
User Guide to Matlab Toolbox

“Optimal Transport Networks in Spatial Equilibrium”

Pablo Fajgelbaum Dorian Henricot Cristiano Mantovani

Edouard Schaal

October 15, 2019
version 1.0.4

Contents

1 Introduction 3

2 Problem formulation 3

2.1 Immobile labor, no cross-good congestion . 3
2.2 Immobile labor, cross-good congestion . 4
2.3 Mobile labor, no cross-good congestion . 4
2.4 Mobile labor, cross-good congestion . 5
2.5 Partial mobility case . 5

3 Installation 5

3.1 Toolbox . 5
3.2 IPOPT . 5
3.3 ADiGator (optional) . 6

4 Examples 6

4.1 Running the examples . 6
4.2 Step-by-step example . 6

5 Data structures 9

5.1 Model parameter structure param . 9
5.2 Graph structure graph . 9
5.3 Results structure res . 9
5.4 Geography structure geography . 9

6 Functions 11

6.1 Function init parameters() . 11
6.2 Function create graph() . 12
6.3 Function optimal network() . 14
6.4 Function annealing() . 16
6.5 Function solve allocation() . 18

1

6.6 Function call adigator() . 19
6.7 Function plot graph() . 19
6.8 Function add node() . 21
6.9 Function remove node() . 22
6.10 Function find node() . 22
6.11 Function apply geography() . 23

7 Comments on the resolution method 23

7.1 Overview of the algorithm . 23
7.2 The six model cases . 25
7.3 Custom model . 26

8 Known bugs and issues 27

9 Release Notes 28

2

1 Introduction

In this document, we explain the code implementation of the model described in Fajgelbaum and Schaal
[2019]. Please refer to the paper for additional details on the model.

For a given graph (set of nodes and edges), with a given endowment (productivity, non-tradable
good, and population per node in the immobile case), and a given set of parameters, the code
returns the optimal network, flow, and allocation, with a graphical representation of it.

The document is organized as follows. In Section 2, we remind the reader about the model and
problem formulation that the toolbox is designed to solve. Section 3 provides installation steps. In
Section 4, we explain how to get quickly started and run the examples. In Section 5, we explain
the main data structures used in the code. In Section 6, we provide a reference on how to use
the various key functions. In Section 7, we provide a few additional information on the resolution
method and instructions to solve a custom model. Section 8 concludes with some known issues and
bugs.

2 Problem formulation

2.1 Immobile labor, no cross-good congestion

The social planning problem in the case of no labor mobility and no cross-good congestion is

max
cj ,hj,C

n
j
,Ln

j
,Qn

jk
,Ijk

∑

j

ωjLjU (cj , hj) (1)

with U (c, h) =
(

cαh1−α
)1−ρ

/ (1− ρ) , α ∈ [0, 1] , ρ > 1, subject to the availability of traded goods

cjLj 6

[

N
∑

n=1

(

Cn
j

)

σ−1
σ

]

σ
σ−1

, σ > 1, for all j; (2)

the availability of non-traded goods

hjLj 6 Hj for all j; (3)

the balanced-flows constraint

Cn
j +

∑

k∈N (j)

(

1 + τjk
(

Qn
jk, Ijk

))

Qn
jk 6 Zn

j

(

Ln
j

)a
+

∑

k∈N (j)

Qn
kj for all j,n (4)

with per unit shipping cost τjk

(

Qn
jk, Ijk

)

= δτjk

(

Qn
jk

)β

I−γ
jk ; the network-building constraint

∑

j

∑

k∈N (j)

δIjkIjk 6 K; (5)

exogenous bounds on network

0 6 Ijk 6 Ijk 6 Ijk for all j, k ∈ N (j) ; (6)

3

network symmetry
Ijk = Ikj for all j, k ∈ N (j) ; (7)

local labor market clearing
N
∑

n=1

Ln
j 6 Lj for all j; (8)

and the non-negativity of cj , C
n
j , L

n
j , Ijk and Qn

jk.

2.2 Immobile labor, cross-good congestion

In the case of cross-good congestion, paid in term of the tradeable good bundle in each location,
the problem is as in the previous formulation except that now:

• equation (2) becomes

cjLj +
∑

k∈N (j)

τjk (Qjk, Ijk)Qjk 6

[

N
∑

n=1

(

Dn
j

)

σ−1
σ

]

σ
σ−1

, ν > 1, (2’)

where
˙

τjk (Qjk, Ijk) = δτjk (Qjk)
β
I−γ
jk , and where we define

Qjk =

(

N
∑

n=1

mn

(

Qn
jk

)ν

)

1
ν

, ν > 1,

where m = (m1, . . . ,mN)
′
is a vector of positive weights; and

• the balanced flow constraint (4) in terms of each good becomes

Dn
j +

∑

k∈N (j)

Qn
jk 6 Zn

j

(

Ln
j

)a
+

∑

k∈N (j)

Qn
kj for all j,n. (4’)

2.3 Mobile labor, no cross-good congestion

The problem with labor mobility becomes

max
u,cj,hj ,C

n
j
,Ln

j
,Lj,Q

n
jk

,Ijk
u (9)

subject to the free-labor mobility constraint

Lju 6 LjU (cj , hj) for all j; (10)

and the aggregate labor market clearing constraint

∑

j

Lj 6 1 (11)

in addition to constraints (2)-(8).

4

2.4 Mobile labor, cross-good congestion

As in the case with immobile labor, the problem is the one defined in subsection 2.3 but substituting
equations (2) with (2)’ and (4) with (4)’.

2.5 Partial mobility case

We also provide an intermediate model of labor mobility where agents can move freely within
regions but not across regions. There are 1, . . . , R regions. Each location j is associated with a
given region r (j) ∈ {1, . . . , R}. The total labor endowment for region r is Lr.

The objective function is

max
ur ,cj,hj ,C

n
j
,Ln

j
,Lj,Q

n
jk

,Ijk

R
∑

r=1

ωrLrur (12)

subject to the region-specific labor mobility constraint for each location

Ljur(j) 6 LjU (cj , hj) for all j; (13)

and the region-specific labor market clearing constraint

∑

j|r(j)=r

Lj 6 Lr for all r ∈ {1, ..., R} . (14)

The rest of the constraints are identical to the previous cases whether we are in the case with
cross-good congestion or without.

3 Installation

The toolbox is written for Matlab and uses two additional open source packages: IPOPT for
optimization and ADiGator for autodifferentiation. We have tested the toolbox with IPOPT 3.11.8,
ADiGator 1.4 and Matlab R2018a on Linux Ubuntu 18.04 and Windows 10.

3.1 Toolbox

Unpack the content of the zip file in your working folder, or unzip it in a folder of your choice and
add the full path of the Code/ subfolder into Matlab’s search path (command addpath or ’Set
Path’ dialog box of the Matlab workspace).

3.2 IPOPT

IPOPT is a software designed to solve large-scale nonlinear optimization problems using an interior-
point algorithm. It is required to use our toolbox and can be found at https://projects.
coin-or.org/Ipopt. You will also have to install the Matlab interface as described here. In
practice, installing IPOPT and compiling the mex files for Matlab can be annoying, so we have been
using the precompiled mex files available at https://www.coin-or.org/download/binary/
Ipopt/. Simply download the most recent version, for instance

5

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
https://www.coin-or.org/Ipopt/documentation/node18.html
https://www.coin-or.org/download/binary/Ipopt/
https://www.coin-or.org/download/binary/Ipopt/

Ipopt-3.11.8-linux64mac64win32win64-matlabmexfiles.zip,
unzip it in your working folder or in any folder of your choice and add it to Matlab’s search path.1

3.3 ADiGator (optional)

ADiGator is optional and is only used to compute the gradient, jacobian and hessian of the La-
grangian for cases that we have not coded by hand. It can be found here: https://sourceforge.
net/projects/adigator/. Follow the installation procedure detailed in ADiGator User Guide
under the \doc folder of the ADiGator package. Make sure to run the script startupadigator.m
before using.

4 Examples

4.1 Running the examples

We describe below the procedure to run the various examples that we provide (make sure to follow
the previous steps to install IPOPT and ADiGator before following these steps!):

Step 1: Go to the Code/ directory.

Step 2: Open any of the scripts ’example0x.m’ or ’paper example0x.m’.

Step 3 (optional): Set the parameters of the model by defining the arguments of the function
’init parameters’ within the script. This includes defining whether there is cross-good conges-
tion, whether there is mobility of labor, whether there is convexity or not (through the relative
values of beta and gamma), or possibly the number of goods, etc.

Step 4: Execute script ’example0x.m’ or ’paper example0x.m’ in Matlab.

4.2 Step-by-step example

Before getting started, make sure Matlab’s search path includes your IPOPT folder as well as
ADiGator’s (don’t forget to run the script startupadigator() that comes with the ADiGator
package!). Once this is done, either get into the toolbox’s folder or add its path to Matlab’s search
path as well.

Step 1. The first important step in using the toolbox is to create the param structure that
contains the model’s parameters by using the function init parameters() described in section 6.1.
For default parameters (no labor mobility, no cross good congestion, convex case), simply write:

param = init_parameters();

Non-default parameter are set by specifying them as arguments in the function init parameters().
For instance, to consider a non-convex case with labor mobility and cross-good congestion, set in-
stead:

1Another option is to use the precompiled mex files frommexIPOPT by Enrico Bertolazzi available on Matlab Cen-
tral at here. Simply copy the files ipopt.mexa64 (Linux) or ipopt.mexmaci64 (OSX) under precompiled mex/

in your working folder as well as lib/ipopt.m and lib/ipopt auxdata.m, or simply add these folders to your
Matlab path.

6

https://sourceforge.net/projects/adigator/
https://sourceforge.net/projects/adigator/
https://es.mathworks.com/matlabcentral/fileexchange/53040-ebertolazzi-mexipopt

param = init_parameters(’LaborMobility’,’on’,’CrossGoodCongestion’,’on’,’gamma’,2,’beta’,1);

This case is non-convex because gamma>beta. The arguments in init parameters can be introduced
in any order.

Step 2. We then want to create the underlying graph on which trade will take place. To do so,
we use the function create graph() described in section 6.2. For a default ’map’ network, simply
call:

[param,graph] = create_graph(param, 11, 11); % create an 11x11 map network

For a 5 x 5 triangular network, call instead

[param,graph] = create_graph(param, 5, 5, ’Type’, ’triangle’); % 5x5 triangular network

Note that the param structure is also modified by the function create graph() which enriches
it with additional entries that can only be set when the number of location is known, such as J ,
Lj, Hj , Z

n
j . By default, all these endowments are uniformly distributed.

Step 3. Unless there is some asymmetry across locations, there will be no trade. We thus
want to customize the endowment/productivity distribution and introduce some asymmetry across
locations. For instance, we set the productivity of the central location to be twice as much as in
other locations (Zn

j = 1 everywhere else by default). Since we have created an 11x11 network, it
will be the (6,6) node:

i = find_node(graph,6,6); % get the index of the central node located in (6,6)

param.Zjn(i) = 2; % make the central node more productive

Step 4. We are now ready to compute the optimal network. To do so, we call the function
optimal network() described in section 6.3.

res = optimal_network(param,graph);

The result structure res will contain all the optimal infrastructure investments in res.Ijk, but
the full allocation as well in res.Cj, res.Lj, etc.

Step 5. To conclude, let us plot the resulting distribution of optimal infrastructure investments
using the function plot graph() described in section 6.7. Figure 1 shows the result.

plot_graph(param,graph,res.Ijk);

Full code:

1 % First, initialize the param structure containing the model parameters

2 param = init_parameters();

3
4 % Second, initialize the underlying graph

5 [param,graph] = create_graph(param, 11, 11, ’Type’, ’map’); % create an 11x11 map network

6
7 % Third, customize the distribution of endowment

8 i = find_node(graph,6,6); % get the index of the central node

9 param.Zjn(i) = 2; % make the central node more productive (others are set to 1 by default)

10
11 % Fourth, compute the optimal network

12 res = optimal_network(param,graph);

13
14 % Fifth, plot the result

15 plot_graph(param,graph,res.Ijk);

7

Figure 1: Simple example from section 4.2

8

5 Data structures

5.1 Model parameter structure param

The param structure is created by the function init parameters() detailed in section 6. It
contains most of the model parameters as described in Table 1.

5.2 Graph structure graph

The graph structure is created by the function create graph() detailed in section 6. It contains
the graph on which trade is taking place. Table 2 below describes its entries.

5.3 Results structure res

The content of the results structure res is the output of function optimal network() described
in Section 6. The various entries are explained in Table 3.

Variable Dimension Description

welfare real Total utilitarian welfare
uj [J,1] Utility in each location
cj [J,1] Per capita final consumption per location
Cj [J,1] Total tradeable consumption per location
Dj [J,1] Total availability of tradeable good pre-transport cost per location

(cross-good congestion only)
Cjn [J,N] Total consumption per good (post-transport costs if cross-good

congestion)
Djn [J,N] Total availability of each good pre-transport cost per location

(cross-good congestion only)
hj [J,1] Non-tradable good per capita

Qjkn [J,J,N] Flows from j to k of good n
Qin [ndeg,N] Flows along all edges (linearly indexed, for computation purposes)
Lj [J,1] Population
Ljn [J,N] Working population per good
Pjn [J,N] Prices of traded goods per location
PCj [J,N] Aggregate prices of tradeable good bundle per location
Yjn [J,N] Production per good per location
Ijk [J,J] Optimal infrastructure per edge (symmetric)

Table 3: Results structure res

5.4 Geography structure geography

The geography structure is only used to encode additional information about the terrain such
as elevation and obstacles to be used when plotting the terrain in 3D using plot graph(). It is
also used by the function apply geography() which provides a way to encode such geographical

9

Variable Dimension Description

Optimization options

mobility 0, 1 or 0.5 Determines whether labor is mobile (1), immobile (0) or partially
mobile (0.5).

cong boolean Determines whether is cross good congestion or not. Yes if true.
custom boolean Determines whether to maximize the custom objective function

objective custom() subject to the constraints constraints custom().
adigator boolean Determines whether to use ADiGator or force using hand calculated

jacobiones. Yes if true.
annealing boolean Determines whether to automatically run the simulated annealing

algorithm after optimization in the nonconvex case. Yes if true.
verbose boolean Determines whether to display the steps and results of optimization.

Yes if true.
Model parameters

J N Number of locations J
N N Number of traded goods N

sigma real>1 Elasticity of substitution σ between goods in CES

Cj =
(

∑

n(C
n
j)

σ−1
σ

)
σ

σ−1

omegaj [J,1] Vector of Pareto weights ωj (only relevant in the immobile labor case)
omegar [nregions,1] Vector of Pareto weights ωr per region (partial mobility case only)
Lj [J,1] Vector of population Lr per region (partial mobility case only)
Lr [nregions,1] Vector of population Lj per location (immobile labor case only)
Hj [J,1] Endowment of nontradeable good Hj (housing) per location
hj [J,1] Nontradeable good per person hj in each location (only relevant in the

immobile labor case)
Zjn [J,N] Matrix of productivity Zn

j of each location j in good n

K real>0 Total endowment of concrete/asphalt
Preferences and technology

a real∈ (0, 1] Returns to scale to labor in production function Zn
j

(

Ln
j

)a

rho real> 1 Inequality aversion ρ in utility U(c, h) =
(

(c
α
)α(h

1−α
)1−α

)1−ρ

/ (1− ρ)

alpha real∈ (0, 1) Spending share α on traded goods in utility

U(c, h) =
(

(c
α
)α(h

1−α
)1−α

)1−ρ

/ (1− ρ)

Transport cost parameters

beta real>0 Parameter β governing intensity of congestion in transport
gamma real>0 Parameter γ governing returns to scale in infrastructure investment
nu real>1 Parameter ν governing degree of cross-good congestion (irrelevant if no

cross-good congestion)
m Nx1 Good-specific weight parameters in the case with cross-good congestion

Table 1: param structure

10

Variable Dimension Description

J N Number of locations J
x [J,1] Vector of x coordinates for each location j
y [J,1] Vector of y coordinates for each location j

nodes [J,1] array
of struct

Each nodes is a structure that contains the entry neighbors, which is a
list of indices of neighboring nodes. Ex.:

graph.nodes{i}.neighbors is a row vector containing the indices
of node i’s neighbors.

adjacency [J,J] Adjacency matrix of underlying undirected graph
delta i [J,J] Matrix of edge specific investment costs δijk

delta tau [J,J] Matrix of edge specific transport costs δτjk
ndeg N Number of degrees of freedom of undirected graph, also equal to # of

edges
(e.g.,=sum(reshape(tril(adjacency),[Jˆ2,1])))

region [J,1] Vector indicating in which region each location belongs. The region id
should be between 1 and nregions (partial mobility only)

Table 2: graph structure

Variable Dimension Description

z [J,1] Vector of z-coordinates (elevation) for each node
obstacles [nb,2] Matrix of pairs of node indices indicating where obstacles like rivers,

etc. are placed, where nb is an arbitrary number of obstacles. Each
index must be an integer between 1 and graph.J. E.g., to place

obstacles on links 1-2 and 2-3, define: obstacles = [1,2; 2,3];

Each pair of nodes must be neighbors in the underlying graph.

Table 4: geography structure

details in the cost matrices of the graph structure. Each geography structure must be created
from scratch as we do not provide any function to automatically generate it. See example04.m for
a working example. Table 4 below explains its various entries.

6 Functions

This section describes the main functions from the Toolbox that a regular user may want to use.

6.1 Function init parameters()

The function [param]=init parameters(varargin) is the first function from the toolbox
that should be called to initialize the model parameters.

Example usage:

% Simplest call, default parameters

param = init_parameters();

11

% Some custom parameters, others set to default

param = init_parameters(’LaborMobility’,’on’,’N’,2,’beta’,1,’gamma’,2);

The list of customizable parameters are described in Table 5. See Table 1 for additional description
on the corresponding parameters. Note that by default all unspecified parameters are set to their
default values, unless a pre-existing param object is provided, in which case it will solely override
the specified parameters and check consistency with the others.

6.2 Function create graph()

Function [param,graph] = create graph(param,w,h,varargin) creates the basic un-
derlying graph in which trade will take place.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’w’: width of the graph (max # of nodes along horizontal axis);
- ’h’: height of the graph (# of nodes along vertical axis);
- varargin: additional options (see below).

The additional options that can be put in varargin are listed in Table 6.

The different types of preprogrammed networks acceptable by the function are:
- ’square’: regular network of w x h nodes placed in a rectangular graph with coordinates (i, j)
for i = 1..w and j = 1..h. Each interior node has 4 neighbors: 2 along the vertical and 2 along
the horizontal axes.

- ’map’: same as the square network except that each interior node has 8 neighbors along the
vertical, horizontal and diagonal axes.

- ’triangle’: triangular network with h rows such that nodes are placed at coordinates (i, j) for
i = 1..w , j odd and i = −0.5 + 1..w − 1 , j even between 1 and h. Each interior node has 6
neighbors: 2 along the horizontal and 4 along the two diagonals. Note that we require h to
be odd for triangular networks.

- ’custom’: custom network provided by user with a given adjacency matrix, X and Y coordi-
nates (in that case, w and h are unused and can be set to []).

Figure 2 displays these different types of networks, the way nodes are indexed by default and their
corresponding (x, y) coordinates. These default networks can be customized using the function
add node() and remove node(). Their location in space can be modified directly by changing
the coordinate vectors graph.x and graph.y. By default, the cost matrices delta tau and
delta i are set equal to the cartesian distance between nodes. Graphs do not have to be created
by the function create graph() and can be customized at will. You should make sure, however,
that each entry detailed in Table 2 are correctly set to be compatible with the other functions in
the toolbox.

Output:

12

Options Value Default Description

Miscellaneous options

’LaborMobility’ ’on’, ’off’,
’partial’

’off’ Turn on/off labor mobility or allow for
partial mobility (labor is mobile only within

prespecified regions).
’CrossGoodCongestion’ ’on’/’off’ ’off’ Turn on/off cross-good congestion.

’Custom’ ’on’/’off’ ’off’ Turn on/off custom objective/constraint
usage.

’ADiGator’ ’on’/’off’ ’off’ Use of ADiGator even in hand-calculated
cases.

’Annealing’ ’on’/’off’ ’on’ Turn on/off simulated annealing in
nonconvex case.

’Verbose’ ’on’/’off’ ’on’ Turn on/off display of info about
optimization.

’param’ param

structure
none Provide an already existing param structure

to be used as default
Preferences and technology

’a’ real∈ (0, 1] 0.8 Returns to scale to labor in production
function

’rho’ real> 1 2 Inequality aversion ρ in utility
’alpha’ real∈ (0, 1) 0.5 Spending share α on traded goods in utility
’N’ N 1 Number of traded goods N

’sigma’ real>1 5 Elasticity of substitution σ
’K’ real>0 1 Total endowment of concrete/asphalt

Transport cost parameters

’beta’ real>0 1 Transport congestion parameter β
’gamma’ real>0 1 Returns to infrastructure investment γ
’nu’ real>1 1 Elasticity of substitution ν in cross-good

congestion
’m’ Nx1 ones(N,1) Good-specific weight in cross-good congestion

Table 5: Options of init parameters

13

Options Value Default Description

’Type’ ’map’, ’square’, ’triangle’
or ’custom’

’map’ Set the type of the network (see below)

’ParetoWeights’ [J,1] ones(J,1) Vector of Pareto weights
’Adjacency’ [J,J] [] Adjacency matrix of the network (for

custom type only)
’X’ [J,1] [] Vector of x coordinates of locations

(for custom type only)
’Y’ [J,1] [] Vector of y coordinates of locations

(for custom type only)
’NRegions’ N 1 Number of regions (partial mobility

only)
’Region’ [J,1] ones(J,1) Vector indicating to which region each

location belongs. The region index
should be within 1 and nregions

(partial mobility only)

Table 6: Options for varargin in create graph

- ’param’: an updated param structure (augmented with values for J , Lj , Hj , hj and Zn
j once

the number of locations is defined). By default, productivity, endowments and population are
uniform across locations.

- ’graph’: the graph structure containing the nodes, their location, its adjacency matrix, etc.

Example usage:

% Initialize model parameters

param=init_parameters();

% Create an 11x11 triangular network

[param,graph] = create_graph(param,11,11,’Type’,’triangle’);

6.3 Function optimal network()

Function res = optimal network(param,graph,I0,Il,Iu,verbose) solves for the op-
timal transport network of the economy described in variables param and graph.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’I0’: (optional) J × J symmetric matrix containing the seed for the matrix of infrastructure
investment provided to the solver, set to [] or nothing for default seed (non-connected links
should be set to 0);

- ’Il’: (optional) J × J matrix containing lower bounds for the matrix of infrastructure invest-
ment Ijk as in equation (6), set to [] or nothing for none;

14

1
(1,1)

2
(2,1)

3
(3,1)

4
(4,1)

5
(5,1)

6
(1,2)

7
(2,2)

8
(3,2)

9
(4,2)

10
(5,2)

11
(1,3)

12
(2,3)

13
(3,3)

14
(4,3)

15
(5,3)

16
(1,4)

17
(2,4)

18
(3,4)

19
(4,4)

20
(5,4)

21
(1,5)

22
(2,5)

23
(3,5)

24
(4,5)

25
(5,5)

(a) Square network

1
(1,1)

2
(2,1)

3
(3,1)

4
(4,1)

5
(5,1)

6
(1,2)

7
(2,2)

8
(3,2)

9
(4,2)

10
(5,2)

11
(1,3)

12
(2,3)

13
(3,3)

14
(4,3)

15
(5,3)

16
(1,4)

17
(2,4)

18
(3,4)

19
(4,4)

20
(5,4)

21
(1,5)

22
(2,5)

23
(3,5)

24
(4,5)

25
(5,5)

(b) Map network

1
(1,1)

2
(2,1)

3
(3,1)

4
(4,1)

5
(5,1)

6
(1.5,2)

7
(2.5,2)

8
(3.5,2)

9
(4.5,2)

10
(1,3)

11
(2,3)

12
(3,3)

13
(4,3)

14
(5,3)

15
(1.5,4)

16
(2.5,4)

17
(3.5,4)

18
(4.5,4)

19
(1,5)

20
(2,5)

21
(3,5)

22
(4,5)

23
(5,5)

(c) Triangle network

Figure 2: Various types of preprogrammed networks for w = 5 and h = 5

15

- ’Iu’: (optional) J ×J matrix containing upper bounds for the matrix of infrastructure invest-
ment Ijk as in equation (6), set to [] or nothing for none.

- ’verbose’: (optional) boolean that instructs IPOPT to display each iteration.

Output:

- ’res’: result structure containing the optimal transport infrastructure and economic allocation.

Example usage:

% Initialize default parameters and graph

param=init_parameters();

[param,graph] = create_graph(param,11,11);

% Solve for the optimal transport network

res = optimal_network(param,graph);

6.4 Function annealing()

Function res = annealing(param,graph,I0,varargin) applies the simulated annealing
algorithm to approximate for the globally optimal transport network for the economy described in
variables param and graph. This function is only useful in the nonconvex case when γ > β.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’I0’: (optional) J × J symmetric matrix containing the seed for the matrix of infrastructure
investment provided to the algorithm (usually the outcome of a first optimization from opti-
mal network()), set to [] or nothing for default seed (non-connected links should be set to
0);

- varargin: additional options (see below).
The additional options that can be put in varargin are listed in Table 7.

Different methods are proposed to perturb the network in each step of the simulated annealing

method (option ’PerturbationMethod’):
- ’random’ adds NbRandomPerturbations links at random in the network, making sure the
asphalt resource constraint is met;

- ’shake’ modifies the network as if it had been “shaked” in some random direction before
applying some Gaussian smoothing;

- ’rebranching’ implements the rebranching algorithm described in the paper whereby each
location is reconnected to its best connected neighbor;

- ’random rebranching’ is identical to rebranching except that only #NbRandomPertur-
bations nodes are picked at random for rebranching;

- ’hybrid alder’ implements the Hybrid Alder-FS algorithm described in the paper which
attempts to replicate the spirit of the algorithm described in Alder (2018).

Output:

- ’res’: result structure containing the optimal transport infrastructure and economic allocation.

16

Options Value Default Description

’PerturbationMethod’ ’shake’, ’random’,
’rebranching’,

’random
rebranching’,
’hybrid alder’

’rebranching’ See description

’PreserveCentralSymmetry’ ’on’/’off’ ’off’ (shake only) Make sure
perturbations preserve

central symmetry
’PreserveVerticalSymmetry’ ’on’/’off’ ’off’ (shake only) Make sure

perturbations preserve
vertical symmetry

’PreserveHorizontalSymmetry’ ’on’/’off’ ’off’ (shake only) Make sure
perturbations preserve
horizontal symmetry

’SmoothingRadius’ real>0 0.25 (shake only) Gaussian
smoothing radius

’MuPerturbation’ real>0 log(0.3) (shake only) Average radius
of translation

’SigmaPerturbation’ real>0 0.05 (shake only) Stdev of
translation

’Display’ ’on’/’off’ ’off’ Display network after each
perturbation

’TStart’ real>0 100 Initial temperature of
annealing

’TEnd’ real>0 1 Final temperature of
annealing

’TStep’ 0<real<1 0.9 Cooling step (e.g.,
temperature at t is
TStart× TStept)

’NbDeepening’ N
∗ 4 # of FOC iterations between

perturbations
’NbRandomPerturbations’ N

∗ 1 # of links randomly changed
in ’random’ and ’random
rebranching’ methods

’Funcs’ funcs structure [] funcs structure provided by
ADiGator to skip rederiving

jacobian and hessian
’Il’ [J,J] [] matrix of lower bounds Ijk
’Iu’ [J,J] [] matrix of upper bounds Ijk

Table 7: Options for varargin in annealing

17

Example usage:

% Init in nonconvex case gamma>beta

param = init_parameters(’beta’,1,’gamma’,2);

[param,graph] = create_graph(param,11,11);

% Solve for the optimal transport network (convex solver)

res = optimal_network(param,graph);

% Improve result using simulated annealing algorithm

res2 = annealing(param,graph,res.I);

6.5 Function solve allocation()

Function [res,flag,x] = solve allocation(param,graph,I,verbose,x0,funcs) com-
putes the equilibrium allocation for the economy for a given network of infrastructure investment
I.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’I’: J × J symmetric matrix containing the level of infrastructure in each link of the network
(non-connected links should be set to 0);

- ’verbose’: (optional, false by default) switch telling IPOPT whether to display iterations or
not;

- ’x0’: (optional) you may provide the seed given to IPOPT (the size varies depending on the
resolution method, see section 7). May be set to [] for none;

- ’funcs’: (optional) to avoid calling ADiGator everytime, you may provide the funcs structure
containing the various derivatives yourself (use call adigator() to obtain these deriva-
tives).

Output:

- ’res’: result structure containing the optimal transport infrastructure and economic allocation;
- ’flag’: flag variable returned by IPOPT. 0 (solved) or 1 (solved to acceptable level) indicate
success. See IPOPT reference for other error codes;

- ’x’: optimal control variable as returned by IPOPT (may be used to warm-start the optimiza-
tion).

Example usage:

% Init in nonconvex case gamma>beta

param = init_parameters(’beta’,1,’gamma’,2);

[param,graph] = create_graph(param,11,11);

% Create a uniform infrastructure grid with one for each link (i.e. the adjacency matrix)

I = graph.adjacency;

% Solve for the economic allocation

res = solve_allocation(param,graph,I);

18

6.6 Function call adigator()

Function funcs=call adigator(param,graph,I,verbose) calls ADiGator in order to com-
pute the gradient, jacobian and hessian of the social planning problem for a given network of
infrastructure investment I.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’I’: J × J symmetric matrix containing the level of infrastructure in each link of the network
(non-connected links should be set to 0);

- ’verbose’: (optional, false by default) whether or not ADiGator should display results on the
Matlab screen;

Output:

- ’funcs’: structure funcs with derivative functions used as input by IPOPT

-
Example usage:

% Init in nonconvex case gamma>beta

param = init_parameters(’beta’,1,’gamma’,2);

[param,graph] = create_graph(param,11,11);

% Create a uniform infrastructure grid with one for each link (i.e. the adjacency matrix)

I = graph.adjacency;

% Precalculate the derivatives

funcs = call_adigator(param,graph,I,true);

% Solve for the economic allocation, skipping the call to ADiGator

res = solve_allocation(param,graph,I,false,[],funcs);

6.7 Function plot graph()

Function plot graph(param,graph,edges,varargin) plots the underlying graph with link
intensity defined by edges.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’edges’: J × J matrix containing the capacity/investment/flow for each link of the network.
If non-symmetric, the max of edges(j,k) or edges(k,j) is plotted. Should be equal to
0 for unconnected nodes.

- varargin: additional options (see below).
The additional options that can be put in varargin are listed in Table 9.

19

Options Value Default Description

’Mesh’ ’on’/’off’ ’off’ Plot the underlying mesh

’Edges’ ’on’/’off’ ’on’ Plot the edge intensity given in edges

’Arrows’ ’on’/’off’ ’off’ Plot arrows indicating direction of flow

’Nodes’ ’on’/’off’ ’on’ Plot nodes for each location

’Geography’ ’on’/’off’ ’off’ Whether or not a full 3D geography is to

be plotted (a geography structure must

be specified)

’Obstacles’ ’on’/’off’ ’off’ (geography only) plot obstacles (rivers,

forest, etc) specified in

geography.obstacles

’Transparency’ ’on’/’off’ ’on’ Whether to use transparency when

plotting (nicer but slower)

’EdgeScaling’ ’on’/’off’ ’on’ Whether to rescale edge thickness and

intensity between min and max or use

absolute value specified in edges

’MinEdge’ real>0 0 Minimum edge intensity under which

links are not plotted

’MaxEdgeThickness’ real>0 2 Maximal thickness of edge to be plotted

’MinEdgeThickness’ real>0 0.1 Minimal thickness of edge to be plotted

’Shades’ [J,1] zeros(J,1) Color of each node is given by

shades(i)*NodeBgColor

+(1-shades(i))*NodeFgColor

’Sizes’ [J,1] ones(J,1) Size of each node

’NodeFgColor’ [1,3] [1,0,0] (red) Node foreground color

’NodeBgColor’ [1,3] [1,1,1] (white) Node background color

’NodeOuterColor’ [1,3] [0,0,0] (black) Node outer color

’NodeColorMap’ [x,3] [] Colormap to be used for nodes (overrides

NodeBgColor and NodeFgColor)

’EdgeColor’ [1,3] [0,0.2,0.5]

(dark blue)

Node outer color

’MeshColor’ [1,3] [0.9,0.9,0.9]

(light gray)

Underlying mesh color

’MeshStyle’ ’-’ / ’:’

/ ’.-’ /

’--’

’-’ Line style used to draw underlying mesh

’MeshTransparency’ 0<real<1 1 alpha transparency for underlying mesh

’ObstacleColor’ [1,3] [0.4,0.7,1]

(light blue)

Obstacle color (if Obstacles is on)

’CMax’ [1,3] [0.9,0.95,1]

(bluish white)

(geography only) maximal color for heat

map (e.g., mountain peak color)

’CMin’ [1,3] [0.4,0.65,0.6]

(funky green)

(geography only) minimal color for heat

map (e.g., green plains)

20

’Margin’ real>0 0.1 (non-geography only) default margin

around graph as a percentage

’ArrowScale’ real>0 1 (arrows only) scaling factor for arrow size

’ArrowStyle’ ’long’/’thin’ ’long’ (arrows only) arrow style

’GeographyStruct’ geography

structure

[] (geography only) geography structure

that defines elevation of terrain and

position of obstacles

’View’ [1,2] [30,45] (geography only) [AZ,EL] that defines the

view angle in the 3D view

Table 9: Options for varargin in plot graph

Output:

- None.

Example usage:

% ..after initialization

% Solve for the optimal transport network

res = optimal_network(param,graph);

% Plot network

plot_graph(param,graph,res.Ijk);

6.8 Function add node()

Function [param,graph]=add node(param,graph,x,y,neighbors) adds a node to the
underlying network located in (x, y) with neighbors listed in neighbors.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’x’: x coordinate of the node to be created;
- ’y’: y coordinate of the node to be created;
- ’neighbors’: 1×nb list of node indices to which the new node is to be connected, where nb is
an arbitrary number of neighbors. Indices must integers comprised between 1 and J .

Output:

- ’param’: updated param structure with default population, endowments and productivity;
- ’graph’: new graph augmented with additional node (indexed by J + 1)

Example usage:

21

% Initialize default parameters and graph

param=init_parameters();

[param,graph] = create_graph(param,10,10,’Type’,’square’);

% Add a node in the middle, connected to its 4 closest neighbors

[param,graph] = add_node(param,graph,5.5,5.5,[45,46,55,56]);

6.9 Function remove node()

Function [param,graph]=remove node(param,graph,i) removes the node indexed by i.

Arguments:

- ’param’: param structure created by the function init parameters() that contains the
model parameters;

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’i’: index of the node to be removed, comprised between 1 and J (see Figure (2) to understand
how nodes are indexed or use find node()).

Output:

- ’param’: updated param structure with default population, endowments and productivity;
- ’graph’: new graph with node i removed (remaining nodes are re-indexed between 1 and J−1)

Example usage:

% Initialize default parameters and graph

param=init_parameters();

[param,graph] = create_graph(param,11,11);

% Remove central node

i=find_node(graph,6,6); % get the index of the central node

[param,graph]=remove_node(param,graph,i); % remove it

6.10 Function find node()

Function i=find node(graph,x,y) returns the index i of the node in graph closest to location
(x, y).

Arguments:

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’x’: x coordinate of the node to be found;
- ’y’: y coordinate of the node to be found.

Output:

- ’i’: index of the node closest to location.

Example usage:

22

% Initialize default parameters and graph

param=init_parameters();

[param,graph] = create_graph(param,11,11);

% Get index of node located at (4,8)

i=find_node(graph,4,8);

6.11 Function apply geography()

Function graph = apply geography(graph, geography, varargin) takes a geography
structure to encode it in the cost matrices delta i and delta tau of the corresponding graph
structure. More specifically, it parametrizes the building cost of each segment as

δ̂ljk = Euclidian distancejk ×

(

1 + αl,upmax (zk − zl, 0)
βl,up ++αl,downmax (zl − zk, 0)

βl,down

)

for l = i, τ

where zj is the elevation of node j as specified in the z entry of the geography structure. As for
obstacles, the function sets

δljk = δ̂ljk ×

δl,along if the link is where an obstacle is located

δl,across if the link crosses an obstacle

1 otherwise.

for l = i, τ

Arguments:

- ’graph’: graph structure created by the function create graph() that contains the un-
derlying network;

- ’geography’: geography structure as defined in
- ’varargin’: additional parameters to the cost parametrization (see Table 10);

Output:

- ’graph’: graph structure with updated cost matrices.

Example usage: see example04.m

7 Comments on the resolution method

7.1 Overview of the algorithm

The example scripts example0x.m initialize parameters and builds the graph, then calls the func-
tion optimal network(). The function optimal network() runs the optimization, with the
convex solver, allows to define the initial value of the optimization variables, as well as the objective
and the constraints functions within the files of prefix objective xxx.m and constraints xxx.m.
Using the autodifferentiation package ADiGator, it calculates the gradient of the objective, jacobian
of the constraints, and hessian of the Lagrangian. It calls the functions with prefix solve allocation xxx.m

which solves the inner problem (optimal flows and allocation for a given infrastructure) and iterates
over the FOC of the infrastructure network to solve the outer problem.

23

Options Value Default Description

’AlphaUp i’ real>0 0 Parameter αi,up that governs the
building cost going up

’BetaUp i’ real>0 1 Parameter βi,up that governs the
building cost going up

’AlphaUp tau’ real>0 0 Parameter ατ,up that governs the
transport cost going up

’BetaUp tau’ real>0 1 Parameter βτ,up that governs the
transport cost going up

’AlphaDown i’ real>0 0 Parameter αi,down that governs the
building cost going down

’BetaDown i’ real>0 1 Parameter βi,down that governs the
building cost going down

’AlphaDown tau’ real>0 0 Parameter ατ,down that governs the
transport cost going down

’BetaDown tau’ real>0 1 Parameter βτ,down that governs the
transport cost going down

’AlongObstacleDelta i’ real>0 1 Rescaling parameter for building cost
along an obstacle

’AlongObstacleDelta tau’ real>0 1 Rescaling parameter for transport cost
along an obstacle

’AcrossObstacleDelta i’ real>0 1 Rescaling parameter for building cost
across an obstacle

’AcrossObstacleDelta tau’ real>0 1 Rescaling parameter for transport cost
across an obstacle

Table 10: Options for varargin in apply geography

24

7.2 The six model cases

There six main different model cases which have to be solved with a specific code. These cases are:
primal mobile with and without cross good congestion (cgc), primal immobile with and without
cross good congestion, dual immobile without cross good congestion and small beta (fastest but
only applicable when the dual is twice-differentiable, that is β 6 1).These cases are summarized in
a table below.

In the cases with cross good congestion, the transport cost is expressed in final good which
requires cj as an additional optimization variables, in addition to the Dn

j . The mobile cases require
J more optimization variables, which are the total population in each node Lj . The dual can only
be solved in the immobile case (otherwise the problem is quasi-convex and strong duality does not
hold) without cross-good congestion (because we were lazy...). The dual does not require a con-
straints function by definition. In the case with a = 1 (constant returns to scale of the production
function) and multiple goods produced in each location, the optimal labor Ln

j cannot be expressed
as a function of prices directly and we turn to the primal. The custom case default settings are
presented in Table 11 below, but can be modified as described in section 7.3.

Note that none of these cases depend on the relative values of β and γ. This is because we solve
the model in two steps: an always convex inner problem, while we simply iterate on the FOCs of
the outer problem. As a result, in the non-convex case γ > β, we have the same six cases described
above. The differences will be that i) the algorithm will converge to a local optimum ii) there is the
option of refining this local optimum using simulated annealing (either run function annealing()
or set ’Annealing’ to ’on’ in init parameters()).

25

Case Parameters Optimization variables

Dual immobile cong = off Pn
j (multiplier on flow constraint)

mobility = off Wj (multiplier on local labor constraint)
β 6 1
a < 1

Primal immobile cong = off Qn
jk (flows along each edge)

mobility = off Ln
j (labor per good)

β > 1 or a = 1 Dn
j (consumption per good)

Primal mobile cong = off Qn,d
jk (flows along each edge in the edge direction)

Qn,ind
jk (flows along each edge in the edge opposite direction)

mobility = on Ln
j (labor per good)

Dn
j (consumption per good)

Lj (population)

Primal immobile cong = on Qn,d
jk (flows along each edge in the edge direction)

with cgc mobility = off Qn,ind
jk (flows along each edge in the edge opposite direction)

Ln
j (labor per good)

Dn
j (consumption per good)

cj (aggregate consumption, since transport cost in final good)

Primal mobile cong = on Qn,d
jk (flows along each edge in the edge direction)

with cgc mobility = on Qn,ind
jk (flows along each edge in the edge opposite direction)

Ln
j (labor per good)

Dn
j (consumption per good)

cj (aggregate consumption, since transport cost in final good)
Lj (population)

Custom (default cong = off Qn
jk (flows along each edge)

description) mobility = off Ln
j (labor per good)

Dn
j (consumption per good)

Table 11: The six different cases

7.3 Custom model

One might want to customize the model in a number of ways. We allow the user to provide its own
objective and constraint functions solved by the social planner in the inner problem. We provide the
files objective custom, constraints custom, and solve allocation custom ADiGator

for that purpose that are pre-coded according to the primal immobile without cross good congestion
case described in the previous section. We explain below the steps to follow in order to adjust the
code to your own use. Additional suggestions are also provided in the files. Note that only in
the cases preserving the concavity of the utility function and the convexity of the constraints will
the code provide a global optimum (otherwise it should converge to a local optimum improved by
simulated annealing).

The user might want in particular to modify the following: utility function, production function,
or transport cost.

26

Here is a list of the steps to follow:

Step 1: Modify objective function objective custom.m and constraint functions constraints custom.m

according to new model specification desired.

Step 2: In optimal network.m, provide the initial seed of the optimization with the right
number of variables (section CUSTOMIZATION 1 in the code).

Step 3: In optimal network.m, modify the expression of the optimal infrastructure level as
a function of prices (section CUSTOMIZATION 2 in the code).

Step 4: (If non convex) In annealing.m, make the same modifications as in optimal network()

in sections CUSTOMIZATION 1, 2 and 2’ in the code.

Step 5: In solve allocation custom ADiGator.m, modify the ’return allocation’ section
and the recover allocation() function according to your needs.

8 Known bugs and issues

• Important : It is very important to scale the problem properly for IPOPT to find the max-
imum. The IPOPT documentation recommends to keep numerical values between 1e-3 and
1e3. If you encounter such problems with IPOPT, rescaling variables and parameters so that
you remain in this region may be a solution. This rescaling includes setting the average
level of productivity, population, endowments of nontradeables, trade costs so that the re-
sulting endogenous variables fall broadly within these bounds. Special care must be taken for
derivatives. For instance, we recommend to avoid setting population, productivity or H in a
location equal to 0 (even though the theoretical problem is well defined), as it can easily lead
to infinite derivatives in the problem. Setting these endowment values to something small like
1e-2 or 1e-3 is often enough to fix IPOPT problems.

• When solving the mobile labor case, ADiGator returns the following warning “Warning:
derivative of discontinuous sign function - making derivatives zero“.
This is caused by the fact that the objective function or constraints may include absolute val-
ues, indicator functions or sign functions which have a discontinuity at 0. These warnings
can be ignored as ADiGator sets the derivative to 0 at the discontinuity. To the extent that
the result of the optimization is usually away from 0 (especially in the convex case), this
discontinuity is irrelevant for our purposes.

• ADiGator has difficulty dealing with large systems (e.g., 200+ variables). Hence, we have
coded some jacobians/hessians by hand in various cases. Unfortunately, we haven’t coded
every possible case. Cases we have (with or without cross-good congestion):

– no labor mobility: convex case (β 6 1, γ 6 β, a < 1), solved by duality

– no labor mobility, β > 1, any γ, any a 6 1 but at most one good is produced in each
location (that is, there is at most one good with a strictly positive Zn

j in each location),
solved by primal

27

– labor mobility, any β, any γ, any a 6 1 but at most one good is produced in each
location, solved by primal

– partial mobility case, any β, any γ, any a 6 1 but at most one good is produced in each
location, ρ = 1, solved by primal

• Sometimes IPOPT crashes with Matlab altogether. These come from problems catching
errors between Matlab and IPOPT. They often come from numerical or tiny mistakes in the
computation of the objective, constraints and their derivatives. Recompiling the mex file or
using a newer IPOPT-Matlab interface may help.

• Feel free to contact us if you find additional bugs. We may not be able to respond or correct
the code. We only provide the code to help with research projects, but we do not provide any
guarantee that the code will work under any circumstances.

9 Release Notes

Version Date Description
1.0.0 09/14/2018 Initial release
1.0.2 02/13/2019 Added option ’Adjacency’ in create graph(); added

’hybrid alder’ perturbation method in annealing() and a
clear distinction between ’rebranching’ and ’random
rebranching’ with parameter ’NbRandomPerturbations’;
corrected issues in ’random’ perturbation method in
annealing()

1.0.4 06/27/2019 - corrected an important bug in
solve allocation mobility cgc()

- added support for partial mobility
- corrected bugs in annealing()

- changed solve allocation mobility() (slower but more
stable)
- added illustrative examples from the paper

28

References

Pablo D. Fajgelbaum and Edouard Schaal. Optimal transport networks in spatial equilibrium.
Working paper, 2019. 1

29

