
Zihao Yu
ICT, CAS

2021.06@ShangHai

Top 10 Common Misconceptions
about Chisel

Top 10 common misconceptions about Chisel

► Chisel has been proposed for nearly 10 years

► However, people may still come up with some misconceptions
about Chisel

► We aims to collect top 10 common misconceptions about Chisel
– and provide corresponding clarification

– according to the Chisel experience from ICT (Institute of Computing
Technology), CAS (Chinese Academy of Sciences) team

► a wide variety of topics
– from learning, developing, testing and verification

– to debugging, optimization, and physical design 2

Learning - Misconception 1

► The Rocket Chip project written by Chisel is complicated and hard
to understand. Therefore Chisel is also complicated and hard to
learn.

► No. There are a lot of DSLs inside the Rocket Chip Project. They
do not belong to Chisel.
– CDE(the configuration system)

– Diplomacy(the bus framework)

– RegMapper(device register mapping definition)

► The range of Chisel is defined in the manual.

3

Learning - Misconception 1

► Suggestion: If you are new to Chisel, DO NOT read the source
code of Rocket Chip. Instead, try the following materials:
– Chisel Bootcamp - support running Chisel online

► https://github.com/freechipsproject/chisel-bootcamp

– Chisel Users Guide - deep introduction to key concepts in Chisel
► https://www.chisel-lang.org/chisel3/docs/introduction.html

– Chisel cheat sheet - a 2-page reference of the frequent Chisel usage
► https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf

– Chisel API Documentation
► https://www.chisel-lang.org/api/latest/chisel3/index.html

– Digital Design With Chisel
► https://github.com/schoeberl/chisel-book

4

https://github.com/freechipsproject/chisel-bootcamp
https://www.chisel-lang.org/chisel3/docs/introduction.html
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://www.chisel-lang.org/api/latest/chisel3/index.html
https://github.com/schoeberl/chisel-book

Learning - Misconception 1

► Suggestion: Feel free to try the following example projects:
– Chisel Project Template

► https://github.com/freechipsproject/chisel-template

– Chisel Project Template (mill version)
► https://github.com/OpenXiangShan/chisel-playground

– Sodor Processor
► https://github.com/ucb-bar/riscv-sodor

– NutShell (果壳) - a processor developed by undergraduates (一生一芯项目)
► https://github.com/OSCPU/NutShell

5

https://github.com/freechipsproject/chisel-template
https://github.com/OpenXiangShan/chisel-playground

Developing - Misconception 2

► For RTL development, there is something that Verilog can do but
Chisel can not.

► No. Synthesizable circuit = instantiation + wiring
– Instantiate modules, combination logic, registers...

– They are supported by Chisel.

6

Verilog code

Synthesizable Verilog code =
Verilog code generated by Chisel

Developing - Misconception 3

► It is annoying to fix so many hard-to-understand compile errors
with Chisel. It is easier to pass compilation with Verilog.

► 5 types of error during development
– Scala compile error

► Syntax error, static type checking error

– Scala run-time error
► Dereferencing null object, dynamic type checking error, requirement fail

– Chisel build error
► Wrong direction of wiring, Chisel type/Chisel object mismatch

– FIRRTL transform error
► Unconnected signal, combinational loop

– Circuit simulation error
► Assertion fail, functional bug

7

Developing - Misconception 3

► It is annoying to fix so many hard-to-understand compile errors
with Chisel. It is easier to pass compilation with Verilog.

► This should be considered from the view of programming
language.

► code successfully compiled ≠ correct code

► Three concepts about debugging from software engineering
– Fault - buggy code, e.g. uninitialized variable

– Error - unexpected state during run time, e.g. returning a garbage value

– Failure - observable fatal result, e.g. segmentation fault
8

Developing - Misconception 3

► bug propagation
– fault ->(maybe) error ->(maybe) failure

► In Verilog, wrong signal connection -> CPU reads wrong data ->
memory access exception -> days of debugging

► In Chisel, wrong signal connection -> Scala static type checking
error (w.h.p.) -> expose fault w.h.p.

► Stronger compiler can expose more hidden fault to observable
failure.
– Code successfully compiled may be correct with higher probability.

– In a long run, spending hours to solve an error reported by compiler is still
cost-effective.

9

Developing - Misconception 4

► There is no way to integrate a Chisel module into a Verilog
project, and vice versa.

► No.
– Chisel code can be compiled to Verilog.

– Verilog code can be integrated into a Chisel project with Blackbox.
► Example from www.chisel-lang.org

10

import chisel3._

class BlackBoxRealAdd extends BlackBox {

val io = IO(new Bundle {

val in1 = Input(UInt(64.W))

val in2 = Input(UInt(64.W))

val out = Output(UInt(64.W))

})

}

module BlackBoxRealAdd(

input [63:0] in1,

input [63:0] in2,

output reg [63:0] out

);

always @* begin

out <= $realtobits($bitstoreal(in1) + $bitstoreal(in2));

end

endmodule

Testing and Verification - Misconception 5

► There is no way to perform simulation or testing with Chisel.

► No. There are two ways to test the Chisel code.
– test from Chisel layer - write testbench with Scala

► Chisel Testers
– https://github.com/freechipsproject/chisel-testers

► Chisel Testers2
– https://github.com/ucb-bar/chisel-testers2

– test from Verilog layer - UVM

► We develop UVM above Chisel Testers2.
– Agent Faker: TL-C一致性Cache的软件测试框架, 张传奇

11

https://github.com/ucb-bar/chisel-testers2

Testing and Verification - Misconception 6

► There is no way to guarantee the semantic equality between the
Chisel code and the generated Verilog code.

► Unnecessary, since every tool is software, and it is difficult to
guarantee to be bug-free.

► Commercial EDA tools may be buggy.
– Segmentation fault -> modify the design?

► But why we believe them?
– Because they have been used by many users.

12

Testing and Verification - Misconception 6

► Chisel and FIRRTL may also be buggy.
– No one can prove that they are bug-free.

► But a lot of processors written in Chisel are successfully taped-out.
– RocketChip (at least 11 times), BOOM, lowRISC...

► Cases in our team (ICT, CAS)
– NutShell (taped-out in 2019.12)

► https://github.com/OSCPU/NutShell

– Labeled RISC-V (taped-out in 2020.07)
► https://github.com/LvNA-system/labeled-RISC-V

– XiangShan (taped-out in 2021.07, still in progress)
► https://github.com/OpenXiangShan/XiangShan

► According to our experience, the behavior of Chisel and generated
Verilog is still the same. 13

https://github.com/OSCPU/NutShell
https://github.com/LvNA-system/labeled-RISC-V
https://github.com/OpenXiangShan/XiangShan

Quality - Misconception 7

► Since the performance of Java programs are slower than C
programs, the performance of Chisel circuits will also be slower
than Verilog circuits.

► No.
– Java is slower than C, because of the Java runtime is heavier than C.

– The performance of the circuit mainly depends on the design itself, not
the language used to describe the circuit.
► If you describe an adder, it should generate the adder exactly you want, no matter you

use Chisel or Verilog.

► The performance of high level language has nothing to do with
the performance of the circuit.

14

Quality - Misconception 8

► Similar to HLS, writing Chisel code with advanced features may
lead to bad PPA.

► No. Chisel is not HLS.
– The advanced feature in Scala is

used to describe the circuit

conveniently.

– still get the circuit exactly we want

► HLS generates circuit based on

algorithm.
– can not precisely control the generated circuit.

15

debugging, optimization and physical design - Misconception 9

► The Verilog generated by Chisel is hard to read. Therefore it is
difficult to perform debugging, optimization and physical design.

► No. We can easily backtrack a path to Chisel code.
– Path -> Verilog -> comment (with file name and line number) -> Chisel

16

debugging, optimization and physical design - Misconception 9

► The backtracking method can be applied to well-named signals,
as well as anonymous signals (e.g., _T_464).

► It can also be applied with different propose.
– Debugging, optimization and physical design

► In particular, if a physical design engineer wants to understand the
semantics of a path, he should co-operate with an RTL engineer.

17

High performance - Misconception 10

► It is difficult to develop high performance processor with Chisel.

► No. XiangShan is a high performance processor developed with
Chisel.
– https://github.com/OpenXiangShan/XiangShan

► Compared with the language difference, the design of the micro-
architecture contributes much more to the performance of a
processor.

18

https://github.com/OpenXiangShan/XiangShan

19

Thank you!

