. > 5 - o L b A ; gt
EprOMILATAGLE @RATIMRIS @CVER o, WSS

China RISC-V Alliance @...~ Peng Cheng Laboratory

Practice of High-performance Chip
Agile Development with Chisel

Yinan Xu 125
ICT, CAS

Xuyinan@ict.ac.cn

2021/6/26@CCC2021

Open-source processor

* Open-source RISC-V processor
* Chip agile development flow and tools

126 Ently " I'
ITUB (4 way) 32 KB I-cache (4 way)
1 3120 bs -
1 [_168ProDecods. Fotch Butior_| e

Fetch Unit SRR Vo way)
[18 Entry lnsuu(‘l:on Oueuv)]

Simplo | | Simpte
EHII..[i]I _ﬂﬂ

»{Eﬁw]nxsmmouan(uml.

RTL

component DebugCoreTop is

port (
—— Trigger and Data
cu Clk 1 in std logic_!
cul_Trig : in t_trig O
cul Trig : in t_i
cu? Trig 1 in _erig 2
cul_Data t_data 0 :
cul Das tin Tt _data .
g -ata in “ta
& std_locia
5. inout st rc

. Upstreanm

¢ \ReAgEFL: in std_logic
g <IClk n : in std_1
gt_RX p : in std_1
gt RX n : in std 1
gt IX p : ont std 1
gt _ITX n : ont std 1

)i

end component;

vects

.wchers => (oth
{others =>

of of of o = =
o
HHHHA = =

wownto

downto
downto
downto
downto

)

= he =
R

)

RN

ers => 'O
=)
i b
:= (others
:= (others

= nog
=> '0');
=> '0');

ICT, CAS

Shared :
—jL3 Cache —

L a%

< Memory Controller

4 XiangShan: a high-performance processor in Chisel

* 2020-2021: one processor in one year

RV64GC ISA support
11-stage, superscalar, out-of-order, dual-core
5.3 CoreMark/MHz (gcc-9.3.0, -02)

* Using a lot of open-source tools/designs

Chisel/FIRRTL

Verilator

rocket-chip (parameters, diplomacy, TL/AXI4 nodes, ...)
DRAMsIim

SiFive block inclusive cache

Berkeley-hardfloat

* Open-sourced at GitHub/Gitee/Trustie/ihub

ICT, CAS

Frontend l
Instruction Branch Predictor
32 entries Cache \ GHR I uBTB
16 KB 4-way \ BTB | BIM
L1plus Cache [[TAGESGL || RAS
128KB 8-way 1
Instruction Buffer
48 entries
Fetch Target Queue v
48 entries | 6-way Decoder
Rename & Dispatch
‘ FP Rename Table Integer Rename Table
ReOrder Buffer

FP Physical Register File
160 entries

—>

192 entires

INT Physical Register File
160 entries

€

—b: FMAC| |FMAC| |FMAC| [FMAC| [FMISC| [FMISC| LD LD ST ST MDU MDU ALY ALU ALU ALU MISC ‘_
+ | RSO RS1 RS2 RS3 RS0 RS1 RS0 RS1 RS0 RS1 RS0 RS1 RS0 RS1 RS2 RS3 RS |

T T ITIT
DTLB

Float Block 32 entries

,' STLB & PTW
4096 entries
2 x 8Bicy Load Store
’ Queue || Queue
L2 caChe :’SM& 64 entries 48 entries

Data Cache

32KB
8-way

1MB
8-way

Store Buffer
16 x 64B

sieiode Mlemory Block

Integer Block

XiangShan (yangihu) microarchitecture

4 Agile development infrastructures

RTL
Implementation

Basic
archltecture

New feature
Documentation

Chisel

Design Ianguage]

FIRRTL

TL-C transaction
Transforms

generator

nexus-am:
Run-time env

Golden Mem:
Multi-core
memory model
SMP-Diff:
Multi-core cosim
and checking

TL-C Agent:
Bus/cache
behavior model

NEMU:
ISA simulator

Difftest:
Co-sim and
checking
LightSSS:
process-level snapshot
for simulation
Waveform Terminator:
Waveform parser and
convertor to log

TL-C Scoreboard:
Bus/cache
behavior checking

LogViewer:
Web for log viewing

Functional
Verification

Test generation

Performance
Verification

Physical Design

Test generation]7

GCPT:
RISC-V full-system
checkpoint

SZ

Reference model

Simulation

BetaPoint:
Program characteristic
profiling tools (WIP)

e

Result
comparison

Fast micro-architecture
level warmup (WIP)

] NEMU-Functional:

e

Error
reproducing

e

Statlstlcs

Error analysis
analysis

[
[
[
[

KFDB:
Performance modelling
and analysis tools

Continuous Integration (Cl)

ICT, CAS

after all tests passed (WIP)

Merged to main branch

4 Agile development with Chisel

* Agile development: iterative, incremental, and evolutionary [1]

* How Chisel helps to survive in a rapidly-changing world

Desired Features F1||F2 F3| |F4
Specification Fi||F2||F1'| |F3| |F4
Design F1|[F2| |F1'| |F3| | F4
Verification F1||F2| |[F1'| |F3||F4

Agile model of hardware design [2]

[1] Agile software development. https://en.wikipedia.org/wiki/Agile_software_development. ICT, CAS
[2] Y. Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

https://en.wikipedia.org/wiki/Agile_software_development

4 Bundles: freely packaging signals

* Instructions are decoded into and go through the pipeline

 Complex processors define
* Tens of signals with different widths
 Structuralized control signals (generated, used, dropped at different stages)

CfCtrl(p: Parameters) XSBundle {

o cf = CtrlFlow
¢ Chlsel YES! ctrl = CtrlSignals

Feel free to add more here

e SystemVerilog interface YES!

ICT, CAS

4 SystemVerilog interface YES?

* Fine. Forget about the structuralized info.

Specifying modport for interface inside an interface in SystemVerilog

Question: | have two interfaces with modports and another interface
L e v ters et o eeeemnzs . n0.s . WHICh combines these two interfaces. | wanted to specify a modport
’ W =2 for the combined interface which in turn calls/uses the modport of
?f;EEEEEE%E:;;m =4 the individual interfaces.

e e 0 AR MEOESR—E, HERMMIENXAESEK
modport thb_to_dut (:‘Z = T_ I—‘—I \
) // signal directions specified Related —/I\I \ﬁﬁgd:;ik?—r I:l E 5 Z

endinterface

nter‘fa:e my_comb: d terf el
myintarfaces inf2 2
ndinterface m Wha . . .y) .
ot Unfortunately, SystemVerilog interface s lack compositional qualities and there is no way to
| wanted i d for th bined interf: hich || h ol f nter - - . . - - . .
sl s sl e s s e sl lsaskay BN specify an interface in pieces. The only way to do this today is to flatten out the combined interface
S D g - 3 by bringing the lower level interface signals up to the top level. And | would avoid using modports
my_interfacel infl and
S altogether for the testbench.
n Rest
modport tb_to_dut (n cl
infl.tb_to_dut,
inf2.tb_to_dut 2 How
) ndiy
T BN - V Share Follow answered May 25 16 at 20:45
This currently results in a syntax error. Is there a way by which | can specify the modport in the T Syst D: dave_59
combined interface such that it percolates down to the individual interfaces? bl 30'7k 3 22 48

interface system-verilog

Answer: The only way to do this today is to flatten out the interface.

& E—alLISCAGHEE, SRIETEESHT, MMEINE

ICT, CAS 7

Source: https://stackoverflow.com/questions/37445330/specifying-modport-for-interface-inside-an-interface-in-systemverilog

Share Follow asked May 25 16 at 18:47

5 | Pulimon
1.708

4% Parameterization

* Sometimes we need to change the parameters of the processor
» A different replacement policy
* Alarger re-order buffer
* A unified reservation station (from a distributed reservation station)
* A wider rename pipeline width (multiple modules affected)

* They cause changes to different levels of the design

Series/Scope

Youth

Normal

Ultra

[BRAND] Edition

Wire
Assignments

&
&
5
5

Internal logics

&
&
&,

Module 10s

&
5

ICT, CAS

Module-level
Organizations

Example

Replacement policy
Queue size
Enqueue width of a queue

Decode/Rename/Dispatch width

4% Parameterization Youth

* Between modules/methods with the same IO ports

* Example: replacement policy, error detection/correction

icacheParameters: ICacheParameters = ICacheParameters(
tagECC = Some(“"parity"),
dataECC = Some("parity"),
replacer = Some("setplru"),
nM1sskntries = 2

ReplacementPolicy {

fromString(s: Option[String],n _ways: Int): ReplacementPolicy = fromString(s.getOrEl
fromString(s: String, n_ways: Int): ReplacementPolicy = s.tolLowerCase match {

case "random" => RandomReplacement (n_ways)

case "lru" => TrueLRU(n_ways)

case "plru” => PseudoLRU(n_ways)

case t => throw IllegalArgumentException(s"unknown Replacement Policy type $t")

)
liplusCacheParameters: LlplusCacheParameters = LlplusCacheParameters(
tagECC = Some("secded"),
dataECC = Some("secded").
replacer = Some("setplru"),
nMissEntries = 8

)3

fromString(s: Option[String], n_ways: Int, n_sets: Int): SetAssocReplacementPolicy
fromString(s: String, n_ways: Int, n_sets: Int): SetAssocReplacementPolicy = s.tolLo
case "random" => SetAssocRandom(n_sets, n_ways)
case "setlru" => SetAssocLRU(n_sets, n_ways, "lru"
case "setplru" => SetAssocLRU(n_sets, n_ways, "plru"
case t => throw IllegalArgumentException(s“unknown Replacement Policy type $t")

dcacheParameters: DCacheParameters = DCacheParameters(
tagECC = Some("secded"),
dataECC = Some("secded").
replacer = Some("setplru"),
nMissgEntries = 16,
nProbeEntries =
nReleaseEntries = 16,
nStoreReplayEntries = 16

(1) Implement all possibilities (2) Use one line of code to choose one of them

ICT, CAS 9

4% Parameterization

* Between different structure sizes (e.g., queue size)
 usually only the pointer width is affected

FtqPtr(p: Parameters) CircularQueuePtr[FtqPtr](
p => p(XSCoreParamsKey).FtqSize
H

cloneType = (FtqPtr).asInstanceOf|

}

FtgPtr {
apply(f: Bool, v: UInt)(p: Parameters): FtgPtr = {
ptr = Wire(FtgPtr)
ptr.flag := f
ptr.value :=
ptr

(1) Define the parameterized
gueue size and queue pointer

update_target - Reg(Vec(FtgqSize, JInt(VAddrBits.W)))
cfiIndex_vec = Reg(Vec(FtgSize, ValiduUndirectioned(UInt(log2Up(PredictWidth).W))))
cfiIsCall, cfilsRet, cfiIsJalr, cfiIsRVC = Reg(Vec(FtqSize, Bool()))
mispredict_vec = Reg(Vec(FtgqSize, Vec(PredictWidth, Bool())))

when(real_fire) {
enqIldx = tailPtr.value

commitSiateQueue(enqIcx) := VecInit(io.enq.bits.valids.map(v => Mux(v, s_valid, s_invalid)))

cfiInde:_vec(enqIdx) := io.enq.bits.cfiIndex

cfiIsCa 1l(enqldx) := io.enq.bits.cfiIsCall

cfiIsRei (enqIdx) := ic.enq.bits.cfiIsRet

cfiIsJa. r(enqldx) := io.enq.bits.cfiIsJalr

cfiIsRV((enqIdx) := ic.enq.bits.cfiIsRVC

mispred:.ct_vec(engIdx) := WireInit(VecInit(Seq.fill(PredictWidth)/(.B)))
update_iarget(enqgIdx) := io.eng.bits.target

(2) Use queue size to generate registers/wires and
gueue pointers to index into the queue

ICT, CAS

10

4% Parameterization Ultra

* We need a parameterized scheduler

 # selected entries

* Both 10 ports and internal signals need parameterization
» Data width for input, output, wire, reg, ...
 Number of 10 ports, wires, regs, ...

* How to express these in SystemVerilog and Chisel?

ICT, CAS

module select(
input [] request,
output [] grant 0o,
output [] grant 1,
output [] grant 2

)s
// module body here

endmodule

Verilog example for select logic

11

4 Chisel: SystemVerilog generate Pro Max

 Parameterized scheduler: # total entries, # selected entries
* How to express these in SystemVerilog and Chisel?

interface select port #(class SelectPortIO(numEntries: Int) extends Bundle {

parameter NUM_ENTRIES = 4 val grant = Output(UInt(numEntries.W))
) }

logic [NUM_ENTRIES - 1 : @] grant;

modport sel iface(output grant); class SchedulerIO(
endinterface numEntries: Int,

numSelect: Int

interface scheduler_interface #() extends Bundle {

parameter NUM_ENTRIES = 64. val request = Input(UInt(numEntries.W))

parameter NUM_SELECT = 3 val grant = Vec(numSelect, new SelectPort(numEntries))
) }

logic [NUM_ENTRIES - 1 : @] request;

Chisel
genvar 1i;
generate
for (i = @; i < NUM_SELECT; i++) begin
select_port #(.NUM_ENTRIES(NUM_ENTRIES rants(); o o
PO RO -) Erane0; Chisel has fewer LOC and saves time.

endgenerate

endinterface

SystemVerilog
ICT, CAS 12

4% Parameterization [some brand here] Edition

e Simply changing FetchWidth/DecodeWidth/RenameWidth to 4/2/2

* We didn’t expect it to work perfectly

AT

el

s MinimalConfig(n: Int = 1) e !
\ DefaultConfig(n).alter((site, here, up) => {
case SoCParamsKey => up(SoCParamsKey).copy(
cores = up(SoCParamsKey).cores.map(_.copy(
DecodeWidth = 2,
RenameWidth = 2,
Fetchwidth = 4,
IssQueSize = 8,

NRPhyRegs =
LoadQueueSize =
StoreQueueSize =

80,
16,
16,
RogSize = 32,
BrgSize = 8,
FtgSize = 16,
IBufsize = 16,
StoreBufferSize = 4,
StoreBufferThreshold = 3,
dpParams = DispatchParameters(
IntDgSize = 8,
FpDgSize = 8,
LsDgSize = 8,

1 Pc

Frontend
w5 Instruction Branch Predictor
32 entries Cache | GHR ” uBTB
BTB I BIM
16 KB 4-way |

L1plus Cache [[TAGEscL || RAS

128KB 8-way &

Instruction Buffer
48 enfries
Fetch Target Queue v
48 entries | 6-way Decoder

Rename & Dispatch

I

‘ FP Rename Table

All affected

Integer Rename Table

ReOrder Buffer

But it works

FP Physical Register File
160 entries

192 entires

INT Physical Register File
160 entries

‘1 FMAC| |FMAC| (FMAC| [FMAC| [FMISC| [FMISC|
! | RSO RS1 RS2 RS3 RS0 RS1

LD LD ST ST MDU MDU ALU ALU ALU ALU MISC _‘_
RSO RS1 RSO RS1 RSO RS1 RS0 RS1 RS2 RS3 RS |

Float Block

AGU AGU AGU AGU
LD LD ST ST

Integer Block

DTLB
32 entries

. STLB & PTW
4096 entries

2% 8B

L2 Cache
Data Cache
1MB
32 KB
8-way 8 way

ICT, CAS

Store

Queue
48 entries

ycle Load

Queue
64 eniries

Store Buffer
16 % 64B

sscyce Memory Block

64Bicycle

13

4% More Chisel features for agile hardware development

* Scala infrastructures
e Strong type system
* Full-featured IDEs from community

* Chisel/FIRRTL infrastructures
* SRAM type/size inference
e ChiselTest [1]
e FIRRTL transforms [2]

* Chisel-based Libraries
* Configs/Parameters
* Diplomacy framework

[1] Chuangi Zhang. Agent Faker: Verification framework for TL-C caches. RVWC2021. ICT, CAS
[2] Jiawei Lin. Use Firrtl Transform to Control the Effective Range of 'printf' in Large Scale Circuits. CCC2021.

Chisel-based
Libraries

Chisel/FIRRTL

Scala

Levels of hardware development (with Chisel)

14

4 Chisel for high-performance chip design

 Chisel efficiently produces structuralized and parameterized designs
* Fast, clear and simple

* But a lot of people have told us that they
* do NOT need agile development
 do NOT need parameterization
e care about ONLY the design quality

e How does Chisel ensure PPA?

ICT, CAS

15

4 High performance comes from the precise control of RTL

* Chisel is more like syntax sugar or an advanced generator for Verilog
* Chisel expressions strictly map to Verilog expressions
* Last month we fixed a bug that causes setting the PLIC claim register with a wrong value

v : 4 HEEN" src/main/scala/device/AXI4Plic.scala E]

Concatenation order is changed as expected
L @@ -145,9 +145,9 @@ class AXI4Plic

val pendingvec = Cat(pending.map(x => Cat(x.reverse)))
C

val pendingVec = Cat(pending.reverse.map(x => Cat(x.reverse

claimCompletion.zipWithIndex.map { case (r, r

* |t's the designer that determines how the hardware works

* Chisel is not HLS. It does not translate/interpret what you write
* Chisel itself never hurts the PPA as well

* Then why Chisel? How does Chisel help ensure PPA?

ICT, CAS 16

% Revisiting Chisel: what is it

* Chisel is a Scala-based advanced Verilog code generator
* Generating Verilog with Scala/Chisel libraries

* Rule-based code generation always works on Chisel

* Programming languages are primarily intended for expressing algorithms in a form
that can be executed by a computer [1]

* Describe the rules in Scala and let Chisel generates the Verilog
 Example: auto-generated Wallace tree [2]

* Key: find the rules and use Chisel/Scala to describe it

[1] Algorithm. https://en.wikipedia.org/wiki/Algorithm. Wikipedia. ICT, CAS 17
[2] Jiawei Lin. Implementation of a Highly Configurable Wallace Tree Multiplier with Chisel. CCC2021.

https://en.wikipedia.org/wiki/Algorithm

% How Chisel helps high-performance designs

* Complexities cause difficulties in high-performance designs
* Wider: pipeline width changes from scalar to superscalar
 More complex: more pipelines, more structures

* Most logics in microarchitecture designs can be expressed by rules

* Duplications: decoders, ALUs, FMAs
 Dependences: branch predictors, selections, arbiters
* Most logics are either parallel or serialized

* Chisel easily generates complex but deterministic logics
e Because it is built on Scala programming language

ICT, CAS

18

% Duplications: wakeup

* Wakeup in reservation stations
* Not-ready instructions wait in the RS
* Executed instructions wake them up
e >10 wakeup sources

FMISC w ||w|]|st|]|sr MDU
RS1 RS0 | | RS1 | | RS0 | | RSt RS0
| | | |
acu | |acu | {acu | |acu
fEE b || || sT|]|sT e
| | | [
DTLB
Float Block 32 entries In eger
AT T T T

Wakeup sources from RS/FU

* What to do: compare the producers’ pdest with consumers’ psrc
e Store Data RS: 16-entry RS, 8 integer + 8 FP wakeup ports

class StatusArray(config: RSConfig)(implicit p: Parameters) extends XSModule
with HasCircularQueuePtrHelper (|
al io = IO(new Bundle { B
al redirect = Flipped(ValidIO(new Redirect))
val flush = Input(Bool()) 16

val 1sValid = Output(UInt(config.numEntries.W))
al canIssue = Output(UInt(config.numEntries.w))

val update = Vec(config.numEnq, negfS#dtusArrayUpdateIO(config))
al wakeup = Vec(config.numWakeup, Flipped(ValidIO(new MicroOp)))
al wakeupMatch = Vec(config.numEntries, Vec(config.numSrc, Output(UInt(config.numWakeup.W))))
al issueGranted = Vec(config.numDeq, Flipped(ValidIO(UInt(config.numEntries.w))))
sal degqResp = Vec(config.numDeq, Flipped(ValidIO(new Bundle {
al rsMask = UInt(config.numEntries.W)
al success = Bool()
D))
ral stIssuePtr = if (config.checkwaitBit) Input(new SqPtr()) else null
b

def wakeupMatch(p : UInt, srcType: UInt)

For each source, produce a matchBit

_ I
= 1

Vi = VecInit(io.wakeup.map(w =>

w.valid && w.bits.pdest === psrc &&
(SrcType.isReg(srcType) && w.bits.ctrl.rfiWen &&

psrc =/= @.U || SrcType.isFp(srcType) && w.bits.ctrl.fpWen)

)

XSError(PopCount(matchvec) > 1.U, p"matchvec ${Binary(matchvec.asuI
matchVec.asUInt

1
J

ICT, CAS

19

4 Serialized logics: issue selection

* |ssue: select the n-th one from a bit vector of length m

* Algorithm (for software)
* Let matrix[m][n] be whether first m bits has n ones
* If nis 0, matrix[m][n] = (whether first m bits has zero ones) = !bits.take(m).orR
* Otherwise, matrix[m][n] = bits[m - 1] && matrix[m - 1][n - 1] || 'bits[m - 1] && matrix[m - 1][n]
* |ssue Grant Vector = bits & matrix[:][n - 1]

* |n Chisel, it’s also allowed to recursively generate Verilog based on above rules
* But recursion never really happens in Verilog

for (i <- @ until config.numDeq) {
io.grant(i).valid := OnesMoreThan(request, i + 1)

io.grant(i).bits := request.getNthOH i + 1).asUInt

Define this function and use it everywhere

ICT, CAS 20

4 Chisel makes RTL coding faster

backend,RS: rewrite RS to optimize timing #8127

e Case study: rewriting RS in three days
* Modules: wakeup, select, status, payload, ... R
* Without engqNum/deqNum parameterization

* STA/STD split is not support yet (though it's quite easy to implement)

* Correctly running CoreMark R ——

Q) Conversation 2

* Chisel: reducing the RTL coding time
 Scala for expressing the rules/algorithms

Chisel libraries for generating the Verilog code

Let computers do the boring job

No more genvar, generate, begin...end keywords RS[1]: @ case for agile development

No more worries about whether it’s synthesizable

The fundamental advantage of Chisel against Verilog

[] (] [
P 9 9 0 ¢ b e ¢
e w w w w

ICT, CAS 21
[1] https://github.com/OpenXiangShan/XiangShan/pull/812

https://github.com/OpenXiangShan/XiangShan/pull/812

4 Put it all together: agile development with Chisel

* Requirements for better agile development flows | pesired Featres | [F1]|F2
* To speed up every single step Specification 1
* To shorten the overall iterative process Design
Verification
* Chisel approaches to agile development Tapon

* Abstraction (bundles), parameterization, module re-use _

* A lot of Chisel/Scala infrastructures _

* Scala-based advanced code generation

Agile model of hardware design [1]

* Chisel: more optimizing iterations in a fixed time interval
 Chisel significantly reduces the RTL coding time
 Faster than using Verilog/SV for iterative development

ICT, CAS 22
[1] Y. Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20, Mar.-Apr. 2016.

4 XiangShan Tape-out (July 2021)

* Single XiangShan Core with 1IMB L2 Cache
e 28nm HPCP, 1.3GHz@0.9V

* How does Chisel work in the tape-out process?

ChiselTest

Simulation Verification
Verilog w/ SimSoC

Chisel

Verification Verification

w/ Tape-out SoC w/ netlist Chisel-based
Verilog-based

ICT, CAS 23

4 Chisel: the learning curve

. . Chisel-based Libraries
* People are not confused about Chisel itself

* chisel-cheatsheet [1] (2 pages) tells everything about Chisel

* Wire, Reg, :=in Chisel are the same as wire, reg, assign in Verilog
* No always keyword in Chisel since assighments to Reg implicitly imply an always block
* Chisel itself does make RTL coding faster than ever before

Chisel/FIRRTL
Scala

* People are confused about advanced Scala features and Chisel-related libraries
* How to use object, abstract class, trait, ...
* How to use Parameters, Diplomacy, ...
* They are about how we build the software-level frameworks, not hardware
* They are not prerequisites for Chisel (and can be simply ignored if they cause difficulties)

 Start with plain Chisel only and learn Scala in the way to advanced agile development
* Only seven people in XiangShan team were experienced Chisel writers before June 2020
* But others, the Chisel beginners, have written/modified a lot of Chisel code as well by June 2021

@, poemonsense “® Lingruios @ zoujr o' YikeZhou

Y 672 commits 22,918 ++ 29,619 -- ' 333 commits 13,497 ++ 189,636 -- 107 commits 6,678 ++ 5,383 —- o 49 commits 4,173 ++ 2,179 —-

ICT, CAS 24
[1] chisel-cheatsheet. https://github.com/freechipsproject/chisel-cheatsheet.

https://github.com/freechipsproject/chisel-cheatsheet

4% Co-sim with behavior models

* There’re always some behavior models

* Non-synthesizable C/C++/Verilog/SystemVerilog models
* FakePTW, RAMHelper, Difftest, DRAMsim3, ..., in XiangShan
* Models used in ChiselTest cannot be directly used when simulating other modules

* Chisel does not provide an elegant way to integrate them
* Adirty method: import and call DPI-C functions in a Blackbox Verilog module
* Dirty method creates many nearly empty modules and does not work for Scala models

 What if Scala models can both access to Chisel and be integrated into simulation
* Using behavior models to replace Chisel modules in simulation
* Only in the Scala programming language does the Tester/model know Chisel information
* Every line of code shares the structuralized and parameterized information in Chisel framework

behavior
synthesizable

25

TL-C Cache (Scala)

Top-level 10s Simulation wrapper

DRAMsim3 (C++) (C++/Verilog/SystemVerilog)
SimSoC

ICT, CAS

4 Statistics for the generated Verilog

* We care about the size/elements of the structures in the processor
* Towards lower power level, less area, better energy efficiency
« Common structures: queues, SRAMs, tables, ...

* The size of the structures cannot be determined in Chisel source code
* Verilog is generated after many FIRRTL transforms
e Dead code elimination (DCE) removes some unused wires

* What if Chisel provides post-elaboration assertions or statistics
 Then we don’t need to manually ensure there’s no unexpected signal in Verilog

necessary info unnecessary info (e.g., 39-bit PC) Better if we have

Queue « assert(lentries.PC.exists)
(Chisel) « statistics(entries)

necessary info unnecessary info (e.g., 39-bit PC) along with the Verilog
Queue_1.entries (Verilog)

ICT, CAS 26

% Intermediate variables in Chisel-generated Verilog

* A minor change in Chisel may result in more changes in Verilog than expected

* Chisel generates a lot of intermediate signals in Verilog

* They are mostly labeled T *, GEN * A little bit hard for physical design team
to track how the RTL changes.

» Different elaboration order generates different names

1511,1512¢1511, 1512
: 4 MEEN src/main/scala/device/AXI4Plic.scala E] .
I @@ -145,9 +145,9 @@ class AXI4Plic
. I - - -
}

al pendingvec = cat(pending.map(x Cat(x.reverse)))
val pendingvec = cat(pending.reverse.map(x at(e)))
claimCompletion.zipWithIndex.map { case (r, hart) => {
Y a— 2277,2279¢2277,2279
val takenVec = pendingVec & Cat(enable(hart).r se)
r := Mux(takenVec === 0.U, ©.U, PriorityEncoder(takenVec))
Only name changes.
2341, 234362341, 2543 No functional change.
Previous b These changes can be ignored.
1o T 6 _hi T 2
. 2597,2599¢2597, 2599
1o T 7 ~hi T 3
_hi T 2 _lo_T_6
_hi T 3 1o T 7

ICT, CAS 27

4% Take-away messages

* Chisel can produce high-performance designs
e Chisel is an advanced HDL (not HLS)
* Chisel allows efficient structurization and parameterization
* Chisel itself never hurts PPA

* Chisel speeds up agile development
* Chisel provides an efficient RTL coding method
* More iterations in a fixed time interval
* More optimizations and possibly better PPA in a fixed time interval

* Chisel is imperfect but we can continuously improve it
* To do better on chip agile design, implementation and verification processes

ICT, CAS

28

oy MBSETR =2

%, .= Peng Cheng Laboratory

@ ¥ 6 # 5 EABRLGTG (R A: hEFHES%S (RISC-V) B

INSTITUTE OF COMPUTING TECHNOLOGY , CHINESE ACADEMY OF SCIENCES China RISC-V Alliance

Thanks!

Welcome more people to join us on the 2" generation of XiangShan!

Wokmmponrarea |l == ESWIN Z0FES

vcore BEIJINGVCORETECHNOLOGYCO.,LTD.

