Top 10 Common Misconceptions
about Chisel

Zihao Yu
ICT, CAS

2021.06@ShangHai

jcr *@ﬂ;?uﬂgﬁ-&&é é‘?x

Institute Of Cemputing Technology Chinese Academy Of Scie




Top 10 common misconceptions about Chisel

» Chisel has been proposed for nearly 10 years

» However, people may still come up with some misconceptions
about Chisel

» We aims to collect top 10 common misconceptions about Chisel
- and provide corresponding clarification

- according to the Chisel experience from ICT (Institute of Computing
Technology), CAS (Chinese Academy of Sciences) team

» a wide variety of topics

- from learning, developing, testing and verification
- to debugging, optimization, and physical design



Learning - Misconception 1

» The Rocket Chip project written by Chisel is complicated and hard
to understand. Therefore Chisel is also complicated and hard to

learn.

» No. There are a lot of DSLs inside the Rocket Chip Project. They
do not belong to Chisel.
- CDE(the configuration system)
- Diplomacy(the bus framework)
- RegMapper(device register mapping definition)

» The range of Chisel is defined in the manual.



Learning - Misconception 1

» Suggestion: If you are new to Chisel, DO NOT read the source
code of Rocket Chip. Instead, try the following materials:

- Chisel Bootcamp - support running Chisel online
» https://github.com/freechipsproject/chisel-bootcamp

- Chisel Users Guide - deep introduction to key concepts in Chisel
» https://www.chisel-lang.org/chisel3/docs/introduction.html

- Chisel cheat sheet - a 2-page reference of the frequent Chisel usage
» https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel cheatsheet.pdf

- Chisel APl Documentation
» https://www.chisel-lang.org/api/latest/chisel3/index.html

- Digital Design With Chisel
» https://github.com/schoeberl/chisel-book



https://github.com/freechipsproject/chisel-bootcamp
https://www.chisel-lang.org/chisel3/docs/introduction.html
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://www.chisel-lang.org/api/latest/chisel3/index.html
https://github.com/schoeberl/chisel-book

Learning - Misconception 1

» Suggestion: Feel free to try the following example projects:

- Chisel Project Template
» https://github.com/freechipsproject/chisel-template
- Chisel Project Template (mill version)
» https://github.com/OpenXiangShan/chisel-playground

- Sodor Processor
» https://github.com/ucb-bar/riscv-sodor

- NutShell (825) - a processor developed by undergraduates (—=%
» https://github.com/OSCPU/NutShell



https://github.com/freechipsproject/chisel-template
https://github.com/OpenXiangShan/chisel-playground

Developing - Misconception 2

» For RTL development, there i1s something that Verilog can do but
Chisel can not.

» No. Synthesizable circuit = instantiation + wiring
- Instantiate modules, combination logic, registers...
- They are supported by Chisel.

Verilog code

Synthesizable Verilog code =

Verilog code generated by Chisel




Developing - Misconception 3

» |t Is annoying to fix so many hard-to-understand compile errors
with Chisel. It Is easier to pass compilation with Verilog,.

» 5 types of error during development

» Syntax error, static type checking error

- Scala run-time error
» Dereferencing null object, dynamic type checking error, requirement fall

» Wrong direction of wiring, Chisel type/Chisel object mismatch

- FIRRTL transform error
» Unconnected signal, combinational loop

— Circuit simulation error
» Assertion fail, functional bug



Developing - Misconception 3

» |t Is annoying to fix so many hard-to-understand compile errors
with Chisel. It Is easier to pass compilation with Verilog,.

» This should be considered from the view of programming
language.

» code successfully compiled # correct code

» Three concepts about debugging from software engineering

- Fault - buggy code, e.g. uninitialized variable
- , €.g. returning a garbage value

- Failure - observable fatal result, e.g. segmentation fault



Developing - Misconception 3

>

bug propagation

- fault ->(maybe) ->(maybe) failure

In Verilog, wrong signal connection -> ->
memory access exception -> days of debugging

In Chisel, wrong signal connection -> Scala static type checking
error (w.h.p.) -> expose fault w.h.p.

Stronger compiler can expose more hidden fault to observable
failure.
- Code successfully compiled may be correct with higher probability.

- In a long run, spending hours to solve an error reported by compiler is still
cost-effective. o



Developing - Misconception 4

» There i1s no way to integrate a Chisel module into a Verilog
project, and vice versa.

» No.

- Chisel code can be compiled to Verilog.

- Verilog code can be integrated into a Chisel project with Blackbox.

» Example from www.chisel-lang.org
module BlackBoxRealAdd (

import chisel3. input [63:0] inl,
class BlackBoxRealAdd extends BlackBox { input [63:0] in2
val io = IO(new Bundle ({ output reg [63:0] out
val inl = Input(UInt(64.W)) ) ;
val in2 = Input(UInt(64.W)) always @* begin
val out = Output (UInt(64.W)) out <= $realtobits ($bitstoreal (inl) + $bitstoreal (in2));
}) end
} endmodule

10



Testing and Verification - Misconception 5

» There is no way to perform simulation or testing with Chisel.

» No. There are two ways to test the Chisel code.
- test from Chisel layer - write testbench with Scala

» Chisel Testers

- https://github.com/freechipsproject/chisel-testers

» Chisel Testers2

- https://github.com/ucb-bar/chisel-testers2

- test from Verilog layer - UVM

» We develop UVM above Chisel Testers2.

- Agent Faker: TL-C—&{it

-Cachefg&rit

st

22 S NI



https://github.com/ucb-bar/chisel-testers2

Testing and Verification - Misconception 6

» There 1s no way to guarantee the semantic equality between the
Chisel code and the generated Verilog code.

» Unnecessary, since every tool is software, and it is difficult to
guarantee to be bug-free.

» Commercial EDA tools may be buggy.
- Segmentation fault -> modify the design?

» But why we believe them?
- Because they have been used by many users.

12



Testing and Verification - Misconception 6

» Chisel and FIRRTL may also be buggy.

- No one can prove that they are bug-free.

» But a lot of processors written in Chisel are successfully taped-out.
- RocketChip (at least 11 times), BOOM, lowRISC...

» Cases In our team (ICT, CAS)
- NutShell (taped-out in 2019.12)
» https://github.com/OSCPU/NutShell

- Labeled RISC-V (taped-out in 2020.07)
» https://github.com/LvNA-system/labeled-RISC-V

- XiangShan (taped-out in 2021.07, still in progress)
» https://github.com/OpenXiangShan/XiangShan

» According to our experience, the behavior of Chisel and generated
Verilog is still the same. 13



https://github.com/OSCPU/NutShell
https://github.com/LvNA-system/labeled-RISC-V
https://github.com/OpenXiangShan/XiangShan

Quality - Misconception 7

» Since the performance of Java programs are slower than C
programs, the performance of Chisel circuits will also be slower
than Verilog circuits.

» No.

- Java is slower than C, because of the Java runtime is heavier than C.

- The performance of the circuit mainly depends on the design itself, not
the language used to describe the circuit.

» If you describe an adder, it should generate the adder exactly you want, no matter you
use Chisel or Verilog.

» The performance of high level language has nothing to do with
the performance of the circuit.
14



Quality - Misconception 8

» Similar to HLS, writing Chisel code with advanced features may
lead to bad PPA.

» No. Chisel is not HLS.

- The advanced feature in Scala is
used to describe the circuit
Convenlently’ assig 8 metaL-Jaj.-'_?_'-..-'.falirj EA__T_E.?_; -_

- still get the circuit exactly we want |

assigl 3 metakWay 2 valid & T 30;
T 31 & io_in valid;

metaWay 3 tag == addr tag;
metalWay 3 valid & T 33;

- HLS generates circuit based on |- n—"
algorithm. |
- can not precisely control the generated circuit.

>}

15



debugging, optimization and physical design - Misconception 9

» The Verilog generated by Chisel is hard to read. Therefore it is
difficult to perform debugging, optimization and physical design.

» No. We can easily backtrack a path to Chisel code.
- Path -> Verilog -> comment (with file name and line number) -> Chisel

LUTS (Prop FSLUT SLICEL [1_Q)
net

LUTE (Prop HELUT SLICEL |12 Q)
net

T 431
T 433
T 434
T 435
T _458 = g

T AP T M58 & T 333: a[EmbeddedTLB. sc3lae327:29
T 436 = _T_431 & _T_386[2]; // @LEmaeddedTLL

Site: SLICE_X47Y71
(f) 0.039 3.663 Site: SLICE_X47Y71

[ noop_i/NOOPSoC_0/inst/noop/itlb/tibExec/ T 8 req_addr[31] i 6/I11

{] noop_i/NOOPSoC_0/inst/noop/itib/tibExec/ T 8 req_addr[31]_i_6/0

0.190 3.853 " noop_i/NOOPSoC_0/inst/noop/itib/tIbExec/satp_reg[52]
Site: SLICE_X46Y71 [ noop_ifNOOPSoC_0/inst/noop/itib/tlbExec/ T_464[0] i _2/12
(f)0.149  4.002 Site: SLICE_X46Y71 4 noop_i/NOOPSoC_0finst/noop/itlb/tIbExass® 464[0] i 2/0
0.194 4,196 " noop_i/NOOPSoC_0/inst/noanditibExec/ T_464[0]1.i 1 n O
Site: SLICE_X46Y70 [ noop_i/NOOPSoC_Odst/noop/itib/tibExec/ram_icachePF_reg_0_3_0_0_i_4/12

_T 425 & _T_430; // @[Ea€UdedTLB.scala 311:87]
io_pf_status_mxr g1 386[3]; // @[EmbeddedTLB.scala 313:68]
_T_386[1] |l 433; // @[EmbeddedTLB.scala 313:51]
T 431 T 434; // @[EmbeddedTLB.scala 313:36]

35; // @[EmbeddedTLB.scala 327:19]

Mame == "dtlb") {

loadPF := req.isRead() && !'isAMO
storePF := req.isWrite() || 1sAMO

.otherwise {

state := Mux(updateAD, s_write_pte, s_wait_resp)
missMetaRefill := true.B 16




debugging, optimization and physical design - Misconception 9

» The backtracking method can be applied to well-named signals,
as well as anonymous signals (e.g., T 464).

» It can also be applied with different propose.
- Debugging, optimization and physical design

» In particular, if a physical design engineer wants to understand the
semantics of a path, he should co-operate with an RTL engineer.

17



High performance - Misconception 10

> It Is difficult to develop high performance processor with Chisel.

» No. XiangShan is a high performance processor developed with
Chisel.
- https://github.com/OpenXiangShan/XiangShan

» Compared with the language difference, the design of the micro-
architecture contributes much more to the performance of a

Processor.

18


https://github.com/OpenXiangShan/XiangShan

Thank you!



