
Implementation of a Highly Configurable
Wallace Tree Multiplier with Chisel

Lin Jiawei

Institute of Computing Technology, Chinese Academy of Sciences

2021/6/26

source code

Implementation of a Highly Configurable
Wallace Tree Multiplier with Chisel
• Use recursion to achieve Wallace tree compression

• Only 120 lines of chisel code (booth-4 encoding + tree
compression + final adder)

• Fully configurable operation width

• You can control how many pipeline stages will be generated

• You can control where to insert a pipeline stage during
compression

• High performance
• An example: 3-stage 64x64 bit signed multiplier  < 350ps latency

Chisel implementation

• Booth encoding: very easy to implement with chisel

• Tree compression:
• Step1: for each column in the tree, write a recursive function to compress

the column
• Step2: organize the compressed columns as a new tree
• Step3: check parameters to decide if we need to insert registers after the

new tree
• Step4: repeat Step1 on the new tree, until the depth of the tree are

reduced to 2, go to Step5
• Step5: use a adder to calculate final result

Algorithm

• Booth-4 encoding

• generate partial products

• n*n mul  n/2 partial products

• Tree compression

• optimize the tree(reduce sign-ext bits for signed multiplier)

• add all products by column compression

Algorithm-Booth4 encoding

• n*n mul  n/2 partial products

Algorithm-Booth4 encoding

• Our target: calculate the sum of the partial products

Algorithm-Sign-ext optimization

• The optimization algorithm is beyond our scope

• But it’s very easy to implement with Chisel

Algorithm-Sign-ext optimization

• The optimization algorithm is beyond our scope

• But it’s very easy to implement with Chisel

Algorithm-Tree compression

• Tree representation

Algorithm-Tree compression

• An 16 * 16 example

• Length of columns == 32

• 0 < Size of each column < 8

Compress a column

• Match column size
• 1-> do nothing
• 2-> half adder
• 3-> full adder
• 4-> 4-2 adder
• n-> x + (n-x), x∈[1, 4]

Compress a column

Compress a column

• After compression, size of each
column becomes smaller

• Organize the compressed columns
as a new tree

Compress the whole tree

• Organize the compressed

result as a new tree

• [Optional] insert registers

after the new tree

• Repeat until

max(cols.size) == 2

Compress the whole tree

• ‘stages’ is a parameter of

the multiplier

• You can control where to

insert a pipeline stage by

this parameter

Final Step-adder

• When the max(cols.size) is

reduced to 2, ‘addAll’

returns ‘sum’ and ‘carry’

• Calculate the sum of ‘sum’

and ‘carry’, then we get

final result

Summary

• We don’t write code to connect adders and wires

• We write code to describe the rules on how to connect adders and wires

• The multiplier is highly configurable
• Input width

• Pipeline stages

• Only about 120 lines of Chisel code
• Implemented the same function in thousands of lines of code in Verilog

• More configurable

• Better scalability

• Easier to read

Thank You!

