import numpy as np import matplotlib.pyplot as plt # 读取数据 #data = np.array([19.57, 19.48, 19.61, 19.52, 19.42, 19.48, 19.37, 19.43, 19.51]) data = np.array([25.75, 25.91, 25.83, 25.74, 25.77, 25.53, 25.72, 25.58, 25.59]) # 绘制箱线图 fig, ax = plt.subplots() ax.boxplot(data) # 标记异常值 q1 = np.percentile(data, 25) q3 = np.percentile(data, 75) iqr = q3 - q1 upper_bound = q3 + 1.5 * iqr lower_bound = q1 - 1.5 * iqr outliers = [x for x in data if x < lower_bound or x > upper_bound] ax.plot(np.ones(len(outliers)), outliers, 'ro', alpha=0.5) # 显示图形 plt.show()