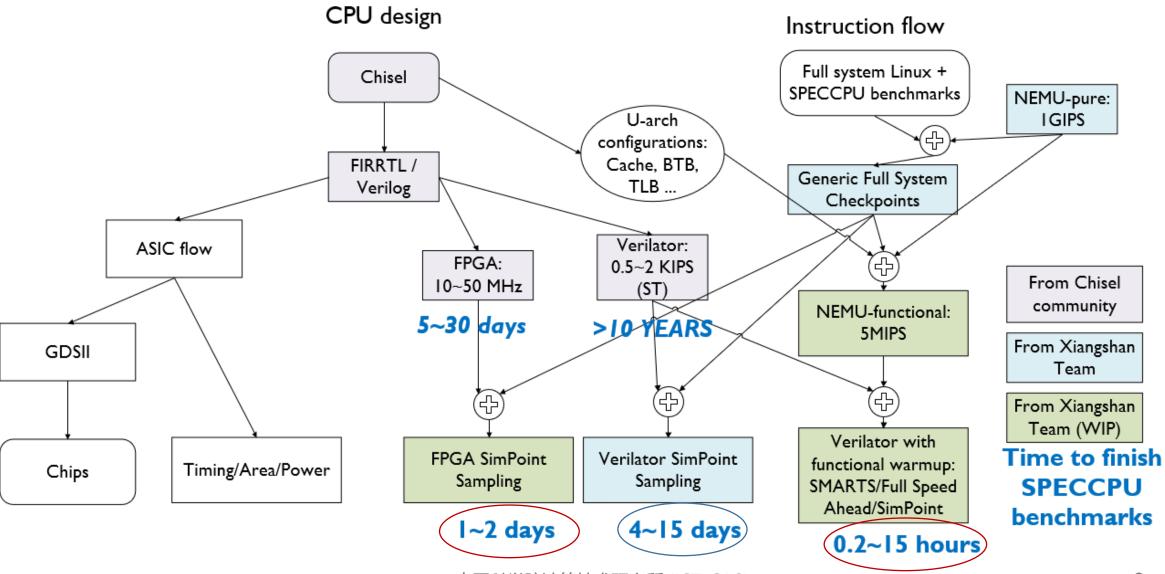


BetaPoint:


A pre-silicon performance evaluation framework

周耀阳 Zhou Yaoyang

中科院计算所 ICT, CAS

2021年6月19日 June 19, 2021

■ Agile performance evaluation roadmap

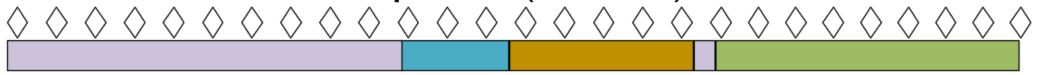
■ Agenda

- Background and motivation
 - Emerging RTL cores/SoCs
 - Lack of checkpoint and sampling support
- Current infrastructures
 - Cross-platform checkpoint format
- Ongoing works
 - Functional warmup

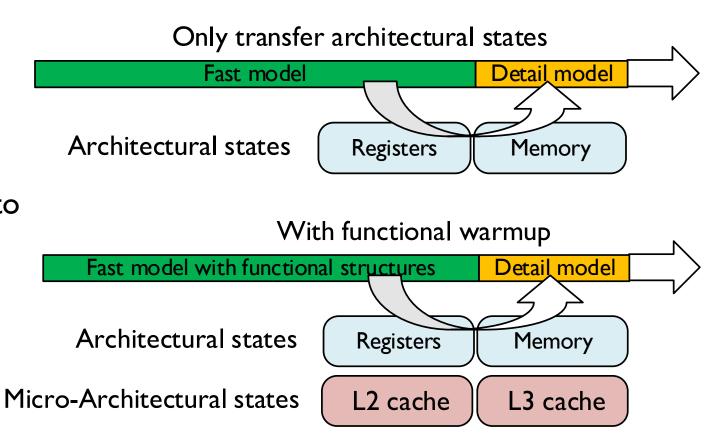
Opportunities and challenges

- Emerging open source cores/SoCs in RTL (Chisel, Verilog)
 - Enable agile prototyping
 - Enable researchers to produce solid results on performance, area, and timing
- RTL emulation software is slow: 7+ years to complete SPEC2017.imagick
- With FPGA, it is still slow: 5~30 days to finish the SPECCPU 2006/2017 benchmarks with one FPGA.
 - 5~30 days is still too long for performance iteration
 - Cloud FPGA cannot accommodate large cores (we use vul 9p for single-core Xiangshan)
 - More FPGAs → more costs
- → Can we enable sampling?

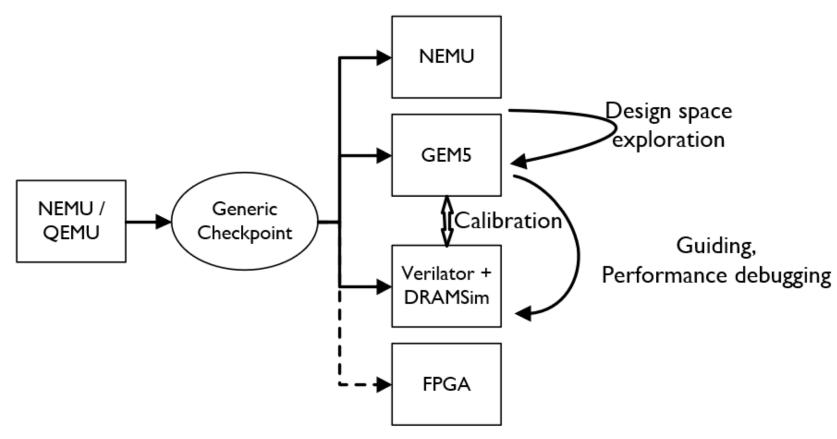
■ Sampling methods


Checkpoint-based sampling (SimPoint):

- Selective weighted sampling
- Large simulation points (50M~200M)

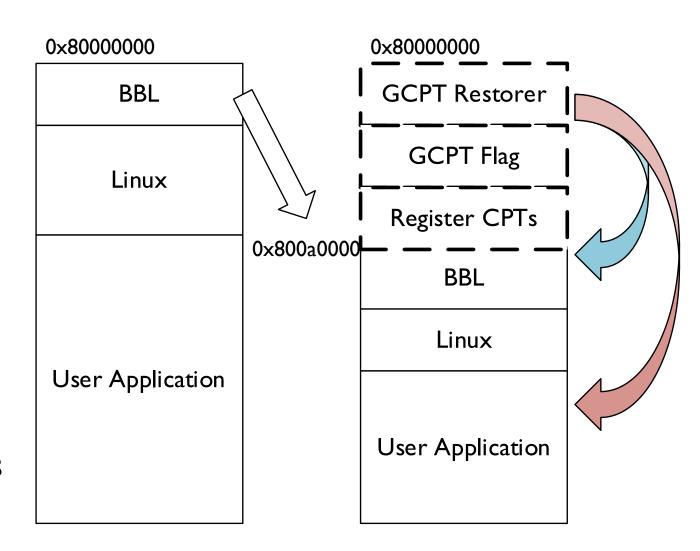

Fast-forwarding-based sampling (SMARTS):

- Uniform sampling
- Smaller simulation points (5k~50k)

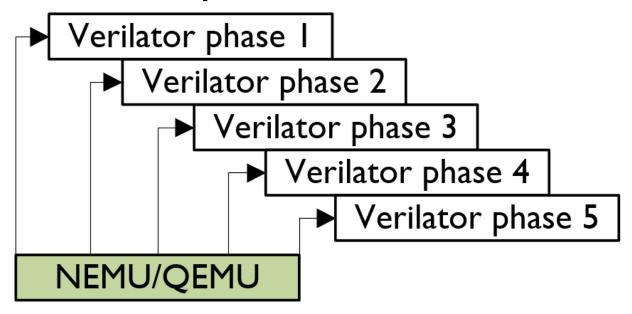

■ Sampling methods in research community

- Checkpoints: SimPoint
 - Requires checkpoint support
- Fast-forwarding: SMARTS
 - Requires functional warmup to speed up
- Virtualized fast-forwarding:
 CoolSim, DELOREAN
 - Faster than SMARTS
 - Requires (statistical) functional warmup to speed up

■ Our checkpoint format


• A generic checkpoint format (GCPT) bridges fragmented parts

- I. NEMU is a functional simulator developed by Yu Zihao, which runs at 300 MIPS~I GIPS.
- 2. GCPT is theoretically compatible with FPGA. But we have not test it on FPGA.


■ How is GCPT restored

- GCPT restorer is a piece of assembly code of RISC-V
- The restorer checks GCPT flags and jump to different area accordingly
 - Restoring: restores the checkpointed arch state, jump to continue user process
 - Cold boot: jump to BBL
- Minor modification on hardware
 - ~200 LoC on GEM5
- The only assumption is that machines share the same address space

Current applications of NEMU+GCPT- Shotgun

- Shotgun method (The name is inspired by DNA sequencing)
 - Break the whole program into chunks
 - Generate checkpoints with fast models (NEMU)
 - Run detail models in parallel

- Reduce the time to gather "ground truth performance"
 - Fake ground truth: limited warmup length

Current applications of NEMU+GCPT

- SimPoint on Verilator

 Performance estimation using SimPoint for Xiangshan core

- 3~14 days to finish a 100M simulation point with I core
 - 14 days for *mcf* because very low IPC (0.1x)

L				
	time	ref_time	score	Coverage
astar	772.30	7020.0	9.09	0.84
mcf	686.08	9120.0	13.29	0.82
bwaves	926.09	13590.0	14.67	0.80
soplex	685.74	8340.0	12.16	0.83
povray	501.54	5320.0	10.61	0.83
dealII	644.70	11440.0	17.74	0.81
xalancbmk	645.80	6900.0	10.68	0.82
gcc	687.23	8050.0	11.71	0.81
gobmk	863.50	10490.0	12.15	0.83
h264ref	1182.14	22130.0	18.72	0.83
GemsFDTD	639.55	10610.0	16.59	0.80
zeusmp	755.00	9100.0	12.05	0.80
bzip2	1330.63	9650.0	7.25	0.82
sjeng	1169.56	12100.0	10.35	0.85
hmmer	1188.03	9330.0	7.85	0.81
namd	653.25	8020.0	12.28	0.81
gromacs	966.90	7140.0	7.38	0.81
Īibquantum	739.81	20720.0	28.01	0.83
perlbench	986.87	9770.0	9.90	0.82
calculix	1892.19	8250.0	4.36	0.83
tonto	980.05	9840.0	10.04	0.80
omnetpp	644.21	6250.0	9.70	0.95
sphinx3	1252.82	19490.0	15.56	0.81
milc	659.30	9180.0	13.92	0.81
1bm	676.15	13740.0	20.32	0.84
leslie3d	805.10	9400.0	11.68	0.81
cactusADM	1981.36	11950.0	6.03	0.82

■ SimPoint – profiling and taking checkpoints

1st pass: BBV Profiling Profiling results: Basic **Block Vector** K-mean clustering Simulation Points 2nd pass: Take SimPoint checkpoints Total simulated instructions

■ SimPoint – profiling and taking checkpoints

1st pass: BBV Profiling + uniform checkpoints Profiling results: Basic **Block Vector** K-mean clustering Simulation Points 2nd pass: Take SimPoint checkpoints Range A Range B

■ Contradiction on warmup length

- Current warmup length (50M) is too short for accuracy
 - Some applications need more than IG warmup
 - Discussed in BLRL (The Computer Journal, 2005); Elfies (CGO, 2021)
- Current warmup length is too long for speed
 - Two weeks to simulate 100 M instructions of mcf

- > For both accuracy and speed, we must speed up warmup
- → Functional warmup