
鹏城实验室
Peng Cheng Laboratory

Practice of High-performance Chip
Agile Development with Chisel

Yinan Xu 徐易难

ICT, CAS

xuyinan@ict.ac.cn

2021/6/26@CCC2021

ICT, CAS 22

Open-source processor

coding

RTL

EDA Tools

LayoutISA Spec. Docs

microarch.

• Open-source RISC-V processor
• Chip agile development flow and tools

ICT, CAS 33

XiangShan: a high-performance processor in Chisel

• 2020-2021: one processor in one year
• RV64GC ISA support

• 11-stage, superscalar, out-of-order, dual-core

• 5.3 CoreMark/MHz (gcc-9.3.0, -O2)

• Using a lot of open-source tools/designs
• Chisel/FIRRTL

• Verilator

• rocket-chip (parameters, diplomacy, TL/AXI4 nodes, …)

• DRAMsim

• SiFive block inclusive cache

• Berkeley-hardfloat

• Open-sourced at GitHub/Gitee/Trustie/ihub

XiangShan (yanqihu) microarchitecture

ICT, CAS 44

Agile development infrastructures

New feature
Documentation

RTL
Implementation

Functional
Verification

Performance
Verification

Physical Design

Test generation

Reference model

Result
comparison

Basic
architecture

Design language

Error
reproducing

Error analysis

Test generation

Simulation

Emulation

FPGA

Statistics
analysis

XiangShan

Chisel

FIRRTL
Transforms

TL-C transaction
generator

NEMU:
ISA simulator

nexus-am:
Run-time env

Difftest:
Co-sim and

checking

SMP-Diff:
Multi-core cosim

and checking

LightSSS:
process-level snapshot

for simulation

Waveform Terminator:
Waveform parser and

convertor to log

Golden Mem:
Multi-core

memory model

LogViewer:
Web for log viewing

TL-C Agent:
Bus/cache

behavior model

TL-C Scoreboard:
Bus/cache

behavior checking

GCPT:
RISC-V full-system

checkpoint

KFDB:
Performance modelling

and analysis tools

NEMU-Functional:
Fast micro-architecture

level warmup (WIP)

BetaPoint:
Program characteristic
profiling tools (WIP)

Continuous Integration (CI)
Merged to main branch

after all tests passed (WIP)

ICT, CAS 55

Agile development with Chisel

• Agile development: iterative, incremental, and evolutionary [1]

• How Chisel helps to survive in a rapidly-changing world

[1] Agile software development. https://en.wikipedia.org/wiki/Agile_software_development.
[2] Y. Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

Desired Features

Agile model of hardware design [2]

https://en.wikipedia.org/wiki/Agile_software_development

ICT, CAS 66

Bundles: freely packaging signals

• Instructions are decoded into micro-ops and go through the pipeline

• Complex processors define a complex micro-op format
• Tens of signals with different widths

• Structuralized control signals (generated, used, dropped at different stages)

• Chisel YES!

• SystemVerilog interface YES!

Feel free to add more here

ICT, CAS 77

SystemVerilog interface YES?

• Fine. Forget about the structuralized info.

Answer: The only way to do this today is to flatten out the interface.
答：唯一可以实现组合的方法，是把下层信号摊平，都放到顶层

Question: I have two interfaces with modports and another interface
which combines these two interfaces. I wanted to specify a modport
for the combined interface which in turn calls/uses the modport of
the individual interfaces.
问：我希望将两个接口组合到一起，并使用他们定义的信号组成
一个新的模块接口定义

Source: https://stackoverflow.com/questions/37445330/specifying-modport-for-interface-inside-an-interface-in-systemverilog

ICT, CAS 88

Parameterization

• Sometimes we need to change the parameters of the processor
• A different replacement policy

• A larger re-order buffer

• A unified reservation station (from a distributed reservation station)

• A wider rename pipeline width (multiple modules affected)

• They cause changes to different levels of the design

Series/Scope
Wire

Assignments
Internal logics Module IOs

Module-level
Organizations

Example

Youth Replacement policy

Normal Queue size

Ultra Enqueue width of a queue

[BRAND] Edition Decode/Rename/Dispatch width

ICT, CAS 99

Parameterization Youth

• Between modules/methods with the same IO ports

• Example: replacement policy, error detection/correction

(1) Implement all possibilities (2) Use one line of code to choose one of them

ICT, CAS 1010

Parameterization

• Between different structure sizes (e.g., queue size)
• usually only the pointer width is affected

(1) Define the parameterized
queue size and queue pointer

(2) Use queue size to generate registers/wires and
queue pointers to index into the queue

ICT, CAS 1111

Parameterization Ultra

• We need a parameterized scheduler
• # total entries

• # selected entries

• Both IO ports and internal signals need parameterization
• Data width for input, output, wire, reg, …

• Number of IO ports, wires, regs, …

• How to express these in SystemVerilog and Chisel?

module select(
input [63:0] request,
output [63:0] grant_0,
output [63:0] grant_1,
output [63:0] grant_2

);

// module body here

endmodule

Verilog example for select logic

ICT, CAS 1212

Chisel: SystemVerilog generate Pro Max

• Parameterized scheduler: # total entries, # selected entries

• How to express these in SystemVerilog and Chisel?

interface select_port #(
parameter NUM_ENTRIES = 4

);
logic [NUM_ENTRIES - 1 : 0] grant;
modport sel_iface(output grant);

endinterface

interface scheduler_interface #(
parameter NUM_ENTRIES = 64.
parameter NUM_SELECT = 3

);
logic [NUM_ENTRIES – 1 : 0] request;

genvar i;
generate
for (i = 0; i < NUM_SELECT; i++) begin
select_port #(.NUM_ENTRIES(NUM_ENTRIES)) grants();

end
endgenerate

endinterface

SystemVerilog

class SelectPortIO(numEntries: Int) extends Bundle {
val grant = Output(UInt(numEntries.W))

}

class SchedulerIO(
numEntries: Int,
numSelect: Int

) extends Bundle {
val request = Input(UInt(numEntries.W))
val grant = Vec(numSelect, new SelectPort(numEntries))

}

Chisel

Chisel has fewer LOC and saves time.

ICT, CAS 1313

Parameterization [some brand here] Edition

• Simply changing FetchWidth/DecodeWidth/RenameWidth to 4/2/2
• We didn’t expect it to work perfectly

All affected
But it works

ICT, CAS 1414

More Chisel features for agile hardware development

• Scala infrastructures
• Strong type system

• Full-featured IDEs from community

• Chisel/FIRRTL infrastructures
• SRAM type/size inference

• ChiselTest [1]

• FIRRTL transforms [2]

• Chisel-based Libraries
• Configs/Parameters

• Diplomacy framework

[1] Chuanqi Zhang. Agent Faker: Verification framework for TL-C caches. RVWC2021.
[2] Jiawei Lin. Use Firrtl Transform to Control the Effective Range of 'printf' in Large Scale Circuits. CCC2021.

Scala

Chisel/FIRRTL

Chisel-based
Libraries

Hardware
Implementations

Levels of hardware development (with Chisel)

ICT, CAS 1515

Chisel for high-performance chip design

• Chisel efficiently produces structuralized and parameterized designs
• Fast, clear and simple

• But a lot of people have told us that they
• do NOT need agile development

• do NOT need parameterization

• care about ONLY the design quality

• How does Chisel ensure PPA?

ICT, CAS 1616

High performance comes from the precise control of RTL

• Chisel is more like syntax sugar or an advanced generator for Verilog
• Chisel expressions strictly map to Verilog expressions

• Last month we fixed a bug that causes setting the PLIC claim register with a wrong value

• It’s the designer that determines how the hardware works
• Chisel is not HLS. It does not translate/interpret what you write

• Chisel itself never hurts the PPA as well

• Then why Chisel? How does Chisel help ensure PPA?

Concatenation order is changed as expected

ICT, CAS 1717

Revisiting Chisel: what is it

• Chisel is a Scala-based advanced Verilog code generator
• Generating Verilog with Scala/Chisel libraries

• Rule-based code generation always works on Chisel
• Programming languages are primarily intended for expressing algorithms in a form

that can be executed by a computer [1]

• Describe the rules in Scala and let Chisel generates the Verilog

• Example: auto-generated Wallace tree [2]

• Key: find the rules and use Chisel/Scala to describe it

[1] Algorithm. https://en.wikipedia.org/wiki/Algorithm. Wikipedia.
[2] Jiawei Lin. Implementation of a Highly Configurable Wallace Tree Multiplier with Chisel. CCC2021.

https://en.wikipedia.org/wiki/Algorithm

ICT, CAS 1818

How Chisel helps high-performance designs

• Complexities cause difficulties in high-performance designs
• Wider: pipeline width changes from scalar to superscalar

• More complex: more pipelines, more structures

• Most logics in microarchitecture designs can be expressed by rules
• Duplications: decoders, ALUs, FMAs

• Dependences: branch predictors, selections, arbiters

• Most logics are either parallel or serialized

• Chisel easily generates complex but deterministic logics
• Because it is built on Scala programming language

ICT, CAS 1919

Duplications: wakeup

• Wakeup in reservation stations
• Not-ready instructions wait in the RS

• Executed instructions wake them up

• >10 wakeup sources

• What to do: compare the producers’ pdest with consumers’ psrc
• Store Data RS: 16-entry RS, 8 integer + 8 FP wakeup ports

16

16

For each source, produce a matchBitFor each entry, produce a matchVec

Wakeup sources from RS/FU

ICT, CAS 2020

Serialized logics: issue selection

• Issue: select the n-th one from a bit vector of length m

• Algorithm (for software)
• Let matrix[m][n] be whether first m bits has n ones

• If n is 0, matrix[m][n] = (whether first m bits has zero ones) = !bits.take(m).orR

• Otherwise, matrix[m][n] = bits[m - 1] && matrix[m - 1][n - 1] || !bits[m - 1] && matrix[m - 1][n]

• Issue Grant Vector = bits & matrix[:][n - 1]

• In Chisel, it’s also allowed to recursively generate Verilog based on above rules
• But recursion never really happens in Verilog

Define this function and use it everywhere

ICT, CAS 2121

Chisel makes RTL coding faster

• Case study: rewriting RS in three days
• Modules: wakeup, select, status, payload, …

• Without enqNum/deqNum parameterization

• Correctly running CoreMark

• Chisel: reducing the RTL coding time
• Scala for expressing the rules/algorithms

• Chisel libraries for generating the Verilog code

• Let computers do the boring job

• No more genvar, generate, begin…end keywords

• No more worries about whether it’s synthesizable

• The fundamental advantage of Chisel against Verilog

[1] https://github.com/OpenXiangShan/XiangShan/pull/812

RS[1]: a case for agile development

https://github.com/OpenXiangShan/XiangShan/pull/812

ICT, CAS 2222

• Requirements for better agile development flows
• To speed up every single step

• To shorten the overall iterative process

• Chisel approaches to agile development
• Abstraction (bundles), parameterization, module re-use

• A lot of Chisel/Scala infrastructures

• Scala-based advanced code generation

• ……

• Chisel: more optimizing iterations in a fixed time interval
• Chisel significantly reduces the RTL coding time

• Faster than using Verilog/SV for iterative development

Put it all together: agile development with Chisel

Desired Features

Agile model of hardware design [1]

[1] Y. Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

ICT, CAS 2323

XiangShan Tape-out (July 2021)

• Single XiangShan Core with 1MB L2 Cache
• 28nm HPCP, 1.3GHz@0.9V

• How does Chisel work in the tape-out process?

Chisel
Simulation

Verilog

Verification
w/ Tape-out SoC

Verification
w/ SimSoC

Tape-out
Verilog

Verification
w/ netlist

ChiselTest

Chisel-based

Verilog-based

ICT, CAS 2424

Chisel: the learning curve

• People are not confused about Chisel itself
• chisel-cheatsheet [1] (2 pages) tells everything about Chisel

• Wire, Reg, := in Chisel are the same as wire, reg, assign in Verilog

• No always keyword in Chisel since assignments to Reg implicitly imply an always block

• Chisel itself does make RTL coding faster than ever before

• People are confused about advanced Scala features and Chisel-related libraries
• How to use object, abstract class, trait, …

• How to use Parameters, Diplomacy, …

• They are about how we build the software-level frameworks, not hardware

• They are not prerequisites for Chisel (and can be simply ignored if they cause difficulties)

• Start with plain Chisel only and learn Scala in the way to advanced agile development
• Only seven people in XiangShan team were experienced Chisel writers before June 2020

• But others, the Chisel beginners, have written/modified a lot of Chisel code as well by June 2021

[1] chisel-cheatsheet. https://github.com/freechipsproject/chisel-cheatsheet.

Scala

Chisel/FIRRTL

Chisel-based Libraries

Hardware Implementations

https://github.com/freechipsproject/chisel-cheatsheet

ICT, CAS 2525

• There’re always some behavior models
• Non-synthesizable C/C++/Verilog/SystemVerilog models

• FakePTW, RAMHelper, Difftest, DRAMsim3, …, in XiangShan

• Models used in ChiselTest cannot be directly used when simulating other modules

• Chisel does not provide an elegant way to integrate them
• A dirty method: import and call DPI-C functions in a Blackbox Verilog module

• Dirty method creates many nearly empty modules and does not work for Scala models

• What if Scala models can both access to Chisel and be integrated into simulation
• Using behavior models to replace Chisel modules in simulation

• Only in the Scala programming language does the Tester/model know Chisel information

• Every line of code shares the structuralized and parameterized information in Chisel framework

Co-sim with behavior models

Simulation wrapper
(C++/Verilog/SystemVerilog)

TL-C Cache (Scala)

DRAMsim3 (C++)

SimSoC

Top-level IOs

behavior

synthesizable

ICT, CAS 2626

Statistics for the generated Verilog

• We care about the size/elements of the structures in the processor
• Towards lower power level, less area, better energy efficiency

• Common structures: queues, SRAMs, tables, …

• The size of the structures cannot be determined in Chisel source code
• Verilog is generated after many FIRRTL transforms

• Dead code elimination (DCE) removes some unused wires

• What if Chisel provides post-elaboration assertions or statistics
• Then we don’t need to manually ensure there’s no unexpected signal in Verilog

necessary info unnecessary info (e.g., 39-bit PC)
…
…
…

necessary info unnecessary info (e.g., 39-bit PC)

Queue_1.entries (Verilog)

Better if we have
• assert(!entries.PC.exists)
• statistics(entries)

along with the Verilog

Queue
(Chisel)

ICT, CAS 2727

Intermediate variables in Chisel-generated Verilog

• A minor change in Chisel may result in more changes in Verilog than expected
• Chisel generates a lot of intermediate signals in Verilog

• They are mostly labeled _T_*, _GEN_*

• Different elaboration order generates different names

Concatenation order is
changed as expected

Previous New

_lo_T_6 _hi_T_2

_lo_T_7 _hi_T_3

_hi_T_2 _lo_T_6

_hi_T_3 _lo_T_7

Only name changes.
No functional change.

These changes can be ignored.

A little bit hard for physical design team
to track how the RTL changes.

ICT, CAS 2828

Take-away messages

• Chisel can produce high-performance designs
• Chisel is an advanced HDL (not HLS)

• Chisel allows efficient structurization and parameterization

• Chisel itself never hurts PPA

• Chisel speeds up agile development
• Chisel provides an efficient RTL coding method

• More iterations in a fixed time interval

• More optimizations and possibly better PPA in a fixed time interval

• Chisel is imperfect but we can continuously improve it
• To do better on chip agile design, implementation and verification processes

鹏城实验室
Peng Cheng Laboratory

Thanks!

Welcome more people to join us on the 2nd generation of XiangShan!

