define the prior dis-
tribution

π(γ, τ) = C exp {γa1(τ) − b(γ)a2(τ))} ,
where C is a normalizing constant. Here, a1(τ) = a1 and a2(τ) = a2 are
functions of the parameters τ although we simplify the notation by dropping
explicit dependence on τ . The joint distribution of x and γ is given by f(x, γ) =
f(x|γ)π(γ, τ). Using Bayes Theorem, the posterior distribution is

π(γ, τ |x) = C1 exp
{
γ
(
a1 + x

θ

)
− b(γ)

(
a2 + 1

θ

)}
,

where C1 is a normalizing constant. Thus, we see that π(γ, τ |x) has the same
form as π(γ, τ).

Special case. Gamma-Poisson Model. Consider a Poisson likelihood so
that b(γ) = eγ and scale parameter (θ) equals one. Thus, we have

π(γ, τ) = C exp {γa1 − a2e
γ} = C (eγ)a1 exp (−a2e

γ) .

From the table of exponential family distributions, we recognize this to be a
gamma distribution. That is, we have that the prior distribution of λ = eγ

is a gamma distribution with parameters αprior = a1 + 1 and θ−1
prior = a2.

The posterior distribution is a gamma distribution with parameters αpost =
a1 + x+ 1 = αprior + x and θ−1

post = a2 + 1 = θ−1
prior + 1.

Special case. Normal-Normal Model. Consider a normal likelihood so
that b(γ) = γ2/2 and the scale parameter is σ2. Thus, we have

π(γ, τ) = C exp
{
γa1 − γ2

2 a2

}
= C1(τ) exp

{
−a2

2

(
γ − a1

a2

)2
}
,

The prior distribution of γ is normal with mean a1/a2 and variance a−1
2 . The

posterior distribution of γ given x is normal with mean (a1 + x/σ2)/(a2 + σ−2)
and variance (a2 + σ−2)−1.
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Special case. Beta-Binomial Model. Consider a binomial likelihood so
that b(γ) = n log(1 + eγ) and scale parameter equals one. Thus, we have

π(γ, τ) = C exp {γa1 − na2 log(1 + eγ)} = C
(

eγ

1 + eγ

)a1 (
1 − eγ

1 + eγ

)−na2+a1

.

This is a beta distribution. As in the other cases, prior parameters a1 and a2
are updated to become posterior parameters a1 + x and a2 + 1.
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19
Appendix C: Maximum Likelihood Theory

Chapter Preview. Appendix Chapter 17 introduced the maximum likelihood
theory regarding estimation of parameters from a parametric family. This
appendix gives more specific examples and expands some of the concepts.
Section 19.1 reviews the definition of the likelihood function, and introduces
its properties. Section 19.2 reviews the maximum likelihood estimators, and
extends their large-sample properties to the case where there are multiple
parameters in the model. Section 19.3 reviews statistical inference based on
maximum likelihood estimators, with specific examples on cases with multiple
parameters.

19.1 Likelihood Function

In this section, you learn

• the definitions of the likelihood function and the log-likelihood function
• the properties of the likelihood function

From Appendix Chapter 17, the likelihood function is a function of parameters
given the observed data. Here, we review the concepts of the likelihood function,
and introduces its properties that are bases for maximum likelihood inference.

19.1.1 Likelihood and Log-likelihood Functions

Here, we give a brief review of the likelihood function and the log-likelihood
function from Appendix Chapter 17. Let f(·|θ) be the probability function
of X, the probability mass function (pmf) if X is discrete or the probability
density function (pdf) if it is continuous. The likelihood is a function of the
parameters (θ) given the data (x). Hence, it is a function of the parameters with
the data being fixed, rather than a function of the data with the parameters

593
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being fixed. The vector of data x is usually a realization of a random sample
as defined in Appendix Chapter 17.

Given a realized random sample x = (x1, x2, · · · , xn) of size n, the likelihood
function is defined as

L(θ|x) = f(x|θ) =
n∏

i=1
f(xi|θ),

with the corresponding log-likelihood function given by

l(θ|x) = logL(θ|x) =
n∑

i=1
log f(xi|θ),

where f(x|θ) denotes the joint probability function of x. The log-likelihood
function leads to an additive structure that is easy to work with.

In Appendix Chapter 17, we have used the normal distribution to illustrate
concepts of the likelihood function and the log-likelihood function. Here, we
derive the likelihood and corresponding log-likelihood functions when the
population distribution is from the Pareto distribution family.

Example – Pareto Distribution. Suppose that X1, . . . , Xn represents a ran-
dom sample from a single-parameter Pareto distribution with the cumulative
distribution function given by

F (x) = Pr(Xi ≤ x) = 1 −
(500
x

)α

, x > 500,

with parameter θ = α.

The corresponding probability density function is f(x) = 500ααx−α−1 and the
log-likelihood function can be derived as

l(α|x) =
n∑

i=1
log f(xi;α) = nα log 500 + n logα− (α + 1)

n∑
i=1

log xi.

19.1.2 Properties of Likelihood Functions

In mathematical statistics, the first derivative of the log-likelihood function
with respect to the parameters, u(θ) = ∂l(θ|x)/∂θ, is referred to as the score
function, or the score vector when there are multiple parameters in θ. The
score function or score vector can be written as

u(θ) = ∂

∂θ
l(θ|x) = ∂

∂θ
log

n∏
i=1

f(xi; θ) =
n∑

i=1

∂

∂θ
log f(xi; θ),
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where u(θ) = (u1(θ), u2(θ), · · · , up(θ)) when θ = (θ1, · · · , θp), with the el-
ement uk(θ) = ∂l(θ|x)/∂θk being the partial derivative with respect to θk

(k = 1, 2, · · · , p).

The likelihood function has the following properties:

• One basic property of the likelihood function is that the expectation of the
score function with respect to x is 0. That is,

E[u(θ)] = E
[
∂

∂θ
l(θ|x)

]
= 0.

To illustrate this, we have

E
[
∂

∂θ
l(θ|x)

]
= E

[
∂

∂θf(x; θ)
f(x; θ)

]
=
∫ ∂

∂θ
f(y; θ)dy

= ∂

∂θ

∫
f(y; θ)dy = ∂

∂θ
1 = 0.

• Denote by ∂2

∂θ∂θ′ l(θ|x) the second derivative of the log-likelihood function.
This is a p × p matrix of second derivatives known as the hessian of the
log-likelihood. Another basic property of the likelihood function is that the
sum of the expectation of the hessian matrix and the expectation of the
Kronecker product of the score vector and its transpose is 0. That is,

E
(

∂2

∂θ∂θ′ l(θ|x)
)

+ E
(
∂l(θ|x)
∂θ

∂l(θ|x)
∂θ′

)
= 0.

• Define the Fisher information matrix as

I(θ) = E
(
∂l(θ|x)
∂θ

∂l(θ|x)
∂θ′

)
= −E

(
∂2

∂θ∂θ′ l(θ|x)
)
.

As the sample size n goes to infinity, the score function (vector) converges in
distribution to a normal distribution (or multivariate normal distri-
bution when θ contains multiple parameters) with mean 0 and variance (or
covariance matrix in the multivariate case) given by I(θ).

19.2 Maximum Likelihood Estimators
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In this section, you learn

• the definition and derivation of the maximum likelihood estimator (mle) for
parameters from a specific distribution family

• the properties of maximum likelihood estimators that ensure valid large-
sample inference of the parameters

• why using the mle-based method, and what caution that needs to be taken

In statistics, maximum likelihood estimators are values of the parameters θ
that are most likely to have been produced by the data.

19.2.1 Definition and Derivation of MLE

Based on the definition given in Appendix Chapter 17, the value of θ, say
θ̂mle, that maximizes the likelihood function, is called the maximum likelihood
estimator (mle) of θ.

Because the log function log(·) is a one-to-one function, we can also determine
θ̂mle by maximizing the log-likelihood function, l(θ|x). That is, the mle is
defined as

θ̂mle = argmaxθ∈Θ l(θ|x).
Given the analytical form of the likelihood function, the mle can be obtained
by taking the first derivative of the log-likelihood function with respect to θ,
and setting the values of the partial derivatives to zero. That is, the mle are
the solutions of the equations of

∂l(θ̂|x)
∂θ̂

= 0.

Example. Course C/Exam 4. May 2000, 21. You are given the following
five observations: 521, 658, 702, 819, 1217. You use the single-parameter Pareto
with cumulative distribution function:

F (x) = 1 −
(500
x

)α

, x > 500.

Calculate the maximum likelihood estimate of the parameter α.

Example Solution. With n = 5, the log-likelihood function is

l(α|x) =
5∑

i=1
log f(xi; α) = 5α log 500 + 5 log α − (α + 1)

5∑
i=1

log xi.
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Solving for the root of the score function yields

∂
∂α l(α|x) = 5 log 500 + 5/α −

∑5
i=1 log xi

=set 0 ⇒ α̂mle = 5∑5
i=1 log xi−5 log 500

= 2.453.

19.2.2 Asymptotic Properties of MLE

From Appendix Chapter 17, the MLE has some nice large-sample properties,
under certain regularity conditions. We presented the results for a single
parameter in Appendix Chapter 17, but results are true for the case when θ
contains multiple parameters. In particular, we have the following results, in a
general case when θ = (θ1, θ2, · · · , θp).

• The mle of a parameter θ, θ̂mle, is a consistent estimator. That is, the mle
θ̂mle converges in probability to the true value θ, as the sample size n goes
to infinity.

• The mle has the asymptotic normality property, meaning that the es-
timator will converge in distribution to a multivariate normal distribution
centered around the true value, when the sample size goes to infinity. Namely,

√
n(θ̂mle − θ) → N (0, V ) , as n → ∞,

where V denotes the asymptotic variance (or covariance matrix) of the
estimator. Hence, the mle θ̂mle has an approximate normal distribution with
mean θ and covariance matrix V /n, when the sample size is large.

• The mle is efficient, meaning that it has the smallest asymptotic variance V ,
commonly referred to as the Cramer–Rao lower bound. In particular, the
Cramer–Rao lower bound is the inverse of the Fisher information (matrix)
I(θ) defined earlier in this appendix. Hence, Var(θ̂mle) can be estimated
based on the observed Fisher information.

Based on the above results, we may perform statistical inference based on the
procedures defined in Appendix Chapter 17.

Example. Course C/Exam 4. Nov 2000, 13. A sample of ten observations
comes from a parametric family f(x, ; θ1, θ2) with log-likelihood function

l(θ1, θ2) =
10∑

i=1
f(xi; θ1, θ2) = −2.5θ2

1 − 3θ1θ2 − θ2
2 + 5θ1 + 2θ2 + k,

where k is a constant. Determine the estimated covariance matrix of the
maximum likelihood estimator, θ̂1, θ̂2.
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Example Solution. Denoting l = l(θ1, θ2), the hessian matrix of second deriva-
tives is (

∂2

∂θ2
1
l ∂2

∂θ1∂θ2
l

∂2

∂θ1∂θ2
l ∂2

∂θ2
1
l

)
=
(

−5 −3
−3 −2

)
Thus, the information matrix is:

I(θ1, θ2) = −E
(

∂2

∂θ∂θ′ l(θ|x)
)

=
(

5 3
3 2

)

and
I−1(θ1, θ2) = 1

5(2) − 3(3)

(
2 −3

−3 5

)
=
(

2 −3
−3 5

)
.

19.2.3 Use of Maximum Likelihood Estimation

The method of maximum likelihood has many advantages over alternative
methods such as the method of moments introduced in Appendix Chapter 17.

• It is a general tool that works in many situations. For example, we may be able
to write out the closed-form likelihood function for censored and truncated
data. Maximum likelihood estimation can be used for regression models
including covariates, such as survival regression, generalized linear models
and mixed models, that may include covariates that are time-dependent.

• From the efficiency of the mle, it is optimal, the best, in the sense that it
has the smallest variance among the class of all unbiased estimators for large
sample sizes.

• From the results on the asymptotic normality of the mle, we can obtain a large-
sample distribution for the estimator, allowing users to assess the variability
in the estimation and perform statistical inference on the parameters. The
approach is less computationally extensive than re-sampling methods that
require a large number of fittings of the model.

Despite its numerous advantages, mle has its drawback in cases such as gener-
alized linear models when it does not have a closed analytical form. In such
cases, maximum likelihood estimators are computed iteratively using numerical
optimization methods. For example, we may use the Newton-Raphson iterative
algorithm or its variations for obtaining the mle. Iterative algorithms require
starting values. For some problems, the choice of a close starting value is
critical, particularly in cases where the likelihood function has local minimums
or maximums. Hence, there may be a convergence issue when the starting value
is far from the maximum. It is important to start from different values across
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the parameter space and compare the maximized likelihood or log-likelihood
to make sure the algorithms have converged to a global maximum.

19.3 Statistical Inference Based on Maximum Likelihood Estima-
tion

In this section, you learn how to

• perform hypothesis testing based on mle for cases where there are multiple
parameters in θ

• perform likelihood ratio test for cases where there are multiple parameters in
θ

In Appendix Chapter 17, we have introduced maximum likelihood based
methods for statistical inference when θ contains a single parameter. Here, we
will extend the results to cases where there are multiple parameters in θ.

19.3.1 Hypothesis Testing

In Appendix Chapter 17, we defined hypothesis testing concerning the null
hypothesis, a statement on the parameter(s) of a distribution or model. One
important type of inference is to assess whether a parameter estimate is
statistically significant, meaning whether the value of the parameter is zero or
not.

We have learned earlier that the mle θ̂mle has a large-sample normal distribu-
tion with mean θ and the variance-covariance matrix I−1(θ). Based on the
multivariate normal distribution, the jth element of θ̂mle, say θ̂MLE,j, has a
large-sample univariate normal distribution.

Define se(θ̂MLE,j), the standard error (estimated standard deviation) to be
the square root of the jth diagonal element of I−1(θ)mle. To assess the null
hypothesis that θj = θ0, we define the t-statistic or t-ratio to be t(θ̂MLE,j) =
(θ̂MLE,j − θ0)/se(θ̂MLE,j).

Under the null hypothesis, it has a Student-t distribution with degrees of
freedom equal to n− p, with p being the dimension of θ.

For most actuarial applications, we have a large sample size n, so the t-
distribution is very close to the (standard) normal distribution. In the case
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when n is very large or when the standard error is known, the t-statistic can
be referred to as a z-statistic or z-score.

Based on the results from Appendix Chapter 17, if the t-statistic t(θ̂MLE,j)
exceeds a cut-off (in absolute value), then the test for the j parameter θj

is said to be statistically significant. If θj is the regression coefficient of the
j th independent variable, then we say that the jth variable is statistically
significant.

For example, if we use a 5% significance level, then the cut-off value is 1.96 using
a normal distribution approximation for cases with a large sample size. More
generally, using a 100α% significance level, then the cut-off is a 100(1 − α/2)%
quantile from a Student-t distribution with the degree of freedom being n− p.

Another useful concept in hypothesis testing is the p-value, shorthand for
probability value. From the mathematical definition in Appendix Chapter 17, a
p-value is defined as the smallest significance level for which the null hypothesis
would be rejected. Hence, the p-value is a useful summary statistic for the data
analyst to report because it allows the reader to understand the strength of
statistical evidence concerning the deviation from the null hypothesis.

19.3.2 MLE and Model Validation

In addition to hypothesis testing and interval estimation introduced in Ap-
pendix Chapter 17 and the previous subsection, another important type of
inference is selection of a model from two choices, where one choice is a special
case of the other with certain parameters being restricted. For such two models
with one being nested in the other, we have introduced the likelihood ratio
test (LRT) in Appendix Chapter 17. Here, we will briefly review the process of
performing a LRT based on a specific example of two alternative models.

Suppose that we have a (large) model under which we derive the maximum
likelihood estimator, θ̂mle. Now assume that some of the p elements in θ
are equal to zero and determine the maximum likelihood estimator over the
remaining set, with the resulting estimator denoted θ̂Reduced.

Based on the definition in Appendix Chapter 17, the statistic, LRT =
2
(
l(θ̂mle) − l(θ̂Reduced)

)
, is called the likelihood ratio statistic. Under the

null hypothesis that the reduced model is correct, the likelihood ratio has
a chi-square distribution with degrees of freedom equal to d, the number of
variables set to zero.

Such a test allows us to judge which of the two models is more likely to be
correct, given the observed data. If the statistic LRT is large relative to the
critical value from the chi-square distribution, then we reject the reduced model
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in favor of the larger one. Details regarding the critical value and alternative
methods based on information criteria are given in Appendix Chapter 17.
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Appendix D: Summary of Distributions

User Notes

• The R functions are from the packages actuar and invgamma.
• Tables appear when first loaded by the browser. To hide them, click on one

of the distributions, e.g., Poisson, and then click on the Hide button.
• More information on the R codes is available at the R Codes for Loss Data

Analytics site.

20.1 Discrete Distributions

Overview. This section summarizes selected discrete probability distributions
used throughout Loss Data Analytics. Relevant functions and R code are
provided.

20.1.1 The (a,b,0) Class
Poisson

Functions

Name Function
Parameter assumptions λ > 0
p0 e−λ

Probability mass function e−λλk

k!
pk

Expected value λ
E[N ]

Variance λ

Probability generating function eλ(z−1)

P (z)
a and b for recursion a = 0

b = λ

603

https://ewfrees.github.io/LDARcode/index.html
https://ewfrees.github.io/LDARcode/index.html
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R Commands

Function Name R Command
Probability mass function dpois(x =, lambda = λ)
Distribution function ppois(p =, lambda = λ)
Quantile function qpois(q =, lambda = λ)
Random sampling function rpois(n =, lambda = λ)

Geometric

Functions

Name Function
Parameter assumptions β > 0
p0

1
1+β

Probability mass function βk

(1+β)k+1

pk

Expected value β
E[N ]

Variance β(1 + β)
Probability generating function [1 − β(z − 1)]−1

P (z)
a and b for recursion a = β

1+β

b = 0

R Commands

Function Name R Command
Probability mass function dgeom(x =, prob = 1

1+β )
Distribution function pgeom(p =, prob = 1

1+β )
Quantile function qgeom(q =, prob = 1

1+β )
Random sampling function rgeom(n =, prob = 1

1+β )

Binomial

Functions
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Name Function
Parameter assumptions 0 < q < 1, m is an integer

0 ≤ k ≤ m

p0 (1 − q)m

Probability mass function
(m

k

)
qk(1 − q)m−k

pk

Expected value mq
E[N ]

Variance mq(1 − q)
Probability generating function [1 + q(z − 1)]m
P (z)

a and b for recursion a = −q
1−q

b = (m+1)q
1−q

R Commands

Function Name R Command
Probability mass function dbinom(x =, size = m, prob = q)
Distribution function pbinom(p =, size = m, prob = q)
Quantile function qbinom(q =, size = m, prob = q)
Random sampling function rbinom(n =, size = m, prob = q)

Negative Binomial

Functions

Name Function
Parameter assumptions r > 0, β > 0
p0 (1 + β)−r

Probability mass function r(r+1)···(r+k−1)βk

k!(1+β)r+k

pk

Expected value rβ
E[N ]

Variance rβ(1 + β)
Probability generating function [1 − β(z − 1)]−r

P (z)
a and b for recursion a = β

1+β

b = (r−1)β
1+β

R Commands
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Function Name R Command
Probability mass function dnbinom(x =, size = r, prob = 1

1+β )
Distribution function pnbinom(p =, size = r, prob = 1

1+β )
Quantile function qnbinom(q =, size = r, prob = 1

1+β )
Random sampling function rnbinom(n =, size = r, prob = 1

1+β )

20.1.2 The (a,b,1) Class
Zero Truncated Poisson

Functions

Name Function
Parameter assumptions λ > 0
pT

1
λ

eλ−1
Probability mass function λk

k!(eλ−1)
pT

k

Expected value λ
1−e−λ

E[N ]
Variance λ[1−(λ+1)e−λ]

(1−e−λ)2

Probability generating function eλz−1
eλ−1

P (z)
a and b for recursion a = 0

b = λ

R Commands

Function Name R Command
Probability mass function dztpois(x =, lambda = λ)
Distribution function pztpois(p =, lambda = λ)
Quantile function qztpois(q =, lambda = λ)
Random sampling function rztpois(n =, lambda = λ)

Zero Truncated Geometric

Functions
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Name Function
Parameter assumptions β > 0
pT

1
1

1+β

Probability mass function βk−1

(1+β)k

pT
k

Expected value 1 + β
E[N ]

Variance β(1 + β)
Probability generating function [1−β(z−1)]−1−(1+β)−1

1−(1+β)−1

P (z)
a and b for recursion a = β

1+β

b = 0

R Commands

Function Name R Command
Probability mass function dztgeom(x =, prob = 1

1+β )
Distribution function pztgeom(p =, prob = 1

1+β )
Quantile function qztgeom(q =, prob = 1

1+β )
Random sampling function rztgeom(n =, prob = 1

1+β )

Zero Truncated Binomial

Functions

Name Function
Parameter assumptions 0 < q < 1, m is an integer

0 ≤ k ≤ m

pT
1

m(1−q)m−1q
1−(1−q)m

Probability mass function (m
k )qk(1−q)m−k

1−(1−q)m

pT
k

Expected value mq
1−(1−q)m

E[N ]
Variance mq[(1−q)−(1−q+mq)(1−q)m]

[1−(1−q)m]2

Probability generating function [1+q(z−1)m]−(1−q)m

1−(1−q)m

P (z)
a and b for recursion a = −q

1−q

b = (m+1)q
1−q
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R Commmands

Function Name R Command
Probability mass function dztbinom(x =, size = m, prob = p)
Distribution function pztbinom(p =, size = m, prob = p)
Quantile function qztbinom(q =, size = m, prob = p)
Random sampling function rztbinom(n =, size = m, prob = p)

Zero Truncated Negative Binomial

Functions

Name Function
Parameter assumptions r > −1, r ̸= 0
pT

1
rβ

(1+β)r+1−(1+β)

Probability mass function r(r+1)···(r+k−1)
k![(1+β)r−1] ( β

1+β )k

pT
k

Expected value rβ
1−(1+β)−r

E[N ]
Variance rβ[(1+β)−(1+β+rβ)(1+β)−r]

[1−(1+β)−r]2

Probability generating function [1−β(z−1)]−r−(1+β)−r

1−(1+β)−r

P (z)
a and b for recursion a = β

1+β

b = (r−1)β
1+β

R Commands

Function Name R Command
Probability mass function dztnbinom(x =, size = r, prob = 1

1+β )
Distribution function pztnbinom(p =, size = r, prob = 1

1+β )
Quantile function qztnbinom(q =, size = r, prob = 1

1+β )
Random sampling function rztnbinom(n =, size = r, prob = 1

1+β )

Logarithmic

Functions
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Name Function
Parameter assumptions β > 0
pT

1
β

(1+β)ln(1+β)

Probability mass function βk

k(1+β)k ln(1+β)
pT

k

Expected value β
ln(1+β)

E[N ]

Variance
β[1+β− β

ln(1+β) ]
ln(1+β)

Probability generating function 1 − ln[1−β(z−1)]
ln(1+β)

P (z)
a and b for recursion a = β

1+β

b = −β
1+β

R Commands

Function Name R Command
Probability mass function dnbinom(x =, prob = β

1+β )
Distribution function pnbinom(p =, prob = β

1+β )
Quantile function qnbinom(q =, prob = β

1+β )
Random sampling function rnbinom(n =, prob = β

1+β )

20.2 Continuous Distributions

Overview. This section summarizes selected continuous probability distribu-
tions used throughout Loss Data Analytics. Relevant functions, R code, and
illustrative graphs are provided.

20.2.1 One Parameter Distributions
Exponential

Functions
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Name Function
Parameter assumptions θ > 0
Probability density 1

θe
−x/θ

function f(x)
Distribution function 1 − e−x/θ

F (x)
kth raw moment θkΓ(k + 1)

E[Xk] k > −1
V aRp(x) −θ ln(1 − p)
Limited Expected Value θ(1 − e−x/θ)

E[X ∧ x]

R Commands

Function Name R Command
Density function dexp(x =, rate = 1/θ)
Distribution function pexp(p =, rate = 1/θ)
Quantile function qexp(q =, rate = 1/θ)
Random sampling function rexp(n =, rate = 1/θ)

Illustrative Graph
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Inverse Exponential

Functions

Name Function
Parameter assumptions θ > 0
Probability density θe−θ/x

x2

function f(x)
Distribution function e−θ/x

F (x)
kth raw moment θkΓ(1 − k)

E[Xk] k < 1
E[(X ∧ x)k] θkG(1 − k; θ/x) + xk(1 − e−θ/x)

R Commands

Function Name R Command
Density function dinvexp(x =, scale = θ)
Distribution function pinvexp(p =, scale = θ)
Quantile function qinvexp(q =, scale = θ)
Random sampling function rinvexp(n =, scale = θ)

Illustrative Graph
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Single Parameter Pareto

Functions

Name Function
Parameter assumptions θ is known, x > θ, α > 0
Probability density αθα

xα+1

function f(x)
Distribution function 1 − (θ/x)α

F (x)
kth raw moment αθk

α−k

E[Xk] k < α

E[(X ∧ x)k] αθk

α−k − kθα

(α−k)xα−k

x ≥ θ

R Commands

Function Name R Command
Density function dpareto1(x =, shape = α,min = θ)
Distribution function ppareto1(p =, shape = α,min = θ)
Quantile function qpareto1(q =, shape = α,min = θ)
Random sampling function rpareto1(n =, shape = α,min = θ)
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Illustrative Graph
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20.2.2 Two Parameter Distributions
Pareto

Functions



614 20 Appendix D: Summary of Distributions

Name Function
Parameter assumptions θ > 0, α > 0
Probability density αθα

(x+θ)α+1

function f(x)
Distribution function 1 −

(
θ

x+θ

)α

F (x)
kth raw moment θkΓ(k+1)Γ(α−k)

Γ(α)
E[Xk] −1 < k < α

Limited Expected Value: α ̸= 1 θ
α−1

[
1 −

(
θ

x+θ

)α−1]
E[X ∧ x]

Limited Expected Value: α = 1 −θ ln
(

θ
x+θ

)
E[X ∧ x]

E[(X ∧ x)k] θkΓ(k+1)Γ(α−k)
Γ(α) β(k + 1, α− k; x

x+θ ) + xk( θ
x+θ )α

R Commands

Function Name R Command
Density function dpareto(x =, shape = α, scale = θ)
Distribution function ppareto(p =, shape = α, scale = θ)
Quantile function qpareto(q =, shape = α, scale = θ)
Random sampling function rpareto(n =, shape = α, scale = θ)

Illustrative Graph
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Inverse Pareto

Functions

Name Function
Parameter assumptions θ > 0, τ > 0
Probability density τθxτ−1

(x+θ)τ −1
function f(x)

Distribution function
(

x
x+θ

)τ

F (x)
kth raw moment θkΓ(τ+k)Γ(1−k)

Γ(τ)
E[Xk] −τ < k < 1

E[(X ∧ x)k] θkτ
∫ x/(x+θ)

0 yτ+k−1(1 − y)−kdy + xk[1 −
(

x
x+θ

)τ

]
k > −τ

R Commands
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Function Name R Command
Density function dinvpareto(x =, shape = τ, scale = θ)
Distribution function pinvpareto(p =, shape = τ, scale = θ)
Quantile function qinvpareto(q =, shape = τ, scale = θ)
Random sampling function rinvpareto(n =, shape = τ, scale = θ)

Illustrative Graph
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Name Function
Parameter assumptions θ > 0, γ > 0, u = (x/θ)γ

1+(x/θ)γ

Probability density γ(x/θ)γ

x[1+(x/θ)γ ]2

function f(x)
Distribution function u
F (x)

kth raw moment θkΓ(1 + (k/γ))Γ(1 − (k/γ))
E[Xk] −γ < k < γ

E[(X ∧ x)k] θkΓ(1 + (k/γ))Γ(1 − (k/γ))β(1 + (k/γ), 1 − (k/γ);u) + xk(1 − u)
k > −γ

Illustrative Graph
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Name Function
Parameter assumptions θ > 0, α > 0, u = 1

1+(x/θ)α

Probability density α2(x/θ)α

x[1+(x/θ)α]α+1

function f(x)
Distribution function 1 − uα

F (x)
kth raw moment θkΓ(1+(k/α))Γ(α−(k/α))

Γ(α)
E[Xk] −α < k < α2

E[(X ∧ x)k] θkΓ(1+(k/α))Γ(α−(k/α))
Γ(α) β(1 + (k/α), α− (k/α); 1 − u) + xkuα

k > −α

R Commands

Function Name R Command
Density function dparalogis(x =, shape = α, scale = θ)
Distribution function pparalogis(p =, shape = α, scale = θ)
Quantile function qparalogis(q =, shape = α, scale = θ)
Random sampling function rparalogis(n =, shape = α, scale = θ)

Illustrative Graph
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Gamma

Functions

Name Function
Parameter assumptions θ > 0, α > 0
Probability density 1

θαΓ(α)x
α−1e−x/θ

function f(x)
Distribution function Γ(α; x

θ )
F (x)

kth raw moment θk Γ(α+k)
Γ(α)

E[Xk] k > −α
θkΓ(k+α)

Γ(α) Γ(k + α;x/θ) + xk[1 − Γ(α;x/θ)]
E[X ∧ x]k k > −α

R Commands

Density function dgamma(x =, shape = α, scale = θ)
Distribution function pgamma(p =, shape = α, scale = θ)
Quantile function qgamma(q =, shape = α, scale = θ)
Random sampling function rgamma(n =, shape = α, scale = θ)

Illustrative Graph
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Inverse Gamma

Functions

Name Function
Probability density (θ/x)αe−θ/x

xΓ(α)
function f(x)

Distribution function 1 − Γ(α; θ/x)
F (x)

kth raw moment θkΓ(α−k)
Γ(α)

E[Xk] k < α

E[(X ∧ x)k] θkΓ(α−k)
Γ(α) [1 − Γ(α− k; θ/x)] + xkΓ(α; θ/x)

R Commands

Function Name R Command
Density function dinvgamma(x =, shape = α, scale = θ)
Distribution function pinvgamma(p =, shape = α, scale = θ)
Quantile function qinvgamma(q =, shape = α, scale = θ)
Random sampling function rinvgamma(n =, shape = α, scale = θ)
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Illustrative Graph
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Weibull

Functions

Name Function
Parameter assumptions θ > 0, α > 0

Probability density
α

(
x
θ

)α

exp

(
−

(
x
θ

)α)
x

function f(x)
Distribution function 1 − exp

(
−
(

x
θ

)α)
F (x)

kth raw moment θkΓ(1 + k
α)

E[Xk] k > −α
E[(X ∧ x)k] θkΓ(1 + k

α)Γ
[
1 + k

α ;
(

x
θ

)α]
+ xk exp

(
−
(

x
θ

)α)
k > −α

R Commands
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Function Name R Command
Density function dweibull(x =, shape = α, scale = θ)
Distribution function pweibull(p =, shape = α, scale = θ)
Quantile function qweibull(q =, shape = α, scale = θ)
Random sampling function rweibull(n =, shape = α, scale = θ)

Illustrative Graph
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Name Function
Parameter assumptions θ > 0, τ > 0

Probability density
τ(θ/x)τ exp

(
−

(
θ
x

)τ)
x

function f(x)
Distribution function exp

(
−
(

θ
x

)τ)
F (x)

kth raw moment θkΓ(1 − (k/τ))
E[Xk] k < τ

E[(X ∧ x)k] θkΓ(1 − (k/τ))[1 − Γ(1 − (k/τ); (θ/x)τ )] + xk[1 − e−(θ/x)τ ]

R Commands

Function Name R Command
Density function dinvweibull(x =, shape = τ, scale = θ)
Distribution function pinvweibull(p =, shape = τ, scale = θ)
Quantile function qinvweibull(q =, shape = τ, scale = θ)
Random sampling function rinvweibull(n =, shape = τ, scale = θ)

Illustrative Graph
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Uniform

Functions

Name Function
Parameter assumptions −∞ < α < β < ∞
Probability density 1

β−α

f(x)
Distribution function x−α

β−α

F (x)
Mean β+α

2
E[X]
Variance (β−α)2

12
E[(X − µ)2]
E[(X − µ)k] µk = 0 for odd k

µk = (β−α)k

2k(k+1) for even k

R Commands
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Function Name R Command
Density function dunif(x =,min = a,max = b)
Distribution function punif(p =,min = a,max = b)
Quantile function qunif(q =,min = a,max = b)
Random sampling function runif(n =,min = a,max = b)

Illustrative Graph
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Name Function
Parameter assumptions −∞ < µ < ∞, σ > 0
Probability density 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
f(x)
Distribution function Φ

(
x−µ

σ

)
F (x)

Mean µ
E[X]
Variance σ2

E[(X − µ)2]
E[(x− µ)k] µk = 0 for even k

µk = k!σ2

( k
2 )!2k/2 for odd k

R Commands

Function Name R Command
Density function dnorm(x =,mean = µ, sd = σ)
Distribution function pnorm(p =,mean = µ, sd = σ)
Quantile function qnorm(q =,mean = µ, sd = σ)
Random sampling function rnorm(n =,mean = µ, sd = σ)

Illustrative Graph
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Cauchy

Functions

Name Function
Parameter assumptions −∞ < α < ∞, β > 0
Probability density 1

πβ [1 +
(

x−α
β

)2
]−1

function f(x)

R Commands

Function Name R Command
Density function dcauchy(x =, location = α, scale = β)
Distribution function pcauchy(p =, location = α, scale = β)
Quantile function qcauchy(q =, location = α, scale = β)
Random sampling function rcauchy(n =, location = α, scale = β)

Illustrative Graph
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20.2.3 Three Parameter Distributions
Generalized Pareto

Functions

Name Function
Parameter assumptions θ > 0, α > 0, τ > 0, u = x

x+θ

Probability density Γ(α+τ)
Γ(α)Γ(τ)

θαxτ−1

(x+θ)α+τ

function f(x)
Distribution function β(τ, α;u)
F (x)

kth raw moment θkΓ(τ+1)Γ(α−k)
Γ(α)Γ(τ)

E[Xk] −τ < k < α

E[(X ∧ x)k] θkΓ(τ+k)Γ(α−k)
Γ(α)Γ(τ) β(τ + k, α− k;u) + xk[1 − β(τ, α;u)]

k > −τ

R Commands
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Function Name R Command
Density function dgenpareto(x =, shape1 = α, shape2 = τ, scale = θ)
Distribution function pgenpareto(q =, shape1 = α, shape2 = τ, scale = θ)
Quantile function qgenpareto(p =, shape1 = α, shape2 = τ, scale = θ)
Random sampling function rgenpareto(r =, shape1 = α, shape2 = τ, scale = θ)

Illustrative Graph
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Name Function
Parameter assumptions θ > 0, α > 0, γ > 0, u = 1

1+(x/θ)γ

Probability density αγ(x/θ)γ

x[1+(x/θ)γ ]α+1

function f(x)
Distribution function 1 − uα

F (x)
kth raw moment θkΓ(1+(k/γ))Γ(α−(k/γ))

Γ(α)
E[Xk] −γ < k < αγ

E[(X ∧ x)k] θkΓ(1+(k/γ))Γ(α−(k/γ))
Γ(α) β(1 + (k/γ), α− (k/γ); 1 − u) + xkuα

k > −γ

R Commands

Function Name R Command
Density function dburr(x =, shape1 = α, shape2 = γ, scale = θ)
Distribution function pburr(p =, shape1 = α, shape2 = γ, scale = θ)
Quantile function qburr(q =, shape1 = α, shape2 = γ, scale = θ)
Random sampling function rburr(n =, shape1 = α, shape2 = γ, scale = θ)

Illustrative Graph
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Inverse Burr

Functions

Name Function
Parameter assumptions θ > 0, τ > 0, γ > 0, u = (x/θ)γ

1+(x/θ)γ

Probability density τγ(x/θ)τγ

x[1+(x/θ)γ ]τ+1

function f(x)
Distribution function uτ

F (x)
kth raw moment θkΓ(τ+(k/γ))Γ(1−(k/γ))

Γ(τ)
E[Xk] −τγ < k < γ

E[(X ∧ x)k] θkΓ(τ+(k/γ))Γ(1−(k/γ))
Γ(τ) β(τ + (k/γ), 1 − (k/γ);u) + xk[1 − uτ ]

k > −τγ

R Commands
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Function Name R Command
Density function dinvburr(x =, shape1 = τ, shape2 = γ, scale = θ)
Distribution function pinvburr(p =, shape1 = τ, shape2 = γ, scale = θ)
Quantile function qinvburr(q =, shape1 = τ, shape2 = γ, scale = θ)
Random sampling function rinvburr(n =, shape1 = τ, shape2 = γ, scale = θ)

Illustrative Graph
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20.2.4 Four Parameter Distribution
Generalized Beta of the Second Kind (GB2)

Functions

Name Function
Parameter assumptions θ > 0, α1 > 0, α2 > 0, σ > 0
Probability density (x/θ)α2/σ

xσ B(α1,α2)[1+(x/θ)1/σ]α1+α2

function f(x)
kth raw moment θk B(α1+kσ,α2−kσ)

B(α1,α2)
E[Xk] k > 0
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R Commands

Please see the R Codes for Loss Data Analytics site for information about this
distribution.

20.2.5 Other Distributions

–>

Lognormal

Functions

Name Function
Parameter assumptions −∞ < µ < ∞, σ > 0
Probability density 1

x
√

2πσ
exp

(
− (ln x−µ)2

2σ2

)
function f(x)

Distribution function Φ
(

ln(x)−µ
σ

)
F (x)

kth raw moment exp(kµ+ k2σ2

2 )
E[Xk]

Limited Expected Value exp
(
kµ+ k2σ2

2

)
Φ
(

ln(x)−µ−kσ2

σ

)
+ xk

[
1 − Φ

(
ln(x)−µ

σ

)]
E[X ∧ x]

Illustrative Graph

https://ewfrees.github.io/LDARcode/index.html
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Inverse Gaussian

Functions

Name Function
Parameter assumptions θ > 0, µ > 0, z = x−µ

µ , y = x+µ
µ

Probability density
(

θ
2πx3

)1/2
exp

(
−θz2

2x

)
function f(x)

Distribution function Φ
[
z
(

θ
x

)1/2]
+ exp

(
2θ
µ

)
Φ
[

− y
(

θ
x

)1/2]
F (x)

Mean µ
E[X]
Var[X] µ3

θ

E[(X ∧ x)k] x− µxΦ
[
z
(

θ
x

)1/2]
− (µy) exp

(
2θ
µ

)
Φ
[

− y
(

θ
x

)1/2]

R Commands
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Function Name R Command
Density function dinvgauss(x =,mean = µ, dispersion = θ)
Distribution function pinvgauss(p =,mean = µ, dispersion = θ)
Quantile function qinvgauss(q =,mean = µ, dispersion = θ)
Random sampling function rinvgauss(n =,mean = µ, dispersion = θ)

Illustrative Graph
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20.2.6 Distributions with Finite Support
Beta

Functions
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Name Function
Parameter assumptions θ > 0, a > 0, b > 0, u = x

θ , 0 < x < θ

Probability density Γ(a+b)
Γ(a)Γ(b)u

a(1 − u)b−1 1
x

function f(x)
Distribution function β(a, b;u)
F (x)

kth raw moment θkΓ(a+b)Γ(a+k)
Γ(a)Γ(a+b+k)

E[Xk] k > −a
θka(a+1)···(a+k−1)

(a+b)(a+b+1)···(a+b+k−1)β(a+ k, b;u) + xk[1 − β(a, b;u)]
E[X ∧ x]k

R Commands

Function Name R Command
Density function dbeta(x =, shape1 = a, shape2 = b, ncp = θ)
Distribution function pbeta(p =, shape1 = a, shape2 = b, ncp = θ)
Quantile function qbeta(q =, shape1 = a, shape2 = b, ncp = θ)
Random sampling function rbeta(n =, shape1 = a, shape2 = b, ncp = θ)
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Generalized Beta

Functions

Name Function
Parameter assumptions θ > 0, a > 0, b > 0, τ > 0, 0 < x < θ , u = (x/θ)τ

Probability density Γ(a+b)
Γ(a)Γ(b)u

α(1 − u)b−1 τ
x

function f(x)
Distribution function β(a, b;u)
F (x)

kth raw moment θkΓ(a+b)Γ(a+(k/τ))
Γ(a)Γ(a+b+(k/τ))

E[Xk] k > −ατ
E[(X ∧ x)k] θkΓ(a+b)Γ(a+(k/τ))

Γ(a)Γ(a+b+(k/τ)) β(a+ (k/τ), b;u) + xk[1 − β(a, b;u)]

R Commmands

Function Name R Command
Density function dgenbeta(x =, shape1 = a, shape2 = b, shape3 = τ, scale = θ)
Distribution function pgenbeta(p =, shape1 = a, shape2 = b, shape3 = τ, scale = θ)
Quantile function qgenbeta(q =, shape1 = a, shape2 = b, shape3 = τ, scale = θ)
Random sampling function rgenbeta(n =, shape1 = a, shape2 = b, shape3 = τ, scale = θ)

Illustrative Graph
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20.3 Limited Expected Values

Overview. This section summarizes limited expected values for selected
continuous distributions.

Functions

Limited Expected Value Functions
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Distribuion Function
GB2 θΓ(τ+1)Γ(α−1)

Γ(α)Γ(τ) β(τ + 1, α− 1; x
x+β ) + x[1 − β(τ, α; x

x+β )]

Burr θΓ(1+ 1
γ

)Γ(α− 1
γ

)
Γ(α) β(1 + 1

γ , α− 1
γ ; 1 − 1

1+(x/θ)γ ) + x
(

1
1+(x/θ)γ

)α

Inverse Burr θΓ(τ+(1/γ))Γ(1−(1/γ))
Γ(τ) β(τ + 1

γ , 1 − 1
γ ; (x/θ)γ

1+(x/θ)γ ) + x[1 −
(

(x/θ)γ

1+(x/θ)γ

)τ

]
Pareto
α = 1 −θ ln

(
θ

x+θ

)
α ̸= 1 θ

α−1 [1 −
(

θ
x+θ

)α−1
]

Inverse Pareto θτ
∫ x/(x+θ)

0 yτ (1 − y)−1dy + x[1 −
(

x
x+θ

)τ

]

Loglogistic θΓ(1 + 1
γ )Γ(1 − 1

γ )β(1 + 1
γ , 1 − 1

γ ; (x/θ)γ

1+(x/θ)γ ) + x(1 − (x/θ)γ

1+(x/θ)γ )

Paralogistic θΓ(1+ 1
α

)Γ(α− 1
α

)
Γ(α) β(1 + 1

α , α− 1
α ; 1 − 1

1+(x/θ)α ) + x
(

1
1+(x/θ)α

)α

Inverse Paralogistic θΓ(τ+ 1
τ

)Γ(1− 1
τ

)
Γ(τ) β(τ + 1

τ , 1 − 1
τ ; (x/θ)τ

1+(x/θ)τ ) + x[1 −
(

(x/θ)τ

1+(x/θ)τ

)τ

]

Gamma θΓ(α+1)
Γ(α) Γ(α + 1; x

θ ) + x[1 − Γ(α; x
θ )]

Inverse Gamma θΓ(α−1)
Γ(α) [1 − Γ(α− 1; θ

x)] + xΓ(α; θ
x)

Weibull θΓ(1 + 1
α)Γ(1 + 1

α ;
(

x
θ

)α

) + x ∗ exp(−(x/θ)α)

Inverse Weibull θΓ(1 − 1
α)[1 − Γ(1 − 1

α ;
(

θ
x

)α

)] + x[1 − exp(−(θ/x)α)]
Exponential θ(1 − exp(−(x/θ)))
Inverse Exponential θG(0; θ

x) + x(1 − exp(−(θ/x)))
Lognormal exp(µ+ σ2/2)Φ

(
ln(x)−µ−σ2

σ

)
+ x[1 − Φ

(
ln(x)−µ

σ

)
]

Inverse Gaussian x− µ
(

x−µ
µ

)
Φ
[(

x−µ
µ

)(
θ
x

)1/2]
− µ

(
x+µ

µ

)
exp

(
2θ
µ

)
Φ
[

−
(

x+µ
µ

)(
θ
x

)1/2]
Single-Parameter Pareto αθ

α−1 − θα

(α−1)xα−1

Generalized Beta θΓ(a+b)Γ(a+ 1
τ

)
Γ(a)Γ(a+b+ 1

τ
) β(a+ 1

τ , b;
(

x
θ

)τ

) + x
[
1 − β(a, b;

(
x
θ

)τ

)
]

Beta θa
(a+b)β(a+ 1, b; x

θ ) + x[1 − β(a, b; x
θ )]

Illustrative Graph

Comparison of Limited Expected Values for Selected Distributions
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Distribution Parameters E[X] E[X ∧ 100] E[X ∧ 250] E[X ∧ 500] E[X ∧ 1000]
Pareto α = 3, θ = 200 100 55.55 80.25 91.84 97.22
Exponential θ = 100 100 63.21 91.79 99.33 99.99
Gamma α = 2, θ = 50 100 72.93 97.64 99.97 100
Weibull τ = 2, θ = 200√

π
100 78.99 99.82 100 100

GB2 α = 3, τ = 2, θ = 100 100 62.50 86.00 94.91 98.42
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Appendix E: Conventions for Notation

Chapter Preview. Loss Data Analytics serves as a bridge between actuarial
problems and methods and widely accepted statistical concepts and tools.
Thus, the notation should be consistent with standard usage employed in
probability and mathematical statistics. See, for example, (Halperin et al.,
1965) for a description of one standard.

21.1 General Conventions

• Random variables are denoted by upper-case italicized Roman letters, with
X or Y denoting a claim size variable, N a claim count variable, and S
an aggregate loss variable. Realizations of random variables are denoted by
corresponding lower-case italicized Roman letters, with x or y for claim sizes,
n for a claim count, and s for an aggregate loss.

• Probability events are denoted by upper-case Roman letters, such as Pr(A)
for the probability that an outcome in the event ‘’A” occurs.

• Cumulative probability functions are denoted by F (z) and probability density
functions by the associated lower-case Roman letter: f(z).

• For distributions, parameters are denoted by lower-case Greek letters. A
caret or ‘’hat” indicates a sample estimate of the corresponding population
parameter. For example, β̂ is an estimate of β .

• The arithmetic mean of a set of numbers, say, x1, . . . , xn, is usually denoted
by x̄; the use of x, of course, is optional.

• Use upper-case boldface Roman letters to denote a matrix other than a
vector. Use lower-case boldface Roman letters to denote a (column) vector.
Use a superscript prime ’‘′” for transpose. For example, x′Ax is a quadratic
form.

• Acronyms are to be used sparingly, given the international focus of our
audience. Introduce acronyms commonly used in statistical nomenclature but
limit the number of acronyms introduced. For example, pdf for probability
density function is useful but GS for Gini statistic is not.

641



642 21 Appendix E: Conventions for Notation

21.2 Abbreviations

Here is a list of abbreviations that we adopt. We italicize these acronyms. For
example, we can discuss the goodness of fit in terms of the AIC criterion.

AIC Akaike information criterion
BIC (Schwarz) Bayesian information criterion
cdf cumulative distribution function
df degrees of freedom
iid independent and identically distributed
GLM generalized linear model
mle maximum likelihood estimate/estimator
ols ordinary least squares
pdf probability density function
pmf probability mass function
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21.3 Common Statistical Symbols and Operators

Here is a list of commonly used statistical symbols and operators, including
the latex code that we use to generate them (in the parens).

I(·) binary indicator function (I). For example, I(A) is one
A if an outcome in event occurs and is 0 otherwise.

Pr(·) probability (\Pr)
E(·) expectation operator (\mathrm{E}). For example, E(X) = E X is the

expected value of the random variable X, commonly denoted by µ.
Var(·) variance operator (\mathrm{Var}). For example, Var(X) = Var X is the

variance of the random variable X, commonly denoted by σ2.
µk = E Xk kth moment of the random variable X. For k=1, use µ = µ1.

Cov(·, ·) covariance operator (\mathrm{Cov}). For example,
Cov(X, Y ) = E {(X − E X)(Y − E Y )} = E(XY ) − (E X)(E Y )
is the covariance between random variables X and Y.

E(X|·) conditional expectation operator. For example, E(X|Y = y) is the
conditional expected value of a random variable X given that
the random variable Y equals y.

Φ(·) standard normal cumulative distribution function (\Phi)
ϕ(·) standard normal probability density function (\phi)
∼ means is distributed as (\sim). For example, X ∼ F means that the

random variable X has distribution function F.

se(β̂) standard error of the parameter estimate β̂ (\hat{\beta}), usually
an estimate of the standard deviation of β̂, which is

√
V ar(β̂).

H0 null hypothesis
Ha or H1 alternative hypothesis
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21.4 Common Mathematical Symbols and Functions

Here is a list of commonly used mathematical symbols and functions, including
the latex code that we use to generate them (in the parens).

≡ identity, equivalence (\equiv)
=⇒ implies (\implies)
⇐⇒ if and only if (\iff)

→,−→ converges to (\to, \longrightarrow)
N natural numbers 1, 2, . . . (\mathbb{N})
R real numbers (\mathbb{R})
∈ belongs to (\in)
/∈ does not belong to (\notin)
⊆ is a subset of (\subseteq)
⊂ is a proper subset of (\subset)
∪ union (\cup)
∩ intersection (\cap)
∅ empty set (\emptyset)
Ac complement of A
g ∗ f convolution (g ∗ f)(x) =

∫∞
−∞ g(y)f(x− y)dy

exp exponential (\exp)
log natural logarithm (\log)
loga logarithm to the base a

! factorial
sgn(x) sign of x(sgn)

⌊x⌋ integer part of x, that is, largest integer ≤ x
(\lfloor, \rfloor)

|x| absolute value of scalar x
Γ (x) gamma (generalized factorial) function (\varGamma),

satisfying Γ (x+ 1) = xΓ (x)
B(x, y) beta function, Γ (x)Γ (y)/Γ (x+ y)

21.5 Further Readings

To make connections to other literatures, see (Abadir and Magnus, 2002)
http://www.janmagnus.nl/misc/notation.zip for a summary of notation from
the econometrics perspective. This reference has a terrific feature that many
latex symbols are defined in the article. Further, there is a long history of

http://www.janmagnus.nl/misc/notation.zip


21.5 Further Readings 645

discussion and debate surrounding actuarial notation; see (Boehm et al., 1975)
for one contribution.
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Appendix. Data Resources

This appendix section describes the datasets used in this book and others that
you may wish to explore.

For each set of data, we provide download buttons so that you can easily access
the data in standard .csv (comma separated value) format. This allows you
replicate and experiment with the methods developed in the book as well as
sharpen your understanding through exercises.

We provide the source of each dataset. We also recommend, for deeper un-
derstanding, that you occasionally refer to these original sources to further
develop your appreciation of the data underpinning the analytics developed in
this book.

22.1 Wisconsin Property Fund

Description: The Wisconsin Local Government Property Insurance Fund
(LGPIF) is an insurance pool administered by the Wisconsin Office of the
Insurance Commissioner. The LGPIF was established to provide property
insurance for local government entities that include counties, cities, towns,
villages, school districts, and library boards. The fund insures local government
property such as government buildings, schools, libraries, and motor vehicles.
It covers all property losses except those resulting from flood, earthquake,
wear and tear, extremes in temperature, mold, war, nuclear reactions, and
embezzlement or theft by an employee.

The data are available using this download button: Download the Wisconsin
Property Fund Data

647
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TABLE 22.1: Variables in the Wisconsin Property Fund Dataset

Variable Description

PolicyNum Policy number
Year Contract year
Premium Premium
Deduct Deductible
BCcov Coverage for building and contents

Freq Number of claims during the year (frequency)
Fire5 Binary variable to indicate the fire class is below 5
NoClaimCredit Binary variable to indicate no claims in the past two years
EntityType Categorical variable that is one of six types: 1=Village, 2=City,3=County,

4=Misc, 5=School, or Town)
AlarmCredit Categorical variable that is one of four types: (0, 5, 10, or 15) for automatic

smoke alarms in main rooms

BCClaim Builing and contents claims

TABLE 22.2: Wisconsin Property Fund First Five Rows

PolicyNum Year Premium Deduct BCcov Freq Fire5 NoClaimCredit EntityType AlarmCreditBCClaim

120002 2006 9313 1000 22714456 0 1 0 3 1 0
120002 2007 8767 1000 25046646 0 1 0 3 1 0
120002 2008 7090 1000 20851525 0 1 1 3 1 0
120002 2009 8522 1000 21852696 0 1 1 3 1 0
120002 2010 7994 1000 23511493 1 1 1 3 1 6839

TABLE 22.3: Wisconsin Property Fund Last Five Rows

PolicyNum Year Premium Deduct BCcov Freq Fire5 NoClaimCredit EntityType AlarmCreditBCClaim

180787 2010 199 500 285000 0 1 1 4 1 0
180788 2010 58344 100000 416739800 1 1 0 4 1 168304
180789 2010 295 500 500988 1 1 0 4 1 1034
180790 2010 2077 1000 3580665 0 1 0 4 4 0
180791 2010 81 500 118800 0 1 0 4 1 0

22.2 ANU Corporate Travel Data

Universities purchase corporate travel policies to cover employees and students
traveling on official university business for a wide variety of accidents and
incidents while away from the campus or primary workplace. This broad
coverage includes medical care and evacuation, loss of personal property,
extraction for political and weather related reasons, and more. See Frees and
Butt (2022) for more information about this coverage.

There are 2107 observations in this dataset. The variable names are described
in Table 22.4 and the first and last five observations are in Table 22.6.
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Data are available using this button: Download Corporate Travel Claims Data.

TABLE 22.4: Variables in the Corporate Travel Dataset

Variable Description

UW Year Underwriting Year
Loss Date Date that the loss occurred
Reported Date Date that the loss was reported
Last Trans Date Last date in which there was a transaction regarding the loss
Paid Loss Cumulative amount paid on the loss

Outstanding Reserve Estimate of the loss amount yet to be paid
Incurred Loss Sum of the amount paid and the estimate of future payments
Status An indicator as to whether the claim has been deemed settled (closed) or not

settled (open)

TABLE 22.5: Corporate Travel Data First Five Rows

UW.Year Loss.Date Reported.Date Last.Trans.Date Paid.Loss Outstanding.Reserve Incurred.Loss Status

2021 19/12/2021 20/12/2021 24/12/2021 10000 0 10000 Closed
2021 9/4/2022 29/04/2022 30/05/2022 423 0 423 Closed
2021 2/5/2022 4/5/2022 0 500 500 Open
2021 5/5/2022 17/05/2022 0 562 562 Open
2021 30/04/2022 27/05/2022 10/6/2022 1500 0 1500 Closed

TABLE 22.6: Corporate Travel Data Last Five Rows

UW.Year Loss.Date Reported.Date Last.Trans.Date Paid.Loss Outstanding.Reserve Incurred.Loss Status

2006 1/11/2006 19/06/2007 0 0 0 Closed
2006 24/06/2007 26/06/2007 8/1/2008 6278 0 6278 Closed
2006 4/7/2007 6/7/2007 11/9/2007 114 0 114 Closed
2006 20/05/2007 26/06/2007 14/07/2007 136 0 136 Closed
2006 15/02/2007 27/06/2007 14/07/2007 1208 0 1208 Closed

Source: Frees, Edward and Butt, Adam (2022). “ANU Corporate Travel In-
surance Claims 2022”. Australian National University Data Commons. DOI
https://doi.org/10.25911/vrdw-9f32.

22.3 ANU Group Personal Accident Data

Group personal accident insurance offers financial protection in case of injury or
death resulting from an incident that occurs on the job. Like workers’ compen-
sation, group personal accident offers insurance coverage and liability insurance
protection against accidental death or injury. Unlike workers’ compensation,
group personal accident covers students and ANU’s voluntary workers. See
Frees and Butt (2022) for more information about this coverage.

https://doi.org/10.25911/vrdw-9f32
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There are 148 observations in this dataset. The variable names are described
in Table 22.7 and the first and last five observations are in Table 22.9.

Data are available using this button: Download Group Personal Accident
Claims Data.

TABLE 22.7: Variables in the Group Personal Accident Dataset

Variable Description

UW Year Underwriting Year
Loss Date Date that the loss occurred
Last Trans Date Last date in which there was a transaction regarding the loss.
Paid Loss Cumulative amount paid on the loss
Outstanding Reserve Estimate of the loss amount yet to be paid

Incurred Loss Sum of the amount paid and the estimate of future payments
Status An indicator as to whether the claim has been deemed settled (closed) or not

settled (open)

TABLE 22.8: Group Personal Accident Data First Five Rows

UW.Year Loss.Date Last.Trans.DatePaid.Loss Outstanding.ReserveIncurred.Loss Status

2021 6/12/2021 3/6/2022 805 0 805 Closed
2021 15/11/2021 0 0 0 Closed
2021 15/11/2021 0 0 0 Closed
2021 22/03/2022 4/5/2022 396 0 396 Closed
2021 11/4/2022 2/8/2022 740 360 1100 Open

TABLE 22.9: Group Personal Accident Data Last Five Rows

UW.Year Loss.Date Last.Trans.DatePaid.Loss Outstanding.ReserveIncurred.Loss Status

2010 6/3/2011 26/07/2011 776 0 776 Closed
2010 22/07/2011 23/01/2012 4625 0 4625 Closed
2010 5/6/2011 30/01/2012 1504 0 1504 Closed
2007 11/1/2008 23/02/2008 0 0 0 Closed
2007 29/08/2008 0 0 0 Closed

Source: Frees, Edward and Butt, Adam (2022). “ANU Group Personal Accident
Claims 2022”. Australian National University Data Commons. https://doi.or
g/10.25911/jcfx-zj56.

22.4 ANU Motor Vehicle Data

This policy covers ANU’s vehicles including cars, vans, utilities, and motorcy-
cles. See Frees and Butt (2022) for more information about this coverage.

https://doi.org/10.25911/jcfx-zj56
https://doi.org/10.25911/jcfx-zj56
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There are 318 observations in this dataset. The variable names are described
in Table 22.10 and the first and last five observations are in Table 22.12.

Data are available using this button: Download Motor Vehicle Claims Data.

TABLE 22.10: Variables in the Motor Vehicle Dataset

Variable Description

Policy Term Start Date Start date of the contract year in which the loss occurred
Loss Date Date that the loss occurred
Reported Date Date that the loss was reported
Motor Fault Party responsible for the loss
Driver Age Age of the driver

Vehicle Description Type of vehicle
Loss Postcode Postal code where the loss occurred
Excess The deductible applied to the loss
Motor Net Paid Amount paid to the insured (ANU)
Outstanding Estimate Estimate of the loss amount yet to be paid

Motor Net Incurred Sum of the amount paid and the estimate of future payments
Third Party Identified Indicates whether a responsible third party could be identified
Third Party Insured Indicates whether a responsible third party was insured

TABLE 22.11: Motor Vehicle Data First Five Rows

Policy.Term.Start.Date Loss.Date Reported.Date Motor.Fault Driver.Age Vehicle.DescriptionLoss.Postcode

1/11/2011 6/6/2012 4/10/2012 THIRD
PARTY RE-
SPONSIBLE

NA FORD
TRANSIT

VAN

2600

1/11/2011 16/08/2012 14/11/2013 INSURED RE-
SPONSIBLE

39 TOYOTA
HIACE

2612

1/11/2011 4/9/2012 17/01/2013 INSURED RE-
SPONSIBLE

52 HYUNDAI
IX35

2600

1/11/2011 21/09/2012 28/09/2012 THIRD
PARTY RE-
SPONSIBLE

59 HOLDEN
COM-

MODORE

2518

1/11/2011 22/09/2012 12/10/2012 INSURED RE-
SPONSIBLE

NA SUBARU
FORESTER

2612

Excess Motor.Net.Paid Outstanding.Estimate Motor.Net.Incurred Third.Party.Identified Third.Party.Insured

1000 385 0 385 IDENTIFIED
1000 901 0 901
1000 1226 0 1226
NA 1672 0 1672 IDENTIFIED NOT INSURED
1000 3419 0 3419 INSURED

Source: Frees, Edward and Butt, Adam (2022). “ANU Motor Vehicle Claims
2022”. Australian National University Data Commons. DOI https://doi.org/10
.25911/g7e4-9e46.

https://doi.org/10.25911/g7e4-9e46
https://doi.org/10.25911/g7e4-9e46
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TABLE 22.12: Motor Vehicle Data Last Five Rows

Policy.Term.Start.Date Loss.Date Reported.Date Motor.Fault Driver.Age Vehicle.DescriptionLoss.Postcode

1/11/2021 4/4/2022 5/4/2022 INSURED RE-
SPONSIBLE

66 VOLKSWAGEN
TIGUAN

2604

11/1/2021 11/4/2022 9/5/2022 INSURED RE-
SPONSIBLE

27 TOYOTA
HILUX

2540

1/11/2021 11/4/2022 9/5/2022 INSURED RE-
SPONSIBLE

27 TOYOTA
HILUX

2540

11/1/2021 15/04/2022 11/7/2022 INSURED RE-
SPONSIBLE

21 TOYOTA
HILVX

2601

1/11/2021 18/07/2022 18/07/2022 NO-ONE RE-
SPONSIBLE

NA TOYOTA
HILUX

2601

Excess Motor.Net.Paid Outstanding.Estimate Motor.Net.Incurred Third.Party.Identified Third.Party.Insured

0 2373 1056 3429
0 210 25000 25210
0 0 31927 31927
0 0 2750 2750
0 0 299 299

22.5 Spanish Personal Insurance Data

This dataset consists of 10,000 insurance private customers of a real portfolio
of insurance policy holders in Spain with a motor insurance and a homeowners
insurance contract for policy year 2014. The data contain information on each
customer, policies and yearly claims by type of contract.

The data are available using this download button: Download the Spanish
Personal Insurance Data

The description of the data appears in Table 22.13.



22.5 Spanish Personal Insurance Data 653

TABLE 22.13: Variable and Description of Spanish Personal Insurance Data

Variable Description

gender 1 for male and 0 for female
Age_client the age of the customer in years
year Policy year. Equals 5 corresponding to 2014.
age_of_car_M the number of years since the vehicle was bought by the customer
Car_power_M the power of the vehicle

Car_2ndDriver_M 1 if the customer has informed the insurance company that a
second occasional driver uses the vehicle, and 0 otherwise

num_policiesC the total number of policies held by the same customer in the
insurance company

metro_code 1 for urban or metropolitan and 0 for rural
Policy_PaymentMethodA 1 for annual payment and 0 for monthly payment in the motor

policy
Policy_PaymentMethodH 1 for annual payment and 0 for monthly payment in the

homeowners policy

Insuredcapital_content_re the value of content in homeowners insurance
Insuredcapital_continent_re the value of building in homeowners insurance
appartment 1 if the homeowners insurance correspond to an apartment and 0

otherwise
Client_Seniority the number of years that the customer has been in the company
Retention 1 if the policy is renewed and 0 otherwise

NClaims1 the number of claims in the motor insurance policy for the
corresponding year

NClaims2 the number of claims in the homeowners insurance policy for the
corresponding year

Claims1 the sum of claims cost in the motor insurance policy for the
corresponding year

Claims2 the sum of claims cost in the homeowners insurance policy for the
corresponding year

Types 1 when neither an auto nor a home claim, it is equal to 2 when
the customer has an auto but not a home claim, it is equal to 3
when the customer does not have not an auto but a home claim
and it is equal to 4 when both an auto and a home claim.

PolID Policy Identification Number

All monetary units are expressed in Euros. In motor insurance, only claims at
fault are considered.

These data were drawn from a larger database of 40,284 insurance private
customers. These customers are tracked from 2010 to 2014. Some customers
do not renew their policies, so that they do not stay in the sample for five
years. For the smaller data, only the 2014 policy year was used and from this,
a random sample of 10,000 customers was drawn.
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TABLE 22.14: Spanish Personal Insurance Data First Five Rows

gender Age.client year age.of.car.M Car.power.M Car.2ndDriver.Mnum.policiesC

1 47 5 12 163 0 0
1 52 5 13 80 0 1
0 66 5 7 97 0 1
1 70 5 17 95 0 1
1 67 5 13 110 0 1

metro.code Policy.PaymentMethodAPolicy.PaymentMethodHInsuredcapital.content.reInsuredcapital.continent.re appartment

0 1 1 10 12 1
0 1 1 10 11 0
1 1 1 9 11 1
0 1 1 10 11 1
0 1 1 11 12 0

Client.Seniority Retention NClaims1 NClaims2 Claims1 Claims2 Types PolID

7 1 0 0 0 0 1 12476
18 1 0 0 0 0 1 29232
15 1 0 0 0 0 1 23770
16 1 0 1 0 58 3 8228
6 1 0 0 0 0 1 37088

TABLE 22.15: Spanish Personal Insurance Data Last Five Rows

gender Age.client year age.of.car.M Car.power.M Car.2ndDriver.Mnum.policiesC

1 66 5 8 143 0 1
1 55 5 18 125 1 1
0 41 5 10 190 0 1
1 50 5 5 140 0 1
1 55 5 12 90 0 1

metro.code Policy.PaymentMethodAPolicy.PaymentMethodHInsuredcapital.content.reInsuredcapital.continent.re appartment

0 1 1 10 11 1
0 1 1 11 11 1
0 1 1 9 12 1
0 1 1 10 12 0
1 1 1 11 13 0

Client.Seniority Retention NClaims1 NClaims2 Claims1 Claims2 Types PolID

20 1 0 0 0 0 1 2967
15 1 0 0 0 0 1 9387
6 1 0 0 0 0 1 36519
8 1 0 0 0 0 1 33276
6 1 0 0 0 0 1 25370

See Frees et al. (2021) for more information about this dataset. The larger
database contains 122935 rows and is freely available at:

Source: Guillen, Montserrat; Bolancé, Catalina; Frees, Edward W.; Valdez,
Emiliano A. (2021), “Insurance data for homeowners and motor insurance
customers monitored over five years”, Mendeley Data, V1, DOI https://doi.or
g/10.17632/vfchtm5y7j.1

https://doi.org/10.17632/vfchtm5y7j.1
https://doi.org/10.17632/vfchtm5y7j.1
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22.6 ‘R’ Package CASdatasets

The R package CASdatasets provides a convenient way to access many well-
known insurance datasets. This package was originally created to support the
book Computational Actuarial Science with R, edited by Arthur Charpentier,
Charpentier (2014).

To install the package, here is a bit of R code:

install.packages("CASdatasets", repos = "http://cas.uqam.ca/pub/", type = "source")
library(CASdatasets)
`?`(CASdatasets)
`?`(sgautonb # See the documentation of the Singapore Auto Data
)
`?`(lossalae # See the documentation of the Loss and Expense Data
)

Note that this package assumes that you have already installed a few other
packages, including xts, sp, and zoo.

To illustrate,

• in Chapter 3 we use the Singapore data (referred to as sgautonb in the
package) and

• in Chapter 16 we use the loss and expense data (referred to as lossalae in
the package).

22.7 Other Data Sources

There exists man other (non-actarial) data sources. First, data can be obtained
from university-based researchers who collect primary data. Second, data can
be obtained from organizations that are set up for the purpose of releasing
secondary data for the general research community. Third, data can be obtained
from national and regional statistical institutes that collect data. Finally,
companies have corporate data that can be obtained for research purposes.

While it might be difficult to obtain data to address a specific research problem
or answer a business question, it is relatively easy to obtain data to test a
model or an algorithm for data analysis. In the modern era, readers can obtain
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datasets from the Internet. The following is a list of some websites to obtain
real-world data:

• UCI Machine Learning Repository. This website (url: http://archive.ic
s.uci.edu/ml/index.php) maintains more than 400 datasets that can be used
to test machine learning algorithms.

• Kaggle. The Kaggle website (url: https://www.kaggle.com/) include real-
world datasets used for data science competitions. Readers can download
data from Kaggle by registering an account.

• DrivenData. DrivenData aims at bringing cutting-edge practices in data
science to solve some of the world’s biggest social challenges. In its website
(url: https://www.drivendata.org/), readers can participate in data science
competitions and download datasets.

• Analytics Vidhya. This website (url: https://datahack.analyticsvidhya
.com/contest/all/) allows you to participate and download datasets from
practice problems and hackathon problems.

• KDD Cup. KDD Cup is the annual Data Mining and Knowledge Discovery
competition organized by the ACM Special Interest Group on Knowledge
Discovery and Data Mining. This website (url: http://www.kdd.org/kdd-cup)
contains the datasets used in past KDD Cup competitions since 1997.

• U.S. Government’s open data. This website (url: https://www.data.gov/)
contains about 200,000 datasets covering a wide range of areas including
climate, education, energy, and finance.

• AWS Public Datasets. In this website (url: https://aws.amazon.com
/datasets/), Amazon provides a centralized repository of public datasets,
including some huge datasets.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
https://www.drivendata.org/
https://datahack.analyticsvidhya.com/contest/all/
https://datahack.analyticsvidhya.com/contest/all/
http://www.kdd.org/kdd-cup
https://www.data.gov/
https://aws.amazon.com/datasets/
https://aws.amazon.com/datasets/
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Glossary

Term Definition Section
analytics Analytics is the process of using data to make decisions. 1.1
renters insurance Renters insurance is an insurance policy that covers the

contents of an apartment or house that you are renting.
1.1

automobile
insurance

An insurance policy that covers damage to your vehicle,
damage to other vehicles in the accident, as well as
medical expenses of those injured in the accident.

1.1

casualty
insurance

Causalty insurance is a form of liability insurance
providing coverage for negligent acts and omissions.
examples include workers compensation, errors and
omissions, fidelity, crime, glass, boiler, and various
malpractice coverages.

1.1

commercial
insurance

1.1

term The duration of an insurance contract 1.1
insurance claim An insurance claim is the compensation provided by the

insurer for incurred hurt, loss, or damage that is covered
by the policy.

1.1

homeowners
insurance

Homeowners insurance is an insurance policy that
covers the contents and property of a building that is
owned by you or a friend.

1.1

property
insurance

Property insurance is a policy that protects the insured
against loss or damage to real or personal property. the
cause of loss might be fire, lightening, business
interruption, loss of rents, glass breakage, tornado,
windstorm, hail, water damage, explosion, riot, civil
commotion, rain, or damage from aircraft or vehicles.

1.1

non-life Non-life insurance is any type of insurance where
payments are not based on the death (or survivorship)
of a named insured. examples include automobile,
homeowners, and so on. also known as property and
casualty or general insurance.

1.1

657
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(continued)
Term Definition Section
life insurance Life insurance is a contract where the insurer promises

to pay upon the death of an insured person. the person
being paid is the beneficiary.

1.1

personal
insurance

Insurance purchased by a person 1.1

loss adjustment
expenses

Loss adjustment expenses are costs to the insurer that
are directly attributable to settling a claims. for
example, the cost of an adjuster is someone who assess
the claim cost or a lawyer who becomes involve in
settling an insurer’s legal obligation on a claim

1.2

unallocated Unallocated loss adjustment expenses are costs that can
only be indirectly attributed to claim settlement; for
example, the cost of an office to support claims staff

1.2

allocated Allocated loss adjustment expenses, sometimes known
by the acronym alea, are costs that can be directly
attributed to settling a claim; for example, the cost of
an adjuster

1.2

underwriting Underwriting is the process where the company makes a
decision as to whether or not to take on a risk.

1.2

loss reserving A loss reserve is an estimate of liability indicating the
amount the insurer expects to pay for claims that have
not yet been realized. this includes losses incurred but
not yet reported (ibnr) and those claims that have been
reported claims that haven’t been paid (known by the
acronym rbns for reported but not settled).

1.2

risk classification Risk classification is the process of grouping
policyholders into categories, or classes, where each
insured in the class has a risk profile that is similar to
others in the class.

1.2

retrospective
premiums

The process of determining the cost of an insurance
policy based on the actual loss experience determined as
an adjustment to the initial premium payment.

1.2

claims
adjustment

Claims adjustment is the process of determining
coverage, legal liability, and settling claims.

1.2

claims leakage Claims leakage respresents money lost through claims
management inefficiencies.

1.2

adjuster An adjuster is a person who investigates claims and
recommends settlement options based on estimates of
damage and insurance policies held.

1.2
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(continued)
Term Definition Section
dividends A dividend is the refund of a portion of the premium

paid by the insured from insurer surplus.
1.2

indemnification Indemnification is the compensation provided by the
insurer.

1.3

rating variables Rating variables are the components of an insurance
pricing formula. they can include numeric variables (like
values, revenue, or area) and classification variables (like
location, type of vehicle, or type of occupancy.)

1.3

frequency Count random variables that represent the number of
claims

2.1

severity The amount, or size, of each payment for an insured
event

2.1

probability mass
function (pmf)

A function that gives the probability that a discrete
random variable is exactly equal to some value

2.1

distribution
function

The chance that the random variable is less than or
equal to x, as a function of x

2.1

mean Average 2.1
moments The rth moment of a list is the average value of the

random variable raised to the rth power
2.1

survival function The probability that the random variable takes on a
value greater than a number x

2.1

moment
generating
function (mgf)

The mgf of random variable n is defined the expectation
of exp(tn), as a function of t

2.2

probability
generating
function (pgf)

For a random variable n, its pgf is defined as the
expectation of s^n, as a function of s

2.2

convex hulls The convex hull of a set of points x is the smallest
convex set that contains x

2.2

risk classes The formation of different premiums for the same
coverage based on each homogeneous group’s
characteristics.

2.2

binomial
distribution

A random variable has a binomial distribution (with
parameters m and q) if it is the number of "successes" in
a fixed number m of independent random trials, all of
which have the same probability q of resulting in
"success."

2.2

binary outcomes Outcomes whose unit can take on only two possible
states, traditionally labeled as 0 and 1

2.2
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(continued)
Term Definition Section
m-convolution The addition of m independent random variables 2.2
poisson
distribution

A discrete probability distribution that expresses the
probability of a given number of events occurring in a
fixed interval of time or space if these events occur with
a known constant rate and independently of the time
since the last event

2.2

negative
binomial
distribution

The number of successes until we observe the rth failure
in independent repetitions of an experiment with binary
outcomes

2.2

overdispersed The presence of greater variability (statistical
dispersion) in a data set than would be expected based
on a given statistical model

2.2

underdispersed There was less variation in the data than predicted 2.2
(a, b, 0) class The poisson, binomial and negative binomial

distributions
2.3

maximum
likelihood
estimator (mle)

The possible value of the parameter for which the
chance of observing the data largest

2.4

local extrema The largest and smallest value of the function within a
given range

2.4

central limit
theorem (clt)

In some situations, when independent random variables
are added, their properly normalized sum tends toward
a normal distribution even if the original variables
themselves are not normally distributed.

2.4

newton’s
method

A root-finding algorithm which produces successively
better approximations to the roots of a real-valued
function

2.4

robust Resistant to errors in the results, produced by
deviations from assumptions

2.4

explanatory
variables

In regression, the explanatory variable is the one that is
supposed to "explain" the other.

2.5

regression
analysis

A set of statistical processes for estimating the
relationships among variables

2.5

homogeneous Units of exposure that face approximately the same
expected frequency and severity of loss.

2.5

(a,b,1) A count distribution with probabilities satisfying
p_k/p_{k-1}=a+b/k, for some some constants a and b
and k>=2

2.5
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(continued)
Term Definition Section
zero truncation Zero modification of a count distribution such that it

assigns zero probability to zero count
2.5

degenerate
distribution

A deterministic distribution and takes only a single
value

2.5

convex
combination

A linear combination of points where all coefficients are
non-negative and sum to 1

2.5

convex function A real-valued function defined on an interval is called
convex if the line segment between any two points on
the graph of the function lies above or on the graph.

2.6

mixture
distribution

The probability distribution of a random variable that
is derived from a collection of other random variables as
follows: first, a random variable is selected by chance
from the collection according to given probabilities of
selection, and then the value of the selected random
variable is realized

2.6

chi-square
distribution

The chi-squared distribution with k degrees of freedom
is the distribution of a sum of the squares of k
independent standard normal random variables

2.7

aic A goodness of fit measure of a statistical model that
describes how well it fits a set of observations.

2.7

pearson’s
chi-square test

A statistical test applied to sets of categorical data to
evaluate how likely it is that any observed difference
between the sets arose by chance

2.7

multinomial
likelihood

The multinomial distribution models the probability of
counts for rolling a k-sided die n times

2.7

aggregate losses Aggregate claims, or total claims observed in the time
period

3

liability
insurance

Insurance that compensates an insured for loss due to
legal liability towards others

3

mixture
distribution

A weighted average of other distributions, which may be
continuous or discrete

3

continuous
random variable

Random variable which can take infinitely many values
in its specified domain

3.1

raw moment The kth moment of a random variable x is the average
(expected) value of x^k

3.1

central moment The kth central moment of a random variable x is the
expected value of (x-its mean)^k

3.1

skewness Measure of the symmetry of a distribution, 3rd central
moment/standard deviation^3

3.1
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(continued)
Term Definition Section
kurtosis Measure of the peaked-ness of a distribution, 4th central

moment/standard deviation^4
3.1

expected value Average 3.1
exponential
distribution

A single parameter continous probability distribution
that is defined by its rate parameter

3.1

independent Two variables are independent if conditional
information given about one variable provides no
information regarding the other variable

3.1

percentile The pth percentile of a random variable x is the
smallest value x_p such that the probability of not
exceeding it is p%

3.1

chi-square
distribution

A common distribution used in chi-square tests for
determining goodness of fit of observed data to a
theorized distribution

3.2

light tailed
distribution

A distribution with thinner tails than the benchmark
exponential distribution

3.2

pareto
distribution

A heavy-tailed and positively skewed distribution with 2
parameters

3.2

hazard function Ratio of the probability density function and the
survival function: f(x)/s(x), and represents an
instantaneous probability within a small time frame

3.2

weibull
distribution

A positively skewed continuous distribution with 2
parameters that can have an increasing or decreasing
hazard function depending on the shape parameter

3.2

generalized beta
distribution of
the second kind

A 4-parameter flexible distribution that encompasses
many common distributions

3.2

parametric
distributions

Probability distribution defined by a fixed set of
parameters

3.3

transformation A function or method that turns one distribution into
another

3.3

distribution
function
technique

A transformation technique that involves finding the cdf
of the transformed distribution through its relation with
the original cdf

3.3

change-of-
variable
technique

A transformation technique that involves finding the
pdf of the transformed distribution through its relation
with the original pdf using inverse functions

3.3
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(continued)
Term Definition Section
moment-
generating
function
technique

A transformation technique that uses moment
generating functions properties to determine the mgf of
a linear combination of variables

3.3

lognormal
distribution

A heavy-tailed, positively skewed 2-parameter
continuous distribution such that the natural log of the
random variable is normally distributed with the same
parameter values

3.3

reliability data A dataset consisting of failure times for failed units and
run times for units still functioning

3.3

power
transformation

A transformation type that involves raising a random
variable to a power

3.3

exponential
transformation

A transformation type that involves raising a random
variable in the exponent

3.3

mixing
parameters

Proportion weight given to each subpopulation in a
mixture

3.3

heterogeneous
population

A dataset where the subpopulations are represented by
separate distinct distributions

3.3

finite mixture A mixture distribution with a finite k number of
subpopulations

3.3

continuous
mixture

A mixture distribution with an infinite number of
subpopulations, where the mixing parameter is itself a
continuous distribution

3.3

conditional
distribution

A probability distribution that applies to a
subpopulation satisfying the condition

3.3

unconditional
distribution

A probability distribution independent of any another
imposed conditions

3.3

prior
distribution

A probability distribution assigned prior to observing
additional data

3.3

scale
distribution

A distribution with the property that multiplying all
values by a constant leads to the same distribution
family with only the scale parameter changed

3.3

moral hazard Situation where an insured is more likely to be risk
seeking if they do not bear sufficient consequences for a
loss

3.4

payment per loss Amount insurer pays when a loss occurs and can be 0 3.4
payment per
payment

Amount insurer pays given a payment is needed and is
greater than 0

3.4
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(continued)
Term Definition Section
left censored Values below a threshold d are not ignored but

converted to 0
3.4

left truncated Values below a threshold d are not reported and
unknown

3.4

loss elimination
ratio (ler)

% decrease of the expected payment by the insurer as a
result of the deductible

3.4

franchise
deductible

Insurer pays nothing for losses below the deductible, but
pays the full amount for any loss above the deductible

3.4

limit of coverage Policy limit, or maximum contractual financial
obligation of the insurer for a loss

3.4

group insurance Insurance provided to groups of people to take
advantage of lower administrative costs vs. individual
policies

3.4

growth factor Multiplicative factor applied to a distribution to
account for the impact of inflation, typically (1+rate)

3.4

cedent Party that is transferring the risk to a reinsurer 3.4
excess of loss
coverage

Contract where an insurer pays all claims up to a
specified amount and then the reinsurer pays claims in
excess of stated reinsurance deductible

3.4

retention Maximum amount payable by the primary insurer in a
reinsurance arrangement

3.4

right censored
variable

Values above a threshold u are not ignored but
converted to u

3.4

reinsurance A transaction where the primary insurer buys insurance
from a re-insurer who will cover part of the losses
and/or loss adjustment expenses of the primary insurer

3.4

method of
maximum
likelihood

Statistical method used to derive the parameter values
from data that maximize the probability of observing
the data given the parameters

3.5

grouped data Data bucketed into categories with ranges, such as for
use in histograms or frequency tables

3.5

large-sample
properties

Asymptotic properties of a distribution as the amount
of data increases towards infinity

3.5

asymptotic
variance

Variability of the distribution of an estimator as the
amount of data increases towards infinity

3.5

delta method Statistical method used to approximate the asymptotic
variance for a function based on parameters whose
asymptotic variance can be determined

3.5
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log-likelihood
function

Natural log of the likelihood function 3.5

covariance
matrix

Matrix where the (i,j)^th element represents the
covariance between the ith and jth random variables

3.5

complete data Data where each individual observation is known, and
no values are censored, truncated, or grouped

3.5

parametric Distributional assumptions made on the population
from which the data is drawn, with properties defined
using parameters.

4.1

nonparametric No distributional assumptions are made on the
population from which the data is drawn.

4.1

sampling scheme How the data is obtained from the population and what
data is observed.

4.1

unbiased An estimator that has no bias, that is, the expected
value of an estimator equals the parameter being
estimated.

4.1

plug-in principle The plug-in principle or analog principle of estimation
proposes that population parameters be estimated by
sample statistics which have the same property in the
sample as the parameters do in the population.

4.1

indicator A categorical variable that has only two groups. the
numerical values are usually taken to be one to indicate
the presence of an attribute, and zero otherwise.
another name for a binary variable.

4.1

empirical
distribution
function

The empirical distribution is a non-parametric estimate
of the underlying distribution of a random variable. it
directly uses the data observations to construct the
distribution, with each observed data point in a size-n
sample having probability 1/n.

4.1

first quartile The 25th percentile; the number such that
approximately 25% of the data is below it.

4.1

third quartile The 75th percentile; the number such that
approximately 75% of the data is below it.

4.1

quantile The q-th quantile is the point(s) at which the
distribution function is equal to q, i.e. the inverse of the
cumulative distribution function.

4.1

smoothed
empirical
quantile

A quantile obtained by linear interpolation between two
empirical quantiles, i.e. data points.

4.1
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bandwidth A small positive constant that defines the width of the

steps and the degree of smoothing.
4.1

kernel density
estimator

A nonparametric estimator of the density function of a
random variable.

4.1

bias-variance
tradeoff

The tradeoff between model simplicity (underfitting;
high bias) and flexibility (overfitting; high variance).

4.1

model
diagnostics

Procedures to assess the validity of a model 4.1

probability-
probability (pp)
plot

A plot that compares two models through their
cumulative probabilities.

4.1

quantile-
quantile (qq)
plot

A plot that compares two models through their
quantiles.

4.1

goodness of fit
statistics

A measure used to assess how well a statistical model
fits the data, usually by summarizing the discrepancy
between the observations and the expected values under
the model.

4.1

goodness of fit A measure used to assess how well a statistical model
fits the data, usually by summarizing the discrepancy
between the observations and the expected values under
the model.

4.1

method of
moments

The estimation of population parameters by
approximating parametric moments using empirical
sample moments.

4.1

percentile
matching

The estimation of population parameters by
approximating parametric percentiles using empirical
quantiles.

4.1

percentile A 100p-th percentile is the number such that 100 times
p percent of the data is below it.

4.1

gini index A measure for assessing income inequality. it measures
the discrepancy between the income and population
distributions and is calculated from the lorenz curve.

4.2

model selection The process of selecting a statistical model from a set of
candidate models using data.

4.2

in-sample A dataset used for analysis and model development.
also known as a training dataset.

4.2

out-of-sample A dataset used for model validation. also known as a
test dataset.

4.2



667

(continued)
Term Definition Section
cross-validation A model validation procedure in which the data sample

is partitioned into subsamples, where splits are formed
by separately taking each subsample as the
out-of-sample dataset.

4.2

model validation The process of confirming that the proposed model is
appropriate.

4.2

data-snooping Repeatedly fitting models to a data set without a prior
hypothesis of interest.

4.2

predictive
inference

Preditive inference is the process of using past data
observations to predict future observations.

4.2

likelihood
function

A function of the likeliness of the parameters in a
model, given the observed data.

4.3

ogive estimator A nonparametric estimator for the distribution function
in the presence of grouped data.

4.3

product-limit
estimator

A nonparametric estimator of the survival function in
the presence of incomplete data. also known as the
kaplan-meier estimator.

4.3

risk set The number of observations that are active (not
censored) at a specific point.

4.3

nelson-aalen A nonparametric estimator of the cumulative hazard
function in the presence of incomplete data.

4.3

credibility An actuarial method of balancing an individual’s loss
experience and the experience in the overall portfolio to
improve ratemaking estimates.

4.4

bayesian A type of statistical inference in which the model
parameters and the data are random variables.

4.4

predictive
distribution

The distribution of new data, conditional on a base set
of data, under the bayesian framework.

4.4

least squares A technique for estimating parameters in linear
regression. it is a standard approach in regression
analysis to the approximate solution of overdetermined
systems. in this technique, one determines the
parameters that minimize the sum of squared differences
between each observation and the corresponding linear
combination of explanatory variables.

4.4

markov chain
monte carlo
(mcmc)
simulation

The class of numerical methods that use markov chains
to generate draws from a posterior distribution.

4.4



668 23 Glossary

(continued)
Term Definition Section
improper prior A prior distribution in which the sum or integral of the

distribution is not finite.
4.4

confidence
interval

Another term for interval estimate. unlike a point
estimate, it gives a range of reliability for approximating
a parameter of interest.

4.4

decision analysis Bayesian decision theory is the study of an agent’s
choices, which is informed by bayesian probability.

4.4

conjugate
distributions

Distributions such that the posterior and the prior come
from the same family of distributions.

4.4

credibility
interval

A summary of the posterior distribution of parameters
under the bayesian framework.

4.4

prior
distribution

The distribution of the parameters prior to observing
data under the bayesian framework.

4.4

exposure A measure of the rating units for which rates are applied
to determine the premium. for example, exposures may
be measured on a per unit basis (e.g. a family with auto
insurance under one contract may have an exposure of 2
cars) or per $1,000 of value (e.g. homeowners insurance).

5.1

inflation Inflation is a sustained increase in the general price level
of goods and services over a period of time.

5.1

business line 5.1
individual risk
model

A modeling approach for aggregate losses in which the
loss from each individual contract is considered.

5.1

collective risk
model

A modeling approach for aggregate losses in which the
aggregate loss is represented in terms of a frequency
distribution and a severity distribution.

5.1

coverage Insurance coverage is the amount of risk or liability that
is covered for an individual or entity by an insurance
policy.

5.1

frequency
distribution

The random number of claims that occur under the
collective risk model.

5.1

severity
distribution

The randomly distributed amount of each loss under the
collective risk model.

5.1

central limit
theorem

Given certain conditions, the arithmetic mean of a large
number of replications of independent random variables,
each with a finite mean and variance, will be
approximately normally distributed, regardless of the
underlying distribution.

5.2
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term life
insurance

A term life insurance policy is payable only if death of
the insured occurs within a specified time, such as 5 or
10 years, or before a specified age.

5.2

pure endowment A pure endowment is an insurance policy that is
payable at the end of the policy period if the insured is
still alive. if the insured has died, there is nothing paid
in the form of benefits.

5.2

support The set of all outcomes for a random variable following
some distribution. for example, exponentially
distributed random variable x has support x>0.

5.2

convolution The convolution of probability distributions is the
distribution corresponding to the addition of
independent random variables.

5.2

law of iterated
expectations

A decomposition of the expected value of a random
variable into conditional components. specifically, for
random variables x and y, e(x) = e[e(x|y)].

5.3

compound
distribution

A random variable follows a compound distribution if it
is parameterized and contains at least one parameter
that is itself a random variable. for example, the tweedie
distribution is a compound distribution.

5.3

tweedie
distribution

A compound distribution that is a poisson sum of
gamma random variables. because it can accommodate
a discrete probability mass at zero and a continuous
positive component, it is suitable for modeling
aggregate insurance claims.

5.3

shape parameter A numerical parameter of a parametric distribution
affecting the shape of a distribution rather than simply
shifting it (as a location parameter does) or
stretching/shrinking it (as a scale parameter does).

5.3

scale parameter A numerical parameter of a parametric distribution that
stretches/shrinks the distribution without changing its
location or shape. the larger the scale parameter, the
more spread out the distribution. the scale parameter is
also the reciprocal of the rate parameter. for example,
the normal distribution has scale parameter \sigma.

5.3

exponential
dispersion

A set of distributions that represents a generalisation of
the natural exponential family and also plays an
important role in generalized linear models.

5.3
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generalized
linear models

Commonly known by the acronym glm. an extension of
the linear regression model where the dependent
variable is a member of the linear exponential family.
glm encompasses linear, binary, count, and long-tailed,
regressions all as special cases.

5.3

exponential
family

A family of parametric distributions that are practical
for modeling the underlying response variable in
generalized linear models. this family includes the
normal, bernoulli, poisson, and tweedie distributions as
special cases, among many others.

5.3

monte carlo
simulation

A computerized statistical model that simulates the
effects of various types of uncertainty.

5.4

empirical
distribution

The empirical distribution is a non-parametric estimate
of the underlying distribution of a random variable. it
directly uses the data observations to construct the
distribution, with each observed data point in a size-n
sample having probability 1/n.

5.4

converge A type of stochastic convergence for a sequence of
random variables x_1,. . . , x_n that approaches some
other distribution as n approaches \infty.

5.4

policy limits A policy limit is the maximum value covered by a policy. 5.5
ground-up loss The total amount of loss sustained before policy

adjustments are made (i.e. before deductions are applied
for coinsurance, deductibles, and/or policy limits.)

5.5

per-loss basis Due to policy modifications (e.g. deductibles), not all
losses that occur result in payment. the per-loss basis
considers every loss that occurs.

5.5

per-payment
basis

Due to policy modifications (e.g. deductibles), not all
losses that occur result in payment. the per-payment
basis which considers only the losses that result in some
payment to the insured.

5.5

memoryless The memoryless property means that a given
probability distribution is independent of its history and
what has already elapsed. specifically, random variable x
is memoryless if pr(x > s+t | x >= s) = pr(x > t). note
that it does not mean x > s+t and x >= s are
independent events.

5.5
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central limit
theorem

The sample mean and sample sum of a random sample
of n from a population will converge to a normal curve
as the sample size n grows

6.1

simulations A computer generation of various hypothetical
conditions and outputs, based on the model structure
provided

6.1

linear
congruential
generator

Algorithm that yields pseudo-randomized numbers
calculated using a linear recursive relationship and a
starting seed value

6.1

pseudo-random
numbers

Values that appear random but can be replicated by
formula

6.1

inverse
transform
method

Samples a uniform number between 0 and 1 to represent
the randomly selected percentile, then uses the inverse
of the cumulative density function of the desired
distribution to simulate from in order to find the
simulated value from the desired distribution

6.1

quantile function Inverse function for the cumulative density function
which takes a percentile value in [0,1] as the input, and
outputs the corresponding value in the distribution

6.1

greatest lower
bound

Largest value that is less than or equal to a specified
subset of values/elements

6.1

universal life
insurance

Type of cash value life insurance where the policy’s cash
value is the excess of premium payments over the cost
of insurance, accumulated with interest, with adjustable
premiums and coverage over time

6.1

variable life
insurance

Type of life insurance whose face value and coverage
term can vary depending upon the performance of
underlying invested securities

6.1

sampling
variability

How much an estimate can vary between samples 6.1

cauchy
distribution

A continuous distribution that represents the
distribution of the ratio of two independent normally
random variables, where the denominator distribution
has mean zero

6.1

kolmogorov-
smirnov test

A nonparametric statistical test used to determine if a
data sample could come from a hypothesized continuous
probability distribution

6.1
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bootstrap A method of sampling with replacement from the

original dataset to create additional simulated datasets
of the same size as the original

6.2

nonparametric
approach

A statistical method where no assumption is made
about the distribution of the population

6.2

parametric
approach

A statistical method where a prior assumption is made
about the distribution or model form

6.2

bias The difference between the expected value of an
estimator and the parameter being estimated. bias is an
estimation error that does not become smaller as one
observes larger sample sizes.

6.2

bias-corrected
estimator

If an estimator is known to be consistently biased in a
manner, it can be corrected using a factor to be come
less biased or unbiased

6.2

jensen inequality For a convex function f(x), f(expected value of x) <=
expected value of f(x)

6.2

natural
estimator

An estimator that uses the sample moments as the
estimators for the population

6.2

percentile
bootstrap
interval

Confidence interval for the parameter estimates
determined using the actual percentile results from the
bootstrap sampling approach, as every bootstrap
sample has an associated parameter estimate(s) that
can be ranked against the others

6.2

k-fold
cross-validation

A type of validation method where the data is randomly
split into k groups, and each of the k groups is held out
as a test dataset in turn, while the other k-1 gropus are
used for distribution or model fitting, with the process
repeated k times in total

6.3

leave-one-out
cross validation

A special case of k-fold cross validation, where each
single data point gets a turn in being the lone hold-out
test data point, and n separate models in total are built
and tested

6.3

jackknife
statistics

To calculate an estimator, leave out each observation in
turn, calculate the sample estimator statistic each time,
and average over the n separate estimates

6.3

accept-reject
mechanism

A sampling method that is used where the random
sample is discarded if not within a certain pre-specified
range [a, b] and is commonly used when the traditional
inverse transform method cannot be easily used

6.4
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importance
sampling
mechanism

Type of sampling method where values in the region of
interest can be over-sampled or values outside the
region of interest can be under-sampled

6.4

ergodic theorem Ergodic theory studies the behavior of a dynamical
system when it is allowed to run for an extended time

6.5

markov process A stochastic (time dependent) process that satisfies
memorylessness, meaning future predictions of the
process can be made solely based on its present state
and not the historical path

6.5

invariant
measure

Any mathematical measure that is preserved by a
function (the mean is an example)

6.5

composants Component (smaller, self-contained part of larger entity) 6.5
hastings
metropolis

A markov chain monte carlo (mcmc) method for
random sampling from a probability distribution where
values are iteratively generated, with the distribution of
the next sample dependent only on the current sample
value, and at each iteration, the candidate sample can
be either accepted or rejected

6.5

premium Amount of money an insurer charges to provide the
coverage described in the policy

7.1

ratemaking Process used by insurers to calculate insurance rates,
which drive insurance premiums

7.1

insurance rates Amount of money needed to cover losses, expenses, and
profit per one unit of exposure

7.1

insured
contingent event

A condition that results in an insurance claim 7.1

expected costs The cost to an insurer of payments to the insured and
allocated loss adjustment expenses (alaes). overhead
and profit are not included

7.1

underwriting
profit

Profit an insurer derives from providing coverage,
excluding investment income

7.1

experience
rating

A type of rating plan that uses the insured’s historical
loss experience as part of the premium determination

7.1

price A quantity, usually of money, that is exchanged for a
good or service

7.1

rates A rate is the price, or premium, charged per unit of
exposure. a rate is a premium expressed in standardized
units.

7.1

technical prices 7.1
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loss cost The sum of losses divided by an exposure; it is also

known as the pure premium.
7.2

profit loading A factor or percentage applied to the premium
calculation to account for insurer profit in a policy

7.2

indicated change
factor

A factor calculated from the loss ratio method that
calculates how the rates should change, with factors > 1
indicating an increase and vice versa

7.2

indicated rate In a rate filing, the amount that the loss experience
suggests that the insurer should charge to cover costs.

7.2

credibility Weight assigned to observed data vs. that assigned to
an external or broader-based set of data

7.4

parametric
distribution

Model assumption that the sample data comes from a
population that can be modeled by a probability
distribution with a fixed set of parameters

7.4

commercial
business
property

Line of business that insures against damage to their
buildings and contents due to a covered cause of loss

7.4

continuous
variables

Type of variable that can take on any real value 7.4

discrimination Process of determining premiums on the basis of
likelihood of loss. insurance laws prohibit "unfair
discrimination".

7.4

rating factor A rating factor, or rating variable, is a characteristic of
the policyholder or risk being insured by which rates
vary.

7.4

rating variable A rating factor, or rating variable, is a characteristic of
the policyholder or risk being insured by which rates
vary.

7.4

factor A variable that varies by groups or categories. 7.4
relativity The difference of the expected risk between a specific

level of a rating factor and an accepted baseline value.
this difference may be arithmetic or proportional.

7.4

scale
distribution

Suppose that y = c x, where x comes from a parametric
distribution family and c is a positive constant. the
distribution is said to be a scale distribution if (i) the
distributions of y and x come from the same family and
(ii) only a single parameter differs and that by a factor
of c.

7.4
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written
exposures

Exposure is based off policies written/issued 7.5

earned
exposures

Exposure is based off amount exposed to loss for which
coverage has been provided

7.5

unearned
exposures

Exposure amount for which coverage has not yet been
provided

7.5

in force
exposures

Exposure amount subject to loss at a particular point in
time

7.5

calendar year
method

Experience for rating is aggregated based on calendar
year, as opposed to other methods such as when a
policy term began

7.5

accident date Date of loss occurrence that gives rise to a claim 7.5
report date Date when insurer is notified of the claim 7.5
open claim A claim that has been reported but not yet closed 7.5
mix of business Different types of policies in an insurer’s portfolio 7.5
on-level earned
premium

Earned premium of historical policies using the current
rate structure

7.5

experience loss
ratio

Ratio of experience loss to on-level earned premium in
the experience period

7.5

claim The amount paid to an individual or corporation for the
recovery, under a policy of insurance, for loss that comes
within that policy.

7.5

incurred but not
reported

A claim is said to be incurred but not reported if the
insured event occurs prior to a valuation date (and
hence the insurer is liable for payment) but the event
has not been reported to the insurer.

7.5

closed A claim is said to be closed when the company deems
its financial obligations on the claim to be resolved.

7.5

valuation date A valuation date is the date at which a company
summarizes its financial position, typically quarterly or
annually.

7.5

policy year This is the period between a policy’s anniversary dates. 7.5
gini index The gini index is twice the area between a lorenz curve

and a 45 degree line.
7.6

line of equality 45 degree line equating x and y, that represents a perfect
alignment in the sample and population distribution

7.6

pp plot Statistical plot used to assess how close a data sample
matches a theorized distribution

7.6
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performance
curve

A concentration curve is a graph of the distribution of
two variables, where both variables are ordered by only
one of variables. for insurance applications, it is a graph
of distribution of losses versus premiums, where both
losses and premiums are ordered by premiums.

7.6

community
rating

This generally refers to the premium principle where all
risks pay the same amount.

7.6

market conduct
regulation

Regulation that ensures consumers obtain fair and
reasonable insurance prices and coverage

7.7

government
prescribed

Government sets the entire rating system including
coverages

7.7

prior approval Regulator must approve rates, forms, rules filed by
insurers before use

7.7

no file Insurers may use new rates, forms, rules without
approval from regulators

7.7

file only Insurers must file rates, forms, rules for record keeping
and use immediately

7.7

rating factors Characteristics of a risk that help price the insurance
contract

8

multiplicative
tariff model

A rating method where each rating factor is the product
of parameters associated with that rating factor

8

risk
characteristics

The distinguishing features of a policy that help
determine the expected loss on the policy

8.1

gross insurance
premium

Sum of expected losses and expenses and profit on a
policy

8.1

adverse selection A pricing structure that entices riskier individuals to
purchase and discourages low-risk individuals from
purchasing

8.1

adverse selection
spiral

Phenomenon where a book of business deteriorates as it
attracts ever-riskier individuals when forced to increase
premiums due to losses

8.1

a priori variables Variables which the insurer has prior knowledge of
before the policy inception

8.1

closed-form
expressions

A mathematical expression that can be well defined
with a formula that has a finite number of operations

8.2

levels Different outcomes of a categorical variable 8.2
nominal A categorical variable where the categories do not have

a natural order and any numbering is arbitrary
8.2
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dummy variables A variable that takes on a value of 0 or 1 to indicate the

absence or presence of a categorical characteristic
8.2

log linear form Linear regression model where the response variable is
the natural log of the expected response value

8.2

base case The categorical level chosen as the default with all
dummy variable indicators of 0

8.2

workers
compensation

A no-fault insurance system prescribed by state law
where benefits are provided by an employer to an
employee due to a job-related injury, including death,
resulting from an accident or occupational disease

8.2

exposure bases The unit of measurement chosen to represent the
exposure for a particular risk

8.2

offset Natural log of the exposure amount that is added to a
regression model to account for varying exposures

8.2

tariff A table or list that contains the rating factors and
associated premiums and other risk information

8.3

in-force times The timeframe during which a policy is active and the
insurer is bound by the contractual obligation

8.3

rate parameter Parameter in certain distributions, such as the
exponential, that indicate how quickly the function
decays, and it is the reciprocal of the scale parameter

8.3

functional forms The algebraic relationship between a dependent variable
and explanatory variables

8.3

multiplicative
form

Relationship where the dependent variable is a product
of the explanatory variables

8.3

base tariff cell The chosen set of rating categories where the rate
equals the intercept of the model (the base value)

8.3

relativities A numerical estimate of value in one category relative
to the value in a base classification, typically expressed
as a factor

8.3

non-automobile
vehicles

Motorized vehicles which are not autos, such as atvs,
off-road vehicles, go-carts, etc.

8.3

distributional
structure

The manner in which a statistical distribution is
parameterized

8.3

information
matrix

Matrix that measures the amount of information that an
observable random variable x carries about an unknown
parameter of a distribution, and is used to calculate
covariance matrices of maximum likelihood estimators

8.5
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classification
rating plan

A rating plan that uses an insured’s risk characteristics
to determine premium

9.1

credibility
weight

The weight assigned to an insured’s historical loss
experience for the purposes of determining their
premium in an experience rating plan

9.1

complement of
credibility

The remainder of the weight not assigned to an insured’s
historical loss experience in the experience rating plan

9.1

class rate Average rate per exposure for an insured in a particular
classification group

9.1

full credibility
standard

The threshold of experience necessary to assign 100%
credibility to the insured’s own experience

9.2

limited
fluctuation
credibility

A credibility method that attempts to limit fluctuations
in its estimates

9.2

cumulative
distribution
function of the
standard normal

Cumulative density function for the normal distribution
with mean 0 and standard deviation 1

9.2

buhlmann
credibility

A credibility method that uses the amount of
experience, expected value of the process variance, and
variance of the hypothetical means to determine the
credibility weight

9.3

collective mean The mean estimate of a risk when no loss information
about the risk is known

9.3

law of total
expectation

The expected value of the conditional expected value of
x given y is the same as the expected value of x

9.3

risk parameter Parameter in a distribution whose value reflects the risk
categorization

9.3

expected value
of the process
variance

Average of the natural variability of observations from
within each risk

9.3

variance of the
hypothetical
means

Variance of the means across different classes, used to
determine how similar or different the classes are from
one another

9.3

buhlmann-
straub
credibility

An extension of the buhlmann credibility model that
allows for varying exposure by year

9.4



679

(continued)
Term Definition Section
bayes theorem A probability law that expresses conditional probability

of the event a given the event b in terms of the
conditional probability of the event b given the event a
and the unconditional probability of a

9.5

bayesian
inference

A branch of statistics that leverages bayes theorem to
update the distribution as more experience becomes
available

9.5

gamma-poisson
model

A statistical model that assumes the frequency of claims
is poisson whose mean has a prior distribution that is a
gamma distribution

9.5

exact credibility A situation where the bayesian credibility estimate
matches that of the buhlmann credibility estimate

9.5

beta-binomial
model

A statistical model for modeling the probability of an
event using the binomial distribution with a probability
that has a prior distribution from a beta distribution

9.5

nonparametric
estimation

Statistical method that allows the functional form of a
fit from data to have no assumed prior distribution,
constraints, or parameters

9.5

empirical bayes
methods

Credibility methods that estimate the credibility weight
without using any assumptions about prior distributions
or likelihoods, instead relying only on empirical data

9.5

semiparametric
estimation

Credibility method that assumes a distribution for the
loss per exposure random variable and otherwise uses
empirical data

9.5

portfolios A collection of contracts 10.1
insurance
portfolios

A collection, or aggregation, of insurance contracts 10.1

reinsurers A company that sells reinsurance 10.1
heavy tailed A rv is said to be heavy tailed if high probabilities are

assigned to large values
10.2

survival function One minus the distribution function. it gives the
probability that a rv exceeds a specific value.

10.2

coherent risk
measure

A risk measure that is is subadditive, monontonic, has
positive homogeneity, and is translation invariant.

10.3

mean excess loss
function

The expected value of a loss in excess of a quantity,
given that the loss exceeds the quantity

10.3

risk measure A measure that summarizes the riskiness, or
uncertainty, of a distribution

10.3

value-at-risk A risk measure based on a quantile function 10.3
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ceding company A company that purchases reinsurance (also known as

the reinsured)
10.4

excess of loss Under an excess of loss arrangement, the insurer sets a
retention level for each claim and pays claim amounts
less than the level with the reinsurer paying the excess.

10.4

primary
insurance

Insurance purchased by a non-insurer 10.4

proportional
reinsurance

An agreement between a reinsurer and a ceding
company (also known as the reinsured) in which the
reinsurer assumes a given percent of losses and premium

10.4

quota share A proportional treaty where the reinsurer receives a flat
percent of the premium for the book of business
reinsured and pays a percentage of losses, including
allocated loss adjustment expenses. the reinsurer may
also pays the ceding company a ceding commission
which is designed to reflect the differences in
underwriting expenses incurred.

10.4

reinsured A company that purchases reinsurance (also known as
the ceding company)

10.4

retained line The amount of exposure that the the reinsured retains
on a given line in a surplus share reinsurance agreement.

10.4

retention
function

A function that maps the insurer portfolio loss into the
amount of loss retained by the insurer.

10.4

stop-loss Under a stop-loss arrangement, the insurer sets a
retention level and pays in full total claims less than the
level with the reinsurer paying the excess.

10.4

surplus share A proportional reinsurance treaty that is common in
commercial property insurance. a surplus share treaty
allows the reinsured to limit its exposure on any one
risk to a given amount (the retained line). the reinsurer
assumes a part of the risk in proportion to the amount
that the insured value exceeds the retained line, up to a
given limit (expressed as a multiple of the retained line,
or number of lines).

10.4

treaty A reinsurance contract that applies to a designated
book of business or exposures.

10.4

bonus-malus
system

A type of rating mechanism where insured premiums
are adjusted based on their individual loss experience
history

12.1
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no claim
discount (ncd)
system

A type of experience rating where insureds obtain
discounts on future years’ premiums based on
claims-free experience

12.1

hunger for bonus Phenomenon where insureds under an experience rating
system are dissuaded from filing minor claims in order
to keep their no-claims discount

12.1

takaful Co-operative system of reimbursement or repayment in
case of loss as an insurance alternative

12.2

markov chain A stochastic model (time dependent) where the
probability of each event depends only on the current
state and not the historical path

12.3

transition
matrix

Matrix that represents all probabilities for transition
from one state to another (could be same state) for a
markov chain

12.3

stationary
distribution

Probability distribution remains unchanged in the
markov chain as time progresses

12.4

ergodic Irreducible markov chain where it is eventually possible
to move from any state to any other state, with positive
probability

12.4

irreversible A markov chain where there does not exist a probability
distribution that allows for the chain to be walked
backwards in time

12.4

eigenvector A non-zero vector that changes by only a scalar factor
when that linear transformation is applied

12.4

n-step transition
probability

Probability of ending in a state j after n periods,
starting in state i, where i and j can be the same state

12.4

convergence rate After n transitions, the sum of variation between the
probability in each state vs. the stationary probability

12.4

poisson
regression model

Type of regression model used for fitting data with an
integral (count) response variable with mean equal to
the variance

12.5

negative
binomial
regression model

Type of regression model used for fitting data with an
integral (count) response variable and can account for
variance greater than the mean

12.5

overdispersion Phenomenon where the variance of data is larger than
what is modeled

12.5

cross-classified
rating classes

Table that combines the effects of multiple rating
classifications

12.5



682 23 Glossary

(continued)
Term Definition Section
structured data Data that can be organized into a repository format,

typically a database
13.1

unstructured
data

Data that is not in a predefined format, most notably
text, audio visual

13.1

qualitative data Data which is non numerical in nature 13.1
quantitative
data

Data which is numerical in nature 13.1

ordinal data Data field with a natural ordering 13.1
interval data Continuous data which is broken into interval bands

with a natural ordering
13.1

key-value
databases

Data storage method that stores amd finds records
using a unique key hash

13.1

column-oriented
databases

Data storage method that stores records by column
instead of by row

13.1

document
databases

Data storage method that uses the document metadata
for search and retrieval, also known as semi-structured
data

13.1

data decay Corruption of data due to hardware failure in the
storage device

13.1

reverification Manual process of checking the integrity of data 13.1
data element
analysis

Analysis of the format and definition of each field 13.1

structural
analysis

Statistical analysis of the structured data present to
detect irregularities

13.1

robust Statistics which are more unaffected by outliers or small
departures from model assumptions

13.2

exploratory data
analysis

Approach to analyzing data sets to summarize their
main characteristics, using visual methods, descriptive
statistics, clustering, dimension reduction

13.2

confirmatory
data analysis

Process used to challenge assumptions about the data
through hypothesis tests, significance testing, model
estimation, prediction, confidence intervals, and
inference

13.2

supervised
learning
methods

Model that predicts a response target variable using
explanatory predictors as input

13.2

unsupervised
learning
methods

Models that work with explanatory variables only to
describe patterns or groupings

13.2
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classification
methods

Supervised learning method where the response is a
categorical variable

13.2

regression
methods

Classical supervised learning method where the
response may be continuous, binary, or a mixture of
discrete and continuous

13.2

model flexibility A measure of model complexity, typically based on the
number of estimated parameters

13.2

explanatory
modeling

Process where the modeling goal is to identify variables
with meaningful and statistically significant
relationships and test hypotheses

13.2

predictive
modeling

Process where the modeling goal is to predict new
observations

13.2

data modeling Assumes data generated comes from a stochastic data
model

13.2

algorithmic
modeling

Assumes data generated comes from unknown
algorithmic models

13.2

predictive
accuracy

Quantitative measure of how well the explanatory
variables predict the response outcome

13.2

scripts A program or sequence of instructions that is executed
by another program

13.2

reproducible
analysis

Modeling practice where data, code, analyses are
published together in a manner so that others may
verify the findings

13.2

literate
programming

Coding practice where documentation and code are
written together

13.2

data ownership Governance process that details legal ownership of
enterprise-wide data and outlines who has ability to
create, edit, modify, share and restrict access to the data

13.2

machine learning Study of algorithms and statistical models that perform
a specific task without using explicit instructions,
relying on patterns and inference

13.3

pattern
recognition

Automated recognition of patterns and regularities in
data

13.3

data mining Process of collecting, cleaning, processing, analyzing,
and discovering patterns and useful insights from large
data sets

13.3

principal
component
analysis

Dimension reduction technique that uses orthogonal
transformations to convert a set of possibly correlated
variables into a set of linearly uncorrelated variables

13.3
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cluster analysis Unsupervised learning method that aims to splot data

into homogenous groups using a similarity measure
13.3

k-means
algorithm

Type of clustering that aims to partition data into k
mutually exclusive clusters by assigning observations to
the cluster with the nearest centroid

13.3

linear regression Supervised model that uses a linear function to
approximate the relationship between the target and
explanatory variables

13.3

generalized
linear model

Supervised model that generalizes linear regression by
allowing the linear component to be related to the
response variable via a link function and by allowing the
variance of each measurement to be a function of its
predicted value

13.3

systematic
component

The linear combination of explanatory variables
component in a glm

13.3

link function Function that relates between the linear predictor
component to the mean of the target variable

13.3

decision trees Modeling technique that uses a tree-like model of
decisions to divide the sample space into
non-overlapping regions to make predictions

13.3

categorical
variable

A variable whose values are qualitative groups and can
have no natural ordering (nominal) or an ordering
(ordinal)

14.1

variables A variable is any characteristics, number, or quantity
that can be measured or counted.

14.1

interval variable An ordinal variable with the additional property that
the magnitudes of the differences between two values
are meaningful

14.1

spatial data Data and information having an implicit or explicit
association with a location relative to the earth

14.1

high dimensional Data set is high dimensional when it has many
variables. In many applications, the number of variables
may be larger than the sample size.

14.1

qualitative This is a type of variable in which the measurement
denotes membership in a set of groups, or categories

14.1

nominal variable This is a type of qualitative/ categorical variable which
has two or more categories without having any kind of
natural order.

14.1
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ordinal variable This is a type of qualitative/ categorical variable which

has two or more ordered categories.
14.1

binary variable Is a special type of categorical variable where there are
only two categories.

14.1

quantitative
variable

A quantitative variable is a type of variable in which
numerical level is a realization from some scale so that
the distance between any two levels of the scale takes on
meaning.

14.1

continuous
variable

A continuous variable is a quantitative variable that can
take on any value within a finite interval.

14.1

policyholder Person in actual possession of insurance policy; policy
owner.

14.1

discrete variable A discrete variable is quantitative variable that takes on
only a finite number of values in any finite interval.

14.1

count variable A count variable is a discrete variable with values on
nonnegative integers.

14.1

circular data In a circular data, all values around the circle are
equally likely. Example, imagine an analog picture of a
clock.

14.1

insurers An insurance company authorized to write insurance
under the laws of any state.

14.1

multivariate Multivariate variable involves taking many
measurements on a single entity.

14.1

workers
compensation

Insurance that covers an employer’s liability for injuries,
disability or death to persons in their employment,
without regard to fault, as prescribed by state or federal
workers’ compensation laws and other statutes.

14.1

univariate Univariate analysis is the simplest form of analyzing
data. “Uni” means “one”, so in other words your data
has only one variable.

14.1

missing data Missing data occur when no data value is stored for a
variable in an observation. Missing data can occur
because of nonresponse: no information is provided for
one or more items or for a whole unit or subject.

14.1

censored Censored data have unknown values beyond a bound on
either end of the number line or both. Here, the data is
observed but the values (measurements) are not known
completely.

14.1
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truncated Truncation occurs when values beyond a boundary are

either excluded when gathered or excluded when
analyzed. An object can be detected only if its value is
greater than some number.

14.1

stochastic
process

Stochastic process is defined as a collection of random
variables that is indexed by some mathematical set,
meaning that each random variable of the stochastic
process is uniquely associated with an element in the
set.

14.1

deductibles A deductible is a parameter specified in the contract.
Typically, losses below the deductible are paid by the
policyholder whereas losses in excess of the deductible
are the insurer’s responsibility (subject to policy limits
and coninsurance).

14.1

rank based
measures

Statistical dependence between the rankings of two
variables

14.2

odds ratio A statistic quantifying the strength of the association
between two events, a and b, which is defined as the
ratio of the odds of a in the presence of b and the odds
of a in the absence of b

14.2

likelihood ratio
test

A statistical test of the goodness-of-fit between two
models

14.2

pearson
correlation

A measure of the linear correlation between two
variables

14.2

product-
moment
(pearson)
correlation

Pearson correlation, a measure of the linear correlation
between two variables

14.2

kendall tau A statistic used to measure the ordinal association
between two measured quantities

14.2

concordant An observation pair (x,y) is said to be concordant if the
observation with a larger value of x has also the larger
value of y

14.2

discordant An observation pair (x,y) is said to be discordant if the
observation with a larger value of x has the smaller
value of y

14.2

pearson
chi-square
statistic

A statistical test applied to sets of categorical data to
evaluate how likely it is that any observed difference
between the sets arose by chance

14.2
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tetrachoric
correlation

A technique for estimating the correlation between two
theorised normally distributed continuous latent
variables, from two observed binary variables

14.2

polychoric
correlation

A technique for estimating the correlation between two
theorised normally distributed continuous latent
variables, from two observed ordinal variables

14.2

polyserial
correlation

The correlation between two continuous variables with a
bivariate normal distribution, where one variable is
observed directly, and the other is unobserved

14.2

biserial
correlation

A correlation coefficient used when one variable is
dichotomous

14.2

normal score Transformed data which closely resemble a standard
normal distribution

14.2

copula A multivariate distribution function with uniform
marginals

14.3

spearmans rho A nonparametric measure of rank correlation 14.3
marginal
distributions

The probability distribution of the variables contained
in the subset of a collection of random variables

14.4

fat-tailed A fat-tailed distribution is a probability distribution
that exhibits a large skewness or kurtosis, relative to
that of either a normal distribution or an exponential
distribution

14.4

probability
integral
transformation

Any continuous variable can be mapped to a uniform
random variable via its distribution function

14.4

elliptical copulas The copulas of elliptical distributions 14.5
correlation
matrix

A table showing correlation coefficients between
variables

14.5

elliptical
distributions

Any member of a broad family of probability
distributions that generalize the multivariate normal
distribution

14.5

tail dependency A measure of their comovements in the tails of the
distributions

14.5

frechet-
hoeffding
bounds

Bounds of multivariate distribution functions 14.5

blomqvists beta A dependence measure based on the center of the
distribution

14.7
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reinsurance Insurance purchased by an insurer 1.1,

10.4
deductible A deductible is a parameter specified in the contract.

typically, losses below the deductible are paid by the
policyholder whereas losses in excess of the deductible
are the insurer’s responsibility (subject to policy limits
and coninsurance).

1.2,
5.3

coinsurance Coinsurance is an arrangement whereby the insured and
insurer share the covered losses. typically, a coinsurance
parameter specified means that both parties receive a
proportional share, e.g., 50%, of the loss.

1.2,
5.5

pure premium Pure premium is the total severity divided by the
number of claims. it does not include insurance
company expenses, premium taxes, contingencies, nor
an allowance for profits. also called loss costs. some
definitions include allocated loss adjustment expenses
(alae).

1.3,
7.1,
7.2

standard
deviation

The square-root of variance 2.1,
3.1

variance Second central moment of a random variable x,
measuring the expected squared deviation of between
the variable and its mean

2.1,
3.1

aggregate claims The sum of all claims observed in a period of time 2.1,
5.1,
14.1

median 50th percentile of a definition, or middle value where
half of the distribution lies below

3.1,
4.1

lorenz curve A graph of the proportion of a population on the
horizontal axis and a distribution function of interest on
the vertical axis.

4.1,
7.6

law of total
variance

A decomposition of the variance of a random variable
into conditional components. specifically, for random
variables x and y on the same probability space, var(x)
= e[var(y|x)] + var[e(x|y)].

5.3,
9.4

tail value-at-risk The expected value of a risk given that the risk exceeds
a value-at-risk

6.2,
10.3

expected
shortfall

The average value at risk 6.2,
10.3
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coefficient of
variation

Standard deviation divided by the mean of a
distribution, to measure variability in terms of units of
the mean

6.3,
9.2

loss ratio The sum of losses divided by the premium. 7.1,
7.2

homogeneous
risks

Risks that have the same distribution, that is, the
distributions are identical.

7.1,
7.2

heterogeneous Heterogeneous risks have different distributions. often,
we can attribute differences to varying exposures or risk
factors.

7.1,
7.4

exposure A type of rating variable that is so important that
premiums and losses are often quoted on a "per
exposure" basis. that is, premiums and losses are
commonly standardized by exposure variables.

7.2,
7.4

loss The amount of damages sustained by an individual or
corporation, typically as the result of an insurable event.

7.5,
14.1

iid Independent and identically distributed
pdf Probability density function
aic Akaike’s information criterion
bic Bayesian information criterion
pmf Probability mass function
mcmc Markov Chain Monte Carlo
cdf Cumulative distribution function
df Degrees of freedom
glm Generalized linear model
mle Maximum likelihood estimate
ols Ordinary least squares
pf Probability function
rv Random variable
reporting delay The time that elapses between the occurrence of the

insured event and the reporting of this event to the
insurance company.

11.1

settlement delay The time between reporting and settlement of a claim. 11.1
rbns Reported, But is Not fully Settled 11.1
ibnr Incurred in the past But is Not yet Reported. For such

a claim the insured event took place, but the insurance
company is not yet aware of the associated claim.

11.1

granular 11.1
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case estimates The claims handlers expert estimate of the outstanding

amount on a claim.
11.1

.csv Comma separated value file 11.2

.txt Text file 11.2
run-off triangle Triangular display of loss reserve data. Accident or

occurrence periods on one axis (often vertical) with
development periods on the other (often horizontal).
Also known as a development triangle.

11.2

development
triangle

Triangular display of loss reserve data. Accident or
occurrence periods on one axis (often vertical) with
development periods on the other (often horizontal).
Also known as a run-off triangle.

11.2

msep Mean Squared Error of Prediction
chain-ladder
method

An algorithm for predicting incomplete losses to their
ultimate cumulative value. The name refers to the
chaining of a sequence of (year-to-year development)
factors into a ladder of factors.

11.3

wls weighted least squares 11.3
glm Generalized linear model
frequentist Type of statistical inference based in frequentist

probability, which treats probability in equivalent terms
to frequency and draws conclusions from sample-data
by means of emphasizing the frequency or proportion of
findings in the data.

9

posterior
distribution

The posterior distribution is the updated probability
distribution of a parameter after incorporating prior
information and observed data through Bayesian
inference.

9.1

bayes’ rule A probability law that expresses conditional probability
of the event a given the event b in terms of the
conditional probability of the event b given the event a
and the unconditional probability of a

9.1

informative An informative prior, in statistics, is a prior probability
distribution that is chosen deliberately to incorporate
specific information or beliefs about a parameter before
observing new data.

9.2
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weakly
informative

A weakly informative prior is a prior probability
distribution that introduces some general constraints or
vague beliefs about a parameter, without heavily
influencing the final inference.

9.2

noninformative A noninformative prior is a prior probability
distribution that intentionally avoids incorporating
specific information or strong beliefs about a parameter.

9.2

improper An improper prior is a prior probability distribution
that does not integrate to a finite value over the entire
parameter space.

9.2

conjugate
distributions

Conjugate distributions are specific pairs of prior and
likelihood functions that result in a posterior
distribution within the same family of probability
distributions as the prior.

9.3

hyperparameters Hyperparameters are parameters that define the
distribution of a prior distribution

9.3

gibbs sampler The Gibbs sampler is an iterative algorithm in statistics
used for simulating samples from complex probability
distributions. It’s particularly useful in Bayesian
analysis for drawing samples from multivariate
distributions by updating one variable at a time while
keeping others fixed.

9.4

metropolis–
hastings
algorithm

The Metropolis–Hastings algorithm is a method to
generate samples from complex distributions by
proposing new samples and deciding whether to accept
them, making it valuable for Bayesian analysis and
complex modeling.

9.4

precision Precision is the inverse of variance and is often used to
quantify the amount of uncertainty or variability in a
prior or posterior distribution.

9.3
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