
鹏城实验室
Peng Cheng Laboratory

XiangShan: an Open-Source
High-Performance RISC-V Processor

Yungang Bao
Institute of Computing Technology (ICT)

Chinese Academy of Sciences (CAS)

Dec 6, 2021@RISC-V Summit

中国科学院计算技术研究所 (ICT, CAS) 22

Outline

• Introduction of XiangShan

• Agile Performance Modelling with Software-based RTL-simulation

• Micro-architecture Design and Optimizations of XiangShan

中国科学院计算技术研究所 (ICT, CAS) 33

Open-source Processor Ecosystem

① ISA + ② Microarch. design/impl. + ③ Workflow/Tools

coding

RTL

EDA Tools

LayoutISA Spec. Docs

microarch.

中国科学院计算技术研究所 (ICT, CAS) 44

Open-source RISC-V processor

coding

RTL

EDA Tools

LayoutISA Spec. Docs

microarch.

• Open-source RISC-V processor
• Chip agile development flow and tools

中国科学院计算技术研究所 (ICT, CAS) 55

Why open-source high-perf. RISC-V processor?

• Why RISC-V: Free and open ISA

• Why high-perf : Most RISC-V processors are for IoT/AI, but both academic and industrial
community need high-performance RISC-V processors

• Why open-source: An open and innovative hardware platform, “hardware version of Linux”

• Build a leading platform with chip development method, flow and tools

Source: David Patterson,
Keynote @ CRVF 2019,
https://crvf2019.github.io/p
df/keynote1.pdf

https://crvf2019.github.io/pdf/keynote1.pdf

中国科学院计算技术研究所 (ICT, CAS) 66

XiangShan: an open-source high-performance processor

• XiangShan: an industrial-level processor written in Chisel
• Named after a mountain in Beijing, China

• Timeline

• Open-sourced at https://github.com/OpenXiangShan/XiangShan

Scan to follow us on GitHub

Fragrant Hills in Beijing

June 11, 2020
First commit

July 15, 2021
First tape-out (Yanqihu)
Estimated SPEC CPU2006 9@1.3GHz

Early 2022
To be the 2nd tape-out (Nanhu)
Estimated SPEC06 20@2GHz

https://github.com/OpenXiangShan/XiangShan

中国科学院计算技术研究所 (ICT, CAS) 77

Agile development infrastructures

New feature
Documentation

RTL
Implementation

Functional
Verification

Performance
Verification

Physical Design

Test generation

Reference model

Result
comparison

Basic
architecture

Design language

Error
reproducing

Error analysis

Test generation

Simulation

Emulation

FPGA

Statistics
analysis

XiangShan

Chisel

FIRRTL
Transforms

TL-C transaction
generator

NEMU:
ISA simulator

nexus-am:
Run-time env

Difftest:
Co-sim and

checking

SMP-Diff:
Multi-core cosim

and checking

LightSSS:
process-level snapshot

for simulation

Waveform Terminator:
Waveform parser and

convertor to log

Golden Mem:
Multi-core

memory model

LogViewer:
Web for log viewing

TL-C Agent:
Bus/cache

behavior model

TL-C Scoreboard:
Bus/cache

behavior checking

GCPT:
RISC-V full-system

checkpoint

KFDB:
Performance modelling

and analysis tools

NEMU-Functional:
Fast micro-architecture

level warmup (WIP)

BetaPoint:
Program characteristic
profiling tools (WIP)

Continuous Integration (CI)
Merged to main branch

after all tests passed

中国科学院计算技术研究所 (ICT, CAS) 88

Outline

• Introduction of XiangShan

• Agile Performance Modelling with Software-based RTL-simulation

• Micro-architecture Design and Optimizations of XiangShan

中国科学院计算技术研究所 (ICT, CAS) 99

Performance Modelling with Software-based RTL-simulation

High-performance
designs are too

complex to develop
agilely on FPGA

How to speed up
the simulation?

Speed

Design Size

Emulator: Million $
(Unaffordable for us and most academia)

FPGA

RTL-
Simulation

RTL-simulation FPGA RTL-Simulation w/ Checkpoint

Compile 20 minutes 5 hours 20 minutes

Simulation 958 years@2KHz (2K CPS) 7 days@100MHz 5.5 hours with enough x86 servers

Time for performance modelling of single-core XiangShan on SPEC CPU2006

Our Approach

Large

Small

FastSlow

中国科学院计算技术研究所 (ICT, CAS) 1010

Parallelism via RISC-V Checkpoint

• Cut a program into small segments, and simulate the segments simultaneously

• Challenge ①: create checkpoints on a certain position of the program
• Based on NEMU, an instruction set simulator (ISS) running at ~300MIPS

• Required information: program counter, architecture registers, memory, etc

• Challenge ②: restore checkpoints when simulating XiangShan
• Key problem: the design is changing, and we need a generic approach for RISC-V

• Solution: use privilege instructions to initialize the registers

• Dromajo [MICRO’21] uses debug mode, which does not exist on some processors

Format of RISC-V
Checkpoint

中国科学院计算技术研究所 (ICT, CAS) 1111

• Simpoint[1]: finding and exploiting program phase behavior

• Generating representative RISC-V checkpoints from SPEC CPU2006

• Example: execution time estimation[2] based on clustering weights and simulated IPC

Feature Clustering via Simpoint

[1] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder, SimPoint
3.0: Faster and More Flexible Program Analysis , Journal of Instruction
Level Parallel, September 2005.
[2] 90-cycle fixed latency. Simpoints with 80% coverage and maxK=30.

0

5

10

15

20

25

30
Checkpoints FPGA

SPECfp
↑7%

SPECint
↑12%

Sc
o

re
()

1
/e

xe
cu

ti
o

n
 t

im
e

)

Estimated Yanqihu SPEC CPU2006 results@1.3GHz

中国科学院计算技术研究所 (ICT, CAS) 1212

Outline

• Introduction of XiangShan

• Agile Performance Modelling with Software-based RTL-simulation

• Micro-architecture Design and Optimizations of XiangShan

中国科学院计算技术研究所 (ICT, CAS) 1313

Yanqihu: 1st generations of XiangShan

• Yanqihu: named after a lake in Beijing, China
• RV64GC, 11-stage, superscalar, out-of-order

• 5.3 CoreMark/MHz (gcc-9.3.0 –O2)

• Estimated SPEC CPU2006 ~9@1.3GHz

• Tape-out: single XiangShan core (commit hash ccbca07) with 1MB L2 Cache

Yanqi Lake in Beijing

Figure. Layout of (a) the entire chip; (b) the core

Tape-out information for the processor core

Process Node 28nm

Die Size 8.6 mm2

Std Cell 5.05M, 4.27 mm2

Mem 261, 1.7mm2

Density 66%

Cell
ULVT 1.04%, LVT 19.32%,
SVT 25.19%, HVT 53.67%

Estimated Power 5W

Frequency 1.3GHz, TT85C

中国科学院计算技术研究所 (ICT, CAS) 1414

Yanqihu Pipelines

IF1 IF2 IF3 IF4 Decode Rename Dispatch

Issue

Exec/Writeback

TLB/Tag/Data Writeback

TLB Writeback

Int

Load

Store

Regfile

Tag Compare

Execute
(FMAC: 5-cycle latency)

Writeback
Fp

Commit

6*uop

ICache fetch:
8*4byte 6*uop 6*uop 3*4*uop

14R8W

1 CSR/JAL
4 ALU
2 MUL/DIV
4 FMAC
2 FMISC
2 Load
2 Store

6*instr

17*exe/rs
16-entry

Instruction Buffer Dispatch Queue

Issue Queue

In-order

Out-of-order

Queues

中国科学院计算技术研究所 (ICT, CAS) 1515

XiangShan microarchitecture (Yanqihu)

• 11-stage, 6-wide decode/rename

• TAGE-SC-L branch prediction

• 160 Int PRF + 160 FP PRF

• 192-entry ROB, 64-entry LQ, 48-entry SQ

• 16-entry RS for each FU

• 16KB L1 Cache, 128KB L1plus Cache for instruction

• 32KB L1 Data Cache

• 32-entry ITLB/DTLB, 4K-entry STLB

• 1MB inclusive L2 Cache

IF1 IF2 IF3 IF4 DEC REN DP RF ISS EXE CM

中国科学院计算技术研究所 (ICT, CAS) 1616

Estimated SPEC CPU2006 results of Yanqihu

• RTL simulation (commit hash adf9fcb, yanqihu)
• DDR4-2400 under DRAMsim3

• Sampling with SimPoint simulation points of SPEC CPU2006
• maxK = 30, benchmarks with coverage > 80%

• Each point with 50M warmup + 50M sampling

• Customized RISC-V checkpoint format

0

5

10

15

20

25
SPECint 2006
9.98@1.3GHz

SPECfp 2006
9.84@1.3GHz

* Pre-silicon estimation results. Updated May 1, 2021.

中国科学院计算技术研究所 (ICT, CAS) 1717

Nanhu: 2nd generation microarchitecture

• Named after a lake in Jiaxing, Zhejiang, China

• Target: 2GHz@14nm, SPEC CPU2006 20 marks

• Major changes
• New frontend design: decoupled BP and instruction fetch

• Improved backend: better scheduler, instruction fusions, and more

• New L2 cache: designed for high frequency and high performance

• Tape-out with dual cores (RV64GCBK), more devices support (PCIe, USB, …)

• Continuously optimize the performance, frequency, ..., in an agile way

中国科学院计算技术研究所 (ICT, CAS) 1818

Estimated performance of Nanhu

• Estimated SPECint 2006 18.41, SPECfp 2006 20.94@2GHz

• RTL simulation, DDR4-2400 under DRAMsim3

• SimPoint simulation points of SPEC CPU2006 (RV64GCB, O2)
• maxK = 30, each point with 20M warmup + 20M sampling

7.81 CoreMark/MHz @ (RV64GCB, O2) Estimated SPECint 2006 18.41, SPECfp 2006 20.94@2GHz

* Updated Nov. 27, 2021

中国科学院计算技术研究所 (ICT, CAS) 1919

Opt. ①: Instruction Fetch and Branch Prediction

• Decoupled IF and BP

• Higher Branch Prediction Accuracy
• More accurate branch history

• One-cycle earlier prediction latency of TAGE

• ITTAGE indirect branch prediction

• Larger RAS for the call-return instruction pair

• Higher Fetch Throughput
• Hide the instruction fetch bubbles

• BP continues when IF is blocked

BP1 FQ F1 F2 F3 IBuf

BP2

Branch Prediction Instruction Fetch

中国科学院计算技术研究所 (ICT, CAS) 2020

Opt. ②: Execution Units

• More instructions supported
• RISC-V bit-manipulation extension (RVB)

• RISC-V scalar crypto extension (RBK)

• Fine-Grained Address-Translation Cache Invalidation (Svinval)

• Instruction fusion for common cases

• IEEE754-compatible high-performance FPU
• Open-source at https://github.com/OpenXiangShan/fudian

• Dual-path floating-point adder

• Cascade FMA (5-cycle latency)

• Improved Int/Fp Division with SRT-16

FMUL

FADD

106-bit 53-bit
53-bit

Mux

MUL
Result

ADD/MAC
Result

64-bit 64-bit

Figure. Cascade FMA

96%

86%
84%

0.8

0.85

0.9

0.95

1

GC GC-Fused GCB GCB-Fused

Figure. Normalized Dynamic
Instruction Count for CoreMark (-O2)

https://github.com/OpenXiangShan/fudian

中国科学院计算技术研究所 (ICT, CAS) 2121

Opt. ③: Load Store Unit

• New Features Supported
• Customized Configurable Physical Memory Attributes (PMA)

• RISC-V Physical Memory Protection (PMP)

• ECC for L1/L2/L3

• Cache coherency between L1I and L1D (eliminated overhead of fence.i)

• L1 TLB/STLB
• Larger size (136 entries for DTLB) and better replacement (PLRU)

• Max. 8 in-flight PTW and memory requests supported

• Next-line prefetcher for STLB

• Load/Store Pipelines
• Virtual-address based fast data bypassing

• Memory dependence prediction using store sets

• Separated store address and data

Figure. TLB Hierarchy

Load RS

L1 Cache

L1
 LB

Vaddr

Load
Stage

Load
Stage 1

Load
Stage 2

 o
Load ueue
 ritebac

Store
 ueue

SBu er

Paddr
Vaddr orward it Vec
Paddr orward it Vec

 Cache ata

Vaddr orward ata

Merged ata

Figure. 3-cycle Load Latency

中国科学院计算技术研究所 (ICT, CAS) 2222

Opt. ④: Data Cache

• 128KB DCache with hardware-based solution to cache alias
• Key idea: disallow aliases (different page colors) to co-exist in a VIPT cache

中国科学院计算技术研究所 (ICT, CAS) 2323

Opt. ④: Data Cache

• Hardware solution for cache alias
• Virtual-indexed DCache

• Physical-indexed L2

• L2 directory saves alias bits (page color)
of the block in DCache

• L2 will ensure only one alias exists in L1

中国科学院计算技术研究所 (ICT, CAS) 2424

Opt. ⑤: L2/L3 Cache

• Non-blocking inclusive/non-inclusive cache
• Open-source at https://github.com/OpenXiangShan/HuanCun

• Some design choices inspired by SiFive Block Inclusive Cache

• Configurable parameters
• Size, #ways, #MSHRs

• Inclusion policy, prefetch policy, replacement policy

• Optimized design and improved performance
• Better timing and higher frequency

• Up to 30% IPC increase on sensitive benchmarks

Figure. Overview of HuanCun

Figure. Performance improvements on
some memory-sensitive checkpoints

https://github.com/OpenXiangShan/HuanCun

中国科学院计算技术研究所 (ICT, CAS) 2525

Open-source plan

• XiangShan has been open-sourced on GitHub since June 2020
• MulanPSLv2 License (compatible with Apache v2.0)

• https://github.com/OpenXiangShan/XiangShan

• Mailing list: xiangshan-all@ict.ac.cn

• Every commit, every generation, every tool, …, ALL on GitHub

• Any discussions, features, patches, …, ALL are welcome
• After the verification and review processes, PRs will be merged

• Contribute to XiangShan and realize your ideas on real chips!
• The open-source XiangShan will be taped-out every ~6 months

Scan to follow us on GitHub

https://github.com/OpenXiangShan/XiangShan

鹏城实验室
Peng Cheng Laboratory

Thanks!

