

OpenModelica Users Guide

Version 2015-03-10
for OpenModelica 1.9.2

March 2015

Peter Fritzson

Adrian Pop, Adeel Asghar, Willi Braun, Jens Frenkel,
Lennart Ochel, Martin Sjölund, Per Östlund, Peter Aronsson,

Mikael Axin, Bernhard Bachmann, Vasile Baluta, Robert Braun, Lena Buffoni,
David Broman, Stefan Brus, Francesco Casella, Filippo Donida, Atiyah Elsheikh,
Anand Ganeson, Mahder Gebremedhin, Pavel Grozman, Daniel Hedberg, Michael

Hanke, Alf Isaksson, Kim Jansson, Daniel Kanth, Tommi Karhela, Juha
Kortelainen, Abhinn Kothari, Petter Krus, Alexey Lebedev, Oliver Lenord, Ariel

Liebman, Rickard Lindberg, Håkan Lundvall, Abhir Raj Metkar, Eric Meyers,
Tuomas Miettinen, Afshin Moghadam, Kenneth Nealy, Nemer, Hannu Niemistö,
Peter Nordin, Kristoffer Norling, Arunkumar Palanisamy, Karl Pettersson, Pavol

Privitzer, Jhansi Reddy, Reino Ruusu, Per Sahlin,Wladimir Schamai, Gerhard
Schmitz, Alachew Shitahun, Anton Sodja, Ingo Staack, Kristian Stavåker, Sonia

Tariq, Mohsen Torabzadeh-Tari, Parham Vasaiely, Marcus Walter, Volker
Waurich, Niklas Worschech, Robert Wotzlaw, Azam Zia

Copyright by:

Open Source Modelica Consortium

2

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linköpings universitet,
Department of Computer and Information Science, SE-58183 Linköping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL
VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL)
are obtained from OSMC, either from the above address, from the URLs: http://www.openmodelica.org
or http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU
version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET
FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: http://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, http://www.Modelica.org

Mathematica® is a registered trademark of Wolfram Research Inc, www.wolfram.com

http://www.openmodelica.org/�

3

Table of Contents

Table of Contents ... 3
Preface ... 9

Chapter 1 Introduction ... 11

1.1 System Overview ... 12
1.2 Interactive Session with Examples ... 13

1.2.1 Starting the Interactive Session ... 14
1.2.2 Using the Interactive Mode ... 14
1.2.3 Trying the Bubblesort Function ... 16
1.2.4 Trying the system and cd Commands .. 17
1.2.5 Modelica Library and DCMotor Model .. 17
1.2.6 The val() function .. 20
1.2.7 BouncingBall and Switch Models ... 20
1.2.8 Clear All Models ... 22
1.2.9 VanDerPol Model and Parametric Plot ... 22
1.2.10 Using Japanese or Chinese Characters .. 23
1.2.11 Scripting with For-Loops, While-Loops, and If-Statements ... 24
1.2.12 Variables, Functions, and Types of Variables ... 25
1.2.13 Getting Information about Error Cause ... 26
1.2.14 Alternative Simulation Output Formats... 26
1.2.15 Using External Functions .. 27
1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support .. 27
1.2.17 Loading Specific Library Version ... 27
1.2.18 Calling the Model Query and Manipulation API .. 27
1.2.19 Quit OpenModelica ... 29
1.2.20 Dump XML Representation .. 29
1.2.21 Dump Matlab Representation .. 29

1.3 Summary of Commands for the Interactive Session Handler .. 30
1.4 Running the compiler from command line .. 31
1.5 References .. 32

Chapter 2 OMEdit – OpenModelica Connection Editor ... 33

2.1 Starting OMEdit ... 33
2.1.1 Microsoft Windows ... 33
2.1.1 Linux ... 33
2.1.2 Mac OS X .. 33

2.2 MainWindow & Browsers ... 34
2.2.1 Search Browser .. 35
2.2.2 Libraries Browser .. 36
2.2.3 Documentation Browser .. 37
2.2.4 Variables Browser ... 37
2.2.5 Messages Browser ... 38

2.3 Perspectives .. 39
2.3.1 Welcome Perspective .. 39
2.3.2 Modeling Perspective .. 39
2.3.3 Plotting Perspective ... 40

4

2.4 Modeling a Model .. 41
2.4.1 Creating a New Modelica class ... 41
2.4.2 Opening a Modelica File ... 41
2.4.3 Opening a Modelica File with Encoding ... 42
2.4.4 Model Widget .. 42
2.4.5 Adding Component Models .. 43
2.4.6 Making Connections .. 43

2.5 Simulating a Model .. 43
2.5.1 General Tab ... 43
2.5.2 Output Tab ... 43
2.5.3 Simulation Flags Tab ... 44

2.6 Plotting the Simulation Results .. 44
2.6.1 Types of Plotting ... 45

2.7 Re-simulating a Model ... 45
2.8 How to Create User Defined Shapes – Icons ... 45
2.9 Settings ... 46

2.9.1 General .. 47
2.9.2 Libraries ... 47
2.9.3 Modelica Text Editor ... 47
2.9.4 Graphical Views .. 48
2.9.5 Simulation ... 48
2.9.6 Messages ... 48
2.9.7 Notifications .. 49
2.9.8 Line Style .. 49
2.9.9 Fill Style .. 49
2.9.10 Curve Style .. 49
2.9.11 Figaro ... 49
2.9.12 Debugger ... 50
2.9.13 FMI .. 50

2.10 The Equation-based Debugger ... 50
2.10.1 Enable Tracing Symbolic Transformations ... 50
2.10.2 Load a Model to Debug ... 50
2.10.3 Simulate and Start the Debugger ... 51
2.10.4 Use the Transformation Debugger for Browsing .. 51

2.11 The Algorithmic Debugger .. 52
2.11.1 Adding Breakpoints ... 52
2.11.2 Start the Algorithmic Debugger .. 53
2.11.3 Debug Configurations ... 54
2.11.4 Attach to Running Process .. 54
2.11.5 Using the Algorithmic Debugger Window .. 55

Chapter 3 2D Plotting .. 57

3.1 Example ... 57
3.2 Plotting Commands and their Options ... 58

Chapter 4 OMNotebook with DrModelica and DrControl .. 60

4.1 Interactive Notebooks with Literate Programming .. 60
4.1.1 Mathematica Notebooks .. 60
4.1.2 OMNotebook ... 60

4.2 DrModelica Tutoring System – an Application of OMNotebook .. 61
4.3 DrControl Tutorial for Teaching Control Theory .. 67

5

4.3.1 Feedback Loop .. 67
4.3.2 Mathematical Modeling with Characteristic Equations ... 70

4.4 OpenModelica Notebook Commands .. 76
4.4.1 Cells ... 76
4.4.2 Cursors ... 76
4.4.3 Selection of Text or Cells .. 77
4.4.4 File Menu .. 77
4.4.5 Edit Menu .. 78
4.4.6 Cell Menu .. 78
4.4.7 Format Menu ... 79
4.4.8 Insert Menu .. 79
4.4.9 Window Menu ... 80
4.4.10 Help Menu ... 80
4.4.11 Additional Features ... 80

4.5 References .. 81

Chapter 5 Functional Mock-up Interface - FMI ... 83

5.1 FMI Import ... 83
5.2 FMI Export ... 84

Chapter 6 Optimization with OpenModelica .. 86

6.1 Builtin Dynamic Optimization with OpenModelica and IpOpt ... 86
6.1.1 Compiling the Modelica code .. 87
6.1.2 An Example ... 88
6.1.3 Different Options for the Optimizer IPOPT .. 89

6.2 Dynamic Optimization with OpenModelica and CasADi .. 90
6.2.1 Compiling the Modelica code .. 90
6.2.2 An example .. 91
6.2.3 Generated XML for Example .. 92
6.2.4 XML Import to CasADi via OpenModelica Python Script ... 96

6.3 Parameter Sweep Optimization using OMOptim ... 97
6.3.1 Preparing the Model .. 97
6.3.2 Set problem in OMOptim .. 98
6.3.3 Results ... 102
6.3.4 Window Regions in OMOptim GUI ... 103

Chapter 7 MDT – The OpenModelica Development Tooling Eclipse Plugin 105

7.1 Introduction .. 105
7.2 Installation .. 105
7.3 Getting Started ... 106

7.3.1 Configuring the OpenModelica Compiler ... 106
7.3.2 Using the Modelica Perspective .. 106
7.3.3 Selecting a Workspace Folder ... 106
7.3.4 Creating one or more Modelica Projects ... 106
7.3.5 Building and Running a Project ... 106
7.3.6 Switching to Another Perspective ... 107
7.3.7 Creating a Package .. 108
7.3.8 Creating a Class ... 108
7.3.9 Syntax Checking .. 109
7.3.10 Automatic Indentation Support ... 110
7.3.11 Code Completion ... 110

6

7.3.12 Code Assistance on Identifiers when Hovering ... 111
7.3.13 Go to Definition Support ... 111
7.3.14 Code Assistance on Writing Records .. 111
7.3.15 Using the MDT Console for Plotting .. 112

Chapter 8 Modelica Performance Analyzer .. 114

8.1 Example Report Generated for the A Model ... 115
8.1.1 Information .. 115
8.1.2 Settings .. 115
8.1.3 Summary ... 115
8.1.4 Global Steps .. 116
8.1.5 Measured Function Calls ... 116
8.1.6 Measured Blocks ... 116
8.1.7 Genenerated XML for the Example .. 117

Chapter 9 MDT Debugger for Algorithmic Modelica .. 119

9.1 The Eclipse-based Debugger for Algorithmic Modelica ... 119
9.1.1 Starting the Modelica Debugging Perspective .. 120
9.1.2 Debugging OpenModelica ... 124
9.1.3 The Debugging Perspective ... 124

Chapter 10 Modelica3D .. 126

10.1 Windows .. 126
10.2 MacOS ... 127

Chapter 11 Simulation in Web Browser .. 129

Chapter 12 Interoperability – C and Python .. 131

12.1 Calling External C functions .. 131
12.2 Calling Python Code .. 132

Chapter 13 OpenModelica Python Interface and PySimulator... 134

13.1 OMPython – OpenModelica Python Interface ... 134
13.1.1 Features of OMPython .. 134
13.1.2 Using OMPython ... 134
13.1.3 Implementation .. 138
13.1.4 API – List of Commands ... 142

13.2 PySimulator .. 163

Chapter 14 Modelica and Python Scripting API .. 165

14.1 OpenModelica Modelica Scripting Commands ... 165
14.1.1 OpenModelica Basic Commands .. 165

14.2 OpenModelica System Commands .. 167
14.3 All OpenModelica API Calls ... 167

14.3.1 Examples ... 175
14.4 OpenModelica Python Scripting Commands ... 179

Chapter 15 Frequently Asked Questions (FAQ) ... 180

15.1 OpenModelica General .. 180
15.2 OMNotebook ... 180
15.3 OMDev - OpenModelica Development Environment ... 181
Index ... 213

7

9

Preface
This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

11

Chapter 1

Introduction

The OpenModelica system described in this document has both short-term and long-term goals:

• The short-term goal is to develop an efficient interactive computational environment for the Modelica
language, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for
development and execution of both low level and high level numerical algorithms, e.g. for control
system design, solving nonlinear equation systems, or to develop optimization algorithms that are
applied to complex applications.

• The longer-term goal is to have a complete reference implementation of the Modelica language,
including simulation of equation based models and additional facilities in the programming
environment, as well as convenient facilities for research and experimentation in language design or
other research activities. However, our goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can handle large models requiring
advanced analysis and optimization by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a
Modelica environment include but are not limited to the following:

• Development of a complete formal specification of Modelica, including both static and dynamic
semantics. Such a specification can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference implementation.

• Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

• Language design to improve abstract properties such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

• Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by
generating code for parallel hardware.

• Improved debugging support for equation based languages such as Modelica, to make them even easier
to use.

• Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
• Visualization and animation techniques for interpretation and presentation of results.
• Application usage and model library development by researchers in various application areas.

12

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be
submitted to the Modelica Association for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and
function parts of Modelica to be executed interactively, as well as equation models and Modelica functions to
be compiled into efficient C code. The generated C code is combined with a library of utility functions, a run-
time library, and a numerical DAE solver.

1.1 System Overview
The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1-1-1
below.

•

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

OMNotebook
DrModelica

Model Editor

MDT Eclipse Plugin
Editor/Browser

OMOptim
Optimization
Subsystem

Figure 1-1-1. The architecture of the OpenModelica environment. Arrows denote data and control flow. The
interactive session handler receives commands and shows results from evaluating commands and expressions that
are translated and executed. Several subsystems provide different forms of browsing and textual editing of
Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica

The following subsystems are currently integrated in the OpenModelica environment:

• An interactive session handler, that parses and interprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session handler also contains simple history facilities, and
completion of file names and certain identifiers in commands.

• A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing
definitions of classes, functions, and variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica interpreter for interactive usage and
constant expression evaluation. The subsystem also includes facilities for building simulation
executables linked with selected numerical ODE or DAE solvers.

• An execution and run-time module. This module currently executes compiled binary code from
translated expressions and functions, as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling facilities will be included for the discrete and
hybrid parts of the Modelica language.

13

• Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling)
provides file and class hierarchy browsing and text editing capabilities, rather analogous to previously
described Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse
framework has the advantage of making it easier to add future extensions such as refactoring and cross
referencing support.

• OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica tutorial to be handled. Hierarchical text
documents with chapters and sections can be represented and edited, including basic formatting. Cells
can contain ordinary text or Modelica models and expressions, which can be evaluated and simulated.
However, no mathematical typesetting facilities are yet available in the cells of this notebook editor.

• Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based
model design by connecting instances of Modelica classes, and browsing Modelica model libraries for
reading and picking component models. The graphical model editor also includes a textual editor for
editing model class definitions, and a window for interactive Modelica command evaluation.

• Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has
a graphical user interface, provides genetic optimization algorithms and Pareto front optimization,
works integrated with the simulators and automatically accesses variables and design parameters from
the Modelica model.

• Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for
Modelica models extended with optimization specifications with goal functions and additional
constraints. This subsystem is integrated with in the OpenModelica compiler.

• Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been
done.

• Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for
an extended algorithmic subset of Modelica, excluding equation-based models and some other features,
but including some meta-programming and model transformation extensions to Modelica. This is a
conventional full-feature debugger, using Eclipse for displaying the source code during stepping,
setting breakpoints, etc. Various back-trace and inspection commands are available. The debugger also
includes a data-view browser for browsing hierarchical data such as tree- or list structures in extended
Modelica.

1.2 Interactive Session with Examples
The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell – the OpenModelica Shell). Most of these examples are also available in the OpenModelica
notebook UsersGuideExamples.onb in the testmodels (C:/OpenModelica/share/doc/omc/testmodels/)
directory, see also Chapter 4.

14

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica-
>OpenModelica Shell which responds with an interaction window:

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored
in the variable x. The value of the expression is returned.
>> x := 1:12
 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make use of some of the
compiler debug trace flags defined in section 2.1.2 in the System Documentation. Here we give a few example
sessions.

Example Session 1

OpenModelica 1.9.2
Copyright (c) OSMC 2002-2015
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

15

>> instantiateModel(A)
"
Error: Type mismatch in modifier, expected type Integer, got modifier =1.5 of type Real
Error: Error occured while flattening model A

Example Session 2

OpenModelica 1.9.2
Copyright (c) OSMC 2002-2014
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> setDebugFlags("dump")
true
---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("setDebugFlags", []),
FUNCTIONARGS(Absyn.STRING("dump"),)))
---/DEBUG(dump)---
"
---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("getErrorString", []), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> model B Integer k = 10; end B;
{B}
---DEBUG(dump)---
Absyn.PROGRAM([
Absyn.CLASS("B", false, false, false, Absyn.R_MODEL,
Absyn.PARTS([Absyn.PUBLIC([Absyn.ELEMENTITEM(Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED
, "component", Absyn.COMPONENTS(Absyn.ATTR(false, false, Absyn.VAR, Absyn.BIDIR,
[]),Integer,[Absyn.COMPONENTITEM(Absyn.COMPONENT("k",[], SOME(Absyn.CLASSMOD([],
SOME(Absyn.INTEGER(10))))), NONE())]), Absyn.INFO("", false, 1, 9, 1, 23)), NONE))])],
NONE()), Absyn.INFO("", false, 1, 1, 1, 30))
],Absyn.TOP)
---/DEBUG(dump)---
"
---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("getErrorString", []), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> instantiateModel(B)
"fclass B
Integer k = 10;
end B;
"
---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("instantiateModel", []),
FUNCTIONARGS(Absyn.CREF(Absyn.CREF_IDENT("B", [])),)))
---/DEBUG(dump)---
"
---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("getErrorString", []), FUNCTIONARGS(,)))
---/DEBUG(dump)—

>> simulate(B, startTime=0, stopTime=1, numberOfIntervals=500, tolerance=1e-4)
record SimulationResult
resultFile = "B_res.plt"
end SimulationResult;
---DEBUG(dump)---

16

#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
IEXP(Absyn.CALL(Absyn.CREF_IDENT("simulate", []),
FUNCTIONARGS(Absyn.CREF(Absyn.CREF_IDENT("B", [])), startTime = Absyn.INTEGER(0),
stopTime = Absyn.INTEGER(1), numberOfIntervals = Absyn.INTEGER(500), tolerance =
Absyn.REAL(0.0001))))
---/DEBUG(dump)---
"
---DEBUG(dump)---
IEXP(Absyn.CALL(Absyn.CREF_IDENT("getErrorString", []), FUNCTIONARGS(,)))
---/DEBUG(dump)--

Example Session 3

OpenModelica 1.9.2
Copyright (c) OSMC 2002-2014
To get help on using OMShell and OpenModelica, type "help()" and press enter.

>> model C Integer a; Real b; equation der(a) = b; der(b) = 12.0; end C;
{C}

>> instantiateModel(C)
"
Error: Illegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real
Error: Wrong type or wrong number of arguments to der(a)'.
Error: Error occured while flattening model C
Error: Illegal derivative. der(a) where a is of type Integer, which is not a subtype of
Real
Error: Wrong type or wrong number of arguments to der(a)'.
Error: Error occured while flattening model C

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly
giving the command:
>> loadFile("C:/OpenModelica1.9.2/share/doc/omc/testmodels/bubblesort.mo")

true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is
the declared type of the function result. The input Integer vector was automatically converted to a Real
vector according to the Modelica type coercion rules. The function is automatically compiled when called if
this has not been done before.
>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:
>> bubblesort({4,6,2,5,8})

17

{8.0,6.0,5.0,4.0,2.0}

It is also possible to give operating system commands via the system utility function. A command is provided
as a string argument. The example below shows the system utility applied to the UNIX command cat, which
here outputs the contents of the file bubblesort.mo to the output stream. However, the cat command does not
boldface Modelica keywords – this improvement has been done by hand for readability.
>> cd("C:/OpenModelica1.9.2/share/doc/omc/testmodels/")
>> system("cat bubblesort.mo")

function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

1.2.4 Trying the system and cd Commands

Note: Under Windows the output emitted into stdout by system commands is put into the winmosh console
windows, not into the winmosh interaction windows. Thus the text emitted by the above cat command would
not be returned. Only a success code (0 = success, 1 = failure) is returned to the winmosh window. For
example:
>> system("dir")
0

>> system("Non-existing command")
1

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.
>> cd()
" C:/OpenModelica1.9.2/share/doc/omc/testmodels/"

>> cd("..")
" C:/OpenModelica1.9.2/share/doc/omc/"

>> cd("C:/OpenModelica1.9.2/share/doc/omc/testmodels/")
" C:/OpenModelica1.9.2/share/doc/omc/testmodels/"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

18

>> loadModel(Modelica)
true

We also load a file containing the dcmotor model:
>> loadFile("C:/OpenModelica1.9.2/share/doc/omc/testmodels/dcmotor.mo")
true

It is simulated:
>> simulate(dcmotor,startTime=0.0,stopTime=10.0)

record
 resultFile = "dcmotor_res.plt"
end record

We list the source code of the model:
>> list(dcmotor)

"model dcmotor
 Modelica.Electrical.Analog.Basic.Resistor r1(R=10);
 Modelica.Electrical.Analog.Basic.Inductor i1;
 Modelica.Electrical.Analog.Basic.EMF emf1;
 Modelica.Mechanics.Rotational.Inertia load;
 Modelica.Electrical.Analog.Basic.Ground g;
 Modelica.Electrical.Analog.Sources.ConstantVoltage v;

equation
 connect(v.p,r1.p);
 connect(v.n,g.p);
 connect(r1.n,i1.p);
 connect(i1.n,emf1.p);
 connect(emf1.n,g.p);
 connect(emf1.flange_b,load.flange_a);
end dcmotor;
"

We test code instantiation of the model to flat code:
>> instantiateModel(dcmotor)

"fclass dcmotor
Real r1.v "Voltage drop between the two pins (= p.v - n.v)";
Real r1.i "Current flowing from pin p to pin n";
Real r1.p.v "Potential at the pin";
Real r1.p.i "Current flowing into the pin";
Real r1.n.v "Potential at the pin";
Real r1.n.i "Current flowing into the pin";
parameter Real r1.R = 10 "Resistance";
Real i1.v "Voltage drop between the two pins (= p.v - n.v)";
Real i1.i "Current flowing from pin p to pin n";
Real i1.p.v "Potential at the pin";
Real i1.p.i "Current flowing into the pin";
Real i1.n.v "Potential at the pin";
Real i1.n.i "Current flowing into the pin";
parameter Real i1.L = 1 "Inductance";
parameter Real emf1.k = 1 "Transformation coefficient";
Real emf1.v "Voltage drop between the two pins";
Real emf1.i "Current flowing from positive to negative pin";
Real emf1.w "Angular velocity of flange_b";
Real emf1.p.v "Potential at the pin";
Real emf1.p.i "Current flowing into the pin";
Real emf1.n.v "Potential at the pin";

19

Real emf1.n.i "Current flowing into the pin";
Real emf1.flange_b.phi "Absolute rotation angle of flange";
Real emf1.flange_b.tau "Cut torque in the flange";
Real load.phi "Absolute rotation angle of component (= flange_a.phi = flange_b.phi)";
Real load.flange_a.phi "Absolute rotation angle of flange";
Real load.flange_a.tau "Cut torque in the flange";
Real load.flange_b.phi "Absolute rotation angle of flange";
Real load.flange_b.tau "Cut torque in the flange";
parameter Real load.J = 1 "Moment of inertia";
Real load.w "Absolute angular velocity of component";
Real load.a "Absolute angular acceleration of component";
Real g.p.v "Potential at the pin";
Real g.p.i "Current flowing into the pin";
Real v.v "Voltage drop between the two pins (= p.v - n.v)";
Real v.i "Current flowing from pin p to pin n";
Real v.p.v "Potential at the pin";
Real v.p.i "Current flowing into the pin";
Real v.n.v "Potential at the pin";
Real v.n.i "Current flowing into the pin";
parameter Real v.V = 1 "Value of constant voltage";
equation
 r1.R * r1.i = r1.v;
 r1.v = r1.p.v - r1.n.v;
 0.0 = r1.p.i + r1.n.i;
 r1.i = r1.p.i;
 i1.L * der(i1.i) = i1.v;
 i1.v = i1.p.v - i1.n.v;
 0.0 = i1.p.i + i1.n.i;
 i1.i = i1.p.i;
 emf1.v = emf1.p.v - emf1.n.v;
 0.0 = emf1.p.i + emf1.n.i;
 emf1.i = emf1.p.i;
 emf1.w = der(emf1.flange_b.phi);
 emf1.k * emf1.w = emf1.v;
 emf1.flange_b.tau = -(emf1.k * emf1.i);
 load.w = der(load.phi);
 load.a = der(load.w);
 load.J * load.a = load.flange_a.tau + load.flange_b.tau;
 load.flange_a.phi = load.phi;
 load.flange_b.phi = load.phi;
 g.p.v = 0.0;
 v.v = v.V;
 v.v = v.p.v - v.n.v;
 0.0 = v.p.i + v.n.i;
 v.i = v.p.i;
 emf1.flange_b.tau + load.flange_a.tau = 0.0;
 emf1.flange_b.phi = load.flange_a.phi;
 emf1.n.i + v.n.i + g.p.i = 0.0;
 emf1.n.v = v.n.v;
 v.n.v = g.p.v;
 i1.n.i + emf1.p.i = 0.0;
 i1.n.v = emf1.p.v;
 r1.n.i + i1.p.i = 0.0;
 r1.n.v = i1.p.v;
 v.p.i + r1.p.i = 0.0;
 v.p.v = r1.p.v;
 load.flange_b.tau = 0.0;
end dcmotor;
"

We plot part of the simulated result:

20

>> plot({load.w,load.phi})
true

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation
result variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):
>> loadFile("C:/OpenModelica1.9.2/share/doc/omc/testmodels/BouncingBall.mo")

true

>> list(BouncingBall)
"model BouncingBall
 parameter Real e=0.7 "coefficient of restitution";
 parameter Real g=9.81 "gravity acceleration";
 Real h(start=1) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start=true) "true, if ball is flying";

21

 Boolean impact;
 Real v_new;
equation
 impact=h <= 0.0;
 der(v)=if flying then -g else 0;
 der(h)=v;
 when {h <= 0.0 and v <= 0.0,impact} then
 v_new=if edge(impact) then -e*pre(v) else 0;
 flying=v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;"

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos
(Modelica script) file sim_BouncingBall.mos that contains these commands:
loadFile("BouncingBall.mo");
simulate(BouncingBall, stopTime=3.0);
plot({h,flying});

The runScript command:
>> runScript("sim_BouncingBall.mos")
"true
record
 resultFile = "BouncingBall_res.plt"
end record
true
true"

We enter a switch model, to test if-equations (e.g. copy and paste from another file and push enter):
>> model Switch
 Real v;
 Real i;
 Real i1;
 Real itot;
 Boolean open;
equation
 itot = i + i1;

 if open then
 v = 0;
 else
 i = 0;
 end if;

22

 1 - i1 = 0;
 1 - v - i = 0;
 open = time >= 0.5;
end Switch;
Ok

>> simulate(Switch, startTime=0, stopTime=1);

Retrieve the value of itot at time=0 using the val(variableName,time) function:
>> val(itot,0)
1

Plot itot and open:
>> plot({itot,open})
true

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:
>> clear()
true

List the loaded models – nothing left:
>> list()
""

1.2.9 VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load Model):
>> loadFile("C:/OpenModelica1.9.2/share/doc/omc/testmodels/VanDerPol.mo"))
true

It is simulated:

23

>> simulate(VanDerPol)
record
 resultFile = "VanDerPol_res.plt"
end record

It is plotted:
plotParametric(x,y);

Perform code instantiation to flat form of the VanDerPol model:
>> instantiateModel(VanDerPol)

"fclass VanDerPol
Real x(start=1.0);
Real y(start=1.0);
parameter Real lambda = 0.3;
equation
 der(x) = y;
 der(y) = -x + lambda * (1.0 - x * x) * y;
end VanDerPol;
"

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers,
see for example the variable name to the right in the plot below:

24

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):
>> k := 0;
 for i in 1:1000 loop
 k := k + i;
 end for;

>> k
500500

A nested loop summing reals and integers::
>> g := 0.0;
 h := 5;
 for i in {23.0,77.12,88.23} loop
 for j in i:0.5:(i+1) loop
 g := g + j;
 g := g + h / 2;
 end for;
 h := h + g;
 end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:
>> h;g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:
>> i:="";
 lst := {"Here ", "are ","some ","strings."};
 s := "";
 for i in lst loop
 s := s + i;
 end for;

>> s
"Here are some strings."

25

Normal while-loop with concatenation of 10 "abc " strings:
>> s:="";
 i:=1;
 while i<=10 loop
 s:="abc "+s;
 i:=i+1;
 end while;

>> s
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:
>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif:
>> if false then
 a := 5;
 elseif a > 50 then
 b:= "test"; a:= 100;
 else
 a:=34;
 end if;

Take a look at the variables a and b:
>> a;b

100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:
>> a:=1:5
{1,2,3,4,5}

Type in a function:
>> function MySqr input Real x; output Real y; algorithm y:=x*x; end MySqr;
Ok

Call the function:
>> b:=MySqr(2)
4.0

Look at the value of variable a:
>> a
{1,2,3,4,5}

Look at the type of a:
>> typeOf(a)
"Integer[]"

Retrieve the type of b:
>> typeOf(b)
"Real"

26

What is the type of MySqr? Cannot currently be handled.
>> typeOf(MySqr)
Error evaluating expr.

List the available variables:
>> listVariables()
{currentSimulationResult, a, b}

Clear again:
>> clear()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a
simulation failure:
>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is
roughly 5 times for small files, and scales better for larger files due to being a binary format. The csv format is
roughly twice as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM
during simulation, which means that simulations may fail due applications only being able to address 4GB of
memory on 32-bit platforms. Empty does no output at all and should be by far the fastest. The csv and plt
formats are suitable when using an external scripts or tools like gnuplot to generate plots or process data. The
mat format can be post-processed in MATLAB1 or Octave2

simulate(... , outputFormat="mat")

.

simulate(... , outputFormat="csv")

simulate(... , outputFormat="plt")

simulate(... , outputFormat="empty")

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions3

// Default, match everything

. The given expression must match the full variable name (^ and $ symbols are
automatically added to the given regular expression).

simulate(... , variableFilter=".*")

// match indices of variable myVar that only contain the numbers using combinations

// of the letters 1 through 3

simulate(... , variableFilter="myVar\\[[1-3]*\\]")

1 http://www.mathworks.com/products/matlab/
2 http://www.gnu.org/software/octave/
3 http://en.wikipedia.org/wiki/Regular_expression

http://www.mathworks.com/products/matlab�
http://www.gnu.org/software/octave/�
http://en.wikipedia.org/wiki/Regular_expression�

27

// match x or y or z

simulate(... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter 12 for more information about calling functions in other programming languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that
automatically partitions the system of equations and schedules the parts for execution on different cores using
shared-memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether
the system of equations can be partitioned well. This version in the current OpenModelica release is an
experimental version without load balancing. The following command, not yet available from the
OpenModelica GUI, will run a parallel simulation on a model:
omc +d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep
multiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling
loadModel(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file
called "Modelica 3.2.mo". It is possible to give several library versions to search for, giving preference for a
pre-release version of a library if it is installed. If the searched version is "default", the priority is: no version
name (Modelica), main release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered
versions (Modelica Special Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been
loaded. Given the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST
automatically.
package Modelica
 annotation(uses(Complex(version="1.0"), ModelicaServices(version="1.1")))
end Modelica;

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC)
server. Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
OMEdit graphic model editor, etc. This API is untyped for performance reasons, i.e., no type checking and
minimal error checking is done on the calls. The results of a call is returned as a text string in Modelica syntax
form, which the client has to parse. An example parser in C++ is available in the OMNotebook source code,
whereas another example parser in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on
this API is available in the system documentation. First we load and list the model again to show its structure:

28

>>loadFile("C:/OpenModelica1.9.2/share/doc/omc/testmodels/BouncingBall.mo")
true

>>list(BouncingBall)

"model BouncingBall
 parameter Real e=0.7 "coefficient of restitution";
 parameter Real g=9.81 "gravity acceleration";
 Real h(start=1) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start=true) "true, if ball is flying";
 Boolean impact;
 Real v_new;
equation
 impact=h <= 0.0;
 der(v)=if flying then -g else 0;
 der(h)=v;
 when {h <= 0.0 and v <= 0.0,impact} then
 v_new=if edge(impact) then -e*pre(v) else 0;
 flying=v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;
"

Different kinds of calls with returned results:
>>getClassRestriction(BouncingBall)
"model"

>>getClassInformation(BouncingBall)
{"model","","",{false,false,false},{"writable",1,1,18,17}}

>>isFunction(BouncingBall)
false

>>existClass(BouncingBall)
true

>>getComponents(BouncingBall)
{{Real,e,"coefficient of restitution", "public", false, false, false,
"parameter", "none", "unspecified"},
{Real,g,"gravity acceleration",
"public", false, false, false, "parameter", "none", "unspecified"},
{Real,h,"height of ball", "public", false, false, false,
"unspecified", "none", "unspecified"},
{Real,v,"velocity of ball",
"public", false, false, false, "unspecified", "none", "unspecified"},
{Boolean,flying,"true, if ball is flying", "public", false, false,
false, "unspecified", "none", "unspecified"},
{Boolean,impact,"",
"public", false, false, false, "unspecified", "none", "unspecified"},
{Real,v_new,"", "public", false, false, false, "unspecified", "none",
"unspecified"}}

>>getConnectionCount(BouncingBall)
0

>>getInheritanceCount(BouncingBall)
0

>>getComponentModifierValue(BouncingBall,e)
0.7

>>getComponentModifierNames(BouncingBall,e)

29

{}

>>getClassRestriction(BouncingBall)
"model"

>>getVersion() // Version of the currently running OMC
"1.9.2"

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:
>> quit()

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional
parameters.
dumpXMLDAE(modelname[,asInSimulationCode=<Boolean>] [,filePrefix=<String>]
[,storeInTemp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before
dumping the model), the other options are relative to the file storage: filePrefix for specifying a different
name and storeInTemp to use the temporary directory. The optional parameter addMathMLCode gives the
possibility to don't print the MathML code within the xml file, to make it more readable. Usage is trivial, just:
addMathMLCode=true/false (default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:
$ cat daequery.mos
loadFile("BouncingBall.mo");
exportDAEtoMatlab(BouncingBall);
readFile("BouncingBall_imatrix.m");

$ omc daequery.mos
true
"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

 "
% Incidence Matrix
% ====================================
% number of rows: 6
IM={[3,-6],[1,{'if', 'true','==' {3},{},}],[2,{'if', 'edge(impact)'
{3},{5},}],[4,2],[5,{'if', 'true','==' {4},{},}],[6,-5]};
VL = {'foo','v_new','impact','flying','v','h'};

30

EqStr = {'impact = h <= 0.0;','foo = if impact then 1 else 2;','when {h <= 0.0 AND v
<= 0.0,impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end
when;','when {h <= 0.0 AND v <= 0.0,impact} then flying = v_new > 0.0; end
when;','der(v) = if flying then -g else 0.0;','der(h) = v;'};

OldEqStr={'fclass BouncingBall','parameter Real e = 0.7 "coefficient of
restitution";','parameter Real g = 9.81 "gravity acceleration";','Real h(start = 1.0)
"height of ball";','Real v "velocity of ball";','Boolean flying(start = true) "true,
if ball is flying";','Boolean impact;','Real v_new;','Integer foo;','equation','
impact = h <= 0.0;',' foo = if impact then 1 else 2;',' der(v) = if flying then -g
else 0.0;',' der(h) = v;',' when {h <= 0.0 AND v <= 0.0,impact} then',' v_new = if
edge(impact) then (-e) * pre(v) else 0.0;',' flying = v_new > 0.0;','
reinit(v,v_new);',' end when;','end BouncingBall;',''};"

1.3 Summary of Commands for the Interactive Session Handler
The following is the complete list of commands currently available in the interactive session hander.
simulate(modelname) Translate a model named modelname and simulate it.
simulate(modelname[,startTime=<Real>][,stopTime=<Real>][,numberOfIntervals

=<Integer>][,outputInterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]
[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation intervals or
steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to
compute. The default number of intervals is 500. It is possible to choose
solving method, default is “dassl”, “euler” and “rungekutta” are also
available. Output format “mat” is default. “plt” and “mat” (MATLAB) are
the only ones that work with the val() command, “csv” (comma separated
values) and “empty” (no output) are also available (see chapter 1.2.14).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or
plot(x1).

plotParametric(var1, var2) Plot var2 relative to var1 from the most recently simulated model, e.g.
plotParametric(x,y).

cd() Return the current directory.
cd(dir) Change directory to the directory given as string.
clear() Clear all loaded definitions.
clearVariables() Clear all defined variables.
dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional

parameters.
exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing
the flat class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

31

loadModel(classname) Load model or package of name classname from the path indicated by the
environment variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.
system(str) Execute str as a system(shell) command in the operating system; return

integer success value. Output into stdout from a shell command is put into
the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time)
the evaluation took.

typeOf(variable) Return the type of the variable as a string.
saveModel(str,modelname) Save the model/class with name modelname in the file given by the string

argument str.
val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).
quit() Leave and quit the OpenModelica environment

1.4 Running the compiler from command line
The OpenModelica compiler can also be used from command line, in Windows cmd.exe.

Example Session 1 – obtaining information about command line parameters

C:\dev> C:\OpenModelica1.9.2 \bin\omc -h
OpenModelica Compiler 1.9.2
Copyright © 2015 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org
Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
...

Example Session 2 - create an TestModel.mo file and run omc on it

C:\dev> echo model TestModel parameter Real x = 1; end TestModel; > TestModel.mo
C:\dev> C:\OpenModelica1.9.2 \bin\omc TestModel.mo
class TestModel
 parameter Real x = 1.0;
end TestModel;
C:\dev>

Example Session 3 - create an script.mos file and run omc on it

Create a file script.mos using your editor containing these commands:
// start script.mos
loadModel(Modelica); getErrorString();
simulate(Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum); getErrorString();
// end script.mos
C:\dev> notepad script.mos
C:\dev> C:\OpenModelica1.9.2 \bin\omc script.mos
true
""

http://www.openmodelica.org/�

32

record SimulationResult
 resultFile =
"C:/dev/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500,
tolerance = 1e-006, method = 'dassl', fileNamePrefix =
'Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum', options = '',
outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 1.245787339209033,
 timeBackend = 20.51007138993843,
 timeSimCode = 0.1510248469321959,
 timeTemplates = 0.5052317333954395,
 timeCompile = 5.128213942691722,
 timeSimulation = 0.4049189573103951,
 timeTotal = 27.9458487395605
end SimulationResult;
""

In order to obtain more information from the compiler one can use the command line options
+showErrorMessages +d=failtrace when running the compiler:
C:\dev> C:\OpenModelica1.9.2 \bin\omc +showErrorMessages +d=failtrace script.mos

1.5 References
Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon Saldamli, and David

Broman. The OpenModelica Modeling, Simulation, and Software Development Environment.
In Simulation News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-IEEE Press, 2004.

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

http://www.modelica.org/�

33

Chapter 2

OMEdit – OpenModelica Connection Editor

OMEdit – OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt 4.8 graphical user interface library and supports the
Modelica Standard Library version 3.1 that is included in the latest OpenModelica installation. This chapter
gives a brief introduction to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:

• Modeling – Easy model creation for Modelica models.
• Pre-defined models – Browsing the Modelica Standard library to access the provided models.
• User defined models – Users can create their own models for immediate usage and later reuse.
• Component interfaces – Smart connection editing for drawing and editing connections between model

interfaces.
• Simulation – Subsystem for running simulations and specifying simulation parameters start and stop

time, etc.
• Plotting – Interface to plot variables from simulated models.

2.1 Starting OMEdit

2.1.1 Microsoft Windows

OMEdit can be launched using the executable placed in
OpenModelicaInstallationDirectory/bin/OMEdit/OMEdit.exe. Alternately, choose
OpenModelica > OpenModelica Connection Editor from the start menu in Windows. A splash screen
similar to the one shown in Figure 2-1 will appear indicating that it is starting OMEdit.

2.1.1 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

2.1.2 Mac OS X

?? fill in

34

Figure 2-1: OMEdit Splash Screen.

2.2 MainWindow & Browsers
The MainWindow contains several dockable browsers,

• Search Browser
• Libraries Browser
• Documentation Browser
• Variables Browser
• Messages Browser

Figure 2-2 shows the MainWindow and browsers.

35

Figure 2-2: OMEdit MainWindow and Browsers.

The default location of the browsers are shown in Figure 2-2. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into left,right or bottom areas. If
you want OMEdit to remember the new docked position of the browsers then you must enable Preserve
User's GUI Customizations option, see section 2.9.1.

2.2.1 Search Browser

Figure 2-3: Search Browser.

36

To view the Search Browser click Edit->Search Browser or press keyboard shortcut Ctrl+Shift+F.
The loaded Modelica classes can be searched by typing any part of the class name. It is also possible to search
the Modelica class if one knows the text string that is used within it but Within Modelica text checkbox
should be checked for this feature to work.

2.2.2 Libraries Browser

To view the Libraries Browser click View->Windows->Libraries Browser. Shows the list of loaded
Modelica classes. Each item of the Libraries Browser has right click menu for easy manipulation and
usage of the class. The classes are shown in a tree structure with name and icon. The protected classes are not
shown by default. If you want to see the protected classes then you must enable the Show Protected
Classes option, see section 2.9.1.

Figure 2-4: Libraries Browser.

37

2.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward
and backward. To see documentation of any class, right click the Modelica class in Libraries Browser and
choose View Documentation.

Figure 2-5: Documentation Browser.

2.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each
variable has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for
filtering the variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed
String. The complete Variables Browser can be collapsed and expanded using the Collapse All and
Expand All buttons.

The browser allows manipulation of changeable parameters for re-simulation. See section 2.7. It also displays
the unit and description of the variable.

38

Figure 2-6: Variables Browser.

2.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,

• Syntax
• Grammar
• Translation
• Symbolic
• Simulation
• Scripting

See section 2.9.6 for Messages Browser options.

39

2.3 Perspectives
The perspective tabs are loacted at the bottom right of the MainWindow,

• Welcome Perspective
• Modeling Perspective
• Plotting Perspective

2.3.1 Welcome Perspective

Figure 2-7: OMEdit Welcome Perspective.

The Welcome Perspective shows the list of recent files and the list of latest news from openmodelica.org.
See Figure 2-7. The orientation of recent files and latest news can be horizontal or vertical. User is allowed to
show/hide the latest news. See section 2.9.1.

2.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure
2-8.

https://www.openmodelica.org/�

40

Figure 2-8: OMEdit Modeling Perspective.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and
subwindow view, see section 2.9.1.

2.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will
automatically become active when the simulation of the model is finished successfully. It will also become
active when user opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective
this perspective can also be viewed in two different modes, the tabbed view and subwindow view, see
section 2.9.1.

41

Figure 2-9: OMEdit Plotting Perspective.

2.4 Modeling a Model

2.4.1 Creating a New Modelica class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,

• Select File > New Modelica Class from the menu.
• Click on New Modelica Class toolbar button.
• Click on the Create New Modelica Class button available at the left bottom of Welcome

Perspective.
• Press Ctrl+N.

2.4.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,

42

• Select File > Open Model/Library File(s) from the menu.
• Click on Open Model/Library File(s) toolbar button.
• Click on the Open Model/Library File(s) button available at the right bottom of Welcome

Perspective.
• Press Ctrl+O.

2.4.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to
convert files to UTF-8.

2.4.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar
contains buttons for navigation between the views and labels for information. The view area is used to display
the icon, diagram and text layers of Modelica class. See Figure 2-10.

Figure 2-10: Model Widget showing the Diagram View.

43

2.4.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model
Widget.

2.4.6 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode from the
toolbar. See Figure 2-11.

Figure 2-11: Connect/Unconnect Mode toolbar button.

2.5 Simulating a Model
The OMEdit Simulation Dialog can be launched by,

• Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in
ModelWidget)

• Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)
• Right clicking the model from the Libraries Browser and choosing Simulation Setup.

2.5.1 General Tab

• Start Time – the simulation start time.
• Stop Time – the simulation stop time.
• Method – the simulation solver. See Appendix C for solver details.
• Tolerance – the simulation tolerance.
• Compiler Flags (Optional) – the optional C compiler flags.
• Number of Processors – the number of processors used to build the simulation.
• Launch Transformational Debugger – launches the transformational debugger.
• Launch Algorithmic Debugger – launches the algorithmic debugger.

2.5.2 Output Tab

• Number of Intervals – the simulation number of intervals.
• Output Format – the simulation result file output format.
• File Name (Optional) – the simulation result file name.
• Variable Filter (Optional).
• Protecetd Variables – adds the protected variables in result file.
• Store Variables at Events – adds the variables at time events.
• Show Generated File – displays the generated files in a dialog box.

44

2.5.3 Simulation Flags Tab

• Model Setup File (Optional) – specifies a new setup XML file to the generated simulation code.
• Initialization Method (Optional) – specifies the initialization method.
• Equation System Initialization File (Optional) – specifies an external file for the initialization of the

model.
• Equation System Initialization Time (Optional) – specifies a time for the initialization of the model.
• Clock (Optional) – the type of clock to use.
• Linear Solver (Optional) – specifies the linear solver method.
• Non Linear Solver (Optional) – specifies the nonlinear solver.
• Linearization Time (Optional) – specifies a time where the linearization of the model should be

performed.
• Output Variables (Optional) – outputs the variables a, b and c at the end of the simulation to the

standard output.
• Profiling – creates a profiling HTML file.
• CPU Time – dumps the cpu-time into the result file.
• Enable All Warnings – outputs all warnings.
• Logging (Optional)
 DASSL Solver Information – prints additional information about dassl solver.
 Debug – prints additional debug information.
 Dynamic State Selection Information – outputs information about dynamic state selection.
 Jacobians Dynamic State Selection Information – outputs jacobain of the dynamic state selection.
 Event Iteration – additional information during event iteration.
 Verbose Event System – verbose logging of event system.
 Initialization – prints additional information during initialization.
 Jacobians Matrix – outputs the jacobian matrix used by dassl.
 Non Linear Systems – logging for nonlinear systems.
 Verbose Non Linear Systems – verbose logging of nonlinear systems.
 Jacobians Non Linear Systems – outputs the jacobian of nonlinear systems.
 Initialization Residuals – outputs residuals of the initialization.
 Simulation Process – additional information about simulation process.
 Solver Process – additional information about solver process.
 Final Initialization Solution – final solution of the initialization.
 Timer/Event/Solver Statistics – additional statistics about timer/events/solver.
 Util.
 Zero Crossings – additional information about the zerocrossings.

• Additional Simulation Flags (Optional) – specify any other simulation flag.

2.6 Plotting the Simulation Results
Successful simulation of model produces the result file which contains the instance variables that are candidate
for plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox,
checking it will plot the variable. See Figure 2-9.

45

2.6.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

2.6.1.1 Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New
Plot Window toolbar button. See Figure 2-12.

Figure 2-12: New Plot Window toolbar button.

2.6.1.2 Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can
have multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button. See Figure
2-13.

Figure 2-13: New Plot Parametric toolbar button.

2.7 Re-simulating a Model
The Variables Browser allows manipulation of changeable parameters for re-simulation as shown in Figure
2-6. After changing the parameter values user can click on the Re-simulate toolbar button, , or right click the
model in Variables Browser and choose Re-simulate from the menu.

Figure 2-14: Re-simulate toolbar button.

2.8 How to Create User Defined Shapes – Icons
Users can create shapes of their own by using the shape creation tools available in OMEdit.

• Line Tool – Draws a line. A line is created with a minimum of two points. In order to create a line, the
user first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will
start creating a line. If a user clicks again on the Icon/Diagram View a new line point is created. In
order to finish the line creation, user has to double click on the Icon/Diagram View.

• Polygon Tool – Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line
and if a polygon contains more than two points it will become a closed polygon shape.

• Rectangle Tool – Draws a rectangle. The rectangle only contains two points where first point indicates
the starting point and the second point indicates the ending the point. In order to create rectangle, the
user has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this
click will become the first point of rectangle. In order to finish the rectangle creation, the user has to

46

click again on the Icon/Diagram View where he/she wants to finish the rectangle. The second click
will become the second point of rectangle.

• Ellipse Tool – Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.
• Text Tool – Draws a text label.
• Bitmap Tool – Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 2-15.

Figure 2-15: User defined shapes.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created
on the Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View
will become the icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool
and a polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will
appear as follows:
model testModel
annotation(Icon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255}, fillColor =
{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None, lineThickness
= 0.25, extent = {{ -64.5,88},{63, -22.5}}),Polygon(points = {{ -47.5, -29.5},{52.5, -
29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0, lineColor = {0,0,255}, fillColor =
{0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None, lineThickness
= 0.25)}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the
model. Similarly, any user defined shape drawn on a Diagram View of the model will be added to the
diagram annotation of the model.

2.9 Settings
OMEdit allows users to save several settings which will be remembered across different sessions of OMEdit.
The Options Dialog can be used for reading and writing the settings.

47

2.9.1 General

• General
 Language – Sets the application language.
 Working Directory – Sets the application working directory.
 Toolbar Icon Size – Sets the size for toolbar icons.
 Preserve User’s GUI Customizations – If true then OMEdit will remember its windows and

toolbars positions and sizes.
• Libraries Browser
 Library Icon Size – Sets the size for library icons.
 Show Protected Classes – Sets the application language.

• Modeling View Mode
 Tabbed View/SubWindow View – Sets the view mode for modeling.

• Plotting View Mode
 Tabbed View/SubWindow View – Sets the view mode for plotting.

• Default View
 Icon View/DiagramView/Modelica Text View/Documentation View – If no preferredView

annotation is defined then this setting is used to show the respective view when user double clicks
on the class in the Libraries Browser.

• Enable Auto Save
 Auto Save interval – Sets the auto save interval value. The minimum possible interval value is 60

seconds.
 Enable Auto Save for single classes – Enables the auto save for one class saved in one file.
 Enable Auto Save for one file packages – Enables the auto save for packages saved in one file.

• Welcome Page
 Horizontal View/Vertical View – Sets the view mode for welcome page.
 Show Latest News – if true then displays the latest news.

2.9.2 Libraries

• System Libraries – The list of system libraries that should be loaded every time OMEdit starts.
• Force loading of Modelica Standard Library – If true then Modelica and ModelicaReference will

always load even if user has removed them from the list of system libraries.
• User Libraries – The list of user libraries/files that should be loaded every time OMEdit starts.

2.9.3 Modelica Text Editor

• General
 Enable Syntax Highlighting – Enable/Disable the syntax highlighting for the Modelica Text

Widget.
 Enable Line Wrapping – Enable/Disable the line wrapping for the Modelica Text Widget.

• Fonts and Colors
 Font Family – Contains the names list of available fonts.
 Font Size – Sets the font size.
 Items – List of categories used of syntax highlighting the code.

48

 Item Color – Sets the color for the selected item.
 Preview – Shows the demo of the syntax highlighting.

2.9.4 Graphical Views

• Extent
 Left – Defines the left extent point for the view.
 Bottom – Defines the bottom extent point for the view.
 Right – Defines the right extent point for the view.
 Top – Defines the top extent point for the view.

• Grid
 Horizontal – Defines the horizontal size of the view grid.
 Vertical – Defines the vertical size of the view grid.

• Component
 Scale factor – Defines the initial scale factor for the component dragged on the view.
 Preserve aspect ratio – If true then the component’s aspect ratio is preserved while scaling.

2.9.5 Simulation

• Simulation
 Matching Algorithm – sets the matching algorithm for simulation.
 Index Reduction Method – sets the index reduction method for simulation.
 OMC Flags – sets the omc flags for simulation.
 Save class before simulation – if ture then always saves the class before running the simulation.

• Output
 Structured – Shows the simulation output in the form of tree structure.
 Formatted Text – Shows the simulation output in the form of formatted text.

2.9.6 Messages

• General
 Output Size - Specifies the maximum number of rows the Messages Browser may have. If there

are more rows then the rows are removed from the beginning.
 Reset messages number before simulation – Resets the messages counter before starting the

simulation.
• Font and Colors
 Font Family – Sets the font for the messages.
 Font Size – Sets the font size for the messages.
 Notification Color – Sets the text color for notification messages.
 Warning Color – Sets the text color for warning messages.
 Error Color – Sets the text color for error messages.

49

2.9.7 Notifications

• Notifications
 Always quit without prompt – If true then OMEdit will quit without prompting the user.
 Show item dropped on itself message – If true then a message will pop-up when a class is dragged

and dropped on itself.
 Show model is defined as partial and component will be added as replaceable message – If true

then a message will pop-up when a partial class is added to another class.
 Show component is declared as inner message – If true then a message will pop-up when an inner

component is added to another class.
 Show save model for bitmap insertion message – If true then a message will pop-up when user tries

to insert a bitmap from a local directory to an unsaved class.

2.9.8 Line Style

• Line Style
 Color – Sets the line color.
 Pattern – Sets the line pattern.
 Thickness – Sets the line thickness.
 Start Arrow – Sets the line start arrow.
 End Arrow – Sets the line end arrow.
 Arrow Size – Sets the start and end arrow size.
 Smooth – If true then the line is drawn as a Bezier curve.

2.9.9 Fill Style

• Fill Style
 Color – Sets the fill color.
 Pattern – Sets the fill pattern.

2.9.10 Curve Style

• Curve Style
 Pattern – Sets the curve pattern.
 Thickness – Sets the curve thickness.

2.9.11 Figaro

• Figaro
 Figaro Database File – the Figaro database file path.
 Figaro Mode –
 Figaro Options File – the Figaro options file path.
 Figaro Process – the Figaro process location.

50

2.9.12 Debugger

• Algorithmic Debugger
 GDB Path – the gnu debugger path
 GDB Command Timeout – timeout for gdb commands.
 Display C frames – if true then shows the C stack frames.
 Display unknown frames – if true then shows the unknown stack frames. Unknown stack frames

means frames whose file path is unknown.
 Clear old output on a new run – if true then clears the output window on new run.
 Clear old log on new run – if true then clears the log window on new run.

• Transformational Debugger
 Always show Transformational Debugger after compilation – if true then always open the

Transformational Debugger window after model compilation.
 Generate operations in the info xml – if true then adds the operations information in the info xml

file.

2.9.13 FMI

• Export
 Version 1.0 – Sets the FMI export version to 1.0
 Version 2.0 – Sets the FMI export version to 2.0

2.10 The Equation-based Debugger
This section gives a short description how to get started using the equation-based debugger in OMEdit.

2.10.1 Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is optional but strongly recommended in order to
fully use the debugger. The compilation time overhead from having this tracing on is less than 1%, however, in
addition to that, some time is needed for the system to write the xml file containing the transformation tracing
information.

Enable +d=infoXmlOperations in Tools->Options->Simulation (see section 2.9.5) OR
alternatively click on the checkbox Generate operations in the info xml in Tools->Options->Debugger (see
section 2.9.12) which performs the same thing.

This adds all the transformations performed by OpenModelica on the equations and variables stored in the
model_info.xml file. This is necessary for the debugger to be able to show the whole path from the source
equation(s) to the position of the bug.

2.10.2 Load a Model to Debug

Load an interesting model. We will use the package
https://openmodelica.org/svn/OpenModelica/trunk/testsuite/openmodelica/debugging/D
ebugging.mo since it contains suitable, broken models to demonstrate common errors.

https://openmodelica.org/svn/OpenModelica/trunk/testsuite/openmodelica/debugging/Debugging.mo�
https://openmodelica.org/svn/OpenModelica/trunk/testsuite/openmodelica/debugging/Debugging.mo�

51

2.10.3 Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the Debugging package, select the model
Debugging.Chattering.ChatteringEvents1. If there is an error, you will get a clickable link that starts
the debugger. If the user interface is unresponsive or the running simulation uses too much processing power,
click cancel simulation first.

Figure 2-16. Simulating the model.

2.10.4 Use the Transformation Debugger for Browsing

Use the transformation debugger. It opens on the equation where the error was found. You can browse through
the dependencies (variables that are defined by the equation, or the equation is dependent on), and similar for
variables. The equations and variables form a bipartite graph that you can walk.

If the +d=infoXmlOperations was used or you clicked the “generate operations” button, the operations
performed on the equations and variables can be viewed. In the example package, there are not a lot of
operations because the models are small.

Try some larger models, e.g. in the MultiBody library or some other library, to see more operations with
several transformation steps between different versions of the relevant equation(s). If you do not trigger any
errors in a model, you can still open the debugger, using File->Open Transformations File
(model_info.xml).

52

Figure 2-17. Transfomation Debugger.

2.11 The Algorithmic Debugger
This section gives a short description how to get started using the algorithmic debugger in OMEdit. See section
2.9.12 for further details of debugger options/settings. The Algorithmic Debugger window can be launched
from Tools->Windows->Algorithmic Debugger.

2.11.1 Adding Breakpoints

There are two ways to add the breakpoints,

• Click directly on the line number in Text View, a red circle is created indicating a breakpoint as
shown in Figure 2-18.

• Open the Algorithmic Debugger window and add a breakpoint using the right click menu of
Breakpoints Browser window.

53

Figure 2-18: Adding breakpoint in Text View.

2.11.2 Start the Algorithmic Debugger

You should add breakpoints before starting the debugger because sometimes the simulation finishes quickly
and you won’t get any chance to add the breakpoints.

There are four ways to start the debugger,

• Open the Simulation Setup and click on Launch Algorithmic Debugger before pressing
Simulate.

• Right click the model in Libraries Browser and select Simulate with Algorithmic
Debugger.

• Open the Algorithmic Debugger window and from menu select Debug->Debug
Configurations (see section 2.11.3).

• Open the Algorithmic Debugger window and from menu select Debug->Attach to Running
Process (see section 2.11.4).

54

2.11.3 Debug Configurations

If you already have a simulation executable with debugging symbols outside of OMEdit then you can use the
Debug->Debug Configurations option to load it.

The debugger also supports MetaModelica data structures so one can debug omc executable. Select omc
executable as program and write the name of the mos script file in Arguments.

Figure 2-19: Debug Configurations.

2.11.4 Attach to Running Process

If you already have a running simulation executable with debugging symbols outside of OMEdit then you can
use the Debug->Attach to Running Process option to attach the debugger with it. Figure 2-20 shows the
Attach to Running Process dialog. The dialog shows the list of processes running on the machine. The
user selects the program that he/she wish to debug. OMEdit debugger attaches to the process.

55

Figure 2-20: Attach to Running Process.

2.11.5 Using the Algorithmic Debugger Window

Figure 2-21 shows the Algorithmic Debugger window. The window contains the following browsers,

• Stack Frames Browser – shows the list of frames. It contains the program context buttons like resume,
interrupt, exit, step over, step in, step return. It also contains a threads drop down which allows
switching between different threads.

• BreakPoints Browser – shows the list of breakpoints. Allows adding/editing/removing breakpoints.
• Locals Browser – Shows the list of local variables with values. Select the variable and the value will be

shown in the bottom right window. This is just for convenience because some variables might have long
values.

• Debugger CLI – shows the commands sent to gdb and their responses. This is for advanced users who
want to have more control of the debugger. It allows sending commands to gdb.

• Output Browser – shows the output of the debugged executable.

56

Figure 2-21: Algorithmic Debugger.

57

Chapter 3

2D Plotting

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPlot application.

3.1 Example
class HelloWorld
 Real x(start = 1);
 parameter Real a = 1;
equation
 der(x) = - a * x;
end HelloWorld;

To create a simple time plot the above model HelloWorld is simulated. To reduce the amount of simulation
data in this example the number of intervals is limited with the argument numberOfIntervals=10. The
simulation is started with the command below.
simulate(HelloWorld, startTime=0, stopTime=4, numberOfIntervals=10);

When the simulation is finished the file HelloWorld res.plt contains the simulation data. The contents of
the file is the following (some formatting has been applied).
0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349
0.8888888888888888 0.411112290507163
1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new OMPlot program by using the following command.
plot(x);

seems to correspond well with the data.

58

Figure 3-1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, e.g. using the default 500 intervals, a much smoother
plot can be obtained.
simulate(HelloWorld, startTime=0, stopTime=4, numberOfIntervals=500);

plot(x);

Figure 3-2: Simple 2D plot of the HelloWorld example with larger number of points.

3.2 Plotting Commands and their Options

59

All of these commands can have any number of optional arguments to further customize the the resulting
diagram. The available options and their allowed values are listed below.

Option Default value Description
fileName The result of the last

simulation
The name of the result-file containing the variables to
plot

grid true Determines whether or not a grid is shown in the
diagram.

title “” This text will be used as the diagram title.
logX false Determines whether or not the horizontal axis is

logarithmically scaled.
logY false Determines whether or not the vertical axis is

logarithmically scaled.
xLabel “time” This text will be used as the horizontal label in the

diagram.
yLabel “” This text will be used as the vertical label in the

diagram.
xRange {0, 0} Determines the horizontal interval that is visible in the

diagram. {0, 0} will select a suitable range.
yRange {0, 0} Determines the vertical interval that is visible in the

diagram. {0, 0} will select a suitable range.
curveWidth 1.0 Defines the width of the curve.
curveStyle 1 Defines the style of the curve.

SolidLine=1, DashLine=2, DotLine=3, DashDotLine=4,
DashDotDotLine=5, Sticks=6, Steps=7.

legendPosition “top” Defines the position of the legend in the diagram.
Possible values are left, right, top, bottom and none.

externalWindow false Opens a new OMPlot window if set to true otherwise
update the current opened window.

Command Description
plot(x) Creates a diagram with data from the last simulation that

had a variable named x.
plot({x,y,..., z}) Like the previous command, but with several variables.
plotParametric(x, y) Creates a parametric diagram with data from the last

simulated variables named x and y.
plotParametric(x, {y1,y2}) Like the previous command, but with several variables.
plotAll() Creates a diagram with all variables from the last

simulated model as functions of time.

60

Chapter 4

OMNotebook with DrModelica and DrControl

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook, together with the
DrModelica tutoring system for teaching Modelica, and DrControl for teaching control together with Modelica.
Both are using such notebooks.

4.1 Interactive Notebooks with Literate Programming
Interactive Electronic Notebooks are active documents that may contain technical computations and text, as
well as graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation
scripting, model documentation and storage, etc.

4.1.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with
documentation in the same document. Mathematica notebooks (Wolfram 1997) is one of the first WYSIWYG
(What-You-See-Is-What-You-Get) systems that support Literate Programming. Such notebooks are used, e.g.,
in the MathModelica modeling and simulation environment, e.g. see Figure 4-1below and Chapter 19 in
(Fritzson 2004)

4.1.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernström 2006) is a new open source free software that gives an
interactive WYSIWYG (What-You-See-Is-What-You-Get) realization of Literate Programming, a form of
programming where programs are integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG (What-You-See-Is-What-You-Get)
realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document. OMNotebook is a simple open-source software tool for an electronic
notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical typesetting and many other
facilities, is provided by Mathematica notebooks in the MathModelica environment, see Figure 4-1.

61

Figure 4-1. Examples of Mathematica notebooks in the MathModelica modeling and simulation environment.

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are
divided into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also reflected in electronic notebooks. Every
notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can have different
kinds of contents, and can even contain other cells. The notebook hierarchy of cells thus reflects the hierarchy
of sections and subsections in a traditional document such as a book.

4.2 DrModelica Tutoring System – an Application of OMNotebook
Understanding programs is hard, especially code written by someone else. For educational purposes it is
essential to be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is
also important to have the source code, the documentation about the source code, the execution results of the
simulation model, and the documentation of the simulation results in the same document. The reason is that the
problem solving process in computational simulation is an iterative process that often requires a modification
of the original mathematical model and its software implementation after the interpretation and validation of
the computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing
efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning and
teaching of the language. There is a need for an environment facilitating the learning and understanding of
Modelica. These are the reasons for developing the DrModelica teaching material for Modelica and for
teaching modeling and simulation.

62

An earlier version of DrModelica was developed using the MathModelica (now Wolfram SystemModeler)
environment. The rest of this chapter is concerned with the OMNotebook version of DrModelica and on the
OMNotebook tool itself.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a
table of contents that holds all other notebooks together by providing links to them. This particular notebook is
the first page the user will see (Figure 4-2).

63

Figure 4-2. The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book
“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary
introduces some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords
in detail.

Figure 4-3. The HelloWorld class simulated and plotted using the OMNotebook version of DrModelica.

64

Now, let us consider that the link “HelloWorld” in DrModelica Section is clicked by the user. The new
HelloWorld notebook (see Figure 4-3), to which the user is being linked, is not only a textual description but
also contains one or more examples explaining the specific keyword. In this class, HelloWorld, a differential
equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his/her own programs or
copy examples from other notebooks. This new notebook can be linked from existing notebooks.

Figure 4-4. DrModelica Chapter on Algorithms and Functions in the main page of the OMNotebook version of
DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as previously depicted
in Figure 4-3 for the simple HelloWorld example model.

65

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by
doing the exercises that concern the specific chapter. Exercises have been written in order to elucidate language
constructs step by step based on the pedagogical assumption that a student learns better “using the strategy of
learning by doing”. The exercises consist of either theoretical questions or practical programming assignments.
All exercises provide answers in order to give the user immediate feedback.

Figure 4-4 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about
language constructs, like algorithm sections, when-statements, and reinit equations, and then practice
these constructs by solving the exercises corresponding to the recently studied section.

Figure 4-5. Exercise 1 in Chapter 9 of DrModelica

Exercise 1 from Chapter 9 is shown in Figure 4-5. In this exercise the user has the opportunity to practice
different language constructs and then compare the solution to the answer for the exercise. Notice that the
answer is not visible until the Answer section is expanded. The answer is shown in Figure 4-6.

66

Figure 4-6. The answer section to Exercise 1 in Chapter 9 of DrModelica.

67

4.3 DrControl Tutorial for Teaching Control Theory
DrControl is an interactive OMNotebook document aimed at teaching control theory. It is included in the
OpenModelica distribution and appears under the directory OpenModelica1.9.2/share/
omnotebook/drcontrol.

The front-page of DrControl resembles a linked table of content that can be used as a navigation center. The
content list contains topics like:

• Getting started
• The control problem in ordinary life
• Feedback loop
• Mathematical modeling
• Transfer function
• Stability
• Example of controlling a DC-motor
• Feedforward compensation
• State-space form
• State observation
• Closed loop control system.
• Reconstructed system
• Linear quadratic optimization
• Linearization

Each entry in this list leads to a new notebook page where either the theory is explained with Modelica
examples or an exercise with a solution is provided to illustrate the background theory. Below we show a few
sections of DrControl.

4.3.1 Feedback Loop

One of the basic concepts of control theory is using feedback loops either for neutralizing the disturbances from
the surroundings or a desire for a smoother output.

In Figure 4-7, control of a simple car model is illustrated where the car velocity on a road is controlled, first
with an open loop control, and then compared to a closed loop system with a feedback loop. The car has a mass
m, velocity y, and aerodynamic coefficient α. The θ is the road slope, which in this case can be regarded as
noise.

68

Figure 4-7. Feedback loop

Lets look at the Modelica model for the open loop controlled car:

 model NoFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y "No noise";
 SI.Velocity yNoise "With noise";
 parameter SI.Mass m = 1500;
 parameter Real alpha = 200;
 parameter SI. ngle theta = 5*3.14/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Velocity r = 20 "Reference signal";
 equation
 m*der(y)=u - alpha*y;
 m*der(yNoise)= u - alpha*yNoise –
 m*g*sin(theta);
 u = 250A*r;
 end NoFeedback;

By applying a road slope angle different from zero the car velocity is influenced which can be regarded as
noise in this model. The output signal in Figure 4-8 is stable but an overshoot can be observed compared to the
reference signal. Naturally the overshoot is not desired and the student will in the next exercise learn how to get
rid of this undesired behavior of the system.

69

Figure 4-8. Open loop control example.

The closed car model with a proportional regulator is shown below:

model WithFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y "Output, No noise";
 SI.Velocity yNoise "Output With noise";
 parameter SI.Mass m = 1500;
 parameter Real alpha = 250;
 parameter SI.Angle theta = 5*3.14/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Force uNoise;
 SI.Velocity r = 20 "Reference signal";
equation
 m*der(y) = u - alpha*y;
 m*der(yNoise) = uNoise - alpha*yNois –
 m*g*sin(theta);
 u = 5000*(r - y);
 uNoise = 5000*(r - yNoise);
end WithFeedback;

By using the information about the current level of the output signal and re-tune the regulator the output
quantity can be controlled towards the reference signal smoothly and without an overshoot, as shown in Figure
4-9.

In the above simple example the flat modeling approach was adopted since it was the fastest one to quickly
obtain a working model. However, one could use the object oriented approach and encapsulate the car and
regulator models in separate classes with the Modelica connector mechanism in between.

70

Figure 4-9. Closed loop control example.

4.3.2 Mathematical Modeling with Characteristic Equations

In most systems the relation between the inputs and outputs can be described by a linear differential equation.
Tearing apart the solution of the differential equation into homogenous and particular parts is an important
technique taught to the students in engineering courses, also illustrated in Figure 4-10.

Now let us examine a second order system:

model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = 3;
 parameter Real a2 = 2;
equation

71

 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a1 and a2 leads to different behavior as shown in Figure 4-11 and Figure 4-12.

Figure 4-10. Mathematical modeling with characteristic equation.

In the first example the values of a1 and a2 are chosen in such way that the characteristic equation has negative
real roots and thereby a stable output response, see Figure 4-11.

72

Figure 4-11. Characteristic eq. with real negative roots.

The importance of the sign of the roots in the characteristic equation is illustrated in Figure 4-11 and Figure
4-12, e.g., a stable system with negative real roots and an unstable system with positive imaginary roots
resulting in oscillations.
model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = -2;
 parameter Real a2 = 10;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

73

Figure 4-12. Characteristic eq. with positive imaginary roots.

74

Figure 4-13. Step and pulse (weight function) response.

The theory and application of Kalman filters is also explained in the interactive course material.

Figure 4-14. Theory background about Kalman filter.

In reality noise is present in almost every physical system under study and therefore the concept of noise is also
introduced in the course material, which is purely Modelica based.

75

Figure 4-15. Comparison of a noisy system with feedback link in DrControl.

76

4.4 OpenModelica Notebook Commands
OMNotebook currently supports the commands and concepts that are described in this section.

4.4.1 Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of data.
That data can be text, images, or other cells. OMNotebook has four types of cells: headercell, textcell,
inputcell, and groupcell. Cells are ordered in a tree structure, where one cell can be a parent to one or
more additional cells. A tree view is available close to the right border in the notebook window to display the
relation between the cells.

• Textcell – This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cell´s style can be changed in the menu Format->Styles,
example of different styles are: Text, Title, and Subtitle. The Textcell type also has support for
following links to other notebook documents.

• Inputcell – This cell type has support for syntax highlighting and evaluation. It is intended to be used
for writing program code, e.g. Modelica code. Evaluation is done by pressing the key combination
Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica
Compiler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result to
be hidden.

• Groupcell – This cell type is used to group together other cell. A groupcell can be opened or closed.
When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the user
double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is changed
and the marker has an arrow at the bottom.

4.4.2 Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed for
positioning, text cursor and cell cursor:

• Textcursor – A cursor between characters in a cell, appearing as a small vertical line. Position the
cursor by clicking on the text or using the arrow buttons.

• Cellcursor – This cursor shows which cell currently has the input focus. It consists of two parts. The
main cellcursor is basically just a thin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item Cell-
>Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a short blinking horizontal line. To make this visible,
you must click once more on the main cellcursor (the long horizontal line). NOTE: In order to paste
cells at the cellcursor, the dynamic cellcursor must be made active by clicking on the main cellcursor
(the horizontal line).

77

4.4.3 Selection of Text or Cells

To perform operations on text or cells we often need to select a range of characters or cells.

• Select characters – There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects the
text between the previous click and the position of the most recent shift-click.

• Select cells – Cells can be selected by clicking on them. Holding down Ctrl and clicking on the cell
markers in the tree view allows several cells to be selected, one at a time. Several cells can be selected
at once in the tree view by holding down the Shift key. Holding down Shift selects all cells between last
selected cell and the cell clicked on. This only works if both cells belong to the same groupcell.

4.4.4 File Menu

The following file related operations are available in the file menu:

• Create a new notebook – A new notebook can be created using the menu File->New or the key
combination Ctrl+N. A new document window will then open, with a new document inside.

• Open a notebook – To open a notebook use File->Open in the menu or the key combination Ctrl+O.
Only files of the type .onb or .nb can be opened. If a file does not follow the OMNotebook format or
the FullForm Mathematica Notebook format, a message box is displayed telling the user what is wrong.
Mathematica Notebooks must be converted to fullform before they can be opened in OMNotebook.

• Save a notebook – To save a notebook use the menu item File->Save or File->Save As. If the
notebook has not been saved before the save as dialog is shown and a filename can be selected.
OMNotebook can only save in xml format and the saved file is not compatible with Mathematica. Key
combination for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains the file
extension .onb.

• Print – Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be
changed.

• Import old document – Old documents, saved with the old version of OMNotebook where a different
file format was used, can be opened using the menu item File->Import->Old OMNotebook file.
Old documents have the extension .xml.

• Export text – The text inside a document can be exported to a text document. The text is exported to this
document without almost any structure saved. The only structure that is saved is the cell structure. Each
paragraph in the text document will contain text from one cell. To use the export function, use menu
item File->Export->Pure Text.

• Close a notebook window – A notebook window can be closed using the menu item File->Close or
the key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook
window is closed.

• Quitting OMNotebook – To quit OMNotebook, use menu item File->Quit or the key combination
Crtl+Q. This closes all notebook windows; users will have the option of closing OMC also. OMC will
not automatically shutdown because other programs may still use it. Evaluating the command quit() has
the same result as exiting OMNotebook.

78

4.4.5 Edit Menu

• Editing cell text – Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), Cut (Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V). These functions can
also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit->Cut),
Copy (Edit->Copy) and Paste (Edit->Paste). Selection of text is done in the usual way by double-
clicking, triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to select all text
within the cell.

• Cut cell – Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise the
cut function cuts text.

• Copy cell – Cells can be copied from a document with the menu item Edit->Copy or the key
combination Ctrl+C. The copy function will always copy cells if cells have been selected in the tree
view, otherwise the copy function copy text.

• Paste cell – To paste copied or cut cells the cell cursor must be selected in the location where the cells
should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the menu Edit-
>Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function will always paste
cells. OMNotebook share the same application-wide clipboard. Therefore cells that have been copied
from one document can be pasted into another document. Only pointers to the copied or cut cells are
added to the clipboard, thus the cell that should be pasted must still exist. Consequently a cell can not
be pasted from a document that has been closed.

• Find – Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

• Replace – Find and replace text string in the current notebook, with the options match full word, match
cell, search+replace within closed cells. Short command Ctrl+H.

• View expression – Text in a cell is stored internally as a subset of HTML code and the menu item Edit-
>View Expression let the user switch between viewing the text or the internal HTML representation.
Changes made to the HTML code will affect how the text is displayed.

4.4.6 Cell Menu

• Add textcell – A new textcell is added with the menu item Cell->Add Cell (previous cell style) or the
key combination Alt+Enter. The new textcell gets the same style as the previous selected cell had.

• Add inputcell – A new inputcell is added with the menu item Cell->Add Inputcell or the key
combination Ctrl+Shift+I.

• Add groupcell – A new groupcell is inserted with the menu item Cell->Groupcell or the key
combination Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.

• Ungroup groupcell – A groupcell can be ungrouped by selecting it in the tree view and using the menu
item Cell->Ungroup Groupcell or by using the key combination Ctrl+Shift+U. Only one groupcell
at a time can be ungrouped.

• Split cell – Spliting a cell is done with the menu item Cell->Split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

• Delete cell – The menu item Cell->Delete Cell will delete all cells that have been selected in the
tree view. If no cell is selected this action will delete the cell that have been selected by the cellcursor.

79

This action can also be called with the key combination Ctrl+Shift+D or the key Del (only works when
cells have been selected in the tree view).

• Cellcursor – This cell type is a special type that shows which cell that currently has the focus. The cell
is basically just a thin black line. The cellcursor is moved by clicking on a cell or using the menu item
Cell->Next Cell or Cell->Previous Cell. The cursor can also be moved with the key
combination Ctrl+Up or Ctrl+Down.

4.4.7 Format Menu

• Textcell – This cell type is used to display ordinary text and images. Each textcell has a style that
specifies how text is displayed. The cells style can be changed in the menu Format->Styles,
examples of different styles are: Text, Title, and Subtitle. The Textcell type also have support
for following links to other notebook documents.

• Text manipulation – There are a number of different text manipulations that can be done to change the
appearance of the text. These manipulations include operations like: changing font, changing color and
make text bold, but also operations like: changing the alignment of the text and the margin inside the
cell. All text manipulations inside a cell can be done on single letters, words or the entire text. Text
settings are found in the Format menu. The following text manipulations are available in OMNotebook:

 > Font family
 > Font face (Plain, Bold, Italic, Underline)
 > Font size
 > Font stretch
 > Font color
 > Text horizontal alignment
 > Text vertical alignment
 > Border thickness
 > Margin (outside the border)
 > Padding (inside the border)

4.4.8 Insert Menu

• Insert image – Images are added to a document with the menu item Insert->Image or the key
combination Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the
image can be chosen. The images actual size is the default value of the image. OMNotebook stretches
the image accordantly to the selected size. All images are saved in the same file as the rest of the
document.

• Insert link – A document can contain links to other OMNotebook file or Mathematica notebook and to
add a new link a piece of text must first be selected. The selected text make up the part of the link that
the user can click on. Inserting a link is done from the menu Insert->Link or with the key
combination Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the
user to choose the file that the link refers to. All links are saved in the document with a relative file path
so documents that belong together easily can be moved from one place to another without the links
failing.

80

4.4.9 Window Menu

• Change window – Each opened document has its own document window. To switch between those use
the Window menu. The window menu lists all titles of the open documents, in the same order as they
were opened. To switch to another document, simple click on the title of that document.

4.4.10 Help Menu

• About OMNotebook – Accessing the about message box for OMNotebook is done from the menu Help-
>About OMNotebook.

• About Qt – To access the message box for Qt, use the menu Help->About Qt.
• Help Text – Opening the help text (document OMNotebookHelp.onb) for OMNotebook can be done in

the same way as any OMNotebook document is opened or with the menu Help->Help Text. The
menu item can also be triggered with the key F1.

4.4.11 Additional Features

• Links – By clicking on a link, OMNotebook will open the document that is referred to in the link.
• Update link – All links are stored with relative file path. Therefore OMNotebook has functions that

automatically updating links if a document is resaved in another folder. Every time a document is
saved, OMNotebook checks if the document is saved in the same folder as last time. If the folder has
changed, the links are updated.

• Evaluate several cells – Several inputcells can be evaluated at the same time by selecting them in the
treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are evaluated in
the same order as they have been selected. If a groupcell is selected all inputcells in that groupcell are
evaluated, in the order they are located in the groupcell.

• Command completion – Inputcells have command completion support, which checks if the user is
typing a command (or any keyword defined in the file commands.xml) and finish the command. If the
user types the first two or three letters in a command, the command completion function fills in the rest.
To use command completion, press the key combination Ctrl+Space or Shift+Tab. The first command
that matches the letters written will then appear. Holding down Shift and pressing Tab (alternative
holding down Ctrl and pressing Space) again will display the second command that matches. Repeated
request to use command completion will loop through all commands that match the letters written.
When a command is displayed by the command completion functionality any field inside the command
that should be edited by the user is automatically selected. Some commands can have several of these
fields and by pressing the key combination Ctrl+Tab, the next field will be selected inside the
command.
 > Active Command completion: Ctrl+Space / Shift+Tab
 > Next command: Ctrl+Space / Shift+Tab
 > Next field in command: Ctrl+Tab’

• Generated plot – When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the plot is saved in the document file when the
document is saved.

• Stylesheet –OMNotebook follows the style settings defined in stylesheet.xml and the correct style is
applied to a cell when the cell is created.

81

• Automatic Chapter Numbering – OMNotebook automatically numbers different chapter, subchapter,
section and other styles. The user can specify which styles should have chapter numbers and which
level the style should have. This is done in the stylesheet.xml file. Every style can have a
<chapterLevel> tag that specifies the chapter level. Level 0 or no tag at all, means that the style should
not have any chapter numbering.

• Scrollarea – Scrolling through a document can be done by using the mouse wheel. A document can also
be scrolled by moving the cell cursor up or down.

• Syntax highlighter – The syntax highlighter runs in a separated thread which speeds up the loading of
large document that contains many Modelica code cells. The syntax highlighter only highlights when
letters are added, not when they are removed. The color settings for the different types of keywords are
stored in the file modelicacolors.xml. Besides defining the text color and background color of
keywords, whether or not the keywords should be bold or/and italic can be defined.

• Change indicator – A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some unsaved
change, OMNotebook asks the user if he/she wants to save the document before closing. If the
document never has been saved before, the save-as dialog appears so that a filename can be choosen for
the new document.

• Update menus – All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be disabled.
When a textcell is selected the Format menu is updated so that it indicates the text settings for the text,
in the current cursor position.

4.5 References
Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In

Proceedings of the 33rd ACM Technical Symposium on Computer Science Education
(SIGCSE 2002) (Northern Kentucky – The Southern Side of Cincinnati, USA, February 27 –
March 3, 2002).

Ingemar Axelsson. OpenModelica Notebook for Interactive Structured Modelica Documents. Final thesis,
LITH-IDA-EX–05/080–SE, Linköping University, Linköping, Sweden, October 21, 2005.

Anders Fernström, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook –
Interactive WYSIWYG Book Software for Teaching Programming. In Proc. of the Workshop
on Developing Computer Science Education – How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Sweden, March 10, 2006.

Anders Fernström. Extending OMNotebook – An Interactive Notebook for Structured Modelica
Documents. Final thesis, LITH-IDA-EX--06/057—SE, Dept. Computer and Information
Science, Linköping University, Sweden, September 4, 2006.

Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages,
ISBN 0-471-471631, Wiley-IEEE Press. Feb. 2004.

Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97–111, May 1984.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica – A Web-
Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian
Conference on Simulation and Modeling (SIMS’2003), available at www.scan-sims.org.
Västerås, Sweden. September 18-19, 2003.

82

The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

Stephen Wolfram. The Mathematica Book. Wolfram Media Inc, 1997.

83

Chapter 5

Functional Mock-up Interface - FMI

The new standard for model exchange and co-simulation with Functional Mockup Interface (FMI) allows
export of pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool, and vice
versa. The FMI standard is Modelica independent. Import and export works both between different Modelica
tools, or between certain non-Modelica tools. OpenModelica supports FMI 1.0 & 2.0,

• Model Exchange
• Co-Simulation (under development)

5.1 FMI Import
To import the FMU package use the OpenModelica command importFMU,
function importFMU
 input String filename "the fmu file name";
 input String workdir = "<default>" "The output directory for imported FMU files.
<default> will put the files to current working directory.";
 input Integer loglevel = 3
"loglevel_nothing=0;loglevel_fatal=1;loglevel_error=2;loglevel_warning=3;loglevel_info
=4;loglevel_verbose=5;loglevel_debug=6";
 input Boolean fullPath = false "When true the full output path is returned otherwise
only the file name.";
 input Boolean debugLogging = false "When true the FMU's debug output is printed.";
 input Boolean generateInputConnectors = true "When true creates the input connector
pins.";
 input Boolean generateOutputConnectors = true "When true creates the output
connector pins.";
 output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

The command could be used from command line interface, OMShell, OMNotebook or MDT. The importFMU
command is also integrated with OMEdit. Select FMI > Import FMU the FMU package is extracted in the
directory specified by workdir, since the workdir parameter is optional so if its not specified then the
current directory of omc is used. You can use the cd() command to see the current location.

The implementation supports FMI for Model Exchange 1.0 & 2.0 and FMI for Co-Simulation 1.0 stand-alone.
The support for FMI Co-Simulation is still under development.

84

The FMI Import is currently a prototype. The prototype has been tested in OpenModelica with several
examples. It has also been tested with example FMUs from FMUSDK and Dymola. A more fullfleged version
for FMI Import will be released in the near future.

Figure 5-1: Example of FMU Import in OpenModelica where a bouncing ball model is imported.

5.2 FMI Export
To export the FMU use the OpenModelica command translateModelFMU(ModelName) from command
line interface, OMShell, OMNotebook or MDT. The export FMU command is also integrated with OMEdit.
Select FMI > Export FMU the FMU package is generated in the current directory of omc. You can use the
cd() command to see the current location. You can set which version of FMI to export through OMEdit
settings, see section 2.9.13.

After the command execution is complete you will see that a file ModelName.fmu has been created. As
depicted in Figure 6-2, we first changed the current directory to C:/OpenModelica1.7.0/bin , then we
loaded a Modelica file with BouncingBall example model and finally created an FMU for it using the
translateModelFMU call.

85

Figure 5-2: OMShell screenshot for creating an FMU

A log file for FMU creation is also generated named ModelName_FMU.log. If there are some errors while
creating FMU they will be shown in the command line window and logged in this log file as well.

86

Chapter 6

Optimization with OpenModelica

The following facilities for model-based optimization are provided with OpenModelica:

• Builtin dynamic optimization with OpenModelica and IpOpt using dynamic optimization, Section 6.1
This is the recommended way of performing dynamic optimization with OpenModelica.

• Dynamic optimization with OpenModelica by automatic export of the problem to CasADi, Section 6.2.
Use this if you want to employ the CasADi tool for dynamic optimization.

• Classical parameter sweep based design optimization, Section 6.3. Use this if you have a static
optimization problem.

6.1 Builtin Dynamic Optimization with OpenModelica and IpOpt
Note: this is a very short preliminary decription which soon will be considerably improved.

OpenModelica provides builtin dynamic optimization of models by using the powerful symbolic machinery of
the OpenModelica compiler for more efficient and automatic solution of dynamic optimization problems.

The builtin dynamic optimization allows users to define optimal control problems (OCP) using the
Modelica language for the model and the optimization language extension called Optimica (currently partially
supported) for the optimization part of the problem. This is used to solve the underlying dynamic optimization
model formulation using collocation methods, using a single execution instead of multiple simulations as in the
parameter-sweep optimization described in Section 6.3.

For more detailed information regarding background and methods, see the papers:
• Bernhard Bachmann, Lennart Ochel, Vitalij Ruge, Mahder Gebremedhin, Peter Fritzson, Vaheed

Nezhadali, Lars Eriksson, Martin Sivertsson. Parallel Multiple-Shooting and Collocation Optimization
with OpenModelica. In Proceedings of the 9th International Modelica Conference (Modelica'2012),
Munich, Germany, Sept.3-5, 2012.

• Vitalij Ruge, Willi Braun, Bernhard Bachmann, Andrea Walther and Kshitij Kulshreshtha. Efficient
Implementation of Collocation Methods for Optimization using OpenModelica and ADOL–C. In
Proceedings of the 10th International Modelica Conference (Modelica'2014), Munich, Germany,
March.10-12, 2014.

87

Figure 6-1: OMNotebook screenshot for dynamic optimization.

6.1.1 Compiling the Modelica code

Before starting the optimization the model should be symbolically instantiated by the compiler in order to get a
single flat system of equations. The model variables should also be scalarized. The compiler frontend performs
this, including syntax checking, semantics and type checking, simplification and constant evaluation etc. are
applied. Then the complete flattened model can be used for initialization, simulation and last but not least for
model-based dynamic optimization.

The OpenModelica command optimize(ModelName) from OMShell, OMNotebook or MDT runs
immediately the optimization. The generated result file can be read in and visualized with OMEdit or within
OMNotebook.

88

// name: BatchReactor.mos

setCommandLineOptions("+g=Optimica");
getErrorString();

loadFile("BatchReactor.mo");
getErrorString();

optimize(nmpcBatchReactor, numberOfIntervals=16, stopTime=1, tolerance=1e-8);
getErrorString();

6.1.2 An Example

In this section, a simple optimal control problem will be solved. When formulating the optimization problems,
models are expressed in the Modelica language and optimization specifications. The optimization language
specification allows users to formulate dynamic optimization problems to be solved by a numerical algorithm.
It includes several constructs including a new specialized class optimization, a constraint section,
startTime, finalTime etc. See the optimal control problem for batch reactor model below.

optimization BatchReactor(objective=-x2(finalTime),
 startTime = 0, finalTime =1)
 Real x1(start =1, fixed=true, min=0, max=1);
 Real x2(start =0, fixed=true, min=0, max=1);
 input Real u(min=0, max=5);
equation
 der(x1) = -(u+u^2/2)*x1;
 der(x2) = u*x1;
end BatchReactor;

Create a new file named BatchReactor.mo and save it in you working directory. Notice that this model contains
both the dynamic system to be optimized and the optimization specification.

Once we have formulated the undelying optimal control problems, we can run the optimization by using
OMShell, OMNotebook , MDT, OMEdit or command line terminals similar as described in Figure 6-1.

The control and state trajectories of the optimization results are shown in Figure 6-2.

89

Figure 6-2: Optimization results for Batch Reactor model – state and control variables.

6.1.3 Different Options for the Optimizer IPOPT

Compiler options

numberOfIntervals collocation intervals

startTime, stopTime time horizon

tolerance = 1e-8 e.g. 1e-8 solver tolerance

simflags all run/debug options

Run/debug options

-lv LOG_IPOPT console output

-ipopt_hesse CONST,BFGS,NUM hessian approximation

-ipopt_max_iter number e.g. 10 maximal number of
iteration for ipopt

90

externalInput.csv input guess

Figure 6-3: Compiler options for IpOpt.

6.2 Dynamic Optimization with OpenModelica and CasADi
OpenModelica coupling with CasADi supports dynamic optimization of models by OpenModelica exporting
the optimization problem to CasADi which performs the optimization. In order to convey the dynamic system
model information between Modelica and CasADi, we use an XML-based model exchange format for
differential-algebraic equations (DAE). OpenModelica supports export of models written in Modelica and the
Optimization language extension using this XML format, while CasADi supports import of models represented
in this format. This allows users to define optimal control problems (OCP) using Modelica and Optimization
language specifications, and solve the underlying model formulation using a range of optimization methods,
including direct collocation and direct multiple shooting.

6.2.1 Compiling the Modelica code

Before exporting a model to XML, the model should be symbolically instantiated by the compiler in order to
get a single flat system of equations. The model variables should also be scalarized. The compiler frontend
performs this, including syntax checking, semantics and type checking, simplification and constant evaluation
etc. are applied. Then the complete flattened model is exported to XML code. The exported XML document
can then be imported to CasADi for model-based dynamic optimization.

The OpenModelica command translateModelXML(ModelName) from OMShell, OMNotebook or MDT
exports the XML. The export XML command is also integrated with OMEdit. Select XML > Export XML the
XML document is generated in the current directory of omc. You can use the cd() command to see the current
location. After the command execution is complete you will see that a file ModelName.xml has been exported.
As depicted in Figure 6-4, we first changed the current directory to C:/OpenModelica1.9.2/bin, and then
we loaded a Modelica file with BatchReactor example model and finally exported an XML for it using the
translateModelXML call.

Assuming that the model is defined in the modelName.mo, the model can also be exported to an XML code
using the following steps from the terminal window:

• Go to the path where your model file found(C:/<%path to modelName .mo file%>).

• Go to omc path (<%path to omc%>/omc) and write the flag +s +g=Optimica

+simCodeTarget=XML <%your.mo file name%>.mo>

91

Figure 6-4: OMShell screenshot for exporting an XML.

6.2.2 An example

In this section, a simple optimal control problem will be solved. When formulating the optimization problems,
models are expressed in the Modelica language and optimization specifications. The optimization language
specification allows users to formulate dynamic optimization problems to be solved by a numerical algorithm.
It includes several constructs including a new specialized class optimization, a constraint section,
startTime, finalTime etc. See the optimal control problem for batch reactor model below.

optimization BatchReactor(objective=-x2(finalTime),
 startTime = 0, finalTime =1)
 Real x1(start =1, fixed=true, min=0, max=1);
 Real x2(start =0, fixed=true, min=0, max=1);
 input Real u(min=0, max=5);
equation
 der(x1) = -(u+u^2/2)*x1;
 der(x2) = u*x1;
end BatchReactor;

Create a new file named BatchReactor.mo and save it in you working directory. Notice that this model contains
both the dynamic system to be optimized and the optimization specification.

One we have formulated the undelying optimal control problems, we can export the XML by using
OMShell, OMNotebook , MDT, OMEdit or command line terminals which are described in Section 6.2.4 .

To export XML using terminals as depicted in Figure 6-5, we first changed the current directory to
C:/TestCases, and run command ../Dev/OpenModleica/build/bin omc +s +g=Optimica
+simCodeTarget=XML BatchReactor.mo. This will generate an XML file under C:/TestCases directory
named BatchReactor.xml shown in Section 6.2.3 that contains a symbolic representation of the optimal
control problem and can be inspected in a standard XML editor.

92

Figure 6-5: Terminal screenshot for exporting an XML.

6.2.3 Generated XML for Example
<?xml version="1.0" encoding="UTF-8"?>
<OpenModelicaModelDescription
 xmlns:exp="https://svn.jmodelica.org/trunk/XML/daeExpressions.xsd"
 xmlns:equ="https://svn.jmodelica.org/trunk/XML/daeEquations.xsd"
 xmlns:fun="https://svn.jmodelica.org/trunk/XML/daeFunctions.xsd"
 xmlns:opt="https://svn.jmodelica.org/trunk/XML/daeOptimization.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 fmiVersion="1.0"
 modelName="BatchReactor"
 modelIdentifier="BatchReactor"
 guid="{d06ca497-3a14-4c61-ab0a-ee9f3edfca73}"
 generationDateAndTime="2012-05-18T17:47:35"
 variableNamingConvention="Structured"
 numberOfContinuousStates="2"
 numberOfEventIndicators="0">
 <VendorAnnotations>
 <Tool name="OpenModelica Compiler 1.8.1+ (r11925)">
 </Tool>
 </VendorAnnotations>
 <ModelVariables>
 <ScalarVariable name="finalTime" valueReference="0"
 variability="parameter" causality="internal" alias="noAlias">
 <Real relativeQuantity="false" start="1.0" free="false"
 initialGuess="0.0" />
 <QualifiedName>
 <exp:QualifiedNamePart name="finalTime"/>
 </QualifiedName>

93

 <isLinear>true</isLinear>
 <isLinearTimedVariables>
 <TimePoint index="0" isLinear="true"/>
 </isLinearTimedVariables>
 <VariableCategory>independentParameter</VariableCategory>
 </ScalarVariable>
 <ScalarVariable name="startTime" valueReference="1"
 variability="parameter" causality="internal" alias="noAlias">
 <Real relativeQuantity="false" start="0.0" free="false"
 initialGuess="0.0" />
 <QualifiedName>
 <exp:QualifiedNamePart name="startTime"/>
 </QualifiedName>
 <isLinear>true</isLinear>
 <isLinearTimedVariables>
 <TimePoint index="0" isLinear="true"/>
 </isLinearTimedVariables>
 <VariableCategory>independentParameter</VariableCategory>
 </ScalarVariable>
 <ScalarVariable name="x1" valueReference="2" variability="continuous"
 causality="internal" alias="noAlias">
 <Real relativeQuantity="false" min="0.0" max="1.0" start="1.0"
 fixed="true" />
 <QualifiedName>
 <exp:QualifiedNamePart name="x1"/>
 </QualifiedName>
 <VariableCategory>state</VariableCategory>
 </ScalarVariable>
 <ScalarVariable name="x2" valueReference="3"
 variability="continuous" causality="internal" alias="noAlias">
 <Real relativeQuantity="false" min="0.0" max="1.0" start="0.0"
 fixed="true" />
 <QualifiedName>
 <exp:QualifiedNamePart name="x2"/>
 </QualifiedName>
 <VariableCategory>state</VariableCategory>
 </ScalarVariable>
 <ScalarVariable name="der(x1)" valueReference="4"
 variability="continuous" causality="internal" alias="noAlias">
 <Real relativeQuantity="false" />
 <QualifiedName>
 <exp:QualifiedNamePart name="x1"/>
 </QualifiedName>
 <VariableCategory>derivative</VariableCategory>
 </ScalarVariable>
 <ScalarVariable name="der(x2)" valueReference="5"
 variability="continuous" causality="internal" alias="noAlias">
 <Real relativeQuantity="false" />
 <QualifiedName>
 <exp:QualifiedNamePart name="x2"/>
 </QualifiedName>
 <VariableCategory>derivative</VariableCategory>
 </ScalarVariable>
 <ScalarVariable name="u" valueReference="6"
 variability="continuous" causality="input" alias="noAlias">
 <Real relativeQuantity="false" min="0.0" max="5.0"/>
 <QualifiedName>

94

 <exp:QualifiedNamePart name="u"/>
 </QualifiedName>
 <VariableCategory>algebraic</VariableCategory>
 </ScalarVariable>
</ModelVariables>
<equ:BindingEquations>
 <equ:BindingEquation>
 <equ:Parameter>
 <exp:QualifiedNamePart name="startTime"/>
 </equ:Parameter>
 <equ:BindingExp>
 <exp:IntegerLiteral>0</exp:IntegerLiteral>
 </equ:BindingExp>
 </equ:BindingEquation>
 <equ:BindingEquation>
 <equ:Parameter>
 <exp:QualifiedNamePart name="finalTime"/>
 </equ:Parameter>
 <equ:BindingExp>
 <exp:IntegerLiteral>1</exp:IntegerLiteral>
 </equ:BindingExp>
 </equ:BindingEquation>
</equ:BindingEquations>
<equ:DynamicEquations>
 <equ:Equation>
 <exp:Sub>
 <exp:Der>
 <exp:Identifier>
 <exp:QualifiedNamePart name="x2"/>
 </exp:Identifier>
 </exp:Der>
 <exp:Mul>
 <exp:Identifier>
 <exp:QualifiedNamePart name="u"/>
 </exp:Identifier>
 <exp:Identifier>
 <exp:QualifiedNamePart name="x1"/>
 </exp:Identifier>
 </exp:Mul>
 </exp:Sub>
 </equ:Equation>
 <equ:Equation>
 <exp:Sub>
 <exp:Der>
 <exp:Identifier>
 <exp:QualifiedNamePart name="x1"/>
 </exp:Identifier>
 </exp:Der>
 <exp:Mul>
 <exp:Sub>
 <exp:Div>
 <exp:Neg>
 <exp:Pow>
 <exp:Identifier>
 <exp:QualifiedNamePart name="u"/>
 </exp:Identifier>
 <exp:RealLiteral>2.0</exp:RealLiteral>

95

 </exp:Pow>
 </exp:Neg>
 <exp:RealLiteral>2.0</exp:RealLiteral>
 </exp:Div>
 <exp:Identifier>
 <exp:QualifiedNamePart name="u"/>
 </exp:Identifier>
 </exp:Sub>
 <exp:Identifier>
 <exp:QualifiedNamePart name="x1"/>
 </exp:Identifier>
 </exp:Mul>
 </exp:Sub>
 </equ:Equation>
</equ:DynamicEquations>
<equ:InitialEquations>
 <equ:Equation>
 <exp:Sub>
 <exp:Identifier>
 <exp:QualifiedNamePart name="x1"/>
 </exp:Identifier>
 <exp:RealLiteral>1.0</exp:RealLiteral>
 </exp:Sub>
 </equ:Equation>
 <equ:Equation>
 <exp:Sub>
 <exp:Identifier>
 <exp:QualifiedNamePart name="x2"/>
 </exp:Identifier>
 <exp:RealLiteral>0.0</exp:RealLiteral>
 </exp:Sub>
 </equ:Equation>
</equ:InitialEquations>
<opt:Optimization>
 <opt:ObjectiveFunction>
 <exp:Neg>
 <exp:TimedVariable timePointIndex = "0" >
 <exp:Identifier>
 <exp:QualifiedNamePart name="x2"/>
 </exp:Identifier>
 </exp:TimedVariable>
 </exp:Neg>
 </opt:ObjectiveFunction>
 <opt:IntervalStartTime>
 <opt:Value>0.0</opt:Value>
 <opt:Free>false</opt:Free>
 <opt:InitialGuess>0.0</opt:InitialGuess>
 </opt:IntervalStartTime>
 <opt:IntervalFinalTime>
 <opt:Value>1.0</opt:Value>
 <opt:Free>false</opt:Free>
 <opt:InitialGuess>1.0</opt:InitialGuess>
 </opt:IntervalFinalTime>
 <opt:TimePoints>
 <opt:TimePoint index = "0" value = "1.0">
 <opt:QualifiedName>
 <exp:QualifiedNamePart name="x2"/>

96

 </opt:QualifiedName>
 </opt:TimePoint>
 </opt:TimePoints>
 <opt:Constraints>
 </opt:Constraints>
 </opt:Optimization>
 <fun:FunctionsList>
 </fun:FunctionsList>
</OpenModelicaModelDescription>

6.2.4 XML Import to CasADi via OpenModelica Python Script
The symbolic optimal control problem representation (or just model description) contained in
BatchReactor.xml can be imported into CasADi in the form of the SymbolicOCP class via OpenModelica
python script.

The SymbolicOCP class contains symbolic representation of the optimal control problem designed to be
general and allow manipulation. For a more detailed description of this class and its functionalities, we refer to
the API documentation of CasADi.

The following step compiles the model to an XML format, imports to CasADi and solves an optimization
problem in windows PowerShell:

1. Create a new file named BatchReactor.mo and save it in you working directory.
E.g. C:\OpenModelica1.9.2\share\casadi\testmodel

2. Perform compilation and generate the XML file
a. Go to your working directory

E.g. cd C:\OpenModelica1.9.2\share\casadi\testmodel
b. Go to omc path from working directory and run the following command

E.g. ..\..\..\bin\omc +s +g=Optimica +simCodeTarget=XML BatchReactor.mo
3. Run defaultStart.py python script from OpenModelica optimization directory
 E.g. Python.exe ..\share\casadi\scripts defaultStart.py BatchReactor.xml

The control and state trajectories of the optimization results are shown in Figure 6-6.

97

Figure 6-6: Optimization results for Batch Reactor model – state and control variables.

6.3 Parameter Sweep Optimization using OMOptim
OMOptim is a tool for parameter sweep design optimization of Modelica models. By optimization, one should
understand a procedure which minimizes/maximizes one or more objective functions by adjusting one or more
parameters. This is done by the optimization algorithm performing a parameter swep, i.e., systematically
adjusting values of selected parameters and running a number of simulations for different parameter
combinations to find a parameter setting that gives an optimal value of the goal function.

OMOptim 0.9 contains meta-heuristic optimization algorithms which allow optimizing all sorts of models
with following functionalities:

• One or several objectives optimized simultaneously
• One or several parameters (integer or real variables)

However, the user must be aware of the large number of simulations an optimization might require.

6.3.1 Preparing the Model

Before launching OMOptim, one must prepare the model in order to optimize it.

6.3.1.1 Parameters

An optimization parameter is picked up from all model variables. The choice of parameters can be done using
the OMOptim interface.

For all intended parameters, please note that:

• The corresponding variable is constant during all simulations. The OMOptim optimization in version
0.9 only concerns static parameters’ optimization i.e. values found for these parameters will be constant
during all simulation time.

98

• The corresponding variable should play an input

6.3.1.2 Constraints

 role in the model i.e. its modification influences model
simulation results.

If some constraints should be respected during optimization, they must be defined in the Modelica model itself.
For instance, if mechanical stress must be less than 5 N.m-2, one should write in the model:

assert(mechanicalStress < 5, “Mechanical stress too high”);

If during simulation, the variable mechanicalStress exceeds 5 N.m-2, the simulation will stop and be considered
as a failure.

6.3.1.3 Objectives

As parameters, objectives are picked up from model variables. Objectives’ values are considered by the
optimizer at the final time

6.3.2 Set problem in OMOptim

.

6.3.2.1 Launch OMOptim

OMOptim can be launched using the executable placed in OpenModelicaInstallationDirectory/bin/
OMOptim/OMOptim.exe. Alternately, choose OpenModelica > OMOptim from the start menu.

6.3.2.2 Create a new project

To create a new project, click on menu File -> New project
Then set a name to the project and save it in a dedicated folder. The created file created has a .min

extension. It will contain information regarding model, problems, and results loaded.

6.3.2.3 Load models

First, you need to load the model(s) you want to optimize. To do so, click on Add .mo button on main window
or select menu Model -> Load Mo file…

When selecting a model, the file will be loaded in OpenModelica which runs in the background.
While OpenModelica is loading the model, you could have a frozen interface. This is due to multi-threading

limitation but the delay should be short (few seconds).
You can load as many models as you want.
If an error occurs (indicated in log window), this might be because:

• Dependencies have not been loaded before (e.g. modelica library)
• Model use syntax incompatible with OpenModelica.

Dependencies

OMOptim should detect dependencies and load corresponding files. However, it some errors occur, please load
by yourself dependencies. You can also load Modelica library using Model->Load Modelica library.

When the model correctly loaded, you should see a window similar to Figure 6-7.

99

Figure 6-7. OMOptim window after having loaded model.

6.3.2.4 Create a new optimization problem

Problem->Add Problem->Optimization
A dialog should appear. Select the model you want to optimize. Only Model can be selected (no Package,

Component, Block…).
A new form will be displayed. This form has two tabs. One is called Variables, the other is called

Optimization.

100

 Figure 6-8. Forms for defining a new optimization problem.

List of Variables is Empty

If variables are not displayed, right click on model name in model hierarchy, and select Read variables.

Figure 6-9. Selecting read variables, set parameters, and selecting simulator.

6.3.2.5 Select Optimized Variables

To set optimization, we first have to define the variables the optimizer will consider as free i.e. those that it
should find best values of. To do this, select in the left list, the variables concerned. Then, add them to
Optimized variables by clicking on corresponding button ().

For each variable, you must set minimum and maximum values it can take. This can be done in the
Optimized variables table.

101

6.3.2.6 Select objectives

Objectives correspond to the final values of chosen variables. To select these last, select in left list variables
concerned and click button of Optimization objectives table.

For each objective, you must:

• Set minimum and maximum values it can take. If a configuration does not respect these values, this
configuration won’t be considered. You also can set minimum and maximum equals to “-“ : it will then

• Define whether objective should be minimized or maximized.

This can be done in the Optimized variables table.

6.3.2.7 Select and configure algorithm

After having selected variables and objectives, you should now select and configure optimization algorithm. To
do this, click on Optimization tab.

Here, you can select optimization algorithm you want to use. In version 0.9, OMOptim offers three different
genetic algorithms. Let’s for example choose SPEA2Adapt which is an auto-adaptative genetic algorithm.

By clicking on parameters… button, a dialog is opened allowing defining parameters. These are:

• Population size

•

: this is the number of configurations kept after a generation. If it is set to 50, your final
result can’t contain more than 50 different points.
Off spring rate

•

: this is the number of children per adult obtained after combination process. If it is set to
3, each generation will contain 150 individual (considering population size is 50).
Max generations

•

: this number defines the number of generations after which optimization should stop.
In our case, each generation corresponds to 150 simulations. Note that you can still stop optimization
while it is running by clicking on stop button (which will appear once optimization is launched).
Therefore, you can set a really high number and still stop optimization when you want without losing
results obtained until there.
Save frequency

•

: during optimization, best configurations can be regularly saved. It allows to analyze
evolution of best configurations but also to restart an optimization from previously obtained results. A
Save Frequency parameter set to 3 means that after three generations, a file is automatically created
containing best configurations. These files are named iteraion1.sav, iteration2.sav and are store in Temp
directory, and moved to SolvedProblems directory when optimization is finished.
ReinitStdDev

Use start file

: this is a specific parameter of EAAdapt1. It defines whether standard deviation of
variables should be reinitialized. It is used only if you start optimization from previously obtained
configurations (using Use start file option). Setting it to yes (1) will, in most of cases, lead to a spread
research of optimized configurations, forgetting parameters’ variations’ reduction obtained in previous
optimization.

As indicated before, it is possible to pursue an optimization finished or stopped. To do this, you must enable
Use start file option and select file from which optimization should be started. This file is an iteration_.sav file
created in previous optimization. It is stored in corresponding SolvedProblems folder (iteration10.sav
corresponds to the tenth generation of previous optimization).

Note that this functionality can only work with same variables and objectives. However, minimum,
maximum of variables and objectives can be changed before pursuing an optimization.

102

6.3.2.8 Launch

You can now launch Optimization by clicking Launch button.

6.3.2.9 Stopping Optimization

Optimization will be stopped when the generation counter will reach the generation number defined in
parameters. However, you can still stop the optimization while it is running without loosing obtained results.
To do this, click on Stop button. Note that this will not immediately stop optimization: it will first finish the
current generation.

This stop function is especially useful when optimum points do not vary any more between generations.
This can be easily observed since at each generation, the optimum objectives values and corresponding
parameters are displayed in log window.

6.3.3 Results

The result tab appear when the optimization is finished. It consists of two parts: a table where variables are
displayed and a plot region.

6.3.3.1 Obtaining all Variable Values

During optimization, the values of optimized variables and objectives are memorized. The others are not. To
get these last, you must recomputed corresponding points. To achieve this, select one or several points in
point’s list region and click on recompute.

For each point, it will simulate model setting input parameters to point corresponding values. All values of
this point (including those which are not optimization parameters neither objectives).

103

6.3.4 Window Regions in OMOptim GUI

Figure 6-10. Window regions in OMOptim GUI.

105

Chapter 7

MDT – The OpenModelica Development Tooling
Eclipse Plugin

7.1 Introduction
The Modelica Development Tooling (MDT) Eclipse Plugin as part of OMDev – The OpenModelica
Development Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with Modelica and MetaModelica
development projects. This plugin is primarily intended for tool developers rather than application
Modelica modelers.

The following features are available:

• Browsing support for Modelica projects, packages, and classes
• Wizards for creating Modelica projects, packages, and classes
• Syntax color highlighting
• Syntax checking
• Browsing of the Modelica Standard Library or other libraries
• Code completion for class names and function argument lists
• Goto definition for classes, types, and functions
• Displaying type information when hovering the mouse over an identifier.

7.2 Installation
The installation of MDT is accomplished by following the below installation instructions. These
instructions assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

1. Start Eclipse
2. Select Help->Software Updates->Find and Install... from the menu
3. Select ‘Search for new features to install’ and click ‘Next’
4. Select ‘New Remote Site...’
5. Enter ‘MDT’ as name and

‘http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT’ as URL and click ‘OK’
6. Make sure ‘MDT’ is selected and click ‘Finish’
7. In the updates dialog select the ‘MDT’ feature and click ‘Next’
8. Read through the license agreement, select ‘I accept...’ and click ‘Next’
9. Click ‘Finish’ to install MDT

http://www.ida.liu.se/labs/pelab/OpenModelica/MDT�

106

7.3 Getting Started

7.3.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the environment variable
OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder
where the Open Modelica Compiler is installed. In other words, OPENMODELICAHOME must point to
the folder that contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’s called
omc.exe and on Unix platforms it’s called omc.

7.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the Window menu item, pick Open Perspective followed by
Other... Select the Modelica option from the dialog presented and click OK..

7.3.3 Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to choose a workspace folder for this
session, see Figure 5-7-1

Figure 5-7-1. Eclipse Setup – Switching Workspace.

7.3.4 Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is accessible through File->New->
Modelica Project or by right-clicking in the Modelica Projects view and selecting New->Modelica
Project.

Figure 5-7-2. Eclipse Setup – creating a Modelica project in the workspace.

You need to disable automatic build for the project(s) (Figure 5-7-3).

Figure 5-7-3. Eclipse Setup – disable automatic build for the projects.

Repeat the procedure for all the projects you need, e.g. for the exercises described in the MetaModelica
users guide: 01_experiment, 02a_exp1, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

7.3.5 Building and Running a Project

After having created a project, you eventually need to build the project (Figure 7-4).

107

Figure 7-4. Eclipse MDT – Building a project.

There are several options: building, building from scratch (clean), running, see Figure 7-5.

??missing figure

Figure 7-5. Eclipse – building and running a project.

You may also open additional views, e.g as in Figure 7-6.

??missing figure

Figure 7-6. Eclipse – Opening views.

7.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working
with an OpenModelica Java client as in Figure 7-7.

108

Figure 7-7. Eclipse – Switching to another perspective – e.g. the Java Perspective.

7.3.7 Creating a Package

To create a new package inside a Modelica project, select File->New->Modelica Package. Enter the
desired name of the package and a description of what it contains. Note: for the exercises we already have
existing packages.

Figure 7-8. Creating a new Modelica package.

7.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and
select File->New->Modelica Class. When creating a Modelica class you can add different restrictions
on what the class can contain. These can for example be model, connector, block, record, or
function. When you have selected your desired class type, you can select modifiers that add code blocks
to the generated code. ‘Include initial code block’ will for example add the line ‘initial
equation’ to the class.

109

Figure 7-9. Creating a new Modelica class.

7.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (.mo) files
are checked for syntactical errors. Any errors that are found are added to the Problems view and also
marked in the source code editor. Errors are marked in the editor as a red circle with a white cross, a
squiggly red line under the problematic construct, and as a red marker in the right-hand side of the editor. If
you want to reach the problem, you can either click the item in the Problems view or select the red box in
the right-hand side of the editor.

Figure 7-10. Syntax checking.

110

7.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next line is
indented correctly. You can also correct indentation of the current line or a range selection using CTRL+I
or “Correct Indentation” action on the toolbar or in the Edit menu.

7.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after
a class (package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation
from comments is shown if is available. This makes the selection easyer.

Figure 7-11. Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal
parameter names and types) in a popup when typing the parenthesis after the function name, here the
signature Real sin(SI.Angle u) of the sin function:

Figure 7-12. Code completion at a function call when typing left parenthesis.

111

7.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is
displayed. If the text is too long, the user can press F2 to focus the popup dialog and scroll up and down to
examine all the text. As one can see the information in the popup dialog is syntax-highlighted.

Figure 7-13. Displaying information for identifiers on hovering

7.3.13 Go to Definition Support

Besides hovering information the user can press CTRL+click to go to the definition of the identifier.
When pressing CTRL the identifier will be presented as a link and when pressing mouse click the editor will
go to the definition of the identifier.

7.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especially in
MetaModelica when writing cases in match constructs.

112

Figure 7-14. Code assistance when writing cases with records in MetaModelica.

7.3.15 Using the MDT Console for Plotting

Figure 7-15. Activate the MDT Console

113

Figure 7-16. Simulation from MDT Console

114

Chapter 8

Modelica Performance Analyzer

A common problem when simulating models in an equation-based language like Modelica is that the model
may contain non-linear equation systems. These are solved in each time-step by extrapolating an initial
guess and running a non-linear system solver. If the simulation takes too long to simulate, it is useful to run
the performance analysis tool. The tool has around 5~25% overhead, which is very low compared to
instruction-level profilers (30x-100x overhead). Due to being based on a single simulation run, the report
may contain spikes in the charts.

When running a simulation for performance analysis, execution times of user-defined functions as well
as linear, non-linear and mixed equation systems are recorded.

To start a simulation in this mode, just use the measureTime flag of the simulate command.
simulate(modelname, measureTime = true)

The generated report is in HTML format (with images in the SVG format), stored in a file
modelname_prof.html, but the XML database and measured times that generated the report and graphs
are also available if you want to customize the report for comparison with other tools.

Below we use the performance profiler on the simple model A:
model A
 function f
 input Real r;
 output Real o := sin(r);
 end f;
 String s = "abc";
 Real x = f(x) "This is x";
 Real y(start=1);
 Real z1 = cos(z2);
 Real z2 = sin(z1);
equation
 der(y) = time;
end A;

We simulate as usual, but set measureTime=true to activate the profiling:
simulate(A, measureTime = true)

115

// // record SimulationResult
// resultFile = "A_res.mat",
// messages = "Time measurements are stored in A_prof.html (human-readable)

and A_prof.xml (for XSL transforms or more details)"
// end SimulationResult;

8.1 Example Report Generated for the A Model

8.1.1 Information

All times are measured using a real-time wall clock. This means context switching produces bad worst-case
execution times (max times) for blocks. If you want better results, use a CPU-time clock or run the
command using real-time priviliges (avoiding context switches).

Note that for blocks where the individual execution time is close to the accuracy of the real-time clock,
the maximum measured time may deviate a lot from the average.

For more details, see the generated file A_prof.xml, shown in Section 8.1.7 below.

8.1.2 Settings

The settings for the simulation are summarized in the table below:

Name Value
Integration method euler
Output format mat
Output name A_res.mat
Output size 24.0 kB
Profiling data A_prof.data
Profiling size 27.3 kB

8.1.3 Summary

Execution times for different activities:

Task Time Fraction
Pre-Initialization 0.000401 19.17%
Initialization 0.000046 2.20%
Event-handling 0.000036 1.72%
Creating output file 0.000264 12.62%
Linearization 0.000000 0.00%
Time steps 0.001067 51.00%
Overhead 0.000273 13.05%
Unknown 0.000406 0.24%
Total simulation time 0.002092 100.00%

http://www.ida.liu.se/~marsj/A_prof4/A_prof.xml�
http://www.ida.liu.se/~marsj/A_prof4/A_res.mat�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.data�

116

8.1.4 Global Steps

 Steps Total Time Fraction Average Time Max Time Deviation

 499 0.001067 51.00% 2.13827655310621e-06 0.000006611 2.09x

8.1.5 Measured Function Calls

 Name Calls Time Fraction Max Time Deviation

 A.f 1506 0.000092990 4.45% 0.000000448 6.26x

8.1.6 Measured Blocks

 Name Calls Time Fraction Max Time Deviation

 residualFunc3 2018 0.000521137 24.91% 0.000035456 136.30x

 residualFunc1 1506 0.000393709 18.82% 0.000002735 9.46x

8.1.6.1 Equations

Name Variables

SES_ALGORITHM 0

SES_SIMPLE_ASSIGN 1 der(y)

residualFunc3 z2, z1

residualFunc1 x

8.1.6.2 Variables

Name Comment

y

der(y)

x This is x

z1

z2

http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=2�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1009�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1010�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1001�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1004�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1003�
http://www.ida.liu.se/~marsj/A_prof4/A_prof.html#1002�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=8�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=8�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=7�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=9�
http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=10�

117

s

8.1.7 Genenerated XML for the Example

<!DOCTYPE doc (View Source for full doctype...)>
- <simulation>
- <modelinfo>
 <name>A</name>
 <prefix>A</prefix>
 <date>2011-03-07 12:55:53</date>
 <method>euler</method>
 <outputFormat>mat</outputFormat>
 <outputFilename>A_res.mat</outputFilename>
 <outputFilesize>24617</outputFilesize>
 <overheadTime>0.000273</overheadTime>
 <preinitTime>0.000401</preinitTime>
 <initTime>0.000046</initTime>
 <eventTime>0.000036</eventTime>
 <outputTime>0.000264</outputTime>
 <linearizeTime>0.000000</linearizeTime>
 <totalTime>0.002092</totalTime>
 <totalStepsTime>0.001067</totalStepsTime>
 <numStep>499</numStep>
 <maxTime>0.000006611</maxTime>
 </modelinfo>
- <profilingdataheader>
 <filename>A_prof.data</filename>
 <filesize>28000</filesize>
- <format>
 <uint32>step</uint32>
 <double>time</double>
 <double>cpu time</double>
 <uint32>A.f (calls)</uint32>
 <uint32>residualFunc3 (calls)</uint32>
 <uint32>residualFunc1 (calls)</uint32>
 <double>A.f (cpu time)</double>
 <double>residualFunc3 (cpu time)</double>
 <double>residualFunc1 (cpu time)</double>
 </format>
 </profilingdataheader>
- <variables>
- <variable id="1000" name="y" comment="">
 <info filename="a.mo" startline="8" startcol="3" endline="8" endcol="18"
readonly="writable" />
 </variable>
- <variable id="1001" name="der(y)" comment="">
 <info filename="a.mo" startline="8" startcol="3" endline="8" endcol="18"
readonly="writable" />
 </variable>
- <variable id="1002" name="x" comment="This is x">
 <info filename="a.mo" startline="7" startcol="3" endline="7" endcol="28"
readonly="writable" />
 </variable>
- <variable id="1003" name="z1" comment="">
 <info filename="a.mo" startline="9" startcol="3" endline="9" endcol="20"
readonly="writable" />
 </variable>
- <variable id="1004" name="z2" comment="">
 <info filename="a.mo" startline="10" startcol="3" endline="10" endcol="20"
readonly="writable" />
 </variable>

http://www.ida.liu.se/~marsj/A_prof4/a.mo#line=6�

118

- <variable id="1005" name="s" comment="">
 <info filename="a.mo" startline="6" startcol="3" endline="6" endcol="19"
readonly="writable" />
 </variable>
 </variables>
- <functions>
- <function id="1006">
 <name>A.f</name>
 <ncall>1506</ncall>
 <time>0.000092990</time>
 <maxTime>0.000000448</maxTime>
 <info filename="a.mo" startline="2" startcol="3" endline="5" endcol="8"
readonly="writable" />
 </function>
 </functions>
- <equations>
- <equation id="1007" name="SES_ALGORITHM 0">
 <refs />
 </equation>
- <equation id="1008" name="SES_SIMPLE_ASSIGN 1">
- <refs>
 <ref refid="1001" />
 </refs>
 </equation>
- <equation id="1009" name="residualFunc3">
- <refs>
 <ref refid="1004" />
 <ref refid="1003" />
 </refs>
 </equation>
- <equation id="1010" name="residualFunc1">
- <refs>
 <ref refid="1002" />
 </refs>
 </equation>
 </equations>
- <profileblocks>
- <profileblock>
 <ref refid="1009" />
 <ncall>2018</ncall>
 <time>0.000521137</time>
 <maxTime>0.000035456</maxTime>
 </profileblock>
- <profileblock>
 <ref refid="1010" />
 <ncall>1506</ncall>
 <time>0.000393709</time>
 <maxTime>0.000002735</maxTime>
 </profileblock>
 </profileblocks>
 </simulation>

119

Chapter 9

MDT Debugger for Algorithmic Modelica

The algorithmic code debugger, used for the algorithmic subset of the Modelica language as well as the
MetaModelica language is described in Section 9.1. Using this debugger replaces debugging of algorithmic
code by primitive means such as print statements or asserts which is complex, time-consuming and error-
prone. The usual debugging functionality found in debuggers for procedural or traditional object-oriented
languages is supported, such as setting and removing breakpoints, stepping, inspecting variables, etc. The
debugger is integrated with Eclipse.

9.1 The Eclipse-based Debugger for Algorithmic Modelica
The debugging framework for the algorithmic subset of Modelica and MetaModelica is based on the
Eclipse environment and is implemented as a set of plugins which are available from Modelica
Development Tooling (MDT) environment. Some of the debugger functionality is presented below. In the
right part a variable value is explored. In the top-left part the stack trace is presented. In the middle-left part
the execution point is presented.

The debugger provides the following general functionalities:

• Adding/Removing breakpoints.
• Step Over – moves to the next line, skipping the function calls.
• Step In – takes the user into the function call.
• Step Return – complete the execution of the function and takes the user back to the point from

where the function is called.
• Suspend – interrupts the running program.

120

Figure 9-1. Debugging functionality.

9.1.1 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:

• create a mos file
• setting the debug configuration
• setting breakpoints
• running the debug configuration

All these steps are presented below using images.

9.1.1.1 Create mos file

In order to debug Modelica code we need to load the Modelica files into the OpenModelica Compiler. For
this we can write a small script file like this,

setCommandLineOptions({"+d=rml,noevalfunc","+g=MetaModelica"});
setEnvironmentVar("MODELICAUSERCFLAGS","-g");
loadFile("HelloWorld.mo");
getErrorString();
HelloWorld(120.0);
getErrorString();

So lets say that we want to debug HelloWorld.mo. For that we must load it into the compiler using the
script file. Put all the Modelica files there in the script file to be loaded. We should also initiate the
debugger by calling the starting function, in the above code HelloWorld(120.0);

121

9.1.1.2 Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select
Debug in order to access the dialog for building debug configurations.

Figure 9-2. Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification Modelica Development Tooling
(MDT) GDB and select New as in figure below. Then give a name to the configuration, select the debugging
executable to be executed and give it command line parameters. There are several tabs in which the user
can select additional debug configuration settings like the environment in which the executable should be
run.

Note that we require Gnu Debugger (GDB) for debugging session. We must specify the GDB location,
also we must pass our script file as an argument to OMC.

122

Figure 9-3. Creating the Debug Configuration.

9.1.1.3 Setting/Deleting Breakpoints

The Eclipse interface allows to add/remove breakpoints. At the moment only line number based
breakpoints are supported. Other alternative to set the breakpoints is; function breakpoints.

123

Figure 9-4. Setting/deleting breakpoints.

9.1.1.4 Starting the debugging session and enabling the debug perspective

Figure 9-5. Starting the debugging session.

124

Figure 9-6. Eclipse will ask if the user wants to switch to the debugging perspective.

9.1.2 Debugging OpenModelica

• Compile and create OpenModelica executable as usual.
• Go to /trunk/Compiler/boot
• Now run make –f Makefile.omdev.mingw (choose the right make file depending on your

platform), this will create a bootstrapped omc and will replace the omc executable in
/trunk/build/bin.

• Now in the debug configuration as explained in Section 9.1.1.2 choose omc executable as the
program.

9.1.3 The Debugging Perspective

The debug view primarily consists of two main views:

• Stack Frames View
• Variables View

The stack frame view, shown in the figure below, shows a list of frames that indicates how the flow had
moved from one function to another or from one file to another. This allows backtracing of the code. It is
very much possible to select the previous frame in the stack and inspect the values of the variables in that
frame. However, it is not possible to select any of the previous frame and start debugging from there. Each
frame is shown as <function_name at file_name:line_number>.

The Variables view shows the list of variables at a certain point in the program, containing four colums:

• Name – the variable name.
• Declared Type – the Modelica type of the variable.
• Value – the variable value.

125

• Actual Type – the mapped C type.

By preserving the stack frames and variables it is possible to keep track of the variables values. If the value
of any variable is changed while stepping then that variable will be highlighted yellow (the standard
Eclipse way of showing the change).

Figure 9-7. The debugging perspective.

Figure 9-8. Switching between perspectives.

126

Chapter 10

Modelica3D

Modelica3D is a lightweight, platform independent 3D-visualisation library for Modelica. Read more about
the Modelica3D library here https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public.

10.1 Windows
In order to run Modelica3D on windows you need following softwares;

• Python – Install python from http://www.python.org/download/. Python2.7.3 is recommended.
• PyGTK – Install GTK+ for python from

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/. Download the all-in-one package.
Recommmended is pygtk-all-in-one-2.24.2.win32-py2.7.msi.

Run the Modelica3D server by executing the dbus-server.py script located at
OPENMODELICAHOME/lib/omlibrary-modelica3d/osg-gtk.
python dbus-server.py

This will start the Modelica3D server and on success you should see the output,
Running dbus-server...

Now run the simulation. The following commands will load the Modelica3D library and simulates the
DoublePendulum example,
loadModelica3D(); getErrorString();
loadString("model DoublePendulum
 extends Modelica.Mechanics.MultiBody.Examples.Elementary.DoublePendulum;
 inner ModelicaServices.Modelica3D.Controller m3d_control;
end DoublePendulum;"); getErrorString();
simulate(DoublePendulum); getErrorString();

If everything goes fine a visualization window will pop-up. To visualize any models from the MultiBody
library you can use this script and change the extends to point to the model you want. Note that you will
need to add visualisers to your model similarly to what Modelica.MultiBody library has. See some
documentation of the visualizers available here:
https://build.openmodelica.org/Documentation/Modelica.Mechanics.MultiBody.Visualizers.html

loadModelica3D(); getErrorString();
loadString("
model Visualize_MyModel
 inner ModelicaServices.Modelica3D.Controller m3d_control;
 extends MyModel;
end Visualize_MyModel;
");
simulate(Visualize_MyModel); getErrorString();

https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public�
http://www.python.org/download/�
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/�
https://build.openmodelica.org/Documentation/Modelica.Mechanics.MultiBody.Visualizers.html�

127

10.2 MacOS
On MacOS you can use the 3d visualization like this. Note that on your system the paths used here might
vary. In one terminal type:
start the dbus server (you only need to do this once)
> sudo launchctl load -w
/opt/openmodelica/Library/LaunchDaemons/org.freedesktop.dbus-system.plist
> launchctl load -w /opt/openmodelica/Library/LaunchAgents/org.freedesktop.dbus-
session.plist
export python path
> export
PYTHONPATH=/opt/openmodelica/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/site-packages:$PYTHONPATH
run the dbus-server.py
go to your openmodelica installation /lib/omlibrary-modelica3d/osg-gtk
> python dbus-server.py

In another terminal type:
> cat > modelica3d.mos
loadModelica3D();getErrorString();
loadString("model DoublePendulum
extends Modelica.Mechanics.MultiBody.Examples.Elementary.DoublePendulum;
inner ModelicaServices.Modelica3D.Controller m3d_control;
end DoublePendulum;");getErrorString();
instantiateModel(DoublePendulum); getErrorString();
simulate(DoublePendulum); getErrorString();
CTRL+D
> omc modelica3d.mos

129

Chapter 11

Simulation in Web Browser

OpenModelica can simulate in a web browser on a client computer by model code being compiled to
efficient Javacript code.

For more information, see https://github.com/tshort/openmodelica-javascript

Below used on the MSL MultiBody RobotR3.fullRobot example model.

https://github.com/tshort/openmodelica-javascript�

130

131

Chapter 12

Interoperability – C and Python

Below is information and examples about the OpenModelica external C interfaces, as well as examples of
Python interoperability.

12.1 Calling External C functions
The following is a small example (ExternalLibraries.mo) to show the use of external C functions:

model ExternalLibraries
 Real x(start=1.0),y(start=2.0);
equation
 der(x)=-ExternalFunc1(x);
 der(y)=-ExternalFunc2(y);
end ExternalLibraries;

function ExternalFunc1
 input Real x;
 output Real y;
external
 y=ExternalFunc1_ext(x) annotation(Library="libExternalFunc1_ext.o",
 Include="#include \"ExternalFunc1_ext.h\"");
end ExternalFunc1;

function ExternalFunc2
 input Real x;
 output Real y;
 external "C" annotation(Library="libExternalFunc2.a",
 Include="#include \"ExternalFunc2.h\"");
end ExternalFunc2;

These C (.c) files and header files (.h) are needed:
/* file: ExternalFunc1.c */
double ExternalFunc1_ext(double x)
{
 double res;
 res = x+2.0*x*x;
 return res;
}

/* Header file ExternalFunc1_ext.h for ExternalFunc1 function */
double ExternalFunc1_ext(double);

/* file: ExternalFunc2.c */
double ExternalFunc2(double x)
{

132

 double res;
 res = (x-1.0)*(x+2.0);
 return res;
}

/* Header file ExternalFunc2.h for ExternalFunc2 */
double ExternalFunc2(double);

The following script file ExternalLibraries.mos will perform everything that is needed, provided you
have gcc installed in your path:
loadFile("ExternalLibraries.mo");
system("gcc -c -o libExternalFunc1_ext.o ExternalFunc1.c");
system("gcc -c -o libExternalFunc2.a ExternalFunc2.c");
simulate(ExternalLibraries);

We run the script:
>> runScript("ExternalLibraries.mos");

and plot the results:
>> plot({x,y});

12.2 Calling Python Code
This section describes a simple-minded approach to calling Python code from OpenModelica. For a
description of Python scripting with OpenModelica, see Chapter 13.

The interaction with Python can be perfomed in four different ways whereas one is illustrated below.
Assume that we have the following Modelica code (CalledbyPython.mo):
model CalledbyPython
 Real x(start=1.0),y(start=2.0);
 parameter Real b = 2.0;
equation
 der(x) = -b*y;
 der(y) = x;
end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting
interface.
file: PythonCaller.py
#!/usr/bin/python
import sys,os

133

global newb = 0.5
os.chdir(r'C:\Users\Documents\python')
execfile('CreateMosFile.py')
os.popen(r"C:\OpenModelica1.4.5\bin\omc.exe CalledbyPython.mos").read()
execfile('RetrResult.py')

file: CreateMosFile.py
#!/usr/bin/python
mos_file = open('CalledbyPython.mos',’w’,1)
mos_file.write("loadFile(\"CalledbyPython.mo\");\n")
mos_file.write("setComponentModifierValue(CalledbyPython,b,$Code(="+str(newb)+")

);\n")
mos_file.write("simulate(CalledbyPython,stopTime=10);\n")
mos_file.close()

file: RetrResult.py
#!/usr/bin/python
def zeros(n): #
 vec = [0.0]
 for i in range(int(n)-1): vec = vec + [0.0]
 return vec
res_file = open("CalledbyPython_res.plt",'r',1)
line = res_file.readline()
size = int(res_file.readline().split('=')[1])
time = zeros(size)
y = zeros(size)
while line != ['DataSet: time\n']: line = res_file.readline().split(',')[0:1]
for j in range(int(size)): time[j]=float(res_file.readline().split(',')[0])
while line != ['DataSet: y\n']: line=res_file.readline().split(',')[0:1]
for j in range(int(size)): y[j]=float(res_file.readline().split(',')[1])
res_file.close()

A second option of simulating the above Modelica model is to use the command buildModel instead of
the simulate command and setting the parameter value in the initial parameter file,
CalledbyPython_init.txt instead of using the command setComponentModifierValue. Then
the file CalledbyPython.exe is just executed.

The third option is to use the Corba interface for invoking the compiler and then just use the scripting
interface to send commands to the compiler via this interface.

The fourth variant is to use external function calls to directly communicate with the executing
simulation process.

134

Chapter 13

OpenModelica Python Interface and PySimulator

This chapter describes the OpenModelica Python integration facilities.

• OMPython – the OpenModelica Python scripting interface, see Section 13.1.
• PySimulator – a Python package that provides simulation and post processing/analysis tools

integrated with OpenModelica, see Section 13.2.

13.1 OMPython – OpenModelica Python Interface
OMPython – OpenModelica Python API is a free, open source, highly portable Python based interactive
session handler for Modelica scripting. It provides the modeler with components for creating a complete
Modelica modeling, compilation and simulation environment based on the latest OpenModelica library
standard available. OMPython is architectured to combine both the solving strategy and model building. So
domain experts (people writing the models) and computational engineers (people writing the solver code)
can work on one unified tool that is industrially viable for optimization of Modelica models, while offering
a flexible platform for algorithm development and research. OMPython v2.0 is not a standalone package, it
depends upon the OpenModelica installation.

OMPython v2.0 is implemented in Python using the OmniORB and OmniORBpy – high performance
CORBA ORBs for Python and it supports the Modelica Standard Library version 3.2 that is included in the
latest OpenModelica (version 1.9.2) installation.

13.1.1 Features of OMPython

OMPython provides user friendly features like,

• Interactive session handling, parsing, interpretation of commands and Modelica expressions for
evaluation, simulation, plotting, etc.

• Interface to the latest OpenModelica API calls.
• Optimized parser results that give control over every element of the output.
• Helper functions to allow manipulation on Nested dictionaries.
• Easy access to the library and testing of OpenModelica commands.

13.1.2 Using OMPython

The third party library of OMPython can be created by changing directory to,
OpenModelicaInstallationDirectory/share/omc/scripts/PythonInterface/

And running the command,

135

python setup.py install

This will install the OMPython library into your Python’s third party libraries directory. Now OMCSession
can be imported from OMPython and used within Python.

13.1.2.1 Test Commands

To test the command outputs, simply create an OMCSession object by importing from the OMPython
library within Python interepreter. The module allows you to interactively send commands to the OMC
server and display their output.

To get started, create an OMCSession object:
C:\>python
>>> from OMPython import OMCSession
>>> OMPython = OMCSession()

Get the currently running OMC version
>>> OMPython.execute("getVersion()")
 '"1.9.2+dev (r24159)"\n'

Get the current directory.
>>> OMPython.execute("cd()")
 '"C:/Users/alash325"\n'

Load Modelica library:
>>> OMPython.execute("loadModel(Modelica)")

True

Load a modelica model:
>>> OMPython.execute("loadFile(\"C:/Dev/OpenModelica/Examples/BouncingBall.mo\")")
True

We give the command to flatten a model:
>>> OMPython.execute("instantiateModel(BouncingBall)”)

 '"class BouncingBall\n parameter Real e = 0.7 "coefficient of restitution";\n

 parameter Real g = 9.81 "gravity acceleration";\n Real h(start = 1.0) "height

 of ball";\n Real v "velocity of ball";\n Boolean flying(start = true) "true,

 if ball is flying";\n Boolean impact;\n Real v_new;\n Integer

 foo;\nequation\n impact = h <= 0.0;\n foo = if impact then 1 else 2;\n

 der(v) = if flying then -g else 0.0;\n der(h) = v;\n when {h <= 0.0 and v <=

 0.0, impact} then\n v_new = if edge(impact) then (-e) * pre(v) else 0.0;\n

 flying = v_new > 0.0;\n reinit(v, v_new);\n end when;\nend

 BouncingBall;\n"\n'

We get the name and other properties of a class:
>>> OMPython.execute(“getClassNames()”)
 {'SET1': {}, 'SET2': {'Set1': ['BouncingBall']}}

>>> OMPython.execute(“isPartial(BouncingBall)”)
 false

>>> OMPython.execute(“isPackage(BouncingBall)”)
 false

>>> OMPython.execute(“isModel(BouncingBall)”)

136

 true

>>> OMPython.execute(“checkModel(BouncingBall)”)

 '"Check of BouncingBall completed successfully.\n\n\nClass BouncingBall

 has 6 equation(s) and 6 variable(s).\n1 of these are trivial

 equation(s).\n"\n'

>>> OMPython.execute(“getClassRestriction(BouncingBall)”)
 '"model"\n'
>>> OMPython.execute(“getClassInformation(BouncingBall)”)
 {'SET4': {}, 'SET1': {'Set1': [-100.0, -100.0, 100.0, 100.0, True, 0.1, 2.0,
 2.0]}, 'SET2': {'Elements': {'Line3': {'Properties': {'Values': [False, 0,
 'LinePattern.Dot', 0.25, 3, 'Smooth.None'], 'Subset1': {'Set1': [0, -100],
 'Set2': [0, -30]}, 'Set1': [0.0, 0.0], 'Set2': [127, 0, 0], 'Set3':
 ['Arrow.None', 'Arrow.None']}}, 'Line2': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 0.25, 3, 'Smooth.None'], 'Subset1': {'Set1': [70, 0],
 'Set2': [90, 0]}, 'Set1': [0.0, 0.0], 'Set2': [0, 0, 255], 'Set3':
 ['Arrow.None', 'Arrow.None']}}, 'Line1': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 0.25, 3, 'Smooth.None'], 'Subset1': {'Set1': [-90, 0],
 'Set2': [-70, 0]}, 'Set1': [0.0, 0.0], 'Set2': [0, 0,255], 'Set3'
 ['Arrow.None', 'Arrow.None']}}, 'Text2': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 'FillPattern.None', 0.25, '"%name"', 0,
 'TextAlignment.Center'], 'Subset1': {'Set1': [-152, 87], 'Set2': [148, 47]},
 'Set1': [0.0, 0.0], 'Set2': [0, 0, 255], 'Set3': [0, 0, 0]}}, 'Text1':
 {'Properties': {'Values': [True, 0, 'LinePattern.Solid', 'FillPattern.None',
 0.25, 0, 'TextAlignment.Center'], 'Subset1': {'Set1': [-144, -40], 'Set2':
 [142, -72]}, 'Set1': [0.0,0.0], 'Set2': [0, 0, 0], 'Results': {'"R': '%R"'}}},
 'Rectangle1': {'Properties': {'Values': [True, 0, 'LinePattern.Solid',
 'FillPattern.Solid', 0.25, 'BorderPattern.None', 0], 'Subset1': {'Set1': [-70,
 30], 'Set2': [70, -30]}, 'Set1': [0.0, 0.0], 'Set2': [0, 0, 255], 'Set3':
 [255, 255, 255]}}}}, 'SET3': {'Elements': {'Line3': {'Properties': {'Values':
 [False, 0, 'LinePattern.Dot', 0.25, 3, 'Smooth.None'], 'Subset1': {'Set1': [0,
 -100], 'Set2': [0, -30]}, 'Set1': [0.0, 0.0],'Set2': [127, 0, 0], 'Set3':
 ['Arrow.None', 'Arrow.None']}}, 'Line2': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 0.25, 3, 'Smooth.None'], 'Subset1': {'Set1': [70, 0],
 'Set2': [90, 0]}, 'Set1': [0.0, 0.0], 'Set2': [0, 0, 255],'Set3':
 ['Arrow.None', 'Arrow.None']}}, 'Line1': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 0.25, 3, 'Smooth.None'], 'Subset1': {'Set1': [-90,
 0],'Set2': [-70, 0]}, 'Set1': [0.0, 0.0], 'Set2': [0, 0, 255], 'Set3':
 ['Arrow.None', 'Arrow.None']}}, 'Text2': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 'FillPattern.None', 0.25, '"%name"', 0
 'TextAlignment.Center'], 'Subset1': {'Set1': [-152, 87], 'Set2': [148, 47]},
 'Set1': [0.0, 0.0], 'Set2': [0, 0, 255], 'Set3': [0, 0, 0]}}, 'Text1':
 {'Properties': {'Values': [True, 0, 'LinePattern.Solid', 'FillPattern.None',
 0.25, 0, 'TextAlignment.Center'], 'Subset1': {'Set1': [-144, -40], 'Set2':
 [142, -72]}, 'Set1': [0.0, 0.0], 'Set2': [0, 0, 0], 'Results': {'"R':
 '%R"'}}}, 'Rectangle1': {'Properties': {'Values': [True, 0,
 'LinePattern.Solid', 'FillPattern.Solid', 0.25, 'BorderPattern.None',
 0],'Subset1': {'Set1': [-70, 30], 'Set2': [70, -30]}, 'Set1': [0.0, 0.0],
 'Set2': [0, 0, 255], 'Set3': [255, 255, 255]}}}, 'Set1': [-100.0, -100.0,
 100.0, 100.0, True, 0.1,2.0, 2.0], 'Set2': ['"model"', '""', False, False,
 False, '"C:/Dev/OpenModelica/Examples/BouncingBall.mo"', False, 1, 1, 23,
 17]}}
 >>> OMPython.execute(“getConnectionCount(BouncingBall)”)
 0
 >>> OMPython.execute(“getInheritanceCount(BouncingBall)”)
 0
 >>> OMPython.execute(“getComponentModifierValue(BouncingBall,e)”)
 7.5

The common combination of a simulation followed by getting a value and doing a plot:
>>> OMPython.execute(“simulate(BouncingBall, stopTime=3.0)”);

137

 {'SimulationOptions': {'options': "''", 'cflags': "''", 'simflags': "''",

 'variableFilter': "'.*'", 'outputFormat': "'mat'", 'method': "'dassl'",

 'stopTime': 3.0, 'startTime': 0.0, 'numberOfIntervals': 500, 'tolerance': 1e-

 06, 'fileNamePrefix': "'BouncingBall'"}, 'SimulationResults': {'timeCompile':

 3.022411668585939,'timeBackend': 0.01062840294955596, 'messages': '""',

 'timeFrontend': 0.01682653265860022, 'timeSimulation': 0.2781055999108373,

 'timeTemplates': 0.04694975100793849, 'timeSimCode': 0.002148411220572541,

 'timeTotal': 3.37801918685201, 'resultFile':

 '"C:/Users/alash325/BouncingBall_res.mat"'}, 'SET1': {}, 'SET2': {'Set1':

 ['BouncingBall']}}

>>> OMPython.execute(“val(h , 2.0)”)
 0.04239430772884123
>>> OMPython.execute(“plot(h)”)
 True

>>> OMPython.execute("plotAll()")

138

>>> OMPython.execute("quit()")
 'quit requested, shutting server down\n'

13.1.2.2 Import As Library

To use the module from within another python program, simply import OMCSession from within the
using program. Make use of the execute() function of the OMPython library to send commands to the OMC
server.

For example:
answer = OMPython.execute(cmd)

Full example:
test.py
from OMPython import OMCSession
OMPython = OMCSession()
cmds =
 ["loadModel(Modelica)",
 "model test end test;",
 "loadFile(\"C:/Dev/OpenModelica/Examples/BouncingBall.mo\")",
 "getIconAnnotation(Modelica.Electrical.Analog.Basic.Resistor)",
 "getElementsInfo(Modelica.Electrical.Analog.Basic.Resistor)",
 "simulate(BouncingBall)",
 "plot(h)"]
for cmd in cmds:
 answer = OMPython.execute(cmd)
 print "\nResult:\n%s"%answer

13.1.3 Implementation

13.1.3.1 Client Implementation

The OpenModelica Python API Interface – OMPython, attempts to mimic the OMShell's style of
operations.

OMPython is designed to,

• Initialize the CORBA communication.
• Send commands to the Omc server via the CORBA interface.
• Receive the string results.
• Use the Parser module to format the results.
• Return or display the results.

13.1.3.2 Parser Implementation

Since the results of OMC are retrieved in a String format over CORBA, some housekeeping has to be done
to make sure the results are usable in Python easily.

The Parser is designed to do the following,

• Analyze the result string for categorical data.
• Group each category under a category name.
• Type cast the data within these categories.
• Build a suitable data structure to hold these data so that the results can be easily accessed and used.

 Understanding the Parsed output

139

Each command in OpenModelica produces a result that can be categorized according to the statistics of the
pattern of data presented in the text. Grammar based parsers were found to be tedious to use because of the
complexity of the patterns of data.

The parser just type casts the data without "curly brackets" to the appropriate data type and displays it as
the result.

For example:
>> getVectorizationLimit()
<< 20
>> getNthInheritedClass(Modelica.Electrical.Analog.Basic.Resistor,1)
<< Modelica.Electrical.Analog.Interfaces.OnePort

However, multiple data types packed within a pair of quotations is always treated as a full string.

For example:
>> getModelicaPath()
<< "C:/OpenModelica1.8.0/lib/omlibrary"

 The Dictionary data type in Python

Dictionaries are found to be a useful datatype to pack data with different datatypes. Dictionaries in Python
are indexed by Keys unlike the sequences, which are indexed by a range of numbers.

It is best to think of dictionaries as an unordered set of key:value pairs, with the requirement that the
keys are always unique. The common operation on dictionaries is to store a value associated with a key and
retrieve the value using the key. This provides us the flexibility of creating keys at runtime and accessing
these values using their keys later. All data within the dictionary are stored inside a named dictionary. An
empty dictionary is represented by a pair of braces {}.

From the reply of the OMC, the complicated result strings are usually the ones found within the curly
braces, in order to make a meaningful categorization of the data within these brackets and to avoid the
potential complexities due to creating Dynamic variables, we introduce the following notations that can be
used within dictionaries,

• SET
• Set
• Subset
• Element
• Results
• Values

 SET

A SET (note the capital letters) is used to group data that belong to the first set of balanced curly brackets.
According to the needed semantics of the results, a SET can contain Sets, Subsets, Elements, Values and
Results. A SET can also be empty, denoted by {}. The SETs are named with an increasing index starting
from 1(one). This feature was planned to eliminate the need for dynamic variable creation and having
duplicate Keys. The SET belongs within the dictionary, result.

For example:
>> strtok("abcbdef","b")
<< {'SET1': {'Values': ['"a","c","def"']}}

The command strtok tokenizes the string "abcbdef" at every occurrence of b and produces a SET with
values "a", "c", "def".

 Set

140

A set is used to group all data within the a SET that is enclosed within a pair of balanced {}s. A Set can
contain only Values and Elements. A set can also be empty, it can be depicted as {{}}, the outer brackets
compose a SET, the inner brackets are the Set within the SET.

 Subset

A Subset is a two-level deep set that is found within a SET. A subset can contain multiple Sets within its
enclosure.

For example:
{SET1 {Subset1{Set1},{Set2},{Set3}}}

Element

Elements are the data which are grouped within a pair of Parenthesis (). As observed from the results
string, elements have an element name that describes the data within them, so elements can be grouped by
their names. Also, many elements have the same names, so they are indexed by increasing numbers starting
from 1(one). Elements have the special property of having one or more Sets and Subsets within them.
However, they are in turn enclosed within the SET.

For example:
>> getClassAttributes(test.mymodel)
<< {'SET1': {'Elements': {'rec1': {'Properties': {'Results': {'comment': None,
'res
triction': 'MODEL', 'startLine': 1, 'partial': False, 'name': '"mymodel"', 'enca
psulated': False, 'startColumn': 14, 'readonly': '"writable"', 'endColumn': 69,
'file': '"<interactive>"', 'endLine': 1, 'final': False}}}}}}

The result contains, a SET with a Element named rec1 which has Properties which are Results (see below)
of the element.

Results

Data that is related by the assignment operator "=", within the SETs are denoted as Results. These
assignments cannot be assigned to their actual values unless they are related by a Name = Value
relationship. So, they form the sub-dictionary called Results within the Element (for example). Then these
values can be related by the key:value pair relationship.

For example:
>> getClassAttributes(test.mymodel)
<< {'SET1': {'Elements': {'rec1': {'Properties': {'Results': {'comment': None,
'res
triction': 'MODEL', 'startLine': 1, 'partial': False, 'name': '"mymodel"', 'enca
psulated': False, 'startColumn': 14, 'readonly': '"writable"', 'endColumn': 69,
'file': '"<interactive>"', 'endLine': 1, 'final': False}}}}}}

Values

Data within any or all of SETs, Sets, Elements and Subsets that are not assignments and separated by
commas are grouped together into a list called "Values". The Values list may also be empty, due to
Python's representation of a null string "" as {}. Although a Null string is still a Null value, sometimes it is
possible to observe data grouped into Values to look like Sets within the Values list.

For example:
>> getNthConnection(Modelica.Electrical.Analog.Examples.ChuaCircuit,2)
<< {'SET1': {'Set1': ['G.n', 'Nr.p', {}]}}

141

13.1.3.3 The Simulation Results

The OMPython.execute(“simulate(BouncingBall)”) command produces output that has no SET
or Set data in it. Instead, for simplicity, it has two dictionaries namely, SimulationResults and
SimulationOptions within the result dictionary.

For example:

13.1.3.4 Record Construction

The OpenModelica commands that produce output with Record constructs also do not have SET or Set data
within them. The results of the output are packed within the RecordResults dictionary.

For example:
OMPython.execute("checkSettings()")

142

13.1.4 API – List of Commands

The following table contains brief descriptions of the API/ commands that are available in the
OpenModelica environment, which can be called using Python or Modelica scripting.

Command Description

simulate Simulates a model.
Interface:
function simulate
input TypeName className;
input Real startTime=0;
input Real stopTime=1;
input Integer numberOfIntervals=500;
input Real tolerance=1e-4;
input String method=”dassl”; See Appendix C for

solver details.
input String outputFormat=”mat”; {mat, plt, csv,

empty}
input String fileNamePrefix=””;
input String variableFilter=””;
input String cflags=””;
input String simflags=””;
ouput SimulationResult simRes;

end simulate;

143

SimulationResult:
Record SimulationResult
String resultFile;
String simulationOptions;
String messages;
Real timeFrontend;
Real timeBackend;
Real timeSimCode;
Real timeTemplates;
Real timeCompile;
Real timeSimulation;
Real timeTotal;

End SimulationResult;

appendEnvironmentVar Appends a variable to the environment variables list.
Interface:
function appendEnvironmentVar
 input String var;
 input String value;
 output String result "returns \"error\" if the

variable could not be appended";
end appendEnvironmentVar;

basename Returns the base name (file part) of a file path. Similar to basename(3), but
with the safety of Modelica strings.
Interface:
function basename
 input String path;
 output String basename;

end basename;

cd change directory to the given path (which may be either relative or absolute)
returns the new working directory on success or a message on failure if the
given path is the empty string, the function simply returns the current
working directory.
Interface:
function cd
 input String newWorkingDirectory = "";
 output String workingDirectory;

end cd;

checkAllModelsRecursive Checks all models recursively and returns number of variables and equations.
Interface:
function checkAllModelsRecursive
 input TypeName className;
 input Boolean checkProtected = false "Checks also

protected classes if true";
 output String result;

end checkAllModelsRecursive;

checkModel Checks a model and returns number of variables and equations.
Interface:
function checkModel
 input TypeName className;
 output String result;

end checkModel;

checkSettings Display some diagnostics.
Interface:

http://linux.die.net/man/3/basename�

144

function checkSettings
 output CheckSettingsResult result;

end checkSettings;
CheckSettingsResult:
String OPENMODELICAHOME,OPENMODELICALIBRARY,OMC_PATH;
 Boolean OMC_FOUND;
 String MODELICAUSERCFLAGS,WORKING_DIRECTORY;
 Boolean CREATE_FILE_WORKS,REMOVE_FILE_WORKS;
 String OS, SYSTEM_INFO,SENDDATALIBS,C_COMPILER;
 Boolean C_COMPILER_RESPONDING;
 String CONFIGURE_CMDLINE;

end CheckSettingsResult;

clear Clears everything: symboltable and variables.
Interface:
function clear
 output Boolean success;

end clear;

clearMessages Clears the error buffer.
Interface:
function clearMessages
 output Boolean success;

end clearMessages;

clearVariables Clear all user defined variables.
Interface:
function clearVariables
 output Boolean success;

end clearVariables;

closeSimulationResultFile Closes the current simulation result file. Only needed by Windows. Windows
cannot handle reading and writing to the same file from different processes.
To allow OMEdit to make successful simulation again on the same file we
must close the file after reading the Simulation Result Variables. Even
OMEdit only use this API for Windows.
Interface:
function closeSimulationResultFile
 output Boolean success;

end closeSimulationResultFile;

codeToString Interface:
function codeToString
 input $Code className;
 output String string;

end codeToString;

compareSimulationResults Compares simulation results.
Interface:
function compareSimulationResults
 input String filename;
 input String reffilename;
 input String logfilename;
 input Real refTol;
 input Real absTol;
 input String[:] vars;
 output String result;

end compareSimulationResults;

145

deleteFile Deletes a file with the given name.
Interface:
function deleteFile

 input String fileName;
 output Boolean success;
end deleteFile;

dirname Returns the directory name of a file path. Similar to dirname(3), but with the
safety of Modelica strings.
Interface:
function dirname
 input String path;
 output String dirname;

end dirname;

dumpXMLDAE Outputs the DAE system corresponding to a specific model.
Interface:
function dumpXMLDAE
 input TypeName className;
 input String translationLevel = "flat";
 input Boolean addOriginalIncidenceMatrix = false;
 input Boolean addSolvingInfo = false;
 input Boolean addMathMLCode = false;
 input Boolean dumpResiduals = false;
 input String fileNamePrefix = "<default>" "this is

the className in string form by default";
 input Boolean storeInTemp = false;
 output String result[2] "Contents,

Message/Filename; why is this an array and not 2
output arguments?";
end dumpXMLDAE;

echo echo(false) disables Interactive output, echo(true) enables it again.
Interface:
function echo
 input Boolean setEcho;
 output Boolean newEcho;

end echo;

generateCode The input is a function name for which C-code is generated and compiled
into a dll/so.
Interface:
function generateCode
 input TypeName className;
 output Boolean success;

end generateCode;

generateHeader Interface:
function generateHeader
 input String fileName;
 output Boolean success;

end generateHeader;

generateSeparateCode Interface:
function generateSeparateCode
 output Boolean success;

end generateSeparateCode;

getAlgorithmCount Counts the number of Algorithm sections in a class.
Interface:

http://linux.die.net/man/3/dirname�

146

function getAlgorithmCount
 input TypeName class_;
 output Integer count;

end getAlgorithmCount;

getAlgorithmItemsCount Counts the number of Algorithm items in a class.
Interface:
function getAlgorithmItemsCount
 input TypeName class_;
 output Integer count;

end getAlgorithmItemsCount;

getAnnotationCount Counts the number of Annotation sections in a class.
Interface:
function getAnnotationCount
 input TypeName class_;
 output Integer count;

end getAnnotationCount;

getAnnotationVersion Returns the current annotation version.
Interface:
function getAnnotationVersion
 output String annotationVersion;

end getAnnotationVersion;

getAstAsCorbaString Print the whole AST on the CORBA format for records, e.g.
 record Absyn.PROGRAM
 classes = ...,
 within_ = ...,
 globalBuildTimes = ...

 end Absyn.PROGRAM;
Interface:
function getAstAsCorbaString
 input String fileName = "<interactive>";
 output String result "returns the string if

fileName is interactive; else it returns ok or error
depending on if writing the file succeeded";
end getAstAsCorbaString;

getClassComment Returns the class comment.
Interface:
function getClassComment
 input TypeName cl;
 output String comment;

end getClassComment;

getClassNames Returns the list of class names defined in the class.
Interface:
function getClassNames
 input TypeName class_ = $Code(AllLoadedClasses);
 input Boolean recursive = false;
 input Boolean qualified = false;
 input Boolean sort = false;
 input Boolean builtin = false "List also builtin

classes if true";
 input Boolean showProtected = false "List also

protected classes if true";
 output TypeName classNames[:];

end getClassNames;

147

getClassesInModelicaPath Interface:
function getClassesInModelicaPath
 output String classesInModelicaPath;

end getClassesInModelicaPath;

getCompileCommand Interface:
function getCompileCommand
 output String compileCommand;

end getCompileCommand;

getDocumentationAnnotation Returns the documentaiton annotation defined in the class.
Interface:
function getDocumentationAnnotation
 input TypeName cl;
 output String out[2] "{info,revision}";

end getDocumentationAnnotation;

getEnvironmentVar Returns the value of the environment variable.
Interface:
function getEnvironmentVar
 input String var;
 output String value "returns empty string on

failure";
end getEnvironmentVar;

getEquationCount Counts the number of Equation sections in a class.
Interface:
function getEquationCount
 input TypeName class_;
 output Integer count;

end getEquationCount;

getEquationItemsCount Counts the number of Equation items in a class.
Interface:
function getEquationItemsCount
 input TypeName class_;
 output Integer count;

end getEquationItemsCount;

getErrorString Returns the current error message. [file.mo:n:n-n:n:b] Error:
message
Interface:
function getErrorString
 output String errorString;

end getErrorString;

getImportCount Counts the number of Import sections in a class.
Interface:
function getImportCount
 input TypeName class_;
 output Integer count;

end getImportCount;

getInitialAlgorithmCount Counts the number of Initial Algorithm sections in a class.
Interface:
function getInitialAlgorithmCount
 input TypeName class_;
 output Integer count;

end getInitialAlgorithmCount;

148

getInitialAlgorithmItemsCount Counts the number of Initial Algorithm items in a class.
Interface:
function getInitialAlgorithmItemsCount
 input TypeName class_;
 output Integer count;

end getInitialAlgorithmItemsCount;

getInitialEquationCount Counts the number of Initial Equation sections in a class.
Interface:
function getInitialEquationCount
 input TypeName class_;
 output Integer count;

end getInitialEquationCount;

getInitialEquationItemsCount Counts the number of Initial Equation items in a class.
Interface:
function getInitialEquationItemsCount
 input TypeName class_;
 output Integer count;

end getInitialEquationItemsCount;

getInstallationDirectoryPath This returns OPENMODELICAHOME if it is set; on some platforms the default
path is returned if it is not set.
Interface:
function getInstallationDirectoryPath
 output String installationDirectoryPath;

end getInstallationDirectoryPath;

getLanguageStandard Returns the current Modelica Language Standard in use.
Interface:
function getLanguageStandard
 output String outVersion;

end getLanguageStandard;

getMessagesString see getErrorString()
Interface:
function getMessagesString
 output String messagesString;

end getMessagesString;

getMessagesStringInternal {{[file.mo:n:n-n:n:b] Error: message, TRANSLATION,
Error, code}}
Interface:
function getMessagesStringInternal
 output ErrorMessage[:] messagesString;

end getMessagesStringInternal;

getModelicaPath Get the Modelica Library Path.
Interface:
function getModelicaPath
 output String modelicaPath;

end getModelicaPath;

getNoSimplify Returns true if noSimplify flag is set.
Interface:
function getNoSimplify
 output Boolean noSimplify;

end getNoSimplify;

getNthAlgorithm Returns the Nth Algorithm section.

149

Interface:
function getNthAlgorithm
 input TypeName class_;
 input Integer index;
 output String result;

end getNthAlgorithm;

getNthAlgorithmItem Returns the Nth Algorithm Item.
Interface:
function getNthAlgorithmItem
 input TypeName class_;
 input Integer index;
 output String result;

end getNthAlgorithmItem;

getNthAnnotationString Returns the Nth Annotation section as string.
Interface:
function getNthAnnotationString
 input TypeName class_;
 input Integer index;
 output String result;

end getNthAnnotationString;

getNthEquation Returns the Nth Equation section.
Interface:
function getNthEquation
 input TypeName class_;
 input Integer index;
 output String result;

end getNthEquation;

getNthEquationItem Returns the Nth Equation Item.
Interface:
function getNthEquationItem
 input TypeName class_;
 input Integer index;
 output String result;

end getNthEquationItem;

getNthImport Returns the Nth Import as string.
Interface:
function getNthImport
 input TypeName class_;
 input Integer index;
 output String out[3] "{\"Path\",\"Id\",\"Kind\"}";

end getNthImport;

getNthInitialAlgorithm Returns the Nth Initial Algorithm section.
Interface:
function getNthInitialAlgorithm
 input TypeName class_;
 input Integer index;
 output String result;

end getNthInitialAlgorithm;

getNthInitialAlgorithmItem Returns the Nth Initial Algorithm Item.
Interface:
function getNthInitialAlgorithmItem
 input TypeName class_;
 input Integer index;

150

 output String result;
end getNthInitialAlgorithmItem;

getNthInitialEquation Returns the Nth Initial Equation section.
Interface:
function getNthInitialEquation
 input TypeName class_;
 input Integer index;
 output String result;

end getNthInitialEquation;

getNthInitialEquationItem Returns the Nth Initial Equation Item.
Interface:
function getNthInitialEquationItem
 input TypeName class_;
 input Integer index;
 output String result;

end getNthInitialEquationItem;

getOrderConnections Returns true if orderConnections flag is set.
Interface:
function getOrderConnections
 output Boolean orderConnections;

end getOrderConnections;

getPackages Returns the list of packages defined in the class.
Interface:
function getPackages
 input TypeName class_ = $Code(AllLoadedClasses);
 output TypeName classNames[:];

end getPackages;

getPlotSilent Returns true if plotSilent flag is set.
Interface:
function getPlotSilent
 output Boolean plotSilent;

end getPlotSilent;

getSettings Interface:
function getSettings
 output String settings;

end getSettings;

getShowAnnotations Interface:
function getShowAnnotations
 output Boolean show;

end getShowAnnotations;

getSourceFile Returns the filename of the class.
Interface:
function getSourceFile
 input TypeName class_;
 output String filename "empty on failure";

end getSourceFile;

getTempDirectoryPath Returns the current user temporary directory location.
Interface:
function getTempDirectoryPath
 output String tempDirectoryPath;

end getTempDirectoryPath;

151

getVectorizationLimit Interface:
function getVectorizationLimit
 output Integer vectorizationLimit;

end getVectorizationLimit;

getVersion Returns the version of the Modelica compiler.
Interface:
function getVersion
 input TypeName cl = $Code(OpenModelica);
 output String version;

end getVersion;

help Display the OpenModelica help text.
Interface:
function help
 output String helpText;

end help;

iconv The iconv() function converts one multibyte characters from one character
 set to another.
 See man(3) iconv for more information.
Interface:
function iconv
 input String string;
 input String from;
 input String to = "UTF-8";
 output String result;

end iconv;

importFMU Imports the Functional Mockup Unit.
 Example command:
 importFMU("A.fmu");
Interface:
function importFMU
 input String filename "the fmu file name";
 input String workdir = "./" "The output directory

for imported FMU files. <default> will put the files
to current working directory.";
 output Boolean success "Returns true on success";

end importFMU;

instantiateModel Instantiates the class and returns the flat Modelica code.
Interface:
function instantiateModel
 input TypeName className;
 output String result;

end instantiateModel;

isModel Returns true if the given class has restriction model.
Interface:
function isModel
 input TypeName cl;
 output Boolean b;

end isModel;

isPackage Returns true if the given class is a package.
Interface:
function isPackage
 input TypeName cl;

152

 output Boolean b;
end isPackage;

isPartial Returns true if the given class is partial.
Interface:
function isPartial
 input TypeName cl;
 output Boolean b;

end isPartial;

list Lists the contents of the given class, or all loaded classes.
Pretty-prints a class definition.
Syntax
list(Modelica.Math.sin)
list(Modelica.Math.sin,interfaceOnly=true)
Interface:
function list
 input TypeName class_ = $Code(AllLoadedClasses);
 input Boolean interfaceOnly = false;
 input Boolean shortOnly = false "only short class

definitions";
 output String contents;

end list;

listVariables Lists the names of the active variables in the scripting environment.
Interface:
function listVariables
 output TypeName variables[:];

end listVariables;

loadFile load file (*.mo) and merge it with the loaded AST.
Interface:
function loadFile
 input String fileName;
 output Boolean success;

end loadFile;

loadFileInteractive Interface:
function loadFileInteractive
 input String filename;
 output TypeName names[:];

end loadFileInteractive;

loadFileInteractiveQualified Interface:
function loadFileInteractiveQualified
 input String filename;
 output TypeName names[:];

end loadFileInteractiveQualified;

loadModel Loads a Modelica library.
Syntax
loadModel(Modelica)
loadModel(Modelica,{"3.2"})
Interface:
function loadModel
 input TypeName className;
 input String[:] priorityVersion = {"default"};
 output Boolean success;

end loadModel;

loadString Parses the data and merges the resulting AST with the loaded AST. If a

153

filename is given, it is used to provide error-messages as if the string was
read in binary format from a file with the same name. The file is converted to
UTF-8 from the given character set.
Interface:
function loadString
 input String data;
 input String filename = "<interactive>";
 input String encoding = "UTF-8";
 output Boolean success;

end loadString;

parseFile Interface:
function parseFile
 input String filename;
 output TypeName names[:];

end parseFile;

parseString Interface:
function parseString
 input String data;
 input String filename = "<interactive>";
 output TypeName names[:];

end parseString;

plot Launches a plot window using OMPlot. Returns true on success. Don't
require sendData support.
Example command sequences:
 simulate(A);plot({x,y,z});
 simulate(A);plot(x, externalWindow=true);
 simulate(A,fileNamePrefix="B");
 simulate(C);plot(z,"B.mat",legend=false);
Interface:
function plot
 input VariableNames vars "The variables you want

to plot";
 input Boolean externalWindow = false "Opens the

plot in a new plot window";
 input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";
 input String title = "Plot by OpenModelica" "This

text will be used as the diagram title.";
 input Boolean legend = true "Determines whether or

not the variable legend is shown.";
 input Boolean grid = true "Determines whether or

not a grid is shown in the diagram.";
 input Boolean logX = false "Determines whether or

not the horizontal axis is logarithmically scaled.";
 input Boolean logY = false "Determines whether or

not the vertical axis is logarithmically scaled.";
 input String xLabel = "time" "This text will be

used as the horizontal label in the diagram.";
 input String yLabel = "" "This text will be used

as the vertical label in the diagram.";
 input Real xRange[2] = {0.0,0.0} "Determines the

horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.";
 input Real yRange[2] = {0.0,0.0} "Determines the

vertical interval that is visible in the diagram.
{0,0} will select a suitable range.";

154

 output Boolean success "Returns true on success";
 output String[:] result "Returns list i.e

{\"_omc_PlotResult\", \"<fileName>\", \"<title>\",
\"<legend>\", \"<grid>\", \"<PlotType>\", \"<logX>\",
\"<logY>\", \"<xLabel>\", \"<yLabel>\", \"<xRange>\",
\"<yRange>\", \"<PlotVariables>\"}";
end plot;

plotAll Works in the same way as plot(), but does not accept any variable names as
input. Instead, all variables are part of the plot window.

Example command sequences:
 simulate(A);
 plotAll();
 simulate(A);
 plotAll(externalWindow=true);
 simulate(A,fileNamePrefix="B");
 simulate(C);
 plotAll(x,"B.mat");
Interface:
function plotAll
 input Boolean externalWindow = false "Opens the

plot in a new plot window";
 input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";
 input String title = "Plot by OpenModelica" "This

text will be used as the diagram title.";
 input Boolean legend = true "Determines whether or

not the variable legend is shown.";
 input Boolean grid = true "Determines whether or

not a grid is shown in the diagram.";
 input Boolean logX = false "Determines whether or

not the horizontal axis is logarithmically scaled.";
 input Boolean logY = false "Determines whether or

not the vertical axis is logarithmically scaled.";
 input String xLabel = "time" "This text will be

used as the horizontal label in the diagram.";
 input String yLabel = "" "This text will be used

as the vertical label in the diagram.";
 input Real xRange[2] = {0.0,0.0} "Determines the

horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.";
 input Real yRange[2] = {0.0,0.0} "Determines the

vertical interval that is visible in the diagram.
{0,0} will select a suitable range.";
 output Boolean success "Returns true on success";
 output String[:] result "Returns list i.e

{\"_omc_PlotResult\", \"<fileName>\", \"<title>\",
\"<legend>\", \"<grid>\", \"<PlotType>\", \"<logX>\",
\"<logY>\", \"<xLabel>\", \"<yLabel>\", \"<xRange>\",
\"<yRange>\", \"<PlotVariables>\"}";
end plotAll;

plotParametric Launches a plotParametric window using OMPlot. Returns true on success.
Example command sequences:
 simulate(A);plotParametric2(x,y);
 simulate(A);plotParametric2(x,y,
externalWindow=true);
Interface:
function plotParametric

155

 input VariableName xVariable;
 input VariableName yVariable;
 input Boolean externalWindow = false "Opens the

plot in a new plot window";
 input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";
 input String title = "Plot by OpenModelica" "This

text will be used as the diagram title.";
 input Boolean legend = true "Determines whether or

not the variable legend is shown.";
 input Boolean grid = true "Determines whether or

not a grid is shown in the diagram.";
 input Boolean logX = false "Determines whether or

not the horizontal axis is logarithmically scaled.";
 input Boolean logY = false "Determines whether or

not the vertical axis is logarithmically scaled.";
 input String xLabel = "time" "This text will be

used as the horizontal label in the diagram.";
 input String yLabel = "" "This text will be used

as the vertical label in the diagram.";
 input Real xRange[2] = {0.0,0.0} "Determines the

horizontal interval that is visible in the diagram.
{0,0} will select a suitable range.";
 input Real yRange[2] = {0.0,0.0} "Determines the

vertical interval that is visible in the diagram.
{0,0} will select a suitable range.";
 output Boolean success "Returns true on success";
 output String[:] result "Returns list i.e

{\"_omc_PlotResult\", \"<fileName>\", \"<title>\",
\"<legend>\", \"<grid>\", \"<PlotType>\", \"<logX>\",
\"<logY>\", \"<xLabel>\", \"<yLabel>\", \"<xRange>\",
\"<yRange>\", \"<PlotVariables>\"}";
end plotParametric;

plotParametric2 Plots the y-variables as a function of the x-variable.
Example command sequences:
 simulate(A);
 plotParametric2(x,y);
 simulate(A,fileNamePrefix="B");
 simulate(C);
 plotParametric2(x,{y1,y2,y3},"B.mat");
Interface:
function plotParametric2
 input VariableName xVariable;
 input VariableNames yVariables;
 input String fileName = "<default>";
 output Boolean success "Returns true on success";

end plotParametric2;

readFile The contents of the given file are returned. Note that if the function fails, the
error message is returned as a string instead of multiple output or similar.
Interface:
function readFile
 input String fileName;
 output String contents;

end readFile;

readFileNoNumeric Returns the contents of the file, with anything resembling a (real) number
stripped out, and at the end adding:
 Filter count from number domain: n.

156

 This should probably be changed to multiple outputs; the filtered string and
an integer.
 Does anyone use this API call?
Interface:
function readFileNoNumeric
 input String fileName;
 output String contents;

end readFileNoNumeric;

readFilePostprocessLineDirective Searches lines for the #modelicaLine directive. If it is found, all lines up until
the next #modelicaLine or #endModelicaLine are put on a single file,
following a #line linenumber "filename" line. This causes GCC to output an
executable that we can set breakpoints in and debug.
Note: You could use a stack to keep track of start/end of #modelicaLine and
match them up. But this is not really desirable since that will cause extra
breakpoints for the same line (you would get breakpoints before and after
each case if you break on a match-expression, etc).
Interface:
function readFilePostprocessLineDirective
 input String fileName;
 output String out;

end readFilePostprocessLineDirective;

readFileShowLineNumbers Prefixes each line in the file with <n>:, where n is the line number.
Note: Scales O(n^2)
Interface:
function readFileShowLineNumbers
 input String fileName;
 output String out;

end readFileShowLineNumbers;

readSimulationResult Reads a result file, returning a matrix corresponding to the variables and size
given.
Interface:
function readSimulationResult
 input String filename;
 input VariableNames variables;
 input Integer size = 0 "0=read any size... If the

size is not the same as the result-file, this function
fails";
 output Real result[:,:];

end readSimulationResult;

readSimulationResultSize The number of intervals that are present in the output file.
Interface:
function readSimulationResultSize
 input String fileName;
 output Integer sz;

end readSimulationResultSize;

readSimulationResultVars Returns the variables in the simulation file; you can use val() and plot()
commands using these names.
Interface:
function readSimulationResultVars
 input String fileName;
 output String[:] vars;

end readSimulationResultVars;

Regex Sets the error buffer and returns -1 if the regex does not compile.

157

 The returned result is the same as POSIX regex():
 The first value is the complete matched string
 The rest are the substrings that you wanted.
 For example:
 regex(lorem," \([A-Za-z]*\) \([A-Za-z]*\) ",maxMatches=3)
 => {" ipsum dolor ","ipsum","dolor"}
 This means if you have n groups, you want maxMatches=n+1
Interface:
function regex
 input String str;
 input String re;
 input Integer maxMatches = 1 "The maximum number

of matches that will be returned";
 input Boolean extended = true "Use POSIX extended

or regular syntax";
 input Boolean caseInsensitive = false;
 output Integer numMatches "-1 is an error, 0 means

no match, else returns a number 1..maxMatches";
 output String matchedSubstrings[maxMatches]

"unmatched strings are returned as empty";
end regex;

regexBool Returns true if the string matches the regular expression.
Interface:
function regexBool
 input String str;
 input String re;
 input Boolean extended = true "Use POSIX extended

or regular syntax";
 input Boolean caseInsensitive = false;
 output Boolean matches;

end regexBool;

regularFileExists The contents of the given file are returned.
Note that if the function fails, the error message is returned as a string instead
of multiple output or similar.
Interface:
function regularFileExists
 input String fileName;
 output Boolean exists;

end regularFileExists;

reopenStandardStream Interface:
function reopenStandardStream
 input StandardStream _stream;
 input String filename;
 output Boolean success;

end reopenStandardStream;

runScript Runs the mos-script specified by the filename.
Interface:
function runScript
 input String fileName "*.mos";
 output String result;

end runScript;

Save Interface:
function save

158

 input TypeName className;
 output Boolean success;

end save;

saveAll Save the entire loaded AST to file.
Interface:
function saveAll
 input String fileName;
 output Boolean success;

end saveAll;

saveModel Save class definition in a file.
Interface:
function saveModel
 input String fileName;
 input TypeName className;
 output Boolean success;

end saveModel;

saveTotalModel Save total class definition into file of a class.
Inputs: String fileName; TypeName className
Outputs: Boolean res;
Interface:
function saveTotalModel
 input String fileName;
 input TypeName className;
 output Boolean success;

end saveTotalModel;

saveTotalSCode Interface:
function saveTotalSCode
 input String fileName;
 input TypeName className;
 output Boolean success;

end saveTotalSCode;

setAnnotationVersion Sets the annotation version.
Interface:
function setAnnotationVersion
 input String annotationVersion;
 output Boolean success;

end setAnnotationVersion;

setCXXCompiler Interface:
function setCXXCompiler
 input String compiler;
 output Boolean success;

end setCXXCompiler;

setClassComment Sets the class comment.
Interface:
function setClassComment
 input TypeName class_;
 input String filename;
 output Boolean success;

end setClassComment;

setCommandLineOptions The input is a regular command-line flag given to OMC, e.g. +d=failtrace or
+g=MetaModelica.
Interface:

159

function setCommandLineOptions
 input String option;
 output Boolean success;

end setCommandLineOptions;

setCompileCommand Interface:
function setCompileCommand
 input String compileCommand;
 output Boolean success;

end setCompileCommand;

setCompiler Interface:
function setCompiler
 input String compiler;
 output Boolean success;

end setCompiler;

setCompilerFlags Interface:
function setCompilerFlags
 input String compilerFlags;
 output Boolean success;

end setCompilerFlags;

setCompilerPath Interface:
function setCompilerPath
 input String compilerPath;
 output Boolean success;

end setCompilerPath;

setDebugFlags example input: failtrace,-noevalfunc
Interface:
function setDebugFlags
 input String debugFlags;
 output Boolean success;

end setDebugFlags;

setEnvironmentVar Interface:
function setEnvironmentVar
 input String var;
 input String value;
 output Boolean success;

end setEnvironmentVar;

setIndexReductionMethod example input: dummyDerivative
Interface:
function setIndexReductionMethod
 input String method;
 output Boolean success;

end setIndexReductionMethod;

setInstallationDirectoryPath Sets the OPENMODELICAHOME environment variable. Use this method
instead of setEnvironmentVar.
Interface:
function setInstallationDirectoryPath
 input String installationDirectoryPath;
 output Boolean success;

end setInstallationDirectoryPath;

setLanguageStandard Sets the Modelica Language Standard.
Interface:

160

function setLanguageStandard
 input String inVersion;
 output Boolean success;

end setLanguageStandard;

setLinker Interface:
function setLinker
 input String linker;
 output Boolean success;

end setLinker;

setLinkerFlags Interface:
function setLinkerFlags
 input String linkerFlags;
 output Boolean success;

end setLinkerFlags;

setModelicaPath See loadModel() for a description of what the MODELICAPATH is used
for.
Interface:
function setModelicaPath
 input String modelicaPath;
 output Boolean success;

end setModelicaPath;

setNoSimplify Sets the noSimplify flag.
Interface:
function setNoSimplify
 input Boolean noSimplify;
 output Boolean success;

end setNoSimplify;

setOrderConnections Sets the orderConnection flag.
Interface:
function setOrderConnections
 input Boolean orderConnections;
 output Boolean success;

end setOrderConnections;

setPastOptModules example input: lateInline,inlineArrayEqn,removeSimpleEquations
Interface:
function setPastOptModules
 input String modules;
 output Boolean success;

end setPastOptModules;

setPlotCommand Interface:
function setPlotCommand
 input String plotCommand;
 output Boolean success;

end setPlotCommand;

setPlotSilent Sets the plotSilent flag.
Interface:
function setPlotSilent
 input Boolean silent;
 output Boolean success;

end setPlotSilent;

setPreOptModules example input:

161

removeFinalParameters,removeSimpleEquations,expandDerOperator
Interface:
function setPreOptModules
 input String modules;
 output Boolean success;

end setPreOptModules;

setShowAnnotations Interface:
function setShowAnnotations
 input Boolean show;
 output Boolean success;

end setShowAnnotations;

setSourceFile Interface:
function setSourceFile
 input TypeName class_;
 input String filename;
 output Boolean success;

end setSourceFile;

setTempDirectoryPath Interface:
function setTempDirectoryPath
 input String tempDirectoryPath;
 output Boolean success;

end setTempDirectoryPath;

setVectorizationLimit Interface:
function setVectorizationLimit
 input Integer vectorizationLimit;
 output Boolean success;

end setVectorizationLimit;

solveLinearSystem Solve A*X = B, using dgesv or lp_solve (if any variable in X is integer).
Returns for solver dgesv: info>0: Singular for element i. info<0: Bad input.
Interface:
function solveLinearSystem
 input Real[size(B, 1),size(B, 1)] A;
 input Real[:] B;
 input LinearSystemSolver solver =

LinearSystemSolver.dgesv;
 input Integer[:] isInt = {-1} "list of indices

that are integers";
 output Real[size(B, 1)] X;
 output Integer info;

end solveLinearSystem;

strictRMLCheck Checks if any loaded function.
Interface:
function strictRMLCheck
 output String message "empty if there was no

problem";
end strictRMLCheck;

stringReplace Interface:
function stringReplace
 input String str;
 input String source;
 input String target;
 output String res;

end stringReplace;

162

Strtok Splits the strings at the places given by the token, for example:
 strtok("abcbdef","b") => {"a","c","def"}
Interface:
function strtok
 input String string;
 input String token;
 output String[:] strings;

end strtok;

System Similar to system(3). Executes the given command in the system shell.
Interface:
function system
 input String callStr "String to call: bash -c

$callStr";
 output Integer retval "Return value of the system

call; usually 0 on success";
end system;

translateGraphics Interface:
function translateGraphics
 input TypeName className;
 output String result;

end translateGraphics;

typeNameString Interface:
function typeNameString
 input TypeName cl;
 output String out;

end typeNameString;

typeNameStrings Interface:
function typeNameStrings
 input TypeName cl;
 output String out[:];

end typeNameStrings;

typeOf Interface:
function typeOf
 input VariableName variableName;
 output String result;

end typeOf;

uriToFilename Handles modelica:// and file:// URI's. The result is an absolute path on the
local system. The result depends on the current MODELICAPATH. Returns
the empty string on failure.
Interface:
function uriToFilename
 input String uri;
 output String filename;

end uriToFilename;

val Works on the filename pointed to by the scripting variable
currentSimulationResult. The result is the value of the variable at a certain
time point. For parameters, any time may be given. For variables the
startTime<=time<=stopTime needs to hold. On error, nan (Not a Number) is
returned and the error buffer contains the message.
Interface:
function val
 input VariableName var;

163

 input Real time;
 output Real valAtTime;

end val;

verifyCompiler Interface:
function verifyCompiler
 output Boolean compilerWorks;

end verifyCompiler;

visualize Uses the 3D visualization package, SimpleVisual.mo, to visualize the model.
See chapter 3.4 (3D Animation) of the OpenModelica System Documentation
for more details. Writes the visulizations objects into the file
"model_name.visualize".
Example command sequence:
 simulate(A,outputFormat="mat");
 visualize(A);
 visualize(A,"B.mat");
 visualize(A,"B.mat", true);
Interface:
function visualize
 input TypeName className;
 input Boolean externalWindow = false "Opens the

visualize in a new window";
 input String fileName = "<default>" "The filename

containing the variables. <default> will read the last
simulation result";
 output Boolean success "Returns true on success";

end visualize;

writeFile Write the data to file. Returns true on success.
Interface:
function writeFile
 input String fileName;
 input String data;
 input Boolean append = false;
 output Boolean success;

end writeFile;

13.2 PySimulator
PySimulator provides a graphical user interface for performing analyses and simulating different model
types (currently Functional Mockup Units and Modelica Models are supported), plotting result variables
and applying simulation result analysis tools like Fast Fourier Transform.

164

Figure 13-1: OMShell screenshot for creating an FMU

Read more about the PySimulator here https://github.com/PySimulator/PySimulator.

https://github.com/PySimulator/PySimulator�

165

Chapter 14

Modelica and Python Scripting API

The following are short summaries of OpenModelica scripting commands. These commands are useful for
loading and saving classes, reading and storing data, plotting of results, and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and
for the scripting function in question. In the following tables we briefly indicate the types or character of
the formal parameters to the functions by the following notation:

• String typed argument, e.g. "hello", "myfile.mo".
• TypeName – class, package or function name, e.g. MyClass, Modelica.Math.
• VariableName – variable name, e.g. v1, v2, vars1[2].x, etc.
• Integer or Real typed argument, e.g. 35, 3.14, xintvariable.
• options – optional parameters with named formal parameter passing.

14.1 OpenModelica Modelica Scripting Commands
The following are brief descriptions of the scripting commands available in the OpenModelica
environment.

14.1.1 OpenModelica Basic Commands

This is a selection of the most common commands related to simulation and plotting:

checkModel(className) Checks a model and returns number of variables and equations.
Inputs: TypeName className; Outputs: String res;

clear() Clears everything in OpenModelica compiler and interpreter
workspace: symboltable and variables. Outputs: Boolean res;

getMessagesString() Returns the current error message. Outputs: String
messagesString;

help() Display the OpenModelica help text.
Outputs: String helpText;

importFMU(fileName, workDir) Imports a Functional Mockup Unit. Inputs: String
filename; String workdir "./" "The output directory for
imported FMU files. <default> will put the files to current
working directory."; Outputs: Boolean res;

instantiateModel(className) Flatten model, resulting in a .mof file of flattened Modelica.
Inputs: TypeName className; Outputs: String res;

166

list(className) Print class definition. Inputs: TypeName className;
Outputs: String classDef;

listVariables() Print user defined variables. Outputs: VariableName res;
loadFile(fileName) Load models from file.

Inputs: String fileName; Outputs: Boolean res;
loadModel(className) Load the file corresponding to the class, using the Modelica class

name to file name mapping to locate the file.
Inputs: TypeName className; Outputs: Boolean res;

plot(variable, options) Plot variable, which is a single variable name.
Inputs: VariableName variable; String title;
Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};
Outputs: Boolean res;

plot(variables, options) Plot variables, which is a vector of variable names.
Inputs: VariableName variables; String title;
Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};
Outputs: Boolean res;

plotParametric(variables1,
variables2, options)

Plot each pair of corresponding variables from the vectors of
variables variables1, variables2 as a parametric plot.
Inputs: VariableName variables1[:]; VariableName
variables2[size(variables1,1)]; String title;
Boolean legend; Boolean gridLines; Real
range[2,2]; Outputs: Boolean res;

readFile(fileName) The contents of the given file are returned. Note that if the
function fails, the error message is returned as a string instead of
multiple outputs or similar.
 Inputs: String fileName; Outputs: String content;

save(className) Save class definition.
Inputs: TypeName className Outputs: Boolean res;

saveAll(fileName) Save the entire loaded AST (Abstract Syntax Tree internal
representation of all loaded models) as text to a file.
 Inputs: String fileName; Outputs: Boolean res;

saveModel(fileName,
className)

Save class definition in a file. Inputs: String fileName;
TypeName className Outputs: Boolean res;

saveTotalModel(fileName,
className)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

setDebugFlags(debugFlags) Inputs: String debugFlags; Outputs: Boolean res;
setInitXmlStartValue(fileNam
e, variableName, startValue,
outputFile)

Sets the parameter start value in the model_init.xml file. No
need to recompile the model. Inputs: String fileName;
String variableName; String startValue; String
outputFile; Outputs: Boolean success;

simulate(className, options) Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;

167

Real outputInterval; String method;
Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

typeOf(variableName) Inputs: VariableName variableName; Outputs: String
res;

val(var, timepoint) Returns the value of the variable at a certain time point.
Inputs: VariableName var; Real timepoint; Outputs:
Real valAtTime;

14.2 OpenModelica System Commands
This is a selection of common OpenModelica commands related to the operating system:

cd(dir) Change directory. Inputs: String dir;

Outputs: Boolean res;
deleteFile(fileName) Deletes a file with the given name. Inputs: String fileName;

Outputs: Boolean res;
dirName(path) Returns the directory name of a file path. Inputs: String

path; Outputs: String dirName;
runScript(fileName) Executes the script file given as argument.

Inputs: String fileName; Outputs: Boolean res;
setLanguageStandard(
inVersion)

Sets the Modelica Language Standard. Inputs: String
inVersion; Outputs: Boolean res;

setModelicaPath(
modelicaPath)

Sets the modelica path. See loadModel() for a description of
what the MODELICAPATH is used for.
Inputs: String modelicaPath; Outputs: Boolean res;

system(fileName) Execute system command. Inputs: String fileName; Outputs:
Integer res;

writeFile(fileName, data,
optional)

Write the data to file. Returns true on success.

Inputs: String fileName; String data; Boolean
append; Outputs: Boolean res;

14.3 All OpenModelica API Calls

All OpenModelica API commands shown in alphabetic order:

appendEnvironmentVar(var,
value)

Appends a variable to the environment variables list. Inputs:
String var; String value; Outputs: String res;

baseName(path) Returns the base name (file part) of a file path.
Inputs: String path; Outputs: String basename;

cd(dir) Change directory. Inputs: String dir;
Outputs: Boolean res;

168

checkAllModelsRecursive(
className, protected)

Checks all models recursively and returns number of variables and
equations. Inputs: TypeName className;
Boolean protected Outputs: String res;

checkModel(className) Checks a model and returns number of variables and equations.
Inputs: TypeName className; Outputs: String res;

checkSettings() Display some diagnostics. Outputs: CheckSettingsResult
res;

clear() Clears everything: symboltable and variables.
Outputs: Boolean res;

clearMessages() Clears the error buffer. Outputs: Boolean res;
clearVariables() Clear all user defined variables. Outputs: Boolean res;
codeToString(className) Converts to a string after encoding. Inputs: $Code className;

Outputs: String res;
compareSimulationResults(
fileName, refFileName,
logFileName, refTol,
absTol,vars)

Compares simulation results. Inputs: String fileName;
String refFileName; String logFileName; Real
refTol; Real absTol; String[:] vars; Outputs:
String res;

deleteFile(fileName) Deletes a file with the given name. Inputs: String fileName;
Outputs: Boolean res;

dirName(path) Returns the directory name of a file path. Inputs: String
path; Outputs: String dirName;

dumpXMLDAE(className) Outputs the DAE system corresponding to a specific model.
Inputs: TypeName className; Outputs: String res;

echo(setEcho) echo (false) disables Interactive output, echo(true) enables it again.
Inputs: Boolean setEcho; Outputs: Boolean newEcho;

generateCode(className) Generate C-code and compiled into a dll. Inputs: TypeName
className; Outputs: Boolean res;

generateHeader(fileName) Generates a C header file containing the external C interface of the
MetaModelica uniontypes in the loaded files. This C interface is
called by the parser to build nodes for the abstract syntax tree.
Inputs: String fileName; Outputs: Boolean res;

getAlgorithmCount(className) Counts the number of Algorithm sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getAlgorithmItemsCount(
className)

Counts the number of Algorithm items in a class. Inputs:
TypeName className; Outputs: Integer count;

getAnnotationCount(
className)

Counts the number of Annotation sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getAnnotationVersion() Returns the current annotation version. Outputs: String
annotationVersion;

getAstAsCorbaString(
fileName)

Print the whole AST on the CORBA format for records. Inputs:
String fileName; Outputs: String res;

getClassComment(className) Returns the class comment. Inputs: TypeName className;
Outputs: String comment;

getClassNames(fileName) Returns the list of class names defined in the class. Inputs:
String fileName; Outputs: TypeName classNames;

getClassRestriction(classNam Returns the type of class. Inputs: TypeName className;

169

e) Outputs: String restriction;
getClassInformation(classNam
e)

Returns the list containing the information of the class. Inputs:
TypeName className; Outputs: String information;

getClassesInModelicaPath() Outputs: String classesInModelicaPath;
getCompileCommand() Outputs: String compileCommand;
getIconAnnotation(className) Returns the icon representation of the class. Inputs: TypeName

className; Outputs: String out;
getDiagramAnnotation(classNa
me)

Returns the diagram representation of the class. Inputs: TypeName
className; Outputs: String out;

getParameterName(className) Returns the list of parameters present in the class. Inputs:
TypeName className; Outputs: String out;

getParameterValue(className,
parameter)

Returns the parameter value. Inputs: TypeName className;
String parameter; Outputs: String value;

getComponentModifierNames(cl
assName)

Returns the list of component modifiers present in the class.
Inputs: TypeName className; Outputs: String out;

getComponentModifierValue(cl
assName, modifier)

Returns the component modifier value. Inputs: TypeName
className; String modifier; Outputs: String value;

getExtendsModifierNames(clas
sName)

Returns the list of extends modifiers present in the class. Inputs:
TypeName className; Outputs: String out;

getExtendsModifierValue(clas
sName, modifier)

Returns the extends modifier value. Inputs: TypeName
className; String modifier; Outputs: String value;

getDocumentationAnnotation
(className)

Returns the documentation annotation defined in the class.
Inputs: TypeName className; Outputs: String out[2]
"{info,revision}";

getEnvironmentVar(var) Returns the value of the environment variable. Inputs: String
var; Outputs: String value;

getEquationCount(className) Counts the number of Equation sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getEquationItemsCount(
className)

Counts the number of Equation items in a class. Inputs:
TypeName className; Outputs: Integer count;

getErrorString() Returns the current error message. Outputs: String
errorString;

getImportCount (className) Counts the number of Import sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getInitialAlgorithmCount(
className)

Counts the number of Initial Algorithm sections in a class.
Inputs: TypeName className; Outputs: Integer count;

getInitialAlgorithmItemsCoun
t(className)

Counts the number of Initial Algorithm items in a class. Inputs:
TypeName className; Outputs: Integer count;

getInitialEquationCount(
className)

Counts the number of Initial Equation sections in a class. Inputs:
TypeName className; Outputs: Integer count;

getInitialEquationItemsCount
(className)

Counts the number of Initial Equation items in a class. Inputs:
TypeName className; Outputs: Integer count;

getInstallationDirectoryPath
()

Returns OPENMODELICAHOME if it is set; on some platforms the
default path is returned if it is not set. Outputs: String
installationDirectoryPath;

170

getLanguageStandard() Returns the current Modelica Language Standard in use. Outputs:
String outVersion;

getMessagesString() Returns the current error message. Outputs: String
messagesString;

getMessagesStringInternal() Returns Error: message, TRANSLATION, Error, code. Outputs:
ErrorMessage[:] messagesString;

getModelicaPath() Get the Modelica Library Path. Outputs: String
modelicaPath;

getNoSimplify() Returns true if noSimplify flag is set. Outputs: Boolean res;
getNthAlgorithm(className,
index)

Returns the Nth Algorithm section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthAlgorithmItem(
className, index)

Returns the Nth Algorithm Item. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthAnnotationString
(className, index)

Returns the Nth Annotation section as string. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthEquation(className,
index)

Returns the Nth Equation section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthEquationItem(
className)

Returns the Nth Equation Item. Inputs: TypeName className;
Integer index; Outputs: String res;

getNthImport(className,
index)

Returns the Nth Import as string. Inputs: TypeName
className; Integer index; Outputs: String out[3]
"{\"Path\",\"Id\",\"Kind\"}";

getNthInitialAlgorithm(
className, index)

Returns the Nth Initial Algorithm section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthInitialAlgorithmItem(
className, index)

Returns the Nth Initial Algorithm Item. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthInitialEquation(
className, index)

Returns the Nth Initial Equation section. Inputs: TypeName
className; Integer index; Outputs: String res;

getNthInitialEquationItem(
className, index)

Returns the Nth Initial Equation Item. Inputs: TypeName
className; Integer index; Outputs: String res;

getOrderConnections() Returns true if orderConnections flag is set.
Outputs: Boolean isOrderConnections;

getPackages(className) Returns the list of packages defined in the class. Inputs:
TypeName className = $Code(AllLoadedClasses);
Outputs: TypeName classNames[:];

getPlotSilent() Returns true if plotSilent flag is set.
Outputs: Boolean isPlotSilent;

getSettings() Returns the settings. Outputs: String settings;
getShowAnnotations() Outputs: Boolean show;
getSourceFile(className) Returns the filename of the class. Inputs: TypeName

className; Outputs: String filename;
getTempDirectoryPath() Returns the current user temporary directory location.

Outputs: String tempDirectoryPath;
getVectorizationLimit() Outputs: Integer vectorizationLimit;
getVersion(c1) Returns the version of the Modelica compiler. Inputs: TypeName

171

c1 = $Code(OpenModelica); Outputs: String version;
help() Display the OpenModelica help text.

Outputs: String helpText;
iconv(string, from, to) Converts one multibyte characters from one character set to

another. Inputs: String string; String from; String
to; Outputs: String res;

importFMU(fileName, workDir) Imports the Functional Mockup Unit. Inputs: String
filename; String workdir "./" "The output directory for
imported FMU files. <default> will put the files to current
working directory."; Outputs: Boolean res;

instantiateModel(className) Instantiate model, resulting in a .mof file of flattened Modelica.
Inputs: TypeName className; Outputs: String res;

isModel(className) Returns true if the given class has restriction model.
Inputs: TypeName className; Outputs: Boolean res;

isPackage(className) Returns true if the given class is a package.
Inputs: TypeName className; Outputs: Boolean res;

isPartial(className) Returns true if the given class is partial.
Inputs: TypeName className; Outputs: Boolean res;

list(className) Print class definition. Inputs: TypeName className;
Outputs: String classDef;

listVariables() Print user defined variables. Outputs: VariableName res;
loadFile(fileName) Load models from file.

Inputs: String fileName; Outputs: Boolean res;
loadFileInteractive(
fileName)

Outputs the class names in the parsed file (top level only). Used by
OpenModelica MDT. Inputs: String fileName; Outputs:
TypeName names[:];

loadFileInteractiveQualified
(fileName)

Output all the class names in the parsed file fully qualified. Inputs:
String fileName; Outputs: TypeName names[:];

loadModel(className) Load the file corresponding to the class, using the Modelica class
name to file name mapping to locate the file.
Inputs: TypeName className; Outputs: Boolean res;

loadString(data) Parses the data and merges the resulting AST with the loaded
AST. Inputs: String data; Outputs: TypeName names[:];

parseFile(filename) Parses the file and returns a list of the classes found in the file.
Inputs: String filename; Outputs: TypeName names[:];

parseString(data) Parses the string data and returns the list of classes found in
data. Inputs: String data; Outputs: TypeName names[:];

plot(variable, options) Plots variable, which is a single variable name.
Inputs: VariableName variable; String title;
Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};
Outputs: Boolean res;

plot(variables, options) Plots variables, which is a vector of variable names.
Inputs: VariableName variables; String title;
Boolean legend; Boolean gridLines;

172

Real xrange[2] i.e., {xmin,xmax};
Real yrange[2] i.e., {ymin,ymax};
Outputs: Boolean res;

plotAll(options) Plot all variables; It does not accept any variable names as input .
Inputs: String title; Boolean legend; Boolean
gridLines; Real xrange[2] i.e., {xmin,xmax};
Real yrange[2] i.e., {ymin,ymax};
Outputs: Boolean res;

plotParametric(variables1,
variables2, options)

Plot each pair of corresponding variables from the vectors of
variables variables1, variables2 as a parametric plot.
Inputs: VariableName variables1[:]; VariableName
variables2[size(variables1,1)]; String title;
Boolean legend; Boolean gridLines; Real
range[2,2]; Outputs: Boolean res;

readFile(fileName) The contents of the given file are returned. Note that if the
function fails, the error message is returned as a string instead of
multiple outputs or similar.
 Inputs: String fileName; Outputs: String content;

readFileNoNumeric(fileName) Returns the contents of the file, with anything resembling a (real)
number stripped out, and at the end adding: Inputs: String
fileName; Outputs: String content;

readFilePostprocessLineDirec
tive(fileName)

Searches lines for the #modelicaLine directive. Inputs: String
fileName; Outputs: String res;

readFileShowLineNumbers(
fileName)

Prefixes each line in the file with <n>: where n is the line number.
Note: Scales O(n^2)
 Inputs: String fileName; Outputs: String res;

readSimulationResult(
fileName, variables, size)

Reads the simulation result for a list of variables and returns a
matrix of values (each column as a vector or values for a variable.)
Size of result is also given as input. Inputs: String fileName;
VariableName variables[:]; Integer size;
Outputs: Real res[size(variables,1),size)];

readSimulationResultSize(
fileName)

The number of intervals that are present in the output file. Inputs:
String fileName; Outputs: Integer size;

readSimulationResultVars(
fileName)

Returns the variables in the simulation file; you can use val()
and plot() commands using these names. Inputs: String
fileName; Outputs: String[:] vars;

regex(string, re, options) Sets the error buffer and returns -1 if the regular expression does
not compile. Inputs: String string; String re; Integer
maxMatches; Boolean extended; Boolean
caseInsensitive; Outputs: Integer numMatches;
String matchedSubstrings[maxMatches];

regexBool(string, re,
options)

Returns true if the string matches the regular expression.
Inputs: String string; String re; Boolean extended;
Boolean caseInsensitive; Outputs: Boolean matches;

regularFileExists(fileName) Returns the content of the given files. Note that if the function
fails, the error message is returned as a string instead of multiple
outputs or similar.
Inputs: String fileName; Outputs: Boolean res;

173

reopenStandardStream(
_stream, fileName)

Executes the script file given as argument.
Inputs: String fileName; StandardStream _stream;
Outputs: Boolean res;

runScript(fileName) Executes the script file given as argument.
Inputs: String fileName; Outputs: Boolean res;

save(className) Save class definition.
Inputs: TypeName className Outputs: Boolean res;

saveAll(fileName) Save the entire loaded AST to file.
 Inputs: String fileName; Outputs: Boolean res;

saveModel(fileName,
className)

Save class definition in a file. Inputs: String fileName;
TypeName className Outputs: Boolean res;

saveTotalModel(fileName,
className)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

saveTotalSCode(fileName,
className)

Inputs: String fileName; TypeName className Outputs:
Boolean res;

setAnnotationVersion(
annotationVersion)

Sets the annotation version. Inputs: String
annotationVersion; Outputs: Boolean res;

setCXXCompiler(compiler) Inputs: String compiler; Outputs: Boolean res;
setClassComment(className,
fileName)

Sets the class comment. Inputs: String fileName; TypeName
className Outputs: Boolean res;

saveTotalModel(fileName,
className)

Save total class definition into file of a class. Inputs: String
fileName; TypeName className Outputs: Boolean res;

setCompileCommand(
compileCommand)

Sets the default Compilation command. Inputs: String
compileCommand; Outputs: Boolean res;

setCompiler(compiler) Sets the default C Compiler. Inputs: String compiler;
Outputs: Boolean res;

setCompilerFlags(
compilerFlags)

Sets the compiler flags that are used while compiling the
simulation executable. Inputs: String compilerFlags;
Outputs: Boolean res;

setCompilerPath(
compilerPath)

Sets the default compiler location. Inputs: String
compilerPath; Outputs: Boolean res;

setComponentModifierValue(cl
assName, modifier, value)

Sets the component modifier value. Inputs: TypeName
className; String modifier; String value; Outputs:
Boolean result;

setDebugFlags(debugFlags) Sets the debug flags. For details run “omc +help=debug” on the
command line interface. Inputs: String debugFlags; Outputs:
Boolean res;

setEnvironmentVar(var,
value)

Sets an environment variable. Inputs: String var; String
value; Outputs: Boolean res;

setExtendsModifierValue(clas
sName, modifier, value)

Sets the extends modifier value. Inputs: TypeName className;
String modifier; String value; Outputs: Boolean
result;

setIndexReductionMethod(
method)

Sets the index reduction method e.g
setIndexReductionMethod ("dynamicStateSelection").
Inputs: String method; Outputs: Boolean res;

setInitXmlStartValue(fileNam Sets the parameter start value in the model_init.xml file. No

174

e, variableName, startValue,
outputFile)

need to recompile the model. Inputs: String fileName;
String variableName; String startValue; String
outputFile; Outputs: Boolean success;

setInstallationDirectoryPath
(debugFlags)

Sets the OPENMODELICAHOME environment variable.
Inputs: String installationDirectoryPath; Outputs:
Boolean res;

setLanguageStandard(
inVersion)

Sets the Modelica Language Standard. Inputs: String
inVersion; Outputs: Boolean res;

setLinker(linker) Sets the linker.
Inputs: String linker; Outputs: Boolean res;

setLinkerFlags(linkerFlag) Sets the linker flag.
Inputs: String linkerFlag; Outputs: Boolean res;

setModelicaPath(
modelicaPath)

Sets the modelica path. See loadModel() for a description of what
the MODELICAPATH is used for.
Inputs: String modelicaPath; Outputs: Boolean res;

setNoSimplify(noSimplify) Sets the noSimplify flag.
Inputs: Boolean noSimplify; Outputs: Boolean res;

setOrderConnections(
debugFlags)

Sets orderering for connect equation. If set, the compiler will order
connect equations alphabetically.
Inputs: Boolean orderConnections; Outputs: Boolean
res;

setParameterValue(className,
parameter, value)

Sets the parameter value in the class, i.e., updates the parameter
definition equation. Inputs: TypeName className; String
parameter; String value; Outputs: Boolean result;

setPlotSilent(silent) Sets the plotSilent flag. If the flag is true show the OMPlot
window and pass the arguments to it. If the flag is false don’t show
OMPlot and just output the list of arguments. The false case is
used in OMNotebook where the plot window is not shown; instead
the arguments are read and an embedded plot window is created.
Inputs: Boolean silent; Outputs: Boolean res;

setPostOptModules(modules) Sets the post optimization modules to use in the compiler back
end. Use the command "omc +help=optmodules" for more
information. Example: setPostOptModules("lateInline",
"inlineArrayEqn","removeSimpleEquations") Inputs:
String module1, module2, …; Outputs: Boolean res;

setPreOptModules(module) Sets the pre optimization modules to use in the back end. Use the
command line command "omc +help=optmodules" for more
information. Inputs: String module; Outputs: Boolean res;

setShowAnnotations() Show annotations in the flattened code. Inputs: Boolean show;
Outputs: Boolean res;

setSourceFile(className,
fileName)

Sets the output file name for the specified class. Inputs: TypeName
className; String fileName; Outputs: Boolean res;

setTempDirectoryPath(tempDir
ectoryPath)

Sets the current user's temporary directory path. This is not the
same as the current user's working directory which is set by the
cd() command. Inputs: String tempDirectoryPath;
Outputs: Boolean res;

setVectorizationLimit(Sets scalarization limit. Arrays of size above this limit will not be

175

vectorizationLimit) scalarized, i.e., expanded to a set of scalar elements.
Inputs: Integer scalarizationLimit; Outputs: Boolean
res;

simulate(className, options) Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;
Real outputInterval; String method;
Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

stringReplace(str, source,
target)

Relace source with target within str producing res.
Inputs: String str; String source; String target;
Outputs: String res;

strtok() Splits the strings at the places given by the token, for example:
strtok("abcbdef","b") => {"a","c","def"}
Inputs: String string; String token; Outputs:
String[:] strings;

system(fileName) Execute system command. Inputs: String fileName; Outputs:
Integer res;

typeNameString(c1) Converts the qualified class name to string. Inputs: TypeName
c1; Outputs: String out;

typeNameStrings(c1) Converts the qualified class name to strings. Inputs: TypeName
c1; Outputs: String out[:];

typeOf(variableName) Inputs: VariableName variableName; Outputs: String
res;

uriToFilename(uri) Handles modelica:// and file:// URI's. The result is an absolute
path on the local system. The result depends on the current
MODELICAPATH. Returns the empty string on failure.
Inputs: String uri; Outputs: String fileName;

val(var, time) Returns the value of the variable at a certain time point.
Inputs: VariableName var; Real time; Outputs: Real
valAtTime;

writeFile(fileName, data,
optional)

Write the data to file. Returns true on success.
Inputs: String fileName; String data; Boolean
append; Outputs: Boolean res;

14.3.1 Examples

The following is an interactive session with the OpenModelica environment including some of the
abovementioned commands and examples. First we start the system, and use the command line interface
from OMShell, OMNotebook, or command window of some of the other tools. The system responds with a
header line:
OpenModelica 1.9.0

We type in a very small model:
>> model test "Testing OpenModelica Scripts" Real x, y; equation x = 5.0; y = 6.0;
end test;

176

 {test}

We give the command to flatten a model:
>> instantiateModel(test)
 "class test
 Real x;
 Real y;
 equation
 x = 5.0;
 y = 6.0;
 end test;
 "

A range expression is typed in:
>> a:=1:10
 {1,2,3,4,5,6,7,8,9,10}

It is multiplied by 2:
>> a*2
 {2,4,6,8,10,12,14,16,18,20}

The variables are cleared:
>> clearVariables()
 true

We print the loaded class test from its internal representation:
>> list(test)
 "class test \"Testing OpenModelica Scripts\"
 Real x;
 Real y;
 equation
 x = 5.0;
 y = 6.0;
 end test;
 "

We get the name and other properties of a class:
>> getClassNames()
 {test}

>> getClassComment(test)
 "Testing OpenModelica Scripts"

>> isPartial(test)
 false

>> isPackage(test)
 false

>> isModel(test)
 true

>> checkModel(test)
 "Check of test completed successfully.
 Class test has 2 equation(s) and 2 variable(s).
 2 of these are trivial equation(s).
 "

>> clear()
 true

>> getClassNames()
 {}

The common combination of a simulation followed by getting a value and doing a plot:
>> simulate(test, stopTime=3.0);

177

>> val(x , 2.0)
 5.0

>> plot(y)

 >> plotAll()

VanDerPol Model and Parametric Plot
>> loadFile("C:/OpenModelica1.9.0/share/doc/omc/testmodels/VanDerPol.mo")
 true

>> instantiateModel(VanDerPol)
 "class VanDerPol \"Van der Pol oscillator model\"
 Real x(start = 1.0);
 Real y(start = 1.0);
 parameter Real lambda = 0.3;
 equation
 der(x) = y;
 der(y) = lambda * (1.0 - x ^ 2.0) * y - x;
 end VanDerPol;
 "

>> simulate(VanDerPol);

>> plotParametric(x,y)

178

Interactive Function Calls, Reading, and Writing

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be
stored in the variable x. The type and the value of the expression is returned.
>> x := 1:12
 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

The function bubblesort is called to sort this vector in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this
is the declared type of the function result. The input Integer vector was automatically converted to a
Real vector according to the Modelica type coercion rules.
>> bubblesort(x)
 {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

Now we want to try another small application, a simplex algorithm for optimization. First read in a small
matrix containing coefficients that define a simplex problem to be solved:
>> a := read("simplex_in.txt")
 {{-1,-1,-1, 0, 0, 0, 0, 0, 0},
 {-1, 1, 0, 1, 0, 0, 0, 0, 5},
 { 1, 4, 0, 0, 1, 0, 0, 0, 45},
 { 2, 1, 0, 0, 0, 1, 0, 0, 27},
 { 3,-4, 0, 0, 0, 0, 1, 0, 24},
 { 0, 0, 1, 0, 0, 0, 0, 1, 4}}

Then call the simplex algorithm implemented as the Modelica function simplex1. This function returns
four results, which are represented as a tuple of four return values:
>> simplex1(a)
 Tuple: 4
 Real[8]: {9, 9, 4, 5, 0, 0, 33, 0}
 Real: 22
 Integer: 9
 Integer: 3

179

It is possible to compute an expression, e.g. 12:-1:1, and store the result in a file using the write
command:
>> write(12:-1:1,"test.dat")

We can read back the stored result from the file into a variable y:
>> y := read("test.dat")
 Integer[12]: {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

It is also possible to give operating system commands via the system utility function. A command is
provided as a string argument. The example below shows system applied to the Linux command cat,
which here outputs the contents of the file bubblesort.mo to the output stream.
>> system("cat bubblesort.mo")
function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

Another built-in command is cd, the change current directory command. The resulting current directory is
returned as a string.
>> cd("..")

 "/home/petfr/modelica"

14.4 OpenModelica Python Scripting Commands
The OpenModelica Python API Interface—OMPython, attempts to mimic the Modelica scripting
commands available in the OpenModelica environment, see the table in Section 13.1.4 for available Python
scripting commands. To test the command outputs, see some test examples described in section 13.1.

180

Chapter 15

Frequently Asked Questions (FAQ)

Below are some frequently asked questions in three areas, with associated answers.

15.1 OpenModelica General
• Q: OpenModelica does not read the MODELICAPATH environment variable, even though this is

part of the Modelica Language Specification.
• A: Use the OPENMODELICALIBRARY environment variable instead. We have temporarily

switched to this variable, in order not to interfere with other Modelica tools which might be
installed on the same system. In the future, we might switch to a solution with a settings file, that
also allows the user to turn on the MODELICAPATH functionality if desired.

• Q: How do I enter multi-line models into OMShell since it evaluates when typing the Enter/Return
key?

• A: There are basically three methods: 1) load the model from a file using the pull-down menu or the
loadModel command. 2) Enter the model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple lines is no problem, and copy/paste the model into OMShell
as one operation, then push Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

15.2 OMNotebook
• Q: OMNotebook hangs, what to do?
• A: It is probably waiting for the omc.exe (compiler) process. (Under windows): Kill the processes

omc.exe, g++.exe (C-compiler), as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process OMNotebook.exe and restart manually.

• Q: After a previous session, when starting OMNotebook again, I get a strange message.
• A: You probably quit the previous OpenModelica session in the wrong way, which left the process

omc.exe running. Kill that process, and try starting OMNotebook again.

• Q: I copy and paste a graphic figure from Word or some other application into OMNotebook, but
the graphic does not appear. What is wrong?

• A: OMNotebook supports the graphic picture formats supported by Qt 4, including the .png, .bmp
(bitmap) formats, but not for example the gif format. Try to convert your picture into one of the

181

supported formats, (e.g. in Word, first do paste as bitmap format), and then copy the converted
version into a text cell in OMNotebook.

• Q: I select a cell, copy it (e.g. Ctrl-C), and try to paste it at another place in the notebook. However,
this does not work. Instead some other text that I earlier put on the clipboard is pasted into the
nearest text cell.

• A: The problem is wrong choice of cursor mode, which can be text insertion or cell insertion. If you
click inside a cell, the cursor become vertical, and OMNotebook expects you to paste text inside the
cell. To paste a cell, you must be in cell insertion mode, i.e., click between two cells (or after a
cell), you will get a vertical line. Place the cursor carefully on that vertical line until you see a small
horizontal cursor. Then you should past the cell.

• Q: I am trying to click in cells to place the vertical character cursor, but it does not seem to react.
• A: This seems to be a Qt feature. You have probably made a selection (e.g. for copying) in the

output section of an evaluation cell. This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work normally.

• Q: I have copied a text cell and start writing at the beginning of the cell. Strangely enough, the font
becomes much smaller than it should be.

• A: This seems to be a Qt feature. Keep some of the old text and start writing the new stuff inside the
text, i.e., at least one character position to the right. Afterwards, delete the old text at the beginning
of the cell.

15.3 OMDev - OpenModelica Development Environment
• Q: I get problems compiling and linking some files when using OMDev with the MINGW (Gnu) C

compiler under Windows.
• A: You probably have some Logitech software installed. There is a known bug/incompatibility in

Logitech products. For example, if lvprcsrv.exe is running, kill it and/or prevent it to start again at
reboot; it does not do anything really useful, not needed for operation of web cameras or mice.

182

Appendix A

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief description of their contents.
Right now the versions from 1.3.1 to 1.9.2 are described.

A.1 OpenModelica 1.9.2, February 2015
The most important enhancements in the OpenModelica 1.9.2 release:

• The OpenModelica compiler has moved to a new development and release platform: the
bootstrapped OpenModelica compiler. This gives advantages in terms of better programmability,
maintenance, debugging, modularity and current/future performance increases.

• The OpenModelica graphic connection editor OMEdit has become 3-5 times faster due to faster
communication with the OpenModelica compiler linked as a DLL. This was made possible by
moving to the bootstrapped compiler.

• Further improved simulation coverage for a number of libraries.
• OMEdit graphic connection editor improvements

A.1.1 OpenModelica Compiler (OMC)
This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not
restricted to the following:

• The OpenModelica compiler has moved to a new development and release platform: the
bootstrapped OpenModelica compiler. This gives advantages in terms of better programmability,
maintenance, debugging, modularity and current/future performance increases.

• Further improved simulation coverage for a number of libraries compared to 1.9.1 (Oct 25, 2014).
For example:

o MSL 3.2.1 100% compilation, 97% simulation (3% increase)
o MSL Trunk 99% compilation (1% increase), 93% simulation (3% increase)
o ModelicaTest 3.2.1 99% compilation (2% increase), 95% simulation (6% increase)
o ThermoSysPro 100% compilation, 80% simulation (17% increase)
o ThermoPower 97% compilation (5% increase), 85% simulation (5% increase)
o Buildings 80% compilation (1% increase), 73% simulation (1% increase)

• Further enhanced OMC compiler front-end coverage, scalability, speed and memory.
• Better initialization.
• Improved tearing.
• Improved non-linear, linear and mixed system solving.
• Common subexpression elimination support - drastically increases performance of some models.

A.1.2 OpenModelica Notebook (OMNotebook)
No changes apart from bug fixing.

183

A.1.3 OpenModelica Shell (OMShell)
No changes.

A.1.4 OpenModelica Eclipse Plug-in (MDT)
No changes apart from bug fixing.

A.1.5 OpenModelica Development Environment (OMDev)
No changes apart from bug fixing.

A.1.6 Graphic Editor OMEdit
• The OpenModelica graphic connection editor OMEdit has become 3-5 times faster due to faster

communication with the OpenModelica compiler linked as a DLL. This was made possible by
moving to the bootstrapped compiler.

• Enhanced simulation setup window in OMEdit, which among other things include better support for
integration methods and dassl options.

• Support for running multiple simultaneous simulation.
• Improved handling of modifiers.
• Re-simulate with changed options, including history support and re-simulating with previous

options possibly edited.
• More user friendly user interface by improved connection line drawing, added snap to grid for icons

and conversion of icons from PNG to SVG, and some additional fixes.

A.1.7 Optimization
Some smaller improvements of the Dynamic Optimization module with collocation, using Ipopt.

A.1.8 FMI Support
Further improved for FMI 2.0 model exchange import and export, now compliant according to the FMI
compliance tests. FMI 1.0 support has been further improved.

A.2 OpenModelica 1.9.1, October 2014
The most important enhancements in the OpenModelica 1.9.1 release:

• Improved library support.
• Further enhanced OMC compiler front-end coverage and scalability
• Significant improved simulation support for libraries using Fluid and Media.
• Dynamic model debugger for equation-based models integrated with OMEdit.
• Dynamic algorithm model debugger with OMEdit; including support for MetaModelica when using

the bootstrapped compiler.

New features: Dynamic debugger for equation-based models; Dynamic Optimization with collocation built
into OpenModelica, performance analyzer integrated with the equation model debugger.

A.2.1 OpenModelica Compiler (OMC)
This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not
restricted to the following:

184

• Further improved OMC model compiler support for a number of libraries including MSL 3.2.1,
ModelicaTest 3.2.1, PetriNet, Buildings, PowerSystems, OpenHydraulics, ThermoPower, and
ThermoSysPro.

• Further enhanced OMC compiler front-end coverage, scalability, speed and memory.
• Better coverage of Modelica libraries using Fluid and Media.
• Automatic differentiation of algorithms and functions.
• Improved testing facilities and library coverage reporting.
• Improved model compilation speed by compiling model parts in parallel (bootstrapped compiler).
• Support for running model simulations in a web browser.
• New faster initialization that handles over-determined systems, under-determined systems, or both.
• Compiler back-end partly redesigned for improved scalability and better modularity.
• Better tearing support.
• The first run-time Modelica equation-based model debugger, not available in any other Modelica

tool, integrated with OMEdit.
• Enhanced performance profiler integrated with the debugger.
• Improved parallelization prototype with several parallelization strategies, task merging and

duplication, shorter critical paths, several scheduling strategies.
• Some support for general solving of mixed systems of equations.
• Better error messages.
• Improved bootstrapped OpenModelica compiler.
• Better handling of array subscripts and dimensions.
• Improved support for reduction functions and operators.
• Better support for partial functions.
• Better support for function tail recursion, which reduces memory usage.
• Partial function evaluation in the back-end to improve solving singular systems.
• Better handling of events/zero crossings.
• Support for colored Jacobians.
• New differentiation package that can handle a much larger number of expressions.
• Support for sparse solvers.
• Better handling of asserts.
• Improved array and matrix support.
• Improved overloaded operators support.
• Improved handling of overconstrained connection graphs.
• Better support for the cardinality operator.
• Parallel compilation of generated code for speeding up compilation.
• Split of model files into several for better compilation scalability.
• Default linear tearing.
• Support for impure functions.
• Better compilation flag documentation.
• Better automatic generation of documentation.
• Better support for calling functions via instance.
• New text template based unparsing for DAE, Absyn, SCode, TaskGraphs, etc.
• Better support for external objects.
• Improved C++ runtime.
• Improved testing facilities.

185

• New unit checking implementation.
• Support for model rewriting expressions via rewriting rules in an external file.

A.2.2 OpenModelica Notebook (OMNotebook)
No changes apart from bug fixing.

A.2.3 OpenModelica Shell (OMShell)
No changes.

A.2.4 OpenModelica Eclipse Plug-in (MDT)
No changes apart from bug fixing.

A.2.5 OpenModelica Development Environment (OMDev)
No changes apart from bug fixing.

A.2.6 Graphic Editor OMEdit
• Convenient editing of model parameter values and re-simulation without recompilation after

parameter changes.
• Improved plotting.
• Better handling of flags/units/resources/crashes.
• Run-time Modelica equation-based model debugger that provides both dynamic run-time

debugging and debugging of symbolic transformations.
• Run-time Modelica algorithmic code debugger; also MetaModelica debugger with the bootstrapped

OpenModelica compiler.

A.2.7 Optimization
A builtin integrated Dynamic Optimization module with collocation, using Ipopt, is now available.

A.2.8 FMI Support
Support for FMI 2.0 model exchange import and export has been added. FMI 1.0 support has been further
improved.

A.3 OpenModelica 1.9.0, October 2013
The three most important enhancements in the OpenModelica 1.9.0 release:

• OpenModelica compiler support for most of the Fluid library.
• Support for the significantly updated library MSL 3.2.1 final version.
• Significantly enhanced graphical user interface in OMEdit.

New features: integration of the PySimulator analysis package; Dynamic Optimization with CasADi.

A.3.1 OpenModelica Compiler (OMC)
This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not
restricted to the following:

• A more stable and complete OMC model compiler. The 1.9.0 final version simulates many more
models than the previous 1.8.1 version and OpenModelica 1.9.0 beta versions.

• Much better simulation support for MSL 3.2.1, now 270 out of 274 example models compile (98%)
and 247 (90%) simulate, compared to 30% simulating in the 1.9.0 beta1 release.

186

• Much better simulation for the ModelicaTest 3.2.1 library, now 412 out of 428 models compile
(96%), and 380 (88%) simulate, compared to 32% in November 2012.

• Improved tearing algorithm for the compiler backend. Tearing is by default used.
• Much faster matching and dynamic state selection algorithms for the compiler backend.
• New index reduction algorithm implementation.
• New default initialization method that symbolically solves the initialization problem much faster

and more accurately. This is the first version that in general initialize hybrid models correctly.
• Better class loading from files. The package.order file is now respected and the file structure is

more thoroughly examined.
• Basic support for pure/impure functions.
• It is now possible to translate the error messages in the omc kernel.
• Enhanced ModelicaML version with support for value bindings in requirements-driven modeling

available for the latest Eclipse and Papyrus versions. GUI specific adaptations. Automated model
composition workflows (used for model-based design verification against requirements) are
modularized and have improved in terms of performance.

• FMI for co-simulation with OMC as master. Improved FMI import/export, model exchange.
• Checking (when possible) that variables have been assigned to before they are used in algorithmic

code.
• Full version of Python scripting.
• 3D graphics visualization using the Modelica3D library.
• The PySimulator package from DLR for additional analysis is integrated with OpenModelica (see

Modelica2012 paper), and included in the OpenModelica distribution.
• Prototype support for uncertainty computations, special feature enabled by special flag.
• Parallel algorithmic Modelica support (ParModelica) for efficient portable parallel algorithmic

programming based on the OpenCL standard, for CPUs and GPUs.
• Support for optimization of semiLinear according to MSL 3.3 chapter 3.7.2.5 semiLinear.

A.3.2 OpenModelica Notebook (OMNotebook)
The DrModelica interactive document has been updated and the models tested. Almost all models now
simulate with OpenModelica.

A.3.3 OpenModelica Shell (OMShell)
No changes.

A.3.4 OpenModelica Eclipse Plug-in (MDT)
Enhanced debugger for algorithmic Modelica code, supporting both standard Modelica algorithmic code
called from simulation models, and MetaModelica code.

A.3.5 OpenModelica Development Environment (OMDev)
Migration of version handling and configuration management from CodeBeamer to Trac.

A.3.6 Graphic Editor OMEdit
• General GUI: backward and forward navigation support in Documentation view, enhanced

parameters window with support for Dialog annotation. Most of the images are converted from
raster to vector graphics i.e PNG to SVG.

187

• Libraries Browser: better loading of libraries, library tree can now show protected classes, show
library items class names as middle ellipses if the class name text is larger, more options via the
right click menu for quick usage.

• ModelWidget: add the partial class as a replaceable component, look for the default component
prefixes and name when adding the component.

• GraphicsView: coordinate system manipulation for icon and diagram layers. Show red box for
models that do not exist. Show default graphical annotation for the components that doesn’t have
any graphical annotations. Better resizing of the components. Properties dialog for primitive shapes
i.e Line, Polygon, Rectangle, Ellipse, Text and Bitmap.

• File Opening: open one or more Modelica files, allow users to select the encoding while opening
the file, convert files to UTF-8 encoding, allow users to open the OpenModelica result files.

• Variables Browser: find variables in the variables browser, sorting in the variables browser.
• Plot Window: clear all curves of the plot window, preserve the old selected variable and update its

value with the new simulation result.
• Simulation: support for all the simulation flags, read the simulation output as soon as is is obtained,

output window for simulations, options to set matching algorithm and index reduction method for
simulation. Display all the files generated during the simulation is now supported. Options to set
OMC command line flags.

• Options: options for loading libraries via loadModel and loadFile each time GUI starts, save the last
open file directory location, options for setting line wrap mode and syntax highlighting.

• Modelica Text Editor: preserving user customizations, new search & replace functionality, support
for comment/uncomment.

• Notifications: show custom dialogs to users allowing them to choose whether they want to see this
dialog again or not.

• Model Creation: Better support for creating new classes. Easy creation of extends classes or nested
classes.

• Messages Widget: Multi line error messages are now supported.
• Crash Detection: The GUI now automatically detects the crash and writes a stack trace file. The

user is given an option to send a crash report along with the stack trace file and few other useful
files via email.

• Autosave: OMEdit saves the currently edited model regularly, in order to avoid losing edits after
GUI or compiler crash. The save interval can be set in the Options menu.

A.3.7 Optimization
Dynamic optimization with XML export to the CaSAdi package is now integrated with OpenModelica.
Moreover, a native integrated Dynamic Optimization prototype using Ipopt is now in the OpenModelica
release, but currently needs a special flag to be turned on since it needs more testing and refinement before
being generally made available.

A.3.8 FMI Support
FMI co-simulation with OpenModelica as master. Improved FMI Import and export for model exchange.
Simulation of multiple instances of the FMU is now possible. Partial support for FMI 2.0 model exchange.

A.4 OpenModelica 1.8.1, March 2012
The OpenModelica 1.8.1 release has a faster and more stable OMC model compiler. It flattens and
simulates more models than the previous 1.8.0 version. Significant flattening speedup of the compiler has
been achieved for certain large models. It also contains a New ModelicaML version with support for value

188

bindings in requirements-driven modeling and importing Modelica library models into ModelicaML
models. A beta version of the new OpenModelica Python scripting is also included.

A.4.1 OpenModelica Compiler (OMC)
This release includes bug fixes and improvements of the flattening frontend part of the OpenModelica
Compiler (OMC) and several improvements of the backend, including, but not restricted to:

• A faster and more stable OMC model compiler. The 1.8.1 version flattens and simulates more
models than the previous 1.8.0 version.

• Support for operator overloading (except Complex numbers).
• New ModelicaML version with support for value bindings in requirements-driven modeling and

importing Modelica library models into ModelicaML models.
• Faster plotting in OMNotebook. The feature sendData has been removed from OpenModelica. As a

result, the kernel no longer depends on Qt. The plot3() family of functions have now replaced to
plot(), which in turn have been removed. The non-standard visualize() command has been removed
in favour of more recent alternatives.

• Store OpenModelica documentation as Modelica Documentation annotations.
• Re-implementation of the simulation runtime using C instead of C++ (this was needed to export

FMI source-based packages).
• FMI import/export bug fixes.
• Changed the internal representation of various structures to share more memory. This significantly

improved the performance for very large models that use records.
• Faster model flattening, Improved simulation, some graphical API bug fixes.
• More robust and general initialization, but currently time-consuming.
• New initialization flags to omc and options to simulate(), to control whether fast or robust

initialization is selected, or initialization from an external (.mat) data file.
• New options to API calls list, loadFile, and more.
• Enforce the restriction that input arguments of functions may not be assigned to.
• Improved the scripting environment. cl := $TypeName(Modelica);getClassComment(cl); now

works as expected. As does looping over lists of typenames and using reduction expressions.
• Beta version of Python scripting.
• Various bugfixes.

• NOTE: interactive simulation is not operational in this release. It will be put back again in the near
future, first available as a nightly build. It is also available in the previous 1.8.0 release.

A.4.2 OpenModelica Notebook (OMNotebook)
Faster and more stable plottning.

A.4.3 OpenModelica Shell (OMShell)
No changes.

A.4.4 OpenModelica Eclipse Plug-in (MDT)
Small fixes and improvements.

A.4.5 OpenModelica Development Environment (OMDev)
No changes.

189

A.4.6 Graphic Editor OMEdit
Bug fixes.

A.4.7 New OMOptim Optimization Subsystem
Bug fixes.

A.4.8 FMI Support
Bug fixes.

A.5 OpenModelica 1.8, November 2011
The OpenModelica 1.8 release contains OMC flattening improvements for the Media library – it now
flattens the whole library and simulates about 20% of its example models. Moreover, about half of the
Fluid library models also flatten. This release also includes two new tool functionalities – the FMI for
model exchange import and export, and a new efficient Eclipse-based debugger for
Modelica/MetaModelica algorithmic code.

A.5.1 OpenModelica Compiler (OMC)
This release includes bug fixes and improvements of the flattening frontend part of the OpenModelica
Compiler (OMC) and several improvements of the backend, including, but not restricted to:

• A faster and more stable OMC model compiler. The 1.8.1 version flattens and simulates more
models than the previous 1.7.0 version.

• Flattening of the whole Media library, and about half of the Fluid library. Simulation of
approximately 20% of the Media library example models.

• Functional Mockup Interface FMI 1.0 for model exchange, export and import, for the Windows
platform.

• Bug fixes in the OpenModelica graphical model connection editor OMEdit, supporting easy-to-use
graphical drag-and-drop modeling and MSL 3.1.

• Bug fixes in the OMOptim optimization subsystem.
• Beta version of compiler support for a new Eclipse-based very efficient algorithmic code debugger

for functions in MetaModelica/Modelica, available in the development environment when using the
bootstrapped OpenModelica compiler.

• Improvements in initialization of simulations.
• Improved index reduction with dynamic state selection, which improves simulation.
• Better error messages from several parts of the compiler, including a new API call for giving better

error messages.
• Automatic partitioning of equation systems and multi-core parallel simulation of independent parts

based on the shared-memory OpenMP model. This version is a preliminary experimental version
without load balancing.

A.5.2 OpenModelica Notebook (OMNotebook)
No changes.

A.5.3 OpenModelica Shell (OMShell)
Small performance improvements.

A.5.4 OpenModelica Eclipse Plug-in (MDT)

190

Small fixes and improvements. MDT now also includes a beta version of a new Eclipse-based very
efficient algorithmic code debugger for functions in MetaModelica/Modelica.

A.5.5 OpenModelica Development Environment (OMDev)
Third party binaries, including Qt libraries and executable Qt clients, are now part of the OMDev package.
Also, now uses GCC 4.4.0 instead of the earlier GCC 3.4.5.

A.5.6 Graphic Editor OMEdit
Bug fixes. Access to FMI Import/Export through a pull-down menu. Improved configuration of library
loading. A function to go to a specific line number. A button to cancel an on-going simulation. Support for
some updated OMC API calls.

A.5.7 New OMOptim Optimization Subsystem
Bug fixes, especially in the Linux version.

A.5.8 FMI Support
The Functional Mockup Interface FMI 1.0 for model exchange import and export is supported by this
release. The functionality is accessible via API calls as well as via pull-down menu commands in OMEdit.

A.6 OpenModelica 1.7, April 2011
The OpenModelica 1.7 release contains OMC flattening improvements for the Media library, better and
faster event handling and simulation, and fast MetaModelica support in the compiler, enabling it to
compiler itself. This release also includes two interesting new tools – the OMOpttim optimization
subsystem, and a new performance profiler for equation-based Modelica models.

A.6.1 OpenModelica Compiler (OMC)
This release includes bug fixes and performance improvements of the flattening frontend part of the
OpenModelica Compiler (OMC) and several improvements of the backend, including, but not restricted to:

• Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.
• Progress in supporting the Media library, some models now flatten.
• Much faster simulation of many models through more efficient handling of alias variables, binary

output format, and faster event handling.
• Faster and more stable simulation through new improved event handling, which is now default.
• Simulation result storage in binary .mat files, and plotting from such files.
• Support for Unicode characters in quoted Modelica identifiers, including Japanese and Chinese.
• Preliminary MetaModelica 2.0 support. (use setCommandLineOptions({"+g=MetaModelica"})).

Execution is as fast as MetaModelica 1.0, except for garbage collection.
• Preliminary bootstrapped OpenModelica compiler: OMC now compiles itself, and the bootstrapped

compiler passes the test suite. A garbage collector is still missing.
• Many bug fixes.

A.6.2 OpenModelica Notebook (OMNotebook)
Improved much faster and more stable 2D plotting through the new OMPlot module. Plotting from binary
.mat files. Better integration between OMEdit and OMNotebook, copy/paste between them.

191

A.6.3 OpenModelica Shell (OMShell)
Same as previously, except the improved 2D plotting through OMPlot.

A.6.4 OpenModelica Eclipse Plug-in (MDT)
Same as previously.

A.6.5 OpenModelica Development Environment (OMDev)
No changes.

A.6.6 Graphic Editor OMEdit
Several enhancements of OMEdit are included in this release. Support for Icon editing is now available.
There is also an improved much faster 2D plotting through the new OMPlot module. Better integration
between OMEdit and OMNotebook, with copy/paste between them. Interactive on-line simulation is
available in an easy-to-use way.

A.6.7 New OMOptim Optimization Subsystem
A new optimization subsystem called OMOptim has been added to OpenModelica. Currently, parameter
optimization using genetic algorithms is supported in this version 0.9. Pareto front optimization is also
supported.

A.6.8 New Performance Profiler
A new, low overhead, performance profiler for Modelica models has been developed.

A.7 OpenModelica 1.6, November 2010
The OpenModelica 1.6 release primarily contains flattening, simulation, and performance improvements
regarding Modelica Standard Library 3.1 support, but also has an interesting new tool – the OMEdit
graphic connection editor, and a new educational material called DrControl, and an improved ModelicaML
UML/Modelica profile with better support for modeling and requirement handling.

A.7.1 OpenModelica Compiler (OMC)
This release includes bug fix and performance improvemetns of the flattening frontend part of the
OpenModelica Compiler (OMC) and some improvements of the backend, including, but not restricted to:

• Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1), except Media and Fluid.
• Improved flattening speed of a factor of 5-20 compared to OpenModelica 1.5 for a number of

models, especially in the MultiBody library.
• Reduced memory consumption by the OpenModelica compiler frontend, for certain large models a

reduction of a factor 50.
• Reorganized, more modular OpenModelica compiler backend, can now handle approximately

30 000 equations, compared to previously approximately 10 000 equations.
• Better error messages from the compiler, especially regarding functions.
• Improved simulation coverage of MSL 3.1. Many models that did not simulate before are now

simulating. However, there are still many models in certain sublibraries that do not simulate.
• Progress in supporting the Media library, but simulation is not yet possible.
• Improved support for enumerations, both in the frontend and the backend.
• Implementation of stream connectors.
• Support for linearization through symbolic Jacobians.

192

• Many bug fixes.

A.7.2 OpenModelica Notebook (OMNotebook)
A new DrControl electronic notebook for teaching control and modeling with Modelica.

A.7.3 OpenModelica Shell (OMShell)
Same as previously.

A.7.4 OpenModelica Eclipse Plug-in (MDT)
Same as previously.

A.7.5 OpenModelica Development Environment (OMDev)
Several enhancements. Support for match-expressions in addition to matchcontinue. Support for real if-
then-else. Support for if-then without else-branches. Modelica Development Tooling 0.7.7 with small
improvements such as more settings, improved error detection in console, etc.

A.7.6 New Graphic Editor OMEdit
A new improved open source graphic model connection editor called OMEdit, supporting 3.1 graphical
annotations, which makes it possible to move models back and forth to other tools without problems. The
editor has been implemented by students at Linköping University and is based on the C++ Qt library.

A.8 OpenModelica 1.5, July 2010
This OpenModelica 1.5 release has major improvements in the OpenModelica compiler frontend and some
in the backend. A major improvement of this release is full flattening support for the MultiBody library as
well as limited simulation support for MultiBody. Interesting new facilities are the interactive simulation
and the integrated UML-Modelica modeling with ModelicaML. Approximately 4 person-years of
additional effort have been invested in the compiler compared to the 1.4.5 version, e.g., in order to have a
more complete coverage of Modelica 3.0, mainly focusing on improved flattening in the compiler frontend.

A.8.1 OpenModelica Compiler (OMC)
This release includes major improvements of the flattening frontend part of the OpenModelica Compiler
(OMC) and some improvements of the backend, including, but not restricted to:

• Improved flattening speed of at least a factor of 10 or more compared to the 1.4.5 release, primarily
for larger models with inner-outer, but also speedup for other models, e.g. the robot model flattens
in approximately 2 seconds.

• Flattening of all MultiBody models, including all elementary models, breaking connection graphs,
world object, etc. Moreover, simulation is now possible for at least five MultiBody models:
Pendulum, DoublePendulum, InitSpringConstant, World, PointGravityWithPointMasses.

• Progress in supporting the Media library, but simulation is not yet possible.
• Support for enumerations, both in the frontend and the backend.
• Support for expandable connectors.
• Support for the inline and late inline annotations in functions.
• Complete support for record constructors, also for records containing other records.
• Full support for iterators, including nested ones.
• Support for inferred iterator and for-loop ranges.
• Support for the function derivative annotation.

193

• Prototype of interactive simulation.
• Prototype of integrated UML-Modelica modeling and simulation with ModelicaML.
• A new bidirectional external Java interface for calling external Java functions, or for calling

Modelica functions from Java.
• Complete implementation of replaceable model extends.
• Fixed problems involving arrays of unknown dimensions.
• Limited support for tearing.
• Improved error handling at division by zero.
• Support for Modelica 3.1 annotations.
• Support for all MetaModelica language constructs inside OpenModelica.
• OpenModelica works also under 64-bit Linux and Mac 64-bit OSX.
• Parallel builds and running test suites in parallel on multi-core platforms.
• New OpenModelica text template language for easier implementation of code generators, XML

generators, etc.
• New OpenModelica code generators to C and C# using the text template language.
• Faster simulation result data file output optionally as comma-separated values.
• Many bug fixes.

It is now possible to graphically edit models using parts from the Modelica Standard Library 3.1, since the
simForge graphical editor (from Politecnico di Milano) that is used together with OpenModelica has been
updated to version 0.9.0 with a important new functionality, including support for Modelica 3.1 and 3.0
annotations. The 1.6 and 2.2.1 Modelica graphical annotation versions are still supported.

A.8.2 OpenModelica Notebook (OMNotebook)
Improvements in platform availability.

• Support for 64-bit Linux.
• Support for Windows 7.
• Better support for MacOS, including 64-bit OSX.

A.8.3 OpenModelica Shell (OMShell)
Same as previously.

A.8.4 OpenModelica Eclipse Plug-in (MDT)
Minor bug fixes.

A.8.5 OpenModelica Development Environment (OMDev)
Minor bug fixes.

A.9 OpenModelica 1.4.5, January 2009
This release has several improvements, especially platform availability, less compiler memory usage, and
supporting more aspects of Modelica 3.0.

A.9.1 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

• Less memory consumption and better memory management over time. This also includes a better
API supporting automatic memory management when calling C functions from within the compiler.

194

• Modelica 3.0 parsing support.
• Export of DAE to XML and MATLAB.
• Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).
• Support for record and strings as function arguments.
• Many bug fixes.
• (Not part of OMC): Additional free graphic editor SimForge can be used with OpenModelica.

A.9.2 OpenModelica Notebook (OMNotebook)
A number of improvements, primarily in the plotting functionality and platform availability.

• A number of improvements in the plotting functionality: scalable plots, zooming, logarithmic plots,
grids, etc.

• Programmable plotting accessible through a Modelica API.
• Simple 3D visualization.
• Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

A.9.3 OpenModelica Shell (OMShell)
Same as previously.

A.9.4 OpenModelica Eclipse Plug-in (MDT)
Minor bug fixes.

A.9.5 OpenModelica Development Environment (OMDev)
Same as previously.

A.1 OpenModelica 1.4.4, Feb 2008
This release is primarily a bug fix release, except for a preliminary version of new plotting functionality
available both from the OMNotebook and separately through a Modelica API. This is also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium Public License), with
support from the recently created Open Source Modelica Consortium. An integrated version handler, bug-,
and issue tracker has also been added.

A.9.6 OpenModelica Compiler (OMC)
This release includes small improvements and some bugfixes of the OpenModelica Compiler (OMC):

• Better support for if-equations, also inside when.
• Better support for calling functions in parameter expressions and interactively through dynamic

loading of functions.
• Less memory consumtion during compilation and interactive evaluation.
• A number of bug-fixes.

A.9.7 OpenModelica Notebook (OMNotebook)
Test release of improvements, primarily in the plotting functionality and platform availability.

• Preliminary version of improvements in the plotting functionality: scalable plots, zooming,
logarithmic plots, grids, etc., currently available in a preliminary version through the plot2 function.

• Programmable plotting accessible through a Modelica API.

195

A.9.8 OpenModelica Shell (OMShell)
Same as previously.

A.9.9 OpenModelica Eclipse Plug-in (MDT)
This release includes minor bugfixes of MDT and the associated MetaModelica debugger:

A.9.10 OpenModelica Development Environment (OMDev)
Extended test suite with a better structure. Version handling, bug tracking, issue tracking, etc. now
available under the integrated Codebeamer

A.10 OpenModelica 1.4.3, June 2007
This release has a number of significant improvements of the OMC compiler, OMNotebook, the MDT
plugin and the OMDev. Increased platform availability now also for Linux and Macintosh, in addition to
Windows. OMShell is the same as previously, but now ported to Linux and Mac.

A.10.1 OpenModelica Compiler (OMC)
This release includes a number of improvements of the OpenModelica Compiler (OMC):

• Significantly increased compilation speed, especially with large models and many packages.
• Now available also for Linux and Macintosh platforms.
• Support for when-equations in algorithm sections, including elsewhen.
• Support for inner/outer prefixes of components (but without type error checking).
• Improved solution of nonlinear systems.
• Added ability to compile generated simulation code using Visual Studio compiler.
• Added "smart setting of fixed attribute to false. If initial equations, OMC instead has fixed=true as

default for states due to allowing overdetermined initial equation systems.
• Better state select heuristics.
• New function getIncidenceMatrix(ClassName) for dumping the incidence matrix.
• Builtin functions String(), product(), ndims(), implemented.
• Support for terminate() and assert() in equations.
• In emitted flat form: protected variables are now prefixed with protected when printing flat class.
• Some support for tables, using omcTableTimeIni instead of dymTableTimeIni2.
• Better support for empty arrays, and support for matrix operations like a*[1,2;3,4].
• Improved val() function can now evaluate array elements and record fields, e.g. val(x[n]), val(x.y) .
• Support for reinit in algorithm sections.
• String support in external functions.
• Double precision floating point precision now also for interpreted expressions
• Better simulation error messages.
• Support for der(expressions).
• Support for iterator expressions such as {3*i for i in 1..10}.
• More test cases in the test suite.
• A number of bug fixes, including sample and event handling bugs.

A.10.2 OpenModelica Notebook (OMNotebook)
A number of improvements, primarily in the platform availability.

196

• Available on the Linux and Macintosh platforms, in addition to Windows.
• Fixed cell copying bugs, plotting of derivatives now works, etc.

A.10.3 OpenModelica Shell (OMShell)
Now available also on the Macintosh platform.

A.10.4 OpenModelica Eclipse Plug-in (MDT)
This release includes major improvements of MDT and the associated MetaModelica debugger:

• Greatly improved browsing and code completion works both for standard Modelica and for
MetaModelica.

• Hovering over identifiers displays type information.
• A new and greatly improved implementation of the debugger for MetaModelica algorithmic code,

operational in Eclipse. Greatly improved performance – only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step over, data structure browsing, etc.

• Many bug fixes.

A.10.5 OpenModelica Development Environment (OMDev)
Increased compilation speed for MetaModelica. Better if-expression support in MetaModelica.

A.11 OpenModelica 1.4.2, October 2006
This release has improvements and bug fixes of the OMC compiler, OMNotebook, the MDT plugin and the
OMDev. OMShell is the same as previously.

A.11.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

• Improved initialization and index reduction.
• Support for integer arrays is now largely implemented.
• The val(variable,time) scripting function for accessing the value of a simulation result variable at a

certain point in the simulated time.
• Interactive evalution of for-loops, while-loops, if-statements, if-expressions, in the interactive

scripting mode.
• Improved documentation and examples of calling the Model Query and Manipulation API.
• Many bug fixes.

A.11.2 OpenModelica Notebook (OMNotebook)
Search and replace functions have been added. The DrModelica tutorial (all files) has been updated,
obsolete sections removed, and models which are not supported by the current implementation marked
clearly. Automatic recognition of the .onb suffix (e.g. when double-clicking) in Windows makes it even
more convenient to use.

A.11.3 OpenModelica Eclipse Plug-in (MDT)
Two major improvements are added in this release:

• Browsing and code completion works both for standard Modelica and for MetaModelica.
• The debugger for algorithmic code is now available and operational in Eclipse for debugging of

MetaModelica programs.

197

A.11.4 OpenModelica Development Environment (OMDev)
Mostly the same as previously.

A.12 OpenModelica 1.4.1, June 2006
This release has only improvements and bug fixes of the OMC compiler, the MDT plugin and the OMDev
components. The OMShell and OMNotebook are the same.

A.12.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

• Support for external objects.
• OMC now reports the version number (via command line switches or CORBA API getVersion()).
• Implemented caching for faster instantiation of large models.
• Many bug fixes.

A.12.2 OpenModelica Eclipse Plug-in (MDT)
Improvements of the error reporting when building the OMC compiler. The errors are now added to the
problems view. The latest MDT release is version 0.6.6 (2006-06-06).

A.12.3 OpenModelica Development Environment (OMDev)
Small fixes in the MetaModelica compiler. MetaModelica Users Guide is now part of the OMDev release.
The latest OMDev was release in 2006-06-06.

A.13 OpenModelica 1.4.0, May 2006
This release has a number of improvements described below. The most significant change is probably that
OMC has now been translated to an extended subset of Modelica (MetaModelica), and that all development
of the compiler is now done in this version..

A.13.1 OpenModelica Compiler (OMC)
This release includes further improvements of the OpenModelica Compiler (OMC):

• Partial support for mixed system of equations.
• New initialization routine, based on optimization (minimizing residuals of initial equations).
• Symbolic simplification of builtin operators for vectors and matrices.
• Improved code generation in simulation code to support e.g. Modelica functions.
• Support for classes extending basic types, e.g. connectors (support for MSL 2.2 block connectors).
• Support for parametric plotting via the plotParametric command.
• Many bug fixes.

A.13.2 OpenModelica Shell (OMShell)
Essentially the same OMShell as in 1.3.1. One difference is that now all error messages are sent to the
command window instead of to a separate log window.

A.13.3 OpenModelica Notebook (OMNotebook)
Many significant improvements and bug fixes. This version supports graphic plots within the cells in the
notebook. Improved cell handling and Modelica code syntax highlighting. Command completion of the
most common OMC commands is now supported. The notebook has been used in several courses.

198

A.13.4 OpenModelica Eclipse Plug-in (MDT)
This is the first really useful version of MDT. Full browsing of Modelica code, e.g. the MSL 2.2, is now
supported. (MetaModelica browsing is not yet fully supported). Full support for automatic indentation of
Modelica code, including the MetaModelica extensions. Many bug fixes. The Eclipse plug-in is now in use
for OpenModelica development at PELAB and MathCore Engineering AB since approximately one month.

A.13.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.

• A separate web page for OMDev (OpenModelica Development Environment).

• A pre-packaged OMDev zip-file with precompiled binaries for development under Windows using
the mingw Gnu compiler from the Eclipse MDT plug-in. (Development is also possible using
Visual Studio).

• All source code of the OpenModelica compiler has recently been translated to an extended subset of
Modelica, currently called MetaModelica. The current size of OMC is approximately 100 000 lines
All development is now done in this version.

• A new tutorial and users guide for development in MetaModelica.
• Successful builds and tests of OMC under Linux and Solaris.

A.14 OpenModelica 1.3.1, November 2005
This release has several important highlights.

This is also the first release for which the New BSD (Berkeley) open-source license applies to the source
code, including the whole compiler and run-time system. This makes is possible to use OpenModelica for
both academic and commercial purposes without restrictions.

A.14.1 OpenModelica Compiler (OMC)
This release includes a significantly improved OpenModelica Compiler (OMC):

• Support for hybrid and discrete-event simulation (if-equations, if-expressions, when-equations;
not yet if-statements and when-statements).

• Parsing of full Modelica 2.2
• Improved support for external functions.
• Vectorization of function arguments; each-modifiers, better implementation of replaceable, better

handling of structural parameters, better support for vector and array operations, and many other
improvements.

• Flattening of the Modelica Block library version 1.5 (except a few models), and simulation of most
of these.

• Automatic index reduction (present also in previous release).
• Updated User's Guide including examples of hybrid simulation and external functions.

A.14.2 OpenModelica Shell (OMShell)
An improved window-based interactive command shell, now including command completion and better
editing and font size support.

A.14.3 OpenModelica Notebook (OMNotebook)

199

A free implementation of an OpenModelica notebook (OMNOtebook), for electronic books with course
material, including the DrModelica interactive course material. It is possible to simulate and plot from this
notebook.

A.14.4 OpenModelica Eclipse Plug-in (MDT)
An early alpha version of the first Eclipse plug-in (called MDT for Modelica Development Tooling) for
Modelica Development. This version gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

A.14.5 OpenModelica Development Environment (OMDev)
The following mechanisms have been put in place to support OpenModelica development.

• Bugzilla support for OpenModelica bug tracking, accessible to anybody.
• A system for automatic regression testing of the compiler and simulator, (+ other system parts)

usually run at check in time.
• Version handling is done using SVN, which is better than the previously used CVS system. For

example, name change of modules is now possible within the version handling system.

201

Appendix B

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form
of software development, design, documentation, project leadership, tutorial material, promotion, etc. The
individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor
of this document followed by main contributors followed by contributors in alphabetical order.

B.1 OpenModelica Contributors 2014
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.
Jens Frenkel, TU Dresden, Dresden, Germany.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.
Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Robert Braun, IEI, Linköping University, Linköping, Sweden.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Stefan Brus, PELAB, Linköping University, Linköping, Sweden.
Lena Buffoni, PELAB, Linköping University, Linköping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.
Filippo Donida, Politecnico di Milano, Milan, Italy.
Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Michael Hanke, NADA, KTH, Stockholm.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.
Alf Isaksson, ABB Corporate Research, Västerås, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.
Tommi Karhela, VTT, Espoo, Finland.
Petter Krus, IEI, Linköping University, Linköping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland.
Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.
Oliver Lenord, Siemens PLM, California, USA.
Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Henrik Magnusson, Linköping, Sweden.
Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

202

Tuomas Miettinen, VTT, Espoo, Finland.
Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.
Hannu Niemistö, VTT, Espoo, Finland.
Peter Nordin, IEI, Linköping University, Linköping, Sweden.
Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.
Karl Pettersson, IEI, Linköping University, Linköping, Sweden.
Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Jhansi Remala, PELAB, Linköping University, Linköping, Sweden.
Reino Ruusu, VTT, Espoo, Finland.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.
Wladimir Schamai, EADS, Hamburg, Germany.
Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Alachew Shitahun, PELAB, Linköping University, Linköping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia
Ingo Staack, IEI, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.
Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.
Azam Zia, PELAB, Linköping University, Linköping, Sweden.

B.2 OpenModelica Contributors 2013
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.
Jens Frenkel, TU Dresden, Dresden, Germany.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.
Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Robert Braun, IEI, Linköping University, Linköping, Sweden.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Stefan Brus, PELAB, Linköping University, Linköping, Sweden.
Lena Buffoni, PELAB, Linköping University, Linköping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.
Filippo Donida, Politecnico di Milano, Milan, Italy.
Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Michael Hanke, NADA, KTH, Stockholm.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.
Alf Isaksson, ABB Corporate Research, Västerås, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

203

Tommi Karhela, VTT, Espoo, Finland.
Petter Krus, IEI, Linköping University, Linköping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland.
Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.
Oliver Lenord, Siemens PLM, California, USA.
Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Henrik Magnusson, Linköping, Sweden.
Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.
Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.
Hannu Niemistö, VTT, Espoo, Finland.
Peter Nordin, IEI, Linköping University, Linköping, Sweden.
Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.
Karl Pettersson, IEI, Linköping University, Linköping, Sweden.
Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Jhansi Remala, PELAB, Linköping University, Linköping, Sweden.
Reino Ruusu, VTT, Espoo, Finland.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.
Wladimir Schamai, EADS, Hamburg, Germany.
Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Alachew Shitahun, PELAB, Linköping University, Linköping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia
Ingo Staack, IEI, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.
Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.
Azam Zia, PELAB, Linköping University, Linköping, Sweden.

B.3 OpenModelica Contributors 2012
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.
Jens Frenkel, TU Dresden, Dresden, Germany.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.
Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.
David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.
Mikael Axin, IEI, Linköping University, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Robert Braun, IEI, Linköping University, Linköping, Sweden.

204

David Broman, PELAB, Linköping University, Linköping, Sweden.
Stefan Brus, PELAB, Linköping University, Linköping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.
Filippo Donida, Politecnico di Milano, Milan, Italy.
Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Michael Hanke, NADA, KTH, Stockholm.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.
Alf Isaksson, ABB Corporate Research, Västerås, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.
Tommi Karhela, VTT, Espoo, Finland.
Petter Krus, IEI, Linköping University, Linköping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland.
Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.
Oliver Lenord, Siemens PLM, California, USA.
Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Henrik Magnusson, Linköping, Sweden.
Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.
Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.
Hannu Niemistö, VTT, Espoo, Finland.
Peter Nordin, IEI, Linköping University, Linköping, Sweden.
Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.
Karl Pettersson, IEI, Linköping University, Linköping, Sweden.
Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Jhansi Remala, PELAB, Linköping University, Linköping, Sweden.
Reino Ruusu, VTT, Espoo, Finland.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.
Wladimir Schamai, EADS, Hamburg, Germany.
Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Alachew Shitahun, PELAB, Linköping University, Linköping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia
Ingo Staack, IEI, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.
Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.
Azam Zia, PELAB, Linköping University, Linköping, Sweden.

B.4 OpenModelica Contributors 2011
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

205

Jens Frenkel, TU Dresden, Dresden, Germany.
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.
Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.
Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.
David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.
Mikael Axin, IEI, Linköping University, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Robert Braun, IEI, Linköping University, Linköping, Sweden.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Stefan Brus, PELAB, Linköping University, Linköping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.
Filippo Donida, Politecnico di Milano, Milan, Italy.
Anand Ganeson, PELAB, Linköping University, Linköping, Sweden.
Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Michael Hanke, NADA, KTH, Stockholm.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.
Alf Isaksson, ABB Corporate Research, Västerås, Sweden.
Kim Jansson, PELAB, Linköping University, Linköping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.
Tommi Karhela, VTT, Espoo, Finland.
Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.
Petter Krus, IEI, Linköping University, Linköping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland.
Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.
Oliver Lenord, Siemens PLM, California, USA.
Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linköping University, Linköping, Sweden
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Henrik Magnusson, Linköping, Sweden.
Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Tuomas Miettinen, VTT, Espoo, Finland.
Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.
Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.
Hannu Niemistö, VTT, Espoo, Finland.
Peter Nordin, IEI, Linköping University, Linköping, Sweden.
Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Karl Pettersson, IEI, Linköping University, Linköping, Sweden.
Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.
Wladimir Schamai, EADS, Hamburg, Germany.
Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

206

Ingo Staack, IEI, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.
Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.
Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.
Parham Vasaiely, EADS, Hamburg, Germany.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.
Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden.
Azam Zia, PELAB, Linköping University, Linköping, Sweden.

B.5 OpenModelica Contributors 2010
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.
Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.
Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.
David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Simon Björklén, PELAB, Linköping University, Linköping, Sweden.
Mikael Blom, PELAB, Linköping University, Linköping, Sweden.
Robert Braun, IEI, Linköping University, Linköping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Stefan Brus, PELAB, Linköping University, Linköping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy.
Filippo Donida, Politecnico di Milano, Milan, Italy.
Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.
Anders Fernström, PELAB, Linköping University, Linköping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Michael Hanke, NADA, KTH, Stockholm.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Alf Isaksson, ABB Corporate Research, Västerås, Sweden.
Kim Jansson, PELAB, Linköping University, Linköping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.
Tommi Karhela, VTT, Espoo, Finland.
Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.
Petter Krus, IEI, Linköping University, Linköping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland.
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.
Magnus Leksell, Linköping, Sweden.
Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.
Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.
Rickard Lindberg, PELAB, Linköping University, Linköping, Sweden
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Henrik Magnusson, Linköping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

207

Hannu Niemistö, VTT, Espoo, Finland.
Peter Nordin, IEI, Linköping University, Linköping, Sweden.
Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.
Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.
Atanas Pavlov, Munich, Germany.
Karl Pettersson, IEI, Linköping University, Linköping, Sweden.
Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Reino Ruusu, VTT, Espoo, Finland.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.
Wladimir Schamai, EADS, Hamburg, Germany.
Gerhard Schmitz, University of Hamburg, Hamburg, Germany.
Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.
Anton Sodja, University of Ljubljana, Ljubljana, Slovenia
Ingo Staack, IEI, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.
Robert Wotzlaw, Goettingen, Germany.
Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden.

B.6 OpenModelica Contributors 2009
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia
Simon Björklén, PELAB, Linköping University, Linköping, Sweden.
Mikael Blom, PELAB, Linköping University, Linköping, Sweden.
Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Stefan Brus, PELAB, Linköping University, Linköping, Sweden.
Francesco Casella, Politecnico di Milano, Milan, Italy
Filippo Donida, Politecnico di Milano, Milan, Italy
Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.
Anders Fernström, PELAB, Linköping University, Linköping, Sweden.
Jens Frenkel, TU Dresden, Dresden, Germany.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Michael Hanke, NADA, KTH, Stockholm
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Alf Isaksson, ABB Corporate Research, Västerås, Sweden
Kim Jansson, PELAB, Linköping University, Linköping, Sweden.
Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany
Tommi Karhela, VTT, Espoo, Finland.
Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.
Juha Kortelainen, VTT, Espoo, Finland
Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden
Magnus Leksell, Linköping, Sweden

208

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Henrik Magnusson, Linköping, Sweden
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Hannu Niemistö, VTT, Espoo, Finland
Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.
Atanas Pavlov, Munich, Germany.
Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.
Per Sahlin, Equa Simulation AB, Stockholm, Sweden.
Gerhard Schmitz, University of Hamburg, Hamburg, Germany
Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.
Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany
Robert Wotzlaw, Goettingen, Germany
Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden

B.7 OpenModelica Contributors 2008
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.
Mikael Blom, PELAB, Linköping University, Linköping, Sweden.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.
Anders Fernström, PELAB, Linköping University, Linköping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Kim Jansson, PELAB, Linköping University, Linköping, Sweden.
Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.
Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.
Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Simon Bjorklén, PELAB, Linköping University, Linköping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.8 OpenModelica Contributors 2007
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

209

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.
Anders Fernström, PELAB, Linköping University, Linköping, Sweden.
Pavel Grozman, Equa AB, Stockholm, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Ola Leifler, IDA, Linköping University, Linköping, Sweden.
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.
Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.
Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.
Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.
William Spinelli, Politecnico di Milano, Milano, Italy
Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.
Stefan Vorkoetter, MapleSoft, Waterloo, Canada.
Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden.
Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

B.9 OpenModelica Contributors 2006
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.
Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.
Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Anders Fernström, PELAB, Linköping University, Linköping, Sweden.
Elmir Jagudin, PELAB, Linköping University, Linköping, Sweden.
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.
Andreas Remar, PELAB, Linköping University, Linköping, Sweden.
Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.

B.10 OpenModelica Contributors 2005
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, PELAB, Linköping University and MathCore Engineering AB, Linköping, Sweden.
Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Ingemar Axelsson, PELAB, Linköping University, Linköping, Sweden.
David Broman, PELAB, Linköping University, Linköping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.
Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

B.11 OpenModelica Contributors 2004
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

210

Peter Aronsson, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
Peter Bunus, PELAB, Linköping University, Linköping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.
Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Emma Larsdotter Nilsson, PELAB, Linköping University, Linköping, Sweden.
Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.
Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.
Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

B.12 OpenModelica Contributors 2003
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.
Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Bunus, PELAB, Linköping University, Linköping, Sweden.
Vadim Engelson, PELAB, Linköping University, Linköping, Sweden.
Daniel Hedberg, Linköping University, Linköping, Sweden.
Eva-Lena Lengquist-Sandelin, PELAB, Linköping University, Linköping, Sweden.
Susanna Monemar, PELAB, Linköping University, Linköping, Sweden.
Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Erik Svensson, MathCore Engineering AB, Linköping, Sweden.

B.13 OpenModelica Contributors 2002
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.
Peter Aronsson, Linköping University, Linköping, Sweden.

Daniel Hedberg, Linköping University, Linköping, Sweden.
Henrik Johansson, PELAB, Linköping University, Linköping, Sweden
Andreas Karström, PELAB, Linköping University, Linköping, Sweden

B.14 OpenModelica Contributors 2001
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

B.15 OpenModelica Contributors 2000
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

B.16 OpenModelica Contributors 1999
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden

–

Peter Rönnquist, PELAB, Linköping University, Linköping, Sweden.

211

B.17 OpenModelica Contributors 1998
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

David Kågedal, PELAB, Linköping University, Linköping, Sweden.

Vadim Engelson, PELAB, Linköping University, Linköping, Sweden.

212

Appendix C

Integration Methods

SimulationRuntime\IntegrationAlgorithms\IntegrationAlgorithms.pdf

Index

literate programming 58

	Table of Contents
	Preface
	Chapter 1 Introduction
	1.1 System Overview
	1.2 Interactive Session with Examples
	1.2.1 Starting the Interactive Session
	1.2.2 Using the Interactive Mode
	1.2.3 Trying the Bubblesort Function
	1.2.4 Trying the system and cd Commands
	1.2.5 Modelica Library and DCMotor Model
	1.2.6 The val() function
	1.2.7 BouncingBall and Switch Models
	1.2.8 Clear All Models
	1.2.9 VanDerPol Model and Parametric Plot
	1.2.10 Using Japanese or Chinese Characters
	1.2.11 Scripting with For-Loops, While-Loops, and If-Statements
	1.2.12 Variables, Functions, and Types of Variables
	1.2.13 Getting Information about Error Cause
	1.2.14 Alternative Simulation Output Formats
	1.2.15 Using External Functions
	1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support
	1.2.17 Loading Specific Library Version
	1.2.18 Calling the Model Query and Manipulation API
	1.2.19 Quit OpenModelica
	1.2.20 Dump XML Representation
	1.2.21 Dump Matlab Representation

	1.3 Summary of Commands for the Interactive Session Handler
	1.4 Running the compiler from command line
	1.5 References

	Chapter 2 OMEdit – OpenModelica Connection Editor
	2.1 Starting OMEdit
	2.1.1 Microsoft Windows
	2.1.1 Linux
	2.1.2 Mac OS X

	2.2 MainWindow & Browsers
	2.2.1 Search Browser
	2.2.2 Libraries Browser
	2.2.3 Documentation Browser
	2.2.4 Variables Browser
	2.2.5 Messages Browser

	2.3 Perspectives
	2.3.1 Welcome Perspective
	2.3.2 Modeling Perspective
	2.3.3 Plotting Perspective

	2.4 Modeling a Model
	2.4.1 Creating a New Modelica class
	2.4.2 Opening a Modelica File
	2.4.3 Opening a Modelica File with Encoding
	2.4.4 Model Widget
	2.4.5 Adding Component Models
	2.4.6 Making Connections

	2.5 Simulating a Model
	2.5.1 General Tab
	2.5.2 Output Tab
	2.5.3 Simulation Flags Tab

	2.6 Plotting the Simulation Results
	2.6.1 Types of Plotting
	2.6.1.1 Time Plot
	2.6.1.2 Plot Parametric

	2.7 Re-simulating a Model
	2.8 How to Create User Defined Shapes – Icons
	2.9 Settings
	2.9.1 General
	2.9.2 Libraries
	2.9.3 Modelica Text Editor
	2.9.4 Graphical Views
	2.9.5 Simulation
	2.9.6 Messages
	2.9.7 Notifications
	2.9.8 Line Style
	2.9.9 Fill Style
	2.9.10 Curve Style
	2.9.11 Figaro
	2.9.12 Debugger
	2.9.13 FMI

	2.10 The Equation-based Debugger
	2.10.1 Enable Tracing Symbolic Transformations
	2.10.2 Load a Model to Debug
	2.10.3 Simulate and Start the Debugger
	2.10.4 Use the Transformation Debugger for Browsing

	2.11 The Algorithmic Debugger
	2.11.1 Adding Breakpoints
	2.11.2 Start the Algorithmic Debugger
	2.11.3 Debug Configurations
	2.11.4 Attach to Running Process
	2.11.5 Using the Algorithmic Debugger Window

	Chapter 3 2D Plotting
	3.1 Example
	3.2 Plotting Commands and their Options

	Chapter 4 OMNotebook with DrModelica and DrControl
	4.1 Interactive Notebooks with Literate Programming XE "literate programming"
	4.1.1 Mathematica Notebooks
	4.1.2 OMNotebook

	4.2 DrModelica Tutoring System – an Application of OMNotebook
	4.3 DrControl Tutorial for Teaching Control Theory
	4.3.1 Feedback Loop
	4.3.2 Mathematical Modeling with Characteristic Equations

	4.4 OpenModelica Notebook Commands
	4.4.1 Cells
	4.4.2 Cursors
	4.4.3 Selection of Text or Cells
	4.4.4 File Menu
	4.4.5 Edit Menu
	4.4.6 Cell Menu
	4.4.7 Format Menu
	4.4.8 Insert Menu
	4.4.9 Window Menu
	4.4.10 Help Menu
	4.4.11 Additional Features

	4.5 References

	Chapter 5 Functional Mock-up Interface - FMI
	5.1 FMI Import
	5.2 FMI Export

	Chapter 6 Optimization with OpenModelica
	6.1 Builtin Dynamic Optimization with OpenModelica and IpOpt
	6.1.1 Compiling the Modelica code
	6.1.2 An Example
	6.1.3 Different Options for the Optimizer IPOPT

	6.2 Dynamic Optimization with OpenModelica and CasADi
	6.2.1 Compiling the Modelica code
	6.2.2 An example
	6.2.3 Generated XML for Example
	6.2.4 XML Import to CasADi via OpenModelica Python Script

	6.3 Parameter Sweep Optimization using OMOptim
	6.3.1 Preparing the Model
	6.3.1.1 Parameters
	6.3.1.2 Constraints
	6.3.1.3 Objectives

	6.3.2 Set problem in OMOptim
	6.3.2.1 Launch OMOptim
	6.3.2.2 Create a new project
	6.3.2.3 Load models
	6.3.2.4 Create a new optimization problem
	6.3.2.5 Select Optimized Variables
	6.3.2.6 Select objectives
	6.3.2.7 Select and configure algorithm
	6.3.2.8 Launch
	6.3.2.9 Stopping Optimization

	6.3.3 Results
	6.3.3.1 Obtaining all Variable Values

	6.3.4 Window Regions in OMOptim GUI

	Chapter 7 MDT – The OpenModelica Development Tooling Eclipse Plugin
	7.1 Introduction
	7.2 Installation
	7.3 Getting Started
	7.3.1 Configuring the OpenModelica Compiler
	7.3.2 Using the Modelica Perspective
	7.3.3 Selecting a Workspace Folder
	7.3.4 Creating one or more Modelica Projects
	7.3.5 Building and Running a Project
	7.3.6 Switching to Another Perspective
	7.3.7 Creating a Package
	7.3.8 Creating a Class
	7.3.9 Syntax Checking
	7.3.10 Automatic Indentation Support
	7.3.11 Code Completion
	7.3.12 Code Assistance on Identifiers when Hovering
	7.3.13 Go to Definition Support
	7.3.14 Code Assistance on Writing Records
	7.3.15 Using the MDT Console for Plotting

	Chapter 8 Modelica Performance Analyzer
	8.1 Example Report Generated for the A Model
	8.1.1 Information
	8.1.2 Settings
	8.1.3 Summary
	8.1.4 Global Steps
	8.1.5 Measured Function Calls
	8.1.6 Measured Blocks
	8.1.6.1 Equations
	8.1.6.2 Variables

	8.1.7 Genenerated XML for the Example

	Chapter 9 MDT Debugger for Algorithmic Modelica
	9.1 The Eclipse-based Debugger for Algorithmic Modelica
	9.1.1 Starting the Modelica Debugging Perspective
	9.1.1.1 Create mos file
	9.1.1.2 Setting the debug configuration
	9.1.1.3 Setting/Deleting Breakpoints
	9.1.1.4 Starting the debugging session and enabling the debug perspective

	9.1.2 Debugging OpenModelica
	9.1.3 The Debugging Perspective

	Chapter 10 Modelica3D
	10.1 Windows
	10.2 MacOS

	Chapter 11 Simulation in Web Browser
	Chapter 12 Interoperability – C and Python
	12.1 Calling External C functions
	12.2 Calling Python Code
	13.1 OMPython – OpenModelica Python Interface
	13.1.1 Features of OMPython
	13.1.2 Using OMPython
	13.1.2.1 Test Commands
	13.1.2.2 Import As Library

	13.1.3 Implementation
	13.1.3.1 Client Implementation
	13.1.3.2 Parser Implementation
	13.1.3.3 The Simulation Results
	13.1.3.4 Record Construction

	13.1.4 API – List of Commands

	13.2 PySimulator

	Chapter 14 Modelica and Python Scripting API
	14.1 OpenModelica Modelica Scripting Commands
	14.1.1 OpenModelica Basic Commands

	14.2 OpenModelica System Commands
	14.3 All OpenModelica API Calls
	14.3.1 Examples

	14.4 OpenModelica Python Scripting Commands

	Chapter 15 Frequently Asked Questions (FAQ)
	15.1 OpenModelica General
	15.2 OMNotebook
	15.3 OMDev - OpenModelica Development Environment
	Index

