import numpy as np import matplotlib.pyplot as plt # 读取数据 data = np.array([1.61, 1.611, 1.611, 1.61, 1.611]) #data = np.array([47.2, 47.3, 47.283, 46.867, 47.167, 47.283]) # 绘制箱线图 fig, ax = plt.subplots() ax.boxplot(data) # 标记异常值 q1 = np.percentile(data, 25) q3 = np.percentile(data, 75) iqr = q3 - q1 upper_bound = q3 + 1.5 * iqr lower_bound = q1 - 1.5 * iqr outliers = [x for x in data if x < lower_bound or x > upper_bound] ax.plot(np.ones(len(outliers)), outliers, 'ro', alpha=0.5) # 显示图形 plt.show()