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Abstract

Mosaic is a parallelisation schema for decentralized applications. Mosaic introduces a set
of Byzantine fault-tolerant (BFT) consensus rules to compose heterogeneous blockchain
systems into one another. Decentralized applications can use Mosaic to compute over
a composed network of multiple blockchain systems in parallel. In this work we build
on existing work to construct an asynchronous, BFT algorithm for an open set of staked
validators to finalise a history of transactions executed off of an origin blockchain.
Any actor can propose these finalised histories on the origin blockchain to commit them
at any point. We detail how invalid proposals can be challenged under different security
models, from an honest supermajority of validators up to a single honest observer.
The resulting commits of state transitions form an unforkable chain of meta-blocks in a
smart contract on the origin blockchain, we call a meta-blockchain. A meta-blockchain
prioritises correctness over liveliness and halts if there is a consensus failure. We detail
how state can be recovered on the origin blockchain for a halted meta-blockchain that was
running on top of it.
The Mosaic consensus rules are asynchronous and as a result the state transitions of the
meta-blockchain can span an arbitrary time length and an arbitrary amount of computation.
The computational effort required by the origin blockchain to (challenge and) commit a
meta-block is constant in the computation executed and scales linearly in the number of
validators.
Validators are rewarded for the verification effort of the executed computation relative to their
contribution to the finalised and committed meta-block. There is no leader-selection or race
condition for rewards in the construction of a meta-block. As a result of the collaborative
reward mechanism the transaction fee market for execution on a meta-block is expected to
trend towards the physical hardware cost of redundant computation.
We present an atomic messaging protocol to communicate between the origin blockchain
and meta-blockchains running on top of it. We apply the messaging protocol explicitly
to transfer ERC20 tokens from origin to the meta-blockchain. We detail how ownership
of the tokens can be recovered without a time constraint on the origin blockchain if the
meta-blockchain would halt due to consensus failure.
You are invited to review critically all content and join discussions on
discuss.openst.org. The code is open-source and under development at
github.com/openstfoundation/mosaic-contracts.



1. Introduction

Mosaic is a parallelisation schema for decentralized applications. Mosaic introduces a set of Byzantine fault-
tolerant (BFT) consensus rules to compose heterogeneous blockchain systems into one another. Decentralized
applications can use Mosaic to compute over a composed network of multiple blockchain systems in parallel.

A decentralized application is an application for which the computation is requested, performed, and paid for
by independent actors. To date, Ethereum is the leading network of nodes that enables developers to write and
deploy code which can be called by independent users to collectively construct a shared state of the application.

The Ethereum network achieves agreement on the collective state by constructing a blockchain. A blockchain
derives correctness from full replication of the computation by nodes. Furthermore, to ensure correct execution
of blockchain computations, an order on the inputs of execution must be determinable. In its current
implementation, the Ethereum chain is appended through Proof-of-Work consensus. Proof-of-Work (PoW)
introduces a block reward incentive for nodes to keep producing blocks and thereby securing the chain of
historical blocks. However, PoW produces a serial execution model and nodes cannot be collectively rewarded
for the computation they all have to perform, which renders the system computationally inefficient[1].

Active research and implementation work is ongoing to scale Ethereum’s transaction throughput by dividing the
verification work into multiple sections, also referred to as shards. At the same time, Ethereum is committed to
moving from the probabilistic Proof-of-Work consensus engine to a BFT based Proof-of-Stake (PoS) consensus
engine1. The outset of a BFT consensus engine is to collectively produce a blockchain which provably —
under certain honesty assumptions — cannot finalize conflicting blocks.

Thus far a vision for a decentralized web has been a major driver of innovation. However, to power global
networks of billions of users and decentralized computation on vast decentralized data stores, it is reasonable
to assume no single blockchain network will suffice as a backbone for all types of applications. Much like
the internet is a composed network of networks, we can conceive decentralized applications to transcend any
single blockchain and execute across a network of blockchain networks.

We detail two protocols in this work. The first, a layer-2 protocol, constructs meta-blockchains on top of
existing blockchain networks to extend their state space and transaction throughput capacity. The second
protocol, called a gateway, acts as a message bus to send typed messages atomically between the underlying
layer-1 blockchain and the meta-blockchain running on top of it.

Together these two building blocks can be used by decentralized applications to construct a parallelisation
schema to increase computational capacity at lower transaction cost. In its simplest form, a decentralized
application can offload transaction processing to a single meta-blockchain. More advanced applications
can deploy logic across many meta-blockchains and process transactions in parallel while they can send
asynchronous messages across meta-blockchains.

2. Composing Meta-Blockchains

A meta-blockchain composes transactions executed on an auxiliary blockchain system into an origin blockchain,
such that the capacity of the origin blockchain extends and the auxiliary blockchain inherits the security
properties of the origin blockchain.

To this end consider two blockchain systems, an origin blockchain O with state transition rules tO which
progress the state ΣO

tO : ΣO → Σ′O (1)

and similarly consider an auxiliary system A with state transition rules tA such that tA : ΣA → Σ′A.

Transition rules for the origin and auxiliary system can be similar but do not have to be. In our discussion, when
we need an example, we will refer to the origin blockchain as Ethereum (Byzantium), running Proof-of-Work,
and for the auxiliary system we consider Go-Ethereum, running “clique” Proof-of-Authority (PoA). We
deliberately use PoA for our considerations for the auxiliary system to emphasize that the security for the
composed auxiliary system is not derived from the consensus engine of the auxiliary system. Rather the
security properties of the composed system must rely only on the security properties of the consensus rules of

1https://github.com/ethereum/eth2.0-specs/blob/master/specs/beacon-chain.md
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the origin blockchain and on the Mosaic BFT consensus rules composing the auxiliary system into the origin
system.2

We define a meta-blockchain B with a staked validator set VB on the origin blockchain. The blocks Bi of B
are committed to a core contract on origin O. For a given history of O,3 the meta-blockchain cannot fork if we
enforce that block Bn+1 can only be (proposed and) committed after block Bn has been committed.

We define a meta-block Bi(K,T, S) : ΣA → Σ′A to progress the state of the auxiliary system A, where we
call K the kernel, T the transition object and S the seal. A block Bi at height i of the meta-blockchain is
committed with a seal S when a +2/3 supermajority of the weighted votes has been verified.4 We will detail
later how the meta-block is constructed, but first we will describe the vote messages which, combined, seal a
meta-block.

2.1. Checkpoint Finalisation - Casper FFG

The reader is assumed at this point to be familiar with the work presented in Casper the Friendly Finality
Gadget[2] (FFG), as we will build on the logic and proofs presented there. We will intend to align with
definitions and notations where possible and highlight deviations where appropriate. This section briefly (and
incompletely) summarizes core concepts from the paper, so that the shared concepts are established for the
reader.

Casper FFG presents an algorithm to build up an overlay network of vote messages presented to a smart
contract about the blocks already produced by the underlying network of nodes running the blockchain. The
overlay network aims to repeatedly economically finalize a single branch of the underlying network. It does so
by allowing staked validators to cast votes which together can construct a justified chain.

A justified chain is formed by a sequence of supermajority links, where a link identifies a source blockhash
s and its height hs and a target blockhash t and its height ht. A vote message in Casper FFG is a link
〈s, t, hs, ht〉v signed by a validator v. A +2/3 supermajority signing of the same link makes it a supermajority
link which justifies the target block if the source block is itself already justified.5

In the work it is shown that checkpoints along a justified chain can additionally be considered finalized, if
and only if they are justified themselves and their direct child checkpoint is justified. It is then shown that,
should validators finalize a checkpoint on a contradicting branch of the history of the underlying blockchain,
minimally 1/3 of the validator weight must have signed vote messages that violate either one of two rules: the
Casper slashing conditions.

These slashing conditions can be intrinsically validated given two signed vote messages from a validator v. As
such a validator must never sign two vote messages 〈s1, t1, hs1 , ht1〉v and 〈s2, t2, hs2 , ht2〉v for which either
ht1 = ht2 or hs1 < hs2 < ht2 < ht1 holds.

It is additionally shown that validators can always finalize a new checkpoint, without being required to violate
the slashing conditions, given that the block proposers propose blocks to append to the finalized fork, i.e.
follow the fork selection rule of the overlay network.

2.2. Finalizing Auxiliary Systems

Given a validator set VB staked for the meta-blockchain on origin, validators v ∈ VB can submit, on the
auxiliary system, vote messages about the auxiliary system of the form

〈T̃ , s, t, hs, ht〉v (2)

where T̃ is the keccak256 hash of the transition object T .

2The block proposers of the auxiliary system do have the ability to censor transactions from the auxiliary system if they
have an ability to collude.

3The origin blockchain O might be probabilistically finalized, in which case a transaction to a contract can always
assert that it is valid only on the intended branch of history by referencing a historical blockhash.

4While a vote counted on a BFT system itself is already BFT for a simple majority, we still require a supermajority,
because the votes to commit a meta-block will be collected on the auxiliary system for which there is no assumption it is
BFT, and we want Mosaic to be able to finalize transactions on the auxiliary system before they are committed to origin.

5The genesis block of the auxiliary blockchain is considered justified by definition.
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We introduce a transition object hash in the vote message to externalize otherwise intrinsic properties of the
auxiliary system. This transition object allows the Mosaic validators to coarse-grain and abstract the auxiliary
system into a meta-blockchain when proposing meta-blocks on origin.

We require that any transition object is calculable by a smart contract on the blockchain in question for any
finalized checkpoint along a justified chain. For a given link, we define the transition object to refer to the
state of the blockchain at source block s. It then follows that for a given source blockhash s, T̃ is uniquely
determined by s and the same properties of accountable safety and plausible liveliness hold for a finalized
checkpoint on a justified chain constructed by such externalized vote messages (2), if we extend the slashing
conditions to accommodate for the transition object hash.

A validator v ∈ VB must never sign two externalized vote messages 〈T̃1, s1, t1, hs1 , ht1〉v and
〈T̃2, s2, t2, hs2 , ht2〉v such that any of the following three conditions holds:

1. ht1 = ht2 ,

2. hs1 < hs2 < ht2 < ht1 ,

3. s1 = s2 ∧ T1 6= T2.

As the slashing conditions can be intrinsically asserted to have been violated given two externalized vote
messages by the same validator, there is no communication overhead to assert a possible violation of these
conditions on the origin blockchain; even if the justified chain is being constructed on the auxiliary system. As
a result, the validators in VB can be held accountable on the origin blockchain for their voting actions on the
auxiliary system. The slashing condition can be asserted on both systems and there is a clear incentive for
the honest validators to assert any violation without delay on both the origin and auxiliary system, naturally
synchronising the validator weights when such an event occurs.

We will later in this work address a dynamic validator set VB, where validators can join and log out on
the origin system. However, already with a static validator set, we can observe that the finality gadget first
introduced for (re)defining economic finality in layer-2 of Ethereum’s PoW – turning miners into mere block
proposers and introducing a PoS (partial) consensus engine in the smart contract layer – can also be applied
to finalize an independent (auxiliary) system with a validator set whose stake is held on an external (origin)
blockchain.

2.3. Observing Origin

Per construction, the finalization of the auxiliary system by the Mosaic validators economically binds the
block proposers of the auxiliary system to the Mosaic fork selection. By finalizing the auxiliary system the
Mosaic validators reach consensus about the auxiliary system itself. However, to be able to pass messages
bidirectionally between chains, the Mosaic validators are additionally required to reach consensus about their
observation of the origin blockchain on the auxiliary system.

To achieve this, the Mosaic validators construct a justified chain and finalize checkpoints along it for reported
blocks of the origin blockchain on the auxiliary system. The incentive structure is now reversed and the
origin blockchain is in no way incentivized (nor should it be) to follow the fork selection rule of how a
meta-blockchain’s validator set finalized its observation of the origin blockchain.

In case the origin blockchain is probabilistically finalized, then it is always possible that the Mosaic validators
of a given meta-blockchain running on top of the origin blockchain would economically finalize an observation
of origin on the auxiliary system which is (later) reverted by the origin blockchain - even if they sufficiently
trailed the head of origin. Note that the validators cannot revert their finalized observation, because they would
be required to sign vote messages which would violate the slashing conditions.

Under this scenario we must force the meta-blockchain to halt at the highest finalized checkpoint of the
auxiliary system which was still consistent with its observation of the (now reverted) history of the origin
blockchain. This property can be enforced by including in the transition object of a justified chain of the
auxiliary system TA information about the finalization of the observation of the origin blockchain TO,

TA
i = (Oj

f , . . . ),

where Oj
f = f(TO) is the function that returns the highest finalized block number j and blockhash of the

origin system as observed by the Mosaic validators for this meta-blockchain.
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The origin blockchain can inspect TA to assert that the highest finalized observation of itself on the auxiliary
system is within its current history. Should this not be the case, then the origin blockchain must reject
meta-blocks containing contradictory observations.

However, origin cannot directly assert that prior to the last finalized observation, there was no checkpoint
finalized from a contradictory branch of its history, as the nodes on origin should not fully verify the transactions
executed on the auxiliary system. This is resolved by introducing an option to challenge a proposed finalized
observation.

Assume an observed checkpoint a was finalized on a contradictory branch of origin relative to the last finalized
observed checkpoint b included in TA. Any honest node can challenge the finalization of b on origin by
presenting the finalization of a and demonstrating that a /∈ history(b). Note that if validators would want to
alter the finalized observation from o→ a→ b to o→ b they would have to produce vote messages violating
the slashing conditions given the already existing vote messages.

Upon success, the challenger is rewarded from the stake of the offending validators and the core contract must
declare the meta-blockchain halted.

2.4. Calculating the Transition Objects

We construct a transition object TA to coarse-grain a vast amount of transactions processed on the auxiliary
system under the state transition rules tA into a single, abstracted state transition that can be validated by the
core contract on the origin blockchain (under the state transition rules of the origin blockchain tO, eq. 1).

On the auxiliary chain with every block running parameters are tracked and these consist of the latest finalized
observation of the origin blockchain Oj

f = f(TO), the accumulated transaction root ri, the accumulated gas
gi consumed, and the current dynasty number d on auxiliary. The transition object TA, however, is updated at
every justified checkpoint s with height hs and we write for a given meta-block height n:

TA
n,d(s) = (d,Ojd

f , rd, gd, K̃n)

where K̃n is the keccak256 hash of the kernel Kn.

A smart contract calculates the parameters that go into TA for every block. Therefore, the validators have to
report the block header of every block to the smart contract. If the reported block is within the most recent
256 blocks of the auxiliary blockchain,6 then the smart contract can verify its correctness by accessing the
corresponding block hash. If the validators fall behind more than 256 blocks in reporting, they can report more
than one block per new block in order to catch up. The smart contract will record all reports, but only mark
them as valid if they build a chain that reconnects to a block hash within the most recent 256 blocks of the
current branch.

Tracking of TA begins at the genesis checkpoint. For the genesis checkpoint, the accumulated transaction
root is defined as the transaction root of the block, the accumulated gas consumed equals the gas consumed
in the block, and the current dynasty number is 0. For all subsequent blocks, the accumulated transaction
root ri at block height i is keccak256(ri−1, Ri), where Ri is the transaction root of the block at height i. The
accumulated gas consumed gi at block height i is gi−1 +Gi, where Gi is the gas consumed in the block at
height i. The dynasty number equals the number of finalized checkpoints in the chain from the root checkpoint
to the parent block, carrying over the definition of dynasty number as in Casper FFG [2].

Further, we introduce a constant core identifier, a 256-bit string where the first 12 bytes are a constant
specifying the origin blockchain and the rightmost 20 bytes are determined by the smart contract address of
the core contract on the origin blockchain. Rather than storing the core identifier in the transaction object, it
can be included as a constant in the signing string for vote messages to ensure vote messages are valid only
about the intended meta-blockchain. An origin blockchain also has a core identifier to identify vote messages
about origin. For core identifiers that identify an origin blockchain, the rightmost 20 bytes are all zero.

The constant that specifies Ethereum main net as the origin blockchain is bytes12(1).

6This is specific to the Ethereum virtual machine, but the logic can be applied for other blockchain systems as well.
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Figure 1: Anatomy of a meta-block. The meta-block consists of a kernel, a transition object, and a seal.

2.5. Proposing Meta-Blocks On Origin

For a meta-blockchain B the chain can be appended by proposing and committing new meta-blocks
Bn(Kn, T

A
n , Sn) in the core contract on the origin blockchain. The genesis meta-block B0 is considered

committed per definition.

The kernel Kn is a tuple (n, p̃n,∆VBn , gtn) fully determined by and stored in the core contract on the origin
blockchain. On a given branch of the origin blockchain a meta-blockchain cannot fork. The act of committing
a meta-block Bn−1(Kn−1, T

A
n−1, Sn−1) activates the new kernel Kn at height n and opens the core contract

to accept proposals of the form Bn(Kn, ·, ·). The kernel further specifies the parent hash p̃n and the updated
validator weights ∆VBn

to declare new validators joining and existing validators logging out.

gas target Lastly gtn is the gas target which introduces a forcing function on the total amount of gas that
can be consumed in the meta-block Bn. The earliest finalized checkpoint at which the gas target has been
consumed by the meta-block must be committed to the origin blockchain by the validators. We highlight that
this is not a maximum gas limit, because it cannot be guaranteed that a checkpoint can be finalized before a
hard gas limit would be surpassed. Rather validators would gradually lose part of their stake as a function of
the number of finalized checkpoints they failed to commit after the gas target has been surpassed.
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To show that validators can be held accountable, assume the finalized checkpoint sd has been committed which
surpassed the gas target and has dynasty number d. Now assume there exists a finalized checkpoint sd′ which
also has surpassed the gas target but has a lower dynasty number d′ < d, but was not committed before sd.
Any honest node can present the sd′ and the core contract can assert the gas target had been consumed at a
lower dynasty number than what is committed and reward the challenger.

committing a meta-block Given a committed meta-block Bn−1 at height n− 1 a proposal for a meta-block
Bn(Kn, T

A
n , ·) at height n is a valid proposal if validity assertions for the transition object TA

n hold. These
validity assertions require that the dynasty number and the gas consumed are strictly increasing compared to
the transition object committed TA

n−1. The transition object TA
n must reference the correct kernel K̃n. It must

be checked that the latest finalized observation of origin is within the history of the current state. Furthermore
a brief challenge period exists where the transition object can be contested on the grounds that it contains a
prior observation of origin that contradicts the current history of origin, as explained above in section (2.3).

It now follows that for a given active kernel Kn multiple proposals TA
n,d can be submitted to the core contract

for different dynasty numbers d. These proposals are no longer contradicting versions of the history, rather
they are ordered, sequenced snapshots of possible state transitions Bn,dn

(ΣA,dn−1
) that can be committed

onto origin as a new meta-block.

To commit a meta-block then requires selecting among the valid proposals a dynasty number dn for which the
meta-block will be closed. This selection occurs automatically by sequentially verifying the vote messages
on the origin blockchain. The meta-block Bn(Kn, T

A
n , Sn) will be committed with the seal Sn which first

asserts a +2/3 supermajority of the voting weight VBn
for a valid proposal in the set of valid proposals

{Sn,d} =
{{
〈T̃A

n,d, s, t, hs, ht〉v
}}

where it is required that the supermajority link finalizes the source s. As such we require that ht − hs = 1 and
the source s must have been justified.

Following the same reasoning as presented in section (2.3) we can assert whether or not the finalized checkpoint
s was obtained through an unbroken justified chain leading up to the finalized checkpoint, by allowing for a
challenge7 to be raised against a proposed transition object TA included in a vote message 〈T̃A, s, t, hs, ht〉v .

However, recall that in the case of verifying observations of origin (2.3), origin itself can act as an arbiter
because origin can rely on its own history. Our concern now is to assert that the state transition to s from the
last committed state Bn−1 is a valid state transition according to the state transition rules tA of the auxiliary
system.

proof Assume first a contradictory finalisation s′ of the auxiliary system relative to s exists. This implies
that more than 1/3 of the validator weight can be slashed. The core contract on origin must declare the
meta-blockchain halted when it can slash more than the safety threshold of VBi

at a single meta-blockchain
height i.8

Alternatively, no contradictory finalisation s′ of the auxiliary system relative to s exists. Under the security
model assuming a +2/3 supermajority of the validator weight is honest, it follows that the proposed state
transition to s has been obtained through honest verification of all transactions under the state transition rules
tA.

Before continuing we summarize that the proposal mechanism to commit a meta-block is asynchronous,
requires no leadership-selection and is proven to be Byzantine fault-tolerant under the security model of an
honest supermajority.

2.6. Beyond An Honest Supermajority

While the origin blockchain protects assets from being double-spent, users in a meta-blockchain could see
their funds stolen if more than a supermajority of the open validator set would collude to violate the transition
rules tA.

7A challenger must always put forward a sufficient stake to underwrite the cost implied by her challenge.
8When a meta-blockchain has been halted, assets and stateful objects can be recovered on the origin blockchain at any

later time with Merkle proofs against the last committed state root of the meta-blockchain. We will detail the conditions
under which a meta-blockchain must halt and how the recovery processes can work later in this writing.
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We identify at least three active research topics which can allow to push the security model radically further
in an efficient way; namely that (up to) a single honest observer can hold all validators accountable when a
proposal for committing a meta-block to the origin blockchain would violate the state transition rules tA. It is
outside the scope of the current work to explore in-depth, but they are worth summarising below as future
work paths.

observer network In A Guide to 99% Fault Tolerant Consensus[3] V. Buterin recaptures an existing
algorithm by L. Lamport (1982) to describe how a latency-dependent network of observers can be retrofitted
on top of a threshold-dependent consensus algorithm - in casu our here work as derived from Casper FFG - to
introduce a strong-finality upon the finalized history constructed by the Mosaic validators arbitrarily pushing
up the fault-tolerance at the cost of requiring more observers and a longer time to eventually commit (a strongly
finalized proposal).

truebit A second worthwhile path is to apply the TrueBit[4] protocol to challenge a state transition TA pro-
posed by a subset of the validators VBi . The validators {v} who have signed vote messages 〈T̃A, s, t, hs, ht〉v
can be seen as the (collective) solvers of the off-(of-origin-)chain computation to transition the state Bn−1 to
the proposed solution s given the set of transactions specified by the accumulated transaction root rhs

. The
computation at hand is the execution of the virtual machine that implements the state transition rules tA.

If less than 1/3 of the validator weight loses the verification game to a challenger, their stake can be taken as
the reward for the challenger, on top of the shared interest of all participants in the meta-blockchain for only
correct proposals to be committed to the origin chain - removing the need for a jackpot and a forced-error.
The verification game can be seen as an extension to the slashing conditions strengthening the accountable
safety of the meta-blockchain to hold a minority of the validators accountable for violating the state transition
rules tA. This is made possible because the validator stake has been externalized on the origin blockchain with
an independent (assumed correct) consensus mechanism.

If more than 2/3 of the validator weight signed the vote message which was challenged and lost the verification
game, their stake is the reward for the challenger, and the meta-blockchain must be declared halted by the core
contract.

argument of knowledge A third strategy can be constructed by requiring any of the challenged validators of
a proposal TA to present an argument of knowledge, eg. using zkSNARKs generated after being challenged,
to cryptographically prove that the block s has been obtained by correctly applying the state transition rules tA
recursively on each parent block building up from the committed block found in Bn−1.

The costs both in time and expense to generate this proof by a validator scale at first approximation linearly
with the gas consumed in the proposed meta-block Bn. The transition object TA to commit this meta-block
tracks the gas consumed, so the core contract can require that the challenger puts forward a sufficient stake to
substantiate her claim.

There are open considerations regarding the (economic) feasibility of requiring all validators to be able to
generate such a proof on commodity hardware. The task of generating these proofs could be designated to
a specialized node, but an incentive problem arises when it is economically unattractive to run such a node
considering it is unlikely that a proposal would be challenged.

We have gone beyond the assumption of an honest supermajority of validators by considering three strategies
discussed in the field to radically improve the security model; up to the point where a single honest observer
can cost-effectively challenge the validator set on the origin blockchain.

2.7. Dynamic Set of Validators

The set of validators for the meta-blockchain B must be dynamic to allow new validators to join and for
validators to safely exit from their responsibilities. It is defined for each meta-block height n and we note VBn

.

A validator v is defined as an address which has a strictly-positive validator weight wv associated with it on
the origin blockchain. A validator can join the set of validators by sending a deposit message to the origin
blockchain and putting forward a stake. A validator can initiate log out by sending a logout message to origin.
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The weight of a validator wv at meta-block height n is the product of the stake of the validator at that height
sv(n) multiplied with a reputation function R(n; v, n0)

wv(n) = sv(n) ·R(n; v, n0) (3)

where the reputation function R has values in the range [0, 1] and n0 is the meta-block height where the
validator v sent the deposit message.

The reputation function allows for different security models to mitigate collusion attempts of malicious actors
within the validator set of the meta-blockchain. As examples, the reputation function can require initial work
by the validator before obtaining a non-zero reputation. The reputation function can also enforce a finite
(probabilistic) lifetime for all validators, honest and dishonest alike. Inducing churn in the (honest) validator
set adds an important stochastic tool to prevent collusion of more than 1/3 of the validator weight.

Changes to the validator weights wv(n) are included in the kernel Kn as ∆VBn
. When tallying votes both the

origin blockchain and the auxiliary system must use the effective weight Wv(n),

Wv(n) = wv(n) · θv

where θv is initially 1 for all validators, but irreversibly and immediately set to 0 when a validator v is shown to
have violated any slashing condition. The effective weight allows for the voting power of an offending validator
to be revoked on both blockchains instantaneously without waiting for the meta-block to be committed.

The stake sv(n) of a validator can only be preserved or decrease for increasing n when the validator does
not fulfill its responsibilities. The loss function L recalculates the stake of a validator for the new meta-block
height

sv(n) = L(sv(n− 1); v). (4)

The loss function reduces the actual value the validator can possibly withdraw in the future. The loss function
can reward challengers for presenting proofs of bad behaviour by the validator from his stake and it can burn
the remaining reduction.

When a validator violates any slashing condition the loss function returns the validator stake to zero.

Validators can see their stake reduced when they become inactive in the voting process (inactivity leak9), or
when they fail to commit a meta-block back to origin according to the gas target requirements (section 2.5).

When a validator successfully logs out the reputation is set to zero, but the stake remains locked in the contract
for a fixed amount of time to protect against long range revision attacks.10 After this time the validator can
withdraw his stake (and remaining rewards).

asynchronous composition of blockchains We refresh for the reader (section 2.5) that a meta-block Bi is
committed on origin with a valid11 transition object TA

i (K̃i, · · · ) for which a seal Si was created on origin
by verifying a supermajority of the voting weight VBi

on vote messages of the form 〈T̃A
i , s, t, hs, ht〉v. As

the hash of the kernel K̃i is included in the transition object, and as the hash of the transition object T̃A
i is

included in the vote messages, the order to construct a meta-block Bi(Ki, T
A
i , Si) is logically enforced.

When a proposed transition object TA
i is committed as meta-block Bi(Ki, T

A
i , Si) then the state root of the

auxiliary system is immutably anchored into the origin blockchain under the blockhash s12. It follows that
the state of the meta-blockchain is first knowable on the auxiliary system and causally passed to the origin
blockchain upon committing Bi (see solid lines on fig. 2).

9The inactivity leak forces validators to participate in the voting process and be available. The stake of inactive
validators can gradually be diluted if they fail to verify their vote on a committed meta-block. We credit the term to Casper
FFG[2] for the original argument.

10By holding on to the stake the validator can still be held accountable for evidence of wrongdoing that may surface
later or new attempts of revising the history. We follow Casper FFG’s proposal of approximating four months delay before
withdrawal is allowed.

11A valid proposal is a transition object TA which satisfies the validity checks and has been unchallenged, or has been
successfully proven upon being challenged.

12We assume here without loss of generality that the blockheader of the auxiliary system includes the state root of the
system at height hs and that the blockhash is the hash of an encoding of the blockheader.
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... ...Origin

Auxiliary ... ...

Ti

Bi Bi+1 Bi+2

Ki Ki+1 Ki+2Ti+1 Ti+2

Figure 2: Asynchronous composition. When a proposed transition object Ti is committed as meta-block
Bi on origin (solid red line), the new kernel Ki+1 is opened on origin. The validator set VBi

(dashed red
line on aux) casts votes on the auxiliary system to finalise both the checkpoints of the auxiliary system and
its observation of the origin blockchain on the auxiliary system. The commit of Bi and opening of Ki+1 is
observed by VBi

and Ki+1 is confirmed on the auxiliary system transitioning to the new validator set VBi+1

(dashed blue line on aux). On the auxiliary system all processes continue uninterrupted. At each confirmation
of a new kernel Kj the changes to the validator set ∆VBj

, and the new gas target gtj are enacted on the
auxiliary system.

A new kernel Ki+1 is defined by the committed meta-block Bi, the deposit, logout and slashing messages13

that were included on origin during height i14 and a new gas target gti+1 for closing Bi+1. These messages
combined with the recalculation of the validator weights (eq. 3) update the validator set

VBi+1
= ∆VBi+1

(VBi
) (5)

which is included in Ki+1 as the operator ∆VBi+1 .

The validator set VBi
is activated on the auxiliary system when the kernel Ki is confirmed on the auxiliary

system. We define the confirmation of a kernel to require two conditions to be met. First, a Merkle proof
that Ki exists on the origin blockchain must be presented against a finalised observation of (the state of) the
origin blockchain as finalised by the validators set VBi−1

. Second, if this Merkle proof of the kernel Ki was
included on the auxiliary system at dynasty d then we consider Ki confirmed when this branch of history
reaches dynasty d+ 2. The dashed lines on fig. 2 indicate the activity period of VBi and start at opening of Ki

on origin and the confirmation of Ki on the auxiliary system.

For the auxiliary system all other processes continue uninterrupted, such as the calculation of accumulated gas
consumed and the accumulated transaction root. At each confirmation of a new kernel Kj the changes to the
validator set ∆VBj

, and the new gas target gtj are enacted on the auxiliary system.

On the origin blockchain the state for the meta-block Bi is voted on by VBi
and the activity period of the

validator set VBi
coincides with the duration of the meta-block height i on origin. On the auxiliary system the

activity period of the validator set VBi
is delayed relative to the state that will be included in the meta-block

Bi, as Ti−1 must be committed on origin and Ki confirmed. It is guaranteed that the confirmation of Ki is
included in the state transition of Bi if Ti is calculated by a smart contract on the auxiliary system.

forward and rear validator set To ensure that a major change to the validator set cannot introduce an attack
vector, we apply an analogous defence strategy as described in Casper FFG[2] as the “stitching mechanism”.

When a validator’s deposit message is included on origin in meta-block height i, its start height n0(v) is equal
to i+ 1 and it starts in validator set VBi+1

.15 When a validator v sees its logout message included on origin
in meta-block height j ≥ i+ 1, then its end height ne(v) is equal to j + 1 and it ends in validator set VBj+1

.
Before a logout message for a validator is included the end height is considered to be ne =∞. (see fig. 3)

13Slashing messages can concern both violations of slashing conditions reducing the stake of a validator to zero, or a
proof of inactivity gradually reducing the validator stake.

14We say a transaction on origin is included during height i if it is included in the history of origin before Bi is
committed and after Bi−1 was committed.

15We note that in Casper FFG[2] the analogous start dynasty of a validator is defined as d+ 2. The confirmation of the
kernel requires a full dynasty increase, i.e. d+ 2, for it to be confirmed on the auxiliary system, hence it is sufficient for
validators to join in the validator set of the next meta-block, i.e. VBi+1

10



We use the start and end heights of a validator to define two subsets of the validator set VBn
: the forward

validator set and the rear validator set.

The forward validator set VBf,n
includes all active validators, except those who are in their end height ne(v):

VBf,n
= {v ∈ VBn : n < ne(v)} = VBn\ {v : n = ne(v)} . (6)

The rear validator set VBr,n includes all active validators, except those who have commenced in their start
height n0(v):

VBr,n
= {v ∈ VBn

: n0(v) < n} = VBn
\ {v : n = n0(v)} . (7)

It follows that the forward validator set at height n is the rear validator set at height n+ 1, or

VBf,n
= VBr,n+1 . (8)

We redefine that a supermajority link counted over the validator set S(VBn) henceforth means that a +2/3
supermajority of validator weight has voted for the link counted over both the rear and the forward validator
set separately:

S(VBn
)
.
= S(VBf,n

) ∧ S(VBr,n
). (9)

Through this split-out supermajority count over the two subsets of VBn
, we ensure that there is always an

explicit handover of the finalised chain by the “up-to-now” validators VBr,n
to the “forward-going” validator

set VBf,n
(eq. 8).

... ...Origin

Auxiliary ... ...

Bi

Ki+1

Deposit (or logout) message

Start (or end) height

Figure 3: Dynamic set of validators. The validator sends a log out (or deposit) message in Bi. The change in
the set of validators is transferred to auxiliary as part of kernel Ki+1 when it gets confirmed. The validator
does its last (first) round in the rear (forward) validator set of VBi+1

(VBr,i+1
or VBf,i+1

respectively).

Conclusion

We have constructed Byzantine fault-tolerant consensus rules for an open, dynamic validator set to compose
transactions executed on an auxiliary system asynchronously into an origin blockchain, e.g. Ethereum mainnet.
Each commit on the origin blockchain by a supermajority of the validators can span an arbitrarily large measure
of computation finalised on the auxiliary system. A working draft formulation of implementation work done
on the gateway protocol is appended to this document.
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2.8. Gas Markets

A meta-blockchain has a double gas market. First the known gas market exists where users of the auxiliary
system pay gas fees to the block proposers of the auxiliary system for every transaction. A second, new gas
market is created that rewards validators for their work.

Validators must verify transactions of the origin blockchain and the auxiliary system. They must cast vote
messages to finalise checkpoints of the auxiliary system and observations of the origin blockchain on the
auxiliary system. Validators propose transition objects to the origin blockchain and commit meta-blocks based
on these proposals.

Validators earn reward for their contribution to the construction of a finalised history on the auxiliary system.
A meta-block must be committed for the rewards earned on the auxiliary system to be realised on the origin
blockchain.

We call {σi} with i ∈ [k1,n, kN,n] a segment with N supermajority links in a justified chain (in meta-block
height n), when σi = 〈Ti, si, ti, hsi , hti〉 each have a supermajority S(VBn) (eq. 9) and σi+1 connects16 to σi
for i ∈ [k1,n, kN−1,n].

The reward a validator v earns over a segment {σi} is

Wv

w

∑
i

∆gi · gpd(i) · δ1,v(i) (10)

where Wv is the effective weight of the validator, w =
∑

v wv is the total weight of all validators, ∆gi is the
gas consumed from source to target, gpd(i) is the gas price agreed upon by block proposers for dynasty d(i),
and δ1,v(i) is one when the validator v had voted for σi17 or zero otherwise.

Gas fees will be awarded in the base token of the auxiliary chain.

A smart contract on auxiliary manages the validator rewards. Maximally 49% of the rewards are paid out
directly to the validator addresses. The remaining 51% are locked in until after the withdrawal period ends
after a validator logged out. If the validator violates a slashing condition, the withheld 51% will be slashed
along with the validator’s stake. More than half of the rewards are kept so that the paid out rewards never
outweigh the potential loss in case of a violated slashing condition.

In order for the auxiliary smart contract to be able to handle these rewards, the block proposers of auxiliary
must collectively deposit sufficient value for multiple future meta-blocks in the reward contract on the auxiliary
system and keep replenishing this pre-deposit from the gas fees they earn from users through transaction fees.

Block proposers have to be staked on the auxiliary system in order to be able to vote on changes to the gas
price in a given dynasty. Validators for their turn must for multiple meta-block heights in advance commit to a
minimum gas price.

The gas price in a given dynasty voted on by the block proposers cannot be lower than the minimum gas price
committed to by the validators. Block proposers can attract more validators to the meta-blockchain by raising
their gas price.

Users of the auxiliary system paid a gas fee to the block proposers when their transactions were included in an
auxiliary block. Block proposers pay for a given dynasty a gas price gpd to the validators to verify and finalize

16Define σ′ connects to σ if t = s′ and ht = hs′ .
17The validator vote must have been included when the rewards are calculated and awarded to the validators on the

auxiliary system. We propose to calculate and transfer rewards when the justified chain is finalised.
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the history of transactions. Both block proposers and validators can only access their rewards on the origin
blockchain if the finalised history is also committed.

In addition the gas target requires the validators to expend the cost of committing the finalised history on the
origin blockchain, because failing to do so would incur loss on their stake.
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3. Gateway

Gateway protocol allows decentralized applications to move tokens between two heterogeneous blockchain
systems. This protocol can be used to move token(ERC20, later non-fungible tokens) between origin blockchain
and auxiliary system supporting a specific meta-blockchain where transactions can be finalized faster, and
at a lower transaction cost. Gateway protocol leverages the idea of message bus which defines a standard to
asynchronously transfer typed messages between two chains.

We define message bus Mb as a state machine with messages ms where s denotes state, outbox ob and inbox
ib for each blockchain. Messages from source chain are kept in the outbox and once verified on target chain
using Merkle proof, they are saved in the inbox of target chain.

Mb = ({m1
s,m

2
s...,m

n
s }, ob, ib) (11)

Gateway contract is deployed on origin chain and twin contract co-gateway is deployed on an auxiliary chain.
These two contracts are linked before initiating any message passing. Linking ensures that both contracts
are set up to transfer the same token and use the same version of the message bus. Gateway and Co-gateway
contracts defines different message types i.e. linking, stake & mint and redeem & unstake. Any facilitator can
transfer messages between source and target blockchain by staking bounty as a security amount. Facilitator is
rewarded by message initiator along with the bounty on successful completion of message transfers.

3.1. Message Bus

The Message Bus is a messaging framework that allows to atomically communicate typed messages between
two heterogeneous blockchain systems. This communication is a two-phase commit on each blockchain to
move a message between blockchains. Message bus acts as a state machine where message state is changed
from one state to another in response to interaction with message bus. If message M is intended to move from
blockchain A to blockchain B, then in this case the A is termed as the source and B is termed as target. The
state of message M is stored in outbox of source blockchain and in the inbox of target blockchain.

Similarly if the message is intended to move form blockchain B to blockchain A, then the source will be B
and target will be A. Throughout the paper the terms source and target blockchain will be used.

3.1.1 Message

We introduce message M consists of message type intent hash it where t defines type of message, nonce
n, gas price gp , gas limit gl , sender s, hash lock hl. Nonce n is the count of message moved from source
blockchain to target blockchain by the sender s. Gas price gp and gas limit gl is the price at which the reward
is calculated for facilitation of message transfer, refer section 3.6 Hash lock hl is a hash that is set by the
facilitator, refer section 3.1.7

M = (i, n, gp, gl, s, hl) (12)

Message hash mh is an unique identifier of a message M . It can be calculated as the hash of message type
hash t, intent hash i , nonce n, gas price gp , gas limit gl ,sender s and K is keccak256 hashing function.

3.1.2 State machine

Message bus acts as a state machine, the transition of message state is deterministic. The possible states S of
the message can be Undeclared Su , Declared Sd, Progressed Sp, RevocationDeclared Srd and Revoked Sr.

Message M can be moved from source blockchain to target blockchain in four steps consisting of two phased
commit transactions in both blockchains each. This four steps are

1. Declare

2. Confirm

3. Progress outbox

4. Progress inbox
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Figure 4: MessageBox of the MessageBus

Undeclared  Declared  Progressed 

RevocationDeclared  Revoked 

Only on source 
 

Initial state 

Only on target 
 

Figure 5: States of the message

3.1.3 Declare

This is the first step for the message transfer and is done on the source blockchain. For message transfer the
message initiator18 should signs the message hash mh of the message M . The state of message in the outbox
must be undeclared. Message bus verifies the state of message and the signature of message initiator. On
successful declaration of message M in outbox, the message M is state is changed to declared.

18some text for initiator
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3.1.4 Confirm

This is the second step for the message transfer which is done on the target blockchain. In this step the message
bus confirms the declaration of message in the source chain using the merkle proof. The declared message
M along with the merkle proof is presented to the target blockchain by the facilitator for verification. On
successful verification of proof the message state is declared in the inbox.

3.1.5 Progress outbox

Once the message M is declared in both source and target blockchain. A merkle proof specifying the state of
message as declared in the inbox of target chain can be presented to the source blockchain. On successful
verification of merkle proof, the message state is progressed.

3.1.6 Progress inbox

Progress inbox can be done on target blockchain by presenting a merkle proof specifying the state of message
on source blockchain as declared or progressed. If the current state of message in the inbox of the target chain
is declared and the merkle proof is valid, then the message bus changes the state of message to progressed.

This complete the four steps of two phased commit transactions in both blockchains each.

Target 

Source 
M1 

Declare 

Pds

M1 
Declare 

M1 
Progressed 

M1 
Progressed 

PpsPdt

Pds: Merkle proof for the M1 state is declared on the source

Pdt: Merkle proof for the M1 state is declared on the target

Pds: Merkle proof for the M1 state is progressed on the source

Figure 6: Progress with proof

3.1.7 Progress with HashLock

As merkle proof verification is costly process, so an alternative mechanism to complete progress inbox and
progress outbox is progress with hash lock in both source and target blockchains. While declaring the message
M , an hashlock hl can be provided in the message. We define hash lock hl as

hl = K(s) (13)
where K is hashing function like keccak256, s is a unlock secret

Hash lock is added while declaring and confirming message on source and target chain. Progress with hash
lock can be used by presenting unlock secret on both chains.

3.1.8 Revocation

Any declared message M can be revoked if its current state is not already progressed in any of the two
blockchains. In the source blockchain the only case to change the state to revocation declared is that current
state in the outbox should be declared. For the target blockchain if the current status of the message M in
inbox is declared then a merkle proof can be presented specifying the status as revocation declared in outbox
of the source blockchain. If the merkle proof is valid then the status can be changed to revoked in the inbox of
target blockchain. Incase the message M is not declared in the inbox of target blockchain then it needs to be
declared first. If the status if message M is already progressed in the inbox then state cannot be changed.

On the source blockchain if the message state of message M is revocation declared but the status of message in
target blockchain is progressed, in this case the status on source blockchain can be changed only to progressed
by presenting the merkle proof for message M specifying the state as progressed in inbox of target chain. refer
figure 9
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3.2. Linking of Gateway and Co-Gateway

Gateway is defined on origin blockchain where as Co-gateway defined on auxiliary blockchain and can
co-exists only in pair to be functional. Both the contracts are inactive by default i.e both the contracts cannot
transfer any messages except linking messages.

Linking of Gateway and Co-gateway is a special type of message transfer which cryptographically verify
uniformity of token and message bus on origin and auxiliary blockchain. As explained in section 3.1, each
message contains message type intent hash. For linking messages, we define gateway linking intent hash igl as
a hash of gateway address ga, co-gateway address ca, message bus code hash mch, ERC20 token name tn,
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M1 

Declare (hl) 

Pds

M1 
Declare (hl) 

M1 
Revocation 
Declared 

M1 
Progressed S

Pds: Merkle proof for the M1 state is declared on the source

Prds: Merkle proof for the M1 state is revocation declared on the source 

Ppt: Merkle proof for the M1 state is progressed on the target 

hl: Hash lock 

S: Unlock secret for the given hash lock.
  hl = keccak256(S)

Prds

this is fail as the M1  

is already progressed

M1 
Progressed 

Ppt

S
Cannot change the state to progressed by providing  

the unlock secret as the state is already changed to  

revocation declared 

Figure 9: Progress after revocation declared.
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token symbol ts, token decimal td, nonce n, token address ta and K is keccak256 hashing function.

igl = K(ga, ca,mch, tn, ts, td, n, ta) (14)

Once the linking message is declared in gateway, it can be confirmed on co-gateway by merkle proof. After
completion of the progress the Gateway and Co-gateway are activated and can perform the other message
transfers like stake & mint or redeem & unstake.

3.3. Stake and Mint

Gateway protocol supports transfer of stake and mint type typed message from origin to auxiliary chain.
Staking happens on origin chain which locks stakers tokens into the escrow and miniting happens on auxiliary
chain which creates new tokens at beneficiary address. By combining meta-blockchain based layer 2 scaling
solution with this message type, a token economy can be designed with the high transaction throughput and
low gas cost on auxiliary chain.

Staker needs to submit a signed message hash to facilitator to initiate message transfers. As described in
section 3.1.1, message hash generation needs message type specific intent hash which is staking intent hash is
in this scenario . We define staking intent is as :

s = K(as, ba, sa, ns, gp, gl, ta) (15)

Where K is keccak256 hashing function, as is staking amount, ba is beneficiary address, sa is staker address,
ns is staker nonce, gp and gl are gas price and gas limit respectively as described in section 3.6, ta is ERC20
staking token address.

Gateway along with message bus verifies stakers signature generated by signing message hash and initiates
message transfer. Facilitator must stake bounty to gateway during message declaration on source chain as
described in section 3.5

Message declared on origin chain with staking intent hash is verified and confirmed on auxiliary chain with
merkle proof. Tokens are minted for beneficiary on auxiliary blockchain after successful progress. On
successful mint of token, reward is awarded to facilitator from the minted token refer section 3.6.

3.4. Redeem & Unstake

3.5. Bounty

In Gateway protocol, facilitator pool is an open network of nodes which are responsible for message transfer
between source and target chain. Any node/machine can act as facilitator by staking bounty to gateway during
message transfer.

Bounty is the fixed amount staked by facilitator as a security deposit during message transfer. This amount
should be just sufficient to maintain the accountability for message transfers by facilitator. Facilitator must
approve gateway for bounty amount before declaring message. Bounty enforces facilitator to progress on
source chain. It is returned back to facilitator who reveals unlock secret or progresses with the proof.

If message initiator(staker or redeemer) decides to revoke message transfer, it has to pay penalty described in
section 3.7. Both bounty and penalty are burned on progress revocation.

3.6. Reward

Gateway protocol has reward structure for facilitator for successful completion of message transfers. Section
3.1 explains the four step process to transfer message from source to target blockchain. Facilitator presents
hash lock during message declaration on source blockchain. When the correct unlock secret is presented on
target blockchain during progress, facilitator is rewarded with reward r.

We define reward r as following:

r = gp ∗min(gl, gc +K) (16)
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Where gp is gas price, gl is gas limit, K is constant and gc is measured gas consumption over merkle proof
verification. gc is the sum of gas spent in declaring inbox message gd and progressing inbox gp and can be
defined as :

gc = gd + gp (17)

gp and gl is decided by message initiator which determines maximum reward amount rmax

rmax = gp ∗ gl (18)

3.7. Penalty

Penalty is the amount charged to message initiator for revocation of message transfer. Penalty is charged when
initiator decides to revoke message after declaration and before progress. In order to ensure a fair and honest
process between the facilitator and the initiator, the penalty charge must always be greater than the bounty
amount.

Penalty P for message transfer revocation is:

P = n ∗ bf (19)

Where n > 1 and bf is bounty staked by facilitator.

3.8. Gateway Deactivating

Gateway deactivating is an ability of Gateway and Co-gateway to restrict the movement of messages from
source blockchain to target blockchain. If Gateway is deactivated then no new stake and mint process can be
initiated, but this does not restrict the redeem and unstake flow. Users can choose to redeem the tokens even if
the gateway is deactivated.

3.9. Chain Halting

4. A Mosaic of Cores

summary: By constructing asynchronous BFT consensus rules to compose a heterogeneous auxiliary
blockchain into the origin blockchain, we leverage the security of the origin blockchain to asynchronously
finalize the transactions on the auxiliary blockchain. As there are no time constraints or time-outs in the
Mosaic consensus rules, the limited processing capacity of the origin blockchain does not undercut the ability
to compose many auxiliary systems into the same origin blockchain. This enables Mosaic to run many
meta-blockchains in parallel, additively improving the total transaction capacity, but keeping a bound on the
cost imposed on the origin blockchain.
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