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Abstract

The captivating realm of Minecraft has attracted substantial research interest in
recent years, serving as a rich platform for developing intelligent agents capable of
functioning in open-world environments. However, the current research landscape
predominantly focuses on specific objectives, such as the popular "ObtainDiamond"
task, and has not yet shown effective generalization to a broader spectrum of
tasks. Furthermore, the current leading success rate for the "ObtainDiamond"
task stands at around 20%, highlighting the limitations of Reinforcement Learning
(RL) based controllers used in existing methods. To tackle these challenges, we
introduce Ghost in the Minecraft (GITM), a novel framework integrates Large
Language Models (LLMs) with text-based knowledge and memory, aiming to
create Generally Capable Agents (GCAs) in Minecraft. These agents, equipped
with the logic and common sense capabilities of LLMs, can skillfully navigate
complex, sparse-reward environments with text-based interactions. We develop
a set of structured actions and leverage LLMs to generate action plans for the
agents to execute. The resulting LLM-based agent markedly surpasses previous
methods, achieving a remarkable improvement of +47.5% in success rate on the
"ObtainDiamond" task, demonstrating superior robustness compared to traditional
RL-based controllers. Notably, our agent is the first to procure all items in the
Minecraft Overworld technology tree, demonstrating its extensive capabilities.
GITM does not need any GPU for training, but a single CPU node with 32 CPU
cores is enough. This research shows the potential of LLMs in developing capable
agents for handling long-horizon, complex tasks and adapting to uncertainties
in open-world environments. See the project website at https://github.com/
OpenGVLab/GITM.

1 Introduction

“What if a cyber brain could possibly generate its own ghost, create a soul all by itself? And if it did,
just what would be the importance of being human then?”

— Ghost in the Shell (1995)
∗Equal contribution. This work is done when Chenxin Tao and Weijie Su are interns at SenseTime Research.

� Corresponding to Jifeng Dai <daijifeng@tsinghua.edu.cn>.
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Figure 1: Our GITM unlocks the entire technology tree by obtaining all items in Minecraft
Overworld. Each node represents an individual item in Minecraft. The directed edges between nodes
represent prerequisite relationships for obtaining items. For better readability, we manually merge
some similar nodes, e.g., “wooden_pickaxe”, “wooden_axe”, “wooden_hoe”, and ’wooden_shovel’
are merged into one node, and “wooden_pickaxe” is selected to represent the merged node. Existing
Minecraft agents [2, 7, 25] only unlocked 78 / 262 = 30% items, while our GITM successfully
unlocked all items.
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Figure 2: Comparison between RL-based method and our GITM. RL agents try to map an
complex goal directly to a sequence of low-level control signals, while our GITM leverages LLM to
break down the goals and map them to structured actions for final control signals.

Minecraft, as the world’s best-selling game, boasts over 238 million copies sold and more than
140 million peak monthly active users [27]. Within the game, hundreds of millions of players have
experienced a digital second life by surviving, exploring and creating, closely resembling the human
world in many aspects. Given its massive scale, vast success, and unrestricted freedom, Minecraft
has established itself as an unparalleled platform for researching autonomous and robust Generally
Capable Agents (GCAs) [23] in open-world environments brimmed with long-horizon challenges,
environmental disruptions, and uncertainties.

Minecraft acts as a microcosm of the real world. Developing an automated agent that can mas-
ter all technical challenges in Minecraft is akin to creating an artificial intelligence capable of
autonomously learning and mastering the entire real-world technology. However, existing re-
searches [2, 7, 25] remain narrowly scoped. Prior studies have predominantly focused on the
specific goal of ObtainDiamond [18]. Yet, in the process of obtaining diamonds, the number of
types of items involved only accounts for <5% of the entire Minecraft world. ObtainDiamond only
requires specialized skills in a specific domain, while obtaining all items in Minecraft demonstrates a
wide range of knowledge and capabilities, similar to mastering multidisciplinary fields in the real
world. As illustrated in Fig. 1, our work endeavors to obtain all items in Minecraft within a reasonable
computation budget. This achievement stands as a significant milestone in the development of GCAs,
illustrating the potential of intelligent agents to match human performance in terms of versatility and
adaptability.

Although reinforcement learning (RL) [16] is the most popular paradigm for approaching GCAs, it
has shown some staggering limitations in conquering Minecraft. RL-based agents typically require
a vast number of learning steps (e.g., nearly 30 million steps to obtain diamonds as reported in
DreamerV3 [7]) and exhibit poor scalability when learning new tasks(e.g., VPT [2] uses different
agents for world exploration and diamond mining). As a consequence, adopting RL-based agents for
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completing a wide range of tasks may require an prohibitively high number of training steps, making
it impractical to obtain all items in Minecraft. This inefficiency and lack of adaptability have hindered
the development of generally capable agents in open-world environments.

As shown in Fig. 2, the biggest dilemma of previous RL-based agents is how to map an extremely
long-horizon and complex goal to a sequence of lowest-level keyboard/mouse operations. To address
this challenge, we propose our framework Ghost In the Minecraft (GITM) 2, which uses Large
Language Model (LLM)-based agents as a new paradigm. Instead of direct mapping like RL agents,
our LLM-based agents employ a hierarchical approach. It first breaks down the decompose goal
into sub-goals, then into structured actions, and finally into keyboard/mouse operations. Such
decomposition is similar to how humans solve complex problems in the real world, enabling mastery
of Minecraft with efficiency orders of magnitude higher than that of RL. LLM can also leverage
text-based knowledge and memory to quickly acquire the ability to interact with the environment
and accomplish goals, offering immense learning efficiency improvements, unlimited scalability and
representing a disruptive innovation compared with RL. Our GITM framework has the potential to
revolutionize the path to generally capable agents.

Specifically, the proposed LLM-based agent consists of an LLM Decomposer, an LLM Planner, and
an LLM Interface, which are responsible for the decomposition of sub-goals, structured actions,
and keyboard/mouse operations, respectively. Given a goal in Minecraft, LLM Decomposer first
decomposes it into a series of well-defined sub-goals according to the text-based knowledge collected
from the Internet. Then, LLM Planner plans a sequence of structured actions for each sub-goal. The
structured actions are defined with clear semantics and corresponding feedback, enabling LLMs to
understand surrounding environments and make decisions at the cognitive level. LLM Planner also
records and summarizes successful action lists into a text-based memory to enhance future planning.
Finally, LLM Interface execute the structured actions to interact with the environment by processing
raw keyboard/mouse input and receiving raw observations.

In this paper, we demonstrate the feasibility of employing Large Language Models (LLMs) to develop
Generally Capable Agents (GCAs) within an open-world environment built from Minecraft. By
exploiting the common sense and reasoning capabilities of LLMs for hierarchical goal decomposition,
as well as utilizing text-based knowledge and memory, this paradigm shows the possibility of
enabling agents to address a wide range of challenges within Minecraft and allowing them to
effectively handle such open-world environment. Consequently, our agent has surpassed all previous
methods in achieving the ObtainDiamond goal (+47.5% success rate). Our agent also demonstrates
superior learning efficiency compared to previous methods, reducing the number of environment
interaction steps by more than 10,000×. Specifically, VPT [2] needs to be trained for 6,480 GPU days,
DreamerV3 [7] needs to be trained for 17 GPU days, while our GITM does not require any GPUs
and can be trained in just 2 days using a single CPU node with 32 CPU cores. More importantly, by
obtaining all items in Minecraft Overworld as a milestone, this work represents a crucial first step
towards achieving GCAs that can handle any task humans can accomplish in Minecraft.

2 Related Work
Minecraft agents are intelligent programs that can perform various tasks within Minecraft world.
Reinforcement learning has dominated this area for many years. Some initial attempts have tried
to use hierarchical RL [14, 15, 22] or imitation learning [1] in MineRL competitions [6, 10, 17].
Recently, with large-scale web data, VPT [2] builds a foundation model for Minecraft by learning
from videos. Based on its success, many works [18] have also explored to finetune foundation
model with human feedback. On the other hand, as Minecraft agents become increasingly proficient
in handling simple tasks, the importance of multi-task learning becomes more prominent. Some
previous works have adopted knowledge distillation [24] and curriculum learning [11], while recent
works [3, 5] tried to construct a language-conditioned multi-task agent via feeding the goal description
embedding into the model.

Recently, researchers have come to aware the extraordinary general planning ability for LLMs [8].
Many works [9, 25, 28] have leveraged LLMs for enhancing the high-level planning ability of
minecraft agents. Inner Monologue [9] leveraged environment feedback to improve the planning
ability of LLM. DEPS [25] further extended this closed-loop interaction by introducing description,

2The name is chosen to pay tribute to the science fiction movie "Ghost in the Shell".
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Figure 3: Overview of our GITM. Given a Minecraft goal, the LLM Decomposer divides the goal
into a sub-goal tree. The LLM Planner then plans an action sequence for each sub-goal. Finally,
the LLM Interface executes each action in the environment. Our LLM-based agents can be further
enhanced by leveraging text-based knowledge and memory.

explainer and selector. Plan4MC [28] pre-defined basic skills and instructed LLM to extract the
relationship between skills to construct a skill graph.

Unlike previous RL-based or RL with LLM methods, our LLM-native approach brings the minecraft
agent to another level both in efficiency and robustness by leveraging high-level action abstraction
and text-based knowledge and memory.

Large Language Models with Tools Extending the ability of LLMs by leveraging external tools
have drawn a lot of attentions recently. Several works [4, 13, 21] have explored to augment LLMs
with robot perception and control abilities. Code as Polices[13] tried to prompt LLM to generate
codes that can drive robots. PaLM-E [4] unified robot perception, instruction following, task planning
and low-level control into a unified framework. Another line of works tries to build external plugins
around LLMs to enhance its ability. Toolformer [19] tries to teach LLMs to choose and use a wide
range of tools like calculator and search engines and incorporate the results from tools into text
generation. HuggingGPT [20] builds an agent for leveraging a combination of vision, language and
audio models hosted on HuggingFace for completing user request. API Bank [12] proposes a syntheic
benchmark suite for evaluating the how good LLMs are for using external tools.

Compared with these tool-augmented LLMs, our agents are tasks for much more complex goals in a
high uncertain open-world.

3 Method
Traditional RL-based agents struggle to develop generally capable agents in Minecraft. The core issue
is that they attempt to map extremely long-horizon and complex goals directly to the lowest-level
keyboard and mouse operations. To overcome this, we propose LLM-based agents in Fig. 2 that utilize
hierarchical goal decomposition. LLM Decomposer, LLM Planner, and LLM Interface are introduced
to progressively decompose the task goal into sub-goals, structured actions, and keyboard/mouse
operations. Moreover, LLM-based agents can leverage text-based knowledge and memory to quickly
acquire the skills needed to master Minecraft.

3.1 LLM Decomposer

Rather than directly assigning the task goal to the agent and expecting a comprehensive and robust
action plan, this work suggests the more practical strategy of decomposing the task goal into a
series of more achievable sub-goals. By addressing each constituent sub-goal, the task goal can
be progressively achieved. To this end, an LLM Decomposer is proposed. Goals are fed to the
decomposer and recursively decomposed into a sub-goal tree. Text-base knowledge provides the
necessary information for decomposition.

Goal Format. Since we aim to obtain all items in Minecraft, all goals can be defined in the format of

(Object, Count, Material, Tool, Info), (1)

where “Object” denotes the target item, “Count” specifies the target quantity. “Material” and “Tool”
refer to prerequisites needed to obtain the target item. “Info” stores the text-based knowledge related
to this goal. Given a specific goal, its sentence embedding extracted from a pre-trained LLM is used
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Action Interface:
𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑜𝑏𝑗𝑒𝑐𝑡)
𝑚𝑖𝑛𝑒(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡𝑜𝑜𝑙)
𝑑𝑖𝑔_𝑑𝑜𝑤𝑛(𝑦_𝑙𝑒𝑣𝑒𝑙, 𝑡𝑜𝑜𝑙)
...

Query Illustration:
Query contains a goal, feedback from the 

agent, and reference plan from the memory

Response Format:
{

“explanation”: “explain action failure”,
“thoughts”: “thoughts on your plan”,
“action_list”: [ … ]

}

Interaction Guideline:
You will receive feedback messages. If 

your action failed, please replan …

Instruction

Query

Goal: obtain 1 diamond given iron pickaxe.

External info: Diamond is usually

found at level 12 …

Feedback

Reference plan

Plan

{
“explanation”: “The last action failed because diamond cannot be found on the ground.”,
“thoughts”: “First I need to dig down to level 12 where diamond is usually found. 

Then I can explore diamond ore underground with branching strategy.
Once I find diamond ore, I can mine it with the tool iron pickaxe.”

“action_list”: [
{“name”: “dig_down”, “args”: {“y_level”: “12”, “tool”: “iron_pickaxe”}},
{“name”: “explore”, “args”: {“object”: “diamond_ore”, “strategy”: “branching”}},
{“name”: “mine”, “args”: {“object”: “diamond_ore”, “tool”: “iron_pickaxe”}

]
}

Large 
Language 

Model

Feedback

The action {“name”: “mine”, “args”: {“object”: “diamond_ore”, “tool”: “iron_pickaxe”} failed

Error message: the target object “diamond_ore” is too far

- inventory: {‘iron_pickaxe’: 1, …}
- environment: {‘biome’: forest, ‘y_level’: 12}
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Memory

Goal object: diamond

Reference plan:

[
{“name”: “dig_down”, “args”: {“y_level”: “12”, “tool”: “iron_pickaxe”}},
{“name”: “explore”, “args”: {“object”: “diamond_ore”, “strategy”: “branching”}},
{“name”: “approach”, “args”: {“object”: “diamond_ore”}},
{“name”: “mine”, “args”: {“object”: “diamond_ore”, “tool”: “iron_pickaxe”}

]

Figure 4: Illustration of our planning process with the LLM Planner and the agent in the loop.
Given a specific goal, the planner generates plans with structured actions under the guidance of
instruction, user query, previous feedback, and reference plan from memory. The agent executes the
actions and provides feedback for the following planning.

to retrieve the most relevant text-based knowledge from an external knowledge base. Then, the LLM
identifies the required material, tools, and related information from the gathered knowledge. The
complete instructions for the LLM are described in Appendix.

Recursive Decomposition. This goal format enables recursive decomposition of each goal into a sub-
goal tree. Specifically, given a goal, all prerequisite items are listed as sub-goals, including materials,
tools, and their corresponding quantities. Then, the recursive decomposition continues for each
sub-goal until it has no prerequisites. After the decomposition is completed, the execution sequence
of the sub-goals is planned through post-order traversal. Such goal decomposition significantly
enhances the success rate of LLM planning, especially for goals necessitating long-horizon planning.

Text-based Knowledge. External knowledge is essential for automatic goal decomposition. We
build an external knowledge base documented in text from the Minecraft Wiki on the Internet 3 and
the item crafting/smelting recipes, providing an exhaustive source of knowledge about the Minecraft
world. For instance, if we need to craft a wooden pickaxe, the item crafting recipe will indicate that
the required materials are three planks and two sticks, and the necessary tool is a crafting table. It also
provides information about the distribution of raw materials. For example, diamonds are frequently
found in levels 10∼12 underground.

3.2 LLM Planner

LLMs excel at language understanding and reasoning but struggle with low-level control and mul-
timodal perception. To leverage LLMs’ strengths while addressing their limitations, we develop
structured actions and feedback mechanisms as an abstract interface for them to manage agent-
environment interaction. We propose an LLM-based Planner to achieve goals in Minecraft. Given a
goal, it generates structured actions to control agents, receives feedback, and revises plans accordingly.
It also has a text memory that aids planning by providing solutions for frequent goals.

Structured Actions. The structured actions are designed with well-defined functions and clear
semantics, enabling LLMs to make decisions at the cognitive level. A structured action can be defined
as follows:

(Name, Arguments, Description), (2)

3https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki
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Table 1: Examples of structured actions. A structured action contains name and arguments for
execution, as well as description to help LLMs understand and decide when to choose this action.

Name Arguments Description

equip object Equip the object from the inventory: used to equip equipment, including tools, weapons, and armor.
explore object, strategy Move around to find the object: used to find objects including block items and entities on the ground.
approach object Move close to a visible object: used to approach the object you want to attack or mine.
mine/attack object, tool Attack / Mine the object with the tool: used to attack / mine the object within reach.
dig_down/go_up ylevel, tool Dig down / Go up with the tool: used to go down / up underground.
build blueprint Build according to a blueprint: used to place corresponding objects on locations according to a preset blueprint.
craft/smelt object, tool, material Craft / Smelt the object with the materials and tool: used to craft new object that is not in the inventory or is not enough.
apply/place object, tool Apply / Place the tool on the object: used to apply tools or place blocks.

The name and arguments defines the action we want the agent to execute, while the action description
provides enough information for letting LLMs know when to choose the corresponding actions, as
shown in Tab. 1.

We extract the set of structured actions by leveraging the powerful reasoning capability of LLMs.
Specifically, a pre-trained LLM is utilized to decompose the 3141 predefined tasks provided by
MineDojo [5] into action sequences. Instructions for guiding LLMs on action decomposition are
provided in Appendix. Then, we extract the structured actions by selecting frequent actions and
merging actions with similar functionalities. See Appendix for the set of structured actions.

Feedback Mechanism. Open-loop planning cannot guarantee success, especially in open-world
environments, where agents might encounter unexpected events. Feedback is crucial to form an effec-
tive closed loop. Without appropriate feedback, the LLM has no information about the consequences
of actions and may repeat failed action plans. Feedback message is designed to present the agent’s
current state in the environment (i.e., inventory and environment), as well as the success and failure
information for each executed actions, as shown in Fig. 4. By incorporating this feedback message,
the LLM can update its understanding of the environment, refine their strategies, and adapt their
behavior accordingly.

Planning. Once the abstract interface is prepared, a pre-trained LLM is queried to generate goal-
specific action sequence. This is achieved through carefully designed instructions and user queries,
enabling the LLM to efficiently create and revise the plans. Fig. 4 illustrates the planning process.
See Appendix for the full description.

Instruction specifies the guidelines that LLMs must follow when planning, including 1) Action
Interface provides functional descriptions of the structured actions and their parameters; 2) Query
Illustration clarifies the structure and meaning of user queries; 3) Response Format requires LLM to
return responses in the format of {Explanation, Thought, Action List}, where “Explanation” requires
LLMs to explain the reason for action failure, “Thought” requires LLM to use natural language to
plan before outputting action sequences as a chain-of-thought (CoT) mechanism [26], and “Action
List” outputs a list of structured actions to be executed; 4) Interaction Guideline guides LLMs to
correct failed actions based on the feedback message, thus enabling the LLM to revise the plan.

User Query provides the specific query to LLMs for a given goal, including 1) Goal represents the
objective by text as “Obtain Count Item, given Material and Tool. Extra info: Info” according to
Eq. (1); 2) Feedback is the feedback information of the abstract interface; 3) Reference Plan provides
a common reference plan for the current goal retrieved from the text-base memory.

Text-based Memory is designed for LLM to maintain common reference plans for each encountered
objective as experiential knowledge. LLMs acquire the experience about controlling agents and
resolving specific situations through game play and agent interaction. Instead of starting from scratch
every time, using prior experience allows LLMs to handle tasks more efficiently, a process similar to
human skill improvement through practice.

To this end, we design a text-based memory mechanism for LLM to store and retrieve gained knowl-
edge. Unlike the RL-based model, which stores knowledge in parameters, this textual knowledge is
explicit, logical, and closely aligned with human thought processes. This allows for direct application
to a wide range of similar tasks, leading to more efficient learning and improved generalization.

Specifically, during each game episode, once the goal is achieved, the entirely executed action list
would be stored in memory. The LLM may achieve the same goal under various circumstances,
resulting in a range of different plans. To identify a common reference plan suitable for general
situations, essential actions from multiple plans are summarized. This summarization process is

6



ac
ac

ia
_b

oa
t

ac
ac

ia
_d

oo
r

ac
ac

ia
_f

en
ce

ac
ac

ia
_f

en
ce

_g
at

e
ac

ac
ia

_s
ta

irs
be

ef
bi

rc
h_

bo
at

bi
rc

h_
do

or
bi

rc
h_

fe
nc

e
bi

rc
h_

fe
nc

e_
ga

te
bi

rc
h_

st
ai

rs
bo

at
bo

ne
bo

wl
ch

es
t

ch
ick

en
co

bb
le

st
on

e
co

bb
le

st
on

e_
wa

ll
co

ok
ed

_b
ee

f
co

ok
ed

_c
hi

ck
en

co
ok

ed
_m

ut
to

n
co

ok
ed

_p
or

kc
ho

p
cr

af
tin

g_
ta

bl
e

da
rk

_o
ak

_b
oa

t
da

rk
_o

ak
_d

oo
r

da
rk

_o
ak

_f
en

ce
da

rk
_o

ak
_f

en
ce

_g
at

e
da

rk
_o

ak
_s

ta
irs di
rt

do
ub

le
_p

la
nt

fe
nc

e
fe

nc
e_

ga
te

fu
rn

ac
e

gl
as

s
gl

as
s_

bo
ttl

e
gl

as
s_

pa
ne

la
dd

er
le

ve
r

lo
g

m
ut

to
n

oa
k_

st
ai

rs
pa

pe
r

pl
an

ks
po

rk
ch

op
re

d_
flo

we
r

re
ed

s
sa

nd
sa

nd
st

on
e

sa
pl

in
g

sig
n

sp
ru

ce
_b

oa
t

sp
ru

ce
_d

oo
r

sp
ru

ce
_f

en
ce

sp
ru

ce
_f

en
ce

_g
at

e
sp

ru
ce

_s
ta

irs
st

ick
st

on
e

st
on

e_
ax

e
st

on
e_

br
ick

_s
ta

irs
st

on
e_

bu
tto

n
st

on
e_

ho
e

st
on

e_
pi

ck
ax

e
st

on
e_

pr
es

su
re

_p
la

te
st

on
e_

sh
ov

el
st

on
e_

st
ai

rs
st

on
e_

sw
or

d
st

on
eb

ric
k

su
ga

r
ta

llg
ra

ss
tra

pd
oo

r
wh

ea
t

wh
ea

t_
se

ed
s

wo
od

en
_a

xe
wo

od
en

_b
ut

to
n

wo
od

en
_d

oo
r

wo
od

en
_h

oe
wo

od
en

_p
ick

ax
e

wo
od

en
_p

re
ss

ur
e_

pl
at

e
wo

od
en

_s
ho

ve
l

wo
od

en
_s

la
b

wo
od

en
_s

wo
rd

ye
llo

w_
flo

we
r

bo
ne

_m
ea

l
ar

m
or

_s
ta

nd
bo

ok
br

ea
d

co
al

iro
n_

in
go

t
iro

n_
nu

gg
et

iro
n_

or
e

iro
n_

sh
ov

el
ite

m
_f

ra
m

e
le

at
he

r
ro

tte
n_

fle
sh

sh
ie

ld
sp

id
er

_e
ye

st
on

e_
sla

b
to

rc
h

tra
pp

ed
_c

he
st

tri
pw

ire
_h

oo
k

fir
ew

or
ks

gu
np

ow
de

r
sn

ow
sn

ow
_la

ye
r

sn
ow

ba
ll

ca
rp

et
gr

as
s

he
av

y_
we

ig
ht

ed
_p

re
ss

ur
e_

pl
at

e
iro

n_
ho

e
iro

n_
sw

or
d

le
at

he
r_

bo
ot

s
le

av
es

pa
in

tin
g

sh
ea

rs
st

rin
g

wo
ol

co
al

_b
lo

ck
le

at
he

r_
he

lm
et

br
ow

n_
m

us
hr

oo
m

br
ow

n_
m

us
hr

oo
m

_b
lo

ck fli
nt

be
d

bu
ck

et
ha

y_
bl

oc
k

iro
n_

ax
e

iro
n_

pi
ck

ax
e

m
ilk

_b
uc

ke
t

sa
nd

st
on

e_
st

ai
rs

wa
te

r_
bu

ck
et

fe
rm

en
te

d_
sp

id
er

_e
ye

le
at

he
r_

le
gg

in
gs

gr
av

el
fli

nt
_a

nd
_s

te
el

fis
hi

ng
_r

od
iro

n_
bo

ot
s

iro
n_

tra
pd

oo
r

le
at

he
r_

ch
es

tp
la

te
m

os
sy

_c
ob

bl
es

to
ne

vi
ne

wa
te

rli
ly

bo
ne

_b
lo

ck
bo

w
ch

es
t_

m
in

ec
ar

t
fu

rn
ac

e_
m

in
ec

ar
t

ho
pp

er
iro

n_
he

lm
et

m
in

ec
ar

t
di

am
on

d
di

am
on

d_
sh

ov
el

dr
op

pe
r

ju
ke

bo
x

no
te

bl
oc

k
re

ds
to

ne
re

ds
to

ne
_t

or
ch

ba
nn

er
fe

at
he

r
iro

n_
ba

rs
iro

n_
do

or ra
il

br
ick

cla
y_

ba
ll

la
pi

s_
la

zu
li

pi
st

on
em

er
al

d
ca

ul
dr

on
iro

n_
le

gg
in

gs tn
t

di
am

on
d_

ho
e

di
am

on
d_

sw
or

d
flo

we
r_

po
t

iro
n_

ch
es

tp
la

te
ar

ro
w

co
m

pa
ss

ho
pp

er
_m

in
ec

ar
t

go
ld

_in
go

t
go

ld
_n

ug
ge

t
go

ld
_o

re
go

ld
en

_s
ho

ve
l

iro
n_

bl
oc

k
br

ick
_b

lo
ck

cla
y

ha
rd

en
ed

_c
la

y
sli

m
e_

ba
ll

di
sp

en
se

r
di

am
on

d_
ax

e
di

am
on

d_
pi

ck
ax

e
la

va
_b

uc
ke

t
ac

tiv
at

or
_r

ai
l

de
te

ct
or

_r
ai

l
eg

g
re

pe
at

er
tn

t_
m

in
ec

ar
t

bo
ok

sh
el

f
go

ld
en

_h
oe

go
ld

en
_s

wo
rd

lig
ht

_w
ei

gh
te

d_
pr

es
su

re
_p

la
te

re
ds

to
ne

_b
lo

ck
re

d_
m

us
hr

oo
m

re
d_

m
us

hr
oo

m
_b

lo
ck

be
et

ro
ot

be
et

ro
ot

_s
ee

ds
di

am
on

d_
bo

ot
s

di
am

on
d_

he
lm

et
go

ld
en

_a
xe

go
ld

en
_p

ick
ax

e
st

ick
y_

pi
st

on
in

k_
sa

c
di

am
on

d_
le

gg
in

gs
go

ld
en

_b
oo

ts
m

us
hr

oo
m

_s
te

w
m

ap
be

et
ro

ot
_s

ou
p

le
ad

go
ld

en
_h

el
m

et
ra

bb
it_

hi
de

co
ok

ed
_r

ab
bi

t
ra

bb
it

br
ick

_s
ta

irs
ca

ke
ob

sid
ia

n
ca

ct
us

di
am

on
d_

ch
es

tp
la

te
clo

ck
de

ad
bu

sh
wr

ita
bl

e_
bo

ok
la

pi
s_

bl
oc

k
go

ld
en

_le
gg

in
gs

go
ld

en
_r

ai
l

ba
ke

d_
po

ta
to

po
ta

to
di

am
on

d_
bl

oc
k

go
ld

en
_c

he
st

pl
at

e
em

er
al

d_
bl

oc
k

ca
rro

t
pu

m
pk

in
pu

m
pk

in
_s

ee
ds

ju
ng

le
_b

oa
t

ju
ng

le
_d

oo
r

ju
ng

le
_f

en
ce

ju
ng

le
_f

en
ce

_g
at

e
ju

ng
le

_s
ta

irs
lit

_p
um

pk
in

ca
rro

t_
on

_a
_s

tic
k

m
el

on
m

el
on

_b
lo

ck
m

el
on

_s
ee

ds
go

ld
en

_c
ar

ro
t

go
ld

_b
lo

ck
pu

m
pk

in
_p

ie
re

d_
sa

nd
st

on
e

st
on

e_
sla

b2
re

d_
sa

nd
st

on
e_

st
ai

rs
sp

ec
kl

ed
_m

el
on

en
ch

an
tin

g_
ta

bl
e

ap
pl

e
an

vi
l

en
ch

an
te

d_
bo

ok
po

iso
no

us
_p

ot
at

o
ra

bb
it_

fo
ot

sli
m

e
go

ld
en

_a
pp

le
ra

bb
it_

st
ew

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Ours
DEPS
DreamerV3
VPT

Figure 5: Success rate for all items in the entire Minecraft Overworld Technology Tree. The x
axis lists all item names. We overlay the results from our GITM and the best results from baselines.

also implemented using LLMs (see Appendix for details). When encountering similar goals, the
LLM creates new plans based on the summarized reference plans retrieved from memory. Successful
action sequences from these new plans are also added to memory for future summarization. As the
LLM-based Planner accumulates summaries, it becomes increasingly effective.

3.3 LLM Interface
Unlike the existing RL-based agents that directly control keyboard and mouse, LLM-based agents
interact with the environment through structured actions and feedback messages. The LLM interface
serves to implement structured actions as keyboard/mouse operations, and extract observations
provided by the environment into feedback messages.

Structured actions can be implemented in various ways such as hand-written scripts or RL-learned
models. While RL-learned models have been employed in Minecraft previously, they were either
broad in functionality but inefficient in practice, or too specific in functionality, limiting their
applicability to general tasks and actions. Clarifying the capability boundary of RL-learned models is
challenging. Instead, in this work, we choose to implement structured actions using hand-written
scripts. Since structured actions are well-defined and easy to implement, we can manually implement
them based on observations (e.g., location, LiDAR, and voxel) and basic operations (e.g., move,
jump, adjust camera angle, click left mouse button, and click right mouse button) provided by the
MineDojo [5] environment. See Appendix for details.

Feedback messages can be obtained directly from the environment. These include whether the
structured action execution succeeded or failed. If the execution fails, the reason for the failure is
additionally notified. It also includes the current state of the agent in the environment, including the
items in the inventory, the current biome and depth, etc. See Appendix for details.

4 Experiments

Task Definition and Metrics. We measure the ability of GITM through item collection tasks. We
only collect items could be found in the Overworld. We exclude items could only be obtained by
trading with villagers, opening treasure chest or find a special structure on the map, using a tool
enchanted with Silk Touch. This give us a total of 262 tasks. For the assessment of our agent, we
employ “Coverage of the Overworld Technology Tree” and“Success Rate” as evaluation metrics.
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4.1 Main Result

Unlocking the Entire Technology Tree by Obtaining All Items. Compared with existing Minecraft
agents [2, 7, 25] which mostly focuses on solving the ObtainDiamond task and could only unlock
a limited part of the full technology tree (13/262 for Dreamerv3, 15/262 VPT, 69/262 for DEPS),
our approach could collect all 262 items as shown in Fig. 1. There are two major blockers for
existing methods. For RL-based methods like VPT [2] and DreamerV3 [7], the goal item(diamond)
is hard-coded into the model weights, which means there are no easy way to re-task the trained
RL agents for collecting other items in the inference stage. Moreover, the low training efficiency
hinders them from solving extremely long-horizon tasks (e.g., obtaining a “enchanted_book”). For
methods like DEPS [25] that use an RL controller [3] and LLM planner still rely on pre-trained RL
agents to execute specific subtasks (e.g. mining 1 “cobblestone”) in the generated plan. So these
approaches still suffer from the inability of RL-based methods alone to generalize to unseen tasks
(e.g. obtaining “lapis_lazuli”). In contrast, we extract a well-defined set of structured actions by
using LLMs to decompose over 3000 predefined MineDojo tasks. This provides broad, open-world
Minecraft capability. Combined with LLM planning, it enables solving more complex tasks than
ObtainDiamond - which RL cannot achieve. Our knowledge bases also improve efficiency. To our
knowledge, we present the first agent to unlock the entire Overworld technology tree - a level of
open-world skill RL-based methods have not demonstrated.

Success Rate for the Entire Technology Tree. We show the success rate of our method for collecting
all Overworld items in Fig. 5. Our methods could achieve 100% success rate for simple tasks like
collecting wooden tools. It achieves non-zero success rates for all items which indicates a strong
collecting capability. The successful rate for collecting different items change smoothly for our agent,
which showcase the robustness of our method against the highly uncertain open world environment.

4.2 Comparison with Other Minecraft Agents

Table 2: Comparison of our GITM with pre-
vious methods on ObtainDiamond challenge.

Method Success Rate (%)

DreamerV3 - 50.0 3.0 0.01 0.01
DEPS 90.0 80.0 73.3 10.0 0.6
VPT 100.0 100.0 100.0 85.0 20.0
Our GITM 100.0 100.0 100.0 95.0 67.5
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Figure 6: Comparison of learning efficiency.

We compared our LLM-based method with three existing agents: VPT [2], DreamerV3 [7], and
DEPS [25] on the well known ObtainDiamond challenge, i.e, obtaining a diamond from scratch in
Minecraft. Previous methods set different time limits of a single episode of game play (20 minutes
for VPT, 30 minutes for Dreamerv3, and 10 minutes for DEPS). For fair comparison, we use the
strictest limit of previous methods: 10 minutes (12,000 steps at 20Hz control).

Success Rate for Obtaining Diamond and Other Items. Since VPT and Dreamerv3 are not
targeted for collecting items other than diamond, we mainly compare our method with DEPS for
items not related to obtain diamonds. Overall, our GITM and VPT rank task difficulty similarly, but
DEPS rankings severely fluctuate for tasks more complex than mining coal. Dreamerv3 also behaves
oddly by having an abnormally low success rate on tasks like obtaining a stone sword. As shown in
Fig. 2, most agents performs generally well for easy tasks relating to make wooden tools. VPT could
even rival with our GITM for the success rate of obtaining iron axes. But for obtaining diamonds, our
method wins over any other methods by 3.5 times on the succeess rate.

This giant improvement comes from the following two aspects: First, we employ the strong long-term
planning capability of LLMs to decompose the complex tasks into feasible sub-goals and tackle
them step by step. Second, our model can directly leverage external knowledge such as the suitable
locations for mining ores, while RL models need to explore themselves and may not acquire reliable
knowledge.
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Table 3: Ablation study. The milestone items from left to right are crafting table , wooden

pickaxe , stone pickaxe , iron pickaxe , and diamond . The success rate is calculated
under time limit of 12000 steps (total) and query limit of 30 (each sub-goal). “Goal Decomp.” and
“External Info.” indicates goal decomposition and external knowledge respectively.

Goal
Decomp. Feedback External

Info. Memory Success Rate (%)

57.5 32.5 5.0 0.0 0.0
✓ 90.0 90.0 67.5 2.5 0.0
✓ ✓ 97.5 95.0 77.5 20.0 5.0
✓ ✓ ✓ 100.0 100.0 100.0 57.5 35.0
✓ ✓ ✓ ✓ 100.0 100.0 100.0 95.0 67.5

Learning Efficiency. Besides measuring the success rate of each agents, we also compare the
learning efficiency of our model with other learnable models. Since DEPS uses a LLM-based planner
without learning mechanism and a pre-trained RL-based controller, its performance could not improve
with more episodes played and is excluded from the comparison here.

It usually takes tens of millions of steps to train an RL agent by updating parameters before its success
rate starts to converges to meaningful non-zero numbers. However, the success rate for RL-based
agents increases rather slowly even after them starts to converge. On the contrary, the learning process
of our LLM-based agent is considerably faster. As shown in Fig. 6, our method requires several orders
less episodes than any other methods before doubling its initial success rate. Moreover, our method is
extremely sample efficient as our success rate raises from 35% to 47.5% by learning from the first five
thousand steps. By just playing each task several times and summarize successful experience into the
memory, the LLM-based agent can acquire explicit experiential knowledge and achieve significantly
higher success rate.

4.3 Ablation Study

We conduct ablation experiments on the ObtainDiamond task. We set a time limit of 10 minutes of
game play (12000 steps at the control frequency of 20Hz). When leveraging goal decomposition, for
each sub-goal, we set the maximum number of queries to LLM as 30, and exceeding the query limit
will be judged as a failure. For each setting, we run 40 games and calculate the success rate. Tab. 3
records the success rates of achieving the final goal diamond as well as the milestones in this goal,
including crafting table, wooden pickaxe, stone pickaxe, and iron pickaxe.

Goal Decomposition. Without goal decomposition, the planner can only accomplish several short-
term tasks such as obtaining stone axes with rather low success rate of 5%, which indicates the
necessity of goal decomposition. Leveraging the powerful long-term planning capabilities of LLMs,
the goals are decomposed into sub-goals feasible and practical for the planner, so the success rate for
obtaining stone axes advances from 5% to 67.5% by leveraging goal decomposition alone.

Feedback Message. Feedback contains the agent’s state and the execution result of the actions, which
helps the planner to understand and make another attempt to correct the mistakes in the previous and
deal with special cases. This enables the planner to accomplish a broader range of goals with higher
success rate. As shown in the 3rd row of Tab. 3, our agent gain the ability to collect diamond by
combining feedback with goal decomposition.

External Knowledge Base. External knowledge contains general rules, crafting recipes, and common
tricks in Minecraft, such as the recipes for crafting iron ingot and iron pickaxe, the suitable location to
find diamond ore, and the efficient way to get cobblestone. Providing the planner with this information
greatly boosts the success rate of obtaining iron pickaxe and diamond, and the success rate of mining
diamond increase by 7 times by learning from the knowledge base that diamonds are more likely to
appear in specific levels.

Text-based Memory. Leveraging the reference plan recorded in the memory, the planner can handle
the task it has encountered more efficiently. The success rates of obtaining iron pickaxe and diamond
are 95.0% and 67.5%, surpassing the model without memory by 37.5% and 32.5%, respectively.
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5 Conclusion

We introduce the GITM framework, which utilizes Large Language Models (LLMs) for hierarchical
decomposition of goals. GITM introduces LLM Decomposer, LLM Planner and LLM Interface
to gradually decompose goals into sub-goals, structured actions and keyboard/mouse operations.
This work makes significant progress towards the ObtainDiamond goal, outperforming all previous
methods by a significant margin (+47.5% success rate). This proves the potential inefficiency and
poorly scalability of Reinforcement Learning (RL) in Minecraft, breaking the traditional reliance
on RL. Moreover, by obtaining all items in Minecraft Overworld, this research marks a critical step
toward Generally Capable Agents (GCAs) that match human performance in Minecraft.
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A Implementation Details

A.1 LLM Decomposer

We use gpt-3.5-turbo from OpenAI API 4 for goal decomposition. The prompt is shown as
follows, which consists of two parts: instruction with the role of “SYSTEM” and query with
the role of “USER”. The {object quantity}, {object name} and {related knowledge} are
injectable slots that will be replace with corresponding texts before fed into the LLM.

4https://platform.openai.com/docs/api-reference
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SYSTEM:
You are an assistant for the game Minecraft.

I will give you some target object and some knowledge related to the object. Please write the
obtaining of the object as a goal in the standard form.

The standard form of the goal is as follows:
{

"object": "the name of the target object",
"count": "the target quantity",
"material": "the materials required for this goal, a dictionary in the form {material_name:

material_quantity}. If no material is required, set it to None",
"tool": "the tool used for this goal. If multiple tools can be used for this goal, only write

the most basic one. If no tool is required, set it to None",
"info": "the knowledge related to this goal"

}

The information I will give you:
Target object: the name and the quantity of the target object
Knowledge: some knowledge related to the object.

Requirements:
1. You must generate the goal based on the provided knowledge instead of purely depending
on your own knowledge.
2. The "info" should be as compact as possible, at most 3 sentences. The knowledge I give you
may be raw texts from Wiki documents. Please extract and summarize important information
instead of directly copying all the texts.

Goal Example:
{ "object": "iron_ore",

"count": 1,
"material": None,
"tool": "stone_pickaxe",
"info": "iron ore is obtained by mining iron ore. iron ore is most found in level 53. iron ore

can only be mined with a stone pickaxe or better; using a wooden or gold pickaxe will yield
nothing."
}
{

"object": "wooden_pickaxe",
"count": 1,
"material": {"planks": 3, "stick": 2},
"tool": "crafting_table",
"info": "wooden pickaxe can be crafted with 3 planks and 2 stick as the material and

crafting table as the tool."
}

USER:
Target object: {object quantity} {object name}
Knowledge: {related knowledge}

The recursive decomposition generates a sub-goal tree starting from the final goal object as the root
node: if a goal has some prerequisites (materials or tools), for each required material or tool, we add a
child node representing the goal of obtaining that material or tool, and then recursively decompose the
child node, until there is no more prerequisites. The related knowledge is from: 1) Crafting/smelting
recipes in MineDojo [5], written in the form “Crafting {quantity} {object} requires {material}
as the material and {tool} as the tool”; 2) Wiki on the Internet 5. We extract the paragraphs with
keywords “obtaining”, “mining”, “sources”, etc.

5https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki
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A.2 LLM Interface

Instruction for Extracting Structured Actions. To extract structured actions, we first ask LLM
to generate a tree-structured action planning for each of the 3141 predefined tasks provided by
MineDojo, and then converts each action step into a (verb, object, tool, material) tuple.
During decomposition, it is essential to ensure actions are neither too broad nor too specific. We
adjusted the depth of the action decomposition tree to achieve balance, and empirically set the depth
as 2 to meet our requirements.

Specifically, we use gpt-3.5-turbo from OpenAI API to generate the structured actions. We add
the following instruction to the content of “SYSTEM” role to generate the tree-structured plan. We
add the goal description, e.g., "find material and craft a iron pickaxe", to the content of “USER” role
and then asks LLM to response according to the requirements.

SYSTEM:
You serve as an assistant that helps me play Minecraft.

I will give you my goal in the game, please break it down as a tree-structure plan to achieve
this goal.

The requirements of the tree-structure plan are:

1. The plan tree should be exactly of depth 2.
2. Describe each step in one line.
3. You should index the two levels like ’1.’, ’1.1.’, ’1.2.’, ’2.’, ’2.1.’, etc.
4. The sub-goals at the bottom level should be basic actions so that I can easily execute them
in the game.

USER:
The goal is to {goal description}. Generate the plan according to the requirements.

After that, we extract the action tuple from each sentence of the leaf nodes. We use the following
instruction as the content of “SYSTEM” role to extract the tuple, and add the sentence to the content
of “USER” role.

SYSTEM:
You serve as an assistant that helps me play Minecraft.

I will give you a sentence. Please convert this sentence into one or several actions according
to the following instructions.

Each action should be a tuple of four items, written in the form (’verb’, ’object’, ’tools’,
’materials’)

’verb’ is the verb of this action.
’object’ refers to the target object of the action.
’tools’ specifies the tools required for the action.
’material’ specifies the materials required for the action.
If some of the items are not required, set them to be ’None’.

USER:
The sentence is {sentence}. Generate the action tuple according to the requirements.

Then, we extract the structured actions by selecting frequent actions and merging actions with similar
functionalities. The set of structured actions is {equip, explore, approach, mine/attack,
dig_down, go_up, build, craft/smelt, apply}. Note that we disregard more detailed ac-
tion decomposition for attack and build to remove overly detailed short-term actions and focus on
long-term task completion.

Action Implementation. The observation of the action contains LiDAR rays with an interval of 5
degrees in the horizon and vertical direction for locating objects, and voxels with 10 units radius only
for navigation, inventory, life status, and agent location status (X-ray cheating is carefully avoided).
RGB is not used in our implementation, although it provides more information than LiDAR rays.
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For example, the biome, and category of the dropping item can not be identified by LiDAR rays.
Some objects may also be missed by LiDAR due to sparseness of LiDAR rays. We also set the
breaking speed to 100 and strength to 100, mainly following [7]. The detailed implementation of
each structured action is as follows:

• equip: The equip action calls the environment API to equip the required object. The action
succeeds when the API returns success. The action fails when the object is not in inventory or the
equip API returns failure.

• explore: The explore action traverses the world until object is visible. This action regards the
world as a chessboard, and each node on the chessboard is the center point of a 20×20 units area.
Two strategies are implemented depending on whether the agent is on the ground or not. When
the agent is on the ground, the BFS explore will be adopted. When the agent is under the ground,
mainly for exploring ore, the DFS explore will be adopted. In the DFS exploration, the agent will
break the blocks to form a mine road with width of 1 and height of 2. The action succeeds when
the object is visible. The action fails when the explore exceeds a preset steps of 10,000 but the
required object is not found.

• approach: The approach action finds the nearest visible required object and walks towards the
object. We adopt A∗ algorithm for finding path. The A∗ algorithm can jump, translate and fall
in four directions of north, south, east and west. We also allow the agent to jump while placing a
block under the agent for ascent. If the object is out of the voxel observation range, A∗ algorithm is
iteratively applied to find the location nearest to the object. The action succeeds when the ℓ∞ norm
distance between the object and agent is less than 2. The action fails when there is no required
object visible or no path can be found to walk close to the object.

• mine/attack: The mine/attack action uses the keyboard attack API with the tools to attack the
object. Only visible object could be mined or attacked. The object of mine should be blocks, and
the agent will continue mining the block until it is broken. The object of attack should be entities,
and the agent will iteratively approach and attack the entity until it is killed. After the block is
broken or the entity is killed, if there are items dropped by them, the agent will approach the items
to collect them. The action succeeds when the block is broken or the entity is killed. The action
fails when there is no visible object, no required tools is in inventory, or the visible object is out of
attack range.

• dig_down: The dig_down action iteratively breaks the block underfoot with the tool until the
required ylevel is reached. If the agent is on the ground, before digging down, current location is
stored for going up action. After the action succeeds, the state of the agent is set to under ground.
The action succeeds when the required ylevel is reached. The action fails when it exceeds the reset
max steps 10,000 or no required tool is in inventory.

• go_up: The agent will first go back to the location stored by dig_down. Then, the go_up action
puts dirt blocks underfoot to raise the agent. After the action is finished, the state of agent is set to
on the ground. The action succeeds when the pre-stored location is reached. The action fails when
the walk fails, exceeds the reset max steps 10,000 or there is no required tool in inventory.

• build: The build action places the required blocks according to a given blueprint from bottom
to up. The action succeeds when all blocks have been placed. The action fails when there are no
enough materials in inventory or it is invalid to place some blocks.

• craft/smelt: The action calls the environment API to craft/smelt the required object. The action
succeeds when the required object is obtained. The actions fails when there are no enough materials
in inventory or the agent is unable to place the crafting table/furnace or the API fails.

• apply: The apply action calls the keyboard use API, and applies the specific tool to the object, e.g.,
applying the bucket on water to obtain water bucket. The action succeeds when the API returns
success. The action fails when there is no visible object, no tool in inventory or the API fails.

Feedback Message. After the execution of each action, we will get feedback from the structured
actions. The feedback will refresh the agent’s state in Sec. A.3.2, including current inventory, biome,
ylevel and on/under the ground status. The feedback will also contain the success/fail message from
these action, as well as the inventory change during the action.
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A.3 LLM Planner

Here we present the prompt for planning with LLM. We also use gpt-3.5-turbo from OpenAI API
as the LLM planner. The model accepts inputs in form of a chat, i.e., the prompt is a dialogue consist-
ing of several messages, each of which contains a role and the content. We set the Instruction
with the role “SYSTEM” at the beginning, and use the User Query with the role “USER” to query
the LLM for response. The content of the Instruction and User Query are as follows.

A.3.1 Instruction

SYSTEM:
You serve as an assistant that helps me play the game Minecraft.

I will give you a goal in the game. Please think of a plan to achieve the goal, and then write a
sequence of actions to realize the plan. The requirements and instructions are as follows:

1. You can only use the following functions. Don’t make plans purely based on your
experience, think about how to use these functions.

explore(object, strategy)
Move around to find the object with the strategy: used to find objects including block items
and entities. This action is finished once the object is visible (maybe at the distance).
Augments:
- object: a string, the object to explore.
- strategy: a string, the strategy for exploration.

approach(object)
Move close to a visible object: used to approach the object you want to attack or mine. It may
fail if the target object is not accessible.
Augments:
- object: a string, the object to approach.

craft(object, materials, tool)
Craft the object with the materials and tool: used for crafting new object that is not in the
inventory or is not enough. The required materials must be in the inventory and will be
consumed, and the newly crafted objects will be added to the inventory. The tools like the
crafting table and furnace should be in the inventory and this action will directly use them.
Don’t try to place or approach the crafting table or furnace, you will get failed since this
action does not support using tools placed on the ground. You don’t need to collect the items
after crafting. If the quantity you require is more than a unit, this action will craft the objects
one unit by one unit. If the materials run out halfway through, this action will stop, and you
will only get part of the objects you want that have been crafted.
Augments:
- object: a dict, whose key is the name of the object and value is the object quantity.
- materials: a dict, whose keys are the names of the materials and values are the quantities.
- tool: a string, the tool used for crafting. Set to null if no tool is required.

mine(object, tool)
Mine the object with the tool: can only mine the object within reach, cannot mine object from
a distance. If there are enough objects within reach, this action will mine as many as you
specify. The obtained objects will be added to the inventory.
Augments:
- object: a string, the object to mine.
- tool: a string, the tool used for mining. Set to null if no tool is required.

attack(object, tool)
Attack the object with the tool: used to attack the object within reach. This action will keep
track of and attack the object until it is killed.
Augments:
- object: a string, the object to attack.
- tool: a string, the tool used for mining. Set to null if no tool is required.
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equip(object)
Equip the object from the inventory: used to equip equipment, including tools, weapons, and
armor. The object must be in the inventory and belong to the items for equipping.
Augments:
- object: a string, the object to equip.

digdown(object, tool)
Dig down to the y-level with the tool: the only action you can take if you want to go
underground for mining some ore.
Augments:
- object: an int, the y-level (absolute y coordinate) to dig to.
- tool: a string, the tool used for digging. Set to null if no tool is required.

go_back_to_ground(tool)
Go back to the ground from underground: the only action you can take for going back to the
ground if you are underground.
Augments:
- tool: a string, the tool used for digging. Set to null if no tool is required.

apply(object, tool)
Apply the tool on the object: used for fetching water, milk, lava with the tool bucket, pooling
water or lava to the object with the tool water bucket or lava bucket, shearing sheep with the
tool shears, blocking attacks with the tool shield.
Augments:
- object: a string, the object to apply to.
- tool: a string, the tool used to apply.

2. You cannot define any new function. Note that the "Generated structures" world creation
option is turned off.

3. There is an inventory that stores all the objects I have. It is not an entity, but objects can be
added to it or retrieved from it anytime at anywhere without specific actions. The mined or
crafted objects will be added to this inventory, and the materials and tools to use are also from
this inventory. Objects in the inventory can be directly used. Don’t write the code to obtain
them. If you plan to use some object not in the inventory, you should first plan to obtain it.
You can view the inventory as one of my states, and it is written in form of a dictionary whose
keys are the name of the objects I have and the values are their quantities.

4. You will get the following information about my current state:
- inventory: a dict representing the inventory mentioned above, whose keys are the name of
the objects and the values are their quantities
- environment: a string including my surrounding biome, the y-level of my current location,
and whether I am on the ground or underground
Pay attention to this information. Choose the easiest way to achieve the goal conditioned on
my current state. Do not provide options, always make the final decision.

5. You must describe your thoughts on the plan in natural language at the beginning. After
that, you should write all the actions together. The response should follow the format:
{

"explanation": "explain why the last action failed, set to null for the first planning",
"thoughts": "Your thoughts on the plan in natural languag",
"action_list": [

{"name": "action name", "args": {"arg name": value}, "expectation": "describe the
expected results of this action"},

{"name": "action name", "args": {"arg name": value}, "expectation": "describe the
expected results of this action"},

{"name": "action name", "args": {"arg name": value}, "expectation": "describe the
expected results of this action"}

]
}
The action_list can contain arbitrary number of actions. The args of each action should
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correspond to the type mentioned in the Arguments part. Remember to add “‘dict“‘ at the
beginning and the end of the dict. Ensure that you response can be parsed by Python json.loads

6. I will execute your code step by step and give you feedback. If some action fails, I will
stop at that action and will not execute its following actions. The feedback will include error
messages about the failed action. At that time, you should replan and write the new code just
starting from that failed action.

A.3.2 User Query

USER:
My current state:
- inventory: {inventory}
- environment: {environment}

The goal is to {goal}.

Here is one plan to achieve similar goal for reference: {reference plan}.

Begin your plan. Remember to follow the response format.
or Action {successful action} succeeded, and {feedback message}. Continue your
plan. Do not repeat successful action. Remember to follow the response format.
or Action {failed action} failed, because {feedback message}. Revise your plan from
the failed action. Remember to follow the response format.

A.4 Memory

A.4.1 Learning Process

We maintain the text-based memory with a dictionary, whose keys are sub-goals and values are lists
of successful action sequences for the corresponding sub-goals. The construction and update of the
memory are through the following learning process:

• When encountering a new sub-goal that is not in the memory, the LLM planner creates plans
without reference. Once the sub-goal is achieved, the entirely executed action sequence would be
stored into the memory.

• When encountering a sub-goal with memory, the first action sequence in the recording list for this
goal is retrieved as the reference plan, with which the LLM planner tries to achieve the goal. If it
succeeds, the new executed action sequence will be added to the last of the recording list.

• For each sub-goal, once the number of action sequences recorded in its list reaches N , we pop
all the N sequences and use LLM to summarize them into a common plan solution suitable for
various scenarios, which is then put first in the list. N is set to 5 in all our experiments.

To learn the memory for obtaining all items, starting from scratch each time would take a long time.
In addition, it is necessary to avoid spending the most of time on learning simple tasks and not
investing enough in learning difficult tasks. To improve the learning efficiency, we suggest to study
the sub-goals individually one by one. We first use our LLM Decomposer to generate sub-goal trees
for all items, acquiring the set of all sub-goals involved. Then for each sub-goal, the LLM planner
plays multiple times given its prerequisites including the required materials and tools. The learning
process of the sub-goal is finished once we obtain N = 5 successful action sequences and summarize
them into one common plan solution for reference.

A.4.2 Implementation of Memory Summarization

We also use gpt-3.5-turbo from OpenAI API for memory summarization but in a different
dialogue. We use the following prompt to instruct the summarization with the role “SYSTEM”. The
slot {action description} is replaced with the same descriptions of interfaces of the structured
actions as Sec. A.3.1. We list all the action sequences to be summarized in the query with the role
“USER”, which is fed into the LLM for response.
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SYSTEM:
You serve as an assistant that helps me play the game Minecraft.

I am using a set of actions to achieve goals in the game Minecraft. I have recorded several
action sequences successfully achieving a goal in a certain state. I will give you the goal, the
state, and the sequences later. Please summarize the multiple action sequences into a single
action sequence as a universal reference to achieve the goal given that certain state. Here are
the instructions:

1. Each action sequence is a sequence of the following actions:

{action description}

2. The action sequences before and after summarization are always conditioned on the given
state, i.e., the actions are taken in that certain state to achieve the goal. I will describe the state
in the following form: State: - inventory: a dict whose keys are the name of the objects and
the values are their quantities. This inventory stores all the objects I have. - environment: a
dict including my surrounding biome and whether I am on the ground or underground.

3. The action sequence you summarize should be able to achieve the goal in general cases
without specific modification. Every necessary action should be included, even though it does
not appear in some sequences because I manually skipped it in some lucky cases. The actions
redundant or irrelevant to the goal should be filtered out. The corner cases, such as success by
luck and dealing with contingencies, should not be summarized into the final sequence.

4. You should describe your thoughts on summarization in natural language at the beginning.
After that, give me the summarized action sequence as a list in JSON format. Your response
should follow this form:

Thoughts: "Your thoughts and descriptions of your summarization"
Summarized action sequence:
[

{"name": "action name", "args": {"arg name": value}, "expectation": "describe the
expected results of this action"},

{"name": "action name", "args": {"arg name": value}, "expectation": "describe the
expected results of this action"},

{"name": "action name", "args": {"arg name": value}, "expectation": "describe the
expected results of this action"}
]

B Results of All Items

We provide the success rate of all items in the entire Minecraft Overworld Technology Tree in Tab. 4.
We have attached a video of obtaining a diamond in the supplementary materials.

Experiment Setting. Considering the large number of items, including those difficult to be obtained,
we implemented an incremental testing strategy. This strategy is designed to keep the testing costs
within a reasonable range, while also accounting for the rarity of certain items. We avoided a uniform
increase in the number of tests across all items to accommodate the hardest-to-obtain ones, which
would have resulted in prohibitive testing costs. Instead, we employed a incremental testing process.

For each item, we begin with 20 games. If the success count is less than or equal to 1, we increase
to 50 games. If the success count remains less than or equal to 1, we further increase to 100, and
eventually 200 games. This testing continues until the success count finally exceeds 1, or we complete
200 games. By following this efficient strategy, we ensure a cost-effective and reliable evaluation of
each item, regardless of its availability. Moreover, because some items need long-term planning and
crafting chain, we do not set restrictions on the time limit or query limit.

Exploring Biome. Biomes can be a key factor that strongly influences the success rate. Some items,
like cactus, pumpkin, or melon, can only be found in specific biomes. The distribution of biomes
highly limits the success rate of some items.
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Table 4: Success rate for all 262 items in the entire Minecraft Overworld Technology Tree.
Item Name Success

Rate Item Name Success
Rate Item Name Success

Rate Item Name Success
Rate

acacia boat 100.0 stone sword 100.0 gravel 80.0 beetroot seeds 40.0
acacia door 100.0 stonebrick 100.0 iron boots 80.0 diamond boots 40.0
acacia fence 100.0 sugar 100.0 iron trapdoor 80.0 diamond helmet 40.0
acacia fence gate 100.0 tallgrass 100.0 leather chestplate 80.0 golden axe 40.0
acacia stairs 100.0 trapdoor 100.0 leather leggings 80.0 golden pickaxe 40.0
beef 100.0 wheat 100.0 bone block 75.0 red mushroom 40.0
birch boat 100.0 wheat seeds 100.0 bow 75.0 red mushroom block 40.0
birch door 100.0 wooden axe 100.0 chest minecart 75.0 diamond leggings 35.0
birch fence 100.0 wooden button 100.0 furnace minecart 75.0 golden boots 35.0
birch fence gate 100.0 wooden door 100.0 hopper 75.0 ink sac 35.0
birch stairs 100.0 wooden hoe 100.0 iron helmet 75.0 sticky piston 35.0
boat 100.0 wooden pickaxe 100.0 minecart 75.0 beetroot soup 30.0
bone 100.0 wooden pressure plate 100.0 mossy cobblestone 75.0 golden helmet 30.0
bone meal 100.0 wooden shovel 100.0 vine 75.0 lead 30.0
bowl 100.0 wooden slab 100.0 waterlily 75.0 map 30.0
chest 100.0 wooden sword 100.0 banner 70.0 mushroom stew 30.0
chicken 100.0 yellow flower 100.0 brick 70.0 brick stairs 25.0
cobblestone 100.0 armor stand 95.0 clay ball 70.0 cactus 25.0
cobblestone wall 100.0 book 95.0 diamond 70.0 cake 25.0
cooked beef 100.0 bread 95.0 diamond shovel 70.0 clock 25.0
cooked chicken 100.0 coal 95.0 dropper 70.0 cooked rabbit 25.0
cooked mutton 100.0 fireworks 95.0 feather 70.0 diamond chestplate 25.0
cooked porkchop 100.0 gunpowder 95.0 iron bars 70.0 obsidian 25.0
crafting table 100.0 iron ingot 95.0 iron door 70.0 rabbit 25.0
dark oak boat 100.0 iron nugget 95.0 jukebox 70.0 rabbit hide 25.0
dark oak door 100.0 iron ore 95.0 lapis lazuli 70.0 deadbush 20.0
dark oak fence 100.0 iron shovel 95.0 noteblock 70.0 golden leggings 20.0
dark oak fence gate 100.0 item frame 95.0 piston 70.0 golden rail 20.0
dark oak stairs 100.0 leather 95.0 rail 70.0 lapis block 20.0
dirt 100.0 rotten flesh 95.0 redstone 70.0 writable book 20.0
double plant 100.0 shield 95.0 redstone torch 70.0 baked potato 15.0
fence 100.0 spider eye 95.0 cauldron 65.0 carrot 15.0
fence gate 100.0 stone slab 95.0 diamond hoe 65.0 diamond block 15.0
furnace 100.0 torch 95.0 diamond sword 65.0 emerald block 15.0
glass 100.0 trapped chest 95.0 emerald 65.0 golden chestplate 15.0
glass bottle 100.0 tripwire hook 95.0 iron leggings 65.0 potato 15.0
glass pane 100.0 carpet 90.0 tnt 65.0 pumpkin 15.0
ladder 100.0 coal block 90.0 arrow 60.0 pumpkin seeds 15.0
lever 100.0 grass 90.0 compass 60.0 carrot on a stick 10.0
log 100.0 heavy weighted pressure plate 90.0 flower pot 60.0 jungle boat 10.0
mutton 100.0 iron hoe 90.0 iron chestplate 60.0 jungle door 10.0
oak stairs 100.0 iron sword 90.0 brick block 55.0 jungle fence 10.0
paper 100.0 leather boots 90.0 clay 55.0 jungle fence gate 10.0
planks 100.0 leather helmet 90.0 dispenser 55.0 jungle stairs 10.0
porkchop 100.0 leaves 90.0 gold ingot 55.0 lit pumpkin 10.0
red flower 100.0 painting 90.0 gold nugget 55.0 melon 10.0
reeds 100.0 shears 90.0 gold ore 55.0 melon block 10.0
sand 100.0 snow 90.0 golden shovel 55.0 melon seeds 10.0
sandstone 100.0 snow layer 90.0 hardened clay 55.0 gold block 8.0
sapling 100.0 snowball 90.0 hopper minecart 55.0 golden carrot 8.0
sign 100.0 string 90.0 iron block 55.0 pumpkin pie 8.0
spruce boat 100.0 wool 90.0 slime ball 55.0 red sandstone 6.0
spruce door 100.0 bed 85.0 activator rail 50.0 red sandstone stairs 6.0
spruce fence 100.0 brown mushroom 85.0 detector rail 50.0 speckled melon 6.0
spruce fence gate 100.0 brown mushroom block 85.0 diamond axe 50.0 stone slab2 6.0
spruce stairs 100.0 bucket 85.0 diamond pickaxe 50.0 anvil 4.0
stick 100.0 flint 85.0 egg 50.0 apple 4.0
stone 100.0 hay block 85.0 lava bucket 50.0 enchanting table 4.0
stone axe 100.0 iron axe 85.0 repeater 50.0 enchanted book 3.0
stone brick stairs 100.0 iron pickaxe 85.0 tnt minecart 50.0 poisonous potato 2.0
stone button 100.0 milk bucket 85.0 bookshelf 45.0 golden apple 1.0
stone hoe 100.0 sandstone stairs 85.0 golden hoe 45.0 rabbit foot 1.0
stone pickaxe 100.0 water bucket 85.0 golden sword 45.0 slime 1.0
stone pressure plate 100.0 fermented spider eye 80.0 light weighted pressure plate 45.0 rabbit stew 0.5
stone shovel 100.0 fishing rod 80.0 redstone block 45.0
stone stairs 100.0 flint and steel 80.0 beetroot 40.0

C Supplementary Ablations

We make a more detailed comparison between our GITM with RL-based methods in Tab. 5. The most
straightforward pipeline is to directly map the goal into keyboard/mouse operations. We gradually
add goal decomposition and structured action stages into the pipeline, and ablate the use of RL-based
models or LLM.
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Table 5: Ablation study. The milestone items from left to right are crafting table , wooden

pickaxe , stone pickaxe , iron pickaxe , and diamond . The success rate is calculated
under time limit of 12000 steps (total) and query limit of 30 (each sub-goal). “Goal Decomp.”
indicates whether to use LLM Decomposer to decompose the goal into sub-goals. “Goal / Sub-Goal
to Structured Actions / Keyboard & Mouse Mapping” indicates which method is used for the mapping
from goal / sub-goals to structured actions / keyboard & mouse operations.

Goal
Decomp.

Structured
Action

Goal / Sub-Goal to
Structured Actions / Keyboard & Mouse

Mapping

Success Rate (%)

(a) Specialist RL Model (VPT) 100.0 100.0 100.0 85.0 20.0
(b) Goal-conditioned RL Model (DEPS) 0.0 0.0 0.0 0.0 0.0
(c) Our LLM Planner 0.0 0.0 0.0 0.0 0.0

(d) ✓ Goal-conditioned RL Model (DEPS) 90.0 80.0 30.0 0.0 0.0
(e) ✓ Our LLM Planner 0.0 0.0 0.0 0.0 0.0
(f) ✓ Our LLM Planner 57.5 32.5 5.0 0.0 0.0
(g) ✓ ✓ Our LLM Planner 100.0 100.0 100.0 95.0 67.5

Implementation Details. We can only find open-sourced RL models from VPT [2] and DEPS [25],
so they are adopted for the ablation. VPT model is specifically trained for the ObtainDiamond
challenge, while DEPS model can use goal description as input to guide the model’s output. We refer
to them as specialist RL model and goal-conditioned RL model, respectively. As for the use of LLM
Planner, we note that if structured action is not used, LLM Planner will be inevitably asked to output
reasonable keyboard/mouse operations. However, LLM Planner does not have access to environment
observations, so it cannot directly output reasonable keyboard/mouse operations.

Direct Mapping. See Tab. 5(a)(b)(c). It is hard to directly mapping the long-horizon goal into
reasonable keyboard/mouse operations. While a specialist RL model (i.e., VPT) can deliver promising
results, it requires large amount of data and computational resources to train such a model [2] (720
V100 GPUs for 9 days). Moreover, a different goal will require further training of the specialist RL
model, limiting the versatility of this paradigm. The goal conditional RL model (i.e., DEPS) cannot
achieve the goal, because the model [25] we have access to is not generalizable to all scenarios.
If only the final goal is given, it will ignore preconditions, such as not crafting the necessary iron
pickaxe when mining diamonds. LLM also fails to accomplish the goal. The primary reason is that it
can not handle environment observation and keyboard/mouse operations well.

Structured Action. We design structured actions to interact with the environment, and provide
an abstract interface. Tab. 5(f) shows that adding structured action significantly improves LLM’s
performance. This is because structured actions can deal with environment observations and key-
board/mouse operations more precisely, unleashing the reasoning potential of LLM. We are not aware
of a RL model using structured actions currently. It is possible for structure actions to enhance the
RL model as well, and we will explore it in the future work.

Goal Decomposition. Decomposing the goal into sub-goals can simplify the whole task. Tab. 5(b)(d)
and Tab. 5(f)(g) show its effectiveness for both goal-conditioned RL model and our method. By
exploiting goal decomposition, it is possible for our method to accomplish long-term tasks with high
success rate.

Comparison between RL-based methods. We also note the paradigm shift from traditional RL-
based methods to our GITM leads to a great performance boost. Comparing Tab. 5(d)(g), where we
only change the goal-conditioned RL model to LLM with strutured actions, our method significantly
outperforms the RL model.

D ObtainDiamond

We demonstrate a case of the popular ObtainDiamond challenge in Fig. 7. During the process, the
agent have to collect materials, i.e., log, stone and iron ore, as shown in Fig 7(a)(c)(e). Necessary tools,
i.e., wooden pickaxe, stone pickaxe, furnace and iron pickaxe are also crafted in Fig 7(b)(d)(f)(h).
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(a) mine log (b) craft wooden_pickaxe (c) mine stone

(d) craft stone_pickaxe (e) mine iron_ore (f) craft furnace

(g) smelt iron_ingot (h) craft iron_pickaxe (i) mine diamond

Figure 7: A case of the popular ObtainDiamond challenge. Figure(e)(i) are enhanced in brightness
for better display.

Finally the diamond is obtained in Fig 7(i). We have attached a video of obtaining a diamond in the
supplementary materials.

E Applications

(a) Shelter with Farmland (b) Iron Golem (c) Redstone Circuit (d) Nether Portal

Figure 8: Demonstration of the applications. GITM can construct Shelter with Farmland and
Iron Golem for survival, Redstone Circuit for automation equipment, and Nether Portal for
the Nether world exploration.

Our proposed GITM makes survival and the nether exploration possible in Minecraft which has
never been accomplished by existing agents. To achieve this, our agent builds four necessary items,
including Shelter with Farmland, Iron Golem, Redstone Circuit, and Nether Portal,
shown in Fig. 8. Shelter with Farmland is firstly built to keep the agent from being attacked
by monsters at night and provide enough food. Iron Golem can automatically attack monsters to
protect the agent and the shelter. Redstone Circuit is the foundation of all automation equipment.
Nether Portal is the entrance to the Nether world.
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